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Preface
Artificial Intelligence (AI) is a big field, and this is a big book. We have tried to explore
the full breadth of the field, which encompasses logic, probability, and continuous mathemat-
ics; perception, reasoning, learning, and action; fairness, trust, social good, and safety; and
applications that range from microelectronic devices to robotic planetary explorers to online
services with billions of users.

The subtitle of this book is “A Modern Approach.” That means we have chosen to tell
the story from a current perspective. We synthesize what is now known into a common
framework, recasting early work using the ideas and terminology that are prevalent today.
We apologize to those whose subfields are, as a result, less recognizable.

New to this edition

This edition reflects the changes in AI since the last edition in 2010:

• We focus more on machine learning rather than hand-crafted knowledge engineering,
due to the increased availability of data, computing resources, and new algorithms.

• Deep learning, probabilistic programming, and multiagent systems receive expanded
coverage, each with their own chapter.

• The coverage of natural language understanding, robotics, and computer vision has
been revised to reflect the impact of deep learning.

• The robotics chapter now includes robots that interact with humans and the application
of reinforcement learning to robotics.

• Previously we defined the goal of AI as creating systems that try to maximize expected
utility, where the specific utility information—the objective—is supplied by the human
designers of the system. Now we no longer assume that the objective is fixed and known
by the AI system; instead, the system may be uncertain about the true objectives of the
humans on whose behalf it operates. It must learn what to maximize and must function
appropriately even while uncertain about the objective.

• We increase coverage of the impact of AI on society, including the vital issues of ethics,
fairness, trust, and safety.

• We have moved the exercises from the end of each chapter to an online site. This
allows us to continuously add to, update, and improve the exercises, to meet the needs
of instructors and to reflect advances in the field and in AI-related software tools.

• Overall, about 25% of the material in the book is brand new. The remaining 75% has
been largely rewritten to present a more unified picture of the field. 22% of the citations
in this edition are to works published after 2010.

Overview of the book

The main unifying theme is the idea of an intelligent agent. We define AI as the study of
agents that receive percepts from the environment and perform actions. Each such agent
implements a function that maps percept sequences to actions, and we cover different ways
to represent these functions, such as reactive agents, real-time planners, decision-theoretic
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8 Preface

systems, and deep learning systems. We emphasize learning both as a construction method
for competent systems and as a way of extending the reach of the designer into unknown
environments. We treat robotics and vision not as independently defined problems, but as
occurring in the service of achieving goals. We stress the importance of the task environment
in determining the appropriate agent design.

Our primary aim is to convey the ideas that have emerged over the past seventy years
of AI research and the past two millennia of related work. We have tried to avoid exces-
sive formality in the presentation of these ideas, while retaining precision. We have included
mathematical formulas and pseudocode algorithms to make the key ideas concrete; mathe-
matical concepts and notation are described in Appendix A and our pseudocode is described
in Appendix B.

This book is primarily intended for use in an undergraduate course or course sequence.
The book has 29 chapters, each requiring about a week’s worth of lectures, so working
through the whole book requires a two-semester sequence. A one-semester course can use
selected chapters to suit the interests of the instructor and students. The book can also be
used in a graduate-level course (perhaps with the addition of some of the primary sources
suggested in the bibliographical notes), or for self-study or as a reference.

Throughout the book, important points are marked with a triangle icon in the margin.I
Wherever a new term is defined, it is also noted in the margin. Subsequent significant usesTerm

of the term are in bold, but not in the margin. We have included a comprehensive index and
an extensive bibliography.

The only prerequisite is familiarity with basic concepts of computer science (algorithms,
data structures, complexity) at a sophomore level. Freshman calculus and linear algebra are
useful for some of the topics.

Online resources

Online resources are available through pearsonglobaleditions.com. There you will find:

• Exercises, programming projects, and research projects. These are no longer at the end
of each chapter; they are online only. Within the book, we refer to an online exercise
with a name like “Exercise 6.NARY.” Instructions on the Web site allow you to find
exercises by name or by topic.

• Implementations of the algorithms in the book in Python, Java, and other programming
languages.

• Supplementary material and links for students and instructors.
• Instructions on how to report errors in the book in the likely event that some exist.

Book cover

The cover depicts the final position from the decisive game 6 of the 1997 chess match in
which the program Deep Blue defeated Garry Kasparov (playing Black), making this the first
time a computer had beaten a world champion in a chess match. Kasparov is shown at the
top. To his right is a pivotal position from the second game of the historic Go match be-
tween former world champion Lee Sedol and DeepMind’s ALPHAGO program. Move 37 by
ALPHAGO violated centuries of Go orthodoxy and was immediately seen by human experts
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Preface 9

as an embarrassing mistake, but it turned out to be a winning move. At top left is an Atlas
humanoid robot built by Boston Dynamics. A depiction of a self-driving car sensing its en-
vironment appears between Ada Lovelace, the world’s first computer programmer, and Alan
Turing, whose fundamental work defined artificial intelligence. At the bottom of the chess
board are a Mars Exploration Rover robot and a statue of Aristotle, who pioneered the study
of logic; his planning algorithm from De Motu Animalium appears behind the authors’ names.
Behind the chess board is a probabilistic programming model used by the UN Comprehensive
Nuclear-Test-Ban Treaty Organization for detecting nuclear explosions from seismic signals.
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CHAPTER 1
INTRODUCTION
In which we try to explain why we consider artificial intelligence to be a subject most
worthy of study, and in which we try to decide what exactly it is, this being a good thing to
decide before embarking.

We call ourselves Homo sapiens—man the wise—because our intelligence is so important Intelligence

to us. For thousands of years, we have tried to understand how we think and act—that is,
how our brain, a mere handful of matter, can perceive, understand, predict, and manipulate a
world far larger and more complicated than itself. The field of artificial intelligence, or AI, Artificial intelligence

is concerned with not just understanding but also building intelligent entities—machines that
can compute how to act effectively and safely in a wide variety of novel situations.

Surveys regularly rank AI as one of the most interesting and fastest-growing fields, and it
is already generating over a trillion dollars a year in revenue. AI expert Kai-Fu Lee predicts
that its impact will be “more than anything in the history of mankind.” Moreover, the intel-
lectual frontiers of AI are wide open. Whereas a student of an older science such as physics
might feel that the best ideas have already been discovered by Galileo, Newton, Curie, Ein-
stein, and the rest, AI still has many openings for full-time masterminds.

AI currently encompasses a huge variety of subfields, ranging from the general (learning,
reasoning, perception, and so on) to the specific, such as playing chess, proving mathemat-
ical theorems, writing poetry, driving a car, or diagnosing diseases. AI is relevant to any
intellectual task; it is truly a universal field.

1.1 What Is AI?

We have claimed that AI is interesting, but we have not said what it is. Historically, re-
searchers have pursued several different versions of AI. Some have defined intelligence in
terms of fidelity to human performance, while others prefer an abstract, formal definition of
intelligence called rationality—loosely speaking, doing the “right thing.” The subject matter Rationality

itself also varies: some consider intelligence to be a property of internal thought processes
and reasoning, while others focus on intelligent behavior, an external characterization.1

From these two dimensions—human vs. rational2 and thought vs. behavior—there are
four possible combinations, and there have been adherents and research programs for all

1 In the public eye, there is sometimes confusion between the terms “artificial intelligence” and “machine learn-
ing.” Machine learning is a subfield of AI that studies the ability to improve performance based on experience.
Some AI systems use machine learning methods to achieve competence, but some do not.
2 We are not suggesting that humans are “irrational” in the dictionary sense of “deprived of normal mental
clarity.” We are merely conceding that human decisions are not always mathematically perfect.
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four. The methods used are necessarily different: the pursuit of human-like intelligence must
be in part an empirical science related to psychology, involving observations and hypotheses
about actual human behavior and thought processes; a rationalist approach, on the other hand,
involves a combination of mathematics and engineering, and connects to statistics, control
theory, and economics. The various groups have both disparaged and helped each other. Let
us look at the four approaches in more detail.

1.1.1 Acting humanly: The Turing test approach

The Turing test, proposed by Alan Turing (1950), was designed as a thought experiment thatTuring test

would sidestep the philosophical vagueness of the question “Can a machine think?” A com-
puter passes the test if a human interrogator, after posing some written questions, cannot tell
whether the written responses come from a person or from a computer. Chapter 28 discusses
the details of the test and whether a computer would really be intelligent if it passed. For
now, we note that programming a computer to pass a rigorously applied test provides plenty
to work on. The computer would need the following capabilities:

• natural language processing to communicate successfully in a human language;Natural language
processing

• knowledge representation to store what it knows or hears;Knowledge
representation

• automated reasoning to answer questions and to draw new conclusions;Automated
reasoning

• machine learning to adapt to new circumstances and to detect and extrapolate patterns.
Machine learning

Turing viewed the physical simulation of a person as unnecessary to demonstrate intelligence.
However, other researchers have proposed a total Turing test, which requires interaction withTotal Turing test

objects and people in the real world. To pass the total Turing test, a robot will need

• computer vision and speech recognition to perceive the world;Computer vision

• robotics to manipulate objects and move about.Robotics

These six disciplines compose most of AI. Yet AI researchers have devoted little effort to
passing the Turing test, believing that it is more important to study the underlying princi-
ples of intelligence. The quest for “artificial flight” succeeded when engineers and inventors
stopped imitating birds and started using wind tunnels and learning about aerodynamics.
Aeronautical engineering texts do not define the goal of their field as making “machines that
fly so exactly like pigeons that they can fool even other pigeons.”

1.1.2 Thinking humanly: The cognitive modeling approach

To say that a program thinks like a human, we must know how humans think. We can learn
about human thought in three ways:

• introspection—trying to catch our own thoughts as they go by;Introspection

• psychological experiments—observing a person in action;Psychological
experiment

• brain imaging—observing the brain in action.Brain imaging

Once we have a sufficiently precise theory of the mind, it becomes possible to express the
theory as a computer program. If the program’s input–output behavior matches correspond-
ing human behavior, that is evidence that some of the program’s mechanisms could also be
operating in humans.

For example, Allen Newell and Herbert Simon, who developed GPS, the “General Prob-
lem Solver” (Newell and Simon, 1961), were not content merely to have their program solve
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problems correctly. They were more concerned with comparing the sequence and timing of
its reasoning steps to those of human subjects solving the same problems. The interdisci-
plinary field of cognitive science brings together computer models from AI and experimental Cognitive science

techniques from psychology to construct precise and testable theories of the human mind.
Cognitive science is a fascinating field in itself, worthy of several textbooks and at least

one encyclopedia (Wilson and Keil, 1999). We will occasionally comment on similarities or
differences between AI techniques and human cognition. Real cognitive science, however, is
necessarily based on experimental investigation of actual humans or animals. We will leave
that for other books, as we assume the reader has only a computer for experimentation.

In the early days of AI there was often confusion between the approaches. An author
would argue that an algorithm performs well on a task and that it is therefore a good model
of human performance, or vice versa. Modern authors separate the two kinds of claims; this
distinction has allowed both AI and cognitive science to develop more rapidly. The two fields
fertilize each other, most notably in computer vision, which incorporates neurophysiological
evidence into computational models. Recently, the combination of neuroimaging methods
combined with machine learning techniques for analyzing such data has led to the beginnings
of a capability to “read minds”—that is, to ascertain the semantic content of a person’s inner
thoughts. This capability could, in turn, shed further light on how human cognition works.

1.1.3 Thinking rationally: The “laws of thought” approach

The Greek philosopher Aristotle was one of the first to attempt to codify “right thinking”—
that is, irrefutable reasoning processes. His syllogisms provided patterns for argument struc- Syllogism

tures that always yielded correct conclusions when given correct premises. The canonical
example starts with Socrates is a man and all men are mortal and concludes that Socrates is
mortal. (This example is probably due to Sextus Empiricus rather than Aristotle.) These laws
of thought were supposed to govern the operation of the mind; their study initiated the field
called logic.

Logicians in the 19th century developed a precise notation for statements about objects
in the world and the relations among them. (Contrast this with ordinary arithmetic notation,
which provides only for statements about numbers.) By 1965, programs could, in principle,
solve any solvable problem described in logical notation. The so-called logicist tradition Logicist

within artificial intelligence hopes to build on such programs to create intelligent systems.
Logic as conventionally understood requires knowledge of the world that is certain—

a condition that, in reality, is seldom achieved. We simply don’t know the rules of, say,
politics or warfare in the same way that we know the rules of chess or arithmetic. The theory
of probability fills this gap, allowing rigorous reasoning with uncertain information. In Probability

principle, it allows the construction of a comprehensive model of rational thought, leading
from raw perceptual information to an understanding of how the world works to predictions
about the future. What it does not do, is generate intelligent behavior. For that, we need a
theory of rational action. Rational thought, by itself, is not enough.

1.1.4 Acting rationally: The rational agent approach

An agent is just something that acts (agent comes from the Latin agere, to do). Of course, Agent

all computer programs do something, but computer agents are expected to do more: operate
autonomously, perceive their environment, persist over a prolonged time period, adapt to
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change, and create and pursue goals. A rational agent is one that acts so as to achieve theRational agent

best outcome or, when there is uncertainty, the best expected outcome.
In the “laws of thought” approach to AI, the emphasis was on correct inferences. Mak-

ing correct inferences is sometimes part of being a rational agent, because one way to act
rationally is to deduce that a given action is best and then to act on that conclusion. On the
other hand, there are ways of acting rationally that cannot be said to involve inference. For
example, recoiling from a hot stove is a reflex action that is usually more successful than a
slower action taken after careful deliberation.

All the skills needed for the Turing test also allow an agent to act rationally. Knowledge
representation and reasoning enable agents to reach good decisions. We need to be able to
generate comprehensible sentences in natural language to get by in a complex society. We
need learning not only for erudition, but also because it improves our ability to generate
effective behavior, especially in circumstances that are new.

The rational-agent approach to AI has two advantages over the other approaches. First, it
is more general than the “laws of thought” approach because correct inference is just one of
several possible mechanisms for achieving rationality. Second, it is more amenable to scien-
tific development. The standard of rationality is mathematically well defined and completely
general. We can often work back from this specification to derive agent designs that provably
achieve it—something that is largely impossible if the goal is to imitate human behavior or
thought processes.

For these reasons, the rational-agent approach to AI has prevailed throughout most of
the field’s history. In the early decades, rational agents were built on logical foundations
and formed definite plans to achieve specific goals. Later, methods based on probability
theory and machine learning allowed the creation of agents that could make decisions under
uncertainty to attain the best expected outcome. In a nutshell, AI has focused on the studyI
and construction of agents that do the right thing. What counts as the right thing is definedDo the right thing

by the objective that we provide to the agent. This general paradigm is so pervasive that we
might call it the standard model. It prevails not only in AI, but also in control theory, where aStandard model

controller minimizes a cost function; in operations research, where a policy maximizes a sum
of rewards; in statistics, where a decision rule minimizes a loss function; and in economics,
where a decision maker maximizes utility or some measure of social welfare.

We need to make one important refinement to the standard model to account for the fact
that perfect rationality—always taking the exactly optimal action—is not feasible in complex
environments. The computational demands are just too high. Chapters 6 and 16 deal with the
issue of limited rationality—acting appropriately when there is not enough time to do allLimited rationality

the computations one might like. However, perfect rationality often remains a good starting
point for theoretical analysis.

1.1.5 Beneficial machines

The standard model has been a useful guide for AI research since its inception, but it is
probably not the right model in the long run. The reason is that the standard model assumes
that we will supply a fully specified objective to the machine.

For an artificially defined task such as chess or shortest-path computation, the task comes
with an objective built in—so the standard model is applicable. As we move into the real
world, however, it becomes more and more difficult to specify the objective completely and
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correctly. For example, in designing a self-driving car, one might think that the objective is
to reach the destination safely. But driving along any road incurs a risk of injury due to other
errant drivers, equipment failure, and so on; thus, a strict goal of safety requires staying in the
garage. There is a tradeoff between making progress towards the destination and incurring a
risk of injury. How should this tradeoff be made? Furthermore, to what extent can we allow
the car to take actions that would annoy other drivers? How much should the car moderate
its acceleration, steering, and braking to avoid shaking up the passenger? These kinds of
questions are difficult to answer a priori. They are particularly problematic in the general
area of human–robot interaction, of which the self-driving car is one example.

The problem of achieving agreement between our true preferences and the objective we
put into the machine is called the value alignment problem: the values or objectives put into Value alignment

problem

the machine must be aligned with those of the human. If we are developing an AI system in
the lab or in a simulator—as has been the case for most of the field’s history—there is an easy
fix for an incorrectly specified objective: reset the system, fix the objective, and try again.
As the field progresses towards increasingly capable intelligent systems that are deployed
in the real world, this approach is no longer viable. A system deployed with an incorrect
objective will have negative consequences. Moreover, the more intelligent the system, the
more negative the consequences.

Returning to the apparently unproblematic example of chess, consider what happens if
the machine is intelligent enough to reason and act beyond the confines of the chessboard.
In that case, it might attempt to increase its chances of winning by such ruses as hypnotiz-
ing or blackmailing its opponent or bribing the audience to make rustling noises during its
opponent’s thinking time.3 It might also attempt to hijack additional computing power for
itself. These behaviors are not “unintelligent” or “insane”; they are a logical consequence J
of defining winning as the sole objective for the machine.

It is impossible to anticipate all the ways in which a machine pursuing a fixed objective
might misbehave. There is good reason, then, to think that the standard model is inadequate.
We don’t want machines that are intelligent in the sense of pursuing their objectives; we want
them to pursue our objectives. If we cannot transfer those objectives perfectly to the machine,
then we need a new formulation—one in which the machine is pursuing our objectives, but
is necessarily uncertain as to what they are. When a machine knows that it doesn’t know the
complete objective, it has an incentive to act cautiously, to ask permission, to learn more about
our preferences through observation, and to defer to human control. Ultimately, we want
agents that are provably beneficial to humans. We will return to this topic in Section 1.5. Provably beneficial

1.2 The Foundations of Artificial Intelligence

In this section, we provide a brief history of the disciplines that contributed ideas, viewpoints,
and techniques to AI. Like any history, this one concentrates on a small number of people,
events, and ideas and ignores others that also were important. We organize the history around
a series of questions. We certainly would not wish to give the impression that these questions
are the only ones the disciplines address or that the disciplines have all been working toward
AI as their ultimate fruition.
3 In one of the first books on chess, Ruy Lopez (1561) wrote, “Always place the board so the sun is in your
opponent’s eyes.”
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1.2.1 Philosophy

• Can formal rules be used to draw valid conclusions?

• How does the mind arise from a physical brain?

• Where does knowledge come from?

• How does knowledge lead to action?

Aristotle (384–322 BCE) was the first to formulate a precise set of laws governing the rational
part of the mind. He developed an informal system of syllogisms for proper reasoning, which
in principle allowed one to generate conclusions mechanically, given initial premises.

Ramon Llull (c. 1232–1315) devised a system of reasoning published as Ars Magna or
The Great Art (1305). Llull tried to implement his system using an actual mechanical device:
a set of paper wheels that could be rotated into different permutations.

Around 1500, Leonardo da Vinci (1452–1519) designed but did not build a mechanical
calculator; recent reconstructions have shown the design to be functional. The first known
calculating machine was constructed around 1623 by the German scientist Wilhelm Schickard
(1592–1635). Blaise Pascal (1623–1662) built the Pascaline in 1642 and wrote that it “pro-
duces effects which appear nearer to thought than all the actions of animals.” Gottfried Wil-
helm Leibniz (1646–1716) built a mechanical device intended to carry out operations on
concepts rather than numbers, but its scope was rather limited. In his 1651 book Leviathan,
Thomas Hobbes (1588–1679) suggested the idea of a thinking machine, an “artificial animal”
in his words, arguing “For what is the heart but a spring; and the nerves, but so many strings;
and the joints, but so many wheels.” He also suggested that reasoning was like numerical
computation: “For ‘reason’ . . . is nothing but ‘reckoning,’ that is adding and subtracting.”

It’s one thing to say that the mind operates, at least in part, according to logical or nu-
merical rules, and to build physical systems that emulate some of those rules. It’s another to
say that the mind itself is such a physical system. René Descartes (1596–1650) gave the first
clear discussion of the distinction between mind and matter. He noted that a purely physical
conception of the mind seems to leave little room for free will. If the mind is governed en-
tirely by physical laws, then it has no more free will than a rock “deciding” to fall downward.
Descartes was a proponent of dualism. He held that there is a part of the human mind (orDualism

soul or spirit) that is outside of nature, exempt from physical laws. Animals, on the other
hand, did not possess this dual quality; they could be treated as machines.

An alternative to dualism is materialism, which holds that the brain’s operation accord-
ing to the laws of physics constitutes the mind. Free will is simply the way that the perception
of available choices appears to the choosing entity. The terms physicalism and naturalism
are also used to describe this view that stands in contrast to the supernatural.

Given a physical mind that manipulates knowledge, the next problem is to establish the
source of knowledge. The empiricism movement, starting with Francis Bacon’s (1561–1626)Empiricism

Novum Organum,4 is characterized by a dictum of John Locke (1632–1704): “Nothing is in
the understanding, which was not first in the senses.”

David Hume’s (1711–1776) A Treatise of Human Nature (Hume, 1739) proposed what
is now known as the principle of induction: that general rules are acquired by exposure toInduction

repeated associations between their elements.

4 The Novum Organum is an update of Aristotle’s Organon, or instrument of thought.
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Building on the work of Ludwig Wittgenstein (1889–1951) and Bertrand Russell (1872–
1970), the famous Vienna Circle (Sigmund, 2017), a group of philosophers and mathemati-
cians meeting in Vienna in the 1920s and 1930s, developed the doctrine of logical positivism. Logical positivism

This doctrine holds that all knowledge can be characterized by logical theories connected, ul-
timately, to observation sentences that correspond to sensory inputs; thus logical positivism Observation

sentence
combines rationalism and empiricism.

The confirmation theory of Rudolf Carnap (1891–1970) and Carl Hempel (1905–1997) Confirmation theory

attempted to analyze the acquisition of knowledge from experience by quantifying the degree
of belief that should be assigned to logical sentences based on their connection to observations
that confirm or disconfirm them. Carnap’s book The Logical Structure of the World (1928)
was perhaps the first theory of mind as a computational process.

The final element in the philosophical picture of the mind is the connection between
knowledge and action. This question is vital to AI because intelligence requires action as well
as reasoning. Moreover, only by understanding how actions are justified can we understand
how to build an agent whose actions are justifiable (or rational).

Aristotle argued (in De Motu Animalium) that actions are justified by a logical connection
between goals and knowledge of the action’s outcome:

But how does it happen that thinking is sometimes accompanied by action and sometimes
not, sometimes by motion, and sometimes not? It looks as if almost the same thing
happens as in the case of reasoning and making inferences about unchanging objects. But
in that case the end is a speculative proposition . . . whereas here the conclusion which
results from the two premises is an action. . . . I need covering; a cloak is a covering. I
need a cloak. What I need, I have to make; I need a cloak. I have to make a cloak. And
the conclusion, the “I have to make a cloak,” is an action.

In the Nicomachean Ethics (Book III. 3, 1112b), Aristotle further elaborates on this topic,
suggesting an algorithm:

We deliberate not about ends, but about means. For a doctor does not deliberate whether
he shall heal, nor an orator whether he shall persuade, . . . They assume the end and con-
sider how and by what means it is attained, and if it seems easily and best produced
thereby; while if it is achieved by one means only they consider how it will be achieved
by this and by what means this will be achieved, till they come to the first cause, . . . and
what is last in the order of analysis seems to be first in the order of becoming. And if we
come on an impossibility, we give up the search, e.g., if we need money and this cannot
be got; but if a thing appears possible we try to do it.

Aristotle’s algorithm was implemented 2300 years later by Newell and Simon in their Gen-
eral Problem Solver program. We would now call it a greedy regression planning system
(see Chapter 11). Methods based on logical planning to achieve definite goals dominated the
first few decades of theoretical research in AI.

Thinking purely in terms of actions achieving goals is often useful but sometimes inap-
plicable. For example, if there are several different ways to achieve a goal, there needs to be
some way to choose among them. More importantly, it may not be possible to achieve a goal
with certainty, but some action must still be taken. How then should one decide? Antoine Ar-
nauld (1662), analyzing the notion of rational decisions in gambling, proposed a quantitative
formula for maximizing the expected monetary value of the outcome. Later, Daniel Bernoulli
(1738) introduced the more general notion of utility to capture the internal, subjective value Utility
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of an outcome. The modern notion of rational decision making under uncertainty involves
maximizing expected utility, as explained in Chapter 15.

In matters of ethics and public policy, a decision maker must consider the interests of
multiple individuals. Jeremy Bentham (1823) and John Stuart Mill (1863) promoted the idea
of utilitarianism: that rational decision making based on maximizing utility should applyUtilitarianism

to all spheres of human activity, including public policy decisions made on behalf of many
individuals. Utilitarianism is a specific kind of consequentialism: the idea that what is right
and wrong is determined by the expected outcomes of an action.

In contrast, Immanuel Kant, in 1785, proposed a theory of rule-based or deontological
ethics, in which “doing the right thing” is determined not by outcomes but by universal socialDeontological ethics

laws that govern allowable actions, such as “don’t lie” or “don’t kill.” Thus, a utilitarian could
tell a white lie if the expected good outweighs the bad, but a Kantian would be bound not to,
because lying is inherently wrong. Mill acknowledged the value of rules, but understood them
as efficient decision procedures compiled from first-principles reasoning about consequences.
Many modern AI systems adopt exactly this approach.

1.2.2 Mathematics

• What are the formal rules to draw valid conclusions?
• What can be computed?
• How do we reason with uncertain information?

Philosophers staked out some of the fundamental ideas of AI, but the leap to a formal science
required the mathematization of logic and probability and the introduction of a new branch
of mathematics: computation.

The idea of formal logic can be traced back to the philosophers of ancient Greece, India,Formal logic

and China, but its mathematical development really began with the work of George Boole
(1815–1864), who worked out the details of propositional, or Boolean, logic (Boole, 1847).
In 1879, Gottlob Frege (1848–1925) extended Boole’s logic to include objects and relations,
creating the first-order logic that is used today.5 In addition to its central role in the early pe-
riod of AI research, first-order logic motivated the work of Gödel and Turing that underpinned
computation itself, as we explain below.

The theory of probability can be seen as generalizing logic to situations with uncertainProbability

information—a consideration of great importance for AI. Gerolamo Cardano (1501–1576)
first framed the idea of probability, describing it in terms of the possible outcomes of gam-
bling events. In 1654, Blaise Pascal (1623–1662), in a letter to Pierre Fermat (1601–1665),
showed how to predict the future of an unfinished gambling game and assign average pay-
offs to the gamblers. Probability quickly became an invaluable part of the quantitative sci-
ences, helping to deal with uncertain measurements and incomplete theories. Jacob Bernoulli
(1654–1705, uncle of Daniel), Pierre Laplace (1749–1827), and others advanced the theory
and introduced new statistical methods. Thomas Bayes (1702–1761) proposed a rule for up-
dating probabilities in the light of new evidence; Bayes’ rule is a crucial tool for AI systems.

The formalization of probability, combined with the availability of data, led to the emer-
gence of statistics as a field. One of the first uses was John Graunt’s analysis of Lon-Statistics

5 Frege’s proposed notation for first-order logic—an arcane combination of textual and geometric features—
never became popular.
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don census data in 1662. Ronald Fisher is considered the first modern statistician (Fisher,
1922). He brought together the ideas of probability, experiment design, analysis of data, and
computing—in 1919, he insisted that he couldn’t do his work without a mechanical calculator
called the MILLIONAIRE (the first calculator that could do multiplication), even though the
cost of the calculator was more than his annual salary (Ross, 2012).

The history of computation is as old as the history of numbers, but the first nontrivial
algorithm is thought to be Euclid’s algorithm for computing greatest common divisors. The Algorithm

word algorithm comes from Muhammad ibn Musa al-Khwarizmi, a 9th century mathemati-
cian, whose writings also introduced Arabic numerals and algebra to Europe. Boole and
others discussed algorithms for logical deduction, and, by the late 19th century, efforts were
under way to formalize general mathematical reasoning as logical deduction.

Kurt Gödel (1906–1978) showed that there exists an effective procedure to prove any true
statement in the first-order logic of Frege and Russell, but that first-order logic could not cap-
ture the principle of mathematical induction needed to characterize the natural numbers. In
1931, Gödel showed that limits on deduction do exist. His incompleteness theorem showed Incompleteness

theorem
that in any formal theory as strong as Peano arithmetic (the elementary theory of natural
numbers), there are necessarily true statements that have no proof within the theory.

This fundamental result can also be interpreted as showing that some functions on the
integers cannot be represented by an algorithm—that is, they cannot be computed. This
motivated Alan Turing (1912–1954) to try to characterize exactly which functions are com-
putable—capable of being computed by an effective procedure. The Church–Turing thesis Computability

proposes to identify the general notion of computability with functions computed by a Turing
machine (Turing, 1936). Turing also showed that there were some functions that no Turing
machine can compute. For example, no machine can tell in general whether a given program
will return an answer on a given input or run forever.

Although computability is important to an understanding of computation, the notion of
tractability has had an even greater impact on AI. Roughly speaking, a problem is called Tractability

intractable if the time required to solve instances of the problem grows exponentially with
the size of the instances. The distinction between polynomial and exponential growth in
complexity was first emphasized in the mid-1960s (Cobham, 1964; Edmonds, 1965). It is
important because exponential growth means that even moderately large instances cannot be
solved in any reasonable time.

The theory of NP-completeness, pioneered by Cook (1971) and Karp (1972), provides a NP-completeness

basis for analyzing the tractability of problems: any problem class to which the class of NP-
complete problems can be reduced is likely to be intractable. (Although it has not been proved
that NP-complete problems are necessarily intractable, most theoreticians believe it.) These
results contrast with the optimism with which the popular press greeted the first computers—
“Electronic Super-Brains” that were “Faster than Einstein!” Despite the increasing speed of
computers, careful use of resources and necessary imperfection will characterize intelligent
systems. Put crudely, the world is an extremely large problem instance!

1.2.3 Economics

• How should we make decisions in accordance with our preferences?
• How should we do this when others may not go along?
• How should we do this when the payoff may be far in the future?
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The science of economics originated in 1776, when Adam Smith (1723–1790) published An
Inquiry into the Nature and Causes of the Wealth of Nations. Smith proposed to analyze
economies as consisting of many individual agents attending to their own interests. Smith
was not, however, advocating financial greed as a moral position: his earlier (1759) book The
Theory of Moral Sentiments begins by pointing out that concern for the well-being of others
is an essential component of the interests of every individual.

Most people think of economics as being about money, and indeed the first mathemati-
cal analysis of decisions under uncertainty, the maximum-expected-value formula of Arnauld
(1662), dealt with the monetary value of bets. Daniel Bernoulli (1738) noticed that this for-
mula didn’t seem to work well for larger amounts of money, such as investments in maritime
trading expeditions. He proposed instead a principle based on maximization of expected
utility, and explained human investment choices by proposing that the marginal utility of an
additional quantity of money diminished as one acquired more money.

Léon Walras (pronounced “Valrasse”) (1834–1910) gave utility theory a more general
foundation in terms of preferences between gambles on any outcomes (not just monetary
outcomes). The theory was improved by Ramsey (1931) and later by John von Neumann
and Oskar Morgenstern in their book The Theory of Games and Economic Behavior (1944).
Economics is no longer the study of money; rather it is the study of desires and preferences.

Decision theory, which combines probability theory with utility theory, provides a for-Decision theory

mal and complete framework for individual decisions (economic or otherwise) made under
uncertainty—that is, in cases where probabilistic descriptions appropriately capture the de-
cision maker’s environment. This is suitable for “large” economies where each agent need
pay no attention to the actions of other agents as individuals. For “small” economies, the
situation is much more like a game: the actions of one player can significantly affect the
utility of another (either positively or negatively). Von Neumann and Morgenstern’s develop-
ment of game theory (see also Luce and Raiffa, 1957) included the surprising result that, for
some games, a rational agent should adopt policies that are (or least appear to be) random-
ized. Unlike decision theory, game theory does not offer an unambiguous prescription for
selecting actions. In AI, decisions involving multiple agents are studied under the heading of
multiagent systems (Chapter 17).

Economists, with some exceptions, did not address the third question listed above: how to
make rational decisions when payoffs from actions are not immediate but instead result from
several actions taken in sequence. This topic was pursued in the field of operations research,Operations research

which emerged in World War II from efforts in Britain to optimize radar installations, and later
found innumerable civilian applications. The work of Richard Bellman (1957) formalized a
class of sequential decision problems called Markov decision processes, which we study in
Chapter 16 and, under the heading of reinforcement learning, in Chapter 23.

Work in economics and operations research has contributed much to our notion of rational
agents, yet for many years AI research developed along entirely separate paths. One reason
was the apparent complexity of making rational decisions. The pioneering AI researcher
Herbert Simon (1916–2001) won the Nobel Prize in economics in 1978 for his early work
showing that models based on satisficing—making decisions that are “good enough,” ratherSatisficing

than laboriously calculating an optimal decision—gave a better description of actual human
behavior (Simon, 1947). Since the 1990s, there has been a resurgence of interest in decision-
theoretic techniques for AI.
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1.2.4 Neuroscience

• How do brains process information?

Neuroscience is the study of the nervous system, particularly the brain. Although the exact Neuroscience

way in which the brain enables thought is one of the great mysteries of science, the fact that it
does enable thought has been appreciated for thousands of years because of the evidence that
strong blows to the head can lead to mental incapacitation. It has also long been known that
human brains are somehow different; in about 335 BCE Aristotle wrote, “Of all the animals,
man has the largest brain in proportion to his size.”6 Still, it was not until the middle of the
18th century that the brain was widely recognized as the seat of consciousness. Before then,
candidate locations included the heart and the spleen.

Paul Broca’s (1824–1880) investigation of aphasia (speech deficit) in brain-damaged pa-
tients in 1861 initiated the study of the brain’s functional organization by identifying a lo-
calized area in the left hemisphere—now called Broca’s area—that is responsible for speech
production.7 By that time, it was known that the brain consisted largely of nerve cells, or neu-
rons, but it was not until 1873 that Camillo Golgi (1843–1926) developed a staining technique Neuron

allowing the observation of individual neurons (see Figure 1.1). This technique was used by
Santiago Ramon y Cajal (1852–1934) in his pioneering studies of neuronal organization.8

It is now widely accepted that cognitive functions result from the electrochemical operation
of these structures. That is, a collection of simple cells can lead to thought, action, and J
consciousness. In the pithy words of John Searle (1992), brains cause minds.

We now have some data on the mapping between areas of the brain and the parts of the
body that they control or from which they receive sensory input. Such mappings are able to
change radically over the course of a few weeks, and some animals seem to have multiple
maps. Moreover, we do not fully understand how other areas can take over functions when
one area is damaged. There is almost no theory on how an individual memory is stored or on
how higher-level cognitive functions operate.

The measurement of intact brain activity began in 1929 with the invention by Hans Berger
of the electroencephalograph (EEG). The development of functional magnetic resonance
imaging (fMRI) (Ogawa et al., 1990; Cabeza and Nyberg, 2001) is giving neuroscientists
unprecedentedly detailed images of brain activity, enabling measurements that correspond in
interesting ways to ongoing cognitive processes. These are augmented by advances in single-
cell electrical recording of neuron activity and by the methods of optogenetics (Crick, 1999; Optogenetics

Zemelman et al., 2002; Han and Boyden, 2007), which allow both measurement and control
of individual neurons modified to be light-sensitive.

The development of brain–machine interfaces (Lebedev and Nicolelis, 2006) for both Brain–machine
interface

sensing and motor control not only promises to restore function to disabled individuals, but
also sheds light on many aspects of neural systems. A remarkable finding from this work is
that the brain is able to adjust itself to interface successfully with an external device, treating
it in effect like another sensory organ or limb.

6 It has since been discovered that the tree shrew and some bird species exceed the human brain/body ratio.
7 Many cite Alexander Hood (1824) as a possible prior source.
8 Golgi persisted in his belief that the brain’s functions were carried out primarily in a continuous medium in
which neurons were embedded, whereas Cajal propounded the “neuronal doctrine.” The two shared the Nobel
Prize in 1906 but gave mutually antagonistic acceptance speeches.
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Figure 1.1 The parts of a nerve cell or neuron. Each neuron consists of a cell body, or soma,
that contains a cell nucleus. Branching out from the cell body are a number of fibers called
dendrites and a single long fiber called the axon. The axon stretches out for a long distance,
much longer than the scale in this diagram indicates. Typically, an axon is 1 cm long (100
times the diameter of the cell body), but can reach up to 1 meter. A neuron makes connec-
tions with 10 to 100,000 other neurons at junctions called synapses. Signals are propagated
from neuron to neuron by a complicated electrochemical reaction. The signals control brain
activity in the short term and also enable long-term changes in the connectivity of neurons.
These mechanisms are thought to form the basis for learning in the brain. Most information
processing goes on in the cerebral cortex, the outer layer of the brain. The basic organi-
zational unit appears to be a column of tissue about 0.5 mm in diameter, containing about
20,000 neurons and extending the full depth of the cortex (about 4 mm in humans).

Brains and digital computers have somewhat different properties. Figure 1.2 shows that
computers have a cycle time that is a million times faster than a brain. The brain makes up
for that with far more storage and interconnection than even a high-end personal computer,
although the largest supercomputers match the brain on some metrics. Futurists make much
of these numbers, pointing to an approaching singularity at which computers reach a su-Singularity

perhuman level of performance (Vinge, 1993; Kurzweil, 2005; Doctorow and Stross, 2012),
and then rapidly improve themselves even further. But the comparisons of raw numbers are
not especially informative. Even with a computer of virtually unlimited capacity, we still re-
quire further conceptual breakthroughs in our understanding of intelligence (see Chapter 29).
Crudely put, without the right theory, faster machines just give you the wrong answer faster.

1.2.5 Psychology

• How do humans and animals think and act?

The origins of scientific psychology are usually traced to the work of the German physi-
cist Hermann von Helmholtz (1821–1894) and his student Wilhelm Wundt (1832–1920).
Helmholtz applied the scientific method to the study of human vision, and his Handbook of
Physiological Optics has been described as “the single most important treatise on the physics
and physiology of human vision” (Nalwa, 1993, p.15). In 1879, Wundt opened the first labo-
ratory of experimental psychology, at the University of Leipzig. Wundt insisted on carefully
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Supercomputer Personal Computer Human Brain

Computational units 106 GPUs + CPUs 8 CPU cores 106 columns
1015 transistors 1010 transistors 1011 neurons

Storage units 1016 bytes RAM 1010 bytes RAM 1011 neurons
1017 bytes disk 1012 bytes disk 1014 synapses

Cycle time 10−9 sec 10−9 sec 10−3 sec
Operations/sec 1018 1010 1017

Figure 1.2 A crude comparison of a leading supercomputer, Summit (Feldman, 2017);
a typical personal computer of 2019; and the human brain. Human brain power has
not changed much in thousands of years, whereas supercomputers have improved from
megaFLOPs in the 1960s to gigaFLOPs in the 1980s, teraFLOPs in the 1990s, petaFLOPs
in 2008, and exaFLOPs in 2018 (1 exaFLOP = 1018 floating point operations per second).

controlled experiments in which his workers would perform a perceptual or associative task
while introspecting on their thought processes. The careful controls went a long way to-
ward making psychology a science, but the subjective nature of the data made it unlikely that
experimenters would ever disconfirm their own theories.

Biologists studying animal behavior, on the other hand, lacked introspective data and de-
veloped an objective methodology, as described by H. S. Jennings (1906) in his influential
work Behavior of the Lower Organisms. Applying this viewpoint to humans, the behav-
iorism movement, led by John Watson (1878–1958), rejected any theory involving mental Behaviorism

processes on the grounds that introspection could not provide reliable evidence. Behaviorists
insisted on studying only objective measures of the percepts (or stimulus) given to an animal
and its resulting actions (or response). Behaviorism discovered a lot about rats and pigeons
but had less success at understanding humans.

Cognitive psychology, which views the brain as an information-processing device, can Cognitive psychology

be traced back at least to the works of William James (1842–1910). Helmholtz also in-
sisted that perception involved a form of unconscious logical inference. The cognitive view-
point was largely eclipsed by behaviorism in the United States, but at Cambridge’s Ap-
plied Psychology Unit, directed by Frederic Bartlett (1886–1969), cognitive modeling was
able to flourish. The Nature of Explanation, by Bartlett’s student and successor Kenneth
Craik (1943), forcefully reestablished the legitimacy of such “mental” terms as beliefs and
goals, arguing that they are just as scientific as, say, using pressure and temperature to talk
about gases, despite gasses being made of molecules that have neither.

Craik specified the three key steps of a knowledge-based agent: (1) the stimulus must be
translated into an internal representation, (2) the representation is manipulated by cognitive
processes to derive new internal representations, and (3) these are in turn retranslated back
into action. He clearly explained why this was a good design for an agent:

If the organism carries a “small-scale model” of external reality and of its own possible
actions within its head, it is able to try out various alternatives, conclude which is the best
of them, react to future situations before they arise, utilize the knowledge of past events
in dealing with the present and future, and in every way to react in a much fuller, safer,
and more competent manner to the emergencies which face it. (Craik, 1943)
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After Craik’s death in a bicycle accident in 1945, his work was continued by Donald Broad-
bent, whose book Perception and Communication (1958) was one of the first works to model
psychological phenomena as information processing. Meanwhile, in the United States, the
development of computer modeling led to the creation of the field of cognitive science. The
field can be said to have started at a workshop in September 1956 at MIT—just two months
after the conference at which AI itself was “born.”

At the workshop, George Miller presented The Magic Number Seven, Noam Chomsky
presented Three Models of Language, and Allen Newell and Herbert Simon presented The
Logic Theory Machine. These three influential papers showed how computer models could
be used to address the psychology of memory, language, and logical thinking, respectively. It
is now a common (although far from universal) view among psychologists that “a cognitive
theory should be like a computer program” (Anderson, 1980); that is, it should describe the
operation of a cognitive function in terms of the processing of information.

For purposes of this review, we will count the field of human–computer interaction
(HCI) under psychology. Doug Engelbart, one of the pioneers of HCI, championed the idea of
intelligence augmentation—IA rather than AI. He believed that computers should augmentIntelligence

augmentation

human abilities rather than automate away human tasks. In 1968, Engelbart’s “mother of all
demos” showed off for the first time the computer mouse, a windowing system, hypertext, and
video conferencing—all in an effort to demonstrate what human knowledge workers could
collectively accomplish with some intelligence augmentation.

Today we are more likely to see IA and AI as two sides of the same coin, with the former
emphasizing human control and the latter emphasizing intelligent behavior on the part of the
machine. Both are needed for machines to be useful to humans.

1.2.6 Computer engineering

• How can we build an efficient computer?

The modern digital electronic computer was invented independently and almost simultane-
ously by scientists in three countries embattled in World War II. The first operational com-
puter was the electromechanical Heath Robinson,9 built in 1943 by Alan Turing’s team for
a single purpose: deciphering German messages. In 1943, the same group developed the
Colossus, a powerful general-purpose machine based on vacuum tubes.10 The first opera-
tional programmable computer was the Z-3, the invention of Konrad Zuse in Germany in
1941. Zuse also invented floating-point numbers and the first high-level programming lan-
guage, Plankalkül. The first electronic computer, the ABC, was assembled by John Atanasoff
and his student Clifford Berry between 1940 and 1942 at Iowa State University. Atanasoff’s
research received little support or recognition; it was the ENIAC, developed as part of a se-
cret military project at the University of Pennsylvania by a team including John Mauchly and
J. Presper Eckert, that proved to be the most influential forerunner of modern computers.

Since that time, each generation of computer hardware has brought an increase in speed
and capacity and a decrease in price—a trend captured in Moore’s law. Performance doubledMoore’s law

every 18 months or so until around 2005, when power dissipation problems led manufacturers

9 A complex machine named after a British cartoonist who depicted whimsical and absurdly complicated con-
traptions for everyday tasks such as buttering toast.
10 In the postwar period, Turing wanted to use these computers for AI research—for example, he created an
outline of the first chess program (Turing et al., 1953)—but the British government blocked this research.
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to start multiplying the number of CPU cores rather than the clock speed. Current expecta-
tions are that future increases in functionality will come from massive parallelism—a curious
convergence with the properties of the brain. We also see new hardware designs based on
the idea that in dealing with an uncertain world, we don’t need 64 bits of precision in our
numbers; just 16 bits (as in the bfloat16 format) or even 8 bits will be enough, and will
enable faster processing.

We are just beginning to see hardware tuned for AI applications, such as the graphics
processing unit (GPU), tensor processing unit (TPU), and wafer scale engine (WSE). From
the 1960s to about 2012, the amount of computing power used to train top machine learn-
ing applications followed Moore’s law. Beginning in 2012, things changed: from 2012 to
2018 there was a 300,000-fold increase, which works out to a doubling every 100 days or
so (Amodei and Hernandez, 2018). A machine learning model that took a full day to train
in 2014 takes only two minutes in 2018 (Ying et al., 2018). Although it is not yet practical,
quantum computing holds out the promise of far greater accelerations for some important Quantum computing

subclasses of AI algorithms.
Of course, there were calculating devices before the electronic computer. The earliest

automated machines, dating from the 17th century, were discussed on page 24. The first
programmable machine was a loom, devised in 1805 by Joseph Marie Jacquard (1752–1834),
that used punched cards to store instructions for the pattern to be woven.

In the mid-19th century, Charles Babbage (1792–1871) designed two computing ma-
chines, neither of which he completed. The Difference Engine was intended to compute
mathematical tables for engineering and scientific projects. It was finally built and shown
to work in 1991 (Swade, 2000). Babbage’s Analytical Engine was far more ambitious: it
included addressable memory, stored programs based on Jacquard’s punched cards, and con-
ditional jumps. It was the first machine capable of universal computation.

Babbage’s colleague Ada Lovelace, daughter of the poet Lord Byron, understood its
potential, describing it as “a thinking or . . . a reasoning machine,” one capable of reasoning
about “all subjects in the universe” (Lovelace, 1843). She also anticipated AI’s hype cycles,
writing, “It is desirable to guard against the possibility of exaggerated ideas that might arise as
to the powers of the Analytical Engine.” Unfortunately, Babbage’s machines and Lovelace’s
ideas were largely forgotten.

AI also owes a debt to the software side of computer science, which has supplied the
operating systems, programming languages, and tools needed to write modern programs (and
papers about them). But this is one area where the debt has been repaid: work in AI has pio-
neered many ideas that have made their way back to mainstream computer science, including
time sharing, interactive interpreters, personal computers with windows and mice, rapid de-
velopment environments, the linked-list data type, automatic storage management, and key
concepts of symbolic, functional, declarative, and object-oriented programming.

1.2.7 Control theory and cybernetics

• How can artifacts operate under their own control?

Ktesibios of Alexandria (c. 250 BCE) built the first self-controlling machine: a water clock
with a regulator that maintained a constant flow rate. This invention changed the definition
of what an artifact could do. Previously, only living things could modify their behavior in
response to changes in the environment. Other examples of self-regulating feedback control
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systems include the steam engine governor, created by James Watt (1736–1819), and the
thermostat, invented by Cornelis Drebbel (1572–1633), who also invented the submarine.
James Clerk Maxwell (1868) initiated the mathematical theory of control systems.

A central figure in the post-war development of control theory was Norbert WienerControl theory

(1894–1964). Wiener was a brilliant mathematician who worked with Bertrand Russell,
among others, before developing an interest in biological and mechanical control systems
and their connection to cognition. Like Craik (who also used control systems as psycholog-
ical models), Wiener and his colleagues Arturo Rosenblueth and Julian Bigelow challenged
the behaviorist orthodoxy (Rosenblueth et al., 1943). They viewed purposive behavior as
arising from a regulatory mechanism trying to minimize “error”—the difference between
current state and goal state. In the late 1940s, Wiener, along with Warren McCulloch, Walter
Pitts, and John von Neumann, organized a series of influential conferences that explored the
new mathematical and computational models of cognition. Wiener’s book Cybernetics (1948)Cybernetics

became a bestseller and awoke the public to the possibility of artificially intelligent machines.
Meanwhile, in Britain, W. Ross Ashby pioneered similar ideas (Ashby, 1940). Ashby,

Alan Turing, Grey Walter, and others formed the Ratio Club for “those who had Wiener’s
ideas before Wiener’s book appeared.” Ashby’s Design for a Brain (1948, 1952) elaborated
on his idea that intelligence could be created by the use of homeostatic devices containingHomeostatic

appropriate feedback loops to achieve stable adaptive behavior.
Modern control theory, especially the branch known as stochastic optimal control, has as

its goal the design of systems that minimize a cost function over time. This roughly matchesCost function

the standard model of AI: designing systems that behave optimally. Why, then, are AI and
control theory two different fields, despite the close connections among their founders? The
answer lies in the close coupling between the mathematical techniques that were familiar to
the participants and the corresponding sets of problems that were encompassed in each world
view. Calculus and matrix algebra, the tools of control theory, lend themselves to systems that
are describable by fixed sets of continuous variables, whereas AI was founded in part as a way
to escape from these perceived limitations. The tools of logical inference and computation
allowed AI researchers to consider problems such as language, vision, and symbolic planning
that fell completely outside the control theorist’s purview.

1.2.8 Linguistics

• How does language relate to thought?

In 1957, B. F. Skinner published Verbal Behavior. This was a comprehensive, detailed ac-
count of the behaviorist approach to language learning, written by the foremost expert in
the field. But curiously, a review of the book became as well known as the book itself, and
served to almost kill off interest in behaviorism. The author of the review was the linguist
Noam Chomsky, who had just published a book on his own theory, Syntactic Structures.
Chomsky pointed out that the behaviorist theory did not address the notion of creativity in
language—it did not explain how children could understand and make up sentences that they
had never heard before. Chomsky’s theory—based on syntactic models going back to the
Indian linguist Panini (c. 350 BCE)—could explain this, and unlike previous theories, it was
formal enough that it could in principle be programmed.

Modern linguistics and AI, then, were “born” at about the same time, and grew up to-
gether, intersecting in a hybrid field called computational linguistics or natural languageComputational

linguistics



Section 1.3 The History of Artificial Intelligence 35

processing. The problem of understanding language turned out to be considerably more
complex than it seemed in 1957. Understanding language requires an understanding of the
subject matter and context, not just an understanding of the structure of sentences. This might
seem obvious, but it was not widely appreciated until the 1960s. Much of the early work in
knowledge representation (the study of how to put knowledge into a form that a computer
can reason with) was tied to language and informed by research in linguistics, which was
connected in turn to decades of work on the philosophical analysis of language.

1.3 The History of Artificial Intelligence

One quick way to summarize the milestones in AI history is to list the Turing Award winners:
Marvin Minsky (1969) and John McCarthy (1971) for defining the foundations of the field
based on representation and reasoning; Allen Newell and Herbert Simon (1975) for symbolic
models of problem solving and human cognition; Ed Feigenbaum and Raj Reddy (1994) for
developing expert systems that encode human knowledge to solve real-world problems; Judea
Pearl (2011) for developing probabilistic reasoning techniques that deal with uncertainty in
a principled manner; and finally Yoshua Bengio, Geoffrey Hinton, and Yann LeCun (2019)
for making “deep learning” (multilayer neural networks) a critical part of modern computing.
The rest of this section goes into more detail on each phase of AI history.

1.3.1 The inception of artificial intelligence (1943–1956)

The first work that is now generally recognized as AI was done by Warren McCulloch and
Walter Pitts (1943). Inspired by the mathematical modeling work of Pitts’s advisor Nicolas
Rashevsky (1936, 1938), they drew on three sources: knowledge of the basic physiology
and function of neurons in the brain; a formal analysis of propositional logic due to Russell
and Whitehead; and Turing’s theory of computation. They proposed a model of artificial
neurons in which each neuron is characterized as being “on” or “off,” with a switch to “on”
occurring in response to stimulation by a sufficient number of neighboring neurons. The
state of a neuron was conceived of as “factually equivalent to a proposition which proposed
its adequate stimulus.” They showed, for example, that any computable function could be
computed by some network of connected neurons, and that all the logical connectives (AND,
OR, NOT, etc.) could be implemented by simple network structures. McCulloch and Pitts also
suggested that suitably defined networks could learn. Donald Hebb (1949) demonstrated a
simple updating rule for modifying the connection strengths between neurons. His rule, now
called Hebbian learning, remains an influential model to this day. Hebbian learning

Two undergraduate students at Harvard, Marvin Minsky (1927–2016) and Dean Ed-
monds, built the first neural network computer in 1950. The SNARC, as it was called, used
3000 vacuum tubes and a surplus automatic pilot mechanism from a B-24 bomber to simulate
a network of 40 neurons. Later, at Princeton, Minsky studied universal computation in neural
networks. His Ph.D. committee was skeptical about whether this kind of work should be con-
sidered mathematics, but von Neumann reportedly said, “If it isn’t now, it will be someday.”

There were a number of other examples of early work that can be characterized as AI,
including two checkers-playing programs developed independently in 1952 by Christopher
Strachey at the University of Manchester and by Arthur Samuel at IBM. However, Alan Tur-
ing’s vision was the most influential. He gave lectures on the topic as early as 1947 at the
London Mathematical Society and articulated a persuasive agenda in his 1950 article “Com-
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puting Machinery and Intelligence.” Therein, he introduced the Turing test, machine learning,
genetic algorithms, and reinforcement learning. He dealt with many of the objections raised
to the possibility of AI, as described in Chapter 28. He also suggested that it would be easier
to create human-level AI by developing learning algorithms and then teaching the machine
rather than by programming its intelligence by hand. In subsequent lectures he warned that
achieving this goal might not be the best thing for the human race.

In 1955, John McCarthy of Dartmouth College convinced Minsky, Claude Shannon, and
Nathaniel Rochester to help him bring together U.S. researchers interested in automata the-
ory, neural nets, and the study of intelligence. They organized a two-month workshop at
Dartmouth in the summer of 1956. There were 10 attendees in all, including Allen Newell
and Herbert Simon from Carnegie Tech,11 Trenchard More from Princeton, Arthur Samuel
from IBM, and Ray Solomonoff and Oliver Selfridge from MIT. The proposal states:12

We propose that a 2 month, 10 man study of artificial intelligence be carried out
during the summer of 1956 at Dartmouth College in Hanover, New Hampshire.
The study is to proceed on the basis of the conjecture that every aspect of learning
or any other feature of intelligence can in principle be so precisely described that a
machine can be made to simulate it. An attempt will be made to find how to make
machines use language, form abstractions and concepts, solve kinds of problems
now reserved for humans, and improve themselves. We think that a significant
advance can be made in one or more of these problems if a carefully selected
group of scientists work on it together for a summer.

Despite this optimistic prediction, the Dartmouth workshop did not lead to any breakthroughs.
Newell and Simon presented perhaps the most mature work, a mathematical theorem-proving
system called the Logic Theorist (LT). Simon claimed, “We have invented a computer pro-
gram capable of thinking non-numerically, and thereby solved the venerable mind–body
problem.”13 Soon after the workshop, the program was able to prove most of the theorems
in Chapter 2 of Russell and Whitehead’s Principia Mathematica. Russell was reportedly de-
lighted when told that LT had come up with a proof for one theorem that was shorter than
the one in Principia. The editors of the Journal of Symbolic Logic were less impressed; they
rejected a paper coauthored by Newell, Simon, and Logic Theorist.

1.3.2 Early enthusiasm, great expectations (1952–1969)

The intellectual establishment of the 1950s, by and large, preferred to believe that “a machine
can never do X .” (See Chapter 28 for a long list of X’s gathered by Turing.) AI researchers
naturally responded by demonstrating one X after another. They focused in particular on tasks
considered indicative of intelligence in humans, including games, puzzles, mathematics, and
IQ tests. John McCarthy referred to this period as the “Look, Ma, no hands!” era.

11 Now Carnegie Mellon University (CMU).
12 This was the first official usage of McCarthy’s term artificial intelligence. Perhaps “computational rationality”
would have been more precise and less threatening, but “AI” has stuck. At the 50th anniversary of the Dartmouth
conference, McCarthy stated that he resisted the terms “computer” or “computational” in deference to Norbert
Wiener, who was promoting analog cybernetic devices rather than digital computers.
13 Newell and Simon also invented a list-processing language, IPL, to write LT. They had no compiler and
translated it into machine code by hand. To avoid errors, they worked in parallel, calling out binary numbers to
each other as they wrote each instruction to make sure they agreed.
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Newell and Simon followed up their success with LT with the General Problem Solver,
or GPS. Unlike LT, this program was designed from the start to imitate human problem-
solving protocols. Within the limited class of puzzles it could handle, it turned out that the
order in which the program considered subgoals and possible actions was similar to that in
which humans approached the same problems. Thus, GPS was probably the first program to
embody the “thinking humanly” approach. The success of GPS and subsequent programs as
models of cognition led Newell and Simon (1976) to formulate the famous physical symbol
system hypothesis, which states that “a physical symbol system has the necessary and suf- Physical symbol

system

ficient means for general intelligent action.” What they meant is that any system (human or
machine) exhibiting intelligence must operate by manipulating data structures composed of
symbols. We will see later that this hypothesis has been challenged from many directions.

At IBM, Nathaniel Rochester and his colleagues produced some of the first AI programs.
Herbert Gelernter (1959) constructed the Geometry Theorem Prover, which was able to prove
theorems that many students of mathematics would find quite tricky. This work was a precur-
sor of modern mathematical theorem provers.

Of all the exploratory work done during this period, perhaps the most influential in the
long run was that of Arthur Samuel on checkers (draughts). Using methods that we now call
reinforcement learning (see Chapter 23), Samuel’s programs learned to play at a strong am-
ateur level. He thereby disproved the idea that computers can do only what they are told to:
his program quickly learned to play a better game than its creator. The program was demon-
strated on television in 1956, creating a strong impression. Like Turing, Samuel had trouble
finding computer time. Working at night, he used machines that were still on the testing floor
at IBM’s manufacturing plant. Samuel’s program was the precursor of later systems such
as TD-GAMMON (Tesauro, 1992), which was among the world’s best backgammon players,
and ALPHAGO (Silver et al., 2016), which shocked the world by defeating the human world
champion at Go (see Chapter 6).

In 1958, John McCarthy made two important contributions to AI. In MIT AI Lab Memo
No. 1, he defined the high-level language Lisp, which was to become the dominant AI pro- Lisp

gramming language for the next 30 years. In a paper entitled Programs with Common Sense,
he advanced a conceptual proposal for AI systems based on knowledge and reasoning. The
paper describes the Advice Taker, a hypothetical program that would embody general knowl-
edge of the world and could use it to derive plans of action. The concept was illustrated with
simple logical axioms that suffice to generate a plan to drive to the airport. The program was
also designed to accept new axioms in the normal course of operation, thereby allowing it
to achieve competence in new areas without being reprogrammed. The Advice Taker thus
embodied the central principles of knowledge representation and reasoning: that it is useful
to have a formal, explicit representation of the world and its workings and to be able to ma-
nipulate that representation with deductive processes. The paper influenced the course of AI
and remains relevant today.

1958 also marked the year that Marvin Minsky moved to MIT. His initial collaboration
with McCarthy did not last, however. McCarthy stressed representation and reasoning in for-
mal logic, whereas Minsky was more interested in getting programs to work and eventually
developed an anti-logic outlook. In 1963, McCarthy started the AI lab at Stanford. His plan
to use logic to build the ultimate Advice Taker was advanced by J. A. Robinson’s discov-
ery in 1965 of the resolution method (a complete theorem-proving algorithm for first-order
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Figure 1.3 A scene from the blocks world. SHRDLU (Winograd, 1972) has just completed
the command “Find a block which is taller than the one you are holding and put it in the box.”

logic; see Chapter 9). Work at Stanford emphasized general-purpose methods for logical
reasoning. Applications of logic included Cordell Green’s question-answering and planning
systems (Green, 1969b) and the Shakey robotics project at the Stanford Research Institute
(SRI). The latter project, discussed further in Chapter 26, was the first to demonstrate the
complete integration of logical reasoning and physical activity.

At MIT, Minsky supervised a series of students who chose limited problems that appeared
to require intelligence to solve. These limited domains became known as microworlds.Microworld

James Slagle’s SAINT program (1963) was able to solve closed-form calculus integration
problems typical of first-year college courses. Tom Evans’s ANALOGY program (1968)
solved geometric analogy problems that appear in IQ tests. Daniel Bobrow’s STUDENT pro-
gram (1967) solved algebra story problems, such as the following:

If the number of customers Tom gets is twice the square of 20 percent of the number
of advertisements he runs, and the number of advertisements he runs is 45, what is the
number of customers Tom gets?

The most famous microworld is the blocks world, which consists of a set of solid blocksBlocks world

placed on a tabletop (or more often, a simulation of a tabletop), as shown in Figure 1.3.
A typical task in this world is to rearrange the blocks in a certain way, using a robot hand
that can pick up one block at a time. The blocks world was home to the vision project of
David Huffman (1971), the vision and constraint-propagation work of David Waltz (1975),
the learning theory of Patrick Winston (1970), the natural-language-understanding program
of Terry Winograd (1972), and the planner of Scott Fahlman (1974).

Early work building on the neural networks of McCulloch and Pitts also flourished. The
work of Shmuel Winograd and Jack Cowan (1963) showed how a large number of elements



Section 1.3 The History of Artificial Intelligence 39

could collectively represent an individual concept, with a corresponding increase in robust-
ness and parallelism. Hebb’s learning methods were enhanced by Bernie Widrow (Widrow
and Hoff, 1960; Widrow, 1962), who called his networks adalines, and by Frank Rosen-
blatt (1962) with his perceptrons. The perceptron convergence theorem (Block et al.,
1962) says that the learning algorithm can adjust the connection strengths of a perceptron to
match any input data, provided such a match exists.

1.3.3 A dose of reality (1966–1973)

From the beginning, AI researchers were not shy about making predictions of their coming
successes. The following statement by Herbert Simon in 1957 is often quoted:

It is not my aim to surprise or shock you—but the simplest way I can summarize is to say
that there are now in the world machines that think, that learn and that create. Moreover,
their ability to do these things is going to increase rapidly until—in a visible future—the
range of problems they can handle will be coextensive with the range to which the human
mind has been applied.

The term “visible future” is vague, but Simon also made more concrete predictions: that
within 10 years a computer would be chess champion and a significant mathematical theorem
would be proved by machine. These predictions came true (or approximately true) within 40
years rather than 10. Simon’s overconfidence was due to the promising performance of early
AI systems on simple examples. In almost all cases, however, these early systems failed on
more difficult problems.

There were two main reasons for this failure. The first was that many early AI systems
were based primarily on “informed introspection” as to how humans perform a task, rather
than on a careful analysis of the task, what it means to be a solution, and what an algorithm
would need to do to reliably produce such solutions.

The second reason for failure was a lack of appreciation of the intractability of many of
the problems that AI was attempting to solve. Most of the early problem-solving systems
worked by trying out different combinations of steps until the solution was found. This strat-
egy worked initially because microworlds contained very few objects and hence very few
possible actions and very short solution sequences. Before the theory of computational com-
plexity was developed, it was widely thought that “scaling up” to larger problems was simply
a matter of faster hardware and larger memories. The optimism that accompanied the devel-
opment of resolution theorem proving, for example, was soon dampened when researchers
failed to prove theorems involving more than a few dozen facts. The fact that a program can J
find a solution in principle does not mean that the program contains any of the mechanisms
needed to find it in practice.

The illusion of unlimited computational power was not confined to problem-solving pro-
grams. Early experiments in machine evolution (now called genetic programming) (Fried- Machine evolution

berg, 1958; Friedberg et al., 1959) were based on the undoubtedly correct belief that by
making an appropriate series of small mutations to a machine-code program, one can gen-
erate a program with good performance for any particular task. The idea, then, was to try
random mutations with a selection process to preserve mutations that seemed useful. Despite
thousands of hours of CPU time, almost no progress was demonstrated.

Failure to come to grips with the “combinatorial explosion” was one of the main criti-
cisms of AI contained in the Lighthill report (Lighthill, 1973), which formed the basis for the
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decision by the British government to end support for AI research in all but two universities.
(Oral tradition paints a somewhat different and more colorful picture, with political ambitions
and personal animosities whose description is beside the point.)

A third difficulty arose because of some fundamental limitations on the basic structures
being used to generate intelligent behavior. For example, Minsky and Papert’s book Percep-
trons (1969) proved that, although perceptrons (a simple form of neural network) could be
shown to learn anything they were capable of representing, they could represent very little.
In particular, a two-input perceptron could not be trained to recognize when its two inputs
were different. Although their results did not apply to more complex, multilayer networks,
research funding for neural-net research soon dwindled to almost nothing. Ironically, the new
back-propagation learning algorithms that were to cause an enormous resurgence in neural-
net research in the late 1980s and again in the 2010s had already been developed in other
contexts in the early 1960s (Kelley, 1960; Bryson, 1962).

1.3.4 Expert systems (1969–1986)

The picture of problem solving that had arisen during the first decade of AI research was of
a general-purpose search mechanism trying to string together elementary reasoning steps to
find complete solutions. Such approaches have been called weak methods because, althoughWeak method

general, they do not scale up to large or difficult problem instances. The alternative to weak
methods is to use more powerful, domain-specific knowledge that allows larger reasoning
steps and can more easily handle typically occurring cases in narrow areas of expertise. One
might say that to solve a hard problem, you have to almost know the answer already.

The DENDRAL program (Buchanan et al., 1969) was an early example of this approach.
It was developed at Stanford, where Ed Feigenbaum (a former student of Herbert Simon),
Bruce Buchanan (a philosopher turned computer scientist), and Joshua Lederberg (a Nobel
laureate geneticist) teamed up to solve the problem of inferring molecular structure from the
information provided by a mass spectrometer. The input to the program consists of the ele-
mentary formula of the molecule (e.g., C6H13NO2) and the mass spectrum giving the masses
of the various fragments of the molecule generated when it is bombarded by an electron beam.
For example, the mass spectrum might contain a peak at m = 15, corresponding to the mass
of a methyl (CH3) fragment.

The naive version of the program generated all possible structures consistent with the
formula, and then predicted what mass spectrum would be observed for each, comparing this
with the actual spectrum. As one might expect, this is intractable for even moderate-sized
molecules. The DENDRAL researchers consulted analytical chemists and found that they
worked by looking for well-known patterns of peaks in the spectrum that suggested common
substructures in the molecule. For example, the following rule is used to recognize a ketone
(C=O) subgroup (which weighs 28):

if M is the mass of the whole molecule and there are two peaks at x1 and x2 such that
(a) x1 + x2 = M+28; (b) x1 −28 is a high peak; (c) x2 −28 is a high peak; and
(d) At least one of x1 and x2 is high
then there is a ketone subgroup.

Recognizing that the molecule contains a particular substructure reduces the number of pos-
sible candidates enormously. According to its authors, DENDRAL was powerful because it
embodied the relevant knowledge of mass spectroscopy not in the form of first principles but
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in efficient “cookbook recipes” (Feigenbaum et al., 1971). The significance of DENDRAL

was that it was the first successful knowledge-intensive system: its expertise derived from
large numbers of special-purpose rules. In 1971, Feigenbaum and others at Stanford began
the Heuristic Programming Project (HPP) to investigate the extent to which the new method-
ology of expert systems could be applied to other areas. Expert systems

The next major effort was the MYCIN system for diagnosing blood infections. With about
450 rules, MYCIN was able to perform as well as some experts, and considerably better than
junior doctors. It also contained two major differences from DENDRAL. First, unlike the
DENDRAL rules, no general theoretical model existed from which the MYCIN rules could be
deduced. They had to be acquired from extensive interviewing of experts. Second, the rules
had to reflect the uncertainty associated with medical knowledge. MYCIN incorporated a
calculus of uncertainty called certainty factors (see Chapter 13), which seemed (at the time) Certainty factor

to fit well with how doctors assessed the impact of evidence on the diagnosis.
The first successful commercial expert system, R1, began operation at the Digital Equip-

ment Corporation (McDermott, 1982). The program helped configure orders for new com-
puter systems; by 1986, it was saving the company an estimated $40 million a year. By 1988,
DEC’s AI group had 40 expert systems deployed, with more on the way. DuPont had 100 in
use and 500 in development. Nearly every major U.S. corporation had its own AI group and
was either using or investigating expert systems.

The importance of domain knowledge was also apparent in the area of natural language
understanding. Despite the success of Winograd’s SHRDLU system, its methods did not ex-
tend to more general tasks: for problems such as ambiguity resolution it used simple rules
that relied on the tiny scope of the blocks world.

Several researchers, including Eugene Charniak at MIT and Roger Schank at Yale, sug-
gested that robust language understanding would require general knowledge about the world
and a general method for using that knowledge. (Schank went further, claiming, “There is
no such thing as syntax,” which upset a lot of linguists but did serve to start a useful dis-
cussion.) Schank and his students built a series of programs (Schank and Abelson, 1977;
Wilensky, 1978; Schank and Riesbeck, 1981) that all had the task of understanding natural
language. The emphasis, however, was less on language per se and more on the problems of
representing and reasoning with the knowledge required for language understanding.

The widespread growth of applications to real-world problems led to the development of
a wide range of representation and reasoning tools. Some were based on logic—for example,
the Prolog language became popular in Europe and Japan, and the PLANNER family in the
United States. Others, following Minsky’s idea of frames (1975), adopted a more structured Frames

approach, assembling facts about particular object and event types and arranging the types
into a large taxonomic hierarchy analogous to a biological taxonomy.

In 1981, the Japanese government announced the “Fifth Generation” project, a 10-year
plan to build massively parallel, intelligent computers running Prolog. The budget was to
exceed a $1.3 billion in today’s money. In response, the United States formed the Micro-
electronics and Computer Technology Corporation (MCC), a consortium designed to assure
national competitiveness. In both cases, AI was part of a broad effort, including chip design
and human-interface research. In Britain, the Alvey report reinstated the funding removed by
the Lighthill report. However, none of these projects ever met its ambitious goals in terms of
new AI capabilities or economic impact.
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Overall, the AI industry boomed from a few million dollars in 1980 to billions of dollars
in 1988, including hundreds of companies building expert systems, vision systems, robots,
and software and hardware specialized for these purposes.

Soon after that came a period called the “AI winter,” in which many companies fell by the
wayside as they failed to deliver on extravagant promises. It turned out to be difficult to build
and maintain expert systems for complex domains, in part because the reasoning methods
used by the systems broke down in the face of uncertainty and in part because the systems
could not learn from experience.

1.3.5 The return of neural networks (1986–present)

In the mid-1980s at least four different groups reinvented the back-propagation learning
algorithm first developed in the early 1960s. The algorithm was applied to many learning
problems in computer science and psychology, and the widespread dissemination of the re-
sults in the collection Parallel Distributed Processing (Rumelhart and McClelland, 1986)
caused great excitement.

These so-called connectionist models were seen by some as direct competitors both toConnectionist

the symbolic models promoted by Newell and Simon and to the logicist approach of Mc-
Carthy and others. It might seem obvious that at some level humans manipulate symbols—in
fact, the anthropologist Terrence Deacon’s book The Symbolic Species (1997) suggests that
this is the defining characteristic of humans. Against this, Geoff Hinton, a leading figure
in the resurgence of neural networks in the 1980s and 2010s, has described symbols as the
“luminiferous aether of AI”—a reference to the non-existent medium through which many
19th-century physicists believed that electromagnetic waves propagated. Certainly, many
concepts that we name in language fail, on closer inspection, to have the kind of logically
defined necessary and sufficient conditions that early AI researchers hoped to capture in ax-
iomatic form. It may be that connectionist models form internal concepts in a more fluid
and imprecise way that is better suited to the messiness of the real world. They also have
the capability to learn from examples—they can compare their predicted output value to the
true value on a problem and modify their parameters to decrease the difference, making them
more likely to perform well on future examples.

1.3.6 Probabilistic reasoning and machine learning (1987–present)

The brittleness of expert systems led to a new, more scientific approach incorporating proba-
bility rather than Boolean logic, machine learning rather than hand-coding, and experimental
results rather than philosophical claims.14 It became more common to build on existing theo-
ries than to propose brand-new ones, to base claims on rigorous theorems or solid experimen-
tal methodology (Cohen, 1995) rather than on intuition, and to show relevance to real-world
applications rather than toy examples.

Shared benchmark problem sets became the norm for demonstrating progress, including
the UC Irvine repository for machine learning data sets, the International Planning Compe-

14 Some have characterized this change as a victory of the neats—those who think that AI theories should be
grounded in mathematical rigor—over the scruffies—those who would rather try out lots of ideas, write some
programs, and then assess what seems to be working. Both approaches are important. A shift toward neatness
implies that the field has reached a level of stability and maturity. The present emphasis on deep learning may
represent a resurgence of the scruffies.
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tition for planning algorithms, the LibriSpeech corpus for speech recognition, the MNIST
data set for handwritten digit recognition, ImageNet and COCO for image object recogni-
tion, SQUAD for natural language question answering, the WMT competition for machine
translation, and the International SAT Competitions for Boolean satisfiability solvers.

AI was founded in part as a rebellion against the limitations of existing fields like control
theory and statistics, but in this period it embraced the positive results of those fields. As
David McAllester (1998) put it:

In the early period of AI it seemed plausible that new forms of symbolic computation,
e.g., frames and semantic networks, made much of classical theory obsolete. This led to
a form of isolationism in which AI became largely separated from the rest of computer
science. This isolationism is currently being abandoned. There is a recognition that
machine learning should not be isolated from information theory, that uncertain reasoning
should not be isolated from stochastic modeling, that search should not be isolated from
classical optimization and control, and that automated reasoning should not be isolated
from formal methods and static analysis.

The field of speech recognition illustrates the pattern. In the 1970s, a wide variety of different
architectures and approaches were tried. Many of these were rather ad hoc and fragile, and
worked on only a few carefully selected examples. In the 1980s, approaches using hidden
Markov models (HMMs) came to dominate the area. Two aspects of HMMs are relevant. Hidden Markov

models
First, they are based on a rigorous mathematical theory. This allowed speech researchers to
build on several decades of mathematical results developed in other fields. Second, they are
generated by a process of training on a large corpus of real speech data. This ensures that the
performance is robust, and in rigorous blind tests HMMs improved their scores steadily. As
a result, speech technology and the related field of handwritten character recognition made
the transition to widespread industrial and consumer applications. Note that there was no
scientific claim that humans use HMMs to recognize speech; rather, HMMs provided a math-
ematical framework for understanding and solving the problem. We will see in Section 1.3.8,
however, that deep learning has rather upset this comfortable narrative.

1988 was an important year for the connection between AI and other fields, including
statistics, operations research, decision theory, and control theory. Judea Pearl’s (1988) Prob-
abilistic Reasoning in Intelligent Systems led to a new acceptance of probability and decision
theory in AI. Pearl’s development of Bayesian networks yielded a rigorous and efficient Bayesian network

formalism for representing uncertain knowledge as well as practical algorithms for proba-
bilistic reasoning. Chapters 12, 13, 14, 15, and 18 cover this area, in addition to more recent
developments that have greatly increased the expressive power of probabilistic formalisms;
Chapter 21 describes methods for learning Bayesian networks and related models from data.

A second major contribution in 1988 was Rich Sutton’s work connecting reinforcement
learning—which had been used in Arthur Samuel’s checker-playing program in the 1950s—
to the theory of Markov decision processes (MDPs) developed in the field of operations re-
search. A flood of work followed connecting AI planning research to MDPs, and the field of
reinforcement learning found applications in robotics and process control as well as acquiring
deep theoretical foundations.

One consequence of AI’s newfound appreciation for data, statistical modeling, optimiza-
tion, and machine learning was the gradual reunification of subfields such as computer vision,
robotics, speech recognition, multiagent systems, and natural language processing that had
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become somewhat separate from core AI. The process of reintegration has yielded signifi-
cant benefits both in terms of applications—for example, the deployment of practical robots
expanded greatly during this period—and in a better theoretical understanding of the core
problems of AI.

1.3.7 Big data (2001–present)

Remarkable advances in computing power and the creation of the World Wide Web have
facilitated the creation of very large data sets—a phenomenon sometimes known as big data.Big data

These data sets include trillions of words of text, billions of images, and billions of hours of
speech and video, as well as vast amounts of genomic data, vehicle tracking data, clickstream
data, social network data, and so on.

This has led to the development of learning algorithms specially designed to take advan-
tage of very large data sets. Often, the vast majority of examples in such data sets are un-
labeled; for example, in Yarowsky’s (1995) influential work on word-sense disambiguation,
occurrences of a word such as “plant” are not labeled in the data set to indicate whether they
refer to flora or factory. With large enough data sets, however, suitable learning algorithms
can achieve an accuracy of over 96% on the task of identifying which sense was intended in a
sentence. Moreover, Banko and Brill (2001) argued that the improvement in performance ob-
tained from increasing the size of the data set by two or three orders of magnitude outweighs
any improvement that can be obtained from tweaking the algorithm.

A similar phenomenon seems to occur in computer vision tasks such as filling in holes in
photographs—holes caused either by damage or by the removal of ex-friends. Hays and Efros
(2007) developed a clever method for doing this by blending in pixels from similar images;
they found that the technique worked poorly with a database of only thousands of images but
crossed a threshold of quality with millions of images. Soon after, the availability of tens of
millions of images in the ImageNet database (Deng et al., 2009) sparked a revolution in the
field of computer vision.

The availability of big data and the shift towards machine learning helped AI recover
commercial attractiveness (Havenstein, 2005; Halevy et al., 2009). Big data was a crucial fac-
tor in the 2011 victory of IBM’s Watson system over human champions in the Jeopardy! quiz
game, an event that had a major impact on the public’s perception of AI.

1.3.8 Deep learning (2011–present)

The term deep learning refers to machine learning using multiple layers of simple, adjustableDeep learning

computing elements. Experiments were carried out with such networks as far back as the
1970s, and in the form of convolutional neural networks they found some success in hand-
written digit recognition in the 1990s (LeCun et al., 1995). It was not until 2011, however,
that deep learning methods really took off. This occurred first in speech recognition and then
in visual object recognition.

In the 2012 ImageNet competition, which required classifying images into one of a thou-
sand categories (armadillo, bookshelf, corkscrew, etc.), a deep learning system created in
Geoffrey Hinton’s group at the University of Toronto (Krizhevsky et al., 2013) demonstrated
a dramatic improvement over previous systems, which were based largely on handcrafted
features. Since then, deep learning systems have exceeded human performance on some vi-
sion tasks (and lag behind in some other tasks). Similar gains have been reported in speech
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recognition, machine translation, medical diagnosis, and game playing. The use of a deep
network to represent the evaluation function contributed to ALPHAGO’s victories over the
leading human Go players (Silver et al., 2016, 2017, 2018).

These remarkable successes have led to a resurgence of interest in AI among students,
companies, investors, governments, the media, and the general public. It seems that every
week there is news of a new AI application approaching or exceeding human performance,
often accompanied by speculation of either accelerated success or a new AI winter.

Deep learning relies heavily on powerful hardware. Whereas a standard computer CPU
can do 109 or 1010 operations per second. a deep learning algorithm running on specialized
hardware (e.g., GPU, TPU, or FPGA) might consume between 1014 and 1017 operations per
second, mostly in the form of highly parallelized matrix and vector operations. Of course,
deep learning also depends on the availability of large amounts of training data, and on a few
algorithmic tricks (see Chapter 22).

1.4 The State of the Art

Stanford University’s One Hundred Year Study on AI (also known as AI100) convenes panels
of experts to provide reports on the state of the art in AI. Their 2016 report (Stone et al.,
2016; Grosz and Stone, 2018) concludes that “Substantial increases in the future uses of AI
applications, including more self-driving cars, healthcare diagnostics and targeted treatment,
and physical assistance for elder care can be expected” and that “Society is now at a crucial
juncture in determining how to deploy AI-based technologies in ways that promote rather than
hinder democratic values such as freedom, equality, and transparency.” AI100 also produces
an AI Index at aiindex.org to help track progress. Some highlights from the 2018 and AI Index

2019 reports (comparing to a year 2000 baseline unless otherwise stated):

• Publications: AI papers increased 20-fold between 2010 and 2019 to about 20,000 a
year. The most popular category was machine learning. (Machine learning papers
in arXiv.org doubled every year from 2009 to 2017.) Computer vision and natural
language processing were the next most popular.

• Sentiment: About 70% of news articles on AI are neutral, but articles with positive tone
increased from 12% in 2016 to 30% in 2018. The most common issues are ethical: data
privacy and algorithm bias.

• Students: Course enrollment increased 5-fold in the U.S. and 16-fold internationally
from a 2010 baseline. AI is the most popular specialization in Computer Science.

• Diversity: AI Professors worldwide are about 80% male, 20% female. Similar numbers
hold for Ph.D. students and industry hires.

• Conferences: Attendance at NeurIPS increased 800% since 2012 to 13,500 attendees.
Other conferences are seeing annual growth of about 30%.

• Industry: AI startups in the U.S. increased 20-fold to over 800.

• Internationalization: China publishes more papers per year than the U.S. and about
as many as all of Europe. However, in citation-weighted impact, U.S. authors are 50%
ahead of Chinese authors. Singapore, Brazil, Australia, Canada, and India are the fastest
growing countries in terms of the number of AI hires.

http://aiindex.org
http://arXiv.org
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• Vision: Error rates for object detection (as achieved in LSVRC, the Large-Scale Visual
Recognition Challenge) improved from 28% in 2010 to 2% in 2017, exceeding human
performance. Accuracy on open-ended visual question answering (VQA) improved
from 55% to 68% since 2015, but lags behind human performance at 83%.

• Speed: Training time for the image recognition task dropped by a factor of 100 in just
the past two years. The amount of computing power used in top AI applications is
doubling every 3.4 months.

• Language: Accuracy on question answering, as measured by F1 score on the Stanford
Question Answering Dataset (SQUAD), increased from 60 to 95 from 2015 to 2019; on
the SQUAD 2 variant, progress was faster, going from 62 to 90 in just one year. Both
scores exceed human-level performance.

• Human benchmarks: By 2019, AI systems had reportedly met or exceeded human-
level performance in chess, Go, poker, Pac-Man, Jeopardy!, ImageNet object detection,
speech recognition in a limited domain, Chinese-to-English translation in a restricted
domain, Quake III, Dota 2, StarCraft II, various Atari games, skin cancer detection,
prostate cancer detection, protein folding, and diabetic retinopathy diagnosis.

When (if ever) will AI systems achieve human-level performance across a broad variety
of tasks? Ford (2018) interviews AI experts and finds a wide range of target years, from 2029
to 2200, with a mean of 2099. In a similar survey (Grace et al., 2017) 50% of respondents
thought this could happen by 2066, although 10% thought it could happen as early as 2025,
and a few said “never.” The experts were also split on whether we need fundamental new
breakthroughs or just refinements on current approaches. But don’t take their predictions
too seriously; as Philip Tetlock (2017) demonstrates in the area of predicting world events,
experts are no better than amateurs.

How will future AI systems operate? We can’t yet say. As detailed in this section, the field
has adopted several stories about itself—first the bold idea that intelligence by a machine was
even possible, then that it could be achieved by encoding expert knowledge into logic, then
that probabilistic models of the world would be the main tool, and most recently that machine
learning would induce models that might not be based on any well-understood theory at all.
The future will reveal what model comes next.

What can AI do today? Perhaps not as much as some of the more optimistic media
articles might lead one to believe, but still a great deal. Here are some examples:

Robotic vehicles: The history of robotic vehicles stretches back to radio-controlled cars
of the 1920s, but the first demonstrations of autonomous road driving without special guides
occurred in the 1980s (Kanade et al., 1986; Dickmanns and Zapp, 1987). After success-
ful demonstrations of driving on dirt roads in the 132-mile DARPA Grand Challenge in
2005 (Thrun, 2006) and on streets with traffic in the 2007 Urban Challenge, the race to de-
velop self-driving cars began in earnest. In 2018, Waymo test vehicles passed the landmark
of 10 million miles driven on public roads without a serious accident, with the human driver
stepping in to take over control only once every 6,000 miles. Soon after, the company began
offering a commercial robotic taxi service.

In the air, autonomous fixed-wing drones have been providing cross-country blood deliv-
eries in Rwanda since 2016. Quadcopters perform remarkable aerobatic maneuvers, explore
buildings while constructing 3-D maps, and self-assemble into autonomous formations.
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Legged locomotion: BigDog, a quadruped robot by Raibert et al. (2008), upended our
notions of how robots move—no longer the slow, stiff-legged, side-to-side gait of Hollywood
movie robots, but something closely resembling an animal and able to recover when shoved
or when slipping on an icy puddle. Atlas, a humanoid robot, not only walks on uneven terrain
but jumps onto boxes and does backflips (Ackerman and Guizzo, 2016).

Autonomous planning and scheduling: A hundred million miles from Earth, NASA’s
Remote Agent program became the first on-board autonomous planning program to control
the scheduling of operations for a spacecraft (Jonsson et al., 2000). Remote Agent generated
plans from high-level goals specified from the ground and monitored the execution of those
plans—detecting, diagnosing, and recovering from problems as they occurred. Today, the
EUROPA planning toolkit (Barreiro et al., 2012) is used for daily operations of NASA’s Mars
rovers and the SEXTANT system (Winternitz, 2017) allows autonomous navigation in deep
space, beyond the global GPS system.

During the Persian Gulf crisis of 1991, U.S. forces deployed a Dynamic Analysis and
Replanning Tool, DART (Cross and Walker, 1994), to do automated logistics planning and
scheduling for transportation. This involved up to 50,000 vehicles, cargo, and people at a
time, and had to account for starting points, destinations, routes, transport capacities, port
and airfield capacities, and conflict resolution among all parameters. The Defense Advanced
Research Project Agency (DARPA) stated that this single application more than paid back
DARPA’s 30-year investment in AI.

Every day, ride hailing companies such as Uber and mapping services such as Google
Maps provide driving directions for hundreds of millions of users, quickly plotting an optimal
route taking into account current and predicted future traffic conditions.

Machine translation: Online machine translation systems now enable the reading of
documents in over 100 languages, including the native languages of over 99% of humans,
and render hundreds of billions of words per day for hundreds of millions of users. While not
perfect, they are generally adequate for understanding. For closely related languages with a
great deal of training data (such as French and English) translations within a narrow domain
are close to the level of a human (Wu et al., 2016b).

Speech recognition: In 2017, Microsoft showed that its Conversational Speech Recog-
nition System had reached a word error rate of 5.1%, matching human performance on the
Switchboard task, which involves transcribing telephone conversations (Xiong et al., 2017).
About a third of computer interaction worldwide is now done by voice rather than keyboard;
Skype provides real-time speech-to-speech translation in ten languages. Alexa, Siri, Cortana,
and Google offer assistants that can answer questions and carry out tasks for the user; for
example the Google Duplex service uses speech recognition and speech synthesis to make
restaurant reservations for users, carrying out a fluent conversation on their behalf.

Recommendations: Companies such as Amazon, Facebook, Netflix, Spotify, YouTube,
Walmart, and others use machine learning to recommend what you might like based on your
past experiences and those of others like you. The field of recommender systems has a long
history (Resnick and Varian, 1997) but is changing rapidly due to new deep learning methods
that analyze content (text, music, video) as well as history and metadata (van den Oord et al.,
2014; Zhang et al., 2017). Spam filtering can also be considered a form of recommendation
(or dis-recommendation); current AI techniques filter out over 99.9% of spam, and email
services can also recommend potential recipients, as well as possible response text.
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Game playing: When Deep Blue defeated world chess champion Garry Kasparov in
1997, defenders of human supremacy placed their hopes on Go. Piet Hut, an astrophysicist
and Go enthusiast, predicted that it would take “a hundred years before a computer beats
humans at Go—maybe even longer.” But just 20 years later, ALPHAGO surpassed all human
players (Silver et al., 2017). Ke Jie, the world champion, said, “Last year, it was still quite
human-like when it played. But this year, it became like a god of Go.” ALPHAGO benefited
from studying hundreds of thousands of past games by human Go players, and from the
distilled knowledge of expert Go players that worked on the team.

A followup program, ALPHAZERO, used no input from humans (except for the rules
of the game), and was able to learn through self-play alone to defeat all opponents, human
and machine, at Go, chess, and shogi (Silver et al., 2018). Meanwhile, human champions
have been beaten by AI systems at games as diverse as Jeopardy! (Ferrucci et al., 2010),
poker (Bowling et al., 2015; Moravčı́k et al., 2017; Brown and Sandholm, 2019), and the
video games Dota 2 (Fernandez and Mahlmann, 2018), StarCraft II (Vinyals et al., 2019),
and Quake III (Jaderberg et al., 2019).

Image understanding: Not content with exceeding human accuracy on the challenging
ImageNet object recognition task, computer vision researchers have taken on the more dif-
ficult problem of image captioning. Some impressive examples include “A person riding a
motorcycle on a dirt road,” “Two pizzas sitting on top of a stove top oven,” and “A group
of young people playing a game of frisbee” (Vinyals et al., 2017b). Current systems are far
from perfect, however: a “refrigerator filled with lots of food and drinks” turns out to be a
no-parking sign partially obscured by lots of small stickers.

Medicine: AI algorithms now equal or exceed expert doctors at diagnosing many condi-
tions, particularly when the diagnosis is based on images. Examples include Alzheimer’s dis-
ease (Ding et al., 2018), metastatic cancer (Liu et al., 2017; Esteva et al., 2017), ophthalmic
disease (Gulshan et al., 2016), and skin diseases (Liu et al., 2019c). A systematic review and
meta-analysis (Liu et al., 2019a) found that the performance of AI programs, on average, was
equivalent to health care professionals. One current emphasis in medical AI is in facilitating
human–machine partnerships. For example, the LYNA system achieves 99.6% overall accu-
racy in diagnosing metastatic breast cancer—better than an unaided human expert—but the
combination does better still (Liu et al., 2018; Steiner et al., 2018).

The widespread adoption of these techniques is now limited not by diagnostic accuracy
but by the need to demonstrate improvement in clinical outcomes and to ensure transparency,
lack of bias, and data privacy (Topol, 2019). In 2017, only two medical AI applications were
approved by the FDA, but that increased to 12 in 2018, and continues to rise.

Climate science: A team of scientists won the 2018 Gordon Bell Prize for a deep learning
model that discovers detailed information about extreme weather events that were previously
buried in climate data. They used a supercomputer with specialized GPU hardware to exceed
the exaop level (1018 operations per second), the first machine learning program to do so
(Kurth et al., 2018). Rolnick et al. (2019) present a 60-page catalog of ways in which machine
learning can be used to tackle climate change.

These are just a few examples of artificial intelligence systems that exist today. Not
magic or science fiction—but rather science, engineering, and mathematics, to which this
book provides an introduction.
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1.5 Risks and Benefits of AI

Francis Bacon, a philosopher credited with creating the scientific method, noted in The Wis-
dom of the Ancients (1609) that the “mechanical arts are of ambiguous use, serving as well
for hurt as for remedy.” As AI plays an increasingly important role in the economic, so-
cial, scientific, medical, financial, and military spheres, we would do well to consider the
hurts and remedies—in modern parlance, the risks and benefits—that it can bring. The topics
summarized here are covered in greater depth in Chapters 28 and 29.

To begin with the benefits: put simply, our entire civilization is the product of our human
intelligence. If we have access to substantially greater machine intelligence, the ceiling on
our ambitions is raised substantially. The potential for AI and robotics to free humanity from
menial repetitive work and to dramatically increase the production of goods and services
could presage an era of peace and plenty. The capacity to accelerate scientific research could
result in cures for disease and solutions for climate change and resource shortages. As Demis
Hassabis, CEO of Google DeepMind, has suggested: “First solve AI, then use AI to solve
everything else.”

Long before we have an opportunity to “solve AI,” however, we will incur risks from
the misuse of AI, inadvertent or otherwise. Some of these are already apparent, while others
seem likely based on current trends:

• Lethal autonomous weapons: These are defined by the United Nations as weapons that
can locate, select, and eliminate human targets without human intervention. A primary
concern with such weapons is their scalability: the absence of a requirement for human
supervision means that a small group can deploy an arbitrarily large number of weapons
against human targets defined by any feasible recognition criterion. The technologies
needed for autonomous weapons are similar to those needed for self-driving cars. In-
formal expert discussions on the potential risks of lethal autonomous weapons began
at the UN in 2014, moving to the formal pre-treaty stage of a Group of Governmental
Experts in 2017.

• Surveillance and persuasion: While it is expensive, tedious, and sometimes legally
questionable for security personnel to monitor phone lines, video camera feeds, emails,
and other messaging channels, AI (speech recognition, computer vision, and natural
language understanding) can be used in a scalable fashion to perform mass surveillance
of individuals and detect activities of interest. By tailoring information flows to individ-
uals through social media, based on machine learning techniques, political behavior can
be modified and controlled to some extent—a concern that became apparent in elections
beginning in 2016.

• Biased decision making: Careless or deliberate misuse of machine learning algorithms
for tasks such as evaluating parole and loan applications can result in decisions that are
biased by race, gender, or other protected categories. Often, the data themselves reflect
pervasive bias in society.

• Impact on employment: Concerns about machines eliminating jobs are centuries old.
The story is never simple: machines do some of the tasks that humans might otherwise
do, but they also make humans more productive and therefore more employable, and
make companies more profitable and therefore able to pay higher wages. They may
render some activities economically viable that would otherwise be impractical. Their
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use generally results in increasing wealth but tends to have the effect of shifting wealth
from labor to capital, further exacerbating increases in inequality. Previous advances
in technology—such as the invention of mechanical looms—have resulted in serious
disruptions to employment, but eventually people find new kinds of work to do. On the
other hand, it is possible that AI will be doing those new kinds of work too. This topic
is rapidly becoming a major focus for economists and governments around the world.

• Safety-critical applications: As AI techniques advance, they are increasingly used in
high-stakes, safety-critical applications such as driving cars and managing the water
supplies of cities. Fatal accidents have already occurred and highlight the difficulty
of formal verification and statistical risk analysis for systems developed using machine
learning techniques. The field of AI will need to develop technical and ethical standards
at least comparable to those prevalent in other engineering and healthcare disciplines
where people’s lives are at stake.

• Cybersecurity: AI techniques are useful in defending against cyberattack, for exam-
ple by detecting unusual patterns of behavior, but they will also contribute to the po-
tency, survivability, and proliferation capability of malware. For example, reinforce-
ment learning methods have been used to create highly effective tools for automated,
personalized blackmail and phishing attacks.

We will revisit these topics in more depth in Section 28.3. As AI systems become more
capable, they will take on more of the societal roles previously played by humans. Just as
humans have used these roles in the past to perpetrate mischief, we can expect that humans
may misuse AI systems in these roles to perpetrate even more mischief. All of the examples
given above point to the importance of governance and, eventually, regulation. At present, the
research community and the major corporations involved in AI research have developed vol-
untary self-governance principles for AI-related activities (see Section 28.3). Governments
and international organizations are setting up advisory bodies to devise appropriate regula-
tions for each specific use case, to prepare for the economic and social impacts, and to take
advantage of AI capabilities to address major societal problems.

What of the longer term? Will we achieve the long-standing goal: the creation of intelli-
gence comparable to or more capable than human intelligence? And, if we do, what then?

For much of AI’s history, these questions have been overshadowed by the daily grind of
getting AI systems to do anything even remotely intelligent. As with any broad discipline, the
great majority of AI researchers have specialized in a specific subfield such as game-playing,
knowledge representation, vision, or natural language understanding—often on the assump-
tion that progress in these subfields would contribute to the broader goals of AI. Nils Nilsson
(1995), one of the original leaders of the Shakey project at SRI, reminded the field of those
broader goals and warned that the subfields were in danger of becoming ends in themselves.
Later, some influential founders of AI, including John McCarthy (2007), Marvin Minsky
(2007), and Patrick Winston (Beal and Winston, 2009), concurred with Nilsson’s warnings,
suggesting that instead of focusing on measurable performance in specific applications, AI
should return to its roots of striving for, in Herb Simon’s words, “machines that think, that
learn and that create.” They called the effort human-level AI or HLAI—a machine shouldHuman-level AI

be able to learn to do anything a human can do. Their first symposium was in 2004 (Min-
sky et al., 2004). Another effort with similar goals, the artificial general intelligence (AGI)Artificial general

intelligence (AGI)
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movement (Goertzel and Pennachin, 2007), held its first conference and organized the Jour-
nal of Artificial General Intelligence in 2008.

At around the same time, concerns were raised that creating artificial superintelligence
Artificial
superintelligence
(ASI)

or ASI—intelligence that far surpasses human ability—might be a bad idea (Yudkowsky,
2008; Omohundro, 2008). Turing (1996) himself made the same point in a lecture given in
Manchester in 1951, drawing on earlier ideas from Samuel Butler (1863):15

It seems probable that once the machine thinking method had started, it would not take
long to outstrip our feeble powers. . . . At some stage therefore we should have to expect
the machines to take control, in the way that is mentioned in Samuel Butler’s Erewhon.

These concerns have only become more widespread with recent advances in deep learning,
the publication of books such as Superintelligence by Nick Bostrom (2014), and public pro-
nouncements from Stephen Hawking, Bill Gates, Martin Rees, and Elon Musk.

Experiencing a general sense of unease with the idea of creating superintelligent ma-
chines is only natural. We might call this the gorilla problem: about seven million years Gorilla problem

ago, a now-extinct primate evolved, with one branch leading to gorillas and one to humans.
Today, the gorillas are not too happy about the human branch; they have essentially no control
over their future. If this is the result of success in creating superhuman AI—that humans cede
control over their future—then perhaps we should stop work on AI, and, as a corollary, give
up the benefits it might bring. This is the essence of Turing’s warning: it is not obvious that
we can control machines that are more intelligent than us.

If superhuman AI were a black box that arrived from outer space, then indeed it would
be wise to exercise caution in opening the box. But it is not: we design the AI systems, so if
they do end up “taking control,” as Turing suggests, it would be the result of a design failure.

To avoid such an outcome, we need to understand the source of potential failure. Norbert
Wiener (1960), who was motivated to consider the long-term future of AI after seeing Arthur
Samuel’s checker-playing program learn to beat its creator, had this to say:

If we use, to achieve our purposes, a mechanical agency with whose operation we cannot
interfere effectively . . . we had better be quite sure that the purpose put into the machine
is the purpose which we really desire.

Many cultures have myths of humans who ask gods, genies, magicians, or devils for some-
thing. Invariably, in these stories, they get what they literally ask for, and then regret it. The
third wish, if there is one, is to undo the first two. We will call this the King Midas problem: King Midas problem

Midas, a legendary King in Greek mythology, asked that everything he touched should turn
to gold, but then regretted it after touching his food, drink, and family members.16

We touched on this issue in Section 1.1.5, where we pointed out the need for a significant
modification to the standard model of putting fixed objectives into the machine. The solu-
tion to Wiener’s predicament is not to have a definite “purpose put into the machine” at all.
Instead, we want machines that strive to achieve human objectives but know that they don’t
know for certain exactly what those objectives are.

15 Even earlier, in 1847, Richard Thornton, editor of the Primitive Expounder, railed against mechanical calcula-
tors: “Mind . . . outruns itself and does away with the necessity of its own existence by inventing machines to do
its own thinking. . . . But who knows that such machines when brought to greater perfection, may not think of a
plan to remedy all their own defects and then grind out ideas beyond the ken of mortal mind!”
16 Midas would have done better if he had followed basic principles of safety and included an “undo” button and
a “pause” button in his wish.
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It is perhaps unfortunate that almost all AI research to date has been carried out within
the standard model, which means that almost all of the technical material in this edition
reflects that intellectual framework. There are, however, some early results within the new
framework. In Chapter 15, we show that a machine has a positive incentive to allow itself
to be switched off if and only if it is uncertain about the human objective. In Chapter 17,
we formulate and study assistance games, which describe mathematically the situation inAssistance game

which a human has an objective and a machine tries to achieve it, but is initially uncertain
about what it is. In Chapter 23, we explain the methods of inverse reinforcement learning

Inverse
reinforcement
learning

that allow machines to learn more about human preferences from observations of the choices
that humans make. In Chapter 28, we explore two of the principal difficulties: first, that
our choices depend on our preferences through a very complex cognitive architecture that is
hard to invert; and, second, that we humans may not have consistent preferences in the first
place—either individually or as a group—so it may not be clear what AI systems should be
doing for us.

Summary

This chapter defines AI and establishes the cultural background against which it has devel-
oped. Some of the important points are as follows:

• Different people approach AI with different goals in mind. Two important questions to
ask are: Are you concerned with thinking, or behavior? Do you want to model humans,
or try to achieve the optimal results?

• According to what we have called the standard model, AI is concerned mainly with
rational action. An ideal intelligent agent takes the best possible action in a situation.
We study the problem of building agents that are intelligent in this sense.

• Two refinements to this simple idea are needed: first, the ability of any agent, human
or otherwise, to choose rational actions is limited by the computational intractability of
doing so; second, the concept of a machine that pursues a definite objective needs to be
replaced with that of a machine pursuing objectives to benefit humans, but uncertain as
to what those objectives are.

• Philosophers (going back to 400 BCE) made AI conceivable by suggesting that the mind
is in some ways like a machine, that it operates on knowledge encoded in some internal
language, and that thought can be used to choose what actions to take.

• Mathematicians provided the tools to manipulate statements of logical certainty as well
as uncertain, probabilistic statements. They also set the groundwork for understanding
computation and reasoning about algorithms.

• Economists formalized the problem of making decisions that maximize the expected
utility to the decision maker.

• Neuroscientists discovered some facts about how the brain works and the ways in which
it is similar to and different from computers.

• Psychologists adopted the idea that humans and animals can be considered information-
processing machines. Linguists showed that language use fits into this model.

• Computer engineers provided the ever-more-powerful machines that make AI applica-
tions possible, and software engineers made them more usable.
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• Control theory deals with designing devices that act optimally on the basis of feedback
from the environment. Initially, the mathematical tools of control theory were quite
different from those used in AI, but the fields are coming closer together.

• The history of AI has had cycles of success, misplaced optimism, and resulting cutbacks
in enthusiasm and funding. There have also been cycles of introducing new, creative
approaches and systematically refining the best ones.

• AI has matured considerably compared to its early decades, both theoretically and
methodologically. As the problems that AI deals with became more complex, the field
moved from Boolean logic to probabilistic reasoning, and from hand-crafted knowledge
to machine learning from data. This has led to improvements in the capabilities of real
systems and greater integration with other disciplines.

• As AI systems find application in the real world, it has become necessary to consider a
wide range of risks and ethical consequences.

• In the longer term, we face the difficult problem of controlling superintelligent AI sys-
tems that may evolve in unpredictable ways. Solving this problem seems to necessitate
a change in our conception of AI.

Bibliographical and Historical Notes

A comprehensive history of AI is given by Nils Nilsson (2009), one of the early pioneers of
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ternational Joint Conference on AI (IJCAI), the annual European Conference on AI (ECAI),
and the AAAI Conference. Machine learning is covered by the International Conference
on Machine Learning and the Neural Information Processing Systems (NeurIPS) meeting.
The major journals for general AI are Artificial Intelligence, Computational Intelligence, the
IEEE Transactions on Pattern Analysis and Machine Intelligence, IEEE Intelligent Systems,
and the Journal of Artificial Intelligence Research. There are also many conferences and
journals devoted to specific areas, which we cover in the appropriate chapters.
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CHAPTER 2
INTELLIGENT AGENTS
In which we discuss the nature of agents, perfect or otherwise, the diversity of environments,
and the resulting menagerie of agent types.

Chapter 1 identified the concept of rational agents as central to our approach to artificial
intelligence. In this chapter, we make this notion more concrete. We will see that the concept
of rationality can be applied to a wide variety of agents operating in any imaginable environ-
ment. Our plan in this book is to use this concept to develop a small set of design principles
for building successful agents—systems that can reasonably be called intelligent.

We begin by examining agents, environments, and the coupling between them. The ob-
servation that some agents behave better than others leads naturally to the idea of a rational
agent—one that behaves as well as possible. How well an agent can behave depends on the
nature of the environment; some environments are more difficult than others. We give a crude
categorization of environments and show how properties of an environment influence the de-
sign of suitable agents for that environment. We describe a number of basic “skeleton” agent
designs, which we flesh out in the rest of the book.

2.1 Agents and Environments

An agent is anything that can be viewed as perceiving its environment through sensors andEnvironment

Sensor acting upon that environment through actuators. This simple idea is illustrated in Figure 2.1.
Actuator A human agent has eyes, ears, and other organs for sensors and hands, legs, vocal tract,

and so on for actuators. A robotic agent might have cameras and infrared range finders for
sensors and various motors for actuators. A software agent receives file contents, network
packets, and human input (keyboard/mouse/touchscreen/voice) as sensory inputs and acts on
the environment by writing files, sending network packets, and displaying information or
generating sounds. The environment could be everything—the entire universe! In practice it
is just that part of the universe whose state we care about when designing this agent—the part
that affects what the agent perceives and that is affected by the agent’s actions.

We use the term percept to refer to the content an agent’s sensors are perceiving. AnPercept

agent’s percept sequence is the complete history of everything the agent has ever perceived.Percept sequence

In general, an agent’s choice of action at any given instant can depend on its built-in knowl-I
edge and on the entire percept sequence observed to date, but not on anything it hasn’t per-
ceived. By specifying the agent’s choice of action for every possible percept sequence, we
have said more or less everything there is to say about the agent. Mathematically speak-
ing, we say that an agent’s behavior is described by the agent function that maps any givenAgent function

percept sequence to an action.
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Figure 2.1 Agents interact with environments through sensors and actuators.

We can imagine tabulating the agent function that describes any given agent; for most
agents, this would be a very large table—infinite, in fact, unless we place a bound on the
length of percept sequences we want to consider. Given an agent to experiment with, we can,
in principle, construct this table by trying out all possible percept sequences and recording
which actions the agent does in response.1 The table is, of course, an external characterization
of the agent. Internally, the agent function for an artificial agent will be implemented by an
agent program. It is important to keep these two ideas distinct. The agent function is an Agent program

abstract mathematical description; the agent program is a concrete implementation, running
within some physical system.

To illustrate these ideas, we use a simple example—the vacuum-cleaner world, which
consists of a robotic vacuum-cleaning agent in a world consisting of squares that can be
either dirty or clean. Figure 2.2 shows a configuration with just two squares, A and B. The
vacuum agent perceives which square it is in and whether there is dirt in the square. The
agent starts in square A. The available actions are to move to the right, move to the left, suck
up the dirt, or do nothing.2 One very simple agent function is the following: if the current
square is dirty, then suck; otherwise, move to the other square. A partial tabulation of this
agent function is shown in Figure 2.3 and an agent program that implements it appears in
Figure 2.8 on page 67.

Looking at Figure 2.3, we see that various vacuum-world agents can be defined simply
by filling in the right-hand column in various ways. The obvious question, then, is this: What J
is the right way to fill out the table? In other words, what makes an agent good or bad,
intelligent or stupid? We answer these questions in the next section.

1 If the agent uses some randomization to choose its actions, then we would have to try each sequence many
times to identify the probability of each action. One might imagine that acting randomly is rather silly, but we
show later in this chapter that it can be very intelligent.
2 In a real robot, it would be unlikely to have an actions like “move right” and “move left.” Instead the actions
would be “spin wheels forward” and “spin wheels backward.” We have chosen the actions to be easier to follow
on the page, not for ease of implementation in an actual robot.
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A B

Figure 2.2 A vacuum-cleaner world with just two locations. Each location can be clean or
dirty, and the agent can move left or right and can clean the square that it occupies. Different
versions of the vacuum world allow for different rules about what the agent can perceive,
whether its actions always succeed, and so on.

Percept sequence Action

[A,Clean] Right
[A,Dirty] Suck
[B,Clean] Left
[B,Dirty] Suck
[A,Clean], [A,Clean] Right
[A,Clean], [A,Dirty] Suck
...

...
[A,Clean], [A,Clean], [A,Clean] Right
[A,Clean], [A,Clean], [A,Dirty] Suck
...

...

Figure 2.3 Partial tabulation of a simple agent function for the vacuum-cleaner world shown
in Figure 2.2. The agent cleans the current square if it is dirty, otherwise it moves to the other
square. Note that the table is of unbounded size unless there is a restriction on the length of
possible percept sequences.

Before closing this section, we should emphasize that the notion of an agent is meant to
be a tool for analyzing systems, not an absolute characterization that divides the world into
agents and non-agents. One could view a hand-held calculator as an agent that chooses the
action of displaying “4” when given the percept sequence “2 + 2 =,” but such an analysis
would hardly aid our understanding of the calculator. In a sense, all areas of engineering can
be seen as designing artifacts that interact with the world; AI operates at (what the authors
consider to be) the most interesting end of the spectrum, where the artifacts have significant
computational resources and the task environment requires nontrivial decision making.
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2.2 Good Behavior: The Concept of Rationality

A rational agent is one that does the right thing. Obviously, doing the right thing is better Rational agent

than doing the wrong thing, but what does it mean to do the right thing?

2.2.1 Performance measures

Moral philosophy has developed several different notions of the “right thing,” but AI has
generally stuck to one notion called consequentialism: we evaluate an agent’s behavior by its Consequentialism

consequences. When an agent is plunked down in an environment, it generates a sequence of
actions according to the percepts it receives. This sequence of actions causes the environment
to go through a sequence of states. If the sequence is desirable, then the agent has performed
well. This notion of desirability is captured by a performance measure that evaluates any Performance

measure
given sequence of environment states.

Humans have desires and preferences of their own, so the notion of rationality as applied
to humans has to do with their success in choosing actions that produce sequences of envi-
ronment states that are desirable from their point of view. Machines, on the other hand, do not
have desires and preferences of their own; the performance measure is, initially at least, in the
mind of the designer of the machine, or in the mind of the users the machine is designed for.
We will see that some agent designs have an explicit representation of (a version of) the per-
formance measure, while in other designs the performance measure is entirely implicit—the
agent may do the right thing, but it doesn’t know why.

Recalling Norbert Wiener’s warning to ensure that “the purpose put into the machine is
the purpose which we really desire” (page 51), notice that it can be quite hard to formulate
a performance measure correctly. Consider, for example, the vacuum-cleaner agent from the
preceding section. We might propose to measure performance by the amount of dirt cleaned
up in a single eight-hour shift. With a rational agent, of course, what you ask for is what
you get. A rational agent can maximize this performance measure by cleaning up the dirt,
then dumping it all on the floor, then cleaning it up again, and so on. A more suitable per-
formance measure would reward the agent for having a clean floor. For example, one point
could be awarded for each clean square at each time step (perhaps with a penalty for elec-
tricity consumed and noise generated). As a general rule, it is better to design performance J
measures according to what one actually wants to be achieved in the environment, rather
than according to how one thinks the agent should behave.

Even when the obvious pitfalls are avoided, some knotty problems remain. For example,
the notion of “clean floor” in the preceding paragraph is based on average cleanliness over
time. Yet the same average cleanliness can be achieved by two different agents, one of which
does a mediocre job all the time while the other cleans energetically but takes long breaks.
Which is preferable might seem to be a fine point of janitorial science, but in fact it is a
deep philosophical question with far-reaching implications. Which is better—a reckless life
of highs and lows, or a safe but humdrum existence? Which is better—an economy where
everyone lives in moderate poverty, or one in which some live in plenty while others are very
poor? We leave these questions as an exercise for the diligent reader.

For most of the book, we will assume that the performance measure can be specified
correctly. For the reasons given above, however, we must accept the possibility that we might
put the wrong purpose into the machine—precisely the King Midas problem described on
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page 51. Moreover, when designing one piece of software, copies of which will belong to
different users, we cannot anticipate the exact preferences of each individual user. Thus, we
may need to build agents that reflect initial uncertainty about the true performance measure
and learn more about it as time goes by; such agents are described in Chapters 15, 17, and 23.

2.2.2 Rationality

What is rational at any given time depends on four things:

• The performance measure that defines the criterion of success.
• The agent’s prior knowledge of the environment.
• The actions that the agent can perform.
• The agent’s percept sequence to date.

This leads to a definition of a rational agent:Definition of a
rational agent

I For each possible percept sequence, a rational agent should select an action that is ex-
pected to maximize its performance measure, given the evidence provided by the percept
sequence and whatever built-in knowledge the agent has.

Consider the simple vacuum-cleaner agent that cleans a square if it is dirty and moves to the
other square if not; this is the agent function tabulated in Figure 2.3. Is this a rational agent?
That depends! First, we need to say what the performance measure is, what is known about
the environment, and what sensors and actuators the agent has. Let us assume the following:

• The performance measure awards one point for each clean square at each time step,
over a “lifetime” of 1000 time steps.

• The “geography” of the environment is known a priori (Figure 2.2) but the dirt distri-
bution and the initial location of the agent are not. Clean squares stay clean and sucking
cleans the current square. The Right and Left actions move the agent one square ex-
cept when this would take the agent outside the environment, in which case the agent
remains where it is.

• The only available actions are Right, Left, and Suck.
• The agent correctly perceives its location and whether that location contains dirt.

Under these circumstances the agent is indeed rational; its expected performance is at least
as good as any other agent’s.

One can see easily that the same agent would be irrational under different circumstances.
For example, once all the dirt is cleaned up, the agent will oscillate needlessly back and forth;
if the performance measure includes a penalty of one point for each movement, the agent will
fare poorly. A better agent for this case would do nothing once it is sure that all the squares
are clean. If clean squares can become dirty again, the agent should occasionally check and
re-clean them if needed. If the geography of the environment is unknown, the agent will need
to explore it. Exercise 2.VACR asks you to design agents for these cases.

2.2.3 Omniscience, learning, and autonomy

We need to be careful to distinguish between rationality and omniscience. An omniscientOmniscience

agent knows the actual outcome of its actions and can act accordingly; but omniscience is
impossible in reality. Consider the following example: I am walking along the Champs
Elysées one day and I see an old friend across the street. There is no traffic nearby and I’m
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not otherwise engaged, so, being rational, I start to cross the street. Meanwhile, at 33,000
feet, a cargo door falls off a passing airliner,3 and before I make it to the other side of the
street I am flattened. Was I irrational to cross the street? It is unlikely that my obituary would
read “Idiot attempts to cross street.”

This example shows that rationality is not the same as perfection. Rationality maximizes
expected performance, while perfection maximizes actual performance. Retreating from a
requirement of perfection is not just a question of being fair to agents. The point is that if we
expect an agent to do what turns out after the fact to be the best action, it will be impossible
to design an agent to fulfill this specification—unless we improve the performance of crystal
balls or time machines.

Our definition of rationality does not require omniscience, then, because the rational
choice depends only on the percept sequence to date. We must also ensure that we haven’t
inadvertently allowed the agent to engage in decidedly underintelligent activities. For exam-
ple, if an agent does not look both ways before crossing a busy road, then its percept sequence
will not tell it that there is a large truck approaching at high speed. Does our definition of
rationality say that it’s now OK to cross the road? Far from it!

First, it would not be rational to cross the road given this uninformative percept sequence:
the risk of accident from crossing without looking is too great. Second, a rational agent should
choose the “looking” action before stepping into the street, because looking helps maximize
the expected performance. Doing actions in order to modify future percepts—sometimes
called information gathering—is an important part of rationality and is covered in depth in Information

gathering

Chapter 15. A second example of information gathering is provided by the exploration that
must be undertaken by a vacuum-cleaning agent in an initially unknown environment.

Our definition requires a rational agent not only to gather information but also to learn as Learning

much as possible from what it perceives. The agent’s initial configuration could reflect some
prior knowledge of the environment, but as the agent gains experience this may be modified
and augmented. There are extreme cases in which the environment is completely known a
priori and completely predictable. In such cases, the agent need not perceive or learn; it
simply acts correctly.

Of course, such agents are fragile. Consider the lowly dung beetle. After digging its nest
and laying its eggs, it fetches a ball of dung from a nearby heap to plug the entrance. If the
ball of dung is removed from its grasp en route, the beetle continues its task and pantomimes
plugging the nest with the nonexistent dung ball, never noticing that it is missing. Evolu-
tion has built an assumption into the beetle’s behavior, and when it is violated, unsuccessful
behavior results.

Slightly more intelligent is the sphex wasp. The female sphex will dig a burrow, go out
and sting a caterpillar and drag it to the burrow, enter the burrow again to check all is well,
drag the caterpillar inside, and lay its eggs. The caterpillar serves as a food source when the
eggs hatch. So far so good, but if an entomologist moves the caterpillar a few inches away
while the sphex is doing the check, it will revert to the “drag the caterpillar” step of its plan
and will continue the plan without modification, re-checking the burrow, even after dozens of
caterpillar-moving interventions. The sphex is unable to learn that its innate plan is failing,
and thus will not change it.

3 See N. Henderson, “New door latches urged for Boeing 747 jumbo jets,” Washington Post, August 24, 1989.
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To the extent that an agent relies on the prior knowledge of its designer rather than on its
own percepts and learning processes, we say that the agent lacks autonomy. A rational agentAutonomy

should be autonomous—it should learn what it can to compensate for partial or incorrect
prior knowledge. For example, a vacuum-cleaning agent that learns to predict where and
when additional dirt will appear will do better than one that does not.

As a practical matter, one seldom requires complete autonomy from the start: when the
agent has had little or no experience, it would have to act randomly unless the designer gave
some assistance. Just as evolution provides animals with enough built-in reflexes to survive
long enough to learn for themselves, it would be reasonable to provide an artificial intelligent
agent with some initial knowledge as well as an ability to learn. After sufficient experience
of its environment, the behavior of a rational agent can become effectively independent of its
prior knowledge. Hence, the incorporation of learning allows one to design a single rational
agent that will succeed in a vast variety of environments.

2.3 The Nature of Environments

Now that we have a definition of rationality, we are almost ready to think about building
rational agents. First, however, we must think about task environments, which are essen-Task environment

tially the “problems” to which rational agents are the “solutions.” We begin by showing how
to specify a task environment, illustrating the process with a number of examples. We then
show that task environments come in a variety of flavors. The nature of the task environment
directly affects the appropriate design for the agent program.

2.3.1 Specifying the task environment

In our discussion of the rationality of the simple vacuum-cleaner agent, we had to specify
the performance measure, the environment, and the agent’s actuators and sensors. We group
all these under the heading of the task environment. For the acronymically minded, we call
this the PEAS (Performance, Environment, Actuators, Sensors) description. In designing anPEAS

agent, the first step must always be to specify the task environment as fully as possible.
The vacuum world was a simple example; let us consider a more complex problem:

an automated taxi driver. Figure 2.4 summarizes the PEAS description for the taxi’s task
environment. We discuss each element in more detail in the following paragraphs.

First, what is the performance measure to which we would like our automated driver
to aspire? Desirable qualities include getting to the correct destination; minimizing fuel con-
sumption and wear and tear; minimizing the trip time or cost; minimizing violations of traffic
laws and disturbances to other drivers; maximizing safety and passenger comfort; maximiz-
ing profits. Obviously, some of these goals conflict, so tradeoffs will be required.

Next, what is the driving environment that the taxi will face? Any taxi driver must deal
with a variety of roads, ranging from rural lanes and urban alleys to 12-lane freeways. The
roads contain other traffic, pedestrians, stray animals, road works, police cars, puddles, and
potholes. The taxi must also interact with potential and actual passengers. There are also
some optional choices. The taxi might need to operate in Southern California, where snow
is seldom a problem, or in Alaska, where it seldom is not. It could always be driving on the
right, or we might want it to be flexible enough to drive on the left when in Britain or Japan.
Obviously, the more restricted the environment, the easier the design problem.



Section 2.3 The Nature of Environments 61

Agent Type Performance
Measure

Environment Actuators Sensors

Taxi driver Safe, fast,
legal,
comfortable
trip, maximize
profits,
minimize
impact on
other road
users

Roads, other
traffic, police,
pedestrians,
customers,
weather

Steering,
accelerator,
brake, signal,
horn, display,
speech

Cameras, radar,
speedometer, GPS, engine
sensors, accelerometer,
microphones, touchscreen

Figure 2.4 PEAS description of the task environment for an automated taxi driver.

The actuators for an automated taxi include those available to a human driver: control
over the engine through the accelerator and control over steering and braking. In addition, it
will need output to a display screen or voice synthesizer to talk back to the passengers, and
perhaps some way to communicate with other vehicles, politely or otherwise.

The basic sensors for the taxi will include one or more video cameras so that it can see, as
well as lidar and ultrasound sensors to detect distances to other cars and obstacles. To avoid
speeding tickets, the taxi should have a speedometer, and to control the vehicle properly,
especially on curves, it should have an accelerometer. To determine the mechanical state of
the vehicle, it will need the usual array of engine, fuel, and electrical system sensors. Like
many human drivers, it might want to access GPS signals so that it doesn’t get lost. Finally,
it will need touchscreen or voice input for the passenger to request a destination.

In Figure 2.5, we have sketched the basic PEAS elements for a number of additional
agent types. Further examples appear in Exercise 2.PEAS. The examples include physical
as well as virtual environments. Note that virtual task environments can be just as complex
as the “real” world: for example, a software agent (or software robot or softbot) that trades Software agent

Softboton auction and reselling Web sites deals with millions of other users and billions of objects,
many with real images.

2.3.2 Properties of task environments

The range of task environments that might arise in AI is obviously vast. We can, however,
identify a fairly small number of dimensions along which task environments can be catego-
rized. These dimensions determine, to a large extent, the appropriate agent design and the
applicability of each of the principal families of techniques for agent implementation. First
we list the dimensions, then we analyze several task environments to illustrate the ideas. The
definitions here are informal; later chapters provide more precise statements and examples of
each kind of environment.

Fully observable vs. partially observable: If an agent’s sensors give it access to the Fully observable

Partially observablecomplete state of the environment at each point in time, then we say that the task environ-
ment is fully observable. A task environment is effectively fully observable if the sensors
detect all aspects that are relevant to the choice of action; relevance, in turn, depends on the
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Agent Type Performance
Measure

Environment Actuators Sensors

Medical
diagnosis system

Healthy patient,
reduced costs

Patient, hospital,
staff

Display of
questions, tests,
diagnoses,
treatments

Touchscreen/voice
entry of
symptoms and
findings

Satellite image
analysis system

Correct
categorization of
objects, terrain

Orbiting satellite,
downlink,
weather

Display of scene
categorization

High-resolution
digital camera

Part-picking
robot

Percentage of
parts in correct
bins

Conveyor belt
with parts; bins

Jointed arm and
hand

Camera, tactile
and joint angle
sensors

Refinery
controller

Purity, yield,
safety

Refinery, raw
materials,
operators

Valves, pumps,
heaters, stirrers,
displays

Temperature,
pressure, flow,
chemical sensors

Interactive
English tutor

Student’s score
on test

Set of students,
testing agency

Display of
exercises,
feedback, speech

Keyboard entry,
voice

Figure 2.5 Examples of agent types and their PEAS descriptions.

performance measure. Fully observable environments are convenient because the agent need
not maintain any internal state to keep track of the world. An environment might be partially
observable because of noisy and inaccurate sensors or because parts of the state are simply
missing from the sensor data—for example, a vacuum agent with only a local dirt sensor
cannot tell whether there is dirt in other squares, and an automated taxi cannot see what other
drivers are thinking. If the agent has no sensors at all then the environment is unobserv-
able. One might think that in such cases the agent’s plight is hopeless, but, as we discuss inUnobservable

Chapter 4, the agent’s goals may still be achievable, sometimes with certainty.
Single-agent vs. multiagent: The distinction between single-agent and multiagent en-Single-agent

Multiagent vironments may seem simple enough. For example, an agent solving a crossword puzzle by
itself is clearly in a single-agent environment, whereas an agent playing chess is in a two-
agent environment. However, there are some subtle issues. First, we have described how an
entity may be viewed as an agent, but we have not explained which entities must be viewed
as agents. Does an agent A (the taxi driver for example) have to treat an object B (another
vehicle) as an agent, or can it be treated merely as an object behaving according to the laws of
physics, analogous to waves at the beach or leaves blowing in the wind? The key distinction
is whether B’s behavior is best described as maximizing a performance measure whose value
depends on agent A’s behavior.
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For example, in chess, the opponent entity B is trying to maximize its performance mea-
sure, which, by the rules of chess, minimizes agent A’s performance measure. Thus, chess is
a competitive multiagent environment. On the other hand, in the taxi-driving environment, Competitive

avoiding collisions maximizes the performance measure of all agents, so it is a partially co-
operative multiagent environment. It is also partially competitive because, for example, only Cooperative

one car can occupy a parking space.
The agent-design problems in multiagent environments are often quite different from

those in single-agent environments; for example, communication often emerges as a rational
behavior in multiagent environments; in some competitive environments, randomized behav-
ior is rational because it avoids the pitfalls of predictability.

Deterministic vs. nondeterministic. If the next state of the environment is completely Deterministic

Nondeterministicdetermined by the current state and the action executed by the agent(s), then we say the
environment is deterministic; otherwise, it is nondeterministic. In principle, an agent need not
worry about uncertainty in a fully observable, deterministic environment. If the environment
is partially observable, however, then it could appear to be nondeterministic.

Most real situations are so complex that it is impossible to keep track of all the unobserved
aspects; for practical purposes, they must be treated as nondeterministic. Taxi driving is
clearly nondeterministic in this sense, because one can never predict the behavior of traffic
exactly; moreover, one’s tires may blow out unexpectedly and one’s engine may seize up
without warning. The vacuum world as we described it is deterministic, but variations can
include nondeterministic elements such as randomly appearing dirt and an unreliable suction
mechanism (Exercise 2.VFIN).

One final note: the word stochastic is used by some as a synonym for “nondeterministic,” Stochastic

but we make a distinction between the two terms; we say that a model of the environment
is stochastic if it explicitly deals with probabilities (e.g., “there’s a 25% chance of rain to-
morrow”) and “nondeterministic” if the possibilities are listed without being quantified (e.g.,
“there’s a chance of rain tomorrow”).

Episodic vs. sequential: In an episodic task environment, the agent’s experience is di- Episodic

Sequentialvided into atomic episodes. In each episode the agent receives a percept and then performs
a single action. Crucially, the next episode does not depend on the actions taken in pre-
vious episodes. Many classification tasks are episodic. For example, an agent that has to
spot defective parts on an assembly line bases each decision on the current part, regardless
of previous decisions; moreover, the current decision doesn’t affect whether the next part is
defective. In sequential environments, on the other hand, the current decision could affect
all future decisions.4 Chess and taxi driving are sequential: in both cases, short-term actions
can have long-term consequences. Episodic environments are much simpler than sequential
environments because the agent does not need to think ahead.

Static vs. dynamic: If the environment can change while an agent is deliberating, then Static

Dynamicwe say the environment is dynamic for that agent; otherwise, it is static. Static environments
are easy to deal with because the agent need not keep looking at the world while it is deciding
on an action, nor need it worry about the passage of time. Dynamic environments, on the
other hand, are continuously asking the agent what it wants to do; if it hasn’t decided yet,

4 The word “sequential” is also used in computer science as the antonym of “parallel.” The two meanings are
largely unrelated.
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that counts as deciding to do nothing. If the environment itself does not change with the
passage of time but the agent’s performance score does, then we say the environment is
semidynamic. Taxi driving is clearly dynamic: the other cars and the taxi itself keep movingSemidynamic

while the driving algorithm dithers about what to do next. Chess, when played with a clock,
is semidynamic. Crossword puzzles are static.

Discrete vs. continuous: The discrete/continuous distinction applies to the state of theDiscrete

Continuous environment, to the way time is handled, and to the percepts and actions of the agent. For
example, the chess environment has a finite number of distinct states (excluding the clock).
Chess also has a discrete set of percepts and actions. Taxi driving is a continuous-state and
continuous-time problem: the speed and location of the taxi and of the other vehicles sweep
through a range of continuous values and do so smoothly over time. Taxi-driving actions are
also continuous (steering angles, etc.). Input from digital cameras is discrete, strictly speak-
ing, but is typically treated as representing continuously varying intensities and locations.

Known vs. unknown: Strictly speaking, this distinction refers not to the environmentKnown

Unknown itself but to the agent’s (or designer’s) state of knowledge about the “laws of physics” of
the environment. In a known environment, the outcomes (or outcome probabilities if the
environment is nondeterministic) for all actions are given. Obviously, if the environment is
unknown, the agent will have to learn how it works in order to make good decisions.

The distinction between known and unknown environments is not the same as the one
between fully and partially observable environments. It is quite possible for a known environ-
ment to be partially observable—for example, in solitaire card games, I know the rules but
am still unable to see the cards that have not yet been turned over. Conversely, an unknown
environment can be fully observable—in a new video game, the screen may show the entire
game state but I still don’t know what the buttons do until I try them.

As noted on page 57, the performance measure itself may be unknown, either because
the designer is not sure how to write it down correctly or because the ultimate user—whose
preferences matter—is not known. For example, a taxi driver usually won’t know whether a
new passenger prefers a leisurely or speedy journey, a cautious or aggressive driving style.
A virtual personal assistant starts out knowing nothing about the personal preferences of its
new owner. In such cases, the agent may learn more about the performance measure based on
further interactions with the designer or user. This, in turn, suggests that the task environment
is necessarily viewed as a multiagent environment.

The hardest case is partially observable, multiagent, nondeterministic, sequential, dy-
namic, continuous, and unknown. Taxi driving is hard in all these senses, except that the
driver’s environment is mostly known. Driving a rented car in a new country with unfamiliar
geography, different traffic laws, and nervous passengers is a lot more exciting.

Figure 2.6 lists the properties of a number of familiar environments. Note that the prop-
erties are not always cut and dried. For example, we have listed the medical-diagnosis task
as single-agent because the disease process in a patient is not profitably modeled as an agent;
but a medical-diagnosis system might also have to deal with recalcitrant patients and skepti-
cal staff, so the environment could have a multiagent aspect. Furthermore, medical diagnosis
is episodic if one conceives of the task as selecting a diagnosis given a list of symptoms; the
problem is sequential if the task can include proposing a series of tests, evaluating progress
over the course of treatment, handling multiple patients, and so on.
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Task Environment Observable Agents Deterministic Episodic Static Discrete

Crossword puzzle Fully Single Deterministic Sequential Static Discrete
Chess with a clock Fully Multi Deterministic Sequential Semi Discrete

Poker Partially Multi Stochastic Sequential Static Discrete
Backgammon Fully Multi Stochastic Sequential Static Discrete

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous
Medical diagnosis Partially Single Stochastic Sequential Dynamic Continuous

Image analysis Fully Single Deterministic Episodic Semi Continuous
Part-picking robot Partially Single Stochastic Episodic Dynamic Continuous

Refinery controller Partially Single Stochastic Sequential Dynamic Continuous
English tutor Partially Multi Stochastic Sequential Dynamic Discrete

Figure 2.6 Examples of task environments and their characteristics.

We have not included a “known/unknown” column because, as explained earlier, this is
not strictly a property of the environment. For some environments, such as chess and poker,
it is quite easy to supply the agent with full knowledge of the rules, but it is nonetheless
interesting to consider how an agent might learn to play these games without such knowledge.

The code repository associated with this book (aima.cs.berkeley.edu) includes mul-
tiple environment implementations, together with a general-purpose environment simulator
for evaluating an agent’s performance. Experiments are often carried out not for a single
environment but for many environments drawn from an environment class. For example, to Environment class

evaluate a taxi driver in simulated traffic, we would want to run many simulations with dif-
ferent traffic, lighting, and weather conditions. We are then interested in the agent’s average
performance over the environment class.

2.4 The Structure of Agents

So far we have talked about agents by describing behavior—the action that is performed after
any given sequence of percepts. Now we must bite the bullet and talk about how the insides
work. The job of AI is to design an agent program that implements the agent function— Agent program

the mapping from percepts to actions. We assume this program will run on some sort of
computing device with physical sensors and actuators—we call this the agent architecture: Agent architecture

agent = architecture+program .

Obviously, the program we choose has to be one that is appropriate for the architecture. If the
program is going to recommend actions like Walk, the architecture had better have legs. The
architecture might be just an ordinary PC, or it might be a robotic car with several onboard
computers, cameras, and other sensors. In general, the architecture makes the percepts from
the sensors available to the program, runs the program, and feeds the program’s action choices
to the actuators as they are generated. Most of this book is about designing agent programs,
although Chapters 26 and 27 deal directly with the sensors and actuators.

http://aima.cs.berkeley.edu
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function TABLE-DRIVEN-AGENT(percept) returns an action
persistent: percepts, a sequence, initially empty

table, a table of actions, indexed by percept sequences, initially fully specified

append percept to the end of percepts
action←LOOKUP(percepts, table)
return action

Figure 2.7 The TABLE-DRIVEN-AGENT program is invoked for each new percept and re-
turns an action each time. It retains the complete percept sequence in memory.

2.4.1 Agent programs

The agent programs that we design in this book all have the same skeleton: they take the
current percept as input from the sensors and return an action to the actuators.5 Notice the
difference between the agent program, which takes the current percept as input, and the agent
function, which may depend on the entire percept history. The agent program has no choice
but to take just the current percept as input because nothing more is available from the envi-
ronment; if the agent’s actions need to depend on the entire percept sequence, the agent will
have to remember the percepts.

We describe the agent programs in the simple pseudocode language that is defined in
Appendix B. (The online code repository contains implementations in real programming
languages.) For example, Figure 2.7 shows a rather trivial agent program that keeps track of
the percept sequence and then uses it to index into a table of actions to decide what to do.
The table—an example of which is given for the vacuum world in Figure 2.3—represents
explicitly the agent function that the agent program embodies. To build a rational agent in
this way, we as designers must construct a table that contains the appropriate action for every
possible percept sequence.

It is instructive to consider why the table-driven approach to agent construction is doomed
to failure. Let P be the set of possible percepts and let T be the lifetime of the agent (the total
number of percepts it will receive). The lookup table will contain ∑

T
t=1 |P|t entries. Consider

the automated taxi: the visual input from a single camera (eight cameras is typical) comes
in at the rate of roughly 70 megabytes per second (30 frames per second, 1080×720 pixels
with 24 bits of color information). This gives a lookup table with over 10600,000,000,000 entries
for an hour’s driving. Even the lookup table for chess—a tiny, well-behaved fragment of the
real world—has (it turns out) at least 10150 entries. In comparison, the number of atoms in
the observable universe is less than 1080. The daunting size of these tables means that (a) no
physical agent in this universe will have the space to store the table; (b) the designer would
not have time to create the table; and (c) no agent could ever learn all the right table entries
from its experience.

Despite all this, TABLE-DRIVEN-AGENT does do what we want, assuming the table is
filled in correctly: it implements the desired agent function.I
5 There are other choices for the agent program skeleton; for example, we could have the agent programs be
coroutines that run asynchronously with the environment. Each such coroutine has an input and output port and
consists of a loop that reads the input port for percepts and writes actions to the output port.
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function REFLEX-VACUUM-AGENT( [location,status]) returns an action

if status = Dirty then return Suck
else if location = A then return Right
else if location = B then return Left

Figure 2.8 The agent program for a simple reflex agent in the two-location vacuum environ-
ment. This program implements the agent function tabulated in Figure 2.3.

The key challenge for AI is to find out how to write programs that, to the extent possible,
produce rational behavior from a smallish program rather than from a vast table.

We have many examples showing that this can be done successfully in other areas: for
example, the huge tables of square roots used by engineers and schoolchildren prior to the
1970s have now been replaced by a five-line program for Newton’s method running on elec-
tronic calculators. The question is, can AI do for general intelligent behavior what Newton
did for square roots? We believe the answer is yes.

In the remainder of this section, we outline four basic kinds of agent programs that em-
body the principles underlying almost all intelligent systems:

• Simple reflex agents;
• Model-based reflex agents;
• Goal-based agents; and
• Utility-based agents.

Each kind of agent program combines particular components in particular ways to generate
actions. Section 2.4.6 explains in general terms how to convert all these agents into learning
agents that can improve the performance of their components so as to generate better actions.
Finally, Section 2.4.7 describes the variety of ways in which the components themselves can
be represented within the agent. This variety provides a major organizing principle for the
field and for the book itself.

2.4.2 Simple reflex agents

The simplest kind of agent is the simple reflex agent. These agents select actions on the basis Simple reflex agent

of the current percept, ignoring the rest of the percept history. For example, the vacuum agent
whose agent function is tabulated in Figure 2.3 is a simple reflex agent, because its decision
is based only on the current location and on whether that location contains dirt. An agent
program for this agent is shown in Figure 2.8.

Notice that the vacuum agent program is very small indeed compared to the correspond-
ing table. The most obvious reduction comes from ignoring the percept history, which cuts
down the number of relevant percept sequences from 4T to just 4. A further, small reduc-
tion comes from the fact that when the current square is dirty, the action does not depend on
the location. Although we have written the agent program using if-then-else statements, it is
simple enough that it can also be implemented as a Boolean circuit.

Simple reflex behaviors occur even in more complex environments. Imagine yourself as
the driver of the automated taxi. If the car in front brakes and its brake lights come on, then
you should notice this and initiate braking. In other words, some processing is done on the
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Figure 2.9 Schematic diagram of a simple reflex agent. We use rectangles to denote the
current internal state of the agent’s decision process, and ovals to represent the background
information used in the process.

visual input to establish the condition we call “The car in front is braking.” Then, this triggers
some established connection in the agent program to the action “initiate braking.” We call
such a connection a condition–action rule,6 written asCondition–action

rule

if car-in-front-is-braking then initiate-braking.

Humans also have many such connections, some of which are learned responses (as for driv-
ing) and some of which are innate reflexes (such as blinking when something approaches the
eye). In the course of the book, we show several different ways in which such connections
can be learned and implemented.

The program in Figure 2.8 is specific to one particular vacuum environment. A more
general and flexible approach is first to build a general-purpose interpreter for condition–
action rules and then to create rule sets for specific task environments. Figure 2.9 gives the
structure of this general program in schematic form, showing how the condition–action rules
allow the agent to make the connection from percept to action. Do not worry if this seems
trivial; it gets more interesting shortly.

An agent program for Figure 2.9 is shown in Figure 2.10. The INTERPRET-INPUT

function generates an abstracted description of the current state from the percept, and the
RULE-MATCH function returns the first rule in the set of rules that matches the given state
description. Note that the description in terms of “rules” and “matching” is purely concep-
tual; as noted above, actual implementations can be as simple as a collection of logic gates
implementing a Boolean circuit. Alternatively, a “neural” circuit can be used, where the logic
gates are replaced by the nonlinear units of artificial neural networks (see Chapter 22).

Simple reflex agents have the admirable property of being simple, but they are of limited
intelligence. The agent in Figure 2.10 will work only if the correct decision can be made onI
the basis of just the current percept—that is, only if the environment is fully observable.

6 Also called situation–action rules, productions, or if–then rules.
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function SIMPLE-REFLEX-AGENT(percept) returns an action
persistent: rules, a set of condition–action rules

state← INTERPRET-INPUT(percept)
rule←RULE-MATCH(state, rules)
action←rule.ACTION
return action

Figure 2.10 A simple reflex agent. It acts according to a rule whose condition matches the
current state, as defined by the percept.

Even a little bit of unobservability can cause serious trouble. For example, the braking
rule given earlier assumes that the condition car-in-front-is-braking can be determined from
the current percept—a single frame of video. This works if the car in front has a centrally
mounted (and hence uniquely identifiable) brake light. Unfortunately, older models have
different configurations of taillights, brake lights, and turn-signal lights, and it is not always
possible to tell from a single image whether the car is braking or simply has its taillights
on. A simple reflex agent driving behind such a car would either brake continuously and
unnecessarily, or, worse, never brake at all.

We can see a similar problem arising in the vacuum world. Suppose that a simple reflex
vacuum agent is deprived of its location sensor and has only a dirt sensor. Such an agent
has just two possible percepts: [Dirty] and [Clean]. It can Suck in response to [Dirty]; what
should it do in response to [Clean]? Moving Left fails (forever) if it happens to start in square
A, and moving Right fails (forever) if it happens to start in square B. Infinite loops are often
unavoidable for simple reflex agents operating in partially observable environments.

Escape from infinite loops is possible if the agent can randomize its actions. For exam- Randomization

ple, if the vacuum agent perceives [Clean], it might flip a coin to choose between Right and
Left. It is easy to show that the agent will reach the other square in an average of two steps.
Then, if that square is dirty, the agent will clean it and the task will be complete. Hence, a
randomized simple reflex agent might outperform a deterministic simple reflex agent.

We mentioned in Section 2.3 that randomized behavior of the right kind can be rational in
some multiagent environments. In single-agent environments, randomization is usually not
rational. It is a useful trick that helps a simple reflex agent in some situations, but in most
cases we can do much better with more sophisticated deterministic agents.

2.4.3 Model-based reflex agents

The most effective way to handle partial observability is for the agent to keep track of the
part of the world it can’t see now. That is, the agent should maintain some sort of internal
state that depends on the percept history and thereby reflects at least some of the unobserved Internal state

aspects of the current state. For the braking problem, the internal state is not too extensive—
just the previous frame from the camera, allowing the agent to detect when two red lights at
the edge of the vehicle go on or off simultaneously. For other driving tasks such as changing
lanes, the agent needs to keep track of where the other cars are if it can’t see them all at once.
And for any driving to be possible at all, the agent needs to keep track of where its keys are.
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Figure 2.11 A model-based reflex agent.

Updating this internal state information as time goes by requires two kinds of knowledge
to be encoded in the agent program in some form. First, we need some information about how
the world changes over time, which can be divided roughly into two parts: the effects of the
agent’s actions and how the world evolves independently of the agent. For example, when the
agent turns the steering wheel clockwise, the car turns to the right, and when it’s raining the
car’s cameras can get wet. This knowledge about “how the world works”—whether imple-
mented in simple Boolean circuits or in complete scientific theories—is called a transition
model of the world.Transition model

Second, we need some information about how the state of the world is reflected in the
agent’s percepts. For example, when the car in front initiates braking, one or more illumi-
nated red regions appear in the forward-facing camera image, and, when the camera gets
wet, droplet-shaped objects appear in the image partially obscuring the road. This kind of
knowledge is called a sensor model.Sensor model

Together, the transition model and sensor model allow an agent to keep track of the state
of the world—to the extent possible given the limitations of the agent’s sensors. An agent
that uses such models is called a model-based agent.Model-based agent

Figure 2.11 gives the structure of the model-based reflex agent with internal state, show-
ing how the current percept is combined with the old internal state to generate the updated
description of the current state, based on the agent’s model of how the world works. The agent
program is shown in Figure 2.12. The interesting part is the function UPDATE-STATE, which
is responsible for creating the new internal state description. The details of how models and
states are represented vary widely depending on the type of environment and the particular
technology used in the agent design.

Regardless of the kind of representation used, it is seldom possible for the agent to deter-
mine the current state of a partially observable environment exactly. Instead, the box labeled
“what the world is like now” (Figure 2.11) represents the agent’s “best guess” (or sometimes
best guesses, if the agent entertains multiple possibilities). For example, an automated taxi
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function MODEL-BASED-REFLEX-AGENT(percept) returns an action
persistent: state, the agent’s current conception of the world state

transition model, a description of how the next state depends on
the current state and action

sensor model, a description of how the current world state is reflected
in the agent’s percepts

rules, a set of condition–action rules
action, the most recent action, initially none

state←UPDATE-STATE(state, action, percept, transition model, sensor model)
rule←RULE-MATCH(state, rules)
action←rule.ACTION
return action

Figure 2.12 A model-based reflex agent. It keeps track of the current state of the world,
using an internal model. It then chooses an action in the same way as the reflex agent.

may not be able to see around the large truck that has stopped in front of it and can only guess
about what may be causing the hold-up. Thus, uncertainty about the current state may be
unavoidable, but the agent still has to make a decision.

2.4.4 Goal-based agents

Knowing something about the current state of the environment is not always enough to decide
what to do. For example, at a road junction, the taxi can turn left, turn right, or go straight
on. The correct decision depends on where the taxi is trying to get to. In other words,
as well as a current state description, the agent needs some sort of goal information that Goal

describes situations that are desirable—for example, being at a particular destination. The
agent program can combine this with the model (the same information as was used in the
model-based reflex agent) to choose actions that achieve the goal. Figure 2.13 shows the
goal-based agent’s structure.

Sometimes goal-based action selection is straightforward—for example, when goal sat-
isfaction results immediately from a single action. Sometimes it will be more tricky—for
example, when the agent has to consider long sequences of twists and turns in order to find
a way to achieve the goal. Search (Chapters 3, 4, and 6) and planning (Chapter 11) are the
subfields of AI devoted to finding action sequences that achieve the agent’s goals.

Notice that decision making of this kind is fundamentally different from the condition–
action rules described earlier, in that it involves consideration of the future—both “What will
happen if I do such-and-such?” and “Will that make me happy?” In the reflex agent designs,
this information is not explicitly represented, because the built-in rules map directly from
percepts to actions. The reflex agent brakes when it sees brake lights, period. It has no idea
why. A goal-based agent brakes when it sees brake lights because that’s the only action that
it predicts will achieve its goal of not hitting other cars.

Although the goal-based agent appears less efficient, it is more flexible because the
knowledge that supports its decisions is represented explicitly and can be modified. For
example, a goal-based agent’s behavior can easily be changed to go to a different destination,
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Figure 2.13 A model-based, goal-based agent. It keeps track of the world state as well as
a set of goals it is trying to achieve, and chooses an action that will (eventually) lead to the
achievement of its goals.

simply by specifying that destination as the goal. The reflex agent’s rules for when to turn
and when to go straight will work only for a single destination; they must all be replaced to
go somewhere new.

2.4.5 Utility-based agents

Goals alone are not enough to generate high-quality behavior in most environments. For
example, many action sequences will get the taxi to its destination (thereby achieving the
goal), but some are quicker, safer, more reliable, or cheaper than others. Goals just provide a
crude binary distinction between “happy” and “unhappy” states. A more general performance
measure should allow a comparison of different world states according to exactly how happy
they would make the agent. Because “happy” does not sound very scientific, economists and
computer scientists use the term utility instead.7Utility

We have already seen that a performance measure assigns a score to any given sequence
of environment states, so it can easily distinguish between more and less desirable ways of
getting to the taxi’s destination. An agent’s utility function is essentially an internalizationUtility function

of the performance measure. Provided that the internal utility function and the external per-
formance measure are in agreement, an agent that chooses actions to maximize its utility will
be rational according to the external performance measure.

Let us emphasize again that this is not the only way to be rational—we have already seen
a rational agent program for the vacuum world (Figure 2.8) that has no idea what its utility
function is—but, like goal-based agents, a utility-based agent has many advantages in terms
of flexibility and learning. Furthermore, in two kinds of cases, goals are inadequate but a
utility-based agent can still make rational decisions. First, when there are conflicting goals,
only some of which can be achieved (for example, speed and safety), the utility function
specifies the appropriate tradeoff. Second, when there are several goals that the agent can

7 The word “utility” here refers to “the quality of being useful,” not to the electric company or waterworks.
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Figure 2.14 A model-based, utility-based agent. It uses a model of the world, along with a
utility function that measures its preferences among states of the world. Then it chooses the
action that leads to the best expected utility, where expected utility is computed by averaging
over all possible outcome states, weighted by the probability of the outcome.

aim for, none of which can be achieved with certainty, utility provides a way in which the
likelihood of success can be weighed against the importance of the goals.

Partial observability and nondeterminism are ubiquitous in the real world, and so, there-
fore, is decision making under uncertainty. Technically speaking, a rational utility-based
agent chooses the action that maximizes the expected utility of the action outcomes—that Expected utility

is, the utility the agent expects to derive, on average, given the probabilities and utilities of
each outcome. (Appendix A defines expectation more precisely.) In Chapter 15, we show
that any rational agent must behave as if it possesses a utility function whose expected value
it tries to maximize. An agent that possesses an explicit utility function can make rational de-
cisions with a general-purpose algorithm that does not depend on the specific utility function
being maximized. In this way, the “global” definition of rationality—designating as rational
those agent functions that have the highest performance—is turned into a “local” constraint
on rational-agent designs that can be expressed in a simple program.

The utility-based agent structure appears in Figure 2.14. Utility-based agent programs
appear in Chapters 15 and 16, where we design decision-making agents that must handle the
uncertainty inherent in nondeterministic or partially observable environments. Decision mak-
ing in multiagent environments is also studied in the framework of utility theory, as explained
in Chapter 17.

At this point, the reader may be wondering, “Is it that simple? We just build agents that
maximize expected utility, and we’re done?” It’s true that such agents would be intelligent,
but it’s not simple. A utility-based agent has to model and keep track of its environment,
tasks that have involved a great deal of research on perception, representation, reasoning,
and learning. The results of this research fill many of the chapters of this book. Choosing
the utility-maximizing course of action is also a difficult task, requiring ingenious algorithms
that fill several more chapters. Even with these algorithms, perfect rationality is usually
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Figure 2.15 A general learning agent. The “performance element” box represents what we
have previously considered to be the whole agent program. Now, the “learning element” box
gets to modify that program to improve its performance.

unachievable in practice because of computational complexity, as we noted in Chapter 1. We
also note that not all utility-based agents are model-based; we will see in Chapters 23 and 26
that a model-free agent can learn what action is best in a particular situation without everModel-free agent

learning exactly how that action changes the environment.
Finally, all of this assumes that the designer can specify the utility function correctly;

Chapters 16, 17, and 23 consider the issue of unknown utility functions in more depth.

2.4.6 Learning agents

We have described agent programs with various methods for selecting actions. We have
not, so far, explained how the agent programs come into being. In his famous early paper,
Turing (1950) considers the idea of actually programming his intelligent machines by hand.
He estimates how much work this might take and concludes, “Some more expeditious method
seems desirable.” The method he proposes is to build learning machines and then to teach
them. In many areas of AI, this is now the preferred method for creating state-of-the-art
systems. Any type of agent (model-based, goal-based, utility-based, etc.) can be built as a
learning agent (or not).

Learning has another advantage, as we noted earlier: it allows the agent to operate in
initially unknown environments and to become more competent than its initial knowledge
alone might allow. In this section, we briefly introduce the main ideas of learning agents.
Throughout the book, we comment on opportunities and methods for learning in particu-
lar kinds of agents. Chapters 19, 21, 22, and 23 go into much more depth on the learning
algorithms themselves.

A learning agent can be divided into four conceptual components, as shown in Fig-
ure 2.15. The most important distinction is between the learning element, which is re-Learning element

sponsible for making improvements, and the performance element, which is responsible forPerformance
element

selecting external actions. The performance element is what we have previously considered
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to be the entire agent: it takes in percepts and decides on actions. The learning element uses
feedback from the critic on how the agent is doing and determines how the performance Critic

element should be modified to do better in the future.
The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question is
not “How am I going to get it to learn this?” but “What kind of performance element will my
agent use to do this once it has learned how?” Given a design for the performance element,
learning mechanisms can be constructed to improve every part of the agent.

The critic tells the learning element how well the agent is doing with respect to a fixed
performance standard. The critic is necessary because the percepts themselves provide no
indication of the agent’s success. For example, a chess program could receive a percept
indicating that it has checkmated its opponent, but it needs a performance standard to know
that this is a good thing; the percept itself does not say so. It is important that the performance
standard be fixed. Conceptually, one should think of it as being outside the agent altogether
because the agent must not modify it to fit its own behavior.

The last component of the learning agent is the problem generator. It is responsible Problem generator

for suggesting actions that will lead to new and informative experiences. If the performance
element had its way, it would keep doing the actions that are best, given what it knows, but
if the agent is willing to explore a little and do some perhaps suboptimal actions in the short
run, it might discover much better actions for the long run. The problem generator’s job is to
suggest these exploratory actions. This is what scientists do when they carry out experiments.
Galileo did not think that dropping rocks from the top of a tower in Pisa was valuable in itself.
He was not trying to break the rocks or to modify the brains of unfortunate pedestrians. His
aim was to modify his own brain by identifying a better theory of the motion of objects.

The learning element can make changes to any of the “knowledge” components shown
in the agent diagrams (Figures 2.9, 2.11, 2.13, and 2.14). The simplest cases involve learning
directly from the percept sequence. Observation of pairs of successive states of the environ-
ment can allow the agent to learn “What my actions do” and “How the world evolves” in
response to its actions. For example, if the automated taxi exerts a certain braking pressure
when driving on a wet road, then it will soon find out how much deceleration is actually
achieved, and whether it skids off the road. The problem generator might identify certain
parts of the model that are in need of improvement and suggest experiments, such as trying
out the brakes on different road surfaces under different conditions.

Improving the model components of a model-based agent so that they conform better
with reality is almost always a good idea, regardless of the external performance standard.
(In some cases, it is better from a computational point of view to have a simple but slightly
inaccurate model rather than a perfect but fiendishly complex model.) Information from the
external standard is needed when trying to learn a reflex component or a utility function.

For example, suppose the taxi-driving agent receives no tips from passengers who have
been thoroughly shaken up during the trip. The external performance standard must inform
the agent that the loss of tips is a negative contribution to its overall performance; then the
agent might be able to learn that violent maneuvers do not contribute to its own utility. In
a sense, the performance standard distinguishes part of the incoming percept as a reward Reward

(or penalty) that provides direct feedback on the quality of the agent’s behavior. Hard-wired Penalty

performance standards such as pain and hunger in animals can be understood in this way.
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More generally, human choices can provide information about human preferences. For
example, suppose the taxi does not know that people generally don’t like loud noises, and
settles on the idea of blowing its horn continuously as a way of ensuring that pedestrians
know it’s coming. The consequent human behavior—covering ears, using bad language, and
possibly cutting the wires to the horn—would provide evidence to the agent with which to
update its utility function. This issue is discussed further in Chapter 23.

In summary, agents have a variety of components, and those components can be repre-
sented in many ways within the agent program, so there appears to be great variety among
learning methods. There is, however, a single unifying theme. Learning in intelligent agents
can be summarized as a process of modification of each component of the agent to bring the
components into closer agreement with the available feedback information, thereby improv-
ing the overall performance of the agent.

2.4.7 How the components of agent programs work

We have described agent programs (in very high-level terms) as consisting of various compo-
nents, whose function it is to answer questions such as: “What is the world like now?” “What
action should I do now?” “What do my actions do?” The next question for a student of AI
is, “How on Earth do these components work?” It takes about a thousand pages to begin to
answer that question properly, but here we want to draw the reader’s attention to some basic
distinctions among the various ways that the components can represent the environment that
the agent inhabits.

Roughly speaking, we can place the representations along an axis of increasing complex-
ity and expressive power—atomic, factored, and structured. To illustrate these ideas, it helps
to consider a particular agent component, such as the one that deals with “What my actions
do.” This component describes the changes that might occur in the environment as the result
of taking an action, and Figure 2.16 provides schematic depictions of how those transitions
might be represented.

B C

(a) Atomic (b) Factored (c) Structured

B C

Figure 2.16 Three ways to represent states and the transitions between them. (a) Atomic
representation: a state (such as B or C) is a black box with no internal structure; (b) Factored
representation: a state consists of a vector of attribute values; values can be Boolean, real-
valued, or one of a fixed set of symbols. (c) Structured representation: a state includes
objects, each of which may have attributes of its own as well as relationships to other objects.
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In an atomic representation each state of the world is indivisible—it has no internal Atomic
representation

structure. Consider the task of finding a driving route from one end of a country to the other
via some sequence of cities (we address this problem in Figure 3.1 on page 82). For the pur-
poses of solving this problem, it may suffice to reduce the state of the world to just the name of
the city we are in—a single atom of knowledge, a “black box” whose only discernible prop-
erty is that of being identical to or different from another black box. The standard algorithms
underlying search and game-playing (Chapters 3, 4, and 6), hidden Markov models (Chap-
ter 14), and Markov decision processes (Chapter 16) all work with atomic representations.

A factored representation splits up each state into a fixed set of variables or attributes, Factored
representation

Variable

Attribute

each of which can have a value. Consider a higher-fidelity description for the same driving

Value

problem, where we need to be concerned with more than just atomic location in one city or
another; we might need to pay attention to how much gas is in the tank, our current GPS
coordinates, whether or not the oil warning light is working, how much money we have for
tolls, what station is on the radio, and so on. While two different atomic states have nothing in
common—they are just different black boxes—two different factored states can share some
attributes (such as being at some particular GPS location) and not others (such as having lots
of gas or having no gas); this makes it much easier to work out how to turn one state into an-
other. Many important areas of AI are based on factored representations, including constraint
satisfaction algorithms (Chapter 5), propositional logic (Chapter 7), planning (Chapter 11),
Bayesian networks (Chapters 12, 13, 14, 15, and 18), and various machine learning algorithms.

For many purposes, we need to understand the world as having things in it that are re-
lated to each other, not just variables with values. For example, we might notice that a large
truck ahead of us is reversing into the driveway of a dairy farm, but a loose cow is block-
ing the truck’s path. A factored representation is unlikely to be pre-equipped with the at-
tribute TruckAheadBackingIntoDairyFarmDrivewayBlockedByLooseCow with value true or
false. Instead, we would need a structured representation, in which objects such as cows Structured

representation

and trucks and their various and varying relationships can be described explicitly (see Fig-
ure 2.16(c)). Structured representations underlie relational databases and first-order logic
(Chapters 8, 9, and 10), first-order probability models (Chapter 18), and much of natural lan-
guage understanding (Chapters 24 and 25). In fact, much of what humans express in natural
language concerns objects and their relationships.

As we mentioned earlier, the axis along which atomic, factored, and structured repre-
sentations lie is the axis of increasing expressiveness. Roughly speaking, a more expressive Expressiveness

representation can capture, at least as concisely, everything a less expressive one can capture,
plus some more. Often, the more expressive language is much more concise; for example, the
rules of chess can be written in a page or two of a structured-representation language such
as first-order logic but require thousands of pages when written in a factored-representation
language such as propositional logic and around 1038 pages when written in an atomic lan-
guage such as that of finite-state automata. On the other hand, reasoning and learning become
more complex as the expressive power of the representation increases. To gain the benefits
of expressive representations while avoiding their drawbacks, intelligent systems for the real
world may need to operate at all points along the axis simultaneously.

Another axis for representation involves the mapping of concepts to locations in physical
memory, whether in a computer or in a brain. If there is a one-to-one mapping between
concepts and memory locations, we call that a localist representation. On the other hand, Localist

representation
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if the representation of a concept is spread over many memory locations, and each memory
location is employed as part of the representation of multiple different concepts, we call
that a distributed representation. Distributed representations are more robust against noiseDistributed

representation

and information loss. With a localist representation, the mapping from concept to memory
location is arbitrary, and if a transmission error garbles a few bits, we might confuse Truck
with the unrelated concept Truce. But with a distributed representation, you can think of each
concept representing a point in multidimensional space, and if you garble a few bits you move
to a nearby point in that space, which will have similar meaning.

Summary

This chapter has been something of a whirlwind tour of AI, which we have conceived of as
the science of agent design. The major points to recall are as follows:

• An agent is something that perceives and acts in an environment. The agent function
for an agent specifies the action taken by the agent in response to any percept sequence.

• The performance measure evaluates the behavior of the agent in an environment. A
rational agent acts so as to maximize the expected value of the performance measure,
given the percept sequence it has seen so far.

• A task environment specification includes the performance measure, the external en-
vironment, the actuators, and the sensors. In designing an agent, the first step must
always be to specify the task environment as fully as possible.

• Task environments vary along several significant dimensions. They can be fully or par-
tially observable, single-agent or multiagent, deterministic or nondeterministic, episodic
or sequential, static or dynamic, discrete or continuous, and known or unknown.

• In cases where the performance measure is unknown or hard to specify correctly, there
is a significant risk of the agent optimizing the wrong objective. In such cases the agent
design should reflect uncertainty about the true objective.

• The agent program implements the agent function. There exists a variety of basic
agent program designs reflecting the kind of information made explicit and used in the
decision process. The designs vary in efficiency, compactness, and flexibility. The
appropriate design of the agent program depends on the nature of the environment.

• Simple reflex agents respond directly to percepts, whereas model-based reflex agents
maintain internal state to track aspects of the world that are not evident in the current
percept. Goal-based agents act to achieve their goals, and utility-based agents try to
maximize their own expected “happiness.”

• All agents can improve their performance through learning.

Bibliographical and Historical Notes

The central role of action in intelligence—the notion of practical reasoning—goes back at
least as far as Aristotle’s Nicomachean Ethics. Practical reasoning was also the subject of
McCarthy’s influential paper “Programs with Common Sense” (1958). The fields of robotics
and control theory are, by their very nature, concerned principally with physical agents. The
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concept of a controller in control theory is identical to that of an agent in AI. Perhaps sur- Controller

prisingly, AI has concentrated for most of its history on isolated components of agents—
question-answering systems, theorem-provers, vision systems, and so on—rather than on
whole agents. The discussion of agents in the text by Genesereth and Nilsson (1987) was an
influential exception. The whole-agent view is now widely accepted and is a central theme in
recent texts (Padgham and Winikoff, 2004; Jones, 2007; Poole and Mackworth, 2017).

Chapter 1 traced the roots of the concept of rationality in philosophy and economics. In
AI, the concept was of peripheral interest until the mid-1980s, when it began to suffuse many
discussions about the proper technical foundations of the field. A paper by Jon Doyle (1983)
predicted that rational agent design would come to be seen as the core mission of AI, while
other popular topics would spin off to form new disciplines.

Careful attention to the properties of the environment and their consequences for ra-
tional agent design is most apparent in the control theory tradition—for example, classical
control systems (Dorf and Bishop, 2004; Kirk, 2004) handle fully observable, deterministic
environments; stochastic optimal control (Kumar and Varaiya, 1986; Bertsekas and Shreve,
2007) handles partially observable, stochastic environments; and hybrid control (Henzinger
and Sastry, 1998; Cassandras and Lygeros, 2006) deals with environments containing both
discrete and continuous elements. The distinction between fully and partially observable en-
vironments is also central in the dynamic programming literature developed in the field of
operations research (Puterman, 1994), which we discuss in Chapter 16.

Although simple reflex agents were central to behaviorist psychology (see Chapter 1),
most AI researchers view them as too simple to provide much leverage. (Rosenschein (1985)
and Brooks (1986) questioned this assumption; see Chapter 26.) A great deal of work
has gone into finding efficient algorithms for keeping track of complex environments (Bar-
Shalom et al., 2001; Choset et al., 2005; Simon, 2006), most of it in the probabilistic setting.

Goal-based agents are presupposed in everything from Aristotle’s view of practical rea-
soning to McCarthy’s early papers on logical AI. Shakey the Robot (Fikes and Nilsson,
1971; Nilsson, 1984) was the first robotic embodiment of a logical, goal-based agent. A
full logical analysis of goal-based agents appeared in Genesereth and Nilsson (1987), and a
goal-based programming methodology called agent-oriented programming was developed by
Shoham (1993). The agent-based approach is now extremely popular in software engineer-
ing (Ciancarini and Wooldridge, 2001). It has also infiltrated the area of operating systems,
where autonomic computing refers to computer systems and networks that monitor and con- Autonomic

computing

trol themselves with a perceive–act loop and machine learning methods (Kephart and Chess,
2003). Noting that a collection of agent programs designed to work well together in a true
multiagent environment necessarily exhibits modularity—the programs share no internal state
and communicate with each other only through the environment—it is common within the
field of multiagent systems to design the agent program of a single agent as a collection of
autonomous sub-agents. In some cases, one can even prove that the resulting system gives
the same optimal solutions as a monolithic design.

The goal-based view of agents also dominates the cognitive psychology tradition in the
area of problem solving, beginning with the enormously influential Human Problem Solv-
ing (Newell and Simon, 1972) and running through all of Newell’s later work (Newell, 1990).
Goals, further analyzed as desires (general) and intentions (currently pursued), are central to
the influential theory of agents developed by Michael Bratman (1987).
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As noted in Chapter 1, the development of utility theory as a basis for rational behavior
goes back hundreds of years. In AI, early research eschewed utilities in favor of goals, with
some exceptions (Feldman and Sproull, 1977). The resurgence of interest in probabilistic
methods in the 1980s led to the acceptance of maximization of expected utility as the most
general framework for decision making (Horvitz et al., 1988). The text by Pearl (1988) was
the first in AI to cover probability and utility theory in depth; its exposition of practical meth-
ods for reasoning and decision making under uncertainty was probably the single biggest
factor in the rapid shift towards utility-based agents in the 1990s (see Chapter 15). The for-
malization of reinforcement learning within a decision-theoretic framework also contributed
to this shift (Sutton, 1988). Somewhat remarkably, almost all AI research until very recently
has assumed that the performance measure can be exactly and correctly specified in the form
of a utility function or reward function (Hadfield-Menell et al., 2017a; Russell, 2019).

The general design for learning agents portrayed in Figure 2.15 is classic in the machine
learning literature (Buchanan et al., 1978; Mitchell, 1997). Examples of the design, as em-
bodied in programs, go back at least as far as Arthur Samuel’s (1959, 1967) learning program
for playing checkers. Learning agents are discussed in depth in Chapters 19, 21, 22, and 23.

Some early papers on agent-based approaches are collected by Huhns and Singh (1998)
and Wooldridge and Rao (1999). Texts on multiagent systems provide a good introduction to
many aspects of agent design (Weiss, 2000a; Wooldridge, 2009). Several conference series
devoted to agents began in the 1990s, including the International Workshop on Agent The-
ories, Architectures, and Languages (ATAL), the International Conference on Autonomous
Agents (AGENTS), and the International Conference on Multi-Agent Systems (ICMAS). In
2002, these three merged to form the International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS). From 2000 to 2012 there were annual workshops on
Agent-Oriented Software Engineering (AOSE). The journal Autonomous Agents and Multi-
Agent Systems was founded in 1998. Finally, Dung Beetle Ecology (Hanski and Cambefort,
1991) provides a wealth of interesting information on the behavior of dung beetles. YouTube
has inspiring video recordings of their activities.



CHAPTER 3
SOLVING PROBLEMS BY SEARCHING
In which we see how an agent can look ahead to find a sequence of actions that will even-
tually achieve its goal.

When the correct action to take is not immediately obvious, an agent may need to plan
ahead: to consider a sequence of actions that form a path to a goal state. Such an agent is
called a problem-solving agent, and the computational process it undertakes is called search. Problem-solving

agent

SearchProblem-solving agents use atomic representations, as described in Section 2.4.7—that
is, states of the world are considered as wholes, with no internal structure visible to the
problem-solving algorithms. Agents that use factored or structured representations of states
are called planning agents and are discussed in Chapters 7 and 11.

We will cover several search algorithms. In this chapter, we consider only the simplest
environments: episodic, single agent, fully observable, deterministic, static, discrete, and
known. We distinguish between informed algorithms, in which the agent can estimate how
far it is from the goal, and uninformed algorithms, where no such estimate is available.
Chapter 4 relaxes the constraints on environments, and Chapter 6 considers multiple agents.

This chapter uses the concepts of asymptotic complexity (that is, O(n) notation). Readers
unfamiliar with these concepts should consult Appendix A.

3.1 Problem-Solving Agents

Imagine an agent enjoying a touring vacation in Romania. The agent wants to take in the
sights, improve its Romanian, enjoy the nightlife, avoid hangovers, and so on. The decision
problem is a complex one. Now, suppose the agent is currently in the city of Arad and
has a nonrefundable ticket to fly out of Bucharest the following day. The agent observes
street signs and sees that there are three roads leading out of Arad: one toward Sibiu, one to
Timisoara, and one to Zerind. None of these are the goal, so unless the agent is familiar with
the geography of Romania, it will not know which road to follow.1

If the agent has no additional information—that is, if the environment is unknown—then
the agent can do no better than to execute one of the actions at random. This sad situation
is discussed in Chapter 4. In this chapter, we will assume our agents always have access to
information about the world, such as the map in Figure 3.1. With that information, the agent
can follow this four-phase problem-solving process:

• Goal formulation: The agent adopts the goal of reaching Bucharest. Goals organize Goal formulation

behavior by limiting the objectives and hence the actions to be considered.

1 We are assuming that most readers are in the same position and can easily imagine themselves to be as clueless
as our agent. We apologize to Romanian readers who are unable to take advantage of this pedagogical device.
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Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

• Problem formulation: The agent devises a description of the states and actions nec-Problem formulation

essary to reach the goal—an abstract model of the relevant part of the world. For our
agent, one good model is to consider the actions of traveling from one city to an adja-
cent city, and therefore the only fact about the state of the world that will change due to
an action is the current city.

• Search: Before taking any action in the real world, the agent simulates sequences ofSearch

actions in its model, searching until it finds a sequence of actions that reaches the goal.
Such a sequence is called a solution. The agent might have to simulate multiple se-Solution

quences that do not reach the goal, but eventually it will find a solution (such as going
from Arad to Sibiu to Fagaras to Bucharest), or it will find that no solution is possible.

• Execution: The agent can now execute the actions in the solution, one at a time.Execution

It is an important property that in a fully observable, deterministic, known environment, theI
solution to any problem is a fixed sequence of actions: drive to Sibiu, then Fagaras, then
Bucharest. If the model is correct, then once the agent has found a solution, it can ignore its
percepts while it is executing the actions—closing its eyes, so to speak—because the solution
is guaranteed to lead to the goal. Control theorists call this an open-loop system: ignoring theOpen-loop

percepts breaks the loop between agent and environment. If there is a chance that the model
is incorrect, or the environment is nondeterministic, then the agent would be safer using a
closed-loop approach that monitors the percepts (see Section 4.4).Closed-loop

In partially observable or nondeterministic environments, a solution would be a branching
strategy that recommends different future actions depending on what percepts arrive. For
example, the agent might plan to drive from Arad to Sibiu but might need a contingency plan
in case it arrives in Zerind by accident or finds a sign saying “Drum Închis” (Road Closed).
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3.1.1 Search problems and solutions

A search problem can be defined formally as follows: Problem

• A set of possible states that the environment can be in. We call this the state space. States

State space• The initial state that the agent starts in. For example: Arad.
Initial state• A set of one or more goal states. Sometimes there is one goal state (e.g., Bucharest),
Goal statessometimes there is a small set of alternative goal states, and sometimes the goal is

defined by a property that applies to many states (potentially an infinite number). For
example, in a vacuum-cleaner world, the goal might be to have no dirt in any location,
regardless of any other facts about the state. We can account for all three of these
possibilities by specifying an IS-GOAL method for a problem. In this chapter we will
sometimes say “the goal” for simplicity, but what we say also applies to “any one of the
possible goal states.”

• The actions available to the agent. Given a state s, ACTIONS(s) returns a finite2 set of Action

actions that can be executed in s. We say that each of these actions is applicable in s. Applicable

An example:

ACTIONS(Arad) = {ToSibiu,ToTimisoara,ToZerind} .

• A transition model, which describes what each action does. RESULT(s, a) returns the Transition model

state that results from doing action a in state s. For example,

RESULT(Arad,ToZerind) = Zerind .

• An action cost function, denoted by ACTION-COST(s,a,s′) when we are programming Action cost function

or c(s,a,s′) when we are doing math, that gives the numeric cost of applying action a
in state s to reach state s′. A problem-solving agent should use a cost function that
reflects its own performance measure; for example, for route-finding agents, the cost of
an action might be the length in miles (as seen in Figure 3.1), or it might be the time it
takes to complete the action.

A sequence of actions forms a path, and a solution is a path from the initial state to a goal Path

state. We assume that action costs are additive; that is, the total cost of a path is the sum of the
individual action costs. An optimal solution has the lowest path cost among all solutions. In Optimal solution

this chapter, we assume that all action costs will be positive, to avoid certain complications.3

The state space can be represented as a graph in which the vertices are states and the Graph

directed edges between them are actions. The map of Romania shown in Figure 3.1 is such a
graph, where each road indicates two actions, one in each direction.

2 For problems with an infinite number of actions we would need techniques that go beyond this chapter.
3 In any problem with a cycle of net negative cost, the cost-optimal solution is to go around that cycle an infinite
number of times. The Bellman–Ford and Floyd–Warshall algorithms (not covered here) handle negative-cost
actions, as long as there are no negative cycles. It is easy to accommodate zero-cost actions, as long as the
number of consecutive zero-cost actions is bounded. For example, we might have a robot where there is a cost
to move, but zero cost to rotate 90o; the algorithms in this chapter can handle this as long as no more than three
consecutive 90o turns are allowed. There is also a complication with problems that have an infinite number of
arbitrarily small action costs. Consider a version of Zeno’s paradox where there is an action to move half way to
the goal, at a cost of half of the previous move. This problem has no solution with a finite number of actions, but
to prevent a search from taking an unbounded number of actions without quite reaching the goal, we can require
that all action costs be at least ε, for some small positive value ε.
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3.1.2 Formulating problems

Our formulation of the problem of getting to Bucharest is a model—an abstract mathematical
description—and not the real thing. Compare the simple atomic state description Arad to an
actual cross-country trip, where the state of the world includes so many things: the traveling
companions, the current radio program, the scenery out of the window, the proximity of law
enforcement officers, the distance to the next rest stop, the condition of the road, the weather,
the traffic, and so on. All these considerations are left out of our model because they are
irrelevant to the problem of finding a route to Bucharest.

The process of removing detail from a representation is called abstraction. A goodAbstraction

problem formulation has the right level of detail. If the actions were at the level of “move the
right foot forward a centimeter” or “turn the steering wheel one degree left,” the agent would
probably never find its way out of the parking lot, let alone to Bucharest.

Can we be more precise about the appropriate level of abstraction? Think of the abstractLevel of abstraction

states and actions we have chosen as corresponding to large sets of detailed world states and
detailed action sequences. Now consider a solution to the abstract problem: for example,
the path from Arad to Sibiu to Rimnicu Vilcea to Pitesti to Bucharest. This abstract solution
corresponds to a large number of more detailed paths. For example, we could drive with the
radio on between Sibiu and Rimnicu Vilcea, and then switch it off for the rest of the trip.

The abstraction is valid if we can elaborate any abstract solution into a solution in the
more detailed world; a sufficient condition is that for every detailed state that is “in Arad,”
there is a detailed path to some state that is “in Sibiu,” and so on.4 The abstraction is useful if
carrying out each of the actions in the solution is easier than the original problem; in our case,
the action “drive from Arad to Sibiu” can be carried out without further search or planning by
a driver with average skill. The choice of a good abstraction thus involves removing as much
detail as possible while retaining validity and ensuring that the abstract actions are easy to
carry out. Were it not for the ability to construct useful abstractions, intelligent agents would
be completely swamped by the real world.

3.2 Example Problems

The problem-solving approach has been applied to a vast array of task environments. We list
some of the best known here, distinguishing between standardized and real-world problems.
A standardized problem is intended to illustrate or exercise various problem-solving meth-Standardized

problem

ods. It can be given a concise, exact description and hence is suitable as a benchmark for
researchers to compare the performance of algorithms. A real-world problem, such as robotReal-world problem

navigation, is one whose solutions people actually use, and whose formulation is idiosyn-
cratic, not standardized, because, for example, each robot has different sensors that produce
different data.

3.2.1 Standardized problems

A grid world problem is a two-dimensional rectangular array of square cells in which agentsGrid world

can move from cell to cell. Typically the agent can move to any obstacle-free adjacent cell—
horizontally or vertically and in some problems diagonally. Cells can contain objects, which

4 See Section 11.4.
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Figure 3.2 The state-space graph for the two-cell vacuum world. There are 8 states and three
actions for each state: L = Left, R = Right, S = Suck.

the agent can pick up, push, or otherwise act upon; a wall or other impassible obstacle in a
cell prevents an agent from moving into that cell. The vacuum world from Section 2.1 can
be formulated as a grid world problem as follows:

• States: A state of the world says which objects are in which cells. For the vacuum
world, the objects are the agent and any dirt. In the simple two-cell version, the agent
can be in either of the two cells, and each cell can either contain dirt or not, so there are
2 · 2 · 2 = 8 states (see Figure 3.2). In general, a vacuum environment with n cells has
n ·2n states.
• Initial state: Any state can be designated as the initial state.
• Actions: In the two-cell world we defined three actions: Suck, move Left, and move

Right. In a two-dimensional multi-cell world we need more movement actions. We
could add Upward and Downward, giving us four absolute movement actions, or we
could switch to egocentric actions, defined relative to the viewpoint of the agent—for
example, Forward, Backward, TurnRight, and TurnLeft.
• Transition model: Suck removes any dirt from the agent’s cell; Forward moves the

agent ahead one cell in the direction it is facing, unless it hits a wall, in which case
the action has no effect. Backward moves the agent in the opposite direction, while
TurnRight and TurnLeft change the direction it is facing by 90◦.
• Goal states: The states in which every cell is clean.
• Action cost: Each action costs 1.

Another type of grid world is the sokoban puzzle, in which the agent’s goal is to push a Sokoban puzzle

number of boxes, scattered about the grid, to designated storage locations. There can be at
most one box per cell. When an agent moves forward into a cell containing a box and there
is an empty cell on the other side of the box, then both the box and the agent move forward.
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Figure 3.3 A typical instance of the 8-puzzle.

The agent can’t push a box into another box or a wall. For a world with n non-obstacle cells
and b boxes, there are n× n!/(b!(n− b)!) states; for example on an 8× 8 grid with a dozen
boxes, there are over 200 trillion states.

In a sliding-tile puzzle, a number of tiles (sometimes called blocks or pieces) are ar-Sliding-tile puzzle

ranged in a grid with one or more blank spaces so that some of the tiles can slide into the
blank space. One variant is the Rush Hour puzzle, in which cars and trucks slide around a
6×6 grid in an attempt to free a car from the traffic jam. Perhaps the best-known variant is
the 8-puzzle (see Figure 3.3), which consists of a 3× 3 grid with eight numbered tiles and8-puzzle

one blank space, and the 15-puzzle on a 4× 4 grid. The object is to reach a specified goal15-puzzle

state, such as the one shown on the right of the figure. The standard formulation of the 8
puzzle is as follows:

• States: A state description specifies the location of each of the tiles.
• Initial state: Any state can be designated as the initial state. Note that a parity prop-

erty partitions the state space—any given goal can be reached from exactly half of the
possible initial states (see Exercise 3.PART).
• Actions: While in the physical world it is a tile that slides, the simplest way of describ-

ing an action is to think of the blank space moving Left, Right, Up, or Down. If the
blank is at an edge or corner then not all actions will be applicable.
• Transition model: Maps a state and action to a resulting state; for example, if we apply

Left to the start state in Figure 3.3, the resulting state has the 5 and the blank switched.
• Goal state: Although any state could be the goal, we typically specify a state with the

numbers in order, as in Figure 3.3.
• Action cost: Each action costs 1.

Note that every problem formulation involves abstractions. The 8-puzzle actions are ab-
stracted to their beginning and final states, ignoring the intermediate locations where the tile
is sliding. We have abstracted away actions such as shaking the board when tiles get stuck
and ruled out extracting the tiles with a knife and putting them back again. We are left with a
description of the rules, avoiding all the details of physical manipulations.

Our final standardized problem was devised by Donald Knuth (1964) and illustrates how
infinite state spaces can arise. Knuth conjectured that starting with the number 4, a sequence
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of square root, floor, and factorial operations can reach any desired positive integer. For
example, we can reach 5 from 4 as follows:

⌊√√√√√√√√
(4!)!

⌋
= 5 .

The problem definition is simple:

• States: Positive real numbers.
• Initial state: 4.
• Actions: Apply square root, floor, or factorial operation (factorial for integers only).
• Transition model: As given by the mathematical definitions of the operations.
• Goal state: The desired positive integer.
• Action cost: Each action costs 1.

The state space for this problem is infinite: for any integer greater than 2 the factorial oper-
ator will always yield a larger integer. The problem is interesting because it explores very
large numbers: the shortest path to 5 goes through (4!)! = 620,448,401,733,239,439,360,000.
Infinite state spaces arise frequently in tasks involving the generation of mathematical expres-
sions, circuits, proofs, programs, and other recursively defined objects.

3.2.2 Real-world problems

We have already seen how the route-finding problem is defined in terms of specified lo-
cations and transitions along edges between them. Route-finding algorithms are used in a
variety of applications. Some, such as Web sites and in-car systems that provide driving
directions, are relatively straightforward extensions of the Romania example. (The main
complications are varying costs due to traffic-dependent delays, and rerouting due to road
closures.) Others, such as routing video streams in computer networks, military operations
planning, and airline travel-planning systems, involve much more complex specifications.
Consider the airline travel problems that must be solved by a travel-planning Web site:

• States: Each state obviously includes a location (e.g., an airport) and the current time.
Furthermore, because the cost of an action (a flight segment) may depend on previous
segments, their fare bases, and their status as domestic or international, the state must
record extra information about these “historical” aspects.
• Initial state: The user’s home airport.
• Actions: Take any flight from the current location, in any seat class, leaving after the

current time, leaving enough time for within-airport transfer if needed.
• Transition model: The state resulting from taking a flight will have the flight’s desti-

nation as the new location and the flight’s arrival time as the new time.
• Goal state: A destination city. Sometimes the goal can be more complex, such as

“arrive at the destination on a nonstop flight.”
• Action cost: A combination of monetary cost, waiting time, flight time, customs and

immigration procedures, seat quality, time of day, type of airplane, frequent-flyer re-
ward points, and so on.
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Commercial travel advice systems use a problem formulation of this kind, with many addi-
tional complications to handle the airlines’ byzantine fare structures. Any seasoned traveler
knows, however, that not all air travel goes according to plan. A really good system should in-
clude contingency plans—what happens if this flight is delayed and the connection is missed?

Touring problems describe a set of locations that must be visited, rather than a singleTouring problem

goal destination. The traveling salesperson problem (TSP) is a touring problem in which
every city on a map must be visited. The aim is to find a tour with cost < C (or in the

Traveling
salesperson problem
(TSP) optimization version, to find a tour with the lowest cost possible). An enormous amount

of effort has been expended to improve the capabilities of TSP algorithms. The algorithms
can also be extended to handle fleets of vehicles. For example, a search and optimization
algorithm for routing school buses in Boston saved $5 million, cut traffic and air pollution,
and saved time for drivers and students (Bertsimas et al., 2019). In addition to planning trips,
search algorithms have been used for tasks such as planning the movements of automatic
circuit-board drills and of stocking machines on shop floors.

A VLSI layout problem requires positioning millions of components and connections onVLSI layout

a chip to minimize area, minimize circuit delays, minimize stray capacitances, and maximize
manufacturing yield. The layout problem comes after the logical design phase and is usually
split into two parts: cell layout and channel routing. In cell layout, the primitive components
of the circuit are grouped into cells, each of which performs some recognized function. Each
cell has a fixed footprint (size and shape) and requires a certain number of connections to
each of the other cells. The aim is to place the cells on the chip so that they do not overlap
and so that there is room for the connecting wires to be placed between the cells. Channel
routing finds a specific route for each wire through the gaps between the cells. These search
problems are extremely complex, but definitely worth solving.

Robot navigation is a generalization of the route-finding problem described earlier.Robot navigation

Rather than following distinct paths (such as the roads in Romania), a robot can roam around,
in effect making its own paths. For a circular robot moving on a flat surface, the space is
essentially two-dimensional. When the robot has arms and legs that must also be controlled,
the search space becomes many-dimensional—one dimension for each joint angle. Advanced
techniques are required just to make the essentially continuous search space finite (see Chap-
ter 26). In addition to the complexity of the problem, real robots must also deal with errors
in their sensor readings and motor controls, with partial observability, and with other agents
that might alter the environment.

Automatic assembly sequencing of complex objects (such as electric motors) by a robotAutomatic assembly
sequencing

has been standard industry practice since the 1970s. Algorithms first find a feasible assembly
sequence and then work to optimize the process. Minimizing the amount of manual human
labor on the assembly line can produce significant savings in time and cost. In assembly
problems, the aim is to find an order in which to assemble the parts of some object. If the
wrong order is chosen, there will be no way to add some part later in the sequence without
undoing some of the work already done. Checking an action in the sequence for feasibility is a
difficult geometrical search problem closely related to robot navigation. Thus, the generation
of legal actions is the expensive part of assembly sequencing. Any practical algorithm must
avoid exploring all but a tiny fraction of the state space. One important assembly problem is
protein design, in which the goal is to find a sequence of amino acids that will fold into aProtein design

three-dimensional protein with the right properties to cure some disease.
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3.3 Search Algorithms

A search algorithm takes a search problem as input and returns a solution, or an indication of Search algorithm

failure. In this chapter we consider algorithms that superimpose a search tree over the state-
space graph, forming various paths from the initial state, trying to find a path that reaches a
goal state. Each node in the search tree corresponds to a state in the state space and the edges Node

in the search tree correspond to actions. The root of the tree corresponds to the initial state of
the problem.

It is important to understand the distinction between the state space and the search tree.
The state space describes the (possibly infinite) set of states in the world, and the actions
that allow transitions from one state to another. The search tree describes paths between
these states, reaching towards the goal. The search tree may have multiple paths to (and thus
multiple nodes for) any given state, but each node in the tree has a unique path back to the
root (as in all trees).

Figure 3.4 shows the first few steps in finding a path from Arad to Bucharest. The root
node of the search tree is at the initial state, Arad. We can expand the node, by considering Expand

Rimnicu Vilcea Lugoj

ZerindSibiu

Arad Fagaras Oradea

Timisoara

AradArad Oradea

Arad

Arad Fagaras Oradea AradArad LugojRimnicu Vilcea Oradea

Zerind

Arad

Sibiu Timisoara

Lugoj AradArad OradeaRimnicu Vilcea

Zerind

Arad

Sibiu

Arad Fagaras Oradea

Timisoara

Figure 3.4 Three partial search trees for finding a route from Arad to Bucharest. Nodes
that have been expanded are lavender with bold letters; nodes on the frontier that have been
generated but not yet expanded are in green; the set of states corresponding to these two
types of nodes are said to have been reached. Nodes that could be generated next are shown
in faint dashed lines. Notice in the bottom tree there is a cycle from Arad to Sibiu to Arad;
that can’t be an optimal path, so search should not continue from there.
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Figure 3.5 A sequence of search trees generated by a graph search on the Romania problem
of Figure 3.1. At each stage, we have expanded every node on the frontier, extending every
path with all applicable actions that don’t result in a state that has already been reached.
Notice that at the third stage, the topmost city (Oradea) has two successors, both of which
have already been reached by other paths, so no paths are extended from Oradea.

(a) (b) (c)

Figure 3.6 The separation property of graph search, illustrated on a rectangular-grid prob-
lem. The frontier (green) separates the interior (lavender) from the exterior (faint dashed).
The frontier is the set of nodes (and corresponding states) that have been reached but not yet
expanded; the interior is the set of nodes (and corresponding states) that have been expanded;
and the exterior is the set of states that have not been reached. In (a), just the root has been
expanded. In (b), the top frontier node is expanded. In (c), the remaining successors of the
root are expanded in clockwise order.

the available ACTIONS for that state, using the RESULT function to see where those actions
lead to, and generating a new node (called a child node or successor node) for each of theGenerating

Child node

Successor node

resulting states. Each child node has Arad as its parent node.

Parent node

Now we must choose which of these three child nodes to consider next. This is the
essence of search—following up one option now and putting the others aside for later. Sup-
pose we choose to expand Sibiu first. Figure 3.4 (bottom) shows the result: a set of 6 unex-
panded nodes (outlined in bold). We call this the frontier of the search tree. We say that anyFrontier

state that has had a node generated for it has been reached (whether or not that node has beenReached

expanded).5 Figure 3.5 shows the search tree superimposed on the state-space graph.
Note that the frontier separates two regions of the state-space graph: an interior regionSeparator

where every state has been expanded, and an exterior region of states that have not yet been
reached. This property is illustrated in Figure 3.6.

5 Some authors call the frontier the open list, which is both geographically less evocative and computationally
less appropriate, because a queue is more efficient than a list here. Those authors use the term closed list to refer
to the set of previously expanded nodes, which in our terminology would be the reached nodes minus the frontier.
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function BEST-FIRST-SEARCH(problem, f ) returns a solution node or failure
node←NODE(STATE=problem.INITIAL)
frontier←a priority queue ordered by f , with node as an element
reached←a lookup table, with one entry with key problem.INITIAL and value node
while not IS-EMPTY(frontier) do

node←POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
for each child in EXPAND(problem, node) do

s←child.STATE
if s is not in reached or child.PATH-COST < reached[s].PATH-COST then

reached[s]←child
add child to frontier

return failure

function EXPAND(problem, node) yields nodes
s←node.STATE
for each action in problem.ACTIONS(s) do

s′←problem.RESULT(s, action)
cost←node.PATH-COST + problem.ACTION-COST(s, action, s′)
yield NODE(STATE=s′, PARENT=node, ACTION=action, PATH-COST=cost)

Figure 3.7 The best-first search algorithm, and the function for expanding a node. The data
structures used here are described in Section 3.3.2. See Appendix B for yield.

3.3.1 Best-first search

How do we decide which node from the frontier to expand next? A very general approach
is called best-first search, in which we choose a node, n, with minimum value of some Best-first search

evaluation function, f (n). Figure 3.7 shows the algorithm. On each iteration we choose Evaluation function

a node on the frontier with minimum f (n) value, return it if its state is a goal state, and
otherwise apply EXPAND to generate child nodes. Each child node is added to the frontier
if it has not been reached before, or is re-added if it is now being reached with a path that
has a lower path cost than any previous path. The algorithm returns either an indication of
failure, or a node that represents a path to a goal. By employing different f (n) functions, we
get different specific algorithms, which this chapter will cover.

3.3.2 Search data structures

Search algorithms require a data structure to keep track of the search tree. A node in the tree
is represented by a data structure with four components:

• node.STATE: the state to which the node corresponds;
• node.PARENT: the node in the tree that generated this node;
• node.ACTION: the action that was applied to the parent’s state to generate this node;
• node.PATH-COST: the total cost of the path from the initial state to this node. In math-

ematical formulas, we use g(node) as a synonym for PATH-COST.

Following the PARENT pointers back from a node allows us to recover the states and actions
along the path to that node. Doing this from a goal node gives us the solution.
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We need a data structure to store the frontier. The appropriate choice is a queue of someQueue

kind, because the operations on a frontier are:

• IS-EMPTY(frontier) returns true only if there are no nodes in the frontier.
• POP(frontier) removes the top node from the frontier and returns it.
• TOP(frontier) returns (but does not remove) the top node of the frontier.
• ADD(node, frontier) inserts node into its proper place in the queue.

Three kinds of queues are used in search algorithms:

• A priority queue first pops the node with the minimum cost according to some evalu-Priority queue

ation function, f . It is used in best-first search.
• A FIFO queue or first-in-first-out queue first pops the node that was added to the queueFIFO queue

first; we shall see it is used in breadth-first search.
• A LIFO queue or last-in-first-out queue (also known as a stack) pops first the mostLIFO queue

Stack recently added node; we shall see it is used in depth-first search.

The reached states can be stored as a lookup table (e.g. a hash table) where each key is a state
and each value is the node for that state.

3.3.3 Redundant paths

The search tree shown in Figure 3.4 (bottom) includes a path from Arad to Sibiu and back to
Arad again. We say that Arad is a repeated state in the search tree, generated in this case byRepeated state

a cycle (also known as a loopy path). So even though the state space has only 20 states, theCycle

Loopy path complete search tree is infinite because there is no limit to how often one can traverse a loop.
A cycle is a special case of a redundant path. For example, we can get to Sibiu via theRedundant path

path Arad–Sibiu (140 miles long) or the path Arad–Zerind–Oradea–Sibiu (297 miles long).
This second path is redundant—it’s just a worse way to get to the same state—and need not
be considered in our quest for optimal paths.

Consider an agent in a 10×10 grid world, with the ability to move to any of 8 adjacent
squares. If there are no obstacles, the agent can reach any of the 100 squares in 9 moves or
fewer. But the number of paths of length 9 is almost 89 (a bit less because of the edges of
the grid), or more than 100 million. In other words, the average cell can be reached by over a
million redundant paths of length 9, and if we eliminate redundant paths, we can complete a
search roughly a million times faster. As the saying goes, algorithms that cannot rememberI
the past are doomed to repeat it. There are three approaches to this issue.

First, we can remember all previously reached states (as best-first search does), allowing
us to detect all redundant paths, and keep only the best path to each state. This is appropriate
for state spaces where there are many redundant paths, and is the preferred choice when the
table of reached states will fit in memory.

Second, we can not worry about repeating the past. There are some problem formulations
where it is rare or impossible for two paths to reach the same state. An example would be an
assembly problem where each action adds a part to an evolving assemblage, and there is an
ordering of parts so that it is possible to add A and then B, but not B and then A. For those
problems, we could save memory space if we don’t track reached states and we don’t check
for redundant paths. We call a search algorithm a graph search if it checks for redundantGraph search

paths and a tree-like search6 if it does not check. The BEST-FIRST-SEARCH algorithm inTree-like search
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Figure 3.7 is a graph search algorithm; if we remove all references to reached we get a tree-
like search that uses less memory but will examine redundant paths to the same state, and
thus will run slower.

Third, we can compromise and check for cycles, but not for redundant paths in general.
Since each node has a chain of parent pointers, we can check for cycles with no need for
additional memory by following up the chain of parents to see if the state at the end of the
path has appeared earlier in the path. Some implementations follow this chain all the way
up, and thus eliminate all cycles; other implementations follow only a few links (e.g., to the
parent, grandparent, and great-grandparent), and thus take only a constant amount of time,
while eliminating all short cycles (and relying on other mechanisms to deal with long cycles).

3.3.4 Measuring problem-solving performance

Before we get into the design of various search algorithms, we will consider the criteria used
to choose among them. We can evaluate an algorithm’s performance in four ways:

• Completeness: Is the algorithm guaranteed to find a solution when there is one, and to Completeness

correctly report failure when there is not?
• Cost optimality: Does it find a solution with the lowest path cost of all solutions?7 Cost optimality

• Time complexity: How long does it take to find a solution? This can be measured in Time complexity

seconds, or more abstractly by the number of states and actions considered.
• Space complexity: How much memory is needed to perform the search? Space complexity

To understand completeness, consider a search problem with a single goal. That goal could be
anywhere in the state space; therefore a complete algorithm must be capable of systematically
exploring every state that is reachable from the initial state. In finite state spaces that is
straightforward to achieve: as long as we keep track of paths and cut off ones that are cycles
(e.g. Arad to Sibiu to Arad), eventually we will reach every reachable state.

In infinite state spaces, more care is necessary. For example, an algorithm that repeatedly
applied the “factorial” operator in Knuth’s “4” problem would follow an infinite path from 4
to 4! to (4!)!, and so on. Similarly, on an infinite grid with no obstacles, repeatedly moving
forward in a straight line also follows an infinite path of new states. In both cases the algo-
rithm never returns to a state it has reached before, but is incomplete because wide expanses
of the state space are never reached.

To be complete, a search algorithm must be systematic in the way it explores an infinite Systematic

state space, making sure it can eventually reach any state that is connected to the initial state.
For example, on the infinite grid, one kind of systematic search is a spiral path that covers all
the cells that are s steps from the origin before moving out to cells that are s+1 steps away.
Unfortunately, in an infinite state space with no solution, a sound algorithm needs to keep
searching forever; it can’t terminate because it can’t know if the next state will be a goal.

Time and space complexity are considered with respect to some measure of the problem
difficulty. In theoretical computer science, the typical measure is the size of the state-space
graph, |V |+ |E|, where |V | is the number of vertices (state nodes) of the graph and |E| is

6 We say “tree-like search” because the state space is still the same graph no matter how we search it; we are
just choosing to treat it as if it were a tree, with only one path from each node back to the root.
7 Some authors use the term “admissibility” for the property of finding the lowest-cost solution, and some use
just “optimality,” but that can be confused with other types of optimality.
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the number of edges (distinct state/action pairs). This is appropriate when the graph is an
explicit data structure, such as the map of Romania. But in many AI problems, the graph is
represented only implicitly by the initial state, actions, and transition model. For an implicit
state space, complexity can be measured in terms of d, the depth or number of actions inDepth

an optimal solution; m, the maximum number of actions in any path; and b, the branching
factor or number of successors of a node that need to be considered.Branching factor

3.4 Uninformed Search Strategies

An uninformed search algorithm is given no clue about how close a state is to the goal(s).
For example, consider our agent in Arad with the goal of reaching Bucharest. An uninformed
agent with no knowledge of Romanian geography has no clue whether going to Zerind or
Sibiu is a better first step. In contrast, an informed agent (Section 3.5) who knows the location
of each city knows that Sibiu is much closer to Bucharest and thus more likely to be on the
shortest path.

3.4.1 Breadth-first search

When all actions have the same cost, an appropriate strategy is breadth-first search, in whichBreadth-first search

the root node is expanded first, then all the successors of the root node are expanded next,
then their successors, and so on. This is a systematic search strategy that is therefore com-
plete even on infinite state spaces. We could implement breadth-first search as a call to
BEST-FIRST-SEARCH where the evaluation function f (n) is the depth of the node—that is,
the number of actions it takes to reach the node.

However, we can get additional efficiency with a couple of tricks. A first-in-first-out
queue will be faster than a priority queue, and will give us the correct order of nodes: new
nodes (which are always deeper than their parents) go to the back of the queue, and old nodes,
which are shallower than the new nodes, get expanded first. In addition, reached can be a set
of states rather than a mapping from states to nodes, because once we’ve reached a state,
we can never find a better path to the state. That also means we can do an early goal test,Early goal test

checking whether a node is a solution as soon as it is generated, rather than the late goal testLate goal test

that best-first search uses, waiting until a node is popped off the queue. Figure 3.8 shows the
progress of a breadth-first search on a binary tree, and Figure 3.9 shows the algorithm with
the early-goal efficiency enhancements.

Breadth-first search always finds a solution with a minimal number of actions, because
when it is generating nodes at depth d, it has already generated all the nodes at depth d−1,
so if one of them were a solution, it would have been found. That means it is cost-optimal
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Figure 3.8 Breadth-first search on a simple binary tree. At each stage, the node to be ex-
panded next is indicated by the triangular marker.
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function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node←NODE(problem.INITIAL)
if problem.IS-GOAL(node.STATE) then return node
frontier←a FIFO queue, with node as an element
reached←{problem.INITIAL}
while not IS-EMPTY(frontier) do

node←POP(frontier)
for each child in EXPAND(problem, node) do

s←child.STATE
if problem.IS-GOAL(s) then return child
if s is not in reached then

add s to reached
add child to frontier

return failure

function UNIFORM-COST-SEARCH(problem) returns a solution node, or failure
return BEST-FIRST-SEARCH(problem, PATH-COST)

Figure 3.9 Breadth-first search and uniform-cost search algorithms.

for problems where all actions have the same cost, but not for problems that don’t have that
property. It is complete in either case. In terms of time and space, imagine searching a
uniform tree where every state has b successors. The root of the search tree generates b
nodes, each of which generates b more nodes, for a total of b2 at the second level. Each of
these generates b more nodes, yielding b3 nodes at the third level, and so on. Now suppose
that the solution is at depth d. Then the total number of nodes generated is

1+b+b2 +b3 + · · ·+bd = O(bd)

All the nodes remain in memory, so both time and space complexity are O(bd). Exponential
bounds like that are scary. As a typical real-world example, consider a problem with branch-
ing factor b = 10, processing speed 1 million nodes/second, and memory requirements of 1
Kbyte/node. A search to depth d = 10 would take less than 3 hours, but would require 10
terabytes of memory. The memory requirements are a bigger problem for breadth-first search J
than the execution time. But time is still an important factor. At depth d = 14, even with
infinite memory, the search would take 3.5 years. In general, exponential-complexity search J
problems cannot be solved by uninformed search for any but the smallest instances.

3.4.2 Dijkstra’s algorithm or uniform-cost search

When actions have different costs, an obvious choice is to use best-first search where the
evaluation function is the cost of the path from the root to the current node. This is called Di-
jkstra’s algorithm by the theoretical computer science community, and uniform-cost search Uniform-cost search

by the AI community. The idea is that while breadth-first search spreads out in waves of uni-
form depth—first depth 1, then depth 2, and so on—uniform-cost search spreads out in waves
of uniform path-cost. The algorithm can be implemented as a call to BEST-FIRST-SEARCH

with PATH-COST as the evaluation function, as shown in Figure 3.9.
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Sibiu Fagaras

Pitesti

Rimnicu Vilcea

Bucharest

99

80

97

101

211

Figure 3.10 Part of the Romania state space, selected to illustrate uniform-cost search.

Consider Figure 3.10, where the problem is to get from Sibiu to Bucharest. The succes-
sors of Sibiu are Rimnicu Vilcea and Fagaras, with costs 80 and 99, respectively. The least-
cost node, Rimnicu Vilcea, is expanded next, adding Pitesti with cost 80+ 97=177. The
least-cost node is now Fagaras, so it is expanded, adding Bucharest with cost 99+211=310.
Bucharest is the goal, but the algorithm tests for goals only when it expands a node, not when
it generates a node, so it has not yet detected that this is a path to the goal.

The algorithm continues on, choosing Pitesti for expansion next and adding a second path
to Bucharest with cost 80+ 97+ 101=278. It has a lower cost, so it replaces the previous
path in reached and is added to the frontier. It turns out this node now has the lowest cost,
so it is considered next, found to be a goal, and returned. Note that if we had checked for a
goal upon generating a node rather than when expanding the lowest-cost node, then we would
have returned a higher-cost path (the one through Fagaras).

The complexity of uniform-cost search is characterized in terms of C∗, the cost of the
optimal solution,8 and ε, a lower bound on the cost of each action, with ε > 0. Then the
algorithm’s worst-case time and space complexity is O(b1+bC∗/εc), which can be much greater
than bd . This is because uniform-cost search can explore large trees of actions with low costs
before exploring paths involving a high-cost and perhaps useful action. When all action costs
are equal, b1+bC∗/εc is just bd+1, and uniform-cost search is similar to breadth-first search.

Uniform-cost search is complete and is cost-optimal, because the first solution it finds
will have a cost that is at least as low as the cost of any other node in the frontier. Uniform-
cost search considers all paths systematically in order of increasing cost, never getting caught
going down a single infinite path (assuming that all action costs are > ε > 0).

3.4.3 Depth-first search and the problem of memory

Depth-first search always expands the deepest node in the frontier first. It could be imple-Depth-first search

mented as a call to BEST-FIRST-SEARCH where the evaluation function f is the negative
of the depth. However, it is usually implemented not as a graph search but as a tree-like
search that does not keep a table of reached states. The progress of the search is illustrated
in Figure 3.11; search proceeds immediately to the deepest level of the search tree, where the
nodes have no successors. The search then “backs up” to the next deepest node that still has

8 Here, and throughout the book, the “star” in C∗ means an optimal value for C.
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Figure 3.11 A dozen steps (left to right, top to bottom) in the progress of a depth-first search
on a binary tree from start state A to goal M. The frontier is in green, with a triangle marking
the node to be expanded next. Previously expanded nodes are lavender, and potential future
nodes have faint dashed lines. Expanded nodes with no descendants in the frontier (very faint
lines) can be discarded.

unexpanded successors. Depth-first search is not cost-optimal; it returns the first solution it
finds, even if it is not cheapest.

For finite state spaces that are trees it is efficient and complete; for acyclic state spaces
it may end up expanding the same state many times via different paths, but will (eventually)
systematically explore the entire space.

In cyclic state spaces it can get stuck in an infinite loop; therefore some implementations
of depth-first search check each new node for cycles. Finally, in infinite state spaces, depth-
first search is not systematic: it can get stuck going down an infinite path, even if there are no
cycles. Thus, depth-first search is incomplete.

With all this bad news, why would anyone consider using depth-first search rather than
breadth-first or best-first? The answer is that for problems where a tree-like search is feasible,
depth-first search has much smaller needs for memory. We don’t keep a reached table at all,
and the frontier is very small: think of the frontier in breadth-first search as the surface of an
ever-expanding sphere, while the frontier in depth-first search is just a radius of the sphere.
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For a finite tree-shaped state-space like the one in Figure 3.11, a depth-first tree-like
search takes time proportional to the number of states, and has memory complexity of only
O(bm), where b is the branching factor and m is the maximum depth of the tree. Some
problems that would require exabytes of memory with breadth-first search can be handled
with only kilobytes using depth-first search. Because of its parsimonious use of memory,
depth-first tree-like search has been adopted as the basic workhorse of many areas of AI,
including constraint satisfaction (Chapter 5), propositional satisfiability (Chapter 7), and logic
programming (Chapter 9).

A variant of depth-first search called backtracking search uses even less memory. (SeeBacktracking search

Chapter 5 for more details.) In backtracking, only one successor is generated at a time rather
than all successors; each partially expanded node remembers which successor to generate
next. In addition, successors are generated by modifying the current state description directly
rather than allocating memory for a brand-new state. This reduces the memory requirements
to just one state description and a path of O(m) actions; a significant savings over O(bm)
states for depth-first search. With backtracking we also have the option of maintaining an
efficient set data structure for the states on the current path, allowing us to check for a cyclic
path in O(1) time rather than O(m). For backtracking to work, we must be able to undo each
action when we backtrack. Backtracking is critical to the success of many problems with
large state descriptions, such as robotic assembly.

3.4.4 Depth-limited and iterative deepening search

To keep depth-first search from wandering down an infinite path, we can use depth-limited
search, a version of depth-first search in which we supply a depth limit, `, and treat all nodesDepth-limited search

at depth ` as if they had no successors (see Figure 3.12). The time complexity is O(b`) and
the space complexity is O(b`). Unfortunately, if we make a poor choice for ` the algorithm
will fail to reach the solution, making it incomplete again.

Since depth-first search is a tree-like search, we can’t keep it from wasting time on re-
dundant paths in general, but we can eliminate cycles at the cost of some computation time.
If we look only a few links up in the parent chain we can catch most cycles; longer cycles are
handled by the depth limit.

Sometimes a good depth limit can be chosen based on knowledge of the problem. For
example, on the map of Romania there are 20 cities. Therefore, `=19 is a valid limit. But if
we studied the map carefully, we would discover that any city can be reached from any other
city in at most 9 actions. This number, known as the diameter of the state-space graph, givesDiameter

us a better depth limit, which leads to a more efficient depth-limited search. However, for
most problems we will not know a good depth limit until we have solved the problem.

Iterative deepening search solves the problem of picking a good value for ` by tryingIterative deepening
search

all values: first 0, then 1, then 2, and so on—until either a solution is found, or the depth-
limited search returns the failure value rather than the cutoff value. The algorithm is shown in
Figure 3.12. Iterative deepening combines many of the benefits of depth-first and breadth-first
search. Like depth-first search, its memory requirements are modest: O(bd) when there is a
solution, or O(bm) on finite state spaces with no solution. Like breadth-first search, iterative
deepening is optimal for problems where all actions have the same cost, and is complete on
finite acyclic state spaces, or on any finite state space when we check nodes for cycles all the
way up the path.
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function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution node or failure
for depth = 0 to ∞ do

result←DEPTH-LIMITED-SEARCH(problem, depth)
if result 6= cutoff then return result

function DEPTH-LIMITED-SEARCH(problem, `) returns a node or failure or cutoff
frontier←a LIFO queue (stack) with NODE(problem.INITIAL) as an element
result← failure
while not IS-EMPTY(frontier) do

node←POP(frontier)
if problem.IS-GOAL(node.STATE) then return node
if DEPTH(node) > ` then

result←cutoff
else if not IS-CYCLE(node) do

for each child in EXPAND(problem, node) do
add child to frontier

return result

Figure 3.12 Iterative deepening and depth-limited tree-like search. Iterative deepening re-
peatedly applies depth-limited search with increasing limits. It returns one of three different
types of values: either a solution node; or failure, when it has exhausted all nodes and proved
there is no solution at any depth; or cutoff , to mean there might be a solution at a deeper depth
than `. This is a tree-like search algorithm that does not keep track of reached states, and thus
uses much less memory than best-first search, but runs the risk of visiting the same state mul-
tiple times on different paths. Also, if the IS-CYCLE check does not check all cycles, then
the algorithm may get caught in a loop.

The time complexity is O(bd) when there is a solution, or O(bm) when there is none. Each
iteration of iterative deepening search generates a new level, in the same way that breadth-
first search does, but breadth-first does this by storing all nodes in memory, while iterative-
deepening does it by repeating the previous levels, thereby saving memory at the cost of more
time. Figure 3.13 shows four iterations of iterative-deepening search on a binary search tree,
where the solution is found on the fourth iteration.

Iterative deepening search may seem wasteful because states near the top of the search
tree are re-generated multiple times. But for many state spaces, most of the nodes are in the
bottom level, so it does not matter much that the upper levels are repeated. In an iterative
deepening search, the nodes on the bottom level (depth d) are generated once, those on the
next-to-bottom level are generated twice, and so on, up to the children of the root, which are
generated d times. So the total number of nodes generated in the worst case is

N(IDS) = (d)b1 +(d−1)b2 +(d−2)b3 · · ·+bd ,

which gives a time complexity of O(bd)—asymptotically the same as breadth-first search.
For example, if b = 10 and d = 5, the numbers are

N(IDS) = 50+400+3,000+20,000+100,000 = 123,450

N(BFS) = 10+100+1,000+10,000+100,000 = 111,110 .

If you are really concerned about the repetition, you can use a hybrid approach that runs
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Figure 3.13 Four iterations of iterative deepening search for goal M on a binary tree, with
the depth limit varying from 0 to 3. Note the interior nodes form a single path. The triangle
marks the node to expand next; green nodes with dark outlines are on the frontier; the very
faint nodes provably can’t be part of a solution with this depth limit.

breadth-first search until almost all the available memory is consumed, and then runs iterative
deepening from all the nodes in the frontier. In general, iterative deepening is the preferredI
uninformed search method when the search state space is larger than can fit in memory and
the depth of the solution is not known.

3.4.5 Bidirectional search

The algorithms we have covered so far start at an initial state and can reach any one of multiple
possible goal states. An alternative approach called bidirectional search simultaneouslyBidirectional search

searches forward from the initial state and backwards from the goal state(s), hoping that the
two searches will meet. The motivation is that bd/2 +bd/2 is much less than bd (e.g., 50,000
times less when b=d=10).
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function BIBF-SEARCH(problemF , fF , problemB, fB) returns a solution node, or failure
nodeF←NODE(problemF .INITIAL) // Node for a start state
nodeB←NODE(problemB.INITIAL) // Node for a goal state
frontierF←a priority queue ordered by fF , with nodeF as an element
frontierB←a priority queue ordered by fB, with nodeB as an element
reachedF←a lookup table, with one key nodeF .STATE and value nodeF
reachedB←a lookup table, with one key nodeB.STATE and value nodeB
solution← failure
while not TERMINATED(solution, frontierF , frontierB) do

if fF (TOP(frontierF )) < fB(TOP(frontierB)) then
solution←PROCEED(F, problemF , frontierF , reachedF , reachedB, solution)

else solution←PROCEED(B, problemB, frontierB, reachedB, reachedF , solution)
return solution

function PROCEED(dir, problem, frontier, reached, reached2, solution) returns a solution
// Expand node on frontier; check against the other frontier in reached2.
// The variable “dir” is the direction: either F for forward or B for backward.

node←POP(frontier)
for each child in EXPAND(problem, node) do

s←child.STATE
if s not in reached or PATH-COST(child) < PATH-COST(reached[s]) then

reached[s]←child
add child to frontier
if s is in reached2 then

solution2← JOIN-NODES(dir, child, reached2[s]))
if PATH-COST(solution2) < PATH-COST(solution) then

solution←solution2
return solution

Figure 3.14 Bidirectional best-first search keeps two frontiers and two tables of reached
states. When a path in one frontier reaches a state that was also reached in the other half of
the search, the two paths are joined (by the function JOIN-NODES) to form a solution. The
first solution we get is not guaranteed to be the best; the function TERMINATED determines
when to stop looking for new solutions.

For this to work, we need to keep track of two frontiers and two tables of reached states,
and we need to be able to reason backwards: if state s′ is a successor of s in the forward
direction, then we need to know that s is a successor of s′ in the backward direction. We have
a solution when the two frontiers collide.9

There are many different versions of bidirectional search, just as there are many different
unidirectional search algorithms. In this section, we describe bidirectional best-first search.
Although there are two separate frontiers, the node to be expanded next is always one with
a minimum value of the evaluation function, across either frontier. When the evaluation

9 In our implementation, the reached data structure supports a query asking whether a given state is a member,
and the frontier data structure (a priority queue) does not, so we check for a collision using reached; but concep-
tually we are asking if the two frontiers have met up. The implementation can be extended to handle multiple
goal states by loading the node for each goal state into the backwards frontier and backwards reached table.
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function is the path cost, we get bidirectional uniform-cost search, and if the cost of the
optimal path is C∗, then no node with cost > C∗

2 will be expanded. This can result in a
considerable speedup.

The general best-first bidirectional search algorithm is shown in Figure 3.14. We pass
in two versions of the problem and the evaluation function, one in the forward direction
(subscript F) and one in the backward direction (subscript B). When the evaluation function
is the path cost, we know that the first solution found will be an optimal solution, but with
different evaluation functions that is not necessarily true. Therefore, we keep track of the best
solution found so far, and might have to update that several times before the TERMINATED

test proves that there is no possible better solution remaining.

3.4.6 Comparing uninformed search algorithms

Figure 3.15 compares uninformed search algorithms in terms of the four evaluation criteria set
forth in Section 3.3.4. This comparison is for tree-like search versions which don’t check for
repeated states. For graph searches which do check, the main differences are that depth-first
search is complete for finite state spaces, and the space and time complexities are bounded
by the size of the state space (the number of vertices and edges, |V |+ |E|).

Criterion Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)

Complete? Yes1 Yes1,2 No No Yes1 Yes1,4

Optimal cost? Yes3 Yes No No Yes3 Yes3,4

Time O(bd) O(b1+bC∗/εc) O(bm) O(b`) O(bd) O(bd/2)

Space O(bd) O(b1+bC∗/εc) O(bm) O(b`) O(bd) O(bd/2)

Figure 3.15 Evaluation of search algorithms. b is the branching factor; m is the maximum
depth of the search tree; d is the depth of the shallowest solution, or is m when there is
no solution; ` is the depth limit. Superscript caveats are as follows: 1 complete if b is
finite, and the state space either has a solution or is finite. 2 complete if all action costs are
≥ ε > 0; 3 cost-optimal if action costs are all identical; 4 if both directions are breadth-first
or uniform-cost.

3.5 Informed (Heuristic) Search Strategies

This section shows how an informed search strategy—one that uses domain-specific hintsInformed search

about the location of goals—can find solutions more efficiently than an uninformed strategy.
The hints come in the form of a heuristic function, denoted h(n):10Heuristic function

h(n) = estimated cost of the cheapest path from the state at node n to a goal state.

For example, in route-finding problems, we can estimate the distance from the current state to
a goal by computing the straight-line distance on the map between the two points. We study
heuristics and where they come from in more detail in Section 3.6.

10 It may seem odd that the heuristic function operates on a node, when all it really needs is the node’s state. It is
traditional to use h(n) rather than h(s) to be consistent with the evaluation function f (n) and the path cost g(n).
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Figure 3.16 Values of hSLD—straight-line distances to Bucharest.

3.5.1 Greedy best-first search

Greedy best-first search is a form of best-first search that expands first the node with the Greedy best-first
search

lowest h(n) value—the node that appears to be closest to the goal—on the grounds that this
is likely to lead to a solution quickly. So the evaluation function f (n) = h(n).

Let us see how this works for route-finding problems in Romania; we use the straight-
line distance heuristic, which we will call hSLD. If the goal is Bucharest, we need to know Straight-line

distance
the straight-line distances to Bucharest, which are shown in Figure 3.16. For example,
hSLD(Arad)=366. Notice that the values of hSLD cannot be computed from the problem
description itself (that is, the ACTIONS and RESULT functions). Moreover, it takes a certain
amount of world knowledge to know that hSLD is correlated with actual road distances and is,
therefore, a useful heuristic.

Figure 3.17 shows the progress of a greedy best-first search using hSLD to find a path
from Arad to Bucharest. The first node to be expanded from Arad will be Sibiu because the
heuristic says it is closer to Bucharest than is either Zerind or Timisoara. The next node to be
expanded will be Fagaras because it is now closest according to the heuristic. Fagaras in turn
generates Bucharest, which is the goal. For this particular problem, greedy best-first search
using hSLD finds a solution without ever expanding a node that is not on the solution path.
The solution it found does not have optimal cost, however: the path via Sibiu and Fagaras to
Bucharest is 32 miles longer than the path through Rimnicu Vilcea and Pitesti. This is why
the algorithm is called “greedy”—on each iteration it tries to get as close to a goal as it can,
but greediness can lead to worse results than being careful.

Greedy best-first graph search is complete in finite state spaces, but not in infinite ones.
The worst-case time and space complexity is O(|V |). With a good heuristic function, however,
the complexity can be reduced substantially, on certain problems reaching O(bm).

3.5.2 A∗ search

The most common informed search algorithm is A∗ search (pronounced “A-star search”), a A∗ search

best-first search that uses the evaluation function

f (n) = g(n)+h(n)

where g(n) is the path cost from the initial state to node n, and h(n) is the estimated cost of
the shortest path from n to a goal state, so we have

f (n) = estimated cost of the best path that continues from n to a goal.
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Figure 3.17 Stages in a greedy best-first tree-like search for Bucharest with the straight-line
distance heuristic hSLD. Nodes are labeled with their h-values.

In Figure 3.18, we show the progress of an A∗ search with the goal of reaching Bucharest.
The values of g are computed from the action costs in Figure 3.1, and the values of hSLD are
given in Figure 3.16. Notice that Bucharest first appears on the frontier at step (e), but it is
not selected for expansion (and thus not detected as a solution) because at f =450 it is not the
lowest-cost node on the frontier—that would be Pitesti, at f =417. Another way to say this
is that there might be a solution through Pitesti whose cost is as low as 417, so the algorithm
will not settle for a solution that costs 450. At step (f), a different path to Bucharest is now
the lowest-cost node, at f =418, so it is selected and detected as the optimal solution.

A∗ search is complete.11 Whether A∗ is cost-optimal depends on certain properties of
the heuristic. A key property is admissibility: an admissible heuristic is one that neverAdmissible heuristic

overestimates the cost to reach a goal. (An admissible heuristic is therefore optimistic.) With

11 Again, assuming all action costs are > ε> 0, and the state space either has a solution or is finite.
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Figure 3.18 Stages in an A∗ search for Bucharest. Nodes are labeled with f = g+h. The h
values are the straight-line distances to Bucharest taken from Figure 3.16.
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Figure 3.19 Triangle inequality: If the heuristic h is consistent, then the single number h(n)
will be less than the sum of the cost c(n,a,a′) of the action from n to n′ plus the heuristic
estimate h(n′).

an admissible heuristic, A∗ is cost-optimal, which we can show with a proof by contradiction.
Suppose the optimal path has cost C∗, but the algorithm returns a path with cost C>C∗. Then
there must be some node n which is on the optimal path and is unexpanded (because if all
the nodes on the optimal path had been expanded, then we would have returned that optimal
solution). So then, using the notation g∗(n) to mean the cost of the optimal path from the start
to n, and h∗(n) to mean the cost of the optimal path from n to the nearest goal, we have:

f (n) > C∗ (otherwise n would have been expanded)

f (n) = g(n)+h(n) (by definition)

f (n) = g∗(n)+h(n) (because n is on an optimal path)

f (n) ≤ g∗(n)+h∗(n) (because of admissibility, h(n)≤ h∗(n))

f (n) ≤ C∗ (by definition, C∗ = g∗(n)+h∗(n))

The first and last lines form a contradiction, so the supposition that the algorithm could return
a suboptimal path must be wrong—it must be that A∗ returns only cost-optimal paths.

A slightly stronger property is called consistency. A heuristic h(n) is consistent if, forConsistency

every node n and every successor n′ of n generated by an action a, we have:

h(n)≤ c(n,a,n′)+h(n′) .

This is a form of the triangle inequality, which stipulates that a side of a triangle cannotTriangle inequality

be longer than the sum of the other two sides (see Figure 3.19). An example of a consistent
heuristic is the straight-line distance hSLD that we used in getting to Bucharest.

Every consistent heuristic is admissible (but not vice versa), so with a consistent heuristic,
A∗ is cost-optimal. In addition, with a consistent heuristic, the first time we reach a state it
will be on an optimal path, so we never have to re-add a state to the frontier, and never have to
change an entry in reached. But with an inconsistent heuristic, we may end up with multiple
paths reaching the same state, and if each new path has a lower path cost than the previous
one, then we will end up with multiple nodes for that state in the frontier, costing us both
time and space. Because of that, some implementations of A∗ take care to only enter a state
into the frontier once, and if a better path to the state is found, all the successors of the state
are updated (which requires that nodes have child pointers as well as parent pointers). These
complications have led many implementers to avoid inconsistent heuristics, but Felner et al.
(2011) argues that the worst effects rarely happen in practice, and one shouldn’t be afraid of
inconsistent heuristics.
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Figure 3.20 Map of Romania showing contours at f = 380, f = 400, and f = 420, with
Arad as the start state. Nodes inside a given contour have f = g+h costs less than or equal
to the contour value.

With an inadmissible heuristic, A∗ may or may not be cost-optimal. Here are two cases
where it is: First, if there is even one cost-optimal path on which h(n) is admissible for all
nodes n on the path, then that path will be found, no matter what the heuristic says for states
off the path. Second, if the optimal solution has cost C∗, and the second-best has cost C2, and
if h(n) overestimates some costs, but never by more than C2−C∗, then A∗ is guaranteed to
return cost-optimal solutions.

3.5.3 Search contours

A useful way to visualize a search is to draw contours in the state space, just like the contours Contour

in a topographic map. Figure 3.20 shows an example. Inside the contour labeled 400, all
nodes have f (n) = g(n)+h(n)≤ 400, and so on. Then, because A∗ expands the frontier node
of lowest f -cost, we can see that an A∗ search fans out from the start node, adding nodes in
concentric bands of increasing f -cost.

With uniform-cost search, we also have contours, but of g-cost, not g+h. The contours
with uniform-cost search will be “circular” around the start state, spreading out equally in all
directions with no preference towards the goal. With A∗ search using a good heuristic, the
g+ h bands will stretch toward a goal state (as in Figure 3.20) and become more narrowly
focused around an optimal path.

It should be clear that as you extend a path, the g costs are monotonic: the path cost Monotonic

always increases as you go along a path, because action costs are always positive.12 Therefore
you get concentric contour lines that don’t cross each other, and if you choose to draw the
lines fine enough, you can put a line between any two nodes on any path.

12 Technically, we say “strictly monotonic” for costs that always increase, and “monotonic” for costs that never
decrease, but might remain the same.
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But it is not obvious whether the f = g+h cost will monotonically increase. As you ex-
tend a path from n to n′, the cost goes from g(n)+h(n) to g(n)+c(n,a,n′)+h(n′). Canceling
out the g(n) term, we see that the path’s cost will be monotonically increasing if and only if
h(n) ≤ c(n,a,n′)+h(n′); in other words if and only if the heuristic is consistent.13 But note
that a path might contribute several nodes in a row with the same g(n)+h(n) score; this will
happen whenever the decrease in h is exactly equal to the action cost just taken (for example,
in a grid problem, when n is in the same row as the goal and you take a step towards the goal,
g is increased by 1 and h is decreased by 1). If C∗ is the cost of the optimal solution path,
then we can say the following:

• A∗ expands all nodes that can be reached from the initial state on a path where every
node on the path has f (n)<C∗. We say these are surely expanded nodes.Surely expanded

nodes

• A∗ might then expand some of the nodes right on the “goal contour” (where f (n) =C∗)
before selecting a goal node.

• A∗ expands no nodes with f (n)>C∗.

We say that A∗ with a consistent heuristic is optimally efficient in the sense that any algorithmOptimally efficient

that extends search paths from the initial state, and uses the same heuristic information, must
expand all nodes that are surely expanded by A∗ (because any one of them could have been
part of an optimal solution). Among the nodes with f (n)=C∗, one algorithm could get lucky
and choose the optimal one first while another algorithm is unlucky; we don’t consider this
difference in defining optimal efficiency.

A∗ is efficient because it prunes away search tree nodes that are not necessary for findingPruning

an optimal solution. In Figure 3.18(b) we see that Timisoara has f = 447 and Zerind has f =
449. Even though they are children of the root and would be among the first nodes expanded
by uniform-cost or breadth-first search, they are never expanded by A∗ search because the
solution with f = 418 is found first. The concept of pruning—eliminating possibilities from
consideration without having to examine them—is important for many areas of AI.

That A∗ search is complete, cost-optimal, and optimally efficient among all such algo-
rithms is rather satisfying. Unfortunately, it does not mean that A∗ is the answer to all our
searching needs. The catch is that for many problems, the number of nodes expanded can
be exponential in the length of the solution. For example, consider a version of the vacuum
world with a super-powerful vacuum that can clean up any one square at a cost of 1 unit,
without even having to visit the square; in that scenario, squares can be cleaned in any order.
With N initially dirty squares, there are 2N states where some subset has been cleaned; all
of those states are on an optimal solution path, and hence satisfy f (n) < C∗, so all of them
would be visited by A∗.

3.5.4 Satisficing search: Inadmissible heuristics and weighted A∗

A∗ search has many good qualities, but it expands a lot of nodes. We can explore fewer
nodes (taking less time and space) if we are willing to accept solutions that are suboptimal,
but are “good enough”—what we call satisficing solutions. If we allow A∗ search to use
an inadmissible heuristic—one that may overestimate—then we risk missing the optimalInadmissible

heuristic
solution, but the heuristic can potentially be more accurate, thereby reducing the number of

13 In fact, the term “monotonic heuristic” is a synonym for “consistent heuristic.” The two ideas were developed
independently, and then it was proved that they are equivalent (Pearl, 1984).
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(a) (b)

Figure 3.21 Two searches on the same grid: (a) an A∗ search and (b) a weighted A∗ search
with weight W = 2. The gray bars are obstacles, the purple line is the path from the green
start to red goal, and the small dots are states that were reached by each search. On this
particular problem, weighted A∗ explores 7 times fewer states and finds a path that is 5%
more costly.

nodes expanded. For example, road engineers know the concept of a detour index, which is Detour index

a multiplier applied to the straight-line distance to account for the typical curvature of roads.
A detour index of 1.3 means that if two cities are 10 miles apart in straight-line distance, a
good estimate of the best path between them is 13 miles. For most localities, the detour index
ranges between 1.2 and 1.6.

We can apply this idea to any problem, not just ones involving roads, with an approach
called weighted A∗ search where we weight the heuristic value more heavily, giving us the Weighted A∗ search

evaluation function f (n) = g(n)+W ×h(n), for some W > 1.
Figure 3.21 shows a search problem on a grid world. In (a), an A∗ search finds the optimal

solution, but has to explore a large portion of the state space to find it. In (b), a weighted A∗

search finds a solution that is slightly costlier, but the search time is much faster. We see that
the weighted search focuses the contour of reached states towards a goal. That means that
fewer states are explored, but if the optimal path ever strays outside of the weighted search’s
contour (as it does in this case), then the optimal path will not be found. In general, if
the optimal solution costs C∗, a weighted A∗ search will find a solution that costs somewhere
between C∗ and W×C∗; but in practice we usually get results much closer to C∗ than W×C∗.

We have considered searches that evaluate states by combining g and h in various ways;
weighted A∗ can be seen as a generalization of the others:

A∗ search: g(n)+h(n) (W = 1)

Uniform-cost search: g(n) (W = 0)

Greedy best-first search: h(n) (W = ∞)

Weighted A∗ search: g(n)+W ×h(n) (1<W < ∞)

You could call weighted A∗ “somewhat-greedy search”: like greedy best-first search, it fo-
cuses the search towards a goal; on the other hand, it won’t ignore the path cost completely,
and will suspend a path that is making little progress at great cost.
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There are a variety of suboptimal search algorithms, which can be characterized by the
criteria for what counts as “good enough.” In bounded suboptimal search, we look for aBounded suboptimal

search
solution that is guaranteed to be within a constant factor W of the optimal cost. Weighted A∗

provides this guarantee. In bounded-cost search, we look for a solution whose cost is lessBounded-cost search

than some constant C. And in unbounded-cost search, we accept a solution of any cost, asUnbounded-cost
search

long as we can find it quickly.
An example of an unbounded-cost search algorithm is speedy search, which is a versionSpeedy search

of greedy best-first search that uses as a heuristic the estimated number of actions required
to reach a goal, regardless of the cost of those actions. Thus, for problems where all actions
have the same cost it is the same as greedy best-first search, but when actions have different
costs, it tends to lead the search to find a solution quickly, even if it might have a high cost.

3.5.5 Memory-bounded search

The main issue with A∗ is its use of memory. In this section we’ll cover some implementation
tricks that save space, and then some entirely new algorithms that take better advantage of the
available space.

Memory is split between the frontier and the reached states. In our implementation of
best-first search, a state that is on the frontier is stored in two places: as a node in the frontier
(so we can decide what to expand next) and as an entry in the table of reached states (so we
know if we have visited the state before). For many problems (such as exploring a grid), this
duplication is not a concern, because the size of frontier is much smaller than reached, so
duplicating the states in the frontier requires a comparatively trivial amount of memory. But
some implementations keep a state in only one of the two places, saving a bit of space at the
cost of complicating (and perhaps slowing down) the algorithm.

Another possibility is to remove states from reached when we can prove that they are
no longer needed. For some problems, we can use the separation property (Figure 3.6 on
page 90), along with the prohibition of U-turn actions, to ensure that all actions either move
outwards from the frontier or onto another frontier state. In that case, we need only check the
frontier for redundant paths, and we can eliminate the reached table.

For other problems, we can keep reference counts of the number of times a state hasReference count

been reached, and remove it from the reached table when there are no more ways to reach
the state. For example, on a grid world where each state can be reached only from its four
neighbors, once we have reached a state four times, we can remove it from the table.

Now let’s consider new algorithms that are designed to conserve memory usage.

Beam search limits the size of the frontier. The easiest approach is to keep only the kBeam search

nodes with the best f -scores, discarding any other expanded nodes. This of course makes
the search incomplete and suboptimal, but we can choose k to make good use of available
memory, and the algorithm executes fast because it expands fewer nodes. For many prob-
lems it can find good near-optimal solutions. You can think of uniform-cost or A∗ search as
spreading out everywhere in concentric contours, and think of beam search as exploring only
a focused portion of those contours, the portion that contains the k best candidates.

An alternative version of beam search doesn’t keep a strict limit on the size of the frontier
but instead keeps every node whose f -score is within δ of the best f -score. That way, when
there are a few strong-scoring nodes only a few will be kept, but if there are no strong nodes
then more will be kept until a strong one emerges.
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Iterative-deepening A∗ search (IDA∗) is to A∗ what iterative-deepening search is to Iterative-deepening
A∗ search

depth-first: IDA∗ gives us the benefits of A∗ without the requirement to keep all reached
states in memory, at a cost of visiting some states multiple times. It is a very important and
commonly used algorithm for problems that do not fit in memory.

In standard iterative deepening the cutoff is the depth, which is increased by one each
iteration. In IDA∗ the cutoff is the f -cost (g+ h); at each iteration, the cutoff value is the
smallest f -cost of any node that exceeded the cutoff on the previous iteration. In other words,
each iteration exhaustively searches an f -contour, finds a node just beyond that contour, and
uses that node’s f -cost as the next contour. For problems like the 8-puzzle where each path’s
f -cost is an integer, this works very well, resulting in steady progress towards the goal each
iteration. If the optimal solution has cost C∗, then there can be no more than C∗ iterations (for
example, no more than 31 iterations on the hardest 8-puzzle problems). But for a problem
where every node has a different f -cost, each new contour might contain only one new node,
and the number of iterations could be equal to the number of states.

Recursive best-first search (RBFS) (Figure 3.22) attempts to mimic the operation of Recursive best-first
search

standard best-first search, but using only linear space. RBFS resembles a recursive depth-
first search, but rather than continuing indefinitely down the current path, it uses the f limit
variable to keep track of the f -value of the best alternative path available from any ancestor
of the current node. If the current node exceeds this limit, the recursion unwinds back to the
alternative path. As the recursion unwinds, RBFS replaces the f -value of each node along the
path with a backed-up value—the best f -value of its children. In this way, RBFS remembers Backed-up value

the f -value of the best leaf in the forgotten subtree and can therefore decide whether it’s worth
reexpanding the subtree at some later time. Figure 3.23 shows how RBFS reaches Bucharest.

RBFS is somewhat more efficient than IDA∗, but still suffers from excessive node re-
generation. In the example in Figure 3.23, RBFS follows the path via Rimnicu Vilcea, then

function RECURSIVE-BEST-FIRST-SEARCH(problem) returns a solution or failure
solution, fvalue←RBFS(problem, NODE(problem.INITIAL), ∞)

return solution

function RBFS(problem, node, f limit) returns a solution or failure, and a new f -cost limit
if problem.IS-GOAL(node.STATE) then return node
successors←LIST(EXPAND(node))
if successors is empty then return failure, ∞

for each s in successors do // update f with value from previous search
s.f←max(s.PATH-COST + h(s), node.f ))

while true do
best← the node in successors with lowest f -value
if best. f > f limit then return failure, best. f
alternative← the second-lowest f -value among successors
result, best. f←RBFS(problem, best, min( f limit,alternative))
if result 6= failure then return result, best. f

Figure 3.22 The algorithm for recursive best-first search.
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Figure 3.23 Stages in an RBFS search for the shortest route to Bucharest. The f -limit value
for each recursive call is shown on top of each current node, and every node is labeled with
its f -cost. (a) The path via Rimnicu Vilcea is followed until the current best leaf (Pitesti)
has a value that is worse than the best alternative path (Fagaras). (b) The recursion unwinds
and the best leaf value of the forgotten subtree (417) is backed up to Rimnicu Vilcea; then
Fagaras is expanded, revealing a best leaf value of 450. (c) The recursion unwinds and the
best leaf value of the forgotten subtree (450) is backed up to Fagaras; then Rimnicu Vilcea is
expanded. This time, because the best alternative path (through Timisoara) costs at least 447,
the expansion continues to Bucharest.

“changes its mind” and tries Fagaras, and then changes its mind back again. These mind
changes occur because every time the current best path is extended, its f -value is likely to
increase—h is usually less optimistic for nodes closer to a goal. When this happens, the
second-best path might become the best path, so the search has to backtrack to follow it.
Each mind change corresponds to an iteration of IDA∗ and could require many reexpansions
of forgotten nodes to recreate the best path and extend it one more node.
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RBFS is optimal if the heuristic function h(n) is admissible. Its space complexity is
linear in the depth of the deepest optimal solution, but its time complexity is rather difficult
to characterize: it depends both on the accuracy of the heuristic function and on how often
the best path changes as nodes are expanded. It expands nodes in order of increasing f -score,
even if f is nonmonotonic.

IDA∗ and RBFS suffer from using too little memory. Between iterations, IDA∗ retains
only a single number: the current f -cost limit. RBFS retains more information in memory,
but it uses only linear space: even if more memory were available, RBFS has no way to make
use of it. Because they forget most of what they have done, both algorithms may end up
reexploring the same states many times over.

It seems sensible, therefore, to determine how much memory we have available, and
allow an algorithm to use all of it. Two algorithms that do this are MA∗ (memory-bounded MA*

A∗) and SMA∗ (simplified MA∗). SMA∗ is—well—simpler, so we will describe it. SMA∗ SMA*

proceeds just like A∗, expanding the best leaf until memory is full. At this point, it cannot add
a new node to the search tree without dropping an old one. SMA∗ always drops the worst leaf
node—the one with the highest f -value. Like RBFS, SMA∗ then backs up the value of the
forgotten node to its parent. In this way, the ancestor of a forgotten subtree knows the quality
of the best path in that subtree. With this information, SMA∗ regenerates the subtree only
when all other paths have been shown to look worse than the path it has forgotten. Another
way of saying this is that if all the descendants of a node n are forgotten, then we will not
know which way to go from n, but we will still have an idea of how worthwhile it is to go
anywhere from n.

The complete algorithm is described in the online code repository accompanying this
book. There is one subtlety worth mentioning. We said that SMA∗ expands the best leaf and
deletes the worst leaf. What if all the leaf nodes have the same f -value? To avoid selecting
the same node for deletion and expansion, SMA∗ expands the newest best leaf and deletes the
oldest worst leaf. These coincide when there is only one leaf, but in that case, the current
search tree must be a single path from root to leaf that fills all of memory. If the leaf is not a
goal node, then even if it is on an optimal solution path, that solution is not reachable with the
available memory. Therefore, the node can be discarded exactly as if it had no successors.

SMA∗ is complete if there is any reachable solution—that is, if d, the depth of the shal-
lowest goal node, is less than the memory size (expressed in nodes). It is optimal if any
optimal solution is reachable; otherwise, it returns the best reachable solution. In practical
terms, SMA∗ is a fairly robust choice for finding optimal solutions, particularly when the state
space is a graph, action costs are not uniform, and node generation is expensive compared to
the overhead of maintaining the frontier and the reached set.

On very hard problems, however, it will often be the case that SMA∗ is forced to switch
back and forth continually among many candidate solution paths, only a small subset of which
can fit in memory. (This resembles the problem of thrashing in disk paging systems.) Then Thrashing

the extra time required for repeated regeneration of the same nodes means that problems
that would be practically solvable by A∗, given unlimited memory, become intractable for
SMA∗. That is to say, memory limitations can make a problem intractable from the point J
of view of computation time. Although no current theory explains the tradeoff between time
and memory, it seems that this is an inescapable problem. The only way out is to drop the
optimality requirement.
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3.5.6 Bidirectional heuristic search

With unidirectional best-first search, we saw that using f (n) = g(n)+h(n) as the evaluation
function gives us an A∗ search that is guaranteed to find optimal-cost solutions (assuming an
admissible h) while being optimally efficient in the number of nodes expanded.

With bidirectional best-first search we could also try using f (n) = g(n)+ h(n), but un-
fortunately there is no guarantee that this would lead to an optimal-cost solution, nor that it
would be optimally efficient, even with an admissible heuristic. With bidirectional search, it
turns out that it is not individual nodes but rather pairs of nodes (one from each frontier) that
can be proved to be surely expanded, so any proof of efficiency will have to consider pairs of
nodes (Eckerle et al., 2017).

We’ll start with some new notation. We use fF(n) = gF(n)+hF(n) for nodes going in the
forward direction (with the initial state as root) and fB(n) = gB(n)+ hB(n) for nodes in the
backward direction (with a goal state as root). Although both forward and backward searches
are solving the same problem, they have different evaluation functions because, for example,
the heuristics are different depending on whether you are striving for the goal or for the initial
state. We’ll assume admissible heuristics.

Consider a forward path from the initial state to a node m and a backward path from the
goal to a node n. We can define a lower bound on the cost of a solution that follows the path
from the initial state to m, then somehow gets to n, then follows the path to the goal as

lb(m,n) = max(gF(m)+gB(n), fF(m), fB(n))

In other words, the cost of such a path must be at least as large as the sum of the path costs of
the two parts (because the remaining connection between them must have nonnegative cost),
and the cost must also be at least as much as the estimated f cost of either part (because the
heuristic estimates are optimistic). Given that, the theorem is that for any pair of nodes m,n
with lb(m,n) less than the optimal cost C∗, we must expand either m or n, because the path
that goes through both of them is a potential optimal solution. The difficulty is that we don’t
know for sure which node is best to expand, and therefore no bidirectional search algorithm
can be guaranteed to be optimally efficient—any algorithm might expand up to twice the
minimum number of nodes if it always chooses the wrong member of a pair to expand first.
Some bidirectional heuristic search algorithms explicitly manage a queue of (m,n) pairs, but
we will stick with bidirectional best-first search (Figure 3.14), which has two frontier priority
queues, and give it an evaluation function that mimics the lb criteria:

f2(n) = max(2g(n),g(n)+h(n))

The node to expand next will be the one that minimizes this f2 value; the node can come
from either frontier. This f2 function guarantees that we will never expand a node (from
either frontier) with g(n) > C∗

2 . We say the two halves of the search “meet in the middle” in
the sense that when the two frontiers touch, no node inside of either frontier has a path cost
greater than the bound C∗

2 . Figure 3.24 works through an example bidirectional search.
We have described an approach where the hF heuristic estimates the distance to the goal

(or, when the problem has multiple goal states, the distance to the closest goal) and hB esti-
mates the distance to the start. This is called a front-to-end search. An alternative, calledFront-to-end

front-to-front search, attempts to estimate the distance to the other frontier. Clearly, if aFront-to-front

frontier has millions of nodes, it would be inefficient to apply the heuristic function to every
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Figure 3.24 Bidirectional search maintains two frontiers: on the left, nodes A and B are
successors of Start; on the right, node F is an inverse successor of Goal. Each node is labeled
with f =g+ h values and the f2 = max(2g,g+ h) value. (The g values are the sum of the
action costs as shown on each arrow; the h values are arbitrary and cannot be derived from
anything in the figure.) The optimal solution, Start-A-F-Goal, has cost C∗=4+ 2+ 4=10,
so that means that a meet-in-the-middle bidirectional algorithm should not expand any node
with g> C∗

2 =5; and indeed the next node to be expanded would be A or F (each with g=4),
leading us to an optimal solution. If we expanded the node with lowest f cost first, then B
and C would come next, and D and E would be tied with A, but they all have g> C∗

2 and thus
are never expanded when f2 is the evaluation function.

one of them and take the minimum. But it can work to sample a few nodes from the frontier.
In certain specific problem domains it is possible to summarize the frontier—for example, in
a grid search problem, we can incrementally compute a bounding box of the frontier, and use
as a heuristic the distance to the bounding box.

Bidirectional search is sometimes more efficient than unidirectional search, sometimes
not. In general, if we have a very good heuristic, then A∗ search produces search contours
that are focused on the goal, and adding bidirectional search does not help much. With an
average heuristic, bidirectional search that meets in the middle tends to expand fewer nodes
and is preferred. In the worst case of a poor heuristic, the search is no longer focused on the
goal, and bidirectional search has the same asymptotic complexity as A∗. Bidirectional search
with the f2 evaluation function and an admissible heuristic h is complete and optimal.

3.6 Heuristic Functions

In this section, we look at how the accuracy of a heuristic affects search performance, and also
consider how heuristics can be invented. As our main example we’ll return to the 8-puzzle. As
mentioned in Section 3.2, the object of the puzzle is to slide the tiles horizontally or vertically
into the empty space until the configuration matches the goal configuration (Figure 3.25).

There are 9!/2=181,400 reachable states in an 8-puzzle, so a search could easily keep
them all in memory. But for the 15-puzzle, there are 16!/2 states—over 10 trillion—so to
search that space we will need the help of a good admissible heuristic function. There is a
long history of such heuristics for the 15-puzzle; here are two commonly used candidates:

• h1 = the number of misplaced tiles (blank not included). For Figure 3.25, all eight tiles
are out of position, so the start state has h1 = 8. h1 is an admissible heuristic because
any tile that is out of place will require at least one move to get it to the right place.
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Figure 3.25 A typical instance of the 8-puzzle. The shortest solution is 26 actions long.

• h2 = the sum of the distances of the tiles from their goal positions. Because tiles cannot
move along diagonals, the distance is the sum of the horizontal and vertical distances—
sometimes called the city-block distance or Manhattan distance. h2 is also admissibleManhattan distance

because all any move can do is move one tile one step closer to the goal. Tiles 1 to 8 in
the start state of Figure 3.25 give a Manhattan distance of

h2 = 3+1+2+2+2+3+3+2 = 18 .

As expected, neither of these overestimates the true solution cost, which is 26.

3.6.1 The effect of heuristic accuracy on performance

One way to characterize the quality of a heuristic is the effective branching factor b∗. If theEffective branching
factor

total number of nodes generated by A∗ for a particular problem is N and the solution depth is
d, then b∗ is the branching factor that a uniform tree of depth d would have to have in order
to contain N +1 nodes. Thus,

N +1 = 1+b∗+(b∗)2 + · · ·+(b∗)d .

For example, if A∗ finds a solution at depth 5 using 52 nodes, then the effective branching
factor is 1.92. The effective branching factor can vary across problem instances, but usually
for a specific domain (such as 8-puzzles) it is fairly constant across all nontrivial problem in-
stances. Therefore, experimental measurements of b∗ on a small set of problems can provide a
good guide to the heuristic’s overall usefulness. A well-designed heuristic would have a value
of b∗ close to 1, allowing fairly large problems to be solved at reasonable computational cost.

Korf and Reid (1998) argue that a better way to characterize the effect of A∗ pruning
with a given heuristic h is that it reduces the effective depth by a constant kh compared toEffective depth

the true depth. This means that the total search cost is O(bd−kh) compared to O(bd) for an
uninformed search. Their experiments on Rubik’s Cube and n-puzzle problems show that this
formula gives accurate predictions for total search cost for sampled problem instances across
a wide range of solution lengths—at least for solution lengths larger than kh.

For Figure 3.26 we generated random 8-puzzle problems and solved them with an unin-
formed breadth-first search and with A∗ search using both h1 and h2, reporting the average
number of nodes generated and the corresponding effective branching factor for each search
strategy and for each solution length. The results suggest that h2 is better than h1, and both
are better than no heuristic at all.
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Search Cost (nodes generated) Effective Branching Factor

d BFS A∗(h1) A∗(h2) BFS A∗(h1) A∗(h2)

6 128 24 19 2.01 1.42 1.34
8 368 48 31 1.91 1.40 1.30

10 1033 116 48 1.85 1.43 1.27
12 2672 279 84 1.80 1.45 1.28
14 6783 678 174 1.77 1.47 1.31
16 17270 1683 364 1.74 1.48 1.32
18 41558 4102 751 1.72 1.49 1.34
20 91493 9905 1318 1.69 1.50 1.34
22 175921 22955 2548 1.66 1.50 1.34
24 290082 53039 5733 1.62 1.50 1.36
26 395355 110372 10080 1.58 1.50 1.35
28 463234 202565 22055 1.53 1.49 1.36

Figure 3.26 Comparison of the search costs and effective branching factors for 8-puzzle
problems using breadth-first search, A∗ with h1 (misplaced tiles), and A∗ with h2 (Manhattan
distance). Data are averaged over 100 puzzles for each solution length d from 6 to 28.

One might ask whether h2 is always better than h1. The answer is “Essentially, yes.” It
is easy to see from the definitions of the two heuristics that for any node n, h2(n) ≥ h1(n).
We thus say that h2 dominates h1. Domination translates directly into efficiency: A∗ using h2 Domination

will never expand more nodes than A∗ using h1 (except in the case of breaking ties unluckily).
The argument is simple. Recall the observation on page 108 that every node with f (n)<C∗

will surely be expanded. This is the same as saying that every node with h(n) < C∗− g(n)
is surely expanded when h is consistent. But because h2 is at least as big as h1 for all nodes,
every node that is surely expanded by A∗ search with h2 is also surely expanded with h1, and
h1 might cause other nodes to be expanded as well. Hence, it is generally better to use a
heuristic function with higher values, provided it is consistent and that the computation time
for the heuristic is not too long.

3.6.2 Generating heuristics from relaxed problems

We have seen that both h1 (misplaced tiles) and h2 (Manhattan distance) are fairly good
heuristics for the 8-puzzle and that h2 is better. How might one have come up with h2? Is it
possible for a computer to invent such a heuristic mechanically?

h1 and h2 are estimates of the remaining path length for the 8-puzzle, but they are also
perfectly accurate path lengths for simplified versions of the puzzle. If the rules of the puzzle
were changed so that a tile could move anywhere instead of just to the adjacent empty square,
then h1 would give the exact length of the shortest solution. Similarly, if a tile could move one
square in any direction, even onto an occupied square, then h2 would give the exact length
of the shortest solution. A problem with fewer restrictions on the actions is called a relaxed
problem. The state-space graph of the relaxed problem is a supergraph of the original state Relaxed problem

space because the removal of restrictions creates added edges in the graph.
Because the relaxed problem adds edges to the state-space graph, any optimal solution in

the original problem is, by definition, also a solution in the relaxed problem; but the relaxed
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problem may have better solutions if the added edges provide shortcuts. Hence, the cost ofI
an optimal solution to a relaxed problem is an admissible heuristic for the original problem.
Furthermore, because the derived heuristic is an exact cost for the relaxed problem, it must
obey the triangle inequality and is therefore consistent (see page 106).

If a problem definition is written down in a formal language, it is possible to construct
relaxed problems automatically.14 For example, if the 8-puzzle actions are described as

A tile can move from square X to square Y if
X is adjacent to Y and Y is blank,

we can generate three relaxed problems by removing one or both of the conditions:

(a) A tile can move from square X to square Y if X is adjacent to Y.
(b) A tile can move from square X to square Y if Y is blank.
(c) A tile can move from square X to square Y.

From (a), we can derive h2 (Manhattan distance). The reasoning is that h2 would be the
proper score if we moved each tile in turn to its destination. The heuristic derived from (b) is
discussed in Exercise 3.GASC. From (c), we can derive h1 (misplaced tiles) because it would
be the proper score if tiles could move to their intended destination in one action. Notice that
it is crucial that the relaxed problems generated by this technique can be solved essentially
without search, because the relaxed rules allow the problem to be decomposed into eight
independent subproblems. If the relaxed problem is hard to solve, then the values of the
corresponding heuristic will be expensive to obtain.

A program called ABSOLVER can generate heuristics automatically from problem defi-
nitions, using the “relaxed problem” method and various other techniques (Prieditis, 1993).
ABSOLVER generated a new heuristic for the 8-puzzle that was better than any preexisting
heuristic and found the first useful heuristic for the famous Rubik’s Cube puzzle.

If a collection of admissible heuristics h1 . . .hm is available for a problem and none of
them is clearly better than the others, which should we choose? As it turns out, we can have
the best of all worlds, by defining

h(n) = max{h1(n), . . . ,hk(n)} .
This composite heuristic picks whichever function is most accurate on the node in question.
Because the hi components are admissible, h is admissible (and if hi are all consistent, h is
consistent). Furthermore, h dominates all of its component heuristics. The only drawback
is that h(n) takes longer to compute. If that is an issue, an alternative is to randomly select
one of the heuristics at each evaluation, or use a machine learning algorithm to predict which
heuristic will be best. Doing this can result in a heuristic that is inconsistent (even if every hi

is consistent), but in practice it usually leads to faster problem solving.

3.6.3 Generating heuristics from subproblems: Pattern databases

Admissible heuristics can also be derived from the solution cost of a subproblem of a givenSubproblem

problem. For example, Figure 3.27 shows a subproblem of the 8-puzzle instance in Fig-
ure 3.25. The subproblem involves getting tiles 1, 2, 3, 4, and the blank into their correct
positions. Clearly, the cost of the optimal solution of this subproblem is a lower bound on

14 In Chapters 8 and 11, we describe formal languages suitable for this task; with formal descriptions that can be
manipulated, the construction of relaxed problems can be automated. For now, we use English.
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Figure 3.27 A subproblem of the 8-puzzle instance given in Figure 3.25. The task is to
get tiles 1, 2, 3, 4, and the blank into their correct positions, without worrying about what
happens to the other tiles.

the cost of the complete problem. It turns out to be more accurate than Manhattan distance in
some cases.

The idea behind pattern databases is to store these exact solution costs for every possible Pattern database

subproblem instance—in our example, every possible configuration of the four tiles and the
blank. (There will be 9× 8× 7× 6× 5=15,120 patterns in the database. The identities
of the other four tiles are irrelevant for the purposes of solving the subproblem, but moves
of those tiles do count toward the solution cost of the subproblem.) Then we compute an
admissible heuristic hDB for each state encountered during a search simply by looking up the
corresponding subproblem configuration in the database. The database itself is constructed
by searching back from the goal and recording the cost of each new pattern encountered;15

the expense of this search is amortized over subsequent problem instances, and so makes
sense if we expect to be asked to solve many problems.

The choice of tiles 1-2-3-4 to go with the blank is fairly arbitrary; we could also construct
databases for 5-6-7-8, for 2-4-6-8, and so on. Each database yields an admissible heuristic,
and these heuristics can be combined, as explained earlier, by taking the maximum value.
A combined heuristic of this kind is much more accurate than the Manhattan distance; the
number of nodes generated when solving random 15-puzzles can be reduced by a factor of
1000. However, with each additional database there are diminishing returns and increased
memory and computation costs.

One might wonder whether the heuristics obtained from the 1-2-3-4 database and the 5-
6-7-8 could be added, since the two subproblems seem not to overlap. Would this still give
an admissible heuristic? The answer is no, because the solutions of the 1-2-3-4 subproblem
and the 5-6-7-8 subproblem for a given state will almost certainly share some moves—it
is unlikely that 1-2-3-4 can be moved into place without touching 5-6-7-8, and vice versa.
But what if we don’t count those moves—what if we don’t abstract the other tiles to stars,
but rather make them disappear? That is, we record not the total cost of solving the 1-2-3-4
subproblem, but just the number of moves involving 1-2-3-4. Then the sum of the two costs is
still a lower bound on the cost of solving the entire problem. This is the idea behind disjoint
pattern databases. With such databases, it is possible to solve random 15-puzzles in a few Disjoint pattern

databases

15 By working backward from the goal, the exact solution cost of every instance encountered is immediately
available. This is an example of dynamic programming, which we discuss further in Chapter 16.
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Figure 3.28 A Web service providing driving directions, computed by a search algorithm.

milliseconds—the number of nodes generated is reduced by a factor of 10,000 compared with
the use of Manhattan distance. For 24-puzzles, a speedup of roughly a factor of a million can
be obtained. Disjoint pattern databases work for sliding-tile puzzles because the problem can
be divided up in such a way that each move affects only one subproblem—because only one
tile is moved at a time.

3.6.4 Generating heuristics with landmarks

There are online services that host maps with tens of millions of vertices and find cost-optimal
driving directions in milliseconds (Figure 3.28). How can they do that, when the best search
algorithms we have considered so far are about a million times slower? There are many tricks,
but the most important one is precomputation of some optimal path costs. Although thePrecomputation

precomputation can be time-consuming, it need only be done once, and then can be amortized
over billions of user search requests.

We could generate a perfect heuristic by precomputing and storing the cost of the optimal
path between every pair of vertices. That would take O(|V |2) space, and O(|E|3) time—
practical for graphs with 10 thousand vertices, but not 10 million.

A better approach is to choose a few (perhaps 10 or 20) landmark points16 from theLandmark point

vertices. Then for each landmark L and for each other vertex v in the graph, we compute
and store C∗(v,L), the exact cost of the optimal path from v to L. (We also need C∗(L,v);
on an undirected graph this is the same as C∗(v,L); on a directed graph—e.g., with one-way
streets—we need to compute this separately.) Given the stored C∗ tables, we can easily create
an efficient (although inadmissible) heuristic: the minimum, over all landmarks, of the cost
of getting from the current node to the landmark, and then to the goal:

hL(n) = min
L∈Landmarks

C∗(n,L)+C∗(L,goal)

If the optimal path happens to go through a landmark, this heuristic will be exact; if not it
is inadmissible—it overestimates the cost to the goal. In an A∗ search, if you have exact
heuristics, then once you reach a node that is on an optimal path, every node you expand

16 Landmark points are sometimes called “pivots” or “anchors.”
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from then on will be on an optimal path. Think of the contour lines as following along this
optimal path. The search will trace along the optimal path, on each iteration adding an action
with cost c to get to a result state whose h-value will be c less, meaning that the total f =g+h
score will remain constant at C∗ all along the path.

Some route-finding algorithms save even more time by adding shortcuts—artificial edges Shortcuts

in the graph that define an optimal multi-action path. For example, if there were shortcuts
predefined between all the 100 biggest cities in the U.S., and we were trying to navigate from
the Berkeley campus in California to NYU in New York, we could take the shortcut between
Sacramento and Manhattan and cover 90% of the path in one action.

hL(n) is efficient but not admissible. But with a bit more care, we can come up with a
heuristic that is both efficient and admissible:

hDH(n) = max
L∈Landmarks

|C∗(n,L)−C∗(goal,L)|

This is called a differential heuristic (because of the subtraction). Think of this with a Differential heuristic

landmark that is somewhere out beyond the goal. If the goal happens to be on the optimal
path from n to the landmark, then this is saying “consider the entire path from n to L, then
subtract off the last part of that path, from goal to L, giving us the exact cost of the path from
n to goal.” To the extent that the goal is a bit off of the optimal path to the landmark, the
heuristic will be inexact, but still admissible. Landmarks that are not out beyond the goal
will not be useful; a landmark that is exactly halfway between n and goal will give hDH = 0,
which is not helpful.

There are several ways to pick landmark points. Selecting points at random is fast, but
we get better results if we take care to spread the landmarks out so they are not too close
to each other. A greedy approach is to pick a first landmark at random, then find the point
that is furthest from that, and add it to the set of landmarks, and continue, at each iteration
adding the point that maximizes the distance to the nearest landmark. If you have logs of
past search requests by your users, then you can pick landmarks that are frequently requested
in searches. For the differential heuristic it is good if the landmarks are spread around the
perimeter of the graph. Thus, a good technique is to find the centroid of the graph, arrange
k pie-shaped wedges around the centroid, and in each wedge select the vertex that is farthest
from the center.

Landmarks work especially well in route-finding problems because of the way roads are
laid out in the world: a lot of traffic actually wants to travel between landmarks, so civil
engineers build the widest and fastest roads along these routes; landmark search makes it
easier to recover these routes.

3.6.5 Learning to search better

We have presented several fixed search strategies—breadth-first, A∗, and so on—that have
been carefully designed and programmed by computer scientists. Could an agent learn how
to search better? The answer is yes, and the method rests on an important concept called the
metalevel state space. Each state in a metalevel state space captures the internal (compu- Metalevel state

space

tational) state of a program that is searching in an ordinary state space such as the map of
Romania. (To keep the two concepts separate, we call the map of Romania an object-level
state space.) For example, the internal state of the A∗ algorithm consists of the current search Object-level state

space

tree. Each action in the metalevel state space is a computation step that alters the internal
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state; for example, each computation step in A∗ expands a leaf node and adds its successors
to the tree. Thus, Figure 3.18, which shows a sequence of larger and larger search trees, can
be seen as depicting a path in the metalevel state space where each state on the path is an
object-level search tree.

Now, the path in Figure 3.18 has five steps, including one step, the expansion of Fagaras,
that is not especially helpful. For harder problems, there will be many such missteps, and a
metalevel learning algorithm can learn from these experiences to avoid exploring unpromis-Metalevel learning

ing subtrees. The techniques used for this kind of learning are described in Chapter 23. The
goal of learning is to minimize the total cost of problem solving, trading off computational
expense and path cost.

3.6.6 Learning heuristics from experience

We have seen that one way to invent a heuristic is to devise a relaxed problem for which an
optimal solution can be found easily. An alternative is to learn from experience. “Experience”
here means solving lots of 8-puzzles, for instance. Each optimal solution to an 8-puzzle
problem provides an example (goal, path) pair. From these examples, a learning algorithm can
be used to construct a function h that can (with luck) approximate the true path cost for other
states that arise during search. Most of these approaches learn an imperfect approximation
to the heuristic function, and thus risk inadmissibility. This leads to an inevitable tradeoff
between learning time, search run time, and solution cost. Techniques for machine learning
are demonstrated in Chapter 19. The reinforcement learning methods described in Chapter 23
are also applicable to search.

Some machine learning techniques work better when supplied with features of a stateFeature

that are relevant to predicting the state’s heuristic value, rather than with just the raw state
description. For example, the feature “number of misplaced tiles” might be helpful in pre-
dicting the actual distance of an 8-puzzle state from the goal. Let’s call this feature x1(n).
We could take 100 randomly generated 8-puzzle configurations and gather statistics on their
actual solution costs. We might find that when x1(n) is 5, the average solution cost is around
14, and so on. Of course, we can use multiple features. A second feature x2(n) might be
“number of pairs of adjacent tiles that are not adjacent in the goal state.” How should x1(n)
and x2(n) be combined to predict h(n)? A common approach is to use a linear combination:

h(n) = c1x1(n)+ c2x2(n) .

The constants c1 and c2 are adjusted to give the best fit to the actual data across the randomly
generated configurations. One expects both c1 and c2 to be positive because misplaced tiles
and incorrect adjacent pairs make the problem harder to solve. Notice that this heuristic sat-
isfies the condition h(n)=0 for goal states, but it is not necessarily admissible or consistent.

Summary

This chapter has introduced search algorithms that an agent can use to select action sequences
in a wide variety of environments—as long as they are episodic, single-agent, fully observ-
able, deterministic, static, discrete, and completely known. There are tradeoffs to be made
between the amount of time the search takes, the amount of memory available, and the qual-
ity of the solution. We can be more efficient if we have domain-dependent knowledge in the
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form of a heuristic function that estimates how far a given state is from the goal, or if we
precompute partial solutions involving patterns or landmarks.

• Before an agent can start searching, a well-defined problem must be formulated.
• A problem consists of five parts: the initial state, a set of actions, a transition model

describing the results of those actions, a set of goal states, and an action cost function.
• The environment of the problem is represented by a state space graph. A path through

the state space (a sequence of actions) from the initial state to a goal state is a solution.
• Search algorithms generally treat states and actions as atomic, without any internal

structure (although we introduced features of states when it came time to do learning).
• Search algorithms are judged on the basis of completeness, cost optimality, time com-

plexity, and space complexity.
• Uninformed search methods have access only to the problem definition. Algorithms

build a search tree in an attempt to find a solution. Algorithms differ based on which
node they expand first:

– Best-first search selects nodes for expansion using an evaluation function.
– Breadth-first search expands the shallowest nodes first; it is complete, optimal

for unit action costs, but has exponential space complexity.
– Uniform-cost search expands the node with lowest path cost, g(n), and is optimal

for general action costs.
– Depth-first search expands the deepest unexpanded node first. It is neither com-

plete nor optimal, but has linear space complexity. Depth-limited search adds a
depth bound.

– Iterative deepening search calls depth-first search with increasing depth limits
until a goal is found. It is complete when full cycle checking is done, optimal for
unit action costs, has time complexity comparable to breadth-first search, and has
linear space complexity.

– Bidirectional search expands two frontiers, one around the initial state and one
around the goal, stopping when the two frontiers meet.

• Informed search methods have access to a heuristic function h(n) that estimates the
cost of a solution from n. They may have access to additional information such as
pattern databases with solution costs.

– Greedy best-first search expands nodes with minimal h(n). It is not optimal but
is often efficient.

– A∗ search expands nodes with minimal f (n) = g(n)+ h(n). A∗ is complete and
optimal, provided that h(n) is admissible. The space complexity of A∗ is still an
issue for many problems.

– Bidirectional A∗ search is sometimes more efficient than A∗ itself.
– IDA∗ (iterative deepening A∗ search) is an iterative deepening version of A∗, and

thus adresses the space complexity issue.
– RBFS (recursive best-first search) and SMA∗ (simplified memory-bounded A∗)

are robust, optimal search algorithms that use limited amounts of memory; given
enough time, they can solve problems for which A∗ runs out of memory.
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– Beam search puts a limit on the size of the frontier; that makes it incomplete
and suboptimal, but it often finds reasonably good solutions and runs faster than
complete searches.

– Weighted A∗ search focuses the search towards a goal, expanding fewer nodes,
but sacrificing optimality.

• The performance of heuristic search algorithms depends on the quality of the heuristic
function. One can sometimes construct good heuristics by relaxing the problem defini-
tion, by storing precomputed solution costs for subproblems in a pattern database, by
defining landmarks, or by learning from experience with the problem class.

Bibliographical and Historical Notes

The topic of state-space search originated in the early years of AI. Newell and Simon’s work
on the Logic Theorist (1957) and GPS (1961) led to the establishment of search algorithms
as the primary tool for 1960s AI researchers and to the establishment of problem solving as
the canonical AI task. Work in operations research by Richard Bellman (1957) showed the
importance of additive path costs in simplifying optimization algorithms. The text by Nils
Nilsson (1971) established the area on a solid theoretical footing.

The 8-puzzle is a smaller cousin of the 15-puzzle, whose history is recounted at length
by Slocum and Sonneveld (2006). In 1880, the 15-puzzle attracted broad attention from
the public and mathematicians (Johnson and Story, 1879; Tait, 1880). The editors of the
American Journal of Mathematics stated, “The ‘15’ puzzle for the last few weeks has been
prominently before the American public, and may safely be said to have engaged the attention
of nine out of ten persons of both sexes and all ages and conditions of the community,” while
the Weekly News-Democrat of Emporia, Kansas wrote on March 12, 1880 that “It has become
literally an epidemic all over the country.”

The famous American game designer Sam Loyd falsely claimed to have invented the 15
puzzle (Loyd, 1959); actually it was invented by Noyes Chapman, a postmaster in Canastota,
New York, in the mid-1870s (although a generic patent covering sliding blocks was granted
to Ernest Kinsey in 1878). Ratner and Warmuth (1986) showed that the general n×n version
of the 15-puzzle belongs to the class of NP-complete problems.

Rubik’s Cube was of course invented in 1974 by Ernő Rubik, who also discovered an
algorithm for finding good, but not optimal solutions. Korf (1997) found optimal solutions
for some random problem instances using pattern databases and IDA∗ search. Rokicki et al.
(2014) proved that any instance can be solved in 26 moves (if you consider a 180◦ twist to be
two moves; 20 if it counts as one). The proof consumed 35 CPU years of computation; it does
not lead immediately to an efficient algorithm. Agostinelli et al. (2019) used reinforcement
learning, deep learning networks, and Monte Carlo tree search to learn a much more efficient
solver for Rubik’s cube. It is not guaranteed to find a cost-optimal solution, but does so about
60% of the time, and typical solutions times are less than a second.

Each of the real-world search problems listed in the chapter has been the subject of a
good deal of research effort. Methods for selecting optimal airline flights remain proprietary
for the most part, but Carl de Marcken has shown by a reduction to Diophantine decision
problems that airline ticket pricing and restrictions have become so convoluted that the prob-
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lem of selecting an optimal flight is formally undecidable (Robinson, 2002). The traveling
salesperson problem (TSP) is a standard combinatorial problem in theoretical computer sci-
ence (Lawler et al., 1992). Karp (1972) proved the TSP decision problem to be NP-hard, but
effective heuristic approximation methods were developed (Lin and Kernighan, 1973). Arora
(1998) devised a fully polynomial approximation scheme for Euclidean TSPs. VLSI layout
methods are surveyed by LaPaugh (2010), and many layout optimization papers appear in
VLSI journals. Robotic navigation is discussed in Chapter 26. Automatic assembly sequenc-
ing was first demonstrated by FREDDY (Michie, 1972); a comprehensive review is given by
(Bahubalendruni and Biswal, 2016).

Uninformed search algorithms are a central topic of computer science (Cormen et al.,
2009) and operations research (Dreyfus, 1969). Breadth-first search was formulated for solv-
ing mazes by Moore (1959). The method of dynamic programming (Bellman, 1957; Bellman
and Dreyfus, 1962), which systematically records solutions for all subproblems of increasing
lengths, can be seen as a form of breadth-first search.

Dijkstra’s algorithm in the form it is usually presented in (Dijkstra, 1959) is applicable
to explicit finite graphs. Nilsson (1971) introduced a version of Dijkstra’s algorithm that he
called uniform-cost search (because the algorithm “spreads out along contours of equal path
cost”) that allows for implicitly defined, infinite graphs. Nilsson’s work also introduced the
idea of closed and open lists, and the term “graph search.” The name BEST-FIRST-SEARCH

was introduced in the Handbook of AI (Barr and Feigenbaum, 1981). The Floyd–Warshall
(Floyd, 1962) and Bellman-Ford (Bellman, 1958; Ford, 1956) algorithms allow negative step
costs (as long as there are no negative cycles).

A version of iterative deepening designed to make efficient use of the chess clock was first
used by Slate and Atkin (1977) in the CHESS 4.5 game-playing program. Martelli’s algorithm
B (1977) also includes an iterative deepening aspect. The iterative deepening technique was
introduced by Bertram Raphael (1976) and came to the fore in work by Korf (1985a).

The use of heuristic information in problem solving appears in an early paper by Simon
and Newell (1958), but the phrase “heuristic search” and the use of heuristic functions that
estimate the distance to the goal came somewhat later (Newell and Ernst, 1965; Lin, 1965).
Doran and Michie (1966) conducted extensive experimental studies of heuristic search. Al-
though they analyzed path length and “penetrance” (the ratio of path length to the total num-
ber of nodes examined so far), they appear to have ignored the information provided by the
path cost g(n). The A∗ algorithm, incorporating the current path cost into heuristic search,
was developed by Hart, Nilsson, and Raphael (1968). Dechter and Pearl (1985) studied the
conditions under which A∗ is optimally efficient (in number of nodes expanded).

The original A∗ paper (Hart et al., 1968) introduced the consistency condition on heuristic
functions. The monotone condition was introduced by Pohl (1977) as a simpler replacement,
but Pearl (1984) showed that the two were equivalent.

Pohl (1977) pioneered the study of the relationship between the error in heuristic func-
tions and the time complexity of A∗. Basic results were obtained for tree-like search with unit
action costs and a single goal state (Pohl, 1977; Gaschnig, 1979; Huyn et al., 1980; Pearl,
1984) and with multiple goal states (Dinh et al., 2007). Korf and Reid (1998) showed how
to predict the exact number of nodes expanded (not just an asymptotic approximation) on a
variety of actual problem domains. The “effective branching factor” was proposed by Nils-
son (1971) as an empirical measure of efficiency. For graph search, Helmert and Röger (2008)
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noted that several well-known problems contained exponentially many nodes on optimal-cost
solution paths, implying exponential time complexity for A∗.

There are many variations on the A∗ algorithm. Pohl (1970) introduced weighted A∗

search, and later a dynamic version (1973), where the weight changes over the depth of the
tree. Ebendt and Drechsler (2009) synthesize the results and examine some applications.
Hatem and Ruml (2014) show a simplified and improved version of weighted A∗ that is easier
to implement. Wilt and Ruml (2014) introduce speedy search as an alternative to greedy
search that focuses on minimizing search time, and Wilt and Ruml (2016) show that the
best heuristics for satisficing search are different from the ones for optimal search. Burns
et al. (2012) give some implementation tricks for writing fast search code, and Felner (2018)
considers how the implementation changes when using an early goal test.

Pohl (1971) introduced bidirectional search. Holte et al. (2016) describe the version of
bidirectional search that is guaranteed to meet in the middle, making it more widely applica-
ble. Eckerle et al. (2017) describe the set of surely expanded pairs of nodes, and show that
no bidirectional search can be optimally efficient. The NBS algorithm (Chen et al., 2017)
makes explicit use of a queue of pairs of nodes.

A combination of bidirectional A∗ and known landmarks was used to efficiently find
driving routes for Microsoft’s online map service (Goldberg et al., 2006). After caching a
set of paths between landmarks, the algorithm can find an optimal-cost path between any
pair of points in a 24-million-point graph of the United States, searching less than 0.1%
of the graph. Korf (1987) shows how to use subgoals, macro-operators, and abstraction to
achieve remarkable speedups over previous techniques. Delling et al. (2009) describe how
to use bidirectional search, landmarks, hierarchical structure, and other tricks to find driving
routes. Anderson et al. (2008) describe a related technique, called coarse-to-fine search,Coarse-to-fine search

which can be thought of as defining landmarks at various hierarchical levels of abstraction.
Korf (1987) describes conditions under which coarse-to-fine search provides an exponential
speedup. Knoblock (1991) provides experimental results and analysis to quantify the advan-
tages of hierarchical search.

A∗ and other state-space search algorithms are closely related to the branch-and-boundBranch-and-bound

techniques that are widely used in operations research (Lawler and Wood, 1966; Rayward-
Smith et al., 1996). Kumar and Kanal (1988) attempt a “grand unification” of heuristic
search, dynamic programming, and branch-and-bound techniques under the name of CDP—
the “composite decision process.”

Because most computers in the 1960s had only a few thousand words of main memory,
memory-bounded heuristic search was an early research topic. The Graph Traverser (Doran
and Michie, 1966), one of the earliest search programs, commits to an action after search-
ing best-first up to the memory limit. IDA∗ (Korf, 1985b) was the first widely used length-
optimal, memory-bounded heuristic search algorithm, and a large number of variants have
been developed. An analysis of the efficiency of IDA∗ and of its difficulties with real-valued
heuristics appears in Patrick et al. (1992).

The original version of RBFS (Korf, 1993) is actually somewhat more complicated than
the algorithm shown in Figure 3.22, which is actually closer to an independently developed
algorithm called iterative expansion or IE (Russell, 1992). RBFS uses a lower bound asIterative expansion

well as the upper bound; the two algorithms behave identically with admissible heuristics,
but RBFS expands nodes in best-first order even with an inadmissible heuristic. The idea of
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keeping track of the best alternative path appeared earlier in Bratko’s (2009) elegant Prolog
implementation of A∗ and in the DTA∗ algorithm (Russell and Wefald, 1991). The latter work
also discusses metalevel state spaces and metalevel learning.

The MA∗ algorithm appeared in Chakrabarti et al. (1989). SMA∗, or Simplified MA∗,
emerged from an attempt to implement MA∗ (Russell, 1992). Kaindl and Khorsand (1994)
applied SMA∗ to produce a bidirectional search algorithm that was substantially faster than
previous algorithms. Korf and Zhang (2000) describe a divide-and-conquer approach, and
Zhou and Hansen (2002) introduce memory-bounded A∗ graph search and a strategy for
switching to breadth-first search to increase memory-efficiency (Zhou and Hansen, 2006).

The idea that admissible heuristics can be derived by problem relaxation appears in the
seminal paper by Held and Karp (1970), who used the minimum-spanning-tree heuristic to
solve the TSP. (See Exercise 3.MSTR.) The automation of the relaxation process was imple-
mented successfully by Prieditis (1993). There is a growing literature on the application of
machine learning to discover heuristic functions (Samadi et al., 2008; Arfaee et al., 2010;
Thayer et al., 2011; Lelis et al., 2012).

The use of pattern databases to derive admissible heuristics is due to Gasser (1995) and
Culberson and Schaeffer (1996, 1998); disjoint pattern databases are described by Korf and
Felner (2002); a similar method using symbolic patterns is due to Edelkamp (2009). Fel-
ner et al. (2007) show how to compress pattern databases to save space. The probabilistic
interpretation of heuristics was investigated by Pearl (1984) and Hansson and Mayer (1989).

Pearl’s (1984) Heuristics and Edelkamp and Schrödl’s (2012) Heuristic Search are influ-
ential textbooks on search. Papers about new search algorithms appear at the International
Symposium on Combinatorial Search (SoCS) and the International Conference on Automated
Planning and Scheduling (ICAPS), as well as in general AI conferences such as AAAI and
IJCAI, and journals such as Artificial Intelligence and Journal of the ACM.



CHAPTER 4
SEARCH IN COMPLEX
ENVIRONMENTS
In which we relax the simplifying assumptions of the previous chapter, to get closer to the
real world.

Chapter 3 addressed problems in fully observable, deterministic, static, known environments
where the solution is a sequence of actions. In this chapter, we relax those constraints. We
begin with the problem of finding a good state without worrying about the path to get there,
covering both discrete (Section 4.1) and continuous (Section 4.2) states. Then we relax the
assumptions of determinism (Section 4.3) and observability (Section 4.4). In a nondetermin-
istic world, the agent will need a conditional plan and carry out different actions depending
on what it observes—for example, stopping if the light is red and going if it is green. With
partial observability, the agent will also need to keep track of the possible states it might be
in. Finally, Section 4.5 guides the agent through an unknown space that it must learn as it
goes, using online search.

4.1 Local Search and Optimization Problems

In the search problems of Chapter 3 we wanted to find paths through the search space, such as
a path from Arad to Bucharest. But sometimes we care only about the final state, not the path
to get there. For example, in the 8-queens problem (Figure 4.3), we care only about finding
a valid final configuration of 8 queens (because if you know the configuration, it is trivial to
reconstruct the steps that created it). This is also true for many important applications such as
integrated-circuit design, factory floor layout, job shop scheduling, automatic programming,
telecommunications network optimization, crop planning, and portfolio management.

Local search algorithms operate by searching from a start state to neighboring states,Local search

without keeping track of the paths, nor the set of states that have been reached. That means
they are not systematic—they might never explore a portion of the search space where a
solution actually resides. However, they have two key advantages: (1) they use very little
memory; and (2) they can often find reasonable solutions in large or infinite state spaces for
which systematic algorithms are unsuitable.

Local search algorithms can also solve optimization problems, in which the aim is toOptimization
problem

find the best state according to an objective function.Objective function

To understand local search, consider the states of a problem laid out in a state-space
landscape, as shown in Figure 4.1. Each point (state) in the landscape has an “elevation,” de-State-space

landscape

fined by the value of the objective function. If elevation corresponds to an objective function,
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current
state

objective function

state space

global maximum

local maximum

“flat” local maximum

shoulder

Figure 4.1 A one-dimensional state-space landscape in which elevation corresponds to the
objective function. The aim is to find the global maximum.

function HILL-CLIMBING(problem) returns a state that is a local maximum
current←problem.INITIAL
while true do

neighbor←a highest-valued successor state of current
if VALUE(neighbor) ≤ VALUE(current) then return current
current←neighbor

Figure 4.2 The hill-climbing search algorithm, which is the most basic local search tech-
nique. At each step the current node is replaced by the best neighbor.

then the aim is to find the highest peak—a global maximum—and we call the process hill Global maximum

climbing. If elevation corresponds to cost, then the aim is to find the lowest valley—a global
minimum—and we call it gradient descent. Global minimum

4.1.1 Hill-climbing search

The hill-climbing search algorithm is shown in Figure 4.2. It keeps track of one current state Hill climbing

and on each iteration moves to the neighboring state with highest value—that is, it heads in
the direction that provides the steepest ascent. It terminates when it reaches a “peak” where Steepest ascent

no neighbor has a higher value. Hill climbing does not look ahead beyond the immediate
neighbors of the current state. This resembles trying to find the top of Mount Everest in a
thick fog while suffering from amnesia. Note that one way to use hill-climbing search is to
use the negative of a heuristic cost function as the objective function; that will climb locally
to the state with smallest heuristic distance to the goal.

To illustrate hill climbing, we will use the 8-queens problem (Figure 4.3). We will use
a complete-state formulation, which means that every state has all the components of a Complete-state

formulation
solution, but they might not all be in the right place. In this case every state has 8 queens
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Figure 4.3 (a) The 8-queens problem: place 8 queens on a chess board so that no queen
attacks another. (A queen attacks any piece in the same row, column, or diagonal.) This
position is almost a solution, except for the two queens in the fourth and seventh columns
that attack each other along the diagonal. (b) An 8-queens state with heuristic cost estimate
h=17. The board shows the value of h for each possible successor obtained by moving a
queen within its column. There are 8 moves that are tied for best, with h=12. The hill-
climbing algorithm will pick one of these.

on the board, one per column. The initial state is chosen at random, and the successors of a
state are all possible states generated by moving a single queen to another square in the same
column (so each state has 8×7=56 successors). The heuristic cost function h is the number
of pairs of queens that are attacking each other; this will be zero only for solutions. (It counts
as an attack if two pieces are in the same line, even if there is an intervening piece between
them.) Figure 4.3(b) shows a state that has h=17. The figure also shows the h values of all
its successors.

Hill climbing is sometimes called greedy local search because it grabs a good neighborGreedy local search

state without thinking ahead about where to go next. Although greed is considered one of the
seven deadly sins, it turns out that greedy algorithms often perform quite well. Hill climbing
can make rapid progress toward a solution because it is usually quite easy to improve a bad
state. For example, from the state in Figure 4.3(b), it takes just five steps to reach the state in
Figure 4.3(a), which has h=1 and is very nearly a solution. Unfortunately, hill climbing can
get stuck for any of the following reasons:

• Local maxima: A local maximum is a peak that is higher than each of its neighboringLocal maximum

states but lower than the global maximum. Hill-climbing algorithms that reach the
vicinity of a local maximum will be drawn upward toward the peak but will then be
stuck with nowhere else to go. Figure 4.1 illustrates the problem schematically. More
concretely, the state in Figure 4.3(a) is a local maximum (i.e., a local minimum for the
cost h); every move of a single queen makes the situation worse.

• Ridges: A ridge is shown in Figure 4.4. Ridges result in a sequence of local maximaRidge

that is very difficult for greedy algorithms to navigate.
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Figure 4.4 Illustration of why ridges cause difficulties for hill climbing. The grid of states
(dark circles) is superimposed on a ridge rising from left to right, creating a sequence of
local maxima that are not directly connected to each other. From each local maximum, all
the available actions point downhill. Topologies like this are common in low-dimensional
state spaces, such as points in a two-dimensional plane. But in state spaces with hundreds or
thousands of dimensions, this intuitive picture does not hold, and there are usually at least a
few dimensions that make it possible to escape from ridges and plateaus.

• Plateaus: A plateau is a flat area of the state-space landscape. It can be a flat local Plateau

maximum, from which no uphill exit exists, or a shoulder, from which progress is Shoulder

possible. (See Figure 4.1.) A hill-climbing search can get lost wandering on the plateau.

In each case, the algorithm reaches a point at which no progress is being made. Starting
from a randomly generated 8-queens state, steepest-ascent hill climbing gets stuck 86% of
the time, solving only 14% of problem instances. On the other hand, it works quickly, taking
just 4 steps on average when it succeeds and 3 when it gets stuck—not bad for a state space
with 88 ≈ 17 million states.

How could we solve more problems? One answer is to keep going when we reach a
plateau—to allow a sideways move in the hope that the plateau is really a shoulder, as shown Sideways move

in Figure 4.1. But if we are actually on a flat local maximum, then this approach will wander
on the plateau forever. Therefore, we can limit the number of consecutive sideways moves,
stopping after, say, 100 consecutive sideways moves. This raises the percentage of problem
instances solved by hill climbing from 14% to 94%. Success comes at a cost: the algorithm
averages roughly 21 steps for each successful instance and 64 for each failure.

Many variants of hill climbing have been invented. Stochastic hill climbing chooses at Stochastic hill
climbing

random from among the uphill moves; the probability of selection can vary with the steepness
of the uphill move. This usually converges more slowly than steepest ascent, but in some
state landscapes, it finds better solutions. First-choice hill climbing implements stochastic First-choice hill

climbing

hill climbing by generating successors randomly until one is generated that is better than the
current state. This is a good strategy when a state has many (e.g., thousands) of successors.

Another variant is random-restart hill climbing, which adopts the adage, “If at first you Random-restart hill
climbing

don’t succeed, try, try again.” It conducts a series of hill-climbing searches from randomly
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generated initial states, until a goal is found. It is complete with probability 1, because it will
eventually generate a goal state as the initial state. If each hill-climbing search has a probabil-
ity p of success, then the expected number of restarts required is 1/p. For 8-queens instances
with no sideways moves allowed, p≈ 0.14, so we need roughly 7 iterations to find a goal (6
failures and 1 success). The expected number of steps is the cost of one successful iteration
plus (1− p)/p times the cost of failure, or roughly 22 steps in all. When we allow sideways
moves, 1/0.94≈ 1.06 iterations are needed on average and (1×21)+(0.06/0.94)×64≈ 25
steps. For 8-queens, then, random-restart hill climbing is very effective indeed. Even for
three million queens, the approach can find solutions in seconds.1

The success of hill climbing depends very much on the shape of the state-space land-
scape: if there are few local maxima and plateaus, random-restart hill climbing will find a
good solution very quickly. On the other hand, many real problems have a landscape that
looks more like a widely scattered family of balding porcupines on a flat floor, with miniature
porcupines living on the tip of each porcupine needle. NP-hard problems (see Appendix A)
typically have an exponential number of local maxima to get stuck on. Despite this, a reason-
ably good local maximum can often be found after a small number of restarts.

4.1.2 Simulated annealing

A hill-climbing algorithm that never makes “downhill” moves toward states with lower value
(or higher cost) is always vulnerable to getting stuck in a local maximum. In contrast, a purely
random walk that moves to a successor state without concern for the value will eventually
stumble upon the global maximum, but will be extremely inefficient. Therefore, it seems
reasonable to try to combine hill climbing with a random walk in a way that yields both
efficiency and completeness.

Simulated annealing is such an algorithm. In metallurgy, annealing is the process usedSimulated annealing

to temper or harden metals and glass by heating them to a high temperature and then gradually
cooling them, thus allowing the material to reach a low-energy crystalline state. To explain
simulated annealing, we switch our point of view from hill climbing to gradient descent (i.e.,
minimizing cost) and imagine the task of getting a ping-pong ball into the deepest crevice in
a very bumpy surface. If we just let the ball roll, it will come to rest at a local minimum. If we
shake the surface, we can bounce the ball out of the local minimum—perhaps into a deeper
local minimum, where it will spend more time. The trick is to shake just hard enough to
bounce the ball out of local minima but not hard enough to dislodge it from the global mini-
mum. The simulated-annealing solution is to start by shaking hard (i.e., at a high temperature)
and then gradually reduce the intensity of the shaking (i.e., lower the temperature).

The overall structure of the simulated-annealing algorithm (Figure 4.5) is similar to hill
climbing. Instead of picking the best move, however, it picks a random move. If the move
improves the situation, it is always accepted. Otherwise, the algorithm accepts the move with
some probability less than 1. The probability decreases exponentially with the “badness”
of the move—the amount ∆E by which the evaluation is worsened. The probability also
decreases as the “temperature” T goes down: “bad” moves are more likely to be allowed at
the start when T is high, and they become more unlikely as T decreases. If the schedule
lowers T to 0 slowly enough, then a property of the Boltzmann distribution, e∆E/T , is that

1 Luby et al. (1993) suggest restarting after a fixed number of steps and show that this can be much more efficient
than letting each search continue indefinitely.
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function SIMULATED-ANNEALING(problem, schedule) returns a solution state
current←problem.INITIAL
for t = 1 to ∞ do

T←schedule(t)
if T = 0 then return current
next←a randomly selected successor of current
∆E←VALUE(current) – VALUE(next)
if ∆E > 0 then current←next
else current←next only with probability e∆E/T

Figure 4.5 The simulated annealing algorithm, a version of stochastic hill climbing where
some downhill moves are allowed. The schedule input determines the value of the “tempera-
ture” T as a function of time.

all the probability is concentrated on the global maxima, which the algorithm will find with
probability approaching 1.

Simulated annealing was used to solve VLSI layout problems beginning in the 1980s. It
has been applied widely to factory scheduling and other large-scale optimization tasks.

4.1.3 Local beam search

Keeping just one node in memory might seem to be an extreme reaction to the problem of
memory limitations. The local beam search algorithm keeps track of k states rather than Local beam search

just one. It begins with k randomly generated states. At each step, all the successors of all k
states are generated. If any one is a goal, the algorithm halts. Otherwise, it selects the k best
successors from the complete list and repeats.

At first sight, a local beam search with k states might seem to be nothing more than
running k random restarts in parallel instead of in sequence. In fact, the two algorithms
are quite different. In a random-restart search, each search process runs independently of
the others. In a local beam search, useful information is passed among the parallel search J
threads. In effect, the states that generate the best successors say to the others, “Come over
here, the grass is greener!” The algorithm quickly abandons unfruitful searches and moves
its resources to where the most progress is being made.

Local beam search can suffer from a lack of diversity among the k states—they can be-
come clustered in a small region of the state space, making the search little more than a
k-times-slower version of hill climbing. A variant called stochastic beam search, analo- Stochastic beam

search
gous to stochastic hill climbing, helps alleviate this problem. Instead of choosing the top k
successors, stochastic beam search chooses successors with probability proportional to the
successor’s value, thus increasing diversity.

4.1.4 Evolutionary algorithms

Evolutionary algorithms can be seen as variants of stochastic beam search that are explicitly Evolutionary
algorithms

motivated by the metaphor of natural selection in biology: there is a population of individuals
(states), in which the fittest (highest value) individuals produce offspring (successor states)
that populate the next generation, a process called recombination. There are endless forms Recombination

of evolutionary algorithms, varying in the following ways:
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Figure 4.6 A genetic algorithm, illustrated for digit strings representing 8-queens states. The
initial population in (a) is ranked by a fitness function in (b) resulting in pairs for mating in
(c). They produce offspring in (d), which are subject to mutation in (e).

• The size of the population.
• The representation of each individual. In genetic algorithms, each individual is a stringGenetic algorithm

over a finite alphabet (often a Boolean string), just as DNA is a string over the alphabet
ACGT. In evolution strategies, an individual is a sequence of real numbers, and inEvolution strategies

genetic programming an individual is a computer program.Genetic
programming

• The mixing number, ρ, which is the number of parents that come together to form
offspring. The most common case is ρ = 2: two parents combine their “genes” (parts
of their representation) to form offspring. When ρ= 1 we have stochastic beam search
(which can be seen as asexual reproduction). It is possible to have ρ > 2, which occurs
only rarely in nature but is easy enough to simulate on computers.

• The selection process for selecting the individuals who will become the parents of theSelection

next generation: one possibility is to select from all individuals with probability pro-
portional to their fitness score. Another possibility is to randomly select n individuals
(n> ρ), and then select the ρ most fit ones as parents.

• The recombination procedure. One common approach (assuming ρ= 2), is to randomly
select a crossover point to split each of the parent strings, and recombine the parts toCrossover point

form two children, one with the first part of parent 1 and the second part of parent 2;
the other with the second part of parent 1 and the first part of parent 2.

• The mutation rate, which determines how often offspring have random mutations toMutation rate

their representation. Once an offspring has been generated, every bit in its composition
is flipped with probability equal to the mutation rate.

• The makeup of the next generation. This can be just the newly formed offspring, or it
can include a few top-scoring parents from the previous generation (a practice called
elitism, which guarantees that overall fitness will never decrease over time). The prac-Elitism

tice of culling, in which all individuals below a given threshold are discarded, can lead
to a speedup (Baum et al., 1995).

Figure 4.6(a) shows a population of four 8-digit strings, each representing a state of the 8-
queens puzzle: the c-th digit represents the row number of the queen in column c. In (b),
each state is rated by the fitness function. Higher fitness values are better, so for the 8-queens



Section 4.1 Local Search and Optimization Problems 135

+ =

Figure 4.7 The 8-queens states corresponding to the first two parents in Figure 4.6(c) and
the first offspring in Figure 4.6(d). The green columns are lost in the crossover step and the
red columns are retained. (To interpret the numbers in Figure 4.6: row 1 is the bottom row,
and 8 is the top row.)

problem we use the number of nonattacking pairs of queens, which has a value of 8×7/2 =
28 for a solution. The values of the four states in (b) are 24, 23, 20, and 11. The fitness scores
are then normalized to probabilities, and the resulting values are shown next to the fitness
values in (b).

In (c), two pairs of parents are selected, in accordance with the probabilities in (b). Notice
that one individual is selected twice and one not at all. For each selected pair, a crossover
point (dotted line) is chosen randomly. In (d), we cross over the parent strings at the crossover
points, yielding new offspring. For example, the first child of the first pair gets the first three
digits (327) from the first parent and the remaining digits (48552) from the second parent.
The 8-queens states involved in this recombination step are shown in Figure 4.7.

Finally, in (e), each location in each string is subject to random mutation with a small
independent probability. One digit was mutated in the first, third, and fourth offspring. In the
8-queens problem, this corresponds to choosing a queen at random and moving it to a random
square in its column. It is often the case that the population is diverse early on in the process,
so crossover frequently takes large steps in the state space early in the search process (as in
simulated annealing). After many generations of selection towards higher fitness, the popu-
lation becomes less diverse, and smaller steps are typical. Figure 4.8 describes an algorithm
that implements all these steps.

Genetic algorithms are similar to stochastic beam search, but with the addition of the
crossover operation. This is advantageous if there are blocks that perform useful functions.
For example, it could be that putting the first three queens in positions 2, 4, and 6 (where they
do not attack each other) constitutes a useful block that can be combined with other useful
blocks that appear in other individuals to construct a solution. It can be shown mathematically
that, if the blocks do not serve a purpose—for example if the positions of the genetic code
are randomly permuted—then crossover conveys no advantage.

The theory of genetic algorithms explains how this works using the idea of a schema, Schema

which is a substring in which some of the positions can be left unspecified. For example,
the schema 246***** describes all 8-queens states in which the first three queens are in
positions 2, 4, and 6, respectively. Strings that match the schema (such as 24613578) are
called instances of the schema. It can be shown that if the average fitness of the instances of Instance

a schema is above the mean, then the number of instances of the schema will grow over time.
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Evolution and Search

The theory of evolution was developed by Charles Darwin in On the Origin of
Species by Means of Natural Selection (1859) and independently by Alfred Russel
Wallace (1858). The central idea is simple: variations occur in reproduction and
will be preserved in successive generations approximately in proportion to their
effect on reproductive fitness.

Darwin’s theory was developed with no knowledge of how the traits of organ-
isms can be inherited and modified. The probabilistic laws governing these pro-
cesses were first identified by Gregor Mendel (1866), a monk who experimented
with sweet peas. Much later, Watson and Crick (1953) identified the structure of the
DNA molecule and its alphabet, AGTC (adenine, guanine, thymine, cytosine). In
the standard model, variation occurs both by point mutations in the letter sequence
and by “crossover” (in which the DNA of an offspring is generated by combining
long sections of DNA from each parent).

The analogy to local search algorithms has already been described; the prin-
cipal difference between stochastic beam search and evolution is the use of sexual
reproduction, wherein successors are generated from multiple individuals rather
than just one. The actual mechanisms of evolution are, however, far richer than
most genetic algorithms allow. For example, mutations can involve reversals, du-
plications, and movement of large chunks of DNA; some viruses borrow DNA
from one organism and insert it into another; and there are transposable genes that
do nothing but copy themselves many thousands of times within the genome.

There are even genes that poison cells from potential mates that do not carry
the gene, thereby increasing their own chances of replication. Most important is the
fact that the genes themselves encode the mechanisms whereby the genome is re-
produced and translated into an organism. In genetic algorithms, those mechanisms
are a separate program that is not represented within the strings being manipulated.

Darwinian evolution may appear inefficient, having generated blindly some
1043 or so organisms without improving its search heuristics one iota. But learn-
ing does play a role in evolution. Although the otherwise great French naturalist
Jean Lamarck (1809) was wrong to propose that traits acquired by adaptation dur-
ing an organism’s lifetime would be passed on to its offspring, James Baldwin’s
(1896) superficially similar theory is correct: learning can effectively relax the fit-
ness landscape, leading to an acceleration in the rate of evolution. An organism that
has a trait that is not quite adaptive for its environment will pass on the trait if it also
has enough plasticity to learn to adapt to the environment in a way that is benefi-
cial. Computer simulations (Hinton and Nowlan, 1987) confirm that this Baldwin
effect is real, and that a consequence is that things that are hard to learn end up
in the genome, but things that are easy to learn need not reside there (Morgan and
Griffiths, 2015).
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function GENETIC-ALGORITHM(population, fitness) returns an individual
repeat

weights←WEIGHTED-BY(population, fitness)
population2←empty list
for i = 1 to SIZE(population) do

parent1, parent2←WEIGHTED-RANDOM-CHOICES(population, weights, 2)
child←REPRODUCE(parent1, parent2)
if (small random probability) then child←MUTATE(child)
add child to population2

population←population2
until some individual is fit enough, or enough time has elapsed
return the best individual in population, according to fitness

function REPRODUCE(parent1, parent2) returns an individual
n←LENGTH(parent1)
c← random number from 1 to n
return APPEND(SUBSTRING(parent1, 1, c), SUBSTRING(parent2, c+1, n))

Figure 4.8 A genetic algorithm. Within the function, population is an ordered list of indi-
viduals, weights is a list of corresponding fitness values for each individual, and fitness is a
function to compute these values.

Clearly, this effect is unlikely to be significant if adjacent bits are totally unrelated to
each other, because then there will be few contiguous blocks that provide a consistent bene-
fit. Genetic algorithms work best when schemas correspond to meaningful components of a
solution. For example, if the string is a representation of an antenna, then the schemas may
represent components of the antenna, such as reflectors and deflectors. A good component is
likely to be good in a variety of different designs. This suggests that successful use of genetic
algorithms requires careful engineering of the representation.

In practice, genetic algorithms have their place within the broad landscape of optimiza-
tion methods (Marler and Arora, 2004), particularly for complex structured problems such as
circuit layout or job-shop scheduling, and more recently for evolving the architecture of deep
neural networks (Miikkulainen et al., 2019). It is not clear how much of the appeal of genetic
algorithms arises from their superiority on specific tasks, and how much from the appealing
metaphor of evolution.

4.2 Local Search in Continuous Spaces

In Chapter 2, we explained the distinction between discrete and continuous environments,
pointing out that most real-world environments are continuous. A continuous action space
has an infinite branching factor, and thus can’t be handled by most of the algorithms we have
covered so far (with the exception of first-choice hill climbing and simulated annealing).

This section provides a very brief introduction to some local search techniques for con-
tinuous spaces. The literature on this topic is vast; many of the basic techniques originated
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in the 17th century, after the development of calculus by Newton and Leibniz.2 We find uses
for these techniques in several places in this book, including the chapters on learning, vision,
and robotics.

We begin with an example. Suppose we want to place three new airports anywhere in
Romania, such that the sum of squared straight-line distances from each city on the map
to its nearest airport is minimized. (See Figure 3.1 for the map of Romania.) The state
space is then defined by the coordinates of the three airports: (x1,y1), (x2,y2), and (x3,y3).
This is a six-dimensional space; we also say that states are defined by six variables. InVariable

general, states are defined by an n-dimensional vector of variables, x. Moving around in this
space corresponds to moving one or more of the airports on the map. The objective function
f (x) = f (x1,y1,x2,y2,x3,y3) is relatively easy to compute for any particular state once we
compute the closest cities. Let Ci be the set of cities whose closest airport (in the state x) is
airport i. Then, we have

f (x) = f (x1,y1,x2,y2,x3,y3) =
3

∑
i=1

∑
c∈Ci

(xi− xc)
2 +(yi− yc)

2 . (4.1)

This equation is correct not only for the state x but also for states in the local neighborhood
of x. However, it is not correct globally; if we stray too far from x (by altering the location
of one or more of the airports by a large amount) then the set of closest cities for that airport
changes, and we need to recompute Ci.

One way to deal with a continuous state space is to discretize it. For example, instead ofDiscretization

allowing the (xi,yi) locations to be any point in continuous two-dimensional space, we could
limit them to fixed points on a rectangular grid with spacing of size δ (delta). Then instead of
having an infinite number of successors, each state in the space would have only 12 succes-
sors, corresponding to incrementing one of the 6 variables by ±δ. We can then apply any of
our local search algorithms to this discrete space. Alternatively, we could make the branching
factor finite by sampling successor states randomly, moving in a random direction by a small
amount, δ. Methods that measure progress by the change in the value of the objective func-
tion between two nearby points are called empirical gradient methods. Empirical gradientEmpirical gradient

search is the same as steepest-ascent hill climbing in a discretized version of the state space.
Reducing the value of δ over time can give a more accurate solution, but does not necessarily
converge to a global optimum in the limit.

Often we have an objective function expressed in a mathematical form such that we can
use calculus to solve the problem analytically rather than empirically. Many methods attempt
to use the gradient of the landscape to find a maximum. The gradient of the objective functionGradient

is a vector ∇ f that gives the magnitude and direction of the steepest slope. For our problem,
we have

∇ f =
(

∂ f
∂x1

,
∂ f
∂y1

,
∂ f
∂x2

,
∂ f
∂y2

,
∂ f
∂x3

,
∂ f
∂y3

)
.

In some cases, we can find a maximum by solving the equation ∇ f =0. (This could be done,
for example, if we were placing just one airport; the solution is the arithmetic mean of all the
cities’ coordinates.) In many cases, however, this equation cannot be solved in closed form.
For example, with three airports, the expression for the gradient depends on what cities are

2 Knowledge of vectors, matrices, and derivatives is useful for this section (see Appendix A).
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closest to each airport in the current state. This means we can compute the gradient locally
(but not globally); for example,

∂ f
∂x1

= 2 ∑
c∈C1

(x1− xc) . (4.2)

Given a locally correct expression for the gradient, we can perform steepest-ascent hill climb-
ing by updating the current state according to the formula

x← x+α∇ f (x) ,
where α (alpha) is a small constant often called the step size. There exist a huge variety Step size

of methods for adjusting α. The basic problem is that if α is too small, too many steps are
needed; if α is too large, the search could overshoot the maximum. The technique of line
search tries to overcome this dilemma by extending the current gradient direction—usually Line search

by repeatedly doubling α—until f starts to decrease again. The point at which this occurs
becomes the new current state. There are several schools of thought about how the new
direction should be chosen at this point.

For many problems, the most effective algorithm is the venerable Newton–Raphson Newton–Raphson

method. This is a general technique for finding roots of functions—that is, solving equations
of the form g(x)=0. It works by computing a new estimate for the root x according to
Newton’s formula

x← x−g(x)/g′(x) .

To find a maximum or minimum of f , we need to find x such that the gradient is a zero vector
(i.e., ∇ f (x)=0). Thus, g(x) in Newton’s formula becomes ∇ f (x), and the update equation
can be written in matrix–vector form as

x← x−H−1
f (x)∇ f (x) ,

where H f (x) is the Hessian matrix of second derivatives, whose elements Hi j are given by Hessian

∂ 2 f/∂xi∂x j. For our airport example, we can see from Equation (4.2) that H f (x) is particu-
larly simple: the off-diagonal elements are zero and the diagonal elements for airport i are just
twice the number of cities in Ci. A moment’s calculation shows that one step of the update
moves airport i directly to the centroid of Ci, which is the minimum of the local expression
for f from Equation (4.1).3 For high-dimensional problems, however, computing the n2 en-
tries of the Hessian and inverting it may be expensive, so many approximate versions of the
Newton–Raphson method have been developed.

Local search methods suffer from local maxima, ridges, and plateaus in continuous state
spaces just as much as in discrete spaces. Random restarts and simulated annealing are often
helpful. High-dimensional continuous spaces are, however, big places in which it is very easy
to get lost.

A final topic is constrained optimization. An optimization problem is constrained if Constrained
optimization

solutions must satisfy some hard constraints on the values of the variables. For example, in
our airport-siting problem, we might constrain sites to be inside Romania and on dry land
(rather than in the middle of lakes). The difficulty of constrained optimization problems
depends on the nature of the constraints and the objective function. The best-known category
is that of linear programming problems, in which constraints must be linear inequalities Linear programming

3 In general, the Newton–Raphson update can be seen as fitting a quadratic surface to f at x and then moving
directly to the minimum of that surface—which is also the minimum of f if f is quadratic.
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forming a convex set4 and the objective function is also linear. The time complexity of linearConvex set

programming is polynomial in the number of variables.
Linear programming is probably the most widely studied and broadly useful method for

optimization. It is a special case of the more general problem of convex optimization, whichConvex optimization

allows the constraint region to be any convex region and the objective to be any function that is
convex within the constraint region. Under certain conditions, convex optimization problems
are also polynomially solvable and may be feasible in practice with thousands of variables.
Several important problems in machine learning and control theory can be formulated as
convex optimization problems (see Chapter 21).

4.3 Search with Nondeterministic Actions

In Chapter 3, we assumed a fully observable, deterministic, known environment. Therefore,
an agent can observe the initial state, calculate a sequence of actions that reach the goal, and
execute the actions with its “eyes closed,” never having to use its percepts.

When the environment is partially observable, however, the agent doesn’t know for sure
what state it is in; and when the environment is nondeterministic, the agent doesn’t know
what state it transitions to after taking an action. That means that rather than thinking “I’m in
state s1 and if I do action a I’ll end up in state s2,” an agent will now be thinking “I’m either
in state s1 or s3, and if I do action a I’ll end up in state s2,s4 or s5.” We call a set of physical
states that the agent believes are possible a belief state.Belief state

In partially observable and nondeterministic environments, the solution to a problem is
no longer a sequence, but rather a conditional plan (sometimes called a contingency plan or aConditional plan

strategy) that specifies what to do depending on what percepts agent receives while executing
the plan. We examine nondeterminism in this section and partial observability in the next.

4.3.1 The erratic vacuum world

The vacuum world from Chapter 2 has eight states, as shown in Figure 4.9. There are three
actions—Right, Left, and Suck—and the goal is to clean up all the dirt (states 7 and 8). If the
environment is fully observable, deterministic, and completely known, then the problem is
easy to solve with any of the algorithms in Chapter 3, and the solution is an action sequence.
For example, if the initial state is 1, then the action sequence [Suck, Right, Suck] will reach a
goal state, 8.

Now suppose that we introduce nondeterminism in the form of a powerful but erratic
vacuum cleaner. In the erratic vacuum world, the Suck action works as follows:

• When applied to a dirty square the action cleans the square and sometimes cleans up
dirt in an adjacent square, too.

• When applied to a clean square the action sometimes deposits dirt on the carpet.5

To provide a precise formulation of this problem, we need to generalize the notion of a tran-
sition model from Chapter 3. Instead of defining the transition model by a RESULT function

4 A set of points S is convex if the line joining any two points in S is also contained in S. A convex function is
one for which the space “above” it forms a convex set; by definition, convex functions have no local (as opposed
to global) minima.
5 We assume that most readers face similar problems and can sympathize with our agent. We apologize to
owners of modern, efficient cleaning appliances who cannot take advantage of this pedagogical device.
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Figure 4.9 The eight possible states of the vacuum world; states 7 and 8 are goal states.

that returns a single outcome state, we use a RESULTS function that returns a set of possible
outcome states. For example, in the erratic vacuum world, the Suck action in state 1 cleans
up either just the current location, or both locations:

RESULTS(1,Suck) = {5,7}

If we start in state 1, no single sequence of actions solves the problem, but the following
conditional plan does:

[Suck, if State=5 then [Right,Suck] else [ ]] . (4.3)

Here we see that a conditional plan can contain if–then–else steps; this means that solutions
are trees rather than sequences. Here the conditional in the if statement tests to see what the
current state is; this is something the agent will be able to observe at runtime, but doesn’t
know at planning time. Alternatively, we could have had a formulation that tests the percept
rather than the state. Many problems in the real, physical world are contingency problems,
because exact prediction of the future is impossible. For this reason, many people keep their
eyes open while walking around.

4.3.2 AND–OR search trees

How do we find these contingent solutions to nondeterministic problems? As in Chapter 3,
we begin by constructing search trees, but here the trees have a different character. In a de-
terministic environment, the only branching is introduced by the agent’s own choices in each
state: I can do this action or that action. We call these nodes OR nodes. In the vacuum world, Or node

for example, at an OR node the agent chooses Left or Right or Suck. In a nondeterministic
environment, branching is also introduced by the environment’s choice of outcome for each
action. We call these nodes AND nodes. For example, the Suck action in state 1 results in the And node

belief state {5,7}, so the agent would need to find a plan for state 5 and for state 7. These
two kinds of nodes alternate, leading to an AND–OR tree as illustrated in Figure 4.10. And–or tree



142 Chapter 4 Search in Complex Environments

LeftSuck

RightSuck

RightSuck

6 

GOAL

8 

GOAL

7 

1 

2 5 

1 

LOOP

5 

LOOP

5 

LOOP

Left Suck

1 

LOOP GOAL

8 4 

Figure 4.10 The first two levels of the search tree for the erratic vacuum world. State nodes
are OR nodes where some action must be chosen. At the AND nodes, shown as circles, every
outcome must be handled, as indicated by the arc linking the outgoing branches. The solution
found is shown in bold lines.

A solution for an AND–OR search problem is a subtree of the complete search tree that
(1) has a goal node at every leaf, (2) specifies one action at each of its OR nodes, and (3)
includes every outcome branch at each of its AND nodes. The solution is shown in bold lines
in the figure; it corresponds to the plan given in Equation (4.3).

Figure 4.11 gives a recursive, depth-first algorithm for AND–OR graph search. One key
aspect of the algorithm is the way in which it deals with cycles, which often arise in nonde-
terministic problems (e.g., if an action sometimes has no effect or if an unintended effect can
be corrected). If the current state is identical to a state on the path from the root, then it re-
turns with failure. This doesn’t mean that there is no solution from the current state; it simply
means that if there is a noncyclic solution, it must be reachable from the earlier incarnation of
the current state, so the new incarnation can be discarded. With this check, we ensure that the
algorithm terminates in every finite state space, because every path must reach a goal, a dead
end, or a repeated state. Notice that the algorithm does not check whether the current state is
a repetition of a state on some other path from the root, which is important for efficiency.

AND–OR graphs can be explored either breadth-first or best-first. The concept of a heuris-
tic function must be modified to estimate the cost of a contingent solution rather than a se-
quence, but the notion of admissibility carries over and there is an analog of the A∗ algorithm
for finding optimal solutions. (See the bibliographical notes at the end of the chapter.)
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function AND-OR-SEARCH(problem) returns a conditional plan, or failure
return OR-SEARCH(problem, problem.INITIAL, [ ])

function OR-SEARCH(problem, state, path) returns a conditional plan, or failure
if problem.IS-GOAL(state) then return the empty plan
if IS-CYCLE(state, path) then return failure
for each action in problem.ACTIONS(state) do

plan←AND-SEARCH(problem, RESULTS(state, action), [state] + [path])
if plan 6= failure then return [action] + [plan]

return failure

function AND-SEARCH(problem, states, path) returns a conditional plan, or failure
for each si in states do

plani←OR-SEARCH(problem, si, path)
if plani = failure then return failure

return [if s1 then plan1 else if s2 then plan2 else . . . if sn−1 then plann−1 else plann]

Figure 4.11 An algorithm for searching AND–OR graphs generated by nondeterministic en-
vironments. A solution is a conditional plan that considers every nondeterministic outcome
and makes a plan for each one.

4.3.3 Try, try again

Consider a slippery vacuum world, which is identical to the ordinary (non-erratic) vacuum
world except that movement actions sometimes fail, leaving the agent in the same location.
For example, moving Right in state 1 leads to the belief state {1,2}. Figure 4.12 shows
part of the search graph; clearly, there are no longer any acyclic solutions from state 1, and
AND-OR-SEARCH would return with failure. There is, however, a cyclic solution, which is Cyclic solution

to keep trying Right until it works. We can express this with a new while construct:

[Suck,while State=5 do Right,Suck]

or by adding a label to denote some portion of the plan and referring to that label later:

[Suck,L1 : Right, if State=5 then L1 else Suck] .

When is a cyclic plan a solution? A minimum condition is that every leaf is a goal state and
that a leaf is reachable from every point in the plan. In addition to that, we need to consider the
cause of the nondeterminism. If it is really the case that the vacuum robot’s drive mechanism
works some of the time, but randomly and independently slips on other occasions, then the
agent can be confident that if the action is repeated enough times, eventually it will work and
the plan will succeed. But if the nondeterminism is due to some unobserved fact about the
robot or environment—perhaps a drive belt has snapped and the robot will never move—then
repeating the action will not help.

One way to understand this decision is to say that the initial problem formulation (fully
observable, nondeterministic) is abandoned in favor of a different formulation (partially ob-
servable, deterministic) where the failure of the cyclic plan is attributed to an unobserved
property of the drive belt. In Chapter 12 we discuss how to decide which of several uncertain
possibilities is more likely.
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Figure 4.12 Part of the search graph for a slippery vacuum world, where we have shown
(some) cycles explicitly. All solutions for this problem are cyclic plans because there is no
way to move reliably.

4.4 Search in Partially Observable Environments

We now turn to the problem of partial observability, where the agent’s percepts are not enough
to pin down the exact state. That means that some of the agent’s actions will be aimed at
reducing uncertainty about the current state.

4.4.1 Searching with no observation

When the agent’s percepts provide no information at all, we have what is called a sensorlessSensorless

problem (or a conformant problem). At first, you might think the sensorless agent has noConformant

hope of solving a problem if it has no idea what state it starts in, but sensorless solutions are
surprisingly common and useful, primarily because they don’t rely on sensors working prop-
erly. In manufacturing systems, for example, many ingenious methods have been developed
for orienting parts correctly from an unknown initial position by using a sequence of actions
with no sensing at all. Sometimes a sensorless plan is better even when a conditional plan
with sensing is available. For example, doctors often prescribe a broad-spectrum antibiotic
rather than using the conditional plan of doing a blood test, then waiting for the results to
come back, and then prescribing a more specific antibiotic. The sensorless plan saves time
and money, and avoids the risk of the infection worsening before the test results are available.

Consider a sensorless version of the (deterministic) vacuum world. Assume that the agent
knows the geography of its world, but not its own location or the distribution of dirt. In that
case, its initial belief state is {1,2,3,4,5,6,7,8} (see Figure 4.9). Now, if the agent moves
Right it will be in one of the states {2,4,6,8}—the agent has gained information without
perceiving anything! After [Right,Suck] the agent will always end up in one of the states
{4,8}. Finally, after [Right,Suck,Left,Suck] the agent is guaranteed to reach the goal state 7,
no matter what the start state. We say that the agent can coerce the world into state 7.Coercion
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The solution to a sensorless problem is a sequence of actions, not a conditional plan
(because there is no perceiving). But we search in the space of belief states rather than
physical states.6 In belief-state space, the problem is fully observable because the agent
always knows its own belief state. Furthermore, the solution (if any) for a sensorless problem
is always a sequence of actions. This is because, as in the ordinary problems of Chapter 3,
the percepts received after each action are completely predictable—they’re always empty! So
there are no contingencies to plan for. This is true even if the environment is nondeterministic.

We could introduce new algorithms for sensorless search problems. But instead, we can
use the existing algorithms from Chapter 3 if we transform the underlying physical problem
into a belief-state problem, in which we search over belief states rather than physical states.
The original problem, P, has components ActionsP,ResultP etc., and the belief-state problem
has the following components:

• States: The belief-state space contains every possible subset of the physical states. If P
has N states, then the belief-state problem has 2N belief states, although many of those
may be unreachable from the initial state.
• Initial state: Typically the belief state consisting of all states in P, although in some

cases the agent will have more knowledge than this.
• Actions: This is slightly tricky. Suppose the agent is in belief state b={s1,s2}, but

ACTIONSP(s1) 6= ACTIONSP(s2); then the agent is unsure of which actions are legal. If
we assume that illegal actions have no effect on the environment, then it is safe to take
the union of all the actions in any of the physical states in the current belief state b:

ACTIONS(b) =
⋃
s∈b

ACTIONSP(s) .

On the other hand, if an illegal action might lead to catastrophe, it is safer to allow only
the intersection, that is, the set of actions legal in all the states. For the vacuum world,
every state has the same legal actions, so both methods give the same result.
• Transition model: For deterministic actions, the new belief state has one result state

for each of the current possible states (although some result states may be the same):

b′ = RESULT(b,a) = {s′ : s′=RESULTP(s,a) and s ∈ b} . (4.4)

With nondeterminism, the new belief state consists of all the possible results of applying
the action to any of the states in the current belief state:

b′ = RESULT(b,a) = {s′ : s′ ∈ RESULTSP(s,a) and s ∈ b}
=
⋃
s∈b

RESULTSP(s,a) ,

The size of b′ will be the same or smaller than b for deterministic actions, but may be
larger than b with nondeterministic actions (see Figure 4.13).
• Goal test: The agent possibly achieves the goal if any state s in the belief state satisfies

the goal test of the underlying problem, IS-GOALP(s). The agent necessarily achieves
the goal if every state satisfies IS-GOALP(s). We aim to necessarily achieve the goal.
• Action cost: This is also tricky. If the same action can have different costs in dif-

ferent states, then the cost of taking an action in a given belief state could be one of

6 In a fully observable environment, each belief state contains one physical state. Thus, we can view the algo-
rithms in Chapter 3 as searching in a belief-state space of singleton belief states.
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Figure 4.13 (a) Predicting the next belief state for the sensorless vacuum world with the
deterministic action, Right. (b) Prediction for the same belief state and action in the slippery
version of the sensorless vacuum world.

several values. (This gives rise to a new class of problems, which we explore in Exer-
cise 4.MVAL.) For now we assume that the cost of an action is the same in all states and
so can be transferred directly from the underlying physical problem.

Figure 4.14 shows the reachable belief-state space for the deterministic, sensorless vac-
uum world. There are only 12 reachable belief states out of 28=256 possible belief states.

The preceding definitions enable the automatic construction of the belief-state problem
formulation from the definition of the underlying physical problem. Once this is done, we
can solve sensorless problems with any of the ordinary search algorithms of Chapter 3.

In ordinary graph search, newly reached states are tested to see if they were previously
reached. This works for belief states, too; for example, in Figure 4.14, the action sequence
[Suck,Left,Suck] starting at the initial state reaches the same belief state as [Right,Left,Suck],
namely, {5,7}. Now, consider the belief state reached by [Left], namely, {1,3,5,7}. Obvi-
ously, this is not identical to {5,7}, but it is a superset. We can discard (prune) any such
superset belief state. Why? Because a solution from {1,3,5,7} must be a solution for each
of the individual states 1, 3, 5, and 7, and thus it is a solution for any combination of these
individual states, such as {5,7}; therefore we don’t need to try to solve {1,3,5,7}, we can
concentrate on trying to solve the strictly easier belief state {5,7}.

Conversely, if {1,3,5,7} has already been generated and found to be solvable, then any
subset, such as {5,7}, is guaranteed to be solvable. (If I have a solution that works when I’m
very confused about what state I’m in, it will still work when I’m less confused.) This extra
level of pruning may dramatically improve the efficiency of sensorless problem solving.

Even with this improvement, however, sensorless problem-solving as we have described
it is seldom feasible in practice. One issue is the vastness of the belief-state space—we saw in
the previous chapter that often a search space of size N is too large, and now we have search
spaces of size 2N . Furthermore, each element of the search space is a set of up to N elements.
For large N, we won’t be able to represent even a single belief state without running out of
memory space.

One solution is to represent the belief state by some more compact description. In En-
glish, we could say the agent knows “Nothing” in the initial state; after moving Left, we could
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Figure 4.14 The reachable portion of the belief-state space for the deterministic, sensorless
vacuum world. Each rectangular box corresponds to a single belief state. At any given point,
the agent has a belief state but does not know which physical state it is in. The initial belief
state (complete ignorance) is the top center box.

say, “Not in the rightmost column,” and so on. Chapter 7 explains how to do this in a formal
representation scheme.

Another approach is to avoid the standard search algorithms, which treat belief states as
black boxes just like any other problem state. Instead, we can look inside the belief states
and develop incremental belief-state search algorithms that build up the solution one phys- Incremental

belief-state search
ical state at a time. For example, in the sensorless vacuum world, the initial belief state is
{1,2,3,4,5,6,7,8}, and we have to find an action sequence that works in all 8 states. We can
do this by first finding a solution that works for state 1; then we check if it works for state 2;
if not, go back and find a different solution for state 1, and so on.

Just as an AND–OR search has to find a solution for every branch at an AND node, this
algorithm has to find a solution for every state in the belief state; the difference is that AND–
OR search can find a different solution for each branch, whereas an incremental belief-state
search has to find one solution that works for all the states.

The main advantage of the incremental approach is that it is typically able to detect failure
quickly—when a belief state is unsolvable, it is usually the case that a small subset of the
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belief state, consisting of the first few states examined, is also unsolvable. In some cases, this
leads to a speedup proportional to the size of the belief states, which may themselves be as
large as the physical state space itself.

4.4.2 Searching in partially observable environments

Many problems cannot be solved without sensing. For example, the sensorless 8-puzzle is
impossible. On the other hand, a little bit of sensing can go a long way: we can solve 8-
puzzles if we can see just the upper-left corner square. The solution involves moving each
tile in turn into the observable square and keeping track of its location from then on.

For a partially observable problem, the problem specification will specify a PERCEPT(s)
function that returns the percept received by the agent in a given state. If sensing is non-
deterministic, then we can use a PERCEPTS function that returns a set of possible percepts.
For fully observable problems, PERCEPT(s)=s for every state s, and for sensorless problems
PERCEPT(s)=null.

Consider a local-sensing vacuum world, in which the agent has a position sensor that
yields the percept L in the left square, and R in the right square, and a dirt sensor that yields
Dirty when the current square is dirty and Clean when it is clean. Thus, the PERCEPT in state
1 is [L,Dirty]. With partial observability, it will usually be the case that several states produce
the same percept; state 3 will also produce [L,Dirty]. Hence, given this initial percept, the
initial belief state will be {1,3}. We can think of the transition model between belief states
for partially observable problems as occurring in three stages, as shown in Figure 4.15:

• The prediction stage computes the belief state resulting from the action, RESULT(b,a),
exactly as we did with sensorless problems. To emphasize that this is a prediction, we
use the notation b̂=RESULT(b,a), where the “hat” over the b means “estimated,” and
we also use PREDICT(b,a) as a synonym for RESULT(b,a).

• The possible percepts stage computes the set of percepts that could be observed in the
predicted belief state (using the letter o for observation):

POSSIBLE-PERCEPTS(b̂) = {o : o=PERCEPT(s) and s ∈ b̂} .
• The update stage computes, for each possible percept, the belief state that would result

from the percept. The updated belief state bo is the set of states in b̂ that could have
produced the percept:

bo = UPDATE(b̂,o) = {s : o=PERCEPT(s) and s ∈ b̂} .
The agent needs to deal with possible percepts at planning time, because it won’t know
the actual percepts until it executes the plan. Notice that nondeterminism in the phys-
ical environment can enlarge the belief state in the prediction stage, but each updated
belief state bo can be no larger than the predicted belief state b̂; observations can only
help reduce uncertainty. Moreover, for deterministic sensing, the belief states for the
different possible percepts will be disjoint, forming a partition of the original predicted
belief state.

Putting these three stages together, we obtain the possible belief states resulting from a given
action and the subsequent possible percepts:

RESULTS(b,a) = {bo : bo = UPDATE(PREDICT(b,a),o) and

o ∈ POSSIBLE-PERCEPTS(PREDICT(b,a))} . (4.5)
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Figure 4.15 Two examples of transitions in local-sensing vacuum worlds. (a) In the deter-
ministic world, Right is applied in the initial belief state, resulting in a new predicted belief
state with two possible physical states; for those states, the possible percepts are [R,Dirty]
and [R,Clean], leading to two belief states, each of which is a singleton. (b) In the slippery
world, Right is applied in the initial belief state, giving a new belief state with four physical
states; for those states, the possible percepts are [L,Dirty], [R,Dirty], and [R,Clean], leading
to three belief states as shown.

RightSuck

[L,Clean] [R,Clean][R,Dirty]

Figure 4.16 The first level of the AND–OR search tree for a problem in the local-sensing
vacuum world; Suck is the first action in the solution.
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4.4.3 Solving partially observable problems

The preceding section showed how to derive the RESULTS function for a nondeterministic
belief-state problem from an underlying physical problem, given the PERCEPT function. With
this formulation, the AND–OR search algorithm of Figure 4.11 can be applied directly to
derive a solution. Figure 4.16 shows part of the search tree for the local-sensing vacuum
world, assuming an initial percept [L,Dirty]. The solution is the conditional plan

[Suck,Right, if Rstate={6} then Suck else [ ]] .

Notice that, because we supplied a belief-state problem to the AND–OR search algorithm, it
returned a conditional plan that tests the belief state rather than the actual state. This is as it
should be: in a partially observable environment the agent won’t know the actual state.

As in the case of standard search algorithms applied to sensorless problems, the AND–
OR search algorithm treats belief states as black boxes, just like any other states. One can
improve on this by checking for previously generated belief states that are subsets or supersets
of the current state, just as for sensorless problems. One can also derive incremental search
algorithms, analogous to those described for sensorless problems, that provide substantial
speedups over the black-box approach.

4.4.4 An agent for partially observable environments

An agent for partially observable environments formulates a problem, calls a search algo-
rithm (such as AND-OR-SEARCH) to solve it, and executes the solution. There are two main
differences between this agent and the one for fully observable deterministic environments.
First, the solution will be a conditional plan rather than a sequence; to execute an if–then–else
expression, the agent will need to test the condition and execute the appropriate branch of the
conditional. Second, the agent will need to maintain its belief state as it performs actions
and receives percepts. This process resembles the prediction–observation–update process in
Equation (4.5) but is actually simpler because the percept is given by the environment rather
than calculated by the agent. Given an initial belief state b, an action a, and a percept o, the
new belief state is:

b′ = UPDATE(PREDICT(b,a),o) . (4.6)

Consider a kindergarten vacuum world wherein agents sense only the state of their current
square, and any square may become dirty at any time unless the agent is actively cleaning it
at that moment.7 Figure 4.17 shows the belief state being maintained in this environment.

In partially observable environments—which include the vast majority of real-world
environments—maintaining one’s belief state is a core function of any intelligent system.
This function goes under various names, including monitoring, filtering, and state estima-Monitoring

Filtering tion. Equation (4.6) is called a recursive state estimator because it computes the new belief
State estimation state from the previous one rather than by examining the entire percept sequence. If the agent

is not to “fall behind,” the computation has to happen as fast as percepts are coming in. As
the environment becomes more complex, the agent will only have time to compute an ap-
proximate belief state, perhaps focusing on the implications of the percept for the aspects of
the environment that are of current interest. Most work on this problem has been done for

7 The usual apologies to those who are unfamiliar with the effect of small children on the environment.
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Figure 4.17 Two prediction–update cycles of belief-state maintenance in the kindergarten
vacuum world with local sensing.

stochastic, continuous-state environments with the tools of probability theory, as explained in
Chapter 14.

In this section we will show an example in a discrete environment with deterministic
sensors and nondeterministic actions. The example concerns a robot with a particular state
estimation task called localization: working out where it is, given a map of the world and Localization

a sequence of percepts and actions. Our robot is placed in the maze-like environment of
Figure 4.18. The robot is equipped with four sonar sensors that tell whether there is an
obstacle—the outer wall or a dark shaded square in the figure—in each of the four compass
directions. The percept is in the form of a bit vector, one bit for each of the directions north,
east, south, and west in that order, so 1011 means there are obstacles to the north, south, and
west, but not east.

We assume that the sensors give perfectly correct data, and that the robot has a correct
map of the environment. But unfortunately, the robot’s navigational system is broken, so
when it executes a Right action, it moves randomly to one of the adjacent squares. The
robot’s task is to determine its current location.

Suppose the robot has just been switched on, and it does not know where it is—its initial
belief state b consists of the set of all locations. The robot then receives the percept 1011
and does an update using the equation bo=UPDATE(1011), yielding the 4 locations shown
in Figure 4.18(a). You can inspect the maze to see that those are the only four locations that
yield the percept 1011.

Next the robot executes a Right action, but the result is nondeterministic. The new belief
state, ba=PREDICT(bo,Right), contains all the locations that are one step away from the lo-
cations in bo. When the second percept, 1010, arrives, the robot does UPDATE(ba,1010) and
finds that the belief state has collapsed down to the single location shown in Figure 4.18(b).
That’s the only location that could be the result of

UPDATE(PREDICT(UPDATE(b,1011),Right),1010) .

With nondeterministic actions the PREDICT step grows the belief state, but the UPDATE step
shrinks it back down—as long as the percepts provide some useful identifying information.
Sometimes the percepts don’t help much for localization: If there were one or more long east-
west corridors, then a robot could receive a long sequence of 1010 percepts, but never know
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(a) Possible locations of robot after  E1 = 1011

(b) Possible locations of robot after  E1 = 1011, E2 = 1010

Figure 4.18 Possible positions of the robot, �, (a) after one observation, E1=1011, and
(b) after moving one square and making a second observation, E2=1010. When sensors are
noiseless and the transition model is accurate, there is only one possible location for the robot
consistent with this sequence of two observations.

where in the corridor(s) it was. But for environments with reasonable variation in geography,
localization often converges quickly to a single point, even when actions are nondeterministic.

What happens if the sensors are faulty? If we can reason only with Boolean logic, then we
have to treat every sensor bit as being either correct or incorrect, which is the same as having
no perceptual information at all. But we will see that probabilistic reasoning (Chapter 12),
allows us to extract useful information from a faulty sensor as long as it is wrong less than
half the time.

4.5 Online Search Agents and Unknown Environments

So far we have concentrated on agents that use offline search algorithms. They computeOffline search

a complete solution before taking their first action. In contrast, an online search8 agentOnline search

interleaves computation and action: first it takes an action, then it observes the environment
and computes the next action. Online search is a good idea in dynamic or semi-dynamic
environments, where there is a penalty for sitting around and computing too long. Online

8 The term “online” here refers to algorithms that must process input as it is received rather than waiting for the
entire input data set to become available. This usage of “online” is unrelated to the concept of “having an Internet
connection.”
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search is also helpful in nondeterministic domains because it allows the agent to focus its
computational efforts on the contingencies that actually arise rather than those that might
happen but probably won’t.

Of course, there is a tradeoff: the more an agent plans ahead, the less often it will find
itself up the creek without a paddle. In unknown environments, where the agent does not
know what states exist or what its actions do, the agent must use its actions as experiments in
order to learn about the environment.

A canonical example of online search is the mapping problem: a robot is placed in an Mapping problem

unknown building and must explore to build a map that can later be used for getting from
A to B. Methods for escaping from labyrinths—required knowledge for aspiring heroes of
antiquity—are also examples of online search algorithms. Spatial exploration is not the only
form of online exploration, however. Consider a newborn baby: it has many possible actions
but knows the outcomes of none of them, and it has experienced only a few of the possible
states that it can reach.

4.5.1 Online search problems

An online search problem is solved by interleaving computation, sensing, and acting. We’ll
start by assuming a deterministic and fully observable environment (Chapter 16 relaxes these
assumptions) and stipulate that the agent knows only the following:

• ACTIONS(s), the legal actions in state s;
• c(s,a,s′), the cost of applying action a in state s to arrive at state s′. Note that this cannot

be used until the agent knows that s′ is the outcome.
• IS-GOAL(s), the goal test.

Note in particular that the agent cannot determine RESULT(s,a) except by actually being in s
and doing a. For example, in the maze problem shown in Figure 4.19, the agent does not know
that going Up from (1,1) leads to (1,2); nor, having done that, does it know that going Down
will take it back to (1,1). This degree of ignorance can be reduced in some applications—for
example, a robot explorer might know how its movement actions work and be ignorant only
of the locations of obstacles.

Finally, the agent might have access to an admissible heuristic function h(s) that estimates
the distance from the current state to a goal state. For example, in Figure 4.19, the agent might
know the location of the goal and be able to use the Manhattan-distance heuristic (page 116).

Typically, the agent’s objective is to reach a goal state while minimizing cost. (Another
possible objective is simply to explore the entire environment.) The cost is the total path
cost that the agent incurs as it travels. It is common to compare this cost with the path cost
the agent would incur if it knew the search space in advance—that is, the optimal path in
the known environment. In the language of online algorithms, this comparison is called the
competitive ratio; we would like it to be as small as possible. Competitive ratio

Online explorers are vulnerable to dead ends: states from which no goal state is reach- Dead end

able. If the agent doesn’t know what each action does, it might execute the “jump into bot-
tomless pit” action, and thus never reach the goal. In general, no algorithm can avoid dead J
ends in all state spaces. Consider the two dead-end state spaces in Figure 4.20(a). An online
search algorithm that has visited states S and A cannot tell if it is in the top state space or
the bottom one; the two look identical based on what the agent has seen. Therefore, there
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Figure 4.19 A simple maze problem. The agent starts at S and must reach G but knows
nothing of the environment.
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Figure 4.20 (a) Two state spaces that might lead an online search agent into a dead end.
Any given agent will fail in at least one of these spaces. (b) A two-dimensional environment
that can cause an online search agent to follow an arbitrarily inefficient route to the goal.
Whichever choice the agent makes, the adversary blocks that route with another long, thin
wall, so that the path followed is much longer than the best possible path.

is no way it could know how to choose the correct action in both state spaces. This is an
example of an adversary argument—we can imagine an adversary constructing the stateAdversary argument

space while the agent explores it and putting the goals and dead ends wherever it chooses, as
in Figure 4.20(b).

Dead ends are a real difficulty for robot exploration—staircases, ramps, cliffs, one-way
streets, and even natural terrain all present states from which some actions are irreversible—Irreversible action

there is no way to return to the previous state. The exploration algorithm we will present is
only guaranteed to work in state spaces that are safely explorable—that is, some goal stateSafely explorable

is reachable from every reachable state. State spaces with only reversible actions, such as
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function ONLINE-DFS-AGENT(problem, s′) returns an action
s, a, the previous state and action, initially null
result, a table mapping (s, a) to s′, initially empty
untried, a table mapping s to a list of untried actions
unbacktracked, a table mapping s to a list of states never backtracked to

if problem.IS-GOAL(s′) then return stop
if s′ is a new state (not in untried) then untried[s′]←problem.ACTIONS(s′)
if s is not null then

result[s, a]←s′

add s to the front of unbacktracked[s′]
if untried[s′] is empty then

if unbacktracked[s′] is empty then return stop
a←an action b such that result[s′, b] = POP(unbacktracked[s′])s′← null

else a←POP(untried[s′])
s←s′

return a

Figure 4.21 An online search agent that uses depth-first exploration. The agent can safely
explore only in state spaces in which every action can be “undone” by some other action.

mazes and 8-puzzles, are clearly safely explorable (if they have any solution at all). We will
cover the subject of safe exploration in more depth in Section 23.3.2.

Even in safely explorable environments, no bounded competitive ratio can be guaranteed
if there are paths of unbounded cost. This is easy to show in environments with irreversible
actions, but in fact it remains true for the reversible case as well, as Figure 4.20(b) shows.
For this reason, it is common to characterize the performance of online search algorithms in
terms of the size of the entire state space rather than just the depth of the shallowest goal.

4.5.2 Online search agents

After each action, an online agent in an observable environment receives a percept telling it
what state it has reached; from this information, it can augment its map of the environment.
The updated map is then used to plan where to go next. This interleaving of planning and
action means that online search algorithms are quite different from the offline search algo-
rithms we have seen previously: offline algorithms explore their model of the state space,
while online algorithms explore the real world. For example, A∗ can expand a node in one
part of the space and then immediately expand a node in a distant part of the space, because
node expansion involves simulated rather than real actions.

An online algorithm, on the other hand, can discover successors only for a state that it
physically occupies. To avoid traveling all the way to a distant state to expand the next node,
it seems better to expand nodes in a local order. Depth-first search has exactly this property
because (except when the algorithm is backtracking) the next node expanded is a child of the
previous node expanded.

An online depth-first exploration agent (for deterministic but unknown actions) is shown
in Figure 4.21. This agent stores its map in a table, result[s,a], that records the state resulting
from executing action a in state s. (For nondeterministic actions, the agent could record a set
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Figure 4.22 An environment in which a random walk will take exponentially many steps to
find the goal.

of states under results[s,a].) Whenever the current state has unexplored actions, the agent tries
one of those actions. The difficulty comes when the agent has tried all the actions in a state.
In offline depth-first search, the state is simply dropped from the queue; in an online search,
the agent has to backtrack in the physical world. In depth-first search, this means going back
to the state from which the agent most recently entered the current state. To achieve that,
the algorithm keeps another table that lists, for each state, the predecessor states to which the
agent has not yet backtracked. If the agent has run out of states to which it can backtrack,
then its search is complete.

We recommend that the reader trace through the progress of ONLINE-DFS-AGENT when
applied to the maze given in Figure 4.19. It is fairly easy to see that the agent will, in the
worst case, end up traversing every link in the state space exactly twice. For exploration,
this is optimal; for finding a goal, on the other hand, the agent’s competitive ratio could be
arbitrarily bad if it goes off on a long excursion when there is a goal right next to the initial
state. An online variant of iterative deepening solves this problem; for an environment that is
a uniform tree, the competitive ratio of such an agent is a small constant.

Because of its method of backtracking, ONLINE-DFS-AGENT works only in state spaces
where the actions are reversible. There are slightly more complex algorithms that work in
general state spaces, but no such algorithm has a bounded competitive ratio.

4.5.3 Online local search

Like depth-first search, hill-climbing search has the property of locality in its node expan-
sions. In fact, because it keeps just one current state in memory, hill-climbing search is
already an online search algorithm! Unfortunately, the basic algorithm is not very good for
exploration because it leaves the agent sitting at local maxima with nowhere to go. Moreover,
random restarts cannot be used, because the agent cannot teleport itself to a new start state.

Instead of random restarts, one might consider using a random walk to explore the en-Random walk

vironment. A random walk simply selects at random one of the available actions from the
current state; preference can be given to actions that have not yet been tried. It is easy to prove
that a random walk will eventually find a goal or complete its exploration, provided that the
space is finite and safely explorable.9 On the other hand, the process can be very slow. Fig-
ure 4.22 shows an environment in which a random walk will take exponentially many steps
to find the goal, because, for each state in the top row except S, backward progress is twice as
likely as forward progress. The example is contrived, of course, but there are many real-world
state spaces whose topology causes these kinds of “traps” for random walks.

9 Random walks are complete on infinite one-dimensional and two-dimensional grids. On a three-dimensional
grid, the probability that the walk ever returns to the starting point is only about 0.3405 (Hughes, 1995).
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Figure 4.23 Five iterations of LRTA∗ on a one-dimensional state space. Each state is labeled
with H(s), the current cost estimate to reach a goal, and every link has an action cost of 1.
The red state marks the location of the agent, and the updated cost estimates at each iteration
have a double circle.

Augmenting hill climbing with memory rather than randomness turns out to be a more
effective approach. The basic idea is to store a “current best estimate” H(s) of the cost to
reach the goal from each state that has been visited. H(s) starts out being just the heuristic
estimate h(s) and is updated as the agent gains experience in the state space.

Figure 4.23 shows a simple example in a one-dimensional state space. In (a), the agent
seems to be stuck in a flat local minimum at the red state. Rather than staying where it is, the
agent should follow what seems to be the best path to the goal given the current cost estimates
for its neighbors. The estimated cost to reach the goal through a neighbor s′ is the cost to get
to s′ plus the estimated cost to get to a goal from there—that is, c(s,a,s′)+H(s′). In the
example, there are two actions, with estimated costs 1+9 to the left and 1+2 to the right, so
it seems best to move right.

In (b) it is clear that the cost estimate of 2 for the red state in (a) was overly optimistic.
Since the best move cost 1 and led to a state that is at least 2 steps from a goal, the red
state must be at least 3 steps from a goal, so its H should be updated accordingly, as shown
in Figure 4.23(b). Continuing this process, the agent will move back and forth twice more,
updating H each time and “flattening out” the local minimum until it escapes to the right.

An agent implementing this scheme, which is called learning real-time A∗ (LRTA∗), is LRTA∗

shown in Figure 4.24. Like ONLINE-DFS-AGENT, it builds a map of the environment in
the result table. It updates the cost estimate for the state it has just left and then chooses the
“apparently best” move according to its current cost estimates. One important detail is that
actions that have not yet been tried in a state s are always assumed to lead immediately to the
goal with the least possible cost, namely h(s). This optimism under uncertainty encourages Optimism under

uncertainty

the agent to explore new, possibly promising paths.
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function LRTA*-AGENT(problem, s′, h) returns an action
s, a, the previous state and action, initially null
result, a table mapping (s, a) to s′, initially empty
H, a table mapping s to a cost estimate, initially empty

if IS-GOAL(s′) then return stop
if s′ is a new state (not in H) then H[s′]←h(s′)
if s is not null then

result[s, a]←s′

H[s]← min
b∈ACTIONS(s)

LRTA*-COST(problem, s, b, result[s, b], H)

a← argmin
b∈ACTIONS(s)

LRTA*-COST(problem, s′, b, result[s′, b], H)

s←s′

return a

function LRTA*-COST(problem, s, a, s′, H) returns a cost estimate
if s′ is undefined then return h(s)
else return problem.ACTION-COST(s,a,s′) + H[s′]

Figure 4.24 LRTA∗-AGENT selects an action according to the values of neighboring states,
which are updated as the agent moves about the state space.

An LRTA∗ agent is guaranteed to find a goal in any finite, safely explorable environment.
Unlike A∗, however, it is not complete for infinite state spaces—there are cases where it can be
led infinitely astray. It can explore an environment of n states in O(n2) steps in the worst case,
but often does much better. The LRTA∗ agent is just one of a large family of online agents that
one can define by specifying the action selection rule and the update rule in different ways.
We discuss this family, developed originally for stochastic environments, in Chapter 23.

4.5.4 Learning in online search

The initial ignorance of online search agents provides several opportunities for learning. First,
the agents learn a “map” of the environment—more precisely, the outcome of each action in
each state—simply by recording each of their experiences. Second, the local search agents
acquire more accurate estimates of the cost of each state by using local updating rules, as in
LRTA∗. In Chapter 23, we show that these updates eventually converge to exact values for
every state, provided that the agent explores the state space in the right way. Once exact values
are known, optimal decisions can be taken simply by moving to the lowest-cost successor—
that is, pure hill climbing is then an optimal strategy.

If you followed our suggestion to trace the behavior of ONLINE-DFS-AGENT in the
environment of Figure 4.19, you will have noticed that the agent is not very bright. For
example, after it has seen that the Up action goes from (1,1) to (1,2), the agent still has no
idea that the Down action goes back to (1,1) or that the Up action also goes from (2,1) to
(2,2), from (2,2) to (2,3), and so on. In general, we would like the agent to learn that Up
increases the y-coordinate unless there is a wall in the way, that Down reduces it, and so on.

For this to happen, we need two things. First, we need a formal and explicitly manipulable
representation for these kinds of general rules; so far, we have hidden the information inside
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the black box called the RESULT function. Chapters 8 to 11 are devoted to this issue. Second,
we need algorithms that can construct suitable general rules from the specific observations
made by the agent. These are covered in Chapter 19.

If we anticipate that we will be called upon to solve multiple similar problems in the
future then it makes sense to invest time (and memory) to make those future searches easier.
There are several ways to do this, all falling under the heading of incremental search. We Incremental search

could keep the search tree in memory and reuse the parts of it that are unchanged in the new
problem. We could keep the heuristic h values and update them as we gain new information—
either because the world has changed or because we have computed a better estimate. Or we
could keep the best-path g values, using them to piece together a new solution, and updating
them when the world changes.

Summary

This chapter has examined search algorithms for problems in partially observable, nondeter-
ministic, unknown, and continuous environments.

• Local search methods such as hill climbing keep only a small number of states in
memory. They have been applied to optimization problems, where the idea is to find a
high-scoring state, without worrying about the path to the state. Several stochastic local
search algorithms have been developed, including simulated annealing, which returns
optimal solutions when given an appropriate cooling schedule.

• Many local search methods apply also to problems in continuous spaces. Linear pro-
gramming and convex optimization problems obey certain restrictions on the shape
of the state space and the nature of the objective function, and admit polynomial-time
algorithms that are often extremely efficient in practice. For some mathematically well-
formed problems, we can find the maximum using calculus to find where the gradient
is zero; for other problems we have to make do with the empirical gradient, which
measures the difference in fitness between two nearby points.

• An evolutionary algorithm is a stochastic hill-climbing search in which a population
of states is maintained. New states are generated by mutation and by crossover, which
combines pairs of states.

• In nondeterministic environments, agents can apply AND–OR search to generate con-
tingent plans that reach the goal regardless of which outcomes occur during execution.

• When the environment is partially observable, the belief state represents the set of
possible states that the agent might be in.

• Standard search algorithms can be applied directly to belief-state space to solve sensor-
less problems, and belief-state AND–OR search can solve general partially observable
problems. Incremental algorithms that construct solutions state by state within a belief
state are often more efficient.

• Exploration problems arise when the agent has no idea about the states and actions of
its environment. For safely explorable environments, online search agents can build a
map and find a goal if one exists. Updating heuristic estimates from experience provides
an effective method to escape from local minima.
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Bibliographical and Historical Notes

Local search techniques have a long history in mathematics and computer science. Indeed,
the Newton–Raphson method (Newton, 1671; Raphson, 1690) can be seen as a very effi-
cient local search method for continuous spaces in which gradient information is available.
Brent (1973) is a classic reference for optimization algorithms that do not require such in-
formation. Beam search, which we have presented as a local search algorithm, originated
as a bounded-width variant of dynamic programming for speech recognition in the HARPY

system (Lowerre, 1976). A related algorithm is analyzed in depth by Pearl (1984, Ch. 5).
The topic of local search was reinvigorated in the early 1990s by surprisingly good results

for large constraint-satisfaction problems such as n-queens (Minton et al., 1992) and Boolean
satisfiability (Selman et al., 1992) and by the incorporation of randomness, multiple simul-
taneous searches, and other improvements. This renaissance of what Christos Papadimitriou
has called “New Age” algorithms also sparked increased interest among theoretical computer
scientists (Koutsoupias and Papadimitriou, 1992; Aldous and Vazirani, 1994).

In the field of operations research, a variant of hill climbing called tabu search has gainedTabu search

popularity (Glover and Laguna, 1997). This algorithm maintains a tabu list of k previously
visited states that cannot be revisited; as well as improving efficiency when searching graphs,
this list can allow the algorithm to escape from some local minima.

Another useful improvement on hill climbing is the STAGE algorithm (Boyan and Moore,
1998). The idea is to use the local maxima found by random-restart hill climbing to get an
idea of the overall shape of the landscape. The algorithm fits a smooth quadratic surface to
the set of local maxima and then calculates the global maximum of that surface analytically.
This becomes the new restart point. Gomes et al. (1998) showed that the run times of system-
atic backtracking algorithms often have a heavy-tailed distribution, which means that theHeavy-tailed

distribution
probability of a very long run time is more than would be predicted if the run times were ex-
ponentially distributed. When the run time distribution is heavy-tailed, random restarts find a
solution faster, on average, than a single run to completion. Hoos and Stützle (2004) provide
a book-length coverage of the topic.

Simulated annealing was first described by Kirkpatrick et al. (1983), who borrowed
directly from the Metropolis algorithm (which is used to simulate complex systems in
physics (Metropolis et al., 1953) and was supposedly invented at a Los Alamos dinner party).
Simulated annealing is now a field in itself, with hundreds of papers published every year.

Finding optimal solutions in continuous spaces is the subject matter of several fields,
including optimization theory, optimal control theory, and the calculus of variations.
The basic techniques are explained well by Bishop (1995); Press et al. (2007) cover a wide
range of algorithms and provide working software.

Researchers have taken inspiration for search and optimization algorithms from a wide
variety of fields of study: metallurgy (simulated annealing); biology (genetic algorithms);
neuroscience (neural networks); mountaineering (hill climbing); economics (market-based
algorithms (Dias et al., 2006)); physics (particle swarms (Li and Yao, 2012) and spin glasses
(Mézard et al., 1987)); animal behavior (reinforcement learning, grey wolf optimizers (Mir-
jalili and Lewis, 2014)); ornithology (Cuckoo search (Yang and Deb, 2014)); entomology
(ant colony (Dorigo et al., 2008), bee colony (Karaboga and Basturk, 2007), firefly (Yang,
2009) and glowworm (Krishnanand and Ghose, 2009) optimization); and others.
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Linear programming (LP) was first studied systematically by the mathematician Leonid
Kantorovich (1939). It was one of the first applications of computers; the simplex algo-
rithm (Dantzig, 1949) is still used despite worst-case exponential complexity. Karmarkar
(1984) developed the far more efficient family of interior-point methods, which was shown
to have polynomial complexity for the more general class of convex optimization problems
by Nesterov and Nemirovski (1994). Excellent introductions to convex optimization are pro-
vided by Ben-Tal and Nemirovski (2001) and Boyd and Vandenberghe (2004).

Work by Sewall Wright (1931) on the concept of a fitness landscape was an impor-
tant precursor to the development of genetic algorithms. In the 1950s, several statisticians,
including Box (1957) and Friedman (1959), used evolutionary techniques for optimization
problems, but it wasn’t until Rechenberg (1965) introduced evolution strategies to solve op-
timization problems for airfoils that the approach gained popularity. In the 1960s and 1970s,
John Holland (1975) championed genetic algorithms, both as a useful optimization tool and
as a method to expand our understanding of adaptation (Holland, 1995).

The artificial life movement (Langton, 1995) took this idea one step further, viewing the
products of genetic algorithms as organisms rather than solutions to problems. The Bald-
win effect discussed in the chapter was proposed roughly simultaneously by Conwy Lloyd
Morgan (1896) and James (Baldwin, 1896). Computer simulations have helped to clarify
its implications (Hinton and Nowlan, 1987; Ackley and Littman, 1991; Morgan and Grif-
fiths, 2015). Smith and Szathmáry (1999), Ridley (2004), and Carroll (2007) provide general
background on evolution.

Most comparisons of genetic algorithms to other approaches (especially stochastic hill
climbing) have found that the genetic algorithms are slower to converge (O’Reilly and Op-
pacher, 1994; Mitchell et al., 1996; Juels and Wattenberg, 1996; Baluja, 1997). Such findings
are not universally popular within the GA community, but recent attempts within that com-
munity to understand population-based search as an approximate form of Bayesian learning
(see Chapter 21) might help close the gap between the field and its critics (Pelikan et al.,
1999). The theory of quadratic dynamical systems may also explain the performance of
GAs (Rabani et al., 1998). There are some impressive practical applications of GAs, in areas
as diverse as antenna design (Lohn et al., 2001), computer-aided design (Renner and Ekart,
2003), climate models (Stanislawska et al., 2015), medicine (Ghaheri et al., 2015), and de-
signing deep neural networks (Miikkulainen et al., 2019).

The field of genetic programming is a subfield of genetic algorithms in which the rep-
resentations are programs rather than bit strings. The programs are represented in the form
of syntax trees, either in a standard programming language or in specially designed formats
to represent electronic circuits, robot controllers, and so on. Crossover involves splicing to-
gether subtrees in such a way that the offspring are guaranteed to be well-formed expressions.

Interest in genetic programming was spurred by the work of John Koza (1992, 1994),
but it goes back at least to early experiments with machine code by Friedberg (1958) and
with finite-state automata by Fogel et al. (1966). As with genetic algorithms, there is debate
about the effectiveness of the technique. Koza et al. (1999) describe experiments in the use
of genetic programming to design circuit devices.

The journals Evolutionary Computation and IEEE Transactions on Evolutionary Com-
putation cover evolutionary algorithms; articles are also found in Complex Systems, Adaptive
Behavior, and Artificial Life. The main conference is the Genetic and Evolutionary Com-
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putation Conference (GECCO). Good overview texts on genetic algorithms include those by
Mitchell (1996), Fogel (2000), Langdon and Poli (2002), and Poli et al. (2008).

The unpredictability and partial observability of real environments were recognized early
on in robotics projects that used planning techniques, including Shakey (Fikes et al., 1972)
and FREDDY (Michie, 1972). The problems received more attention after the publication of
McDermott’s (1978a) influential article Planning and Acting.

The first work to make explicit use of AND–OR trees seems to have been Slagle’s SAINT

program for symbolic integration, mentioned in Chapter 1. Amarel (1967) applied the idea
to propositional theorem proving, a topic discussed in Chapter 7, and introduced a search
algorithm similar to AND-OR-GRAPH-SEARCH. The algorithm was further developed by
Nilsson (1971), who also described AO∗—which, as its name suggests, finds optimal solu-
tions. AO∗ was further improved by Martelli and Montanari (1973).

AO∗ is a top-down algorithm; a bottom-up generalization of A∗ is A∗LD, for A∗ Light-
est Derivation (Felzenszwalb and McAllester, 2007). Interest in AND–OR search underwent
a revival in the early 2000s, with new algorithms for finding cyclic solutions (Jimenez and
Torras, 2000; Hansen and Zilberstein, 2001) and new techniques inspired by dynamic pro-
gramming (Bonet and Geffner, 2005).

The idea of transforming partially observable problems into belief-state problems origi-
nated with Astrom (1965) for the much more complex case of probabilistic uncertainty (see
Chapter 16). Erdmann and Mason (1988) studied the problem of robotic manipulation with-
out sensors, using a continuous form of belief-state search. They showed that it was possible
to orient a part on a table from an arbitrary initial position by a well-designed sequence of tilt-
ing actions. More practical methods, based on a series of precisely oriented diagonal barriers
across a conveyor belt, use the same algorithmic insights (Wiegley et al., 1996).

The belief-state approach was reinvented in the context of sensorless and partially ob-
servable search problems by Genesereth and Nourbakhsh (1993). Additional work was done
on sensorless problems in the logic-based planning community (Goldman and Boddy, 1996;
Smith and Weld, 1998). This work has emphasized concise representations for belief states,
as explained in Chapter 11. Bonet and Geffner (2000) introduced the first effective heuristics
for belief-state search; these were refined by Bryce et al. (2006). The incremental approach
to belief-state search, in which solutions are constructed incrementally for subsets of states
within each belief state, was studied in the planning literature by Kurien et al. (2002); several
new incremental algorithms were introduced for nondeterministic, partially observable prob-
lems by Russell and Wolfe (2005). Additional references for planning in stochastic, partially
observable environments appear in Chapter 16.

Algorithms for exploring unknown state spaces have been of interest for many centuries.
Depth-first search in a reversible maze can be implemented by keeping one’s left hand on
the wall; loops can be avoided by marking each junction. The more general problem of
exploring Eulerian graphs (i.e., graphs in which each node has equal numbers of incomingEulerian graph

and outgoing edges) was solved by an algorithm due to Hierholzer (1873).
The first thorough algorithmic study of the exploration problem for arbitrary graphs was

carried out by Deng and Papadimitriou (1990), who developed a completely general algo-
rithm but showed that no bounded competitive ratio is possible for exploring a general graph.
Papadimitriou and Yannakakis (1991) examined the question of finding paths to a goal in
geometric path-planning environments (where all actions are reversible). They showed that
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a small competitive ratio is achievable with square obstacles, but with general rectangular
obstacles no bounded ratio can be achieved. (See Figure 4.20.)

In a dynamic environment, the state of the world can spontaneously change without any
action by the agent. For example, the agent can plan an optimal driving route from A to B,
but an accident or unusually bad rush hour traffic can spoil the plan. Incremental search algo-
rithms such as Lifelong Planning A∗ (Koenig et al., 2004) and D∗ Lite (Koenig and Likhachev,
2002) deal with this situation.

The LRTA∗ algorithm was developed by Korf (1990) as part of an investigation into real-
time search for environments in which the agent must act after searching for only a fixed
amount of time (a common situation in two-player games). LRTA∗ is in fact a special case of
reinforcement learning algorithms for stochastic environments (Barto et al., 1995). Its policy
of optimism under uncertainty—always head for the closest unvisited state—can result in
an exploration pattern that is less efficient in the uninformed case than simple depth-first
search (Koenig, 2000). Dasgupta et al. (1994) show that online iterative deepening search is
optimally efficient for finding a goal in a uniform tree with no heuristic information.

Several informed variants on the LRTA∗ theme have been developed with different meth-
ods for searching and updating within the known portion of the graph (Pemberton and Korf,
1992). As yet, there is no good theoretical understanding of how to find goals with opti-
mal efficiency when using heuristic information. Sturtevant and Bulitko (2016) provide an
analysis of some pitfalls that occur in practice.



CHAPTER 5
CONSTRAINT SATISFACTION
PROBLEMS
In which we see how treating states as more than just little black boxes leads to new search
methods and a deeper understanding of problem structure.

Chapters 3 and 4 explored the idea that problems can be solved by searching the state space:
a graph where the nodes are states and the edges between them are actions. We saw that
domain-specific heuristics could estimate the cost of reaching the goal from a given state,
but that from the point of view of the search algorithm, each state is atomic, or indivisible—
a black box with no internal structure. For each problem we need domain-specific code to
describe the transitions between states.

In this chapter we break open the black box by using a factored representation for each
state: a set of variables, each of which has a value. A problem is solved when each variable
has a value that satisfies all the constraints on the variable. A problem described this way is
called a constraint satisfaction problem, or CSP.Constraint

satisfaction problem

CSP search algorithms take advantage of the structure of states and use general rather
than domain-specific heuristics to enable the solution of complex problems. The main idea
is to eliminate large portions of the search space all at once by identifying variable/value
combinations that violate the constraints. CSPs have the additional advantage that the actions
and transition model can be deduced from the problem description.

5.1 Defining Constraint Satisfaction Problems

A constraint satisfaction problem consists of three components, X ,D, and C:
X is a set of variables, {X1, . . . ,Xn}.
D is a set of domains, {D1, . . . ,Dn}, one for each variable.
C is a set of constraints that specify allowable combinations of values.

A domain, Di, consists of a set of allowable values, {v1, . . . ,vk}, for variable Xi. For exam-
ple, a Boolean variable would have the domain {true, false}. Different variables can have
different domains of different sizes. Each constraint C j consists of a pair 〈scope,rel〉, where
scope is a tuple of variables that participate in the constraint and rel is a relation that de-Relation

fines the values that those variables can take on. A relation can be represented as an ex-
plicit set of all tuples of values that satisfy the constraint, or as a function that can compute
whether a tuple is a member of the relation. For example, if X1 and X2 both have the do-
main {1,2,3}, then the constraint saying that X1 must be greater than X2 can be written as
〈(X1,X2),{(3,1),(3,2),(2,1)}〉 or as 〈(X1,X2),X1 > X2〉.
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CSPs deal with assignments of values to variables, {Xi = vi,X j = v j, . . .}. An assignment Assignments

that does not violate any constraints is called a consistent or legal assignment. A complete Consistent

assignment is one in which every variable is assigned a value, and a solution to a CSP is Complete
assignment

Solutiona consistent, complete assignment. A partial assignment is one that leaves some variables
Partial assignmentunassigned, and a partial solution is a partial assignment that is consistent. Solving a CSP
Partial solutionis an NP-complete problem in general, although there are important subclasses of CSPs that

can be solved very efficiently.

5.1.1 Example problem: Map coloring

Suppose that, having tired of Romania, we are looking at a map of Australia showing each of
its states and territories (Figure 5.1(a)). We are given the task of coloring each region either
red, green, or blue in such a way that no two neighboring regions have the same color. To
formulate this as a CSP, we define the variables to be the regions:

X = {WA,NT,Q,NSW,V,SA,T} .

The domain of every variable is the set Di = {red,green,blue}. The constraints require neigh-
boring regions to have distinct colors. Since there are nine places where regions border, there
are nine constraints:

C = {SA 6= WA,SA 6= NT,SA 6= Q,SA 6= NSW,SA 6=V,
WA 6= NT,NT 6= Q,Q 6= NSW,NSW 6=V} .

Here we are using abbreviations; SA 6= WA is a shortcut for 〈(SA,WA),SA 6= WA〉, where
SA 6= WA can be fully enumerated in turn as

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)} .

There are many possible solutions to this problem, such as

{WA=red,NT =green,Q=red,NSW=green,V =red,SA=blue,T =red }.

It can be helpful to visualize a CSP as a constraint graph, as shown in Figure 5.1(b). The Constraint graph

nodes of the graph correspond to variables of the problem, and an edge connects any two
variables that participate in a constraint.

Why formulate a problem as a CSP? One reason is that the CSPs yield a natural repre-
sentation for a wide variety of problems; it is often easy to formulate a problem as a CSP.
Another is that years of development work have gone into making CSP solvers fast and ef-
ficient. A third is that a CSP solver can quickly prune large swathes of the search space
that an atomic state-space searcher cannot. For example, once we have chosen {SA=blue}
in the Australia problem, we can conclude that none of the five neighboring variables can
take on the value blue. A search procedure that does not use constraints would have to con-
sider 35=243 assignments for the five neighboring variables; with constraints we have only
25=32 assignments to consider, a reduction of 87%.

In atomic state-space search we can only ask: is this specific state a goal? No? What
about this one? With CSPs, once we find out that a partial assignment violates a constraint,
we can immediately discard further refinements of the partial assignment. Furthermore, we
can see why the assignment is not a solution—we see which variables violate a constraint—
so we can focus attention on the variables that matter. As a result, many problems that are
intractable for atomic state-space search can be solved quickly when formulated as a CSP.
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Figure 5.1 (a) The principal states and territories of Australia. Coloring this map can be
viewed as a constraint satisfaction problem (CSP). The goal is to assign colors to each re-
gion so that no neighboring regions have the same color. (b) The map-coloring problem
represented as a constraint graph.

5.1.2 Example problem: Job-shop scheduling

Factories have the problem of scheduling a day’s worth of jobs, subject to various constraints.
In practice, many of these problems are solved with CSP techniques. Consider the problem of
scheduling the assembly of a car. The whole job is composed of tasks, and we can model each
task as a variable, where the value of each variable is the time that the task starts, expressed
as an integer number of minutes. Constraints can assert that one task must occur before
another—for example, a wheel must be installed before the hubcap is put on—and that only
so many tasks can go on at once. Constraints can also specify that a task takes a certain
amount of time to complete.

We consider a small part of the car assembly, consisting of 15 tasks: install axles (front
and back), affix all four wheels (right and left, front and back), tighten nuts for each wheel,
affix hubcaps, and inspect the final assembly. We can represent the tasks with 15 variables:

X = {AxleF ,AxleB,WheelRF ,WheelLF ,WheelRB,WheelLB,NutsRF ,
NutsLF ,NutsRB,NutsLB,CapRF ,CapLF ,CapRB,CapLB, Inspect} .

Next, we represent precedence constraints between individual tasks. Whenever a task T1
Precedence
constraint

must occur before task T2, and task T1 takes duration d1 to complete, we add an arithmetic
constraint of the form

T1 +d1 ≤ T2 .

In our example, the axles have to be in place before the wheels are put on, and it takes 10
minutes to install an axle, so we write

AxleF +10≤WheelRF ; AxleF +10≤WheelLF ;
AxleB +10≤WheelRB; AxleB +10≤WheelLB .
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Next we say that for each wheel, we must affix the wheel (which takes 1 minute), then tighten
the nuts (2 minutes), and finally attach the hubcap (1 minute, but not represented yet):

WheelRF +1≤ NutsRF ; NutsRF +2≤ CapRF ;
WheelLF +1≤ NutsLF ; NutsLF +2≤ CapLF ;
WheelRB +1≤ NutsRB; NutsRB +2≤ CapRB;
WheelLB +1≤ NutsLB; NutsLB +2≤ CapLB .

Suppose we have four workers to install wheels, but they have to share one tool that helps
put the axle in place. We need a disjunctive constraint to say that AxleF and AxleB must not Disjunctive

constraint
overlap in time; either one comes first or the other does:

(AxleF +10≤ AxleB) or (AxleB +10≤ AxleF) .

This looks like a more complicated constraint, combining arithmetic and logic. But it still
reduces to a set of pairs of values that AxleF and AxleB can take on.

We also need to assert that the inspection comes last and takes 3 minutes. For every
variable except Inspect we add a constraint of the form X + dX ≤ Inspect. Finally, suppose
there is a requirement to get the whole assembly done in 30 minutes. We can achieve that by
limiting the domain of all variables:

Di = {0,1,2,3, . . . ,30} .
This particular problem is trivial to solve, but CSPs have been successfully applied to job-
shop scheduling problems like this with thousands of variables.

5.1.3 Variations on the CSP formalism

The simplest kind of CSP involves variables that have discrete, finite domains. Map-coloring Discrete domain

Finite domainproblems and scheduling with time limits are both of this kind. The 8-queens problem (Fig-
ure 4.3) can also be viewed as a finite-domain CSP, where the variables Q1, . . . ,Q8 correspond
to the queens in columns 1 to 8, and the domain of each variable specifies the possible row
numbers for the queen in that column, Di = {1,2,3,4,5,6,7,8}. The constraints say that no
two queens can be in the same row or diagonal.

A discrete domain can be infinite, such as the set of integers or strings. (If we didn’t put Infinite

a deadline on the job-scheduling problem, there would be an infinite number of start times for
each variable.) With infinite domains, we must use implicit constraints like T1+d1≤ T2 rather
than explicit tuples of values. Special solution algorithms (which we do not discuss here) exist
for linear constraints on integer variables—that is, constraints, such as the one just given, in Linear constraints

which each variable appears only in linear form. It can be shown that no algorithm exists for
solving general nonlinear constraints on integer variables—the problem is undecidable. Nonlinear

constraints
Constraint satisfaction problems with continuous domains are common in the real world Continuous domains

and are widely studied in the field of operations research. For example, the scheduling of ex-
periments on the Hubble Space Telescope requires very precise timing of observations; the
start and finish of each observation and maneuver are continuous-valued variables that must
obey a variety of astronomical, precedence, and power constraints. The best-known category
of continuous-domain CSPs is that of linear programming problems, where constraints must
be linear equalities or inequalities. Linear programming problems can be solved in time poly-
nomial in the number of variables. Problems with different types of constraints and objective
functions have also been studied—quadratic programming, second-order conic programming,
and so on. These problems constitute an important area of applied mathematics.
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In addition to examining the types of variables that can appear in CSPs, it is useful to
look at the types of constraints. The simplest type is the unary constraint, which restrictsUnary constraint

the value of a single variable. For example, in the map-coloring problem it could be the case
that South Australians won’t tolerate the color green; we can express that with the unary
constraint 〈(SA),SA 6= green〉. (The initial specification of the domain of a variable can also
be seen as a unary constraint.)

A binary constraint relates two variables. For example, SA 6=NSW is a binary constraint.Binary constraint

A binary CSP is one with only unary and binary constraints; it can be represented as aBinary CSP

constraint graph, as in Figure 5.1(b).
We can also define higher-order constraints. The ternary constraint Between(X ,Y,Z), for

example, can be defined as 〈(X ,Y,Z),X < Y < Z or X > Y > Z〉.
A constraint involving an arbitrary number of variables is called a global constraint.Global constraint

(The name is traditional but confusing because a global constraint need not involve all the
variables in a problem). One of the most common global constraints is Alldiff , which says
that all of the variables involved in the constraint must have different values. In Sudoku
problems (see Section 5.2.6), all variables in a row, column, or 3×3 box must satisfy an
Alldiff constraint.

Another example is provided by cryptarithmetic puzzles (Figure 5.2(a)). Each letter inCryptarithmetic

a cryptarithmetic puzzle represents a different digit. For the case in Figure 5.2(a), this would
be represented as the global constraint Alldiff (F,T,U,W,R,O). The addition constraints on
the four columns of the puzzle can be written as the following n-ary constraints:

O+O = R+10 ·C1
C1 +W +W =U +10 ·C2
C2 +T +T = O+10 ·C3
C3 = F ,

where C1, C2, and C3 are auxiliary variables representing the digit carried over into the tens,
hundreds, or thousands column. These constraints can be represented in a constraint hy-
pergraph, such as the one shown in Figure 5.2(b). A hypergraph consists of ordinary nodesConstraint

hypergraph

(the circles in the figure) and hypernodes (the squares), which represent n-ary constraints—
constraints involving n variables.

Alternatively, as Exercise 5.NARY asks you to prove, every finite-domain constraint can
be reduced to a set of binary constraints if enough auxiliary variables are introduced. This
means that we could transform any CSP into one with only binary constraints—which cer-
tainly makes the life of the algorithm designer simpler. Another way to convert an n-ary CSP
to a binary one is the dual graph transformation: create a new graph in which there will beDual graph

one variable for each constraint in the original graph, and one binary constraint for each pair
of constraints in the original graph that share variables.

For example, consider a CSP with the variables X = {X ,Y,Z}, each with the domain
{1,2,3,4,5}, and with the two constraints C1 : 〈(X ,Y,Z),X +Y = Z〉 and C2 : 〈(X ,Y ),X +1=
Y 〉. Then the dual graph would have the variables X = {C1,C2}, where the domain of the C1
variable in the dual graph is the set of {(xi,y j,zk)} tuples from the C1 constraint in the original
problem, and similarly the domain of C2 is the set of {(xi,y j)} tuples. The dual graph has the
binary constraint 〈(C1,C2),R1〉, where R1 is a new relation that defines the constraint between
C1 and C2; in this case it would be R1 = {((1,2,3),(1,2)),((2,3,5),(2,3))}.
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Figure 5.2 (a) A cryptarithmetic problem. Each letter stands for a distinct digit; the aim is
to find a substitution of digits for letters such that the resulting sum is arithmetically correct,
with the added restriction that no leading zeroes are allowed. (b) The constraint hypergraph
for the cryptarithmetic problem, showing the Alldiff constraint (square box at the top) as well
as the column addition constraints (four square boxes in the middle). The variables C1, C2,
and C3 represent the carry digits for the three columns from right to left.

There are however two reasons why we might prefer a global constraint such as Alldiff
rather than a set of binary constraints. First, it is easier and less error-prone to write the
problem description using Alldiff . Second, it is possible to design special-purpose inference
algorithms for global constraints that are more efficient than operating with primitive con-
straints. We describe these inference algorithms in Section 5.2.5.

The constraints we have described so far have all been absolute constraints, violation of
which rules out a potential solution. Many real-world CSPs include preference constraints Preference

constraints
indicating which solutions are preferred. For example, in a university class-scheduling prob-
lem there are absolute constraints that no professor can teach two classes at the same time.
But we also may allow preference constraints: Prof. R might prefer teaching in the morning,
whereas Prof. N prefers teaching in the afternoon. A schedule that has Prof. R teaching at
2 p.m. would still be an allowable solution (unless Prof. R happens to be the department chair)
but would not be an optimal one.

Preference constraints can often be encoded as costs on individual variable assignments—
for example, assigning an afternoon slot for Prof. R costs 2 points against the overall objective
function, whereas a morning slot costs 1. With this formulation, CSPs with preferences can be
solved with optimization search methods, either path-based or local. We call such a problem
a constrained optimization problem, or COP. Linear programs are one class of COPs.

Constrained
optimization
problem

5.2 Constraint Propagation: Inference in CSPs

An atomic state-space search algorithm makes progress in only one way: by expanding a
node to visit the successors. A CSP algorithm has choices. It can generate successors by
choosing a new variable assignment, or it can do a specific type of inference called constraint
propagation: using the constraints to reduce the number of legal values for a variable, which Constraint

propagation
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in turn can reduce the legal values for another variable, and so on. The idea is that this will
leave fewer choices to consider when we make the next choice of a variable assignment.
Constraint propagation may be intertwined with search, or it may be done as a preprocessing
step, before search starts. Sometimes this preprocessing can solve the whole problem, so no
search is required at all.

The key idea is local consistency. If we treat each variable as a node in a graph (seeLocal consistency

Figure 5.1(b)) and each binary constraint as an edge, then the process of enforcing local
consistency in each part of the graph causes inconsistent values to be eliminated throughout
the graph. There are different types of local consistency, which we now cover in turn.

5.2.1 Node consistency

A single variable (corresponding to a node in the CSP graph) is node-consistent if all theNode consistency

values in the variable’s domain satisfy the variable’s unary constraints. For example, in the
variant of the Australia map-coloring problem (Figure 5.1) where South Australians dislike
green, the variable SA starts with domain {red,green,blue}, and we can make it node con-
sistent by eliminating green, leaving SA with the reduced domain {red,blue}. We say that a
graph is node-consistent if every variable in the graph is node-consistent.

It is easy to eliminate all the unary constraints in a CSP by reducing the domain of vari-
ables with unary constraints at the start of the solving process. As mentioned earlier, it is also
possible to transform all n-ary constraints into binary ones. Because of this, some CSP solvers
work with only binary constraints, expecting the user to eliminate the other constraints ahead
of time. We make that assumption for the rest of this chapter, except where noted.

5.2.2 Arc consistency

A variable in a CSP is arc-consistent1 if every value in its domain satisfies the variable’sArc consistency

binary constraints. More formally, Xi is arc-consistent with respect to another variable X j if
for every value in the current domain Di there is some value in the domain D j that satisfies
the binary constraint on the arc (Xi,X j). A graph is arc-consistent if every variable is arc-
consistent with every other variable. For example, consider the constraint Y = X2 where the
domain of both X and Y is the set of decimal digits. We can write this constraint explicitly as

〈(X ,Y ),{(0,0),(1,1),(2,4),(3,9)}〉 .
To make X arc-consistent with respect to Y , we reduce X’s domain to {0,1,2,3}. If we also
make Y arc-consistent with respect to X , then Y ’s domain becomes {0,1,4,9}, and the whole
CSP is arc-consistent. On the other hand, arc consistency can do nothing for the Australia
map-coloring problem. Consider the following inequality constraint on (SA,WA):

{(red,green),(red,blue),(green,red),(green,blue),(blue,red),(blue,green)} .
No matter what value you choose for SA (or for WA), there is a valid value for the other
variable. So applying arc consistency has no effect on the domains of either variable.

The most popular algorithm for enforcing arc consistency is called AC-3 (see Figure 5.3).
To make every variable arc-consistent, the AC-3 algorithm maintains a queue of arcs to con-
sider. Initially, the queue contains all the arcs in the CSP. (Each binary constraint becomes
two arcs, one in each direction.) AC-3 then pops off an arbitrary arc (Xi,X j) from the queue

1 We have been using the term “edge” rather than “arc,” so it would make more sense to call this “edge-
consistent,” but the name “arc-consistent” is historical.
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function AC-3(csp) returns false if an inconsistency is found and true otherwise
queue←a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X j)←POP(queue)
if REVISE(csp, Xi, X j) then

if size of Di = 0 then return false
for each Xk in Xi.NEIGHBORS - {X j} do

add (Xk, Xi) to queue
return true

function REVISE(csp, Xi, X j) returns true iff we revise the domain of Xi
revised← false
for each x in Di do

if no value y in D j allows (x,y) to satisfy the constraint between Xi and X j then
delete x from Di
revised← true

return revised

Figure 5.3 The arc-consistency algorithm AC-3. After applying AC-3, either every arc is
arc-consistent, or some variable has an empty domain, indicating that the CSP cannot be
solved. The name “AC-3” was used by the algorithm’s inventor (Mackworth, 1977) because
it was the third version developed in the paper.

and makes Xi arc-consistent with respect to X j. If this leaves Di unchanged, the algorithm
just moves on to the next arc. But if this revises Di (makes the domain smaller), then we add
to the queue all arcs (Xk,Xi) where Xk is a neighbor of Xi. We need to do that because the
change in Di might enable further reductions in Dk, even if we have previously considered Xk.
If Di is revised down to nothing, then we know the whole CSP has no consistent solution, and
AC-3 can immediately return failure. Otherwise, we keep checking, trying to remove values
from the domains of variables until no more arcs are in the queue. At that point, we are left
with a CSP that is equivalent to the original CSP—they both have the same solutions—but
the arc-consistent CSP will be faster to search because its variables have smaller domains.
In some cases, it solves the problem completely (by reducing every domain to size 1) and in
others it proves that no solution exists (by reducing some domain to size 0).

The complexity of AC-3 can be analyzed as follows. Assume a CSP with n variables,
each with domain size at most d, and with c binary constraints (arcs). Each arc (Xk,Xi) can
be inserted in the queue only d times because Xi has at most d values to delete. Checking
consistency of an arc can be done in O(d2) time, so we get O(cd3) total worst-case time.

5.2.3 Path consistency

Suppose we are to color the map of Australia with just two colors, red and blue. Arc con-
sistency does nothing because every constraint can be satisfied individually with red at one
end and blue at the other. But clearly there is no solution to the problem: because Western
Australia, Northern Territory, and South Australia all touch each other, we need at least three
colors for them alone.
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Arc consistency tightens down the domains (unary constraints) using the arcs (binary
constraints). To make progress on problems like map coloring, we need a stronger notion of
consistency. Path consistency tightens the binary constraints by using implicit constraintsPath consistency

that are inferred by looking at triples of variables.
A two-variable set {Xi,X j} is path-consistent with respect to a third variable Xm if, for

every assignment {Xi = a,X j = b} consistent with the constraints (if any) on {Xi,X j}, there is
an assignment to Xm that satisfies the constraints on {Xi,Xm} and {Xm,X j}. The name refers
to the overall consistency of the path from Xi to X j with Xm in the middle.

Let’s see how path consistency fares in coloring the Australia map with two colors. We
will make the set {WA,SA} path-consistent with respect to NT . We start by enumerating the
consistent assignments to the set. In this case, there are only two: {WA = red,SA = blue} and
{WA = blue,SA = red}. We can see that with both of these assignments NT can be neither red
nor blue (because it would conflict with either WA or SA). Because there is no valid choice for
NT , we eliminate both assignments, and we end up with no valid assignments for {WA,SA}.
Therefore, we know that there can be no solution to this problem.

5.2.4 K-consistency

Stronger forms of propagation can be defined with the notion of k-consistency. A CSP is k-K-consistency

consistent if, for any set of k−1 variables and for any consistent assignment to those variables,
a consistent value can always be assigned to any kth variable. 1-consistency says that, given
the empty set, we can make any set of one variable consistent: this is what we called node
consistency. 2-consistency is the same as arc consistency. For binary constraint graphs, 3-
consistency is the same as path consistency.

A CSP is strongly k-consistent if it is k-consistent and is also (k−1)-consistent, (k−2)-Strongly
k-consistent

consistent, . . . all the way down to 1-consistent. Now suppose we have a CSP with n nodes
and make it strongly n-consistent (i.e., strongly k-consistent for k=n). We can then solve
the problem as follows: First, we choose a consistent value for X1. We are then guaranteed
to be able to choose a value for X2 because the graph is 2-consistent, for X3 because it is
3-consistent, and so on. For each variable Xi, we need only search through the d values in the
domain to find a value consistent with X1, . . . ,Xi−1. The total run time is only O(n2d).

Of course, there is no free lunch: constraint satisfaction is NP-complete in general, and
any algorithm for establishing n-consistency must take time exponential in n in the worst case.
Worse, n-consistency also requires space that is exponential in n. In practice, determining
the appropriate level of consistency checking is mostly an empirical science. Computing
2-consistency is common, and 3-consistency less common.

5.2.5 Global constraints

Remember that a global constraint is one involving an arbitrary number of variables (but not
necessarily all variables). Global constraints occur frequently in real problems and can be
handled by special-purpose algorithms that are more efficient than the general-purpose meth-
ods described so far. For example, the Alldiff constraint says that all the variables involved
must have distinct values (as in the cryptarithmetic problem above and Sudoku puzzles be-
low). One simple form of inconsistency detection for Alldiff constraints works as follows:
if m variables are involved in the constraint, and if they have n possible distinct values alto-
gether, and m> n, then the constraint cannot be satisfied.
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This leads to the following simple algorithm: First, remove any variable in the constraint
that has a singleton domain, and delete that variable’s value from the domains of the re-
maining variables. Repeat as long as there are singleton variables. If at any point an empty
domain is produced or there are more variables than domain values left, then an inconsistency
has been detected.

This method can detect the inconsistency in the assignment {WA=red, NSW=red} for
Figure 5.1. Notice that the variables SA, NT , and Q are effectively connected by an Alldiff
constraint because each pair must have two different colors. After applying AC-3 with the
partial assignment, the domains of SA, NT , and Q are all reduced to {green,blue}. That is,
we have three variables and only two colors, so the Alldiff constraint is violated. Thus, a
simple consistency procedure for a higher-order constraint is sometimes more effective than
applying arc consistency to an equivalent set of binary constraints.

Another important higher-order constraint is the resource constraint, sometimes called Resource constraint

the Atmost constraint. For example, in a scheduling problem, let P1, . . . ,P4 denote the numbers
of personnel assigned to each of four tasks. The constraint that no more than 10 personnel
are assigned in total is written as Atmost(10,P1,P2,P3,P4). We can detect an inconsistency
simply by checking the sum of the minimum values of the current domains; for example, if
each variable has the domain {3,4,5,6}, the Atmost constraint cannot be satisfied. We can
also enforce consistency by deleting the maximum value of any domain if it is not consistent
with the minimum values of the other domains. Thus, if each variable in our example has the
domain {2,3,4,5,6}, the values 5 and 6 can be deleted from each domain.

For large resource-limited problems with integer values—such as logistical problems in-
volving moving thousands of people in hundreds of vehicles—it is usually not possible to
represent the domain of each variable as a large set of integers and gradually reduce that
set by consistency-checking methods. Instead, domains are represented by upper and lower
bounds and are managed by bounds propagation. For example, in an airline-scheduling Bounds propagation

problem, let’s suppose there are two flights, F1 and F2, for which the planes have capacities
165 and 385, respectively. The initial domains for the numbers of passengers on flights F1
and F2 are then

D1 = [0,165] and D2 = [0,385] .

Now suppose we have the additional constraint that the two flights together must carry 420
people: F1 +F2 = 420. Propagating bounds constraints, we reduce the domains to

D1 = [35,165] and D2 = [255,385] .

We say that a CSP is bounds-consistent if for every variable X , and for both the lower-bound Bounds-consistent

and upper-bound values of X , there exists some value of Y that satisfies the constraint between
X and Y for every variable Y . This kind of bounds propagation is widely used in practical
constraint problems.

5.2.6 Sudoku

The popular Sudoku puzzle has introduced millions of people to constraint satisfaction prob- Sudoku

lems, although they may not realize it. A Sudoku board consists of 81 squares, some of which
are initially filled with digits from 1 to 9. The puzzle is to fill in all the remaining squares
such that no digit appears twice in any row, column, or 3×3 box (see Figure 5.4). A row,
column, or box is called a unit.
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Figure 5.4 (a) A Sudoku puzzle and (b) its solution.

The Sudoku puzzles that appear in newspapers and puzzle books have the property that
there is exactly one solution. Although some can be tricky to solve by hand, taking tens of
minutes, a CSP solver can handle thousands of puzzles per second.

A Sudoku puzzle can be considered a CSP with 81 variables, one for each square. We
use the variable names A1 through A9 for the top row (left to right), down to I1 through I9 for
the bottom row. The empty squares have the domain {1,2,3,4,5,6,7,8,9} and the pre-filled
squares have a domain consisting of a single value. In addition, there are 27 different Alldiff
constraints, one for each unit (row, column, and box of 9 squares):

Alldiff (A1,A2,A3,A4,A5,A6,A7,A8,A9)
Alldiff (B1,B2,B3,B4,B5,B6,B7,B8,B9)
· · ·
Alldiff (A1,B1,C1,D1,E1,F1,G1,H1, I1)
Alldiff (A2,B2,C2,D2,E2,F2,G2,H2, I2)
· · ·
Alldiff (A1,A2,A3,B1,B2,B3,C1,C2,C3)
Alldiff (A4,A5,A6,B4,B5,B6,C4,C5,C6)
· · ·

Let us see how far arc consistency can take us. Assume that the Alldiff constraints have been
expanded into binary constraints (such as A1 6= A2) so that we can apply the AC-3 algorithm
directly. Consider variable E6 from Figure 5.4(a)—the empty square between the 2 and the 8
in the middle box. From the constraints in the box, we can remove 1, 2, 7, and 8 from E6’s
domain. From the constraints in its column, we can eliminate 5, 6, 2, 8, 9, and 3 (although
2 and 8 were already removed). That leaves E6 with a domain of {4}; in other words, we
know the answer for E6. Now consider variable I6—the square in the bottom middle box
surrounded by 1, 3, and 3. Applying arc consistency in its column, we eliminate 5, 6, 2, 4
(since we now know E6 must be 4), 8, 9, and 3. We eliminate 1 by arc consistency with I5,



Section 5.3 Backtracking Search for CSPs 175

and we are left with only the value 7 in the domain of I6. Now there are 8 known values in
column 6, so arc consistency can infer that A6 must be 1. Inference continues along these
lines, and eventually, AC-3 can solve the entire puzzle—all the variables have their domains
reduced to a single value, as shown in Figure 5.4(b).

Of course, Sudoku would soon lose its appeal if every puzzle could be solved by a me-
chanical application of AC-3, and indeed AC-3 works only for the easiest Sudoku puzzles.
Slightly harder ones can be solved by PC-2, but at a greater computational cost: there are
255,960 different path constraints to consider in a Sudoku puzzle. To solve the hardest puz-
zles and to make efficient progress, we will have to be more clever.

Indeed, the appeal of Sudoku puzzles for the human solver is the need to be resourceful
in applying more complex inference strategies. Aficionados give them colorful names, such
as “naked triples.” That strategy works as follows: in any unit (row, column or box), find
three squares that each have a domain that contains the same three numbers or a subset of
those numbers. For example, the three domains might be {1,8}, {3,8}, and {1,3,8}. From
that we don’t know which square contains 1, 3, or 8, but we do know that the three numbers
must be distributed among the three squares. Therefore we can remove 1, 3, and 8 from the
domains of every other square in the unit.

It is interesting to note how far we can go without saying much that is specific to Sudoku.
We do of course have to say that there are 81 variables, that their domains are the digits 1 to 9,
and that there are 27 Alldiff constraints. But beyond that, all the strategies—arc consistency,
path consistency, and so on—apply generally to all CSPs, not just to Sudoku problems. Even
naked triples is really a strategy for enforcing consistency of Alldiff constraints and is not
specific to Sudoku per se. This is the power of the CSP formalism: for each new problem
area, we only need to define the problem in terms of constraints; then the general constraint-
solving mechanisms can take over.

5.3 Backtracking Search for CSPs

Sometimes we can finish the constraint propagation process and still have variables with
multiple possible values. In that case we have to search for a solution. In this section we
cover backtracking search algorithms that work on partial assignments; in the next section
we look at local search algorithms over complete assignments.

Consider how a standard depth-limited search (from Chapter 3) could solve CSPs. A
state would be a partial assignment, and an action would extend the assignment, adding, say,
NSW = red or SA = blue for the Australia map-coloring problem. For a CSP with n variables
of domain size d we would end up with a search tree where all the complete assignments (and
thus all the solutions) are leaf nodes at depth n. But notice that the branching factor at the top
level would be nd because any of d values can be assigned to any of n variables. At the next
level, the branching factor is (n− 1)d, and so on for n levels. So the tree has n! · dn leaves,
even though there are only dn possible complete assignments!

We can get back that factor of n! by recognizing a crucial property of CSPs: commuta-
tivity. A problem is commutative if the order of application of any given set of actions does Commutativity

not matter. In CSPs, it makes no difference if we first assign NSW = red and then SA = blue,
or the other way around. Therefore, we need only consider a single variable at each node
in the search tree. At the root we might make a choice between SA=red, SA=green, and
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function BACKTRACKING-SEARCH(csp) returns a solution or failure
return BACKTRACK(csp,{})

function BACKTRACK(csp, assignment) returns a solution or failure
if assignment is complete then return assignment
var←SELECT-UNASSIGNED-VARIABLE(csp, assignment)
for each value in ORDER-DOMAIN-VALUES(csp, var, assignment) do

if value is consistent with assignment then
add {var = value} to assignment
inferences← INFERENCE(csp, var, assignment)
if inferences 6= failure then

add inferences to csp
result←BACKTRACK(csp, assignment)
if result 6= failure then return result
remove inferences from csp

remove {var = value} from assignment
return failure

Figure 5.5 A simple backtracking algorithm for constraint satisfaction problems. The
algorithm is modeled on the recursive depth-first search of Chapter 3. The functions
SELECT-UNASSIGNED-VARIABLE and ORDER-DOMAIN-VALUES implement the general-
purpose heuristics discussed in Section 5.3.1. The INFERENCE function can optionally im-
pose arc-, path-, or k-consistency, as desired. If a value choice leads to failure (noticed
either by INFERENCE or by BACKTRACK), then value assignments (including those made by
INFERENCE) are retracted and a new value is tried.

SA=blue, but we would never choose between NSW=red and SA=blue. With this restric-
tion, the number of leaves is dn, as we would hope. At each level of the tree we do have to
choose which variable we will deal with, but we never have to backtrack over that choice.

Figure 5.5 shows a backtracking search procedure for CSPs. It repeatedly chooses an
unassigned variable, and then tries all values in the domain of that variable in turn, trying
to extend each one into a solution via a recursive call. If the call succeeds, the solution
is returned, and if it fails, the assignment is restored to the previous state, and we try the
next value. If no value works then we return failure. Part of the search tree for the Australia
problem is shown in Figure 5.6, where we have assigned variables in the order WA,NT,Q, . . ..

Notice that BACKTRACKING-SEARCH keeps only a single representation of a state (as-
signment) and alters that representation rather than creating new ones (see page 98).

Whereas the uninformed search algorithms of Chapter 3 could be improved only by sup-
plying them with domain-specific heuristics, it turns out that backtracking search can be im-
proved using domain-independent heuristics that take advantage of the factored representa-
tion of CSPs. In the following four sections we show how this is done:

• (5.3.1) Which variable should be assigned next (SELECT-UNASSIGNED-VARIABLE),
and in what order should its values be tried (ORDER-DOMAIN-VALUES)?

• (5.3.2) What inferences should be performed at each step in the search (INFERENCE)?
• (5.3.3) Can we BACKTRACK more than one step when appropriate?
• (5.3.4) Can we save and reuse partial results from the search?
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Figure 5.6 Part of the search tree for the map-coloring problem in Figure 5.1.

5.3.1 Variable and value ordering

The backtracking algorithm contains the line

var←SELECT-UNASSIGNED-VARIABLE(csp, assignment) .

The simplest strategy for SELECT-UNASSIGNED-VARIABLE is static ordering: choose the
variables in order, {X1,X2, . . .}. The next simplest is to choose randomly. Neither strategy
is optimal. For example, after the assignments for WA=red and NT =green in Figure 5.6,
there is only one possible value for SA, so it makes sense to assign SA=blue next rather than
assigning Q. In fact, after SA is assigned, the choices for Q, NSW, and V are all forced.

This intuitive idea—choosing the variable with the fewest “legal” values—is called the
minimum-remaining-values (MRV) heuristic. It also has been called the “most constrained Minimum-remaining-

values
variable” or “fail-first” heuristic, the latter because it picks a variable that is most likely to
cause a failure soon, thereby pruning the search tree. If some variable X has no legal values
left, the MRV heuristic will select X and failure will be detected immediately—avoiding
pointless searches through other variables. The MRV heuristic usually performs better than
a random or static ordering, sometimes by orders of magnitude, although the results vary
depending on the problem.

The MRV heuristic doesn’t help at all in choosing the first region to color in Australia,
because initially every region has three legal colors. In this case, the degree heuristic comes Degree heuristic

in handy. It attempts to reduce the branching factor on future choices by selecting the variable
that is involved in the largest number of constraints on other unassigned variables. In Fig-
ure 5.1, SA is the variable with highest degree, 5; the other variables have degree 2 or 3, except
for T , which has degree 0. If we assign the SA first, we can then go around the five mainland
regions in clockwise or counterclockwise order and assign each one a color that is different
than SA and different than the previous region. The minimum-remaining-values heuristic is
usually a more powerful guide, but the degree heuristic can be useful as a tie-breaker.

Once a variable has been selected, the algorithm must decide on the order in which to
examine its values. The least-constraining-value heuristic is effective for this. It prefers Least-constraining-

value
the value that rules out the fewest choices for the neighboring variables in the constraint
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graph. For example, suppose that in Figure 5.1 we have generated the partial assignment
with WA=red and NT =green and that our next choice is for Q. Blue would be a bad choice
because it eliminates the last legal value left for Q’s neighbor, SA. The least-constraining-
value heuristic therefore prefers red to blue. In general, the heuristic is trying to leave the
maximum flexibility for subsequent variable assignments.

Why should variable selection be fail-first, but value selection be fail-last? Every variable
has to be assigned eventually, so by choosing the ones that are likely to fail first, we will on
average have fewer successful assignments to backtrack over. For value ordering, the trick
is that we only need one solution; therefore it makes sense to look for the most likely values
first. If we wanted to enumerate all solutions rather than just find one, then value ordering
would be irrelevant.

5.3.2 Interleaving search and inference

We saw how AC-3 can reduce the domains of variables before we begin the search. But
inference can be even more powerful during the course of a search: every time we make
a choice of a value for a variable, we have a brand-new opportunity to infer new domain
reductions on the neighboring variables.

One of the simplest forms of inference is called forward checking. Whenever a variableForward checking

X is assigned, the forward-checking process establishes arc consistency for it: for each unas-
signed variable Y that is connected to X by a constraint, delete from Y ’s domain any value
that is inconsistent with the value chosen for X .

Figure 5.7 shows the progress of backtracking search on the Australia CSP with forward
checking. There are two important points to notice about this example. First, notice that after
WA=red and Q=green are assigned, the domains of NT and SA are reduced to a single value;
we have eliminated branching on these variables altogether by propagating information from
WA and Q. A second point to notice is that after V =blue, the domain of SA is empty. Hence,
forward checking has detected that the partial assignment {WA=red,Q=green,V =blue} is
inconsistent with the constraints of the problem, and the algorithm backtracks immediately.

For many problems the search will be more effective if we combine the MRV heuristic
with forward checking. Consider Figure 5.7 after assigning {WA=red}. Intuitively, it seems
that that assignment constrains its neighbors, NT and SA, so we should handle those variables
next, and then all the other variables will fall into place. That’s exactly what happens with
MRV: NT and SA each have two values, so one of them is chosen first, then the other, then
Q, NSW, and V in order. Finally T still has three values, and any one of them works. We can
view forward checking as an efficient way to incrementally compute the information that the
MRV heuristic needs to do its job.

Although forward checking detects many inconsistencies, it does not detect all of them.
The problem is that it doesn’t look ahead far enough. For example, consider the Q=green
row of Figure 5.7. We’ve made WA and Q arc-consistent, but we’ve left both NT and SA with
blue as their only possible value, which is an inconsistency, since they are neighbors.

The algorithm called MAC (for Maintaining Arc Consistency) detects inconsistenciesMaintaining Arc
Consistency

like this. After a variable Xi is assigned a value, the INFERENCE procedure calls AC-3, but
instead of a queue of all arcs in the CSP, we start with only the arcs (X j,Xi) for all X j that are
unassigned variables that are neighbors of Xi. From there, AC-3 does constraint propagation
in the usual way, and if any variable has its domain reduced to the empty set, the call to AC-3
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Figure 5.7 The progress of a map-coloring search with forward checking. WA=red is as-
signed first; then forward checking deletes red from the domains of the neighboring variables
NT and SA. After Q=green is assigned, green is deleted from the domains of NT , SA, and
NSW. After V =blue is assigned, blue is deleted from the domains of NSW and SA, leaving
SA with no legal values.

fails and we know to backtrack immediately. We can see that MAC is strictly more powerful
than forward checking because forward checking does the same thing as MAC on the initial
arcs in MAC’s queue; but unlike MAC, forward checking does not recursively propagate
constraints when changes are made to the domains of variables.

5.3.3 Intelligent backtracking: Looking backward

The BACKTRACKING-SEARCH algorithm in Figure 5.5 has a very simple policy for what to
do when a branch of the search fails: back up to the preceding variable and try a different
value for it. This is called chronological backtracking because the most recent decision Chronological

backtracking

point is revisited. In this subsection, we consider better possibilities.
Consider what happens when we apply simple backtracking in Figure 5.1 with a fixed

variable ordering Q, NSW, V , T , SA, WA, NT . Suppose we have generated the partial assign-
ment {Q=red,NSW=green,V =blue,T =red}. When we try the next variable, SA, we see
that every value violates a constraint. We back up to T and try a new color for Tasmania!
Obviously this is silly—recoloring Tasmania cannot possibly help in resolving the problem
with South Australia.

A more intelligent approach is to backtrack to a variable that might fix the problem—a
variable that was responsible for making one of the possible values of SA impossible. To do
this, we will keep track of a set of assignments that are in conflict with some value for SA.
The set (in this case {Q=red,NSW=green,V =blue}), is called the conflict set for SA. The Conflict set

backjumping method backtracks to the most recent assignment in the conflict set; in this Backjumping

case, backjumping would jump over Tasmania and try a new value for V . This method is
easily implemented by a modification to BACKTRACK such that it accumulates the conflict
set while checking for a legal value to assign. If no legal value is found, the algorithm should
return the most recent element of the conflict set along with the failure indicator.

The sharp-eyed reader may have noticed that forward checking can supply the conflict set
with no extra work: whenever forward checking based on an assignment X =x deletes a value
from Y ’s domain, it should add X =x to Y ’s conflict set. If the last value is deleted from Y ’s
domain, then the assignments in the conflict set of Y are added to the conflict set of X . That
is, we now know that X =x leads to a contradiction (in Y ), and thus a different assignment
should be tried for X .
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The eagle-eyed reader may have noticed something odd: backjumping occurs when ev-
ery value in a domain is in conflict with the current assignment; but forward checking detects
this event and prevents the search from ever reaching such a node! In fact, it can be shown
that every branch pruned by backjumping is also pruned by forward checking. Hence, sim-
ple backjumping is redundant in a forward-checking search or, indeed, in a search that uses
stronger consistency checking, such as MAC—you need only do one or the other.

Despite the observations of the preceding paragraph, the idea behind backjumping re-
mains a good one: to backtrack based on the reasons for failure. Backjumping notices failure
when a variable’s domain becomes empty, but in many cases a branch is doomed long before
this occurs. Consider again the partial assignment {WA=red,NSW=red} (which, from our
earlier discussion, is inconsistent). Suppose we try T =red next and then assign NT , Q, V ,
SA. We know that no assignment can work for these last four variables, so eventually we run
out of values to try at NT . Now, the question is, where to backtrack? Backjumping cannot
work, because NT does have values consistent with the preceding assigned variables—NT
doesn’t have a complete conflict set of preceding variables that caused it to fail. We know,
however, that the four variables NT , Q, V , and SA, taken together, failed because of a set of
preceding variables, which must be those variables that directly conflict with the four.

This leads to a different–and deeper–notion of the conflict set for a variable such as NT:
it is that set of preceding variables that caused NT , together with any subsequent variables,
to have no consistent solution. In this case, the set is WA and NSW, so the algorithm should
backtrack to NSW and skip over Tasmania. A backjumping algorithm that uses conflict sets
defined in this way is called conflict-directed backjumping.Conflict-directed

backjumping

We must now explain how these new conflict sets are computed. The method is in fact
quite simple. The “terminal” failure of a branch of the search always occurs because a vari-
able’s domain becomes empty; that variable has a standard conflict set. In our example, SA
fails, and its conflict set is (say) {WA,NT,Q}. We backjump to Q, and Q absorbs the conflict
set from SA (minus Q itself, of course) into its own direct conflict set, which is {NT,NSW};
the new conflict set is {WA,NT,NSW}. That is, there is no solution from Q onward, given
the preceding assignment to {WA,NT,NSW}. Therefore, we backtrack to NT , the most recent
of these. NT absorbs {WA,NT,NSW}−{NT} into its own direct conflict set {WA}, giving
{WA,NSW} (as stated in the previous paragraph). Now the algorithm backjumps to NSW, as
we would hope. To summarize: let X j be the current variable, and let conf (X j) be its conflict
set. If every possible value for X j fails, backjump to the most recent variable Xi in conf (X j)
and recompute the conflict set for Xi as follows:

conf (Xi)← conf (Xi)∪ conf (X j)−{Xi} .

5.3.4 Constraint learning

When we reach a contradiction, backjumping can tell us how far to back up, so we don’t
waste time changing variables that won’t fix the problem. But we would also like to avoid
running into the same problem again. When the search arrives at a contradiction, we know
that some subset of the conflict set is responsible for the problem. Constraint learning isConstraint learning

the idea of finding a minimum set of variables from the conflict set that causes the problem.
This set of variables, along with their corresponding values, is called a no-good. We thenNo-good

record the no-good, either by adding a new constraint to the CSP to forbid this combination
of assignments or by keeping a separate cache of no-goods.
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For example, consider the state {WA = red,NT = green,Q = blue} in the bottom row of
Figure 5.6. Forward checking can tell us this state is a no-good because there is no valid
assignment to SA. In this particular case, recording the no-good would not help, because
once we prune this branch from the search tree, we will never encounter this combination
again. But suppose that the search tree in Figure 5.6 were actually part of a larger search
tree that started by first assigning values for V and T . Then it would be worthwhile to record
{WA = red,NT = green,Q = blue} as a no-good because we are going to run into the same
problem again for each possible set of assignments to V and T .

No-goods can be effectively used by forward checking or by backjumping. Constraint
learning is one of the most important techniques used by modern CSP solvers to achieve
efficiency on complex problems.

5.4 Local Search for CSPs

Local search algorithms (see Section 4.1) turn out to be very effective in solving many CSPs.
They use a complete-state formulation (as introduced in Section 4.1.1) where each state as-
signs a value to every variable, and the search changes the value of one variable at a time. As
an example, we’ll use the 8-queens problem, as defined as a CSP on page 167. In Figure 5.8
we start on the left with a complete assignment to the 8 variables; typically this will violate
several constraints. We then randomly choose a conflicted variable, which turns out to be Q8,
the rightmost column. We’d like to change the value to something that brings us closer to a
solution; the most obvious approach is to select the value that results in the minimum number
of conflicts with other variables—the min-conflicts heuristic. Min-conflicts

In the figure we see there are two rows that only violate one constraint; we pick Q8=3
(that is, we move the queen to the 8th column, 3rd row). On the next iteration, in the middle
board of the figure, we select Q6 as the variable to change, and note that moving the queen to
the 8th row results in no conflicts. At this point there are no more conflicted variables, so we
have a solution. The algorithm is shown in Figure 5.9.2

Min-conflicts is surprisingly effective for many CSPs. Amazingly, on the n-queens prob-
lem, if you don’t count the initial placement of queens, the run time of min-conflicts is roughly
independent of problem size. It solves even the million-queens problem in an average of 50
steps (after the initial assignment). This remarkable observation was the stimulus leading to a
great deal of research in the 1990s on local search and the distinction between easy and hard
problems, which we take up in Section 7.6.3. Roughly speaking, n-queens is easy for local
search because solutions are densely distributed throughout the state space. Min-conflicts
also works well for hard problems. For example, it has been used to schedule observations
for the Hubble Space Telescope, reducing the time taken to schedule a week of observations
from three weeks (!) to around 10 minutes.

All the local search techniques from Section 4.1 are candidates for application to CSPs,
and some of those have proved especially effective. The landscape of a CSP under the min-
conflicts heuristic usually has a series of plateaus. There may be millions of variable as-
signments that are only one conflict away from a solution. Plateau search—allowing side-
ways moves to another state with the same score—can help local search find its way off this

2 Local search can easily be extended to constrained optimization problems (COPs). In that case, all the tech-
niques for hill climbing and simulated annealing can be applied to optimize the objective function.
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Figure 5.8 A two-step solution using min-conflicts for an 8-queens problem. At each stage,
a queen is chosen for reassignment in its column. The number of conflicts (in this case, the
number of attacking queens) is shown in each square. The algorithm moves the queen to the
min-conflicts square, breaking ties randomly.

function MIN-CONFLICTS(csp, max steps) returns a solution or failure
inputs: csp, a constraint satisfaction problem

max steps, the number of steps allowed before giving up

current←an initial complete assignment for csp
for i = 1 to max steps do

if current is a solution for csp then return current
var←a randomly chosen conflicted variable from csp.VARIABLES
value← the value v for var that minimizes CONFLICTS(csp, var, v, current)
set var=value in current

return failure

Figure 5.9 The MIN-CONFLICTS local search algorithm for CSPs. The initial state may be
chosen randomly or by a greedy assignment process that chooses a minimal-conflict value
for each variable in turn. The CONFLICTS function counts the number of constraints violated
by a particular value, given the rest of the current assignment.

plateau. This wandering on the plateau can be directed with a technique called tabu search:
keeping a small list of recently visited states and forbidding the algorithm to return to those
states. Simulated annealing can also be used to escape from plateaus.

Another technique called constraint weighting aims to concentrate the search on theConstraint weighting

important constraints. Each constraint is given a numeric weight, initially all 1. At each step
of the search, the algorithm chooses a variable/value pair to change that will result in the
lowest total weight of all violated constraints. The weights are then adjusted by incrementing
the weight of each constraint that is violated by the current assignment. This has two benefits:
it adds topography to plateaus, making sure that it is possible to improve from the current
state, and it also adds learning: over time the difficult constraints are assigned higher weights.

Another advantage of local search is that it can be used in an online setting (see Sec-
tion 4.5) when the problem changes. Consider a scheduling problem for an airline’s weekly
flights. The schedule may involve thousands of flights and tens of thousands of personnel
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assignments, but bad weather at one airport can render the schedule infeasible. We would
like to repair the schedule with a minimum number of changes. This can be easily done with
a local search algorithm starting from the current schedule. A backtracking search with the
new set of constraints usually requires much more time and might find a solution with many
changes from the current schedule.

5.5 The Structure of Problems

In this section, we examine ways in which the structure of the problem, as represented by
the constraint graph, can be used to find solutions quickly. Most of the approaches here also
apply to other problems besides CSPs, such as probabilistic reasoning.

The only way we can possibly hope to deal with the vast real world is to decompose it into
subproblems. Looking again at the constraint graph for Australia (Figure 5.1(b), repeated as
Figure 5.12(a)), one fact stands out: Tasmania is not connected to the mainland.3 Intuitively,
it is obvious that coloring Tasmania and coloring the mainland are independent subprob-
lems—any solution for the mainland combined with any solution for Tasmania yields a solu- Independent

subproblems

tion for the whole map.
Independence can be ascertained simply by finding connected components of the con- Connected

component

straint graph. Each component corresponds to a subproblem CSPi. If assignment Si is a
solution of CSPi, then

⋃
i Si is a solution of

⋃
i CSPi. Why is this important? Suppose each

CSPi has c variables from the total of n variables, where c is a constant. Then there are n/c
subproblems, each of which takes at most dc work to solve, where d is the size of the domain.
Hence, the total work is O(dcn/c), which is linear in n; without the decomposition, the total
work is O(dn), which is exponential in n. Let’s make this more concrete: dividing a Boolean
CSP with 100 variables into four subproblems reduces the worst-case solution time from the
lifetime of the universe down to less than a second.

Completely independent subproblems are delicious, then, but rare. Fortunately, some
other graph structures are also easy to solve. For example, a constraint graph is a tree when
any two variables are connected by only one path. We will show that any tree-structured J
CSP can be solved in time linear in the number of variables.4 The key is a new notion of
consistency, called directional arc consistency or DAC. A CSP is defined to be directional Directional arc

consistency

arc-consistent under an ordering of variables X1,X2, . . . ,Xn if and only if every Xi is arc-
consistent with each X j for j > i.

To solve a tree-structured CSP, first pick any variable to be the root of the tree, and choose
an ordering of the variables such that each variable appears after its parent in the tree. Such
an ordering is called a topological sort. Figure 5.10(a) shows a sample tree and (b) shows Topological sort

one possible ordering. Any tree with n nodes has n− 1 edges, so we can make this graph
directed arc-consistent in O(n) steps, each of which must compare up to d possible domain
values for two variables, for a total time of O(nd2). Once we have a directed arc-consistent
graph, we can just march down the list of variables and choose any remaining value. Since
each edge from a parent to its child is arc-consistent, we know that for any value we choose
for the parent, there will be a valid value left to choose for the child. That means we won’t

3 A careful cartographer or patriotic Tasmanian might object that Tasmania should not be colored the same as
its nearest mainland neighbor, to avoid the impression that it might be part of that state.
4 Sadly, very few regions of the world have tree-structured maps, although Sulawesi comes close.



184 Chapter 5 Constraint Satisfaction Problems

Figure 5.10 (a) The constraint graph of a tree-structured CSP. (b) A linear ordering of the
variables consistent with the tree with A as the root. This is known as a topological sort of
the variables.

function TREE-CSP-SOLVER(csp) returns a solution, or failure
inputs: csp, a CSP with components X , D, C

n←number of variables in X
assignment←an empty assignment
root←any variable in X
X←TOPOLOGICALSORT(X, root)
for j = n down to 2 do

MAKE-ARC-CONSISTENT(PARENT(X j), X j)
if it cannot be made consistent then return failure

for i = 1 to n do
assignment[Xi]←any consistent value from Di
if there is no consistent value then return failure

return assignment

Figure 5.11 The TREE-CSP-SOLVER algorithm for solving tree-structured CSPs. If the
CSP has a solution, we will find it in linear time; if not, we will detect a contradiction.

have to backtrack; we can move linearly through the variables. The complete algorithm is
shown in Figure 5.11.

Now that we have an efficient algorithm for trees, we can consider whether more gen-
eral constraint graphs can be reduced to trees somehow. There are two ways to do this: by
removing nodes (Section 5.5.1) or by collapsing nodes together (Section 5.5.2).

5.5.1 Cutset conditioning

The first way to reduce a constraint graph to a tree involves assigning values to some variables
so that the remaining variables form a tree. Consider the constraint graph for Australia, shown
again in Figure 5.12(a). Without South Australia, the graph would become a tree, as in (b).
Fortunately, we can delete South Australia (in the graph, not the country) by fixing a value
for SA and deleting from the domains of the other variables any values that are inconsistent
with the value chosen for SA.

Now, any solution for the CSP after SA and its constraints are removed will be consistent
with the value chosen for SA. (This works for binary CSPs; the situation is more complicated
with higher-order constraints.) Therefore, we can solve the remaining tree with the algorithm
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Figure 5.12 (a) The original constraint graph from Figure 5.1. (b) After the removal of SA,
the constraint graph becomes a forest of two trees.

given above and thus solve the whole problem. Of course, in the general case (as opposed to
map coloring), the value chosen for SA could be the wrong one, so we would need to try each
possible value. The general algorithm is as follows:

1. Choose a subset S of the CSP’s variables such that the constraint graph becomes a tree
after removal of S. S is called a cycle cutset. Cycle cutset

2. For each possible assignment to the variables in S that satisfies all constraints on S,

(a) remove from the domains of the remaining variables any values that are inconsis-
tent with the assignment for S, and

(b) if the remaining CSP has a solution, return it together with the assignment for S.

If the cycle cutset has size c, then the total run time is O(dc ·(n−c)d2): we have to try each of
the dc combinations of values for the variables in S, and for each combination we must solve
a tree problem of size n−c. If the graph is “nearly a tree,” then c will be small and the savings
over straight backtracking will be huge—for our 100-Boolean-variable example, if we could
find a cutset of size c=20, this would get us down from the lifetime of the Universe to a few
minutes. In the worst case, however, c can be as large as (n−2). Finding the smallest cycle
cutset is NP-hard, but several efficient approximation algorithms are known. The overall
algorithmic approach is called cutset conditioning; it comes up again in Chapter 13, where Cutset conditioning

it is used for reasoning about probabilities.

5.5.2 Tree decomposition

The second way to reduce a constraint graph to a tree is based on constructing a tree decom-
position of the constraint graph: a transformation of the original graph into a tree where each Tree decomposition

node in the tree consists of a set of variables, as in Figure 5.13. A tree decomposition must
satisfy these three requirements:

• Every variable in the original problem appears in at least one of the tree nodes.
• If two variables are connected by a constraint in the original problem, they must appear

together (along with the constraint) in at least one of the tree nodes.
• If a variable appears in two nodes in the tree, it must appear in every node along the

path connecting those nodes.
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Figure 5.13 A tree decomposition of the constraint graph in Figure 5.12(a).

The first two conditions ensure that all the variables and constraints are represented in the
tree decomposition. The third condition seems rather technical, but allows us to say that
any variable from the original problem must have the same value wherever it appears: the
constraints in the tree say that a variable in one node of the tree must have the same value as
the corresponding variable in the adjacent node in the tree. For example, SA appears in all
four of the connected nodes in Figure 5.13, so each edge in the tree decomposition therefore
includes the constraint that the value of SA in one node must be the same as the value of SA
in the next. You can verify from Figure 5.12 that this decomposition makes sense.

Once we have a tree-structured graph, we can apply TREE-CSP-SOLVER to get a solution
in O(nd2) time, where n is the number of tree nodes and d is the size of the largest domain.
But note that in the tree, a domain is a set of tuples of values, not just individual values.

For example, the top left node in Figure 5.13 represents, at the level of the original prob-
lem, a subproblem with variables {WA,NT,SA}, domain {red,green,blue}, and constraints
WA 6= NT,SA 6= NT,WA 6= SA. At the level of the tree, the node represents a single vari-
able, which we can call SANTWA, whose value must be a three-tuple of colors, such as
(red,green,blue), but not (red,red,blue), because that would violate the constraint SA 6= NT
from the original problem. We can then move from that node to the adjacent one, with the
variable we can call SANTQ, and find that there is only one tuple, (red,green,blue), that is
consistent with the choice for SANTWA. The exact same process is repeated for the next two
nodes, and independently we can make any choice for T .

We can solve any tree decomposition problem in O(nd2) time with TREE-CSP-SOLVER,
which will be efficient as long as d remains small. Going back to our example with 100
Boolean variables, if each node has 10 variables, then d=210 and we should be able to solve
the problem in seconds. But if there is a node with 30 variables, it would take centuries.

A given graph admits many tree decompositions; in choosing a decomposition, the aim
is to make the subproblems as small as possible. (Putting all the variables into one node is
technically a tree, but is not helpful.) The tree width of a tree decomposition of a graph isTree width
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one less than the size of the largest node; the tree width of the graph itself is defined to be
the minimum width among all its tree decompositions. If a graph has tree width w then the
problem can be solved in O(ndw+1) time given the corresponding tree decomposition. Hence,
CSPs with constraint graphs of bounded tree width are solvable in polynomial time. J

Unfortunately, finding the decomposition with minimal tree width is NP-hard, but there
are heuristic methods that work well in practice. Which is better: the cutset decomposition
with time O(dc · (n− c)d2), or the tree decomposition with time O(ndw+1)? Whenever you
have a cycle-cutset of size c, there is also a tree width of size w < c+ 1, and it may be far
smaller in some cases. So time consideration favors tree decomposition, but the advantage of
the cycle-cutset approach is that it can be executed in linear memory, while tree decomposi-
tion requires memory exponential in w.

5.5.3 Value symmetry

So far, we have looked at the structure of the constraint graph. There can also be important
structure in the values of variables, or in the structure of the constraint relations themselves.
Consider the map-coloring problem with d colors. For every consistent solution, there is
actually a set of d! solutions formed by permuting the color names. For example, on the
Australia map we know that WA, NT , and SA must all have different colors, but there are
3! = 6 ways to assign three colors to three regions. This is called value symmetry. We would Value symmetry

like to reduce the search space by a factor of d! by breaking the symmetry in assignments.
We do this by introducing a symmetry-breaking constraint. For our example, we might Symmetry-breaking

constraint
impose an arbitrary ordering constraint, NT < SA < WA, that requires the three values to be
in alphabetical order. This constraint ensures that only one of the d! solutions is possible:
{NT = blue,SA = green,WA = red}.

For map coloring, it was easy to find a constraint that eliminates the symmetry. In gen-
eral it is NP-hard to eliminate all symmetry, but breaking value symmetry has proved to be
important and effective on a wide range of problems.

Summary

• Constraint satisfaction problems (CSPs) represent a state with a set of variable/value
pairs and represent the conditions for a solution by a set of constraints on the variables.
Many important real-world problems can be described as CSPs.

• A number of inference techniques use the constraints to rule out certain variable as-
signments. These include node, arc, path, and k-consistency.

• Backtracking search, a form of depth-first search, is commonly used for solving CSPs.
Inference can be interwoven with search.

• The minimum-remaining-values and degree heuristics are domain-independent meth-
ods for deciding which variable to choose next in a backtracking search. The least-
constraining-value heuristic helps in deciding which value to try first for a given
variable. Backtracking occurs when no legal assignment can be found for a variable.
Conflict-directed backjumping backtracks directly to the source of the problem. Con-
straint learning records the conflicts as they are encountered during search in order to
avoid the same conflict later in the search.
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• Local search using the min-conflicts heuristic has also been applied to constraint satis-
faction problems with great success.

• The complexity of solving a CSP is strongly related to the structure of its constraint
graph. Tree-structured problems can be solved in linear time. Cutset conditioning can
reduce a general CSP to a tree-structured one and is quite efficient (requiring only lin-
ear memory) if a small cutset can be found. Tree decomposition techniques transform
the CSP into a tree of subproblems and are efficient if the tree width of the constraint
graph is small; however they need memory exponential in the tree width of the con-
straint graph. Combining cutset conditioning with tree decomposition can allow a better
tradeoff of memory versus time.

Bibliographical and Historical Notes

The Greek mathematician Diophantus (c. 200–284) presented and solved problems involving
algebraic constraints on equations, although he didn’t develop a generalized methodology.
We now call equations over integer domains Diophantine equations. The Indian mathe-Diophantine

equations

matician Brahmagupta (c. 650) was the first to show a general solution over the domain of
integers for the equation ax+by= c. Systematic methods for solving linear equations by vari-
able elimination were studied by Gauss (1829); the solution of linear inequality constraints
goes back to Fourier (1827).

Finite-domain constraint satisfaction problems also have a long history. For example,
graph coloring (of which map coloring is a special case) is an old problem in mathematics.
The four-color conjecture (that every planar graph can be colored with four or fewer colors)
was first made by Francis Guthrie, a student of De Morgan, in 1852. It resisted solution—
despite several published claims to the contrary—until a proof was devised by Appel and
Haken (1977) (see the book Four Colors Suffice (Wilson, 2004)). Purists were disappointed
that part of the proof relied on a computer, so Georges Gonthier (2008), using the COQ

theorem prover, derived a formal proof that Appel and Haken’s proof program was correct.
Specific classes of constraint satisfaction problems occur throughout the history of com-

puter science. One of the most influential early examples was SKETCHPAD (Sutherland,
1963), which solved geometric constraints in diagrams and was the forerunner of modern
drawing programs and CAD tools. The identification of CSPs as a general class is due to
Ugo Montanari (1974). The reduction of higher-order CSPs to purely binary CSPs with aux-
iliary variables (see Exercise 5.NARY) is due originally to the 19th-century logician Charles
Sanders Peirce. It was introduced into the CSP literature by Dechter (1990b) and was elabo-
rated by Bacchus and van Beek (1998). CSPs with preferences among solutions are studied
widely in the optimization literature; see Bistarelli et al. (1997) for a generalization of the
CSP framework to allow for preferences.

Constraint propagation methods were popularized by Waltz’s (1975) success on poly-
hedral line-labeling problems for computer vision. Waltz showed that in many problems,
propagation completely eliminates the need for backtracking. Montanari (1974) introduced
the notion of constraint graphs and propagation by path consistency. Alan Mackworth (1977)
proposed the AC-3 algorithm for enforcing arc consistency as well as the general idea of com-
bining backtracking with some degree of consistency enforcement. AC-4, a more efficient
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arc-consistency algorithm developed by Mohr and Henderson (1986), runs in O(cd2) worst-
case time but can be slower than AC-3 on average cases. The PC-2 algorithm (Mackworth,
1977) achieves path consistency in much the same way that AC-3 achieves arc consistency.

Soon after Mackworth’s paper appeared, researchers began experimenting with the trade-
off between the cost of consistency enforcement and the benefits in terms of search reduc-
tion. Haralick and Elliott (1980) favored the minimal forward-checking algorithm described
by McGregor (1979), whereas Gaschnig (1979) suggested full arc-consistency checking after
each variable assignment—an algorithm later called MAC by Sabin and Freuder (1994). The
latter paper provides somewhat convincing evidence that on harder CSPs, full arc-consistency
checking pays off. Freuder (1978, 1982) investigated the notion of k-consistency and its
relationship to the complexity of solving CSPs. Dechter and Dechter (1987) introduced
directional arc consistency. Apt (1999) describes a generic algorithmic framework within
which consistency propagation algorithms can be analyzed, and surveys are given by Bessière
(2006) and Barták et al. (2010).

Special methods for handling higher-order or global constraints were developed first
within the context of constraint logic programming. Marriott and Stuckey (1998) pro- Constraint logic

programming

vide excellent coverage of research in this area. The Alldiff constraint was studied by Regin
(1994), Stergiou and Walsh (1999), and van Hoeve (2001). There are more complex inference
algorithms for Alldiff (see van Hoeve and Katriel, 2006) that propagate more constraints but
are more computationally expensive to run. Bounds constraints were incorporated into con-
straint logic programming by Van Hentenryck et al. (1998). A survey of global constraints is
provided by van Hoeve and Katriel (2006).

Sudoku has become the most widely known CSP and was described as such by Simonis
(2005). Agerbeck and Hansen (2008) describe some of the strategies and show that Sudoku
on an n2×n2 board is in the class of NP-hard problems.

In 1850, C. F. Gauss described a recursive backtracking algorithm for solving the 8-
queens problem, which had been published in the German chess magazine Schachzeitung in
1848. Gauss called his method Tatonniren, derived from the French word tâtonner—to grope
around, as if in the dark.

According to Donald Knuth (personal communication), R. J. Walker introduced the term
backtrack in the 1950s. Walker (1960) described the basic backtracking algorithm and used it
to find all solutions to the 13-queens problem. Golomb and Baumert (1965) formulated, with
examples, the general class of combinatorial problems to which backtracking can be applied,
and introduced what we call the MRV heuristic. Bitner and Reingold (1975) provided an
influential survey of backtracking techniques. Brelaz (1979) used the degree heuristic as a
tiebreaker after applying the MRV heuristic. The resulting algorithm, despite its simplicity,
is still the best method for k-coloring arbitrary graphs. Haralick and Elliott (1980) proposed
the least-constraining-value heuristic.

The basic backjumping method is due to John Gaschnig (1977, 1979). Kondrak and
van Beek (1997) showed that this algorithm is essentially subsumed by forward checking.
Conflict-directed backjumping was devised by Prosser (1993). Dechter (1990a) introduced
graph-based backjumping, which bounds the complexity of backjumping-based algorithms
as a function of the constraint graph (Dechter and Frost, 2002).

A very general form of intelligent backtracking was developed early on by Stallman and
Sussman (1977). Their technique of dependency-directed backtracking combines back- Dependency-directed

backtracking
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jumping with no-good learning (McAllester, 1990) and led to the development of truth main-
tenance systems (Doyle, 1979), which we discuss in Section 10.6.2. The connection between
the two areas is analyzed by de Kleer (1989).

The work of Stallman and Sussman also introduced the idea of constraint learning, inConstraint learning

which partial results obtained by search can be saved and reused later in the search. The
idea was formalized by Dechter (1990a). Backmarking (Gaschnig, 1979) is a particularly
simple method in which consistent and inconsistent pairwise assignments are saved and used
to avoid rechecking constraints. Backmarking can be combined with conflict-directed back-
jumping; Kondrak and van Beek (1997) present a hybrid algorithm that provably subsumes
either method taken separately.

The method of dynamic backtracking (Ginsberg, 1993) retains successful partial as-
signments from later subsets of variables when backtracking over an earlier choice that does
not invalidate the later success. Moskewicz et al. (2001) show how these techniques and
others are used to create an efficient SAT solver. Empirical studies of several randomized
backtracking methods were done by Gomes et al. (2000) and Gomes and Selman (2001).
Van Beek (2006) surveys backtracking.

Local search in constraint satisfaction problems was popularized by the work of Kirk-
patrick et al. (1983) on simulated annealing (see Chapter 4), which is widely used for VLSI
layout and scheduling problems. Beck et al. (2011) give an overview of recent work on job-
shop scheduling. The min-conflicts heuristic was first proposed by Gu (1989) and was devel-
oped independently by Minton et al. (1992). Sosic and Gu (1994) showed how it could be
applied to solve the 3,000,000 queens problem in less than a minute. The astounding success
of local search using min-conflicts on the n-queens problem led to a reappraisal of the nature
and prevalence of “easy” and “hard” problems. Peter Cheeseman et al. (1991) explored the
difficulty of randomly generated CSPs and discovered that almost all such problems either
are trivially easy or have no solutions. Only if the parameters of the problem generator are
set in a certain narrow range, within which roughly half of the problems are solvable, do we
find “hard” problem instances. We discuss this phenomenon further in Chapter 7.

Konolige (1994) showed that local search is inferior to backtracking search on problems
with a certain degree of local structure; this led to work that combined local search and
inference, such as that by Pinkas and Dechter (1995). Hoos and Tsang (2006) provide a
survey of local search techniques, and textbooks are offered by Hoos and Stützle (2004) and
Aarts and Lenstra (2003).

Work relating the structure and complexity of CSPs originates with Freuder (1985) and
Mackworth and Freuder (1985), who showed that search on arc-consistent trees works with-
out any backtracking. A similar result, with extensions to acyclic hypergraphs, was developed
in the database community (Beeri et al., 1983). Bayardo and Miranker (1994) present an al-
gorithm for tree-structured CSPs that runs in linear time without any preprocessing. Dechter
(1990a) describes the cycle-cutset approach.

Since those papers were published, there has been a great deal of progress in developing
more general results relating the complexity of solving a CSP to the structure of its constraint
graph. The notion of tree width was introduced by the graph theorists Robertson and Sey-
mour (1986). Dechter and Pearl (1987, 1989), building on the work of Freuder, applied a
related notion (which they called induced width but is identical to tree width) to constraint
satisfaction problems and developed the tree decomposition approach sketched in Section 5.5.
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Drawing on this work and on results from database theory, Gottlob et al. (1999a, 1999b)
developed a notion, hypertree width, that is based on the characterization of the CSP as a
hypergraph. In addition to showing that any CSP with hypertree width w can be solved in
time O(nw+1 logn), they also showed that hypertree width subsumes all previously defined
measures of “width” in the sense that there are cases where the hypertree width is bounded
and the other measures are unbounded.

The RELSAT algorithm of Bayardo and Schrag (1997) combined constraint learning and
backjumping and was shown to outperform many other algorithms of the time. This led to
AND-OR search algorithms applicable to both CSPs and probabilistic reasoning (Dechter
and Mateescu, 2007). Brown et al. (1988) introduce the idea of symmetry breaking in CSPs,
and Gent et al. (2006) give a survey.

The field of distributed constraint satisfaction looks at solving CSPs when there is a
collection of agents, each of which controls a subset of the constraint variables. There have
been annual workshops on this problem since 2000, and good coverage elsewhere (Collin
et al., 1999; Pearce et al., 2008).

Comparing CSP algorithms is mostly an empirical science: few theoretical results show
that one algorithm dominates another on all problems; instead, we need to run experiments
to see which algorithms perform better on typical instances of problems. As Hooker (1995)
points out, we need to be careful to distinguish between competitive testing—as occurs in
competitions among algorithms based on run time—and scientific testing, whose goal is to
identify the properties of an algorithm that determine its efficacy on a class of problems.

The textbooks by Apt (2003), Dechter (2003), Tsang (1993), and Lecoutre (2009), and
the collection by Rossi et al. (2006), are excellent resources on constraint processing. There
are several good survey articles, including those by Dechter and Frost (2002), and Barták
et al. (2010). Carbonnel and Cooper (2016) survey tractable classes of CSPs. Kondrak and
van Beek (1997) give an analytical survey of backtracking search algorithms, and Bacchus
and van Run (1995) give a more empirical survey. Constraint programming is covered in the
books by Apt (2003) and Fruhwirth and Abdennadher (2003). Papers on constraint satisfac-
tion appear regularly in Artificial Intelligence and in the specialist journal Constraints; the
latest SAT solvers are described in the annual International SAT Competition. The primary
conference venue is the International Conference on Principles and Practice of Constraint
Programming, often called CP.



CHAPTER 6
ADVERSARIAL SEARCH AND GAMES
In which we explore environments where other agents are plotting against us.

In this chapter we cover competitive environments, in which two or more agents have con-
flicting goals, giving rise to adversarial search problems. Rather than deal with the chaosAdversarial search

of real-world skirmishes, we will concentrate on games, such as chess, Go, and poker. For
AI researchers, the simplified nature of these games is a plus: the state of a game is easy to
represent, and agents are usually restricted to a small number of actions whose effects are
defined by precise rules. Physical games, such as croquet and ice hockey, have more com-
plicated descriptions, a larger range of possible actions, and rather imprecise rules defining
the legality of actions. With the exception of robot soccer, these physical games have not
attracted much interest in the AI community.

6.1 Game Theory

There are at least three stances we can take towards multi-agent environments. The first
stance, appropriate when there are a very large number of agents, is to consider them in the
aggregate as an economy, allowing us to do things like predict that increasing demand willEconomy

cause prices to rise, without having to predict the action of any individual agent.
Second, we could consider adversarial agents as just a part of the environment—a part

that makes the environment nondeterministic. But if we model the adversaries in the same
way that, say, rain sometimes falls and sometimes doesn’t, we miss the idea that our adver-
saries are actively trying to defeat us, whereas the rain supposedly has no such intention.

The third stance is to explicitly model the adversarial agents with the techniques of ad-
versarial game-tree search. That is what this chapter covers. We begin with a restricted class
of games and define the optimal move and an algorithm for finding it: minimax search, a gen-
eralization of AND–OR search (from Figure 4.11). We show that pruning makes the searchPruning

more efficient by ignoring portions of the search tree that make no difference to the optimal
move. For nontrivial games, we will usually not have enough time to be sure of finding the
optimal move (even with pruning); we will have to cut off the search at some point.

For each state where we choose to stop searching, we ask who is winning. To answer this
question we have a choice: we can apply a heuristic evaluation function to estimate who is
winning based on features of the state (Section 6.3), or we can average the outcomes of many
fast simulations of the game from that state all the way to the end (Section 6.4).

Section 6.5 discusses games that include an element of chance (through rolling dice or
shuffling cards) and Section 6.6 covers games of imperfect information (such as poker andImperfect

information
bridge, where not all cards are visible to all players).
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6.1.1 Two-player zero-sum games

The games most commonly studied within AI (such as chess and Go) are what game theorists
call deterministic, two-player, turn-taking, perfect information, zero-sum games. “Perfect Perfect information

Zero-sum gamesinformation” is a synonym for “fully observable,”1 and “zero-sum” means that what is good
for one player is just as bad for the other: there is no “win-win” outcome. For games we often
use the term move as a synonym for “action” and position as a synonym for “state.” Move

PositionWe will call our two players MAX and MIN, for reasons that will soon become obvious.
MAX moves first, and then the players take turns moving until the game is over. At the end
of the game, points are awarded to the winning player and penalties are given to the loser. A
game can be formally defined with the following elements:

• S0: The initial state, which specifies how the game is set up at the start.
• TO-MOVE(s): The player whose turn it is to move in state s.
• ACTIONS(s): The set of legal moves in state s.
• RESULT(s, a): The transition model, which defines the state resulting from taking ac- Transition model

tion a in state s.
• IS-TERMINAL(s): A terminal test, which is true when the game is over and false Terminal test

otherwise. States where the game has ended are called terminal states. Terminal state

• UTILITY(s, p): A utility function (also called an objective function or payoff function),
which defines the final numeric value to player p when the game ends in terminal state s.
In chess, the outcome is a win, loss, or draw, with values 1, 0, or 1/2.2 Some games
have a wider range of possible outcomes—for example, the payoffs in backgammon
range from 0 to 192.

Much as in Chapter 3, the initial state, ACTIONS function, and RESULT function define the
state space graph—a graph where the vertices are states, the edges are moves and a state State space graph

might be reached by multiple paths. As in Chapter 3, we can superimpose a search tree over Search tree

part of that graph to determine what move to make. We define the complete game tree as a Game tree

search tree that follows every sequence of moves all the way to a terminal state. The game
tree may be infinite if the state space itself is unbounded or if the rules of the game allow for
infinitely repeating positions.

Figure 6.1 shows part of the game tree for tic-tac-toe (noughts and crosses). From the
initial state, MAX has nine possible moves. Play alternates between MAX’s placing an X and
MIN’s placing an O until we reach leaf nodes corresponding to terminal states such that one
player has three squares in a row or all the squares are filled. The number on each leaf node
indicates the utility value of the terminal state from the point of view of MAX; high values are
good for MAX and bad for MIN (which is how the players get their names).

For tic-tac-toe the game tree is relatively small—fewer than 9!=362,880 terminal nodes
(with only 5,478 distinct states). But for chess there are over 1040 nodes, so the game tree is
best thought of as a theoretical construct that we cannot realize in the physical world.
1 Some authors make a distinction, using “imperfect information game” for one like poker where the players get
private information about their own hands that the other players do not have, and “partially observable game” to
mean one like StarCraft II where each player can see the nearby environment, but not the environment far away.
2 Chess is considered a “zero-sum” game, even though the sum of the outcomes for the two players is +1 for
each game, not zero. “Constant-sum” would have been a more accurate term, but zero-sum is traditional and
makes sense if you imagine each player is charged an entry fee of 1/2.
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Figure 6.1 A (partial) game tree for the game of tic-tac-toe. The top node is the initial state,
and MAX moves first, placing an X in an empty square. We show part of the tree, giving
alternating moves by MIN (O) and MAX (X), until we eventually reach terminal states, which
can be assigned utilities according to the rules of the game.

6.2 Optimal Decisions in Games

MAX wants to find a sequence of actions leading to a win, but MIN has something to say
about it. This means that MAX’s strategy must be a conditional plan—a contingent strategy
specifying a response to each of MIN’s possible moves. In games that have a binary outcome
(win or lose), we could use AND–OR search (page 143) to generate the conditional plan. In
fact, for such games, the definition of a winning strategy for the game is identical to the
definition of a solution for a nondeterministic planning problem: in both cases the desirable
outcome must be guaranteed no matter what the “other side” does. For games with multiple
outcome scores, we need a slightly more general algorithm called minimax search.Minimax search

Consider the trivial game in Figure 6.2. The possible moves for MAX at the root node
are labeled a1, a2, and a3. The possible replies to a1 for MIN are b1, b2, b3, and so on. This
particular game ends after one move each by MAX and MIN. (Note: In some games, the
word “move” means that both players have taken an action; therefore the word ply is used toPly

unambiguously mean one move by one player, bringing us one level deeper in the game tree.)
The utilities of the terminal states in this game range from 2 to 14.

Given a game tree, the optimal strategy can be determined by working out the minimax
value of each state in the tree, which we write as MINIMAX(s). The minimax value is theMinimax value

utility (for MAX) of being in that state, assuming that both players play optimally from there
to the end of the game. The minimax value of a terminal state is just its utility. In a non-
terminal state, MAX prefers to move to a state of maximum value when it is MAX’s turn to
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MAX A
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b2

b3 c1
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c3 d1

d2

d3
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Figure 6.2 A two-ply game tree. The 4 nodes are “MAX nodes,” in which it is MAX’s turn
to move, and the 5 nodes are “MIN nodes.” The terminal nodes show the utility values for
MAX; the other nodes are labeled with their minimax values. MAX’s best move at the root is
a1, because it leads to the state with the highest minimax value, and MIN’s best reply is b1,
because it leads to the state with the lowest minimax value.

move, and MIN prefers a state of minimum value (that is, minimum value for MAX and thus
maximum value for MIN). So we have:

MINIMAX(s) =
UTILITY(s,MAX) if IS-TERMINAL(s)
maxa∈Actions(s) MINIMAX(RESULT(s,a)) if TO-MOVE(s)= MAX

mina∈Actions(s) MINIMAX(RESULT(s,a)) if TO-MOVE(s)= MIN

Let us apply these definitions to the game tree in Figure 6.2. The terminal nodes on the bottom
level get their utility values from the game’s UTILITY function. The first MIN node, labeled
B, has three successor states with values 3, 12, and 8, so its minimax value is 3. Similarly,
the other two MIN nodes have minimax value 2. The root node is a MAX node; its successor
states have minimax values 3, 2, and 2; so it has a minimax value of 3. We can also identify
the minimax decision at the root: action a1 is the optimal choice for MAX because it leads to Minimax decision

the state with the highest minimax value.
This definition of optimal play for MAX assumes that MIN also plays optimally. What if

MIN does not play optimally? Then MAX will do at least as well as against an optimal player,
possibly better. However, that does not mean that it is always best to play the minimax optimal
move when facing a suboptimal opponent. Consider a situation where optimal play by both
sides will lead to a draw, but there is one risky move for MAX that leads to a state in which
there are 10 possible response moves by MIN that all seem reasonable, but 9 of them are a
loss for MIN and one is a loss for MAX. If MAX believes that MIN does not have sufficient
computational power to discover the optimal move, MAX might want to try the risky move,
on the grounds that a 9/10 chance of a win is better than a certain draw.

6.2.1 The minimax search algorithm

Now that we can compute MINIMAX(s), we can turn that into a search algorithm that finds
the best move for MAX by trying all actions and choosing the one whose resulting state has
the highest MINIMAX value. Figure 6.3 shows the algorithm. It is a recursive algorithm
that proceeds all the way down to the leaves of the tree and then backs up the minimax
values through the tree as the recursion unwinds. For example, in Figure 6.2, the algorithm
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function MINIMAX-SEARCH(game, state) returns an action
player←game.TO-MOVE(state)
value, move←MAX-VALUE(game, state)
return move

function MAX-VALUE(game, state) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v, move←−∞

for each a in game.ACTIONS(state) do
v2, a2←MIN-VALUE(game, game.RESULT(state, a))
if v2 > v then

v, move←v2, a
return v, move

function MIN-VALUE(game, state) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v, move←+∞

for each a in game.ACTIONS(state) do
v2, a2←MAX-VALUE(game, game.RESULT(state, a))
if v2 < v then

v, move←v2, a
return v, move

Figure 6.3 An algorithm for calculating the optimal move using minimax—the move that
leads to a terminal state with maximum utility, under the assumption that the opponent plays
to minimize utility. The functions MAX-VALUE and MIN-VALUE go through the whole
game tree, all the way to the leaves, to determine the backed-up value of a state and the move
to get there.

first recurses down to the three bottom-left nodes and uses the UTILITY function on them
to discover that their values are 3, 12, and 8, respectively. Then it takes the minimum of
these values, 3, and returns it as the backed-up value of node B. A similar process gives the
backed-up values of 2 for C and 2 for D. Finally, we take the maximum of 3, 2, and 2 to get
the backed-up value of 3 for the root node.

The minimax algorithm performs a complete depth-first exploration of the game tree.
If the maximum depth of the tree is m and there are b legal moves at each point, then the
time complexity of the minimax algorithm is O(b m). The space complexity is O(bm) for an
algorithm that generates all actions at once, or O(m) for an algorithm that generates actions
one at a time (see page 98). The exponential complexity makes MINIMAX impractical for
complex games; for example, chess has a branching factor of about 35 and the average game
has depth of about 80 ply, and it is not feasible to search 3580 ≈ 10123 states. MINIMAX

does, however, serve as a basis for the mathematical analysis of games. By approximating
the minimax analysis in various ways, we can derive more practical algorithms.
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Figure 6.4 The first three ply of a game tree with three players (A, B, C). Each node is
labeled with values from the viewpoint of each player. The best move is marked at the root.

6.2.2 Optimal decisions in multiplayer games

Many popular games allow more than two players. Let us examine how to extend the minimax
idea to multiplayer games. This is straightforward from the technical viewpoint, but raises
some interesting new conceptual issues.

First, we need to replace the single value for each node with a vector of values. For
example, in a three-player game with players A, B, and C, a vector 〈vA,vB,vC〉 is associated
with each node. For terminal states, this vector gives the utility of the state from each player’s
viewpoint. (In two-player, zero-sum games, the two-element vector can be reduced to a single
value because the values are always opposite.) The simplest way to implement this is to have
the UTILITY function return a vector of utilities.

Now we have to consider nonterminal states. Consider the node marked X in the game
tree shown in Figure 6.4. In that state, player C chooses what to do. The two choices lead to
terminal states with utility vectors 〈vA=1,vB=2,vC =6〉 and 〈vA=4,vB=2,vC =3〉. Since
6 is bigger than 3, C should choose the first move. This means that if state X is reached,
subsequent play will lead to a terminal state with utilities 〈vA=1,vB=2,vC =6〉. Hence, the
backed-up value of X is this vector. In general, the backed-up value of a node n is the utility
vector of the successor state with the highest value for the player choosing at n.

Anyone who plays multiplayer games, such as Diplomacy or Settlers of Catan, quickly
becomes aware that much more is going on than in two-player games. Multiplayer games
usually involve alliances, whether formal or informal, among the players. Alliances are made Alliance

and broken as the game proceeds. How are we to understand such behavior? Are alliances a
natural consequence of optimal strategies for each player in a multiplayer game? It turns out
that they can be.

For example, suppose A and B are in weak positions and C is in a stronger position. Then
it is often optimal for both A and B to attack C rather than each other, lest C destroy each of
them individually. In this way, collaboration emerges from purely selfish behavior. Of course,
as soon as C weakens under the joint onslaught, the alliance loses its value, and either A or B
could violate the agreement.

In some cases, explicit alliances merely make concrete what would have happened any-
way. In other cases, a social stigma attaches to breaking an alliance, so players must balance
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the immediate advantage of breaking an alliance against the long-term disadvantage of being
perceived as untrustworthy. See Section 17.2 for more on these complications.

If the game is not zero-sum, then collaboration can also occur with just two players.
Suppose, for example, that there is a terminal state with utilities 〈vA=1000,vB=1000〉 and
that 1000 is the highest possible utility for each player. Then the optimal strategy is for both
players to do everything possible to reach this state—that is, the players will automatically
cooperate to achieve a mutually desirable goal.

6.2.3 Alpha–Beta Pruning

The number of game states is exponential in the depth of the tree. No algorithm can com-
pletely eliminate the exponent, but we can sometimes cut it in half, computing the correct
minimax decision without examining every state by pruning (see page 108) large parts of the
tree that make no difference to the outcome. The particular technique we examine is called
alpha–beta pruning.Alpha–beta pruning

Consider again the two-ply game tree from Figure 6.2. Let’s go through the calculation
of the optimal decision once more, this time paying careful attention to what we know at
each point in the process. The steps are explained in Figure 6.5. The outcome is that we can
identify the minimax decision without ever evaluating two of the leaf nodes.

Another way to look at this is as a simplification of the formula for MINIMAX. Let the
two unevaluated successors of node C in Figure 6.5 have values x and y. Then the value of
the root node is given by

MINIMAX(root) = max(min(3,12,8),min(2,x,y),min(14,5,2))

= max(3,min(2,x,y),2)

= max(3,z,2) where z = min(2,x,y)≤ 2

= 3.

In other words, the value of the root and hence the minimax decision are independent of the
values of the leaves x and y, and therefore they can be pruned.

Alpha–beta pruning can be applied to trees of any depth, and it is often possible to prune
entire subtrees rather than just leaves. The general principle is this: consider a node n some-
where in the tree (see Figure 6.6), such that Player has a choice of moving to n. If Player
has a better choice either at the same level (e.g. m′ in Figure 6.6) or at any point higher up
in the tree (e.g. m in Figure 6.6), then Player will never move to n. So once we have found
out enough about n (by examining some of its descendants) to reach this conclusion, we can
prune it.

Remember that minimax search is depth-first, so at any one time we just have to consider
the nodes along a single path in the tree. Alpha–beta pruning gets its name from the two
extra parameters in MAX-VALUE(state,α,β) (see Figure 6.7) that describe bounds on the
backed-up values that appear anywhere along the path:

α= the value of the best (i.e., highest-value) choice we have found so far at any choice point
along the path for MAX. Think: α= “at least.”

β = the value of the best (i.e., lowest-value) choice we have found so far at any choice point
along the path for MIN. Think: β = “at most.”
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Figure 6.5 Stages in the calculation of the optimal decision for the game tree in Figure 6.2.
At each point, we show the range of possible values for each node. (a) The first leaf below B
has the value 3. Hence, B, which is a MIN node, has a value of at most 3. (b) The second leaf
below B has a value of 12; MIN would avoid this move, so the value of B is still at most 3.
(c) The third leaf below B has a value of 8; we have seen all B’s successor states, so the value
of B is exactly 3. Now we can infer that the value of the root is at least 3, because MAX has
a choice worth 3 at the root. (d) The first leaf below C has the value 2. Hence, C, which is
a MIN node, has a value of at most 2. But we know that B is worth 3, so MAX would never
choose C. Therefore, there is no point in looking at the other successor states of C. This is an
example of alpha–beta pruning. (e) The first leaf below D has the value 14, so D is worth at
most 14. This is still higher than MAX’s best alternative (i.e., 3), so we need to keep exploring
D’s successor states. Notice also that we now have bounds on all of the successors of the root,
so the root’s value is also at most 14. (f) The second successor of D is worth 5, so again we
need to keep exploring. The third successor is worth 2, so now D is worth exactly 2. MAX’s
decision at the root is to move to B, giving a value of 3.

Alpha–beta search updates the values of α and β as it goes along and prunes the remaining
branches at a node (i.e., terminates the recursive call) as soon as the value of the current
node is known to be worse than the current α or β value for MAX or MIN, respectively. The
complete algorithm is given in Figure 6.7. Figure 6.5 traces the progress of the algorithm on
a game tree.

6.2.4 Move ordering

The effectiveness of alpha–beta pruning is highly dependent on the order in which the states
are examined. For example, in Figure 6.5(e) and (f), we could not prune any successors of D
at all because the worst successors (from the point of view of MIN) were generated first. If the
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Figure 6.6 The general case for alpha–beta pruning. If m or m′ is better than n for Player,
we will never get to n in play.

function ALPHA-BETA-SEARCH(game, state) returns an action
player←game.TO-MOVE(state)
value, move←MAX-VALUE(game, state,−∞,+∞)
return move

function MAX-VALUE(game, state,α,β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v←−∞

for each a in game.ACTIONS(state) do
v2, a2←MIN-VALUE(game, game.RESULT(state, a),α,β)
if v2 > v then

v, move←v2, a
α←MAX(α, v)

if v ≥ β then return v, move
return v, move

function MIN-VALUE(game, state,α,β) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
v←+∞

for each a in game.ACTIONS(state) do
v2, a2←MAX-VALUE(game, game.RESULT(state, a),α,β)
if v2 < v then

v, move←v2, a
β←MIN(β, v)

if v ≤ α then return v, move
return v, move

Figure 6.7 The alpha–beta search algorithm. Notice that these functions are the same as the
MINIMAX-SEARCH functions in Figure 6.3, except that we maintain bounds in the variables
α and β, and use them to cut off search when a value is outside the bounds.
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third successor of D had been generated first, with value 2, we would have been able to prune
the other two successors. This suggests that it might be worthwhile to try to first examine the
successors that are likely to be best.

If this could be done perfectly, alpha–beta would need to examine only O(bm/2) nodes to
pick the best move, instead of O(bm) for minimax. This means that the effective branching
factor becomes

√
b instead of b—for chess, about 6 instead of 35. Put another way, alpha–

beta with perfect move ordering can solve a tree roughly twice as deep as minimax in the
same amount of time. With random move ordering, the total number of nodes examined
will be roughly O(b3m/4) for moderate b. Now, obviously we cannot achieve perfect move
ordering—in that case the ordering function could be used to play a perfect game! But we
can often get fairly close. For chess, a fairly simple ordering function (such as trying captures
first, then threats, then forward moves, and then backward moves) gets you to within about a
factor of 2 of the best-case O(bm/2) result.

Adding dynamic move-ordering schemes, such as trying first the moves that were found
to be best in the past, brings us quite close to the theoretical limit. The past could be the
previous move—often the same threats remain—or it could come from previous exploration
of the current move through a process of iterative deepening (see page 98). First, search one
ply deep and record the ranking of moves based on their evaluations. Then search one ply
deeper, using the previous ranking to inform move ordering; and so on. The increased search
time from iterative deepening can be more than made up from better move ordering. The best
moves are known as killer moves, and to try them first is called the killer move heuristic. Killer moves

In Section 3.3.3, we noted that redundant paths to repeated states can cause an exponential
increase in search cost, and that keeping a table of previously reached states can address this
problem. In game tree search, repeated states can occur because of transpositions—different Transposition

permutations of the move sequence that end up in the same position, and the problem can be
addressed with a transposition table that caches the heuristic value of states. Transposition table

For example, suppose White has a move w1 that can be answered by Black with b1 and
an unrelated move w2 on the other side of the board that can be answered by b2, and that we
search the sequence of moves [w1,b1,w2,b2]; let’s call the resulting state s. After exploring a
large subtree below s, we find its backed-up value, which we store in the transposition table.
When we later search the sequence of moves [w2,b2,w1,b1], we end up in s again, and we
can look up the value instead of repeating the search. In chess, use of transposition tables is
very effective, allowing us to double the reachable search depth in the same amount of time.

Even with alpha–beta pruning and clever move ordering, minimax won’t work for games
like chess and Go, because there are still too many states to explore in the time available. In
the very first paper on computer game-playing, Programming a Computer for Playing Chess
(Shannon, 1950), Claude Shannon recognized this problem and proposed two strategies: a
Type A strategy considers all possible moves to a certain depth in the search tree, and then Type A strategy

uses a heuristic evaluation function to estimate the utility of states at that depth. It explores
a wide but shallow portion of the tree. A Type B strategy ignores moves that look bad, and Type B strategy

follows promising lines “as far as possible.” It explores a deep but narrow portion of the tree.
Historically, most chess programs have been Type A (which we cover in the next section),

whereas Go programs are more often Type B (covered in Section 6.4), because the branching
factor is much higher in Go. More recently, Type B programs have shown world-champion-
level play across a variety of games, including chess (Silver et al., 2018).
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6.3 Heuristic Alpha–Beta Tree Search

To make use of our limited computation time, we can cut off the search early and apply a
heuristic evaluation function to states, effectively treating nonterminal nodes as if they were
terminal. In other words, we replace the UTILITY function with EVAL, which estimates a
state’s utility. We also replace the terminal test by a cutoff test, which must return true forCutoff test

terminal states, but is otherwise free to decide when to cut off the search, based on the search
depth and any property of the state that it chooses to consider. That gives us the formula
H-MINIMAX(s, d) for the heuristic minimax value of state s at search depth d:

H-MINIMAX(s,d) =
EVAL(s,MAX) if IS-CUTOFF(s,d)
maxa∈Actions(s) H-MINIMAX(RESULT(s,a),d +1) if TO-MOVE(s) = MAX

mina∈Actions(s) H-MINIMAX(RESULT(s,a),d +1) if TO-MOVE(s) = MIN.

6.3.1 Evaluation functions

A heuristic evaluation function EVAL(s, p) returns an estimate of the expected utility of state
s to player p, just as the heuristic functions of Chapter 3 return an estimate of the distance to
the goal. For terminal states, it must be that EVAL(s, p)=UTILITY(s, p) and for nonterminal
states, the evaluation must be somewhere between a loss and a win: UTILITY(loss, p) ≤
EVAL(s, p)≤ UTILITY(win, p).

Beyond those requirements, what makes for a good evaluation function? First, the com-
putation must not take too long! (The whole point is to search faster.) Second, the evaluation
function should be strongly correlated with the actual chances of winning. One might well
wonder about the phrase “chances of winning.” After all, chess is not a game of chance: we
know the current state with certainty, and no dice are involved; if neither player makes a mis-
take, the outcome is predetermined. But if the search must be cut off at nonterminal states,
then the algorithm will necessarily be uncertain about the final outcomes of those states (even
though that uncertainty could be resolved with infinite computing resources).

Let us make this idea more concrete. Most evaluation functions work by calculating
various features of the state—for example, in chess, we would have features for the numberFeatures

of white pawns, black pawns, white queens, black queens, and so on. The features, taken
together, define various categories or equivalence classes of states: the states in each category
have the same values for all the features. For example, one category might contain all two-
pawn versus one-pawn endgames. Any given category will contain some states that lead (with
perfect play) to wins, some that lead to draws, and some that lead to losses.

The evaluation function does not know which states are which, but it can return a single
value that estimates the proportion of states with each outcome. For example, suppose our
experience suggests that 82% of the states encountered in the two-pawns versus one-pawn
category lead to a win (utility +1); 2% to a loss (0), and 16% to a draw (1/2). Then a reason-
able evaluation for states in the category is the expected value: (0.82×+1)+ (0.02× 0)+Expected value

(0.16×1/2) = 0.90. In principle, the expected value can be determined for each category of
states, resulting in an evaluation function that works for any state.

In practice, this kind of analysis requires too many categories and hence too much expe-
rience to estimate all the probabilities. Instead, most evaluation functions compute separate
numerical contributions from each feature and then combine them to find the total value. For
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(b) White to move(a) White to move

Figure 6.8 Two chess positions that differ only in the position of the rook at lower right.
In (a), Black has an advantage of a knight and two pawns, which should be enough to win
the game. In (b), White will capture the queen, giving it an advantage that should be strong
enough to win.

centuries, chess players have developed ways of judging the value of a position using just this
idea. For example, introductory chess books give an approximate material value for each Material value

piece: each pawn is worth 1, a knight or bishop is worth 3, a rook 5, and the queen 9. Other
features such as “good pawn structure” and “king safety” might be worth half a pawn, say.
These feature values are then simply added up to obtain the evaluation of the position.

Mathematically, this kind of evaluation function is called a weighted linear function Weighted linear
function

because it can be expressed as

EVAL(s) = w1 f1(s)+w2 f2(s)+ · · ·+wn fn(s) =
n

∑
i=1

wi fi(s) ,

where each fi is a feature of the position (such as “number of white bishops”) and each wi is
a weight (saying how important that feature is). The weights should be normalized so that the
sum is always within the range of a loss (0) to a win (+1). A secure advantage equivalent to
a pawn gives a substantial likelihood of winning, and a secure advantage equivalent to three
pawns should give almost certain victory, as illustrated in Figure 6.8(a). We said that the
evaluation function should be strongly correlated with the actual chances of winning, but it
need not be linearly correlated: if state s is twice as likely to win as state s′ we don’t require
that EVAL(S) be twice EVAL(S’); all we require is that EVAL(S) > EVAL(S’).

Adding up the values of features seems like a reasonable thing to do, but in fact it involves
a strong assumption: that the contribution of each feature is independent of the values of the
other features. For this reason, current programs for chess and other games also use nonlinear
combinations of features. For example, a pair of bishops might be worth more than twice the
value of a single bishop, and a bishop is worth more in the endgame than earlier—when the
move number feature is high or the number of remaining pieces feature is low.

Where do the features and weights come from? They’re not part of the rules of chess,
but they are part of the culture of human chess-playing experience. In games where this
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kind of experience is not available, the weights of the evaluation function can be estimated
by the machine learning techniques of Chapter 23. Applying these techniques to chess has
confirmed that a bishop is indeed worth about three pawns, and it appears that centuries of
human experience can be replicated in just a few hours of machine learning.

6.3.2 Cutting off search

The next step is to modify ALPHA-BETA-SEARCH so that it will call the heuristic EVAL

function when it is appropriate to cut off the search. We replace the two lines in Figure 6.7
that mention IS-TERMINAL with the following line:

if game.IS-CUTOFF(state, depth) then return game.EVAL(state, player), null

We also must arrange for some bookkeeping so that the current depth is incremented on each
recursive call. The most straightforward approach to controlling the amount of search is to
set a fixed depth limit so that IS-CUTOFF(state, depth) returns true for all depth greater than
some fixed depth d (as well as for all terminal states). The depth d is chosen so that a move
is selected within the allocated time. A more robust approach is to apply iterative deepening.
(See Chapter 3.) When time runs out, the program returns the move selected by the deepest
completed search. As a bonus, if in each round of iterative deepening we keep entries in
the transposition table, subsequent rounds will be faster, and we can use the evaluations to
improve move ordering.

These simple approaches can lead to errors due to the approximate nature of the eval-
uation function. Consider again the simple evaluation function for chess based on material
advantage. Suppose the program searches to the depth limit, reaching the position in Fig-
ure 6.8(b), where Black is ahead by a knight and two pawns. It would report this as the
heuristic value of the state, thereby declaring that the state is a probable win by Black. But
White’s next move captures Black’s queen with no compensation. Hence, the position is
actually favorable for White, but this can be seen only by looking ahead.

The evaluation function should be applied only to positions that are quiescent—that is,Quiescence

positions in which there is no pending move (such as a capturing the queen) that would wildly
swing the evaluation. For nonquiescent positions the IS-CUTOFF returns false, and the search
continues until quiescent positions are reached. This extra quiescence search is sometimesQuiescence search

restricted to consider only certain types of moves, such as capture moves, that will quickly
resolve the uncertainties in the position.

The horizon effect is more difficult to eliminate. It arises when the program is facingHorizon effect

an opponent’s move that causes serious damage and is ultimately unavoidable, but can be
temporarily avoided by the use of delaying tactics. Consider the chess position in Figure 6.9.
It is clear that there is no way for the black bishop to escape. For example, the white rook can
capture it by moving to h1, then a1, then a2; a capture at depth 6 ply.

But Black does have a sequence of moves that pushes the capture of the bishop “over
the horizon.” Suppose Black searches to depth 8 ply. Most moves by Black will lead to the
eventual capture of the bishop, and thus will be marked as “bad” moves. But Black will also
consider the sequence of moves that starts by checking the king with a pawn, and enticing the
king to capture the pawn. Black can then do the same thing with a second pawn. That takes
up enough moves that the capture of the bishop would not be discovered during the remainder
of Black’s search. Black thinks that the line of play has saved the bishop at the price of two
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Figure 6.9 The horizon effect. With Black to move, the black bishop is surely doomed. But
Black can forestall that event by checking the white king with its pawns, encouraging the
king to capture the pawns. This pushes the inevitable loss of the bishop over the horizon, and
thus the pawn sacrifices are seen by the search algorithm as good moves rather than bad ones.

pawns, when actually all it has done is waste pawns and push the inevitable capture of the
bishop beyond the horizon that Black can see.

One strategy to mitigate the horizon effect is to allow singular extensions, moves that Singular extension

are “clearly better” than all other moves in a given position, even when the search would
normally be cut off at that point. In our example, a search will have revealed that three moves
of the white rook—h2 to h1, then h1 to a1, and then a1 capturing the bishop on a2—are each
in turn clearly better moves, so even if a sequence of pawn moves pushes us to the horizon,
these clearly better moves will be given a chance to extend the search. This makes the tree
deeper, but because there are usually few singular extensions, the strategy does not add many
total nodes to the tree, and has proven to be effective in practice.

6.3.3 Forward pruning

Alpha–beta pruning prunes branches of the tree that can have no effect on the final evaluation,
but forward pruning prunes moves that appear to be poor moves, but might possibly be good Forward pruning

ones. Thus, the strategy saves computation time at the risk of making an error. In Shannon’s
terms, this is a Type B strategy. Clearly, most human chess players do this, considering only
a few moves from each position (at least consciously).

One approach to forward pruning is beam search (see page 133): on each ply, consider
only a “beam” of the n best moves (according to the evaluation function) rather than consid-
ering all possible moves. Unfortunately, this approach is rather dangerous because there is no
guarantee that the best move will not be pruned away.

The PROBCUT, or probabilistic cut, algorithm (Buro, 1995) is a forward-pruning version
of alpha–beta search that uses statistics gained from prior experience to lessen the chance that
the best move will be pruned. Alpha–beta search prunes any node that is provably outside
the current (α,β) window. PROBCUT also prunes nodes that are probably outside the win-
dow. It computes this probability by doing a shallow search to compute the backed-up value
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v of a node and then using past experience to estimate how likely it is that a score of v at
depth d in the tree would be outside (α,β). Buro applied this technique to his Othello pro-
gram, LOGISTELLO, and found that a version of his program with PROBCUT beat the regular
version 64% of the time, even when the regular version was given twice as much time.

Another technique, late move reduction, works under the assumption that move orderingLate move reduction

has been done well, and therefore moves that appear later in the list of possible moves are
less likely to be good moves. But rather than pruning them away completely, we just reduce
the depth to which we search these moves, thereby saving time. If the reduced search comes
back with a value above the current α value, we can re-run the search with the full depth.

Combining all the techniques described here results in a program that can play creditable
chess (or other games). Let us assume we have implemented an evaluation function for
chess, a reasonable cutoff test with a quiescence search. Let us also assume that, after months
of tedious bit-bashing, we can generate and evaluate around a million nodes per second on
the latest PC. The branching factor for chess is about 35, on average, and 355 is about 50
million, so if we used minimax search, we could look ahead only five ply in about a minute
of computation; the rules of competition would not give us enough time to search six ply.
Though not incompetent, such a program can be defeated by an average human chess player,
who can occasionally plan six or eight ply ahead.

With alpha–beta search and a large transposition table we get to about 14 ply, which
results in an expert level of play. We could trade in our PC for a workstation with 8 GPUs,
getting us over a billion nodes per second, but to obtain grandmaster status we would still
need an extensively tuned evaluation function and a large database of endgame moves. Top
chess programs like STOCKFISH have all of these, often reaching depth 30 or more in the
search tree and far exceeding the ability of any human player.

6.3.4 Search versus lookup

Somehow it seems like overkill for a chess program to start a game by considering a tree of
a billion game states, only to conclude that it will play pawn to e4 (the most popular first
move). Books describing good play in the opening and endgame in chess have been available
for more than a century (Tattersall, 1911). It is not surprising, therefore, that many game-
playing programs use table lookup rather than search for the opening and ending of games.

For the openings, the computer is mostly relying on the expertise of humans. The best
advice of human experts on how to play each opening can be copied from books and entered
into tables for the computer’s use. In addition, computers can gather statistics from a database
of previously played games to see which opening sequences most often lead to a win. For the
first few moves there are few possibilities, and most positions will be in the table. Usually
after about 10 or 15 moves we end up in a rarely seen position, and the program must switch
from table lookup to search.

Near the end of the game there are again fewer possible positions, and thus it is easier to
do lookup. But here it is the computer that has the expertise: computer analysis of endgames
goes far beyond human abilities. Novice humans can win a king-and-rook-versus-king (KRK)
endgame by following a few simple rules. Other endings, such as king, bishop, and knight
versus king (KBNK), are difficult to master and have no succinct strategy description.

A computer, on the other hand, can completely solve the endgame by producing a policy,
which is a mapping from every possible state to the best move in that state. Then the computer
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can play perfectly by looking up the right move in this table. The table is constructed by
retrograde minimax search: start by considering all ways to place the KBNK pieces on the Retrograde

board. Some of the positions are wins for white; mark them as such. Then reverse the rules of
chess to do reverse moves rather than moves. Any move by White that, no matter what move
Black responds with, ends up in a position marked as a win, must also be a win. Continue
this search until all possible positions are resolved as win, loss, or draw, and you have an
infallible lookup table for all endgames with those pieces. This has been done not only for
KBNK endings, but for all endings with seven or fewer pieces. The tables contain 400 trillion
positions. An eight-piece table would require 40 quadrillion positions.

6.4 Monte Carlo Tree Search

The game of Go illustrates two major weaknesses of heuristic alpha–beta tree search: First,
Go has a branching factor that starts at 361, which means alpha–beta search would be limited
to only 4 or 5 ply. Second, it is difficult to define a good evaluation function for Go because
material value is not a strong indicator and most positions are in flux until the endgame. In
response to these two challenges, modern Go programs have abandoned alpha–beta search
and instead use a strategy called Monte Carlo tree search (MCTS).3 Monte Carlo tree

search (MCTS)

The basic MCTS strategy does not use a heuristic evaluation function. Instead, the value
of a state is estimated as the average utility over a number of simulations of complete games Simulation

starting from the state. A simulation (also called a playout or rollout) chooses moves first for Playout

Rolloutone player, then for the other, repeating until a terminal position is reached. At that point the
rules of the game (not fallible heuristics) determine who has won or lost, and by what score.
For games in which the only outcomes are a win or a loss, “average utility” is the same as
“win percentage.”

How do we choose what moves to make during the playout? If we just choose randomly,
then after multiple simulations we get an answer to the question “what is the best move if
both players play randomly?” For some simple games, that happens to be the same answer
as “what is the best move if both players play well?,” but for most games it is not. To get
useful information from the playout we need a playout policy that biases the moves towards Playout policy

good ones. For Go and other games, playout policies have been successfully learned from
self-play by using neural networks. Sometimes game-specific heuristics are used, such as
“consider capture moves” in chess or “take the corner square” in Othello.

Given a playout policy, we next need to decide two things: from what positions do we
start the playouts, and how many playouts do we allocate to each position? The simplest
answer, called pure Monte Carlo search, is to do N simulations starting from the current Pure Monte Carlo

search
state of the game, and track which of the possible moves from the current position has the
highest win percentage.

For some stochastic games this converges to optimal play as N increases, but for most
games it is not sufficient—we need a selection policy that selectively focuses the computa- Selection policy

tional resources on the important parts of the game tree. It balances two factors: exploration Exploration

of states that have had few playouts, and exploitation of states that have done well in past Exploitation

playouts, to get a more accurate estimate of their value. (See Section 16.3 for more on the

3 “Monte Carlo” algorithms are randomized algorithms named after the Casino de Monte-Carlo in Monaco.
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exploration/exploitation tradeoff.) Monte Carlo tree search does that by maintaining a search
tree and growing it on each iteration of the following four steps, as shown in Figure 6.10:

• Selection: Starting at the root of the search tree, we choose a move (guided by the
selection policy), leading to a successor node, and repeat that process, moving down
the tree to a leaf. Figure 6.10(a) shows a search tree with the root representing a state
where white has just moved, and white has won 37 out of the 100 playouts done so
far. The thick arrow shows the selection of a move by black that leads to a node where
black has won 60/79 playouts. This is the best win percentage among the three moves,
so selecting it is an example of exploitation. But it would also have been reasonable
to select the 2/11 node for the sake of exploration—with only 11 playouts, the node
still has high uncertainty in its valuation, and might end up being best if we gain more
information about it. Selection continues on to the leaf node marked 27/35.

• Expansion: We grow the search tree by generating a new child of the selected node;
Figure 6.10(b) shows the new node marked with 0/0. (Some versions generate more
than one child in this step.)

• Simulation: We perform a playout from the newly generated child node, choosing
moves for both players according to the playout policy. These moves are not recorded
in the search tree. In the figure, the simulation results in a win for black.

• Back-propagation: We now use the result of the simulation to update all the search tree
nodes going up to the root. Since black won the playout, black nodes are incremented
in both the number of wins and the number of playouts, so 27/35 becomes 28/36 and
60/79 becomes 61/80. Since white lost, the white nodes are incremented in the number
of playouts only, so 16/53 becomes 16/54 and the root 37/100 becomes 37/101.

0/1

28/36 10/18 0/3 0/3

3/46/616/543/26

61/80 1/10

37/101

2/11

10/18

3/26 16/53

60/79

37/100

1/10 2/11

6/6 3/4

0/30/327/35

37/100

60/79 1/10 2/11

3/46/616/533/26

27/35 10/18 0/3 0/3

0/0

(a) Selection (b) Expansion
and simulation

(c) Backpropagation

black wins

Figure 6.10 One iteration of the process of choosing a move with Monte Carlo tree search
(MCTS) using the upper confidence bounds applied to trees (UCT) selection metric, shown
after 100 iterations have already been done. In (a) we select moves, all the way down the
tree, ending at the leaf node marked 27/35 (for 27 wins for black out of 35 playouts). In (b)
we expand the selected node and do a simulation (playout), which ends in a win for black. In
(c), the results of the simulation are back-propagated up the tree.
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function MONTE-CARLO-TREE-SEARCH(state) returns an action
tree←NODE(state)
while IS-TIME-REMAINING() do

leaf←SELECT(tree)
child←EXPAND(leaf )
result←SIMULATE(child)
BACK-PROPAGATE(result, child)

return the move in ACTIONS(state) whose node has highest number of playouts

Figure 6.11 The Monte Carlo tree search algorithm. A game tree, tree, is initialized, and
then we repeat a cycle of SELECT / EXPAND / SIMULATE / BACK-PROPAGATE until we run
out of time, and return the move that led to the node with the highest number of playouts.

We repeat these four steps either for a set number of iterations, or until the allotted time has
expired, and then return the move with the highest number of playouts.

One very effective selection policy is called “upper confidence bounds applied to trees”
or UCT. The policy ranks each possible move based on an upper confidence bound formula UCT

called UCB1. (See Section 16.3.3 for more details.) For a node n, the formula is: UCB1

UCB1(n)=
U(n)
N(n)

+C×

√
logN(PARENT(n))

N(n)

where U(n) is the total utility of all playouts that went through node n, N(n) is the number of
playouts through node n, and PARENT(n) is the parent node of n in the tree. Thus U(n)

N(n) is the
exploitation term: the average utility of n. The term with the square root is the exploration
term: it has the count N(n) in the denominator, which means the term will be high for nodes
that have only been explored a few times. In the numerator it has the log of the number of
times we have explored the parent of n. This means that if we are selecting n some non-
zero percentage of the time, the exploration term goes to zero as the counts increase, and
eventually the playouts are given to the node with highest average utility.

C is a constant that balances exploitation and exploration. There is a theoretical argument
that C should be

√
2, but in practice, game programmers try multiple values for C and choose

the one that performs best. (Some programs use slightly different formulas; for example,
ALPHAZERO adds in a term for move probability, which is calculated by a neural network
trained from past self-play.) With C=1.4, the 60/79 node in Figure 6.10 has the highest
UCB1 score, but with C=1.5, it would be the 2/11 node.

Figure 6.11 shows the complete UCT MCTS algorithm. When the iterations terminate,
the move with the highest number of playouts is returned. You might think that it would
be better to return the node with the highest average utility, but the idea is that a node with
65/100 wins is better than one with 2/3 wins, because the latter has a lot of uncertainty. In any
event, the UCB1 formula ensures that the node with the most playouts is almost always the
node with the highest win percentage, because the selection process favors win percentage
more and more as the number of playouts goes up.

The time to compute a playout is linear, not exponential, in the depth of the game tree,
because only one move is taken at each choice point. That gives us plenty of time for multiple
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playouts. For example: consider a game with a branching factor of 32, where the average
game lasts 100 ply. If we have enough computing power to consider a billion game states
before we have to make a move, then minimax can search 6 ply deep, alpha–beta with perfect
move ordering can search 12 ply, and Monte Carlo search can do 10 million playouts. Which
approach will be better? That depends on the accuracy of the heuristic function versus the
selection and playout policies.

The conventional wisdom has been that Monte Carlo search has an advantage over alpha–
beta for games like Go where the branching factor is very high (and thus alpha–beta can’t
search deep enough), or when it is difficult to define a good evaluation function. What alpha–
beta does is choose the path to a node that has the highest achievable evaluation function
score, given that the opponent will be trying to minimize the score. Thus, if the evaluation
function is inaccurate, alpha–beta will be inaccurate. A miscalculation on a single node can
lead alpha–beta to erroneously choose (or avoid) a path to that node. But Monte Carlo search
relies on the aggregate of many playouts, and thus is not as vulnerable to a single error. It is
possible to combine MCTS and evaluation functions by doing a playout for a certain number
of moves, but then truncating the playout and applying an evaluation function.

It is also possible to combine aspects of alpha–beta and Monte Carlo search. For example,
in games that can last many moves, we may want to use early playout termination, inEarly playout

termination
which we stop a playout that is taking too many moves, and either evaluate it with a heuristic
evaluation function or just declare it a draw.

Monte Carlo search can be applied to brand-new games, in which there is no body of
experience to draw upon to define an evaluation function. As long as we know the rules of
the game, Monte Carlo search does not need any additional information. The selection and
playout policies can make good use of hand-crafted expert knowledge when it is available,
but good policies can be learned using neural networks trained by self-play alone.

Monte Carlo search has a disadvantage when it is likely that a single move can change
the course of the game, because the stochastic nature of Monte Carlo search means it might
fail to consider that move. In other words, Type B pruning in Monte Carlo search means that
a vital line of play might not be explored at all. Monte Carlo search also has a disadvantage
when there are game states that are “obviously” a win for one side or the other (according
to human knowledge and to an evaluation function), but where it will still take many moves
in a playout to verify the winner. It was long held that alpha–beta search was better suited
for games like chess with low branching factor and good evaluation functions, but recently
Monte Carlo approaches have demonstrated success in chess and other games.

The general idea of simulating moves into the future, observing the outcome, and using
the outcome to determine which moves are good ones is one kind of reinforcement learning,
which is covered in Chapter 23.

6.5 Stochastic Games

Stochastic games bring us a little closer to the unpredictability of real life by including aStochastic game

random element, such as the throwing of dice. Backgammon is a typical stochastic game that
combines luck and skill. In the backgammon position of Figure 6.12, Black has rolled a 6–5
and has four possible moves (each of which moves one piece forward (clockwise) 5 positions,
and one piece forward 6 positions).
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Figure 6.12 A typical backgammon position. The goal of the game is to move all one’s
pieces off the board. Black moves clockwise toward 25, and White moves counterclockwise
toward 0. A piece can move to any position unless multiple opponent pieces are there; if there
is one opponent, it is captured and must start over. In the position shown, Black has rolled
6–5 and must choose among four legal moves: (5–11,5–10), (5–11,19–24), (5–10,10–16),
and (5–11,11–16), where the notation (5–11,11–16) means move one piece from position 5
to 11, and then move a piece from 11 to 16.

At this point Black knows what moves can be made, but does not know what White is
going to roll and thus does not know what White’s legal moves will be. That means Black
cannot construct a standard game tree of the sort we saw in chess and tic-tac-toe. A game
tree in backgammon must include chance nodes in addition to MAX and MIN nodes. Chance Chance nodes

nodes are shown as circles in Figure 6.13. The branches leading from each chance node
denote the possible dice rolls; each branch is labeled with the roll and its probability. There
are 36 ways to roll two dice, each equally likely; but because a 6–5 is the same as a 5–6, there
are only 21 distinct rolls. The six doubles (1–1 through 6–6) each have a probability of 1/36,
so we say P(1–1) = 1/36. The other 15 distinct rolls each have a 1/18 probability.

The next step is to understand how to make correct decisions. Obviously, we still want to
pick the move that leads to the best position. However, positions do not have definite minimax
values. Instead, we can only calculate the expected value of a position: the average over all Expected value

possible outcomes of the chance nodes.
This leads us to the expectiminimax value for games with chance nodes, a generalization Expectiminimax

value
of the minimax value for deterministic games. Terminal nodes and MAX and MIN nodes work
exactly the same way as before (with the caveat that the legal moves for MAX and MIN will
depend on the outcome of the dice roll in the previous chance node). For chance nodes we
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Figure 6.13 Schematic game tree for a backgammon position.

compute the expected value, which is the sum of the value over all outcomes, weighted by
the probability of each chance action:

EXPECTIMINIMAX(s) =
UTILITY(s,MAX) if IS-TERMINAL(s)
maxa EXPECTIMINIMAX(RESULT(s,a)) if TO-MOVE(s)= MAX

mina EXPECTIMINIMAX(RESULT(s,a)) if TO-MOVE(s)= MIN

∑r P(r)EXPECTIMINIMAX(RESULT(s, r)) if TO-MOVE(s)= CHANCE

where r represents a possible dice roll (or other chance event) and RESULT(s, r) is the same
state as s, with the additional fact that the result of the dice roll is r.

6.5.1 Evaluation functions for games of chance

As with minimax, the obvious approximation to make with expectiminimax is to cut the
search off at some point and apply an evaluation function to each leaf. One might think that
evaluation functions for games such as backgammon should be just like evaluation functions
for chess—they just need to give higher values to better positions. But in fact, the presence
of chance nodes means that one has to be more careful about what the values mean.

Figure 6.14 shows what happens: with an evaluation function that assigns the values [1,
2, 3, 4] to the leaves, move a1 is best; with values [1, 20, 30, 400], move a2 is best. Hence,
the program behaves totally differently if we make a change to some of the evaluation values,
even if the preference order remains the same.

It turns out that to avoid this problem, the evaluation function must return values that are
a positive linear transformation of the probability of winning (or of the expected utility, for
games that have outcomes other than win/lose). This relation to probability is an important



Section 6.5 Stochastic Games 213

CHANCE

MIN

MAX

2 2 3 3 1 1 4 4

2 3 1 4

.9 .1 .9 .1

2.1 1.3

20 20 30 30 1 1 400 400

20 30 1 400

.9 .1 .9 .1

21 40.9

a1 a2 a1 a2

Figure 6.14 An order-preserving transformation on leaf values changes the best move.

and general property of situations in which uncertainty is involved, and we discuss it further
in Chapter 15.

If the program knew in advance all the dice rolls that would occur for the rest of the game,
solving a game with dice would be just like solving a game without dice, which minimax does
in O(bm) time, where b is the branching factor and m is the maximum depth of the game tree.
Because expectiminimax is also considering all the possible dice-roll sequences, it will take
O(bmnm), where n is the number of distinct rolls.

Even if the search is limited to some small depth d, the extra cost compared with that of
minimax makes it unrealistic to consider looking ahead very far in most games of chance. In
backgammon n is 21 and b is usually around 20, but in some situations can be as high as 4000
for dice rolls that are doubles. We could probably only manage three ply of search.

Another way to think about the problem is this: the advantage of alpha–beta is that it
ignores future developments that just are not going to happen, given best play. Thus, it
concentrates on likely occurrences. But in a game where a throw of two dice precedes each
move, there are no likely sequences of moves; even the most likely move occurs only 2/36
of the time, because for the move to take place, the dice would first have to come out the
right way to make it legal. This is a general problem whenever uncertainty enters the picture:
the possibilities are multiplied enormously, and forming detailed plans of action becomes
pointless because the world probably will not play along.

It may have occurred to you that something like alpha–beta pruning could be applied to
game trees with chance nodes. It turns out that it can. The analysis for MIN and MAX nodes
is unchanged, but we can also prune chance nodes, using a bit of ingenuity. Consider the
chance node C in Figure 6.13 and what happens to its value as we evaluate its children. Is it
possible to find an upper bound on the value of C before we have looked at all its children?
(Recall that this is what alpha–beta needs in order to prune a node and its subtree.)

At first sight, it might seem impossible because the value of C is the average of its chil-
dren’s values, and in order to compute the average of a set of numbers, we must look at all
the numbers. But if we put bounds on the possible values of the utility function, then we can
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arrive at bounds for the average without looking at every number. For example, say that all
utility values are between−2 and +2; then the value of leaf nodes is bounded, and in turn we
can place an upper bound on the value of a chance node without looking at all its children.

In games where the branching factor for chance nodes is high—consider a game like
Yahtzee where you roll 5 dice on every turn—you may want to consider forward pruning that
samples a smaller number of the possible chance branches. Or you may want to avoid using
an evaluation function altogether, and opt for Monte Carlo tree search instead, where each
playout includes random dice rolls.

6.6 Partially Observable Games

Bobby Fischer declared that “chess is war,” but chess lacks at least one major characteristic
of real wars, namely, partial observability. In the “fog of war,” the whereabouts of enemy
units is often unknown until revealed by direct contact. As a result, warfare includes the use
of scouts and spies to gather information and the use of concealment and bluff to confuse the
enemy.

Partially observable games share these characteristics and are thus qualitatively different
from the games in the preceding sections. Video games such as StarCraft are particularly chal-
lenging, being partially observable, multi-agent, nondeterministic, dynamic, and unknown.

In deterministic partially observable games, uncertainty about the state of the board arises
entirely from lack of access to the choices made by the opponent. This class includes chil-
dren’s games such as Battleship (where each player’s ships are placed in locations hidden
from the opponent) and Stratego (where piece locations are known but piece types are hid-
den). We will examine the game of Kriegspiel, a partially observable variant of chess inKriegspiel

which pieces are completely invisible to the opponent. Other games also have partially ob-
servable versions: Phantom Go, Phantom tic-tac-toe, and Screen Shogi.

6.6.1 Kriegspiel: Partially observable chess

The rules of Kriegspiel are as follows: White and Black each see a board containing only
their own pieces. A referee, who can see all the pieces, adjudicates the game and periodically
makes announcements that are heard by both players. First, White proposes to the referee
a move that would be legal if there were no black pieces. If the black pieces prevent the
move, the referee announces “illegal,” and White keeps proposing moves until a legal one is
found—learning more about the location of Black’s pieces in the process.

Once a legal move is proposed, the referee announces one or more of the following:
“Capture on square X” if there is a capture, and “Check by D” if the black king is in check,
where D is the direction of the check, and can be one of “Knight,” “Rank,” “File,” “Long
diagonal,” or “Short diagonal.” If Black is checkmated or stalemated, the referee says so;
otherwise, it is Black’s turn to move.

Kriegspiel may seem terrifyingly impossible, but humans manage it quite well and com-
puter programs are beginning to catch up. It helps to recall the notion of a belief state as
defined in Section 4.4 and illustrated in Figure 4.14—the set of all logically possible board
states given the complete history of percepts to date. Initially, White’s belief state is a sin-
gleton because Black’s pieces haven’t moved yet. After White makes a move and Black
responds, White’s belief state contains 20 positions, because Black has 20 replies to any
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opening move. Keeping track of the belief state as the game progresses is exactly the prob-
lem of state estimation, for which the update step is given in Equation (4.6) on page 150. We
can map Kriegspiel state estimation directly onto the partially observable, nondeterministic
framework of Section 4.4 if we consider the opponent as the source of nondeterminism; that
is, the RESULTS of White’s move are composed from the (predictable) outcome of White’s
own move and the unpredictable outcome given by Black’s reply.4

Given a current belief state, White may ask, “Can I win the game?” For a partially
observable game, the notion of a strategy is altered; instead of specifying a move to make
for each possible move the opponent might make, we need a move for every possible percept
sequence that might be received.

For Kriegspiel, a winning strategy, or guaranteed checkmate, is one that, for each possi- Guaranteed
checkmate

ble percept sequence, leads to an actual checkmate for every possible board state in the current
belief state, regardless of how the opponent moves. With this definition, the opponent’s belief
state is irrelevant—the strategy has to work even if the opponent can see all the pieces. This
greatly simplifies the computation. Figure 6.15 shows part of a guaranteed checkmate for the
KRK (king and rook versus king) endgame. In this case, Black has just one piece (the king),
so a belief state for White can be shown in a single board by marking each possible position
of the Black king.

The general AND-OR search algorithm can be applied to the belief-state space to find
guaranteed checkmates, just as in Section 4.4. The incremental belief-state algorithm men-
tioned in Section 4.4.2 often finds midgame checkmates up to depth 9—well beyond the
abilities of most human players.

In addition to guaranteed checkmates, Kriegspiel admits an entirely new concept that
makes no sense in fully observable games: probabilistic checkmate. Such checkmates are Probabilistic

checkmate
still required to work in every board state in the belief state; they are probabilistic with respect
to randomization of the winning player’s moves. To get the basic idea, consider the problem
of finding a lone black king using just the white king. Simply by moving randomly, the
white king will eventually bump into the black king even if the latter tries to avoid this fate,
since Black cannot keep guessing the right evasive moves indefinitely. In the terminology of
probability theory, detection occurs with probability 1.

The KBNK endgame—king, bishop and knight versus king—is won in this sense; White
presents Black with an infinite random sequence of choices, for one of which Black will guess
incorrectly and reveal his position, leading to checkmate. On the other hand, the KBBK
endgame is won with probability 1− ε. White can force a win only by leaving one of his
bishops unprotected for one move. If Black happens to be in the right place and captures the
bishop (a move that would be illegal if the bishops are protected), the game is drawn. White
can choose to make the risky move at some randomly chosen point in the middle of a very
long sequence, thus reducing ε to an arbitrarily small constant, but cannot reduce ε to zero.

Sometimes a checkmate strategy works for some of the board states in the current belief
state but not others. Trying such a strategy may succeed, leading to an accidental check-
mate—accidental in the sense that White could not know that it would be checkmate—if Accidental

checkmate
Black’s pieces happen to be in the right places. (Most checkmates in games between humans

4 Sometimes, the belief state will become too large to represent just as a list of board states, but we will ignore
this issue for now; Chapters 7 and 8 suggest methods for compactly representing very large belief states.
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Figure 6.15 Part of a guaranteed checkmate in the KRK endgame, shown on a reduced
board. In the initial belief state, Black’s king is in one of three possible locations. By a
combination of probing moves, the strategy narrows this down to one. Completion of the
checkmate is left as an exercise.

are of this accidental nature.) This idea leads naturally to the question of how likely it is that a
given strategy will win, which leads in turn to the question of how likely it is that each board
state in the current belief state is the true board state.

One’s first inclination might be to propose that all board states in the current belief state
are equally likely—but this can’t be right. Consider, for example, White’s belief state after
Black’s first move of the game. By definition (assuming that Black plays optimally), Black
must have played an optimal move, so all board states resulting from suboptimal moves ought
to be assigned zero probability.

This argument is not quite right either, because each player’s goal is not just to moveI
pieces to the right squares but also to minimize the information that the opponent has about
their location. Playing any predictable “optimal” strategy provides the opponent with in-
formation. Hence, optimal play in partially observable games requires a willingness to play
somewhat randomly. (This is why restaurant hygiene inspectors do random inspection visits.)
This means occasionally selecting moves that may seem “intrinsically” weak—but they gain
strength from their very unpredictability, because the opponent is unlikely to have prepared
any defense against them.
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From these considerations, it seems that the probabilities associated with the board states
in the current belief state can only be calculated given an optimal randomized strategy; in
turn, computing that strategy seems to require knowing the probabilities of the various states
the board might be in. This conundrum can be resolved by adopting the game-theoretic notion
of an equilibrium solution, which we pursue further in Chapter 16. An equilibrium specifies
an optimal randomized strategy for each player. Computing equilibria is too expensive for
Kriegspiel. At present, the design of effective algorithms for general Kriegspiel play is an
open research topic. Most systems perform bounded-depth look-ahead in their own belief-
state space, ignoring the opponent’s belief state. Evaluation functions resemble those for the
observable game but include a component for the size of the belief state—smaller is better!
We will return to partially observable games under the topic of Game Theory in Section 17.2.

6.6.2 Card games

Card games such as bridge, whist, hearts, and poker feature stochastic partial observability,
where the missing information is generated by the random dealing of cards.

At first sight, it might seem that these card games are just like dice games: the cards are
dealt randomly and determine the moves available to each player, but all the “dice” are rolled
at the beginning! Even though this analogy turns out to be incorrect, it suggests an algorithm:
treat the start of the game as a chance node with every possible deal as an outcome, and then
use the EXPECTIMINIMAX formula to pick the best move. Note that in this approach the only
chance node is the root node; after that the game becomes fully observable. This approach is
sometimes called averaging over clairvoyance because it assumes that once the actual deal
has occurred, the game becomes fully observable to both players. Despite its intuitive appeal,
the strategy can lead one astray. Consider the following story:

Day 1: Road A leads to a pot of gold; Road B leads to a fork. You can see that the left
fork leads to two pots of gold, and the right fork leads to you being run over by a bus.

Day 2: Road A leads to a pot of gold; Road B leads to a fork. You can see that the
right fork leads to two pots of gold, and the left fork leads to you being run over by a bus.

Day 3: Road A leads to a pot of gold; Road B leads to a fork. You are told that one
fork leads to two pots of gold, and one fork leads to you being run over by a bus. Unfor-
tunately you don’t know which fork is which.

Averaging over clairvoyance leads to the following reasoning: on Day 1, B is the right choice;
on Day 2, B is the right choice; on Day 3, the situation is the same as either Day 1 or Day 2,
so B must still be the right choice.

Now we can see how averaging over clairvoyance fails: it does not consider the belief
state that the agent will be in after acting. A belief state of total ignorance is not desirable,
especially when one possibility is certain death. Because it assumes that every future state will
automatically be one of perfect knowledge, the clairvoyance approach never selects actions
that gather information (like the first move in Figure 6.15); nor will it choose actions that
hide information from the opponent or provide information to a partner, because it assumes
that they already know the information; and it will never bluff in poker,5 because it assumes Bluff

the opponent can see its cards. In Chapter 16, we show how to construct algorithms that do

5 Bluffing—betting as if one’s hand is good, even when it’s not—is a core part of poker strategy.



218 Chapter 6 Adversarial Search and Games

all these things by virtue of solving the true partially observable decision problem, resulting
in an optimal equilibrium strategy (see Section 17.2).

Despite the drawbacks, averaging over clairvoyance can be an effective strategy, with
some tricks to make it work better. In most card games, the number of possible deals is rather
large. For example, in bridge play, each player sees just two of the four hands; there are
two unseen hands of 13 cards each, so the number of deals is

(26
13

)
= 10,400,600. Solving

even one deal is quite difficult, so solving ten million is out of the question. One way to deal
with this huge number is with abstraction: i.e. by treating similar hands as identical. For
example, it is very important which aces and kings are in a hand, but whether the hand has a
4 or 5 is not as important, and can be abstracted away.

Another way to deal with the large number is forward pruning: consider only a small
random sample of N deals, and again calculate the EXPECTIMINIMAX score. Even for fairly
small N—say, 100 to 1,000—this method gives a good approximation. It can also be applied
to deterministic games such as Kriegspiel, where we sample over possible states of the game
rather than over possible deals, as long as we have some way to estimate how likely each state
is. It can also be helpful to do heuristic search with a depth cutoff rather than to search the
entire game tree.

So far we have assumed that each deal is equally likely. That makes sense for games
like whist and hearts. But for bridge, play is preceded by a bidding phase in which each
team indicates how many tricks it expects to win. Since players bid based on the cards they
hold, the other players learn something about the probability P(s) of each deal. Taking this
into account in deciding how to play the hand is tricky, for the reasons mentioned in our
description of Kriegspiel: players may bid in such a way as to minimize the information
conveyed to their opponents.

Computers have reached a superhuman level of performance in poker. The poker pro-
gram Libratus took on four of the top poker players in the world in a 20-day match of no-
limit Texas hold ’em and decisively beat them all. Since there are so many possible states
in poker, Libratus uses abstraction to reduce the state space: it might consider the two hands
AAA72 and AAA64 to be equivalent (they’re both “three aces and some low cards”), and it
might consider a bet of 200 dollars to be the same as 201 dollars. But Libratus also monitors
the other players, and if it detects they are exploiting an abstraction, it will do some addi-
tional computation overnight to plug that hole. Overall it used 25 million CPU hours on a
supercomputer to pull off the win.

The computational costs incurred by Libratus (and similar costs by ALPHAZERO and
other systems) suggests that world champion game play may not be achievable for researchers
with limited budgets. To some extent that is true: just as you should not expect to be able
to assemble a champion Formula One race car out of spare parts in your garage, there is
an advantage to having access to supercomputers or specialty hardware such as Tensor Pro-
cessing Units. That is particularly true when training a system, but training could also be
done via crowdsourcing. For example the open-source LEELAZERO system is a reimplemen-
tation of ALPHAZERO that trains through self-play on the computers of volunteer partici-
pants. Once trained, the computational requirements for actual tournament play are modest.
ALPHASTAR won StarCraft II games running on a commodity desktop with a single GPU,
and ALPHAZERO could have been run in that mode.
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Figure 6.16 A two-ply game tree for which heuristic minimax may make an error.

6.7 Limitations of Game Search Algorithms

Because calculating optimal decisions in complex games is intractable, all algorithms must
make some assumptions and approximations. Alpha–beta search uses the heuristic evaluation
function as an approximation, and Monte Carlo search computes an approximate average
over a random selection of playouts. The choice of which algorithm to use depends in part
on the features of each game: when the branching factor is high or it is difficult to define
an evaluation function, Monte Carlo search is preferred. But both algorithms suffer from
fundamental limitations.

One limitation of alpha–beta search is its vulnerability to errors in the heuristic function.
Figure 6.16 shows a two-ply game tree for which minimax suggests taking the right-hand
branch because 100> 99. That is the correct move if the evaluations are all exactly accurate.
But suppose that the evaluation of each node has an error that is independent of other nodes
and is randomly distributed with a standard deviation of σ. Then the left-hand branch is
actually better 71% of the time when σ = 5, and 58% of the time when σ = 2 (because
one of the four right-hand leaves is likely to slip below 99 in these cases). If errors in the
evaluation function are not independent, then the chance of a mistake rises. It is difficult to
compensate for this because we don’t have a good model of the dependencies between the
values of sibling nodes.

A second limitation of both alpha–beta and Monte Carlo is that they are designed to
calculate (bounds on) the values of legal moves. But sometimes there is one move that is
obviously best (for example when there is only one legal move), and in that case, there is no
point wasting computation time to figure out the value of the move—it is better to just make
the move. A better search algorithm would use the idea of the utility of a node expansion,
selecting node expansions of high utility—that is, ones that are likely to lead to the discovery
of a significantly better move. If there are no node expansions whose utility is higher than
their cost (in terms of time), then the algorithm should stop searching and make a move. This
works not only for clear-favorite situations but also for the case of symmetrical moves, for
which no amount of search will show that one move is better than another.

This kind of reasoning about what computations to do is called metareasoning (reason- Metareasoning

ing about reasoning). It applies not just to game playing but to any kind of reasoning at all.
All computations are done in the service of trying to reach better decisions, all have costs,
and all have some likelihood of resulting in a certain improvement in decision quality. Monte
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Carlo search does attempt to do metareasoning to allocate resources to the most important
parts of the tree, but does not do so in an optimal way.

A third limitation is that both alpha-beta and Monte Carlo do all their reasoning at the
level of individual moves. Clearly, humans play games differently: they can reason at a more
abstract level, considering a higher-level goal—for example, trapping the opponent’s queen—
and using the goal to selectively generate plausible plans. In Chapter 11 we will study this
type of planning, and in Section 11.4 we will show how to plan with a hierarchy of abstract
to concrete representations.

A fourth issue is the ability to incorporate machine learning into the game search pro-
cess. Early game programs relied on human expertise to hand-craft evaluation functions,
opening books, search strategies, and efficiency tricks. We are just beginning to see programs
like ALPHAZERO (Silver et al., 2018), which relied on machine learning from self-play rather
than game-specific human-generated expertise. We cover machine learning in depth starting
with Chapter 19.

Summary

We have looked at a variety of games to understand what optimal play means, to understand
how to play well in practice, and to get a feel for how an agent should act in any type of
adversarial environment. The most important ideas are as follows:

• A game can be defined by the initial state (how the board is set up), the legal actions
in each state, the result of each action, a terminal test (which says when the game is
over), and a utility function that applies to terminal states to say who won and what the
final score is.

• In two-player, discrete, deterministic, turn-taking zero-sum games with perfect infor-
mation, the minimax algorithm can select optimal moves by a depth-first enumeration
of the game tree.

• The alpha–beta search algorithm computes the same optimal move as minimax, but
achieves much greater efficiency by eliminating subtrees that are provably irrelevant.

• Usually, it is not feasible to consider the whole game tree (even with alpha–beta), so we
need to cut the search off at some point and apply a heuristic evaluation function that
estimates the utility of a state.

• An alternative called Monte Carlo tree search (MCTS) evaluates states not by apply-
ing a heuristic function, but by playing out the game all the way to the end and using
the rules of the game to see who won. Since the moves chosen during the playout may
not have been optimal moves, the process is repeated multiple times and the evaluation
is an average of the results.

• Many game programs precompute tables of best moves in the opening and endgame so
that they can look up a move rather than search.

• Games of chance can be handled by expectiminimax, an extension to the minimax
algorithm that evaluates a chance node by taking the average utility of all its children,
weighted by the probability of each child.

• In games of imperfect information, such as Kriegspiel and poker, optimal play re-
quires reasoning about the current and future belief states of each player. A simple
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approximation can be obtained by averaging the value of an action over each possible
configuration of missing information.

• Programs have soundly defeated champion human players at chess, checkers, Othello,
Go, poker, and many other games. Humans retain the edge in a few games of imper-
fect information, such as bridge and Kriegspiel. In video games such as StarCraft and
Dota 2, programs are competitive with human experts, but part of their success may be
due to their ability to perform many actions very quickly.

Bibliographical and Historical Notes

In 1846, Charles Babbage discussed the feasibility of computer chess and checkers (Morri-
son and Morrison, 1961). He did not understand the exponential complexity of search trees,
claiming “the combinations involved in the Analytical Engine enormously surpassed any re-
quired, even by the game of chess.” Babbage also designed, but did not build, a special-
purpose machine for playing tic-tac-toe. The first game-playing machine was built around
1890 by the Spanish engineer Leonardo Torres y Quevedo. It specialized in the “KRK” (king
and rook versus king) chess endgame, guaranteeing a win when the side with the rook has the
move. The minimax algorithm is traced to a 1912 paper by Ernst Zermelo, the developer of
modern set theory.

Game playing was one of the first tasks undertaken in AI, with early efforts by such pi-
oneers as Konrad Zuse (1945), Norbert Wiener in his book Cybernetics (1948), and Alan
Turing (1953). But it was Claude Shannon’s article Programming a Computer for Playing
Chess (1950) that laid out all the major ideas: a representation for board positions, an evalua-
tion function, quiescence search, and some ideas for selective game-tree search. Slater (1950)
had the idea of an evaluation function as a linear combination of features, and stressed the
mobility feature in chess.

John McCarthy conceived the idea of alpha–beta search in 1956, although the idea did
not appear in print until later (Hart and Edwards, 1961). Knuth and Moore (1975) proved
the correctness of alpha–beta and analysed its time complexity, while Pearl (1982b) showed
alpha–beta to be asymptotically optimal among all fixed-depth game-tree search algorithms.

Berliner (1979) introduced B∗, a heuristic search algorithm that maintains interval bounds
on the possible value of a node in the game tree rather than giving it a single point-valued
estimate. David McAllester’s (1988) conspiracy number search expands leaf nodes that, by
changing their values, could cause the program to prefer a new move at the root of the tree.
MGSS∗ (Russell and Wefald, 1989) uses the decision-theoretic techniques of Chapter 15 to
estimate the value of expanding each leaf in terms of the expected improvement in decision
quality at the root.

The SSS∗ algorithm (Stockman, 1979) can be viewed as a two-player A∗ that never ex-
pands more nodes than alpha–beta. The memory requirements make it impractical, but a
linear-space version has been developed from the RBFS algorithm (Korf and Chickering,
1996). Baum and Smith (1997) propose a probability-based replacement for minimax, show-
ing that it results in better choices in certain games. The expectiminimax algorithm was
proposed by Donald Michie (1966). Bruce Ballard (1983) extended alpha–beta pruning to
cover trees with chance nodes.
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Pearl’s book Heuristics (1984) thoroughly analyzes many game-playing algorithms.
Monte Carlo simulation was pioneered by Metropolis and Ulam (1949) for calculations

related to the development of the atomic bomb. Monte Carlo tree search (MCTS) was intro-
duced by Abramson (1987). Tesauro and Galperin (1997) showed how a Monte Carlo search
could be combined with an evaluation function for the game of backgammon. Early play-
out termination is studied by Lorentz (2015). ALPHAGO terminated playouts and applied an
evaluation function (Silver et al., 2016). Kocsis and Szepesvari (2006) refined the approach
with the “Upper Confidence Bounds applied to Trees” selection mechanism. Chaslot et al.
(2008) show how MCTS can be applied to a variety of games and Browne et al. (2012) give
a survey.

Koller and Pfeffer (1997) describe a system for completely solving partially observable
games. It handles larger games than previous systems, but not the full version of complex
games like poker and bridge. Frank et al. (1998) describe several variants of Monte Carlo
search for partially observable games, including one where MIN has complete information
but MAX does not. Schofield and Thielscher (2015) adapt a general game-playing system for
partially observable games.

Ferguson hand-derived randomized strategies for winning Kriegspiel with a bishop and
knight (1992) or two bishops (1995) against a king. The first Kriegspiel programs con-
centrated on finding endgame checkmates and performed AND–OR search in belief-state
space (Sakuta and Iida, 2002; Bolognesi and Ciancarini, 2003). Incremental belief-state al-
gorithms enabled much more complex midgame checkmates to be found (Russell and Wolfe,
2005; Wolfe and Russell, 2007), but efficient state estimation remains the primary obstacle
to effective general play (Parker et al., 2005). Ciancarini and Favini (2010) apply MCTS to
Kriegspiel, and Wang et al. (2018b) describe a belief-state version of MCTS for Phantom Go.

Chess milestones have been marked by successive winners of the Fredkin Prize: BELLE

(Condon and Thompson, 1982), the first program to achieve master status; DEEP THOUGHT

(Hsu et al., 1990), the first to reach international master status; and Deep Blue (Campbell
et al., 2002; Hsu, 2004), which defeated world champion Garry Kasparov in a 1997 exhibition
match. Deep Blue ran alpha–beta search at over 100 million positions per second, and could
generate singular extensions to occasionally reach a depth of 40 ply.

The top chess programs today (e.g., STOCKFISH, KOMODO, HOUDINI) far exceed any
human player. These programs have reduced the effective branching factor to less than 3
(compared with the actual branching factor of about 35), searching to about 20 ply at a speed
of about a million nodes per second on a standard 1-core computer. They use pruning tech-
niques such as the null move heuristic, which generates a good lower bound on the value ofNull move

a position, using a shallow search in which the opponent gets to move twice at the beginning.
Also important is futility pruning, which helps decide in advance which moves will causeFutility pruning

a beta cutoff in the successor nodes. SUNFISH is a simplified chess program for teaching
purposes; the core is less than 200 lines of Python.

The idea of retrograde analysis for computing endgame tables is due to Bellman (1965).
Using this idea, Ken Thompson (1986, 1996) and Lewis Stiller (1992, 1996) solved all chess
endgames with up to five pieces. Stiller discovered one case where a forced mate existed
but required 262 moves; this caused some consternation because the rules of chess require
a capture or pawn move to occur within 50 moves, or else a draw is declared. In 2012
Vladimir Makhnychev and Victor Zakharov compiled the Lomonosov Endgame Tablebase,
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which solved all endgame positions with up to seven pieces—some require over 500 moves
without a capture. The 7-piece table consumes 140 terabytes; an 8-piece table would be 100
times larger.

In 2017, ALPHAZERO (Silver et al., 2018) defeated STOCKFISH (the 2017 TCEC com-
puter chess champion) in a 1000-game trial, with 155 wins and 6 losses. Additional matches
also resulted in decisive wins for ALPHAZERO, even when it was given only 1/10th the time
allotted to STOCKFISH.

Grandmaster Larry Kaufman was surprised at the sucess of this Monte Carlo program
and noted, “It may well be that the current dominance of minimax chess engines may be at an
end, but it’s too soon to say so.” Garry Kasparov commented “It’s a remarkable achievement,
even if we should have expected it after ALPHAGO. It approaches the Type B human-like
approach to machine chess dreamt of by Claude Shannon and Alan Turing instead of brute
force.” He went on to predict “Chess has been shaken to its roots by ALPHAZERO, but this is
only a tiny example of what is to come. Hidebound disciplines like education and medicine
will also be shaken” (Sadler and Regan, 2019).

Checkers was the first of the classic games played by a computer (Strachey, 1952).
Arthur Samuel (1959, 1967) developed a checkers program that learned its own evaluation
function through self-play using a form of reinforcement learning. It is quite an achievement
that Samuel was able to create a program that played better than he did, on an IBM 704
computer with only 10,000 words of memory and a 0.000001 GHz processor. MENACE—the
Machine Educable Noughts And Crosses Engine (Michie, 1963)—also used reinforcement
learning to become competent at tic-tac-toe. Its processor was even slower: a collection of
304 matchboxes holding colored beads to represent the best learned move in each position.

In 1992, Jonathan Schaeffer’s CHINOOK checkers program challenged the legendary
Marion Tinsley, who had been world champion for over 20 years. Tinsley won the match,
but lost two games—the fourth and fifth losses in his entire career. After Tinsley retired for
health reasons, CHINOOK took the crown. The saga was chronicled by Schaeffer (2008).

In 2007 Schaeffer and his team “solved” checkers (Schaeffer et al., 2007): the game
is a draw with perfect play. Richard Bellman (1965) had predicted this: “In checkers, the
number of possible moves in any given situation is so small that we can confidently expect a
complete digital computer solution to the problem of optimal play in this game.” Bellman did
not anticipate the scale of the effort: the endgame table for 10 pieces has 39 trillion entries.
Given this table, it took 18 CPU-years of alpha–beta search to solve the game.

I. J. Good, who was taught the Game of Go by Alan Turing, wrote (1965a) “ I think it
will be even more difficult to programme a computer to play a reasonable game of Go than of
chess.” He was right: through 2015, Go programs played only at an amateur level. The early
literature is summarized by Bouzy and Cazenave (2001) and Müller (2002).

Visual pattern recognition was proposed as a promising technique for Go by Zobrist
(1970), while Schraudolph et al. (1994) analyzed the use of reinforcement learning, Lubberts
and Miikkulainen (2001) recommended neural networks, and Brügmann (1993) introduced
Monte Carlo tree search to Go. ALPHAGO (Silver et al., 2016) put those four ideas together
to defeat top-ranked professionals Lee Sedol (by a score of 4–1 in 2015) and Ke Jie (by 3–0
in 2016).

Ke Jie remarked “After humanity spent thousands of years improving our tactics, comput-
ers tell us that humans are completely wrong. I would go as far as to say not a single human
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has touched the edge of the truth of Go.” Lee Sedol retired from Go, lamenting, “Even if I
became the number one, there is an entity that cannot be defeated.”

In 2018, ALPHAZERO surpassed ALPHAGO at Go, and also defeated top programs in
chess and shogi, learning through self-play without any expert human knowledge and without
access to any past games. (It does, of course, rely on humans to define the basic architecture
as Monte Carlo tree search with deep neural networks and reinforcement learning, and to
encode the rules of the game.) The success of ALPHAZERO has led to increased interest in
reinforcement learning as a key component of general AI (see Chapter 23). Going one step
further, the MUZERO system operates without even being told the rules of the game it is
playing—it has to figure out the rules by making plays. MUZERO achieved state-of-the-art
results in Pacman, chess, Go, and 75 Atari games (Schrittwieser et al., 2019). It learns to
generalize; for example, it learns that in Pacman the “up” action moves the player up a square
(unless there is a wall there), even though it has only observed the result of the “up” action in
a small percentage of the locations on the board.

Othello, also called Reversi, has a smaller search space than chess, but defining an eval-
uation function is difficult, because material advantage is not as important as mobility. Pro-
grams have been at superhuman level since 1997 (Buro, 2002).

Backgammon, a game of chance, was analyzed mathematically by Gerolamo Cardano
(1663), and taken up for computer play with the BKG program (Berliner, 1980b), which used
a manually constructed evaluation function and searched only to depth 1. It was the first pro-
gram to defeat a human world champion at a major game (Berliner, 1980a), although Berliner
readily acknowledged that BKG was very lucky with the dice. Gerry Tesauro’s (1995)
TD-GAMMON learned its evaluation function using neural networks trained by self-play.
It consistently played at world champion level and caused human analysts to change their
opinion on the best opening move for several dice rolls.

Poker, like Go, has seen surprising advances in recent years. Bowling et al. (2015) used
game theory (see Section 17.2) to determine the exact optimal strategy for a version of poker
with just two players and a fixed number of raises with fixed bet sizes. In 2017, for the first
time, champion poker players were beaten at heads-up (two player) no-limit Texas hold ’em
in two separate matches against the programs Libratus (Brown and Sandholm, 2017) and
DeepStack (Moravčı́k et al., 2017). In 2019, Pluribus (Brown and Sandholm, 2019) defeated
top-ranked professional human players in Texas hold ’em games with six players. Multiplayer
games introduce some strategic concerns that we will cover in Chapter 17. Petosa and Balch
(2019) implement a multiplayer version of ALPHAZERO.

Bridge: Smith et al. (1998) report on how BRIDGE BARON won the 1998 computer
bridge championship, using hierarchical plans (see Chapter 11) and high-level actions, such
as finessing and squeezing, that are familiar to bridge players. Ginsberg (2001) describes
how his GIB program, based on Monte Carlo simulation (first proposed for bridge by Levy
(1989)), won the following computer championship and did surprisingly well against expert
human players. In the 21st century, the computer bridge championship has been dominated by
two commercial programs, JACK and WBRIDGE5. Neither has been described in published
articles, but both are believed to use Monte Carlo techniques. In general, bridge programs
are at human champion level when actually playing the hands, but lag behind in the bid-
ding phase, because they do not completely understand the conventions used by humans to
communicate with their partners. Bridge programmers have concentrated more on producing
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useful and educational programs that encourage people to take up the game, rather than on
defeating human champions.

Scrabble is a game where amateur human players have difficulty coming up with high-
scoring words, but for a computer, it is easy to find the highest possible score for a given
hand (Gordon, 1994); the hard part is planning ahead in a partially observable, stochastic
game. Nevertheless, in 2006, the QUACKLE program defeated the former world champion,
David Boys, 3–2. Boys took it well, stating, “It’s still better to be a human than to be a
computer.” A good description of a top program, MAVEN, is given by Sheppard (2002).

Video games such as StarCraft II involve hundreds of partially observable units moving
in real time with high-dimensional near-continuous6 observation and action spaces with com-
plex rules. Oriol Vinyals, who was Spain’s StarCraft champion at age 15, described how the
game can serve as a testbed and grand challenge for reinforcement learning (Vinyals et al.,
2017a). In 2019, Vinyals and the team at DeepMind unveiled the ALPHASTAR program,
based on deep learning and reinforcement learning, which defeated expert human players 10
games to 1, and ranks in the top 0.02% of officially ranked human players (Vinyals et al.,
2019). ALPHASTAR took steps to limit the number of actions per minute it could perform in
critical bursts, in response to critics who felt it had an unfair advantage.

Computers have defeated top humans in other popular video games such as Super Smash
Bros. (Firoiu et al., 2017), Quake III (Jaderberg et al., 2019), and Dota 2 (Fernandez and
Mahlmann, 2018), all using deep learning techniques.

Physical games such as robotic soccer (Visser et al., 2008; Barrett and Stone, 2015),
billiards (Lam and Greenspan, 2008; Archibald et al., 2009), and ping-pong (Silva et al.,
2015) have attracted some attention in AI. They combine all the complications of video games
with the messiness of the real world.

Computer game competitions occur annually, including the Computer Olympiads since
1989. The General Game Competition (Love et al., 2006) tests programs that must learn to
play an unknown game given only a logical description of the rules of the game. The Interna-
tional Computer Games Association (ICGA) publishes the ICGA Journal and runs two alter-
nating biennial conferences, The International Conference on Computers and Games (ICCG
or CG) and the International Conference on Advances in Computer Games (ACG). The IEEE
publishes IEEE Transactions on Games and runs an annual Conference on Computational
Intelligence and Games.

6 To a human player, it appears that objects move continuously, but they are actually discrete at the level of a
pixel on the screen.



CHAPTER 7
LOGICAL AGENTS
In which we design agents that can form representations of a complex world, use a process
of inference to derive new representations about the world, and use these new representa-
tions to deduce what to do.

Humans, it seems, know things; and what they know helps them do things. In AI, knowledge-
based agents use a process of reasoning over an internal representation of knowledge toKnowledge-based

agents
Reasoning

Representation

decide what actions to take.
The problem-solving agents of Chapters 3 and 4 know things, but only in a very limited,

inflexible sense. They know what actions are available and what the result of performing a
specific action from a specific state will be, but they don’t know general facts. A route-finding
agent doesn’t know that it is impossible for a road to be a negative number of kilometers long.
An 8-puzzle agent doesn’t know that two tiles cannot occupy the same space. The knowledge
they have is very useful for finding a path from the start to a goal, but not for anything else.

The atomic representations used by problem-solving agents are also very limiting. In
a partially observable environment, for example, a problem-solving agent’s only choice for
representing what it knows about the current state is to list all possible concrete states. I could
give a human the goal of driving to a U.S. town with population less than 10,000, but to say
that to a problem-solving agent, I could formally describe the goal only as an explicit set of
the 16,000 or so towns that satisfy the description.

Chapter 5 introduced our first factored representation, whereby states are represented as
assignments of values to variables; this is a step in the right direction, enabling some parts of
the agent to work in a domain-independent way and allowing for more efficient algorithms.
In this chapter, we take this step to its logical conclusion, so to speak—we develop logic as a
general class of representations to support knowledge-based agents. These agents can com-
bine and recombine information to suit myriad purposes. This can be far removed from the
needs of the moment—as when a mathematician proves a theorem or an astronomer calcu-
lates the Earth’s life expectancy. Knowledge-based agents can accept new tasks in the form
of explicitly described goals; they can achieve competence quickly by being told or learning
new knowledge about the environment; and they can adapt to changes in the environment by
updating the relevant knowledge.

We begin in Section 7.1 with the overall agent design. Section 7.2 introduces a simple
new environment, the wumpus world, and illustrates the operation of a knowledge-based
agent without going into any technical detail. Then we explain the general principles of logic
in Section 7.3 and the specifics of propositional logic in Section 7.4. Propositional logic is
a factored representation; while less expressive than first-order logic (Chapter 8), which is
the canonical structured representation, propositional logic illustrates all the basic concepts



Section 7.1 Knowledge-Based Agents 227

function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
action←ASK(KB, MAKE-ACTION-QUERY(t))
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

Figure 7.1 A generic knowledge-based agent. Given a percept, the agent adds the percept
to its knowledge base, asks the knowledge base for the best action, and tells the knowledge
base that it has in fact taken that action.

of logic. It also comes with well-developed inference technologies, which we describe in
sections 7.5 and 7.6. Finally, Section 7.7 combines the concept of knowledge-based agents
with the technology of propositional logic to build some simple agents for the wumpus world.

7.1 Knowledge-Based Agents

The central component of a knowledge-based agent is its knowledge base, or KB. A knowl- Knowledge base

edge base is a set of sentences. (Here “sentence” is used as a technical term. It is related Sentence

but not identical to the sentences of English and other natural languages.) Each sentence is
expressed in a language called a knowledge representation language and represents some

Knowledge
representation
languageassertion about the world. When the sentence is taken as being given without being derived

from other sentences, we call it an axiom. Axiom

There must be a way to add new sentences to the knowledge base and a way to query
what is known. The standard names for these operations are TELL and ASK, respectively.
Both operations may involve inference—that is, deriving new sentences from old. Inference Inference

must obey the requirement that when one ASKs a question of the knowledge base, the answer
should follow from what has been told (or TELLed) to the knowledge base previously. Later
in this chapter, we will be more precise about the crucial word “follow.” For now, take it to
mean that the inference process should not make things up as it goes along.

Figure 7.1 shows the outline of a knowledge-based agent program. Like all our agents,
it takes a percept as input and returns an action. The agent maintains a knowledge base, KB,
which may initially contain some background knowledge. Background

knowledge

Each time the agent program is called, it does three things. First, it TELLs the knowledge
base what it perceives. Second, it ASKs the knowledge base what action it should perform. In
the process of answering this query, extensive reasoning may be done about the current state
of the world, about the outcomes of possible action sequences, and so on. Third, the agent
program TELLs the knowledge base which action was chosen, and returns the action so that
it can be executed.

The details of the representation language are hidden inside three functions that imple-
ment the interface between the sensors and actuators on one side and the core representation
and reasoning system on the other. MAKE-PERCEPT-SENTENCE constructs a sentence as-
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serting that the agent perceived the given percept at the given time. MAKE-ACTION-QUERY

constructs a sentence that asks what action should be done at the current time. Finally,
MAKE-ACTION-SENTENCE constructs a sentence asserting that the chosen action was ex-
ecuted. The details of the inference mechanisms are hidden inside TELL and ASK. Later
sections will reveal these details.

The agent in Figure 7.1 appears quite similar to the agents with internal state described
in Chapter 2. Because of the definitions of TELL and ASK, however, the knowledge-based
agent is not an arbitrary program for calculating actions. It is amenable to a description at the
knowledge level, where we need specify only what the agent knows and what its goals are,Knowledge level

in order to determine its behavior.
For example, an automated taxi might have the goal of taking a passenger from San

Francisco to Marin County and might know that the Golden Gate Bridge is the only link
between the two locations. Then we can expect it to cross the Golden Gate Bridge because it
knows that that will achieve its goal. Notice that this analysis is independent of how the taxi
works at the implementation level. It doesn’t matter whether its geographical knowledge isImplementation level

implemented as linked lists or pixel maps, or whether it reasons by manipulating strings of
symbols stored in registers or by propagating noisy signals in a network of neurons.

A knowledge-based agent can be built simply by TELLing it what it needs to know. Start-
ing with an empty knowledge base, the agent designer can TELL sentences one by one until
the agent knows how to operate in its environment. This is called the declarative approachDeclarative

to system building. In contrast, the procedural approach encodes desired behaviors directlyProcedural

as program code. In the 1970s and 1980s, advocates of the two approaches engaged in heated
debates. We now understand that a successful agent often combines both declarative and
procedural elements in its design, and that declarative knowledge can often be compiled into
more efficient procedural code.

We can also provide a knowledge-based agent with mechanisms that allow it to learn for
itself. These mechanisms, which are discussed in Chapter 19, create general knowledge about
the environment from a series of percepts. A learning agent can be fully autonomous.

7.2 The Wumpus World

In this section we describe an environment in which knowledge-based agents can show their
worth. The wumpus world is a cave consisting of rooms connected by passageways. LurkingWumpus world

somewhere in the cave is the terrible wumpus, a beast that eats anyone who enters its room.
The wumpus can be shot by an agent, but the agent has only one arrow. Some rooms contain
bottomless pits that will trap anyone who wanders into these rooms (except for the wumpus,
which is too big to fall in). The only redeeming feature of this bleak environment is the
possibility of finding a heap of gold. Although the wumpus world is rather tame by modern
computer game standards, it illustrates some important points about intelligence.

A sample wumpus world is shown in Figure 7.2. The precise definition of the task envi-
ronment is given, as suggested in Section 2.3, by the PEAS description:

• Performance measure: +1000 for climbing out of the cave with the gold, –1000 for
falling into a pit or being eaten by the wumpus, –1 for each action taken, and –10 for
using up the arrow. The game ends either when the agent dies or when the agent climbs
out of the cave.
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Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing east
(rightward).

• Environment: A 4×4 grid of rooms, with walls surrounding the grid. The agent al-
ways starts in the square labeled [1,1], facing to the east. The locations of the gold and
the wumpus are chosen randomly, with a uniform distribution, from the squares other
than the start square. In addition, each square other than the start can be a pit, with
probability 0.2.
• Actuators: The agent can move Forward, TurnLeft by 90◦, or TurnRight by 90◦. The

agent dies a miserable death if it enters a square containing a pit or a live wumpus. (It
is safe, albeit smelly, to enter a square with a dead wumpus.) If an agent tries to move
forward and bumps into a wall, then the agent does not move. The action Grab can be
used to pick up the gold if it is in the same square as the agent. The action Shoot can
be used to fire an arrow in a straight line in the direction the agent is facing. The arrow
continues until it either hits (and hence kills) the wumpus or hits a wall. The agent has
only one arrow, so only the first Shoot action has any effect. Finally, the action Climb
can be used to climb out of the cave, but only from square [1,1].
• Sensors: The agent has five sensors, each of which gives a single bit of information:

– In the squares directly (not diagonally) adjacent to the wumpus, the agent will
perceive a Stench.1

– In the squares directly adjacent to a pit, the agent will perceive a Breeze.
– In the square where the gold is, the agent will perceive a Glitter.
– When an agent walks into a wall, it will perceive a Bump.
– When the wumpus is killed, it emits a woeful Scream that can be perceived any-

where in the cave.

The percepts will be given to the agent program in the form of a list of five symbols;
for example, if there is a stench and a breeze, but no glitter, bump, or scream, the agent
program will get [Stench,Breeze,None,None,None].

1 Presumably the square containing the wumpus also has a stench, but any agent entering that square is eaten
before being able to perceive anything.
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Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial situa-
tion, after percept [None,None,None,None,None]. (b) After moving to [2,1] and perceiving
[None,Breeze,None,None,None].

We can characterize the wumpus environment along the various dimensions given in Chap-
ter 2. Clearly, it is deterministic, discrete, static, and single-agent. (The wumpus doesn’t
move, fortunately.) It is sequential, because rewards may come only after many actions are
taken. It is partially observable, because some aspects of the state are not directly perceivable:
the agent’s location, the wumpus’s state of health, and the availability of an arrow. As for the
locations of the pits and the wumpus: we could treat them as unobserved parts of the state—
in which case, the transition model for the environment is completely known, and finding the
locations of pits completes the agent’s knowledge of the state. Alternatively, we could say
that the transition model itself is unknown because the agent doesn’t know which Forward
actions are fatal—in which case, discovering the locations of pits and wumpus completes the
agent’s knowledge of the transition model.

For an agent in the environment, the main challenge is its initial ignorance of the config-
uration of the environment; overcoming this ignorance seems to require logical reasoning. In
most instances of the wumpus world, it is possible for the agent to retrieve the gold safely.
Occasionally, the agent must choose between going home empty-handed and risking death to
find the gold. About 21% of the environments are utterly unfair, because the gold is in a pit
or surrounded by pits.

Let us watch a knowledge-based wumpus agent exploring the environment shown in
Figure 7.2. We use an informal knowledge representation language consisting of writing
down symbols in a grid (as in Figures 7.3 and 7.4).

The agent’s initial knowledge base contains the rules of the environment, as described
previously; in particular, it knows that it is in [1,1] and that [1,1] is a safe square; we denote
that with an “A” and “OK,” respectively, in square [1,1].

The first percept is [None,None,None,None,None], from which the agent can conclude
that its neighboring squares, [1,2] and [2,1], are free of dangers—they are OK. Figure 7.3(a)
shows the agent’s state of knowledge at this point.
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Figure 7.4 Two later stages in the progress of the agent. (a) After moving to [1,1] and then
[1,2], and perceiving [Stench,None,None,None,None]. (b) After moving to [2,2] and then
[2,3], and perceiving [Stench,Breeze,Glitter,None,None].

A cautious agent will move only into a square that it knows to be OK. Let us suppose
the agent decides to move forward to [2,1]. The agent perceives a breeze (denoted by “B”) in
[2,1], so there must be a pit in a neighboring square. The pit cannot be in [1,1], by the rules of
the game, so there must be a pit in [2,2] or [3,1] or both. The notation “P?” in Figure 7.3(b)
indicates a possible pit in those squares. At this point, there is only one known square that is
OK and that has not yet been visited. So the prudent agent will turn around, go back to [1,1],
and then proceed to [1,2].

The agent perceives a stench in [1,2], resulting in the state of knowledge shown in Fig-
ure 7.4(a). The stench in [1,2] means that there must be a wumpus nearby. But the wumpus
cannot be in [1,1], by the rules of the game, and it cannot be in [2,2] (or the agent would
have detected a stench when it was in [2,1]). Therefore, the agent can infer that the wumpus
is in [1,3]. The notation W! indicates this inference. Moreover, the lack of a breeze in [1,2]
implies that there is no pit in [2,2]. Yet the agent has already inferred that there must be a pit
in either [2,2] or [3,1], so this means it must be in [3,1]. This is a fairly difficult inference,
because it combines knowledge gained at different times in different places and relies on the
lack of a percept to make one crucial step.

The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so it
is OK to move there. We do not show the agent’s state of knowledge at [2,2]; we just assume
that the agent turns and moves to [2,3], giving us Figure 7.4(b). In [2,3], the agent detects a
glitter, so it should grab the gold and then return home.

Note that in each case for which the agent draws a conclusion from the available infor-
mation, that conclusion is guaranteed to be correct if the available information is correct.
This is a fundamental property of logical reasoning. In the rest of this chapter, we describe
how to build logical agents that can represent information and draw conclusions such as those
described in the preceding paragraphs.
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7.3 Logic

This section summarizes the fundamental concepts of logical representation and reasoning.
These beautiful ideas are independent of any of logic’s particular forms. We therefore post-
pone the technical details of those forms until the next section, using instead the familiar
example of ordinary arithmetic.

In Section 7.1, we said that knowledge bases consist of sentences. These sentences are
expressed according to the syntax of the representation language, which specifies all theSyntax

sentences that are well formed. The notion of syntax is clear enough in ordinary arithmetic:
“x+ y = 4” is a well-formed sentence, whereas “x4y+=” is not.

A logic must also define the semantics, or meaning, of sentences. The semantics definesSemantics

the truth of each sentence with respect to each possible world. For example, the semanticsTruth

Possible world for arithmetic specifies that the sentence “x+ y=4” is true in a world where x is 2 and y is 2,
but false in a world where x is 1 and y is 1. In standard logics, every sentence must be either
true or false in each possible world—there is no “in between.”2

When we need to be precise, we use the term model in place of “possible world.”Model

Whereas possible worlds might be thought of as (potentially) real environments that the agent
might or might not be in, models are mathematical abstractions, each of which has a fixed
truth value (true or false) for every relevant sentence. Informally, we may think of a possible
world as, for example, having x men and y women sitting at a table playing bridge, and the
sentence x+ y=4 is true when there are four people in total. Formally, the possible models
are just all possible assignments of nonnegative integers to the variables x and y. Each such
assignment determines the truth of any sentence of arithmetic whose variables are x and y. If
a sentence α is true in model m, we say that m satisfies α or sometimes m is a model of α.Satisfaction

We use the notation M(α) to mean the set of all models of α.
Now that we have a notion of truth, we are ready to talk about logical reasoning. This in-

volves the relation of logical entailment between sentences—the idea that a sentence followsEntailment

logically from another sentence. In mathematical notation, we write

α |= β

to mean that the sentence α entails the sentence β. The formal definition of entailment is this:
α |= β if and only if, in every model in which α is true, β is also true. Using the notation just
introduced, we can write

α |= β if and only if M(α)⊆M(β) .

(Note the direction of the ⊆ here: if α |= β, then α is a stronger assertion than β: it rules out
more possible worlds.) The relation of entailment is familiar from arithmetic; we are happy
with the idea that the sentence x = 0 entails the sentence xy = 0. Obviously, in any model
where x is zero, it is the case that xy is zero (regardless of the value of y).

We can apply the same kind of analysis to the wumpus-world reasoning example given
in the preceding section. Consider the situation in Figure 7.3(b): the agent has detected
nothing in [1,1] and a breeze in [2,1]. These percepts, combined with the agent’s knowledge
of the rules of the wumpus world, constitute the KB. The agent is interested in whether the
adjacent squares [1,2], [2,2], and [3,1] contain pits. Each of the three squares might or might

2 Fuzzy logic, discussed in Chapter 13, allows for degrees of truth.
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Figure 7.5 Possible models for the presence of pits in squares [1,2], [2,2], and [3,1]. The
KB corresponding to the observations of nothing in [1,1] and a breeze in [2,1] is shown by
the solid line. (a) Dotted line shows models of α1 (no pit in [1,2]). (b) Dotted line shows
models of α2 (no pit in [2,2]).

not contain a pit, so (ignoring other aspects of the world for now) there are 23=8 possible
models. These eight models are shown in Figure 7.5.3

The KB can be thought of as a set of sentences or as a single sentence that asserts all
the individual sentences. The KB is false in models that contradict what the agent knows—
for example, the KB is false in any model in which [1,2] contains a pit, because there is
no breeze in [1,1]. There are in fact just three models in which the KB is true, and these are
shown surrounded by a solid line in Figure 7.5. Now let us consider two possible conclusions:

α1 = “There is no pit in [1,2].” α2 = “There is no pit in [2,2].”

We have surrounded the models of α1 and α2 with dotted lines in Figures 7.5(a) and 7.5(b),
respectively. By inspection, we see the following:

in every model in which KB is true, α1 is also true.

Hence, KB |= α1: there is no pit in [1,2]. We can also see that

in some models in which KB is true, α2 is false.

Hence, KB does not entail α2: the agent cannot conclude that there is no pit in [2,2]. (Nor
can it conclude that there is a pit in [2,2].)4

The preceding example not only illustrates entailment but also shows how the definition
of entailment can be applied to derive conclusions—that is, to carry out logical inference. Logical inference

The inference algorithm illustrated in Figure 7.5 is called model checking, because it enu- Model checking

merates all possible models to check that α is true in all models in which KB is true, that is,
that M(KB)⊆M(α).

3 Although the figure shows the models as partial wumpus worlds, they are really nothing more than assignments
of true and false to the sentences “there is a pit in [1,2]” etc. Models, in the mathematical sense, do not need to
have ’orrible ’airy wumpuses in them.
4 The agent can calculate the probability that there is a pit in [2,2]; Chapter 12 shows how.
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Figure 7.6 Sentences are physical configurations of the agent, and reasoning is a process of
constructing new physical configurations from old ones. Logical reasoning should ensure that
the new configurations represent aspects of the world that actually follow from the aspects
that the old configurations represent.

In understanding entailment and inference, it might help to think of the set of all conse-
quences of KB as a haystack and of α as a needle. Entailment is like the needle being in the
haystack; inference is like finding it. This distinction is embodied in some formal notation: if
an inference algorithm i can derive α from KB, we write

KB `i α,

which is pronounced “α is derived from KB by i” or “i derives α from KB.”
An inference algorithm that derives only entailed sentences is called sound or truth-Sound

preserving. Soundness is a highly desirable property. An unsound inference procedure es-Truth-preserving

sentially makes things up as it goes along—it announces the discovery of nonexistent needles.
It is easy to see that model checking, when it is applicable,5 is a sound procedure.

The property of completeness is also desirable: an inference algorithm is complete ifCompleteness

it can derive any sentence that is entailed. For real haystacks, which are finite in extent,
it seems obvious that a systematic examination can always decide whether the needle is in
the haystack. For many knowledge bases, however, the haystack of consequences is infinite,
and completeness becomes an important issue.6 Fortunately, there are complete inference
procedures for logics that are sufficiently expressive to handle many knowledge bases.

We have described a reasoning process whose conclusions are guaranteed to be true in
any world in which the premises are true; in particular, if KB is true in the real world, then anyI
sentence α derived from KB by a sound inference procedure is also true in the real world. So,
while an inference process operates on “syntax”—internal physical configurations such as
bits in registers or patterns of electrical blips in brains—the process corresponds to the real-
world relationship whereby some aspect of the real world is the case by virtue of other aspects
of the real world being the case.7 This correspondence between world and representation is
illustrated in Figure 7.6.

The final issue to consider is grounding—the connection between logical reasoning pro-Grounding

cesses and the real environment in which the agent exists. In particular, how do we know thatI
5 Model checking works if the space of models is finite—for example, in wumpus worlds of fixed size. For
arithmetic, on the other hand, the space of models is infinite: even if we restrict ourselves to the integers, there
are infinitely many pairs of values for x and y in the sentence x+ y = 4.
6 Compare with the case of infinite search spaces in Chapter 3, where depth-first search is not complete.
7 As Wittgenstein (1922) put it in his famous Tractatus: “The world is everything that is the case.”
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KB is true in the real world? (After all, KB is just “syntax” inside the agent’s head.) This is a
philosophical question about which many, many books have been written. (See Chapter 28.)
A simple answer is that the agent’s sensors create the connection. For example, our wumpus-
world agent has a smell sensor. The agent program creates a suitable sentence whenever there
is a smell. Then, whenever that sentence is in the knowledge base, it is true in the real world.
Thus, the meaning and truth of percept sentences are defined by the processes of sensing and
sentence construction that produce them. What about the rest of the agent’s knowledge, such
as its belief that wumpuses cause smells in adjacent squares? This is not a direct represen-
tation of a single percept, but a general rule—derived, perhaps, from perceptual experience
but not identical to a statement of that experience. General rules like this are produced by
a sentence construction process called learning, which is the subject of Part V. Learning is
fallible. It could be the case that wumpuses cause smells except on February 29 in leap years,
which is when they take their baths. Thus, KB may not be true in the real world, but with
good learning procedures, there is reason for optimism.

7.4 Propositional Logic: A Very Simple Logic

We now present propositional logic. We describe its syntax (the structure of sentences) and Propositional logic

its semantics (the way in which the truth of sentences is determined). From these, we derive
a simple, syntactic algorithm for logical inference that implements the semantic notion of
entailment. Everything takes place, of course, in the wumpus world.

7.4.1 Syntax

The syntax of propositional logic defines the allowable sentences. The atomic sentences Atomic sentences

consist of a single proposition symbol. Each such symbol stands for a proposition that can Proposition symbol

be true or false. We use symbols that start with an uppercase letter and may contain other
letters or subscripts, for example: P, Q, R, W1,3 and FacingEast. The names are arbitrary
but are often chosen to have some mnemonic value—we use W1,3 to stand for the proposition
that the wumpus is in [1,3]. (Remember that symbols such as W1,3 are atomic, i.e., W , 1,
and 3 are not meaningful parts of the symbol.) There are two proposition symbols with
fixed meanings: True is the always-true proposition and False is the always-false proposition.
Complex sentences are constructed from simpler sentences, using parentheses and operators Complex sentences

called logical connectives. There are five connectives in common use: Logical connectives

¬ (not). A sentence such as ¬W1,3 is called the negation of W1,3. A literal is either an Negation

Literalatomic sentence (a positive literal) or a negated atomic sentence (a negative literal).
∧ (and). A sentence whose main connective is ∧, such as W1,3∧P3,1, is called a conjunc-

tion; its parts are the conjuncts. (The ∧ looks like an “A” for “And.”) Conjunction

∨ (or). A sentence whose main connective is ∨, such as (W1,3∧P3,1)∨W2,2, is a disjunc-
tion; its parts are disjuncts—in this example, (W1,3∧P3,1) and W2,2. Disjunction

⇒ (implies). A sentence such as (W1,3∧P3,1) ⇒ ¬W2,2 is called an implication (or con- Implication

ditional). Its premise or antecedent is (W1,3∧P3,1), and its conclusion or consequent Premise

Conclusionis ¬W2,2. Implications are also known as rules or if–then statements. The implication
Rulessymbol is sometimes written in other books as ⊃ or→.

⇔ (if and only if). The sentence W1,3 ⇔ ¬W2,2 is a biconditional. Biconditional
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Sentence → AtomicSentence | ComplexSentence

AtomicSentence → True | False | P | Q | R | . . .

ComplexSentence → ( Sentence )
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

OPERATOR PRECEDENCE : ¬,∧,∨,⇒,⇔

Figure 7.7 A BNF (Backus–Naur Form) grammar of sentences in propositional logic, along
with operator precedences, from highest to lowest.

Figure 7.7 gives a formal grammar of propositional logic. (BNF notation is explained on
page 1081.) The BNF grammar is augmented with an operator precedence list to remove am-
biguity when multiple operators are used. The “not” operator (¬) has the highest precedence,
which means that in the sentence ¬A∧B the ¬ binds most tightly, giving us the equivalent
of (¬A)∧B rather than ¬(A∧B). (The notation for ordinary arithmetic is the same: −2+4
is 2, not –6.) When appropriate, we also use parentheses and square brackets to clarify the
intended sentence structure and improve readability.

7.4.2 Semantics

Having specified the syntax of propositional logic, we now specify its semantics. The se-
mantics defines the rules for determining the truth of a sentence with respect to a particular
model. In propositional logic, a model simply sets the truth value—true or false—for everyTruth value

proposition symbol. For example, if the sentences in the knowledge base make use of the
proposition symbols P1,2, P2,2, and P3,1, then one possible model is

m1 = {P1,2= false, P2,2= false, P3,1= true} .
With three proposition symbols, there are 23=8 possible models—exactly those depicted
in Figure 7.5. Notice, however, that the models are purely mathematical objects with no
necessary connection to wumpus worlds. P1,2 is just a symbol; it might mean “there is a pit
in [1,2]” or “I’m in Paris today and tomorrow.”

The semantics for propositional logic must specify how to compute the truth value of any
sentence, given a model. This is done recursively. All sentences are constructed from atomic
sentences and the five connectives; therefore, we need to specify how to compute the truth
of atomic sentences and how to compute the truth of sentences formed with each of the five
connectives. Atomic sentences are easy:

• True is true in every model and False is false in every model.
• The truth value of every other proposition symbol must be specified directly in the

model. For example, in the model m1 given earlier, P1,2 is false.
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P Q ¬P P∧Q P∨Q P ⇒ Q P ⇔ Q

false false true false false true true
false true true false true true false
true false false false true false false
true true false true true true true

Figure 7.8 Truth tables for the five logical connectives. To use the table to compute, for
example, the value of P∨Q when P is true and Q is false, first look on the left for the row
where P is true and Q is false (the third row). Then look in that row under the P∨Q column
to see the result: true.

For complex sentences, we have five rules, which hold for any subsentences P and Q (atomic
or complex) in any model m (here “iff” means “if and only if”):

• ¬P is true iff P is false in m.
• P∧Q is true iff both P and Q are true in m.
• P∨Q is true iff either P or Q is true in m.
• P⇒ Q is true unless P is true and Q is false in m.
• P⇔ Q is true iff P and Q are both true or both false in m.

The rules can also be expressed with truth tables that specify the truth value of a complex Truth table

sentence for each possible assignment of truth values to its components. Truth tables for the
five connectives are given in Figure 7.8. From these tables, the truth value of any sentence
s can be computed with respect to any model m by a simple recursive evaluation. For ex-
ample, the sentence ¬P1,2∧ (P2,2∨P3,1), evaluated in m1, gives true∧ (false∨ true)= true∧
true= true. Exercise 7.TRUV asks you to write the algorithm PL-TRUE?(s, m), which com-
putes the truth value of a propositional logic sentence s in a model m.

The truth tables for “and,” “or,” and “not” are in close accord with our intuitions about
the English words. The main point of possible confusion is that P∨Q is true when P is true
or Q is true or both. A different connective, called “exclusive or” (“xor” for short), yields
false when both disjuncts are true.8 There is no consensus on the symbol for exclusive or;
some choices are ∨̇ or 6= or ⊕.

The truth table for⇒ may not quite fit one’s intuitive understanding of “P implies Q” or
“if P then Q.” For one thing, propositional logic does not require any relation of causation
or relevance between P and Q. The sentence “5 is odd implies Tokyo is the capital of Japan”
is a true sentence of propositional logic (under the normal interpretation), even though it is
a decidedly odd sentence of English. Another point of confusion is that any implication is
true whenever its antecedent is false. For example, “5 is even implies Sam is smart” is true,
regardless of whether Sam is smart. This seems bizarre, but it makes sense if you think of
“P ⇒ Q” as saying, “If P is true, then I am claiming that Q is true; otherwise I am making
no claim.” The only way for this sentence to be false is if P is true but Q is false.

The biconditional, P⇔ Q, is true whenever both P⇒ Q and Q⇒ P are true. In English,
this is often written as “P if and only if Q.” Many of the rules of the wumpus world are best

8 Latin uses two separate words: “vel” is inclusive or and “aut” is exclusive or.
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written using ⇔. For example, a square is breezy if a neighboring square has a pit, and a
square is breezy only if a neighboring square has a pit. So we need a biconditional,

B1,1 ⇔ (P1,2∨P2,1) ,

where B1,1 means that there is a breeze in [1,1].

7.4.3 A simple knowledge base

Now that we have defined the semantics for propositional logic, we can construct a knowledge
base for the wumpus world. We focus first on the immutable aspects of the wumpus world,
leaving the mutable aspects for a later section. For now, we need the following symbols for
each [x,y] location:

Px,y is true if there is a pit in [x,y].
Wx,y is true if there is a wumpus in [x,y], dead or alive.
Bx,y is true if there is a breeze in [x,y].
Sx,y is true if there is a stench in [x,y].
Lx,y is true if the agent is in location [x,y].

The sentences we write will suffice to derive ¬P1,2 (there is no pit in [1,2]), as was done
informally in Section 7.3. We label each sentence Ri so that we can refer to them:

• There is no pit in [1,1]:

R1 : ¬P1,1 .

• A square is breezy if and only if there is a pit in a neighboring square. This has to be
stated for each square; for now, we include just the relevant squares:

R2 : B1,1 ⇔ (P1,2∨P2,1) .

R3 : B2,1 ⇔ (P1,1∨P2,2∨P3,1) .

• The preceding sentences are true in all wumpus worlds. Now we include the breeze
percepts for the first two squares visited in the specific world the agent is in, leading up
to the situation in Figure 7.3(b).

R4 : ¬B1,1 .
R5 : B2,1 .

7.4.4 A simple inference procedure

Our goal now is to decide whether KB |= α for some sentence α. For example, is ¬P1,2
entailed by our KB? Our first algorithm for inference is a model-checking approach that is a
direct implementation of the definition of entailment: enumerate the models, and check that
α is true in every model in which KB is true. Models are assignments of true or false to
every proposition symbol. Returning to our wumpus-world example, the relevant proposition
symbols are B1,1, B2,1, P1,1, P1,2, P2,1, P2,2, and P3,1. With seven symbols, there are 27=128
possible models; in three of these, KB is true (Figure 7.9). In those three models, ¬P1,2 is
true, hence there is no pit in [1,2]. On the other hand, P2,2 is true in two of the three models
and false in one, so we cannot yet tell whether there is a pit in [2,2].

Figure 7.9 reproduces in a more precise form the reasoning illustrated in Figure 7.5. A
general algorithm for deciding entailment in propositional logic is shown in Figure 7.10. Like
the BACKTRACKING-SEARCH algorithm on page 176, TT-ENTAILS? performs a recursive
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B1,1 B2,1 P1,1 P1,2 P2,1 P2,2 P3,1 R1 R2 R3 R4 R5 KB

false false false false false false false true true true true false false
false false false false false false true true true false true false false

...
...

...
...

...
...

...
...

...
...

...
...

...
false true false false false false false true true false true true false

false true false false false false true true true true true true true
false true false false false true false true true true true true true
false true false false false true true true true true true true true

false true false false true false false true false false true true false
...

...
...

...
...

...
...

...
...

...
...

...
...

true true true true true true true false true true false true false

Figure 7.9 A truth table constructed for the knowledge base given in the text. KB is true if
R1 through R5 are true, which occurs in just 3 of the 128 rows (the ones underlined in the
right-hand column). In all 3 rows, P1,2 is false, so there is no pit in [1,2]. On the other hand,
there might (or might not) be a pit in [2,2].

function TT-ENTAILS?(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

symbols←a list of the proposition symbols in KB and α
return TT-CHECK-ALL(KB,α, symbols,{})

function TT-CHECK-ALL(KB,α, symbols, model) returns true or false
if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(α, model)
else return true // when KB is false, always return true

else
P←FIRST(symbols)
rest←REST(symbols)
return (TT-CHECK-ALL(KB,α, rest, model ∪ {P = true})

and
TT-CHECK-ALL(KB,α, rest, model ∪ {P = false })

Figure 7.10 A truth-table enumeration algorithm for deciding propositional entailment. (TT
stands for truth table.) PL-TRUE? returns true if a sentence holds within a model. The
variable model represents a partial model—an assignment to some of the symbols. The key-
word and here is an infix function symbol in the pseudocode programming language, not an
operator in propositional logic; it takes two arguments and returns true or false.
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enumeration of a finite space of assignments to symbols. The algorithm is sound because it
implements directly the definition of entailment, and complete because it works for any KB
and α and always terminates—there are only finitely many models to examine.

Of course, “finitely many” is not always the same as “few.” If KB and α contain n symbols
in all, then there are 2n models. Thus, the time complexity of the algorithm is O(2n). (The
space complexity is only O(n) because the enumeration is depth-first.) Later in this chapter
we show algorithms that are much more efficient in many cases. Unfortunately, propositional
entailment is co-NP-complete (i.e., probably no easier than NP-complete—see Appendix A),
so every known inference algorithm for propositional logic has a worst-case complexity thatI
is exponential in the size of the input.

7.5 Propositional Theorem Proving

So far, we have shown how to determine entailment by model checking: enumerating models
and showing that the sentence must hold in all models. In this section, we show how entail-
ment can be done by theorem proving—applying rules of inference directly to the sentencesTheorem proving

in our knowledge base to construct a proof of the desired sentence without consulting models.
If the number of models is large but the length of the proof is short, then theorem proving can
be more efficient than model checking.

Before we plunge into the details of theorem-proving algorithms, we will need some
additional concepts related to entailment. The first concept is logical equivalence: two sen-Logical equivalence

tences α and β are logically equivalent if they are true in the same set of models. We write
this as α≡ β. (Note that≡ is used to make claims about sentences, while ⇔ is used as part
of a sentence.) For example, we can easily show (using truth tables) that P∧Q and Q∧P are
logically equivalent; other equivalences are shown in Figure 7.11. These equivalences play
much the same role in logic as arithmetic identities do in ordinary mathematics. An alterna-
tive definition of equivalence is as follows: any two sentences α and β are equivalent if and
only if each of them entails the other:

α≡ β if and only if α |= β and β |= α.

The second concept we will need is validity. A sentence is valid if it is true in all models. ForValidity

example, the sentence P∨¬P is valid. Valid sentences are also known as tautologies—theyTautology

are necessarily true. Because the sentence True is true in all models, every valid sentence is
logically equivalent to True. What good are valid sentences? From our definition of entail-
ment, we can derive the deduction theorem, which was known to the ancient Greeks:Deduction theorem

I For any sentences α and β, α |= β if and only if the sentence (α⇒ β) is valid.

(Exercise 7.DEDU asks for a proof.) Hence, we can decide if α |= β by checking that (α⇒ β)
is true in every model—which is essentially what the inference algorithm in Figure 7.10
does—or by proving that (α⇒ β) is equivalent to True. Conversely, the deduction theorem
states that every valid implication sentence describes a legitimate inference.

The final concept we will need is satisfiability. A sentence is satisfiable if it is trueSatisfiability

in, or satisfied by, some model. For example, the knowledge base given earlier, (R1 ∧R2 ∧
R3 ∧R4 ∧R5), is satisfiable because there are three models in which it is true, as shown in
Figure 7.9. Satisfiability can be checked by enumerating the possible models until one is
found that satisfies the sentence. The problem of determining the satisfiability of sentences
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(α∧β) ≡ (β∧α) commutativity of ∧
(α∨β) ≡ (β∨α) commutativity of ∨

((α∧β)∧γ) ≡ (α∧ (β∧γ)) associativity of ∧
((α∨β)∨γ) ≡ (α∨ (β∨γ)) associativity of ∨

¬(¬α) ≡ α double-negation elimination
(α ⇒ β) ≡ (¬β ⇒ ¬α) contraposition
(α ⇒ β) ≡ (¬α∨β) implication elimination
(α ⇔ β) ≡ ((α ⇒ β)∧ (β ⇒ α)) biconditional elimination
¬(α∧β) ≡ (¬α∨¬β) De Morgan
¬(α∨β) ≡ (¬α∧¬β) De Morgan

(α∧ (β∨γ)) ≡ ((α∧β)∨ (α∧γ)) distributivity of ∧ over ∨
(α∨ (β∧γ)) ≡ ((α∨β)∧ (α∨γ)) distributivity of ∨ over ∧

Figure 7.11 Standard logical equivalences. The symbols α, β, and γ stand for arbitrary
sentences of propositional logic.

in propositional logic—the SAT problem—was the first problem proved to be NP-complete. SAT

Many problems in computer science are really satisfiability problems. For example, all the
constraint satisfaction problems in Chapter 5 ask whether the constraints are satisfiable by
some assignment.

Validity and satisfiability are of course connected: α is valid iff ¬α is unsatisfiable; con-
trapositively, α is satisfiable iff ¬α is not valid. We also have the following useful result: J

α |= β if and only if the sentence (α∧¬β) is unsatisfiable.

Proving β from α by checking the unsatisfiability of (α∧¬β) corresponds exactly to the
standard mathematical proof technique of reductio ad absurdum (literally, “reduction to an Reductio ad

absurdum
absurd thing”). It is also called proof by refutation or proof by contradiction. One assumes a Refutation

Contradictionsentence β to be false and shows that this leads to a contradiction with known axioms α. This
contradiction is exactly what is meant by saying that the sentence (α∧¬β) is unsatisfiable.

7.5.1 Inference and proofs

This section covers inference rules that can be applied to derive a proof—a chain of conclu- Inference rules

Proofsions that leads to the desired goal. The best-known rule is called Modus Ponens (Latin for
Modus Ponensmode that affirms) and is written

α ⇒ β, α

β

The notation means that, whenever any sentences of the form α⇒ β and α are given, then
the sentence β can be inferred. For example, if (WumpusAhead∧WumpusAlive)⇒ Shoot
and (WumpusAhead∧WumpusAlive) are given, then Shoot can be inferred.

Another useful inference rule is And-Elimination, which says that, from a conjunction, And-Elimination

any of the conjuncts can be inferred:

α∧β
α

.

For example, from (WumpusAhead∧WumpusAlive), WumpusAlive can be inferred.
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By considering the possible truth values of α and β, one can easily show once and for
all that Modus Ponens and And-Elimination are sound. These rules can then be used in
any particular instances where they apply, generating sound inferences without the need for
enumerating models.

All of the logical equivalences in Figure 7.11 can be used as inference rules. For example,
the equivalence for biconditional elimination yields the two inference rules

α ⇔ β

(α ⇒ β)∧ (β ⇒ α)
and

(α ⇒ β)∧ (β ⇒ α)

α ⇔ β
.

Not all inference rules work in both directions like this. For example, we cannot run Modus
Ponens in the opposite direction to obtain α⇒ β and α from β.

Let us see how these inference rules and equivalences can be used in the wumpus world.
We start with the knowledge base containing R1 through R5 and show how to prove ¬P1,2,
that is, there is no pit in [1,2]:

1. Apply biconditional elimination to R2 to obtain

R6 : (B1,1 ⇒ (P1,2∨P2,1)) ∧ ((P1,2∨P2,1) ⇒ B1,1) .

2. Apply And-Elimination to R6 to obtain

R7 : ((P1,2∨P2,1) ⇒ B1,1) .

3. Logical equivalence for contrapositives gives

R8 : (¬B1,1 ⇒ ¬(P1,2∨P2,1)) .

4. Apply Modus Ponens with R8 and the percept R4 (i.e., ¬B1,1), to obtain

R9 : ¬(P1,2∨P2,1) .

5. Apply De Morgan’s rule, giving the conclusion

R10 : ¬P1,2∧¬P2,1 .

That is, neither [1,2] nor [2,1] contains a pit.

Any of the search algorithms in Chapter 3 can be used to find a sequence of steps that
constitutes a proof like this. We just need to define a proof problem as follows:

• INITIAL STATE: the initial knowledge base.
• ACTIONS: the set of actions consists of all the inference rules applied to all the sen-

tences that match the top half of the inference rule.
• RESULT: the result of an action is to add the sentence in the bottom half of the inference

rule.
• GOAL: the goal is a state that contains the sentence we are trying to prove.

Thus, searching for proofs is an alternative to enumerating models. In many practical cases
finding a proof can be more efficient because the proof can ignore irrelevant propositions, noI
matter how many of them there are. For example, the proof just given leading to ¬P1,2∧¬P2,1
does not mention the propositions B2,1, P1,1, P2,2, or P3,1. They can be ignored because the
goal proposition, P1,2, appears only in sentence R2; the other propositions in R2 appear only
in R4 and R2; so R1, R3, and R5 have no bearing on the proof. The same would hold even if
we added a million more sentences to the knowledge base; the simple truth-table algorithm,
on the other hand, would be overwhelmed by the exponential explosion of models.
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One final property of logical systems is monotonicity, which says that the set of en- Monotonicity

tailed sentences can only increase as information is added to the knowledge base.9 For any
sentences α and β,

if KB |= α then KB∧β |= α.

For example, suppose the knowledge base contains the additional assertion β stating that there
are exactly eight pits in the world. This knowledge might help the agent draw additional con-
clusions, but it cannot invalidate any conclusion α already inferred—such as the conclusion
that there is no pit in [1,2]. Monotonicity means that inference rules can be applied whenever
suitable premises are found in the knowledge base—the conclusion of the rule must follow
regardless of what else is in the knowledge base.

7.5.2 Proof by resolution

We have argued that the inference rules covered so far are sound, but we have not discussed
the question of completeness for the inference algorithms that use them. Search algorithms
such as iterative deepening search (page 99) are complete in the sense that they will find
any reachable goal, but if the available inference rules are inadequate, then the goal is not
reachable—no proof exists that uses only those inference rules. For example, if we removed
the biconditional elimination rule, the proof in the preceding section would not go through.
The current section introduces a single inference rule, resolution, that yields a complete
inference algorithm when coupled with any complete search algorithm.

We begin by using a simple version of the resolution rule in the wumpus world. Let us
consider the steps leading up to Figure 7.4(a): the agent returns from [2,1] to [1,1] and then
goes to [1,2], where it perceives a stench, but no breeze. We add the following facts to the
knowledge base:

R11 : ¬B1,2 .
R12 : B1,2 ⇔ (P1,1∨P2,2∨P1,3) .

By the same process that led to R10 earlier, we can now derive the absence of pits in [2,2] and
[1,3] (remember that [1,1] is already known to be pitless):

R13 : ¬P2,2 .
R14 : ¬P1,3 .

We can also apply biconditional elimination to R3, followed by Modus Ponens with R5, to
obtain the fact that there is a pit in [1,1], [2,2], or [3,1]:

R15 : P1,1∨P2,2∨P3,1 .

Now comes the first application of the resolution rule: the literal ¬P2,2 in R13 resolves with
the literal P2,2 in R15 to give the resolvent Resolvent

R16 : P1,1∨P3,1 .

In English; if there’s a pit in one of [1,1], [2,2], and [3,1] and it’s not in [2,2], then it’s in [1,1]
or [3,1]. Similarly, the literal ¬P1,1 in R1 resolves with the literal P1,1 in R16 to give

R17 : P3,1 .

In English: if there’s a pit in [1,1] or [3,1] and it’s not in [1,1], then it’s in [3,1]. These last
two inference steps are examples of the unit resolution inference rule Unit resolution

9 Nonmonotonic logics, which violate the monotonicity property, capture a common property of human rea-
soning: changing one’s mind. They are discussed in Section 10.6.
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`1∨·· ·∨ `k, m
`1∨·· ·∨ `i−1∨ `i+1∨·· ·∨ `k

where each ` is a literal and `i and m are complementary literals (i.e., one is the negationComplementary
literals

of the other). Thus, the unit resolution rule takes a clause—a disjunction of literals—and aClause

literal and produces a new clause. Note that a single literal can be viewed as a disjunction of
one literal, also known as a unit clause.Unit clause

The unit resolution rule can be generalized to the full resolution ruleResolution

`1∨·· ·∨ `k, m1∨·· ·∨mn

`1∨·· ·∨ `i−1∨ `i+1∨·· ·∨ `k∨m1∨·· ·∨m j−1∨m j+1∨·· ·∨mn

where `i and m j are complementary literals. This says that resolution takes two clauses and
produces a new clause containing all the literals of the two original clauses except the two
complementary literals. For example, we have

P1,1∨P3,1, ¬P1,1∨¬P2,2

P3,1∨¬P2,2
.

You can resolve only one pair of complementary literals at a time. For example, we can
resolve P and ¬P to deduce

P∨¬Q∨R, ¬P∨Q
¬Q∨Q∨R

,

but you can’t resolve on both P and Q at once to infer R. There is one more technical aspect
of the resolution rule: the resulting clause should contain only one copy of each literal.10 The
removal of multiple copies of literals is called factoring. For example, if we resolve (A∨B)Factoring

with (A∨¬B), we obtain (A∨A), which is reduced to just A by factoring.
The soundness of the resolution rule can be seen easily by considering the literal `i that

is complementary to literal m j in the other clause. If `i is true, then m j is false, and hence
m1 ∨ ·· · ∨m j−1 ∨m j+1 ∨ ·· · ∨mn must be true, because m1∨ ·· · ∨mn is given. If `i is false,
then `1∨·· ·∨ `i−1∨ `i+1∨·· ·∨ `k must be true because `1∨·· ·∨ `k is given. Now `i is either
true or false, so one or other of these conclusions holds—exactly as the resolution rule states.

What is more surprising about the resolution rule is that it forms the basis for a family of
complete inference procedures. A resolution-based theorem prover can, for any sentences αI
and β in propositional logic, decide whether α |= β. The next two subsections explain how
resolution accomplishes this.

Conjunctive normal form

The resolution rule applies only to clauses (that is, disjunctions of literals), so it would seem
to be relevant only to knowledge bases and queries consisting of clauses. How, then, can it
lead to a complete inference procedure for all of propositional logic? The answer is that everyI
sentence of propositional logic is logically equivalent to a conjunction of clauses.

A sentence expressed as a conjunction of clauses is said to be in conjunctive normal
form or CNF (see Figure 7.12). We now describe a procedure for converting to CNF. WeConjunctive normal

form
CNF illustrate the procedure by converting the sentence B1,1 ⇔ (P1,2 ∨P2,1) into CNF. The steps

are as follows:
10 If a clause is viewed as a set of literals, then this restriction is automatically respected. Using set notation for
clauses makes the resolution rule much cleaner, at the cost of introducing additional notation.
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CNFSentence → Clause1 ∧·· ·∧ Clausen

Clause → Literal1 ∨·· ·∨ Literalm
Fact → Symbol

Literal → Symbol | ¬Symbol

Symbol → P | Q | R | . . .
HornClauseForm → DefiniteClauseForm | GoalClauseForm

DefiniteClauseForm → Fact | (Symbol1 ∧·· ·∧ Symboll) ⇒ Symbol

GoalClauseForm → (Symbol1 ∧·· ·∧ Symboll) ⇒ False

Figure 7.12 A grammar for conjunctive normal form, Horn clauses, and definite clauses. A
CNF clause such as ¬A∨¬B∨C can be written in definite clause form as A∧B ⇒ C.

1. Eliminate⇔, replacing α⇔ β with (α ⇒ β)∧ (β ⇒ α).

(B1,1 ⇒ (P1,2∨P2,1))∧ ((P1,2∨P2,1) ⇒ B1,1) .

2. Eliminate⇒, replacing α⇒ β with ¬α∨β:

(¬B1,1∨P1,2∨P2,1)∧ (¬(P1,2∨P2,1)∨B1,1) .

3. CNF requires ¬ to appear only in literals, so we “move ¬ inwards” by repeated appli-
cation of the following equivalences from Figure 7.11:

¬(¬α)≡ α (double-negation elimination)
¬(α∧β)≡ (¬α∨¬β) (De Morgan)
¬(α∨β)≡ (¬α∧¬β) (De Morgan)

In the example, we require just one application of the last rule:

(¬B1,1∨P1,2∨P2,1)∧ ((¬P1,2∧¬P2,1)∨B1,1) .

4. Now we have a sentence containing nested ∧ and ∨ operators applied to literals. We
apply the distributivity law from Figure 7.11, distributing ∨ over ∧ wherever possible.

(¬B1,1∨P1,2∨P2,1)∧ (¬P1,2∨B1,1)∧ (¬P2,1∨B1,1) .

The original sentence is now in CNF, as a conjunction of three clauses. It is much harder to
read, but it can be used as input to a resolution procedure.

A resolution algorithm

Inference procedures based on resolution work by using the principle of proof by contra-
diction introduced on page 241. That is, to show that KB |= α, we show that (KB∧¬α) is
unsatisfiable. We do this by proving a contradiction.

A resolution algorithm is shown in Figure 7.13. First, (KB∧¬α) is converted into CNF.
Then, the resolution rule is applied to the resulting clauses. Each pair that contains com-
plementary literals is resolved to produce a new clause, which is added to the set if it is not
already present. The process continues until one of two things happens:

• there are no new clauses that can be added, in which case KB does not entail α; or,
• two clauses resolve to yield the empty clause, in which case KB entails α.
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function PL-RESOLUTION(KB,α) returns true or false
inputs: KB, the knowledge base, a sentence in propositional logic

α, the query, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of KB∧¬α
new←{}
while true do

for each pair of clauses Ci, C j in clauses do
resolvents←PL-RESOLVE(Ci,C j)
if resolvents contains the empty clause then return true
new←new∪ resolvents

if new⊆ clauses then return false
clauses←clauses∪new

Figure 7.13 A simple resolution algorithm for propositional logic. PL-RESOLVE returns the
set of all possible clauses obtained by resolving its two inputs.

The empty clause—a disjunction of no disjuncts—is equivalent to False because a disjunction
is true only if at least one of its disjuncts is true. Moreover, the empty clause arises only from
resolving two contradictory unit clauses such as P and ¬P.

We can apply the resolution procedure to a very simple inference in the wumpus world.
When the agent is in [1,1], there is no breeze, so there can be no pits in neighboring squares.
The relevant knowledge base is

KB = R2∧R4 = (B1,1 ⇔ (P1,2∨P2,1))∧¬B1,1

and we wish to prove α, which is, say, ¬P1,2. When we convert (KB∧¬α) into CNF, we
obtain the clauses shown at the top of Figure 7.14. The second row of the figure shows
clauses obtained by resolving pairs in the first row. Then, when P1,2 is resolved with ¬P1,2,
we obtain the empty clause, shown as a small square. Inspection of Figure 7.14 reveals that
many resolution steps are pointless. For example, the clause B1,1∨¬B1,1∨P1,2 is equivalent
to True∨P1,2 which is equivalent to True. Deducing that True is true is not very helpful.
Therefore, any clause in which two complementary literals appear can be discarded.

Completeness of resolution

To conclude our discussion of resolution, we now show why PL-RESOLUTION is complete.
To do this, we introduce the resolution closure RC(S) of a set of clauses S, which is the setResolution closure

of all clauses derivable by repeated application of the resolution rule to clauses in S or their
derivatives. The resolution closure is what PL-RESOLUTION computes as the final value
of the variable clauses. It is easy to see that RC(S) must be finite: thanks to the factoring
step, there are only finitely many distinct clauses that can be constructed out of the symbols
P1, . . . ,Pk that appear in S. Hence, PL-RESOLUTION always terminates.

The completeness theorem for resolution in propositional logic is called the ground res-
olution theorem:Ground resolution

theorem

If a set of clauses is unsatisfiable, then the resolution closure of those clauses
contains the empty clause.
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¬P2,1 B1,1 ¬B1,1 P1,2 P2,1 ¬P1,2 B1,1 ¬B1,1 P1,2

¬P2,1 ¬P1,2P1,2 P2,1 ¬P2,1 ¬B1,1 P2,1 B1,1 P1,2 P2,1 ¬P1,2¬B1,1 P1,2 B1,1

^ ^ ^

^^ ^ ^ ^ ^ ^ ^

^

Figure 7.14 Partial application of PL-RESOLUTION to a simple inference in the wumpus
world to prove the query ¬P1,2. Each of the leftmost four clauses in the top row is paired with
each of the other three, and the resolution rule is applied to yield the clauses on the bottom
row. We see that the third and fourth clauses on the top row combine to yield the clause ¬P1,2,
which is then resolved with P1,2 to yield the empty clause, meaning that the query is proven.

This theorem is proved by demonstrating its contrapositive: if the closure RC(S) does not
contain the empty clause, then S is satisfiable. In fact, we can construct a model for S with
suitable truth values for P1, . . . ,Pk. The construction procedure is as follows:

For i from 1 to k,

– If a clause in RC(S) contains the literal ¬Pi and all its other literals are false under
the assignment chosen for P1, . . . ,Pi−1, then assign false to Pi.

– Otherwise, assign true to Pi.

This assignment to P1, . . . ,Pk is a model of S. To see this, assume the opposite—that, at some
stage i in the sequence, assigning symbol Pi causes some clause C to become false. For this
to happen, it must be the case that all the other literals in C must already have been falsified
by assignments to P1, . . . ,Pi−1. Thus, C must now look like either (false∨ false∨·· · false∨Pi)
or like (false∨ false∨·· · false∨¬Pi). If just one of these two is in RC(S), then the algorithm
will assign the appropriate truth value to Pi to make C true, so C can only be falsified if both
of these clauses are in RC(S).

Now, since RC(S) is closed under resolution, it will contain the resolvent of these two
clauses, and that resolvent will have all of its literals already falsified by the assignments to
P1, . . . ,Pi−1. This contradicts our assumption that the first falsified clause appears at stage
i. Hence, we have proved that the construction never falsifies a clause in RC(S); that is, it
produces a model of RC(S). Finally, because S is contained in RC(S), any model of RC(S) is
a model of S itself.

7.5.3 Horn clauses and definite clauses

The completeness of resolution makes it a very important inference method. In many practical
situations, however, the full power of resolution is not needed. Some real-world knowledge
bases satisfy certain restrictions on the form of sentences they contain, which enables them
to use a more restricted and efficient inference algorithm.

One such restricted form is the definite clause, which is a disjunction of literals of which Definite clause

exactly one is positive. For example, the clause (¬L1,1∨¬Breeze∨B1,1) is a definite clause,
whereas (¬B1,1∨P1,2∨P2,1) is not, because it has two positive clauses.

Slightly more general is the Horn clause, which is a disjunction of literals of which at Horn clause
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most one is positive. So all definite clauses are Horn clauses, as are clauses with no positive
literals; these are called goal clauses. Horn clauses are closed under resolution: if you resolveGoal clauses

two Horn clauses, you get back a Horn clause. One more class is the k-CNF sentence, which
is a CNF sentence where each clause has at most k literals.

Knowledge bases containing only definite clauses are interesting for three reasons:

1. Every definite clause can be written as an implication whose premise is a conjunction of
positive literals and whose conclusion is a single positive literal. (See Exercise 7.DISJ.)
For example, the definite clause (¬L1,1∨¬Breeze∨B1,1) can be written as the implica-
tion (L1,1∧Breeze)⇒B1,1. In the implication form, the sentence is easier to understand:
it says that if the agent is in [1,1] and there is a breeze percept, then [1,1] is breezy. In
Horn form, the premise is called the body and the conclusion is called the head. ABody

Head sentence consisting of a single positive literal, such as L1,1, is called a fact. It too can
Fact be written in implication form as True⇒ L1,1, but it is simpler to write just L1,1.

2. Inference with Horn clauses can be done through the forward-chaining and backward-Forward-chaining

chaining algorithms, which we explain next. Both of these algorithms are natural,Backward-chaining

in that the inference steps are obvious and easy for humans to follow. This type of
inference is the basis for logic programming, which is discussed in Chapter 9.

3. Deciding entailment with Horn clauses can be done in time that is linear in the size of
the knowledge base—a pleasant surprise.

7.5.4 Forward and backward chaining

The forward-chaining algorithm PL-FC-ENTAILS?(KB, q) determines if a single proposition
symbol q—the query—is entailed by a knowledge base of definite clauses. It begins from
known facts (positive literals) in the knowledge base. If all the premises of an implication are
known, then its conclusion is added to the set of known facts. For example, if L1,1 and Breeze
are known and (L1,1∧Breeze)⇒ B1,1 is in the knowledge base, then B1,1 can be added. This
process continues until the query q is added or until no further inferences can be made. The
algorithm is shown in Figure 7.15; the main point to remember is that it runs in linear time.

The best way to understand the algorithm is through an example and a picture. Fig-
ure 7.16(a) shows a simple knowledge base of Horn clauses with A and B as known facts.
Figure 7.16(b) shows the same knowledge base drawn as an AND–OR graph (see Chapter 4).
In AND–OR graphs, multiple edges joined by an arc indicate a conjunction—every edge must
be proved—while multiple edges without an arc indicate a disjunction—any edge can be
proved. It is easy to see how forward chaining works in the graph. The known leaves (here,
A and B) are set, and inference propagates up the graph as far as possible. Wherever a con-
junction appears, the propagation waits until all the conjuncts are known before proceeding.
The reader is encouraged to work through the example in detail.

It is easy to see that forward chaining is sound: every inference is essentially an appli-
cation of Modus Ponens. Forward chaining is also complete: every entailed atomic sentence
will be derived. The easiest way to see this is to consider the final state of the inferred table
(after the algorithm reaches a fixed point where no new inferences are possible). The table
contains true for each symbol inferred during the process, and false for all other symbols. We
can view the table as a logical model; moreover, every definite clause in the original KB isI
true in this model.
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function PL-FC-ENTAILS?(KB, q) returns true or false
inputs: KB, the knowledge base, a set of propositional definite clauses

q, the query, a proposition symbol
count←a table, where count[c] is initially the number of symbols in clause c’s premise
inferred←a table, where inferred[s] is initially false for all symbols
queue←a queue of symbols, initially symbols known to be true in KB

while queue is not empty do
p←POP(queue)
if p = q then return true
if inferred[p] = false then

inferred[p]← true
for each clause c in KB where p is in c.PREMISE do

decrement count[c]
if count[c] = 0 then add c.CONCLUSION to queue

return false

Figure 7.15 The forward-chaining algorithm for propositional logic. The queue keeps track
of symbols known to be true but not yet “processed.” The count table keeps track of how
many premises of each implication are not yet proven. Whenever a new symbol p from the
agenda is processed, the count is reduced by one for each implication in whose premise p
appears (easily identified in constant time with appropriate indexing.) If a count reaches
zero, all the premises of the implication are known, so its conclusion can be added to the
agenda. Finally, we need to keep track of which symbols have been processed; a symbol that
is already in the set of inferred symbols need not be added to the agenda again. This avoids
redundant work and prevents loops caused by implications such as P⇒ Q and Q⇒ P.

To see this, assume the opposite, namely that some clause a1 ∧ . . .∧ ak ⇒ b is false in
the model. Then a1 ∧ . . .∧ ak must be true in the model and b must be false in the model.
But this contradicts our assumption that the algorithm has reached a fixed point, because we
would now be licensed to add b to the KB. We can conclude, therefore, that the set of atomic
sentences inferred at the fixed point defines a model of the original KB. Furthermore, any
atomic sentence q that is entailed by the KB must be true in all its models and in this model
in particular. Hence, every entailed atomic sentence q must be inferred by the algorithm.

Forward chaining is an example of the general concept of data-driven reasoning—that Data-driven

is, reasoning in which the focus of attention starts with the known data. It can be used within
an agent to derive conclusions from incoming percepts, often without a specific query in
mind. For example, the wumpus agent might TELL its percepts to the knowledge base using
an incremental forward-chaining algorithm in which new facts can be added to the agenda to
initiate new inferences. In humans, a certain amount of data-driven reasoning occurs as new
information arrives. For example, if I am indoors and hear rain starting to fall, it might occur
to me that the picnic will be canceled. Yet it will probably not occur to me that the seventeenth
petal on the largest rose in my neighbor’s garden will get wet; humans keep forward chaining
under careful control, lest they be swamped with irrelevant consequences.

The backward-chaining algorithm, as its name suggests, works backward from the query.
If the query q is known to be true, then no work is needed. Otherwise, the algorithm finds
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Figure 7.16 (a) A set of Horn clauses. (b) The corresponding AND–OR graph.

those implications in the knowledge base whose conclusion is q. If all the premises of one of
those implications can be proved true (by backward chaining), then q is true. When applied
to the query Q in Figure 7.16, it works back down the graph until it reaches a set of known
facts, A and B, that forms the basis for a proof. The algorithm is essentially identical to the
AND-OR-GRAPH-SEARCH algorithm in Figure 4.11. As with forward chaining, an efficient
implementation runs in linear time.

Backward chaining is a form of goal-directed reasoning. It is useful for answeringGoal-directed
reasoning

specific questions such as “What shall I do now?” and “Where are my keys?” Often, the cost
of backward chaining is much less than linear in the size of the knowledge base, because the
process touches only relevant facts.

7.6 Effective Propositional Model Checking

In this section, we describe two families of efficient algorithms for general propositional
inference based on model checking: one approach based on backtracking search, and one
on local hill-climbing search. These algorithms are part of the “technology” of propositional
logic. This section can be skimmed on a first reading of the chapter.

The algorithms we describe are for checking satisfiability: the SAT problem. (As noted
in Section 7.5, testing entailment, α |= β, can be done by testing unsatisfiability of α∧¬β.)
We mentioned on page 241 the connection between finding a satisfying model for a logical
sentence and finding a solution for a constraint satisfaction problem, so it is perhaps not
surprising that the two families of propositional satisfiability algorithms closely resemble the
backtracking algorithms of Section 5.3 and the local search algorithms of Section 5.4. They
are, however, extremely important in their own right because so many combinatorial problems
in computer science can be reduced to checking the satisfiability of a propositional sentence.
Any improvement in satisfiability algorithms has huge consequences for our ability to handle
complexity in general.
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7.6.1 A complete backtracking algorithm

The first algorithm we consider is often called the Davis–Putnam algorithm, after the sem- Davis–Putnam
algorithm

inal paper by Martin Davis and Hilary Putnam (1960). The algorithm is in fact the version
described by Davis, Logemann, and Loveland (1962), so we will call it DPLL after the ini-
tials of all four authors. DPLL takes as input a sentence in conjunctive normal form—a set
of clauses. Like BACKTRACKING-SEARCH and TT-ENTAILS?, it is essentially a recursive,
depth-first enumeration of possible models. It embodies three improvements over the simple
scheme of TT-ENTAILS?:

• Early termination: The algorithm detects whether the sentence must be true or false,
even with a partially completed model. A clause is true if any literal is true, even if
the other literals do not yet have truth values; hence, the sentence as a whole could be
judged true even before the model is complete. For example, the sentence (A∨B)∧
(A∨C) is true if A is true, regardless of the values of B and C. Similarly, a sentence is
false if any clause is false, which occurs when each of its literals is false. Again, this
can occur long before the model is complete. Early termination avoids examination of
entire subtrees in the search space.

• Pure symbol heuristic: A pure symbol is a symbol that always appears with the same Pure symbol

“sign” in all clauses. For example, in the three clauses (A∨¬B), (¬B∨¬C), and (C∨A),
the symbol A is pure because only the positive literal appears, B is pure because only the
negative literal appears, and C is impure. It is easy to see that if a sentence has a model,
then it has a model with the pure symbols assigned so as to make their literals true,
because doing so can never make a clause false. Note that, in determining the purity
of a symbol, the algorithm can ignore clauses that are already known to be true in the
model constructed so far. For example, if the model contains B= false, then the clause
(¬B∨¬C) is already true, and in the remaining clauses C appears only as a positive
literal; therefore C becomes pure.

• Unit clause heuristic: A unit clause was defined earlier as a clause with just one literal.
In the context of DPLL, it also means clauses in which all literals but one are already
assigned false by the model. For example, if the model contains B= true, then (¬B∨
¬C) simplifies to¬C, which is a unit clause. Obviously, for this clause to be true, C must
be set to false. The unit clause heuristic assigns all such symbols before branching on
the remainder. One important consequence of the heuristic is that any attempt to prove
(by refutation) a literal that is already in the knowledge base will succeed immediately
(Exercise 7.KNOW). Notice also that assigning one unit clause can create another unit
clause—for example, when C is set to false, (C∨A) becomes a unit clause, causing true
to be assigned to A. This “cascade” of forced assignments is called unit propagation. Unit propagation

It resembles the process of forward chaining with definite clauses, and indeed, if the
CNF expression contains only definite clauses then DPLL essentially replicates forward
chaining. (See Exercise 7.DPLL.)

The DPLL algorithm is shown in Figure 7.17, which gives the essential skeleton of the search
process without the implementation details.

What Figure 7.17 does not show are the tricks that enable SAT solvers to scale up to large
problems. It is interesting that most of these tricks are in fact rather general, and we have
seen them before in other guises:
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function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses← the set of clauses in the CNF representation of s
symbols←a list of the proposition symbols in s
return DPLL(clauses, symbols,{})

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value←FIND-PURE-SYMBOL(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P, value←FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols – P, model ∪ {P=value})
P←FIRST(symbols); rest←REST(symbols)
return DPLL(clauses, rest, model ∪ {P=true}) or

DPLL(clauses, rest, model ∪ {P=false})

Figure 7.17 The DPLL algorithm for checking satisfiability of a sentence in propositional
logic. The ideas behind FIND-PURE-SYMBOL and FIND-UNIT-CLAUSE are described in
the text; each returns a symbol (or null) and the truth value to assign to that symbol. Like
TT-ENTAILS?, DPLL operates over partial models.

1. Component analysis (as seen with Tasmania in CSPs): As DPLL assigns truth values
to variables, the set of clauses may become separated into disjoint subsets, called com-
ponents, that share no unassigned variables. Given an efficient way to detect when this
occurs, a solver can gain considerable speed by working on each component separately.

2. Variable and value ordering (as seen in Section 5.3.1 for CSPs): Our simple imple-
mentation of DPLL uses an arbitrary variable ordering and always tries the value true
before false. The degree heuristic (see page 177) suggests choosing the variable that
appears most frequently over all remaining clauses.

3. Intelligent backtracking (as seen in Section 5.3.3 for CSPs): Many problems that
cannot be solved in hours of run time with chronological backtracking can be solved
in seconds with intelligent backtracking that backs up all the way to the relevant point
of conflict. All SAT solvers that do intelligent backtracking use some form of conflict
clause learning to record conflicts so that they won’t be repeated later in the search.
Usually a limited-size set of conflicts is kept, and rarely used ones are dropped.

4. Random restarts (as seen on page 131 for hill climbing): Sometimes a run appears not
to be making progress. In this case, we can start over from the top of the search tree,
rather than trying to continue. After restarting, different random choices (in variable
and value selection) are made. Clauses that are learned in the first run are retained after
the restart and can help prune the search space. Restarting does not guarantee that a
solution will be found faster, but it does reduce the variance on the time to solution.

5. Clever indexing (as seen in many algorithms): The speedup methods used in DPLL
itself, as well as the tricks used in modern solvers, require fast indexing of such things
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function WALKSAT(clauses, p, max flips) returns a satisfying model or failure
inputs: clauses, a set of clauses in propositional logic

p, the probability of choosing to do a “random walk” move, typically around 0.5
max flips, number of value flips allowed before giving up

model←a random assignment of true/false to the symbols in clauses
for each i= 1 to max flips do

if model satisfies clauses then return model
clause←a randomly selected clause from clauses that is false in model
if RANDOM(0, 1) ≤ p then

flip the value in model of a randomly selected symbol from clause
else flip whichever symbol in clause maximizes the number of satisfied clauses

return failure

Figure 7.18 The WALKSAT algorithm for checking satisfiability by randomly flipping the
values of variables. Many versions of the algorithm exist.

as “the set of clauses in which variable Xi appears as a positive literal.” This task is
complicated by the fact that the algorithms are interested only in the clauses that have
not yet been satisfied by previous assignments to variables, so the indexing structures
must be updated dynamically as the computation proceeds.

With these enhancements, modern solvers can handle problems with tens of millions of vari-
ables. They have revolutionized areas such as hardware verification and security protocol
verification, which previously required laborious, hand-guided proofs.

7.6.2 Local search algorithms

We have seen several local search algorithms so far in this book, including HILL-CLIMBING

(page 129) and SIMULATED-ANNEALING (page 133). These algorithms can be applied di-
rectly to satisfiability problems, provided that we choose the right evaluation function. Be-
cause the goal is to find an assignment that satisfies every clause, an evaluation function that
counts the number of unsatisfied clauses will do the job. In fact, this is exactly the measure
used by the MIN-CONFLICTS algorithm for CSPs (page 182). All these algorithms take steps
in the space of complete assignments, flipping the truth value of one symbol at a time. The
space usually contains many local minima, to escape from which various forms of random-
ness are required. In recent years, there has been a great deal of experimentation to find a
good balance between greediness and randomness.

One of the simplest and most effective algorithms to emerge from all this work is called
WALKSAT (Figure 7.18). On every iteration, the algorithm picks an unsatisfied clause and
picks a symbol in the clause to flip. It chooses randomly between two ways to pick which
symbol to flip: (1) a “min-conflicts” step that minimizes the number of unsatisfied clauses in
the new state and (2) a “random walk” step that picks the symbol randomly.

When WALKSAT returns a model, the input sentence is indeed satisfiable, but when it
returns failure, there are two possible causes: either the sentence is unsatisfiable or we need to
give the algorithm more time. If we set max flips=∞ and p > 0, WALKSAT will eventually
return a model (if one exists), because the random-walk steps will eventually hit upon the
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solution. Alas, if max flips is infinity and the sentence is unsatisfiable, then the algorithm
never terminates!

For this reason, WALKSAT is most useful when we expect a solution to exist—for exam-
ple, the problems discussed in Chapters 3 and 5 usually have solutions. On the other hand,
WALKSAT cannot always detect unsatisfiability, which is required for deciding entailment.
For example, an agent cannot reliably use WALKSAT to prove that a square is safe in the
wumpus world. Instead, it can say, “I thought about it for an hour and couldn’t come up with
a possible world in which the square isn’t safe.” This may be a good empirical indicator that
the square is safe, but it’s certainly not a proof.

7.6.3 The landscape of random SAT problems

Some SAT problems are harder than others. Easy problems can be solved by any old algo-
rithm, but because we know that SAT is NP-complete, at least some problem instances must
require exponential run time. In Chapter 5, we saw some surprising discoveries about certain
kinds of problems. For example, the n-queens problem—thought to be quite tricky for back-
tracking search algorithms—turned out to be trivially easy for local search methods, such as
min-conflicts. This is because solutions are very densely distributed in the space of assign-
ments, and any initial assignment is guaranteed to have a solution nearby. Thus, n-queens is
easy because it is underconstrained.Underconstrained

When we look at satisfiability problems in conjunctive normal form, an underconstrained
problem is one with relatively few clauses constraining the variables. For example, here is a
randomly generated 3-CNF sentence with five symbols and five clauses:

(¬D∨¬B∨C)∧ (B∨¬A∨¬C)∧ (¬C∨¬B∨E)
∧ (E ∨¬D∨B)∧ (B∨E ∨¬C) .

Sixteen of the 32 possible assignments are models of this sentence, so, on average, it would
take just two random guesses to find a model. This is an easy satisfiability problem, as are
most such underconstrained problems. On the other hand, an overconstrained problem has
many clauses relative to the number of variables and is likely to have no solutions. Over-
constrained problems are often easy to solve, because the constraints quickly lead either to a
solution or to a dead end from which there is no escape.

To go beyond these basic intuitions, we must define exactly how random sentences are
generated. The notation CNFk(m,n) denotes a k-CNF sentence with m clauses and n symbols,
where the clauses are chosen uniformly, independently, and without replacement from among
all clauses with k different literals, which are positive or negative at random. (A symbol may
not appear twice in a clause, nor may a clause appear twice in a sentence.)

Given a source of random sentences, we can measure the probability of satisfiability.
Figure 7.19(a) plots the probability for CNF3(m,50), that is, sentences with 50 variables and
3 literals per clause, as a function of the clause/symbol ratio, m/n. As we expect, for small
m/n the probability of satisfiability is close to 1, and at large m/n the probability is close to
0. The probability drops fairly sharply around m/n=4.3. Empirically, we find that the “cliff”
stays in roughly the same place (for k=3) and gets sharper and sharper as n increases.

Theoretically, the satisfiability threshold conjecture says that for every k≥ 3, there is aSatisfiability
threshold conjecture

threshold ratio rk such that, as n goes to infinity, the probability that CNFk(rn,n) is satisfiable
becomes 1 for all values of r below the threshold, and 0 for all values above. The conjecture
remains unproven, even for special cases like k = 3. Whether it is a theorem or not, this kind
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Figure 7.19 (a) Graph showing the probability that a random 3-CNF sentence with n=50
symbols is satisfiable, as a function of the clause/symbol ratio m/n. (b) Graph of the median
run time (measured in number of iterations) for both DPLL and WALKSAT on random 3-
CNF sentences. The most difficult problems have a clause/symbol ratio of about 4.3.

of thresholding effect is certainly common, for satisfiability problems as well as other types
of NP-hard problems.

Now that we have a good idea where the satisfiable and unsatisfiable problems are, the
next question is, where are the hard problems? It turns out that they are also often at the
threshold value. Figure 7.19(b) shows that 50-symbol problems at the threshold value of 4.3
are about 20 times more difficult to solve than those at a ratio of 3.3. The underconstrained
problems are easiest to solve (because it is so easy to guess a solution); the overconstrained
problems are not as easy as the underconstrained, but still are much easier than the ones right
at the threshold.

7.7 Agents Based on Propositional Logic

In this section, we bring together what we have learned so far in order to construct wumpus
world agents that use propositional logic. The first step is to enable the agent to deduce, to the
extent possible, the state of the world given its percept history. This requires writing down a
complete logical model of the effects of actions. We then show how logical inference can be
used by an agent in the wumpus world. We also show how the agent can keep track of the
world efficiently without going back into the percept history for each inference. Finally, we
show how the agent can use logical inference to construct plans that are guaranteed to achieve
its goals, provided its knowledge base is true in the actual world.

7.7.1 The current state of the world

As stated at the beginning of the chapter, a logical agent operates by deducing what to do
from a knowledge base of sentences about the world. The knowledge base is composed of
axioms—general knowledge about how the world works—and percept sentences obtained
from the agent’s experience in a particular world. In this section, we focus on the problem of
deducing the current state of the wumpus world—where am I, is that square safe, and so on.
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We began collecting axioms in Section 7.4.3. The agent knows that the starting square
contains no pit (¬P1,1) and no wumpus (¬W1,1). Furthermore, for each square, it knows that
the square is breezy if and only if a neighboring square has a pit; and a square is smelly if and
only if a neighboring square has a wumpus. Thus, we include a large collection of sentences
of the following form:

B1,1 ⇔ (P1,2∨P2,1)
S1,1 ⇔ (W1,2∨W2,1)
· · ·

The agent also knows that there is exactly one wumpus. This is expressed in two parts. First,
we have to say that there is at least one wumpus:

W1,1∨W1,2∨·· ·∨W4,3∨W4,4 .

Then we have to say that there is at most one wumpus. For each pair of locations, we add a
sentence saying that at least one of them must be wumpus-free:

¬W1,1∨¬W1,2
¬W1,1∨¬W1,3
· · ·
¬W4,3∨¬W4,4 .

So far, so good. Now let’s consider the agent’s percepts. We are using S1,1 to mean there is
a stench in [1,1]; can we use a single proposition, Stench to mean that the agent perceives
a stench? Unfortunately we can’t: if there was no stench at the previous time step, then
¬Stench would already be asserted, and the new assertion would simply result in a contra-
diction. The problem is solved when we realize that a percept asserts something only about
the current time. Thus, if the time step (as supplied to MAKE-PERCEPT-SENTENCE in Fig-
ure 7.1) is 4, then we add Stench4 to the knowledge base, rather than Stench—neatly avoiding
any contradiction with ¬Stench3. The same goes for the breeze, bump, glitter, and scream
percepts.

The idea of associating propositions with time steps extends to any aspect of the world
that changes over time. For example, the initial knowledge base includes L0

1,1—the agent is in
square [1,1] at time 0—as well as FacingEast0, HaveArrow0, and WumpusAlive0. We use the
noun fluent (from the Latin fluens, flowing) to refer to an aspect of the world that changes.Fluent

“Fluent” is a synonym for “state variable,” in the sense described in the discussion of factored
representations in Section 2.4.7 on page 76. Symbols associated with permanent aspects of
the world do not need a time superscript and are sometimes called atemporal variables.Atemporal variable

We can connect stench and breeze percepts directly to the properties of the squares where
they are experienced as follows.11 For any time step t and any square [x,y], we assert

Lt
x,y ⇒ (Breezet ⇔ Bx,y)

Lt
x,y ⇒ (Stencht ⇔ Sx,y) .

Now, of course, we need axioms that allow the agent to keep track of fluents such as Lt
x,y.

These fluents change as the result of actions taken by the agent, so, in the terminology of
Chapter 3, we need to write down the transition model of the wumpus world as a set of
logical sentences.

11 Section 7.4.3 conveniently glossed over this requirement.



Section 7.7 Agents Based on Propositional Logic 257

First we need proposition symbols for the occurrences of actions. As with percepts, these
symbols are indexed by time; thus, Forward0 means that the agent executes the Forward
action at time 0. By convention, the percept for a given time step happens first, followed by
the action for that time step, followed by a transition to the next time step.

To describe how the world changes, we can try writing effect axioms that specify the Effect axiom

outcome of an action at the next time step. For example, if the agent is at location [1,1]
facing east at time 0 and goes Forward, the result is that the agent is in square [2,1] and no
longer is in [1,1]:

L0
1,1∧FacingEast0∧Forward0 ⇒ (L1

2,1∧¬L1
1,1) . (7.1)

We would need one such sentence for each possible time step, for each of the 16 squares,
and each of the four orientations. We would also need similar sentences for the other actions:
Grab, Shoot, Climb, TurnLeft, and TurnRight.

Let us suppose that the agent does decide to move Forward at time 0 and asserts this
fact into its knowledge base. Given the effect axiom in Equation (7.1), combined with the
initial assertions about the state at time 0, the agent can now deduce that it is in [2,1]. That
is, ASK(KB,L1

2,1)= true. So far, so good. Unfortunately, if we ASK(KB,HaveArrow1), the
answer is false, that is, the agent cannot prove it still has the arrow; nor can it prove it doesn’t
have it! The information has been lost because the effect axiom fails to state what remains
unchanged as the result of an action. The need to do this gives rise to the frame problem.12 Frame problem

One possible solution to the frame problem would be to add frame axioms explicitly asserting Frame axiom

all the propositions that remain the same. For example, for each time t we would have

Forwardt ⇒ (HaveArrowt ⇔ HaveArrowt+1)

Forwardt ⇒ (WumpusAlivet ⇔WumpusAlivet+1)
· · ·

where we explicitly mention every proposition that stays unchanged from time t to time t +1
under the action Forward. Although the agent now knows that it still has the arrow after
moving forward and that the wumpus hasn’t died or come back to life, the proliferation of
frame axioms seems remarkably inefficient. In a world with m different actions and n fluents,
the set of frame axioms will be of size O(mn). This specific manifestation of the frame
problem is sometimes called the representational frame problem. The problem played a Representational

frame problem

significant role in the history of AI; we explore it further in the notes at the end of the chapter.
The representational frame problem is significant because the real world has very many

fluents, to put it mildly. Fortunately for us humans, each action typically changes no more
than some small number k of those fluents—the world exhibits locality. Solving the repre- Locality

sentational frame problem requires defining the transition model with a set of axioms of size
O(mk) rather than size O(mn). There is also an inferential frame problem: the problem of Inferential frame

problem

projecting forward the results of a t-step plan of action in time O(kt) rather than O(nt).
The solution to the problem involves changing one’s focus from writing axioms about

actions to writing axioms about fluents. Thus for each fluent F , we will have an axiom that
defines the truth value of F t+1 in terms of fluents (including F itself) at time t and the actions
that may have occurred at time t. Now, the truth value of F t+1 can be set in one of two ways:

12 The name “frame problem” comes from “frame of reference” in physics—the assumed stationary background
with respect to which motion is measured. It also has an analogy to the frames of a movie, in which normally
most of the background stays constant while changes occur in the foreground.
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either the action at time t causes F to be true at t +1, or F was already true at time t and the
action at time t does not cause it to be false. An axiom of this form is called a successor-state
axiom and has this form:Successor-state

axiom

F t+1 ⇔ ActionCausesFt ∨ (F t ∧¬ActionCausesNotFt) .

One of the simplest successor-state axioms is the one for HaveArrow. Because there is no
action for reloading, the ActionCausesFt part goes away and we are left with

HaveArrowt+1 ⇔ (HaveArrowt ∧¬Shoott) . (7.2)

For the agent’s location, the successor-state axioms are more elaborate. For example, Lt+1
1,1

is true if either (a) the agent moved Forward from [1,2] when facing south, or from [2,1]
when facing west; or (b) Lt

1,1 was already true and the action did not cause movement (either
because the action was not Forward or because the action bumped into a wall). Written out
in propositional logic, this becomes

Lt+1
1,1 ⇔ (Lt

1,1∧ (¬Forwardt ∨Bumpt+1))

∨ (Lt
1,2∧ (FacingSoutht ∧Forwardt)) (7.3)

∨ (Lt
2,1∧ (FacingWestt ∧Forwardt)) .

Exercise 7.SSAX asks you to write out axioms for the remaining wumpus world fluents.
Given a complete set of successor-state axioms and the other axioms listed at the begin-

ning of this section, the agent will be able to ASK and answer any answerable question about
the current state of the world. For example, in Section 7.2 the initial sequence of percepts and
actions is

¬Stench0∧¬Breeze0∧¬Glitter0∧¬Bump0∧¬Scream0 ; Forward0

¬Stench1∧Breeze1∧¬Glitter1∧¬Bump1∧¬Scream1 ; TurnRight1

¬Stench2∧Breeze2∧¬Glitter2∧¬Bump2∧¬Scream2 ; TurnRight2

¬Stench3∧Breeze3∧¬Glitter3∧¬Bump3∧¬Scream3 ; Forward3

¬Stench4∧¬Breeze4∧¬Glitter4∧¬Bump4∧¬Scream4 ; TurnRight4

¬Stench5∧¬Breeze5∧¬Glitter5∧¬Bump5∧¬Scream5 ; Forward5

Stench6∧¬Breeze6∧¬Glitter6∧¬Bump6∧¬Scream6

At this point, we have ASK(KB,L6
1,2)= true, so the agent knows where it is. Moreover,

ASK(KB,W1,3)= true and ASK(KB,P3,1)= true, so the agent has found the wumpus and one
of the pits. The most important question for the agent is whether a square is OK to move
into—that is, whether the square is free of a pit or live wumpus. It’s convenient to add
axioms for this, having the form

OKt
x,y ⇔ ¬Px,y∧¬(Wx,y∧WumpusAlivet) .

Finally, ASK(KB,OK6
2,2)= true, so the square [2,2] is OK to move into. In fact, given a

sound and complete inference algorithm such as DPLL, the agent can answer any answerable
question about which squares are OK—and can do so in just a few milliseconds for small-to-
medium wumpus worlds.

Solving the representational and inferential frame problems is a big step forward, but a
pernicious problem remains: we need to confirm that all the necessary preconditions of an
action hold for it to have its intended effect. We said that the Forward action moves the agent
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ahead unless there is a wall in the way, but there are many other unusual exceptions that could
cause the action to fail: the agent might trip and fall, be stricken with a heart attack, be carried
away by giant bats, etc. Specifying all these exceptions is called the qualification problem. Qualification

problem

There is no complete solution within logic; system designers have to use good judgment in
deciding how detailed they want to be in specifying their model, and what details they want
to leave out. We will see in Chapter 12 that probability theory allows us to summarize all the
exceptions without explicitly naming them.

7.7.2 A hybrid agent

The ability to deduce various aspects of the state of the world can be combined fairly straight-
forwardly with condition–action rules (see Section 2.4.2) and with problem-solving algo-
rithms from Chapters 3 and 4 to produce a hybrid agent for the wumpus world. Figure 7.20 Hybrid agent

shows one possible way to do this. The agent program maintains and updates a knowledge
base as well as a current plan. The initial knowledge base contains the atemporal axioms—
those that don’t depend on t, such as the axiom relating the breeziness of squares to the
presence of pits. At each time step, the new percept sentence is added along with all the
axioms that depend on t, such as the successor-state axioms. (The next section explains why
the agent doesn’t need axioms for future time steps.) Then, the agent uses logical inference,
by ASKing questions of the knowledge base, to work out which squares are safe and which
have yet to be visited.

The main body of the agent program constructs a plan based on a decreasing priority of
goals. First, if there is a glitter, the program constructs a plan to grab the gold, follow a route
back to the initial location, and climb out of the cave. Otherwise, if there is no current plan,
the program plans a route to the closest safe square that it has not visited yet, making sure the
route goes through only safe squares.

Route planning is done with A∗ search, not with ASK. If there are no safe squares to
explore, the next step—if the agent still has an arrow—is to try to make a safe square by
shooting at one of the possible wumpus locations. These are determined by asking where
ASK(KB,¬Wx,y) is false—that is, where it is not known that there is not a wumpus. The
function PLAN-SHOT (not shown) uses PLAN-ROUTE to plan a sequence of actions that will
line up this shot. If this fails, the program looks for a square to explore that is not provably
unsafe—that is, a square for which ASK(KB,¬OKt

x,y) returns false. If there is no such square,
then the mission is impossible and the agent retreats to [1,1] and climbs out of the cave.

7.7.3 Logical state estimation

The agent program in Figure 7.20 works quite well, but it has one major weakness: as time
goes by, the computational expense involved in the calls to ASK goes up and up. This happens
mainly because the required inferences have to go back further and further in time and involve
more and more proposition symbols. Obviously, this is unsustainable—we cannot have an
agent whose time to process each percept grows in proportion to the length of its life! What
we really need is a constant update time—that is, independent of t. The obvious answer is to
save, or cache, the results of inference, so that the inference process at the next time step can Caching

build on the results of earlier steps instead of having to start again from scratch.
As we saw in Section 4.4, the history of percepts and all their ramifications can be re-

placed by the belief state—that is, some representation of the set of all possible current states
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function HYBRID-WUMPUS-AGENT(percept) returns an action
inputs: percept, a list, [stench,breeze,glitter,bump,scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”

t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))
TELL the KB the temporal “physics” sentences for time t
safe←{[x,y] : ASK(KB,OKt

x,y) = true}
if ASK(KB,Glittert) = true then

plan← [Grab] + PLAN-ROUTE(current,{[1,1]}, safe) + [Climb]
if plan is empty then

unvisited←{[x,y] : ASK(KB,Lt ′
x,y) = false for all t ′ ≤ t}

plan←PLAN-ROUTE(current, unvisited∩safe, safe)
if plan is empty and ASK(KB,HaveArrowt) = true then

possible wumpus←{[x,y] : ASK(KB,¬Wx,y) = false}
plan←PLAN-SHOT(current, possible wumpus, safe)

if plan is empty then // no choice but to take a risk
not unsafe←{[x,y] : ASK(KB,¬ OKt

x,y) = false}
plan←PLAN-ROUTE(current, unvisited∩not unsafe, safe)

if plan is empty then
plan←PLAN-ROUTE(current,{[1,1]}, safe) + [Climb]

action←POP(plan)
TELL(KB, MAKE-ACTION-SENTENCE(action, t))
t← t + 1
return action

function PLAN-ROUTE(current,goals,allowed) returns an action sequence
inputs: current, the agent’s current position

goals, a set of squares; try to plan a route to one of them
allowed, a set of squares that can form part of the route

problem←ROUTE-PROBLEM(current, goals,allowed)
return SEARCH(problem) // Any search algorithm from Chapter 3

Figure 7.20 A hybrid agent program for the wumpus world. It uses a propositional knowl-
edge base to infer the state of the world, and a combination of problem-solving search and
domain-specific code to choose actions. Each time HYBRID-WUMPUS-AGENT is called, it
adds the percept to the knowledge base, and then either relies on a previously-defined plan or
creates a new plan, and pops off the first step of the plan as the action to do next.

of the world.13 The process of updating the belief state as new percepts arrive is called state
estimation (see page 150). Whereas in Section 4.4 the belief state was an explicit list of
states, here we can use a logical sentence involving the proposition symbols associated with
the current time step, as well as the atemporal symbols. For example, the logical sentence

WumpusAlive1∧L1
2,1∧B2,1∧ (P3,1∨P2,2) (7.4)

13 We can think of the percept history itself as a representation of the belief state, but one that makes inference
increasingly expensive as the history gets longer.
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Figure 7.21 Depiction of a 1-CNF belief state (bold outline) as a simply representable, con-
servative approximation to the exact (wiggly) belief state (shaded region with dashed outline).
Each possible world is shown as a circle; the shaded ones are consistent with all the percepts.

represents the set of all states at time 1 in which the wumpus is alive, the agent is at [2,1],
that square is breezy, and there is a pit in [3,1] or [2,2] or both.

Maintaining an exact belief state as a logical formula turns out not to be easy. If there
are n fluent symbols for time t, then there are 2n possible states—that is, assignments of truth
values to those symbols. Now, the set of belief states is the powerset (set of all subsets) of the
set of physical states. There are 2n physical states, hence 22n

belief states. Even if we used
the most compact possible encoding of logical formulas, with each belief state represented
by a unique binary number, we would need numbers with log2(2

2n
)=2n bits to label the

current belief state. That is, exact state estimation may require logical formulas whose size is
exponential in the number of symbols.

One very common and natural scheme for approximate state estimation is to represent
belief states as conjunctions of literals, that is, 1-CNF formulas. To do this, the agent program
simply tries to prove X t and ¬X t for each symbol X t (as well as each atemporal symbol whose
truth value is not yet known), given the belief state at t − 1. The conjunction of provable
literals becomes the new belief state, and the previous belief state is discarded.

It is important to understand that this scheme may lose some information as time goes
along. For example, if the sentence in Equation (7.4) were the true belief state, then neither
P3,1 nor P2,2 would be provable individually and neither would appear in the 1-CNF belief
state. (Exercise 7.HYBR explores one possible solution to this problem.) On the other hand,
because every literal in the 1-CNF belief state is proved from the previous belief state, and
the initial belief state is a true assertion, we know that the entire 1-CNF belief state must be
true. Thus the set of possible states represented by the 1-CNF belief state includes all states J
that are in fact possible given the full percept history. As illustrated in Figure 7.21, the 1-
CNF belief state acts as a simple outer envelope, or conservative approximation, around the Conservative

approximation

exact belief state. We see this idea of conservative approximations to complicated sets as a
recurring theme in many areas of AI.
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function SATPLAN( init, transition, goal, T max) returns solution or failure
inputs: init, transition, goal, constitute a description of the problem

T max, an upper limit for plan length

for t = 0 to T max do
cnf←TRANSLATE-TO-SAT( init, transition, goal, t)
model←SAT-SOLVER(cnf )
if model is not null then

return EXTRACT-SOLUTION(model)
return failure

Figure 7.22 The SATPLAN algorithm. The planning problem is translated into a CNF sen-
tence in which the goal is asserted to hold at a fixed time step t and axioms are included for
each time step up to t. If the satisfiability algorithm finds a model, then a plan is extracted by
looking at those proposition symbols that refer to actions and are assigned true in the model.
If no model exists, then the process is repeated with the goal moved one step later.

7.7.4 Making plans by propositional inference

The agent in Figure 7.20 uses logical inference to determine which squares are safe, but uses
A∗ search to make plans. In this section, we show how to make plans by logical inference.
The basic idea is very simple:

1. Construct a sentence that includes

(a) Init0, a collection of assertions about the initial state;
(b) Transition1, . . . ,Transitiont , the successor-state axioms for all possible actions at

each time up to some maximum time t;
(c) the assertion that the goal is achieved at time t: HaveGoldt ∧ClimbedOutt .

2. Present the whole sentence to a SAT solver. If the solver finds a satisfying model, then
the goal is achievable; if the sentence is unsatisfiable, then the problem is unsolvable.

3. Assuming a model is found, extract from the model those variables that represent ac-
tions and are assigned true. Together they represent a plan to achieve the goals.

A propositional planning procedure, SATPLAN, is shown in Figure 7.22. It implements the
basic idea just given, with one twist. Because the agent does not know how many steps it
will take to reach the goal, the algorithm tries each possible number of steps t, up to some
maximum conceivable plan length Tmax. In this way, it is guaranteed to find the shortest plan
if one exists. Because of the way SATPLAN searches for a solution, this approach cannot
be used in a partially observable environment; SATPLAN would just set the unobservable
variables to the values it needs to create a solution.

The key step in using SATPLAN is the construction of the knowledge base. It might
seem, on casual inspection, that the wumpus world axioms in Section 7.7.1 suffice for steps
1(a) and 1(b) above. There is, however, a significant difference between the requirements for
entailment (as tested by ASK) and those for satisfiability.

Consider, for example, the agent’s location, initially [1,1], and suppose the agent’s unam-
bitious goal is to be in [2,1] at time 1. The initial knowledge base contains L0

1,1 and the goal
is L1

2,1. Using ASK, we can prove L1
2,1 if Forward0 is asserted, and, reassuringly, we cannot
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prove L1
2,1 if, say, Shoot0 is asserted instead. Now, SATPLAN will find the plan [Forward0];

so far, so good.
Unfortunately, SATPLAN also finds the plan [Shoot0]. How could this be? To find out,

we inspect the model that SATPLAN constructs: it includes the assignment L0
2,1, that is, the

agent can be in [2,1] at time 1 by being there at time 0 and shooting. One might ask, “Didn’t
we say the agent is in [1,1] at time 0?” Yes, we did, but we didn’t tell the agent that it can’t
be in two places at once! For entailment, L0

2,1 is unknown and cannot, therefore, be used in
a proof; for satisfiability, on the other hand, L0

2,1 is unknown and can, therefore, be set to
whatever value helps to make the goal true.

SATPLAN is a good debugging tool for knowledge bases because it reveals places where
knowledge is missing. In this particular case, we can fix the knowledge base by asserting
that, at each time step, the agent is in exactly one location, using a collection of sentences
similar to those used to assert the existence of exactly one wumpus. Alternatively, we can
assert ¬L0

x,y for all locations other than [1,1]; the successor-state axiom for location takes care
of subsequent time steps. The same fixes also work to make sure the agent has one and only
one orientation at a time.

SATPLAN has more surprises in store, however. The first is that it finds models with
impossible actions, such as shooting with no arrow. To understand why, we need to look more
carefully at what the successor-state axioms (such as Equation (7.3)) say about actions whose
preconditions are not satisfied. The axioms do predict correctly that nothing will happen when
such an action is executed (see Exercise 7.SATP), but they do not say that the action cannot be
executed! To avoid generating plans with illegal actions, we must add precondition axioms Precondition axioms

stating that an action occurrence requires the preconditions to be satisfied.14 For example, we
need to say, for each time t, that

Shoott ⇒ HaveArrowt .

This ensures that if a plan selects the Shoot action at any time, it must be the case that the
agent has an arrow at that time.

SATPLAN’s second surprise is the creation of plans with multiple simultaneous actions.
For example, it may come up with a model in which both Forward0 and Shoot0 are true,
which is not allowed. To eliminate this problem, we introduce action exclusion axioms: for Action exclusion

axiom
every pair of actions At

i and At
j we add the axiom

¬At
i ∨¬At

j .

It might be pointed out that walking forward and shooting at the same time is not so hard to
do, whereas, say, shooting and grabbing at the same time is rather impractical. By imposing
action exclusion axioms only on pairs of actions that really do interfere with each other, we
can allow for plans that include multiple simultaneous actions—and because SATPLAN finds
the shortest legal plan, we can be sure that it will take advantage of this capability.

To summarize, SATPLAN finds models for a sentence containing the initial state, the
goal, the successor-state axioms, the precondition axioms, and the action exclusion axioms.
It can be shown that this collection of axioms is sufficient, in the sense that there are no
longer any spurious “solutions.” Any model satisfying the propositional sentence will be a

14 Notice that the addition of precondition axioms means that we need not include preconditions for actions in
the successor-state axioms.
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valid plan for the original problem. Modern SAT-solving technology makes the approach
quite practical. For example, a DPLL-style solver has no difficulty in generating the solution
for the wumpus world instance shown in Figure 7.2.

This section has described a declarative approach to agent construction: the agent works
by a combination of asserting sentences in the knowledge base and performing logical infer-
ence. This approach has some weaknesses hidden in phrases such as “for each time t” and
“for each square [x,y].” For any practical agent, these phrases have to be implemented by
code that generates instances of the general sentence schema automatically for insertion into
the knowledge base. For a wumpus world of reasonable size—one comparable to a smallish
computer game—we might need a 100×100 board and 1000 time steps, leading to knowl-
edge bases with tens or hundreds of millions of sentences.

Not only does this become rather impractical, but it also illustrates a deeper problem:
we know something about the wumpus world—namely, that the “physics” works the same
way across all squares and all time steps—that we cannot express directly in the language of
propositional logic. To solve this problem, we need a more expressive language, one in which
phrases like “for each time t” and “for each square [x,y]” can be written in a natural way. First-
order logic, described in Chapter 8, is such a language; in first-order logic a wumpus world
of any size and duration can be described in about ten logic sentences rather than ten million
or ten trillion.

Summary

We have introduced knowledge-based agents and have shown how to define a logic with
which such agents can reason about the world. The main points are as follows:

• Intelligent agents need knowledge about the world in order to reach good decisions.
• Knowledge is contained in agents in the form of sentences in a knowledge represen-

tation language that are stored in a knowledge base.
• A knowledge-based agent is composed of a knowledge base and an inference mecha-

nism. It operates by storing sentences about the world in its knowledge base, using the
inference mechanism to infer new sentences, and using these sentences to decide what
action to take.

• A representation language is defined by its syntax, which specifies the structure of
sentences, and its semantics, which defines the truth of each sentence in each possible
world or model.

• The relationship of entailment between sentences is crucial to our understanding of
reasoning. A sentence α entails another sentence β if β is true in all worlds where
α is true. Equivalent definitions include the validity of the sentence α⇒ β and the
unsatisfiability of the sentence α∧¬β.

• Inference is the process of deriving new sentences from old ones. Sound inference algo-
rithms derive only sentences that are entailed; complete algorithms derive all sentences
that are entailed.

• Propositional logic is a simple language consisting of proposition symbols and logical
connectives. It can handle propositions that are known to be true, known to be false, or
completely unknown.
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• The set of possible models, given a fixed propositional vocabulary, is finite, so en-
tailment can be checked by enumerating models. Efficient model-checking inference
algorithms for propositional logic include backtracking and local search methods and
can often solve large problems quickly.

• Inference rules are patterns of sound inference that can be used to find proofs. The
resolution rule yields a complete inference algorithm for knowledge bases that are
expressed in conjunctive normal form. Forward chaining and backward chaining
are very natural reasoning algorithms for knowledge bases in Horn form.

• Local search methods such as WALKSAT can be used to find solutions. Such algo-
rithms are sound but not complete.

• Logical state estimation involves maintaining a logical sentence that describes the set
of possible states consistent with the observation history. Each update step requires
inference using the transition model of the environment, which is built from successor-
state axioms that specify how each fluent changes.

• Decisions within a logical agent can be made by SAT solving: finding possible models
specifying future action sequences that reach the goal. This approach works only for
fully observable or sensorless environments.

• Propositional logic does not scale to environments of unbounded size because it lacks
the expressive power to deal concisely with time, space, and universal patterns of rela-
tionships among objects.

Bibliographical and Historical Notes

John McCarthy’s paper “Programs with Common Sense” (McCarthy, 1958, 1968) promul-
gated the notion of agents that use logical reasoning to mediate between percepts and actions.
It also raised the flag of declarativism, pointing out that telling an agent what it needs to know
is an elegant way to build software. Allen Newell’s (1982) article “The Knowledge Level”
makes the case that rational agents can be described and analyzed at an abstract level defined
by the knowledge they possess rather than the programs they run.

Logic itself had its origins in ancient Greek philosophy and mathematics. Plato discussed
the syntactic structure of sentences, their truth and falsity, their meaning, and the validity of
logical arguments. The first known systematic study of logic was Aristotle’s Organon. His
syllogisms were what we now call inference rules, although they lacked the compositionality Syllogism

of our current rules.
The Megarian and Stoic schools began the systematic study of the basic logical connec-

tives in the fifth century BCE. Truth tables are due to Philo of Megara. The Stoics took five
basic inference rules as valid without proof, including the rule we now call Modus Ponens.
They derived a number of other rules from these five, using, among other principles, the
deduction theorem (page 240) and were clearer about proof than was Aristotle (Mates, 1953).

The idea of reducing logical inference to a purely mechanical process is due to Wilhelm
Leibniz (1646–1716). George Boole (1847) introduced the first comprehensive and work-
able system of formal logic in his book The Mathematical Analysis of Logic. Boole’s logic
was closely modeled on the ordinary algebra of real numbers and used substitution of logi-
cally equivalent expressions as its primary inference method. Although it didn’t handle all of
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propositional logic, other mathematicians soon filled in the missing pieces. Schröder (1877)
described conjunctive normal form, while Horn form was introduced much later by Alfred
Horn (1951). The first comprehensive exposition of modern propositional logic (and first-
order logic) is found in Gottlob Frege’s (1879) Begriffschrift (“Concept Writing” or “Con-
ceptual Notation”).

The first mechanical device to carry out logical inferences was the Stanhope Demonstra-
tor, constructed by the third Earl of Stanhope (1753–1816). William Stanley Jevons, one of
the mathematicians who extended Boole’s work, constructed his “logical piano” in 1869 to
do inferences in Boolean logic. An entertaining history of these early mechanical inference
devices is given by Martin Gardner (1968). The first computer programs for logical inference
were Martin Davis’s 1954 program for proofs in Presburger arithmetic (Davis, 1957), and the
Logic Theorist of Newell, Shaw, and Simon (1957).

Emil Post (1921) and Ludwig Wittgenstein (1922) independently used truth tables as a
method of testing validity of propositional logic sentences. The Davis–Putnam algorithm
(Davis and Putnam, 1960) was the first algorithm for propositional resolution, and the im-
proved DPLL backtracking algorithm (Davis et al., 1962) proved to be more efficient. The
resolution rule and a proof of its completeness were developed in full generality for first-order
logic by J. A. Robinson (1965).

Stephen Cook (1971) showed that deciding satisfiability of a sentence in propositional
logic (the SAT problem) is NP-complete. Many subsets of propositional logic are known for
which the satisfiability problem is polynomially solvable; Horn clauses are one such subset.

Early investigations showed that DPLL has polynomial average-case complexity for cer-
tain natural distributions of problems. Even better, Franco and Paull (1983) showed that the
same problems could be solved in constant time simply by guessing random assignments.
Motivated by the empirical success of local search, Koutsoupias and Papadimitriou (1992)
showed that a simple hill-climbing algorithm can solve almost all satisfiability problem in-
stances very quickly, suggesting that hard problems are rare. Schöning (1999) exhibited a
randomized hill-climbing algorithm whose worst-case expected run time on 3-SAT problems
is O(1.333n)—still exponential, but substantially faster than previous worst-case bounds. The
current record is O(1.32216n) (Rolf, 2006).

Efficiency gains in propositional solvers have been rapid. Given ten minutes of comput-
ing time, the original DPLL algorithm on 1962 hardware could solve only problems with 10
or 15 variables (on a 2019 laptop it would be about 30 variables). By 1995 the SATZ solver (Li
and Anbulagan, 1997) could handle 1,000 variables, thanks to optimized data structures for
indexing variables. Two crucial contributions were the watched literal indexing techniqueWatched literal

of Zhang and Stickel (1996), which makes unit propagation very efficient, and the introduc-
tion of clause (i.e., constraint) learning techniques from the CSP community by Bayardo and
Schrag (1997). Using these ideas, and spurred by the prospect of solving industrial-scale
circuit verification problems, Moskewicz et al. (2001) developed the CHAFF solver, which
could handle problems with millions of variables. Beginning in 2002, annual SAT competi-
tions have been held; most of the winning entries have been variants of CHAFF. The landscape
of solvers is surveyed by Gomes et al. (2008).

Local search algorithms for satisfiability were tried by various authors throughout the
1980s, based on the idea of minimizing the number of unsatisfied clauses (Hansen and Jau-
mard, 1990). A particularly effective algorithm was developed by Gu (1989) and indepen-
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dently by Selman et al. (1992), who called it GSAT and showed that it was capable of solving
a wide range of very hard problems very quickly. The WALKSAT algorithm described in this
chapter is due to Selman et al. (1996).

The “phase transition” in satisfiability of random k-SAT problems was first observed by
Simon and Dubois (1989) and has given rise to a great deal of theoretical and empirical
research—due, in part, to the connection to phase transition phenomena in statistical physics.
Crawford and Auton (1993) located the 3-SAT transition at a clause/variable ratio of around
4.26, noting that this coincides with a sharp peak in the run time of their SAT solver. Cook
and Mitchell (1997) provide an excellent summary of the early literature on the problem.
Algorithms such as survey propagation (Parisi and Zecchina, 2002; Maneva et al., 2007) Survey propagation

take advantage of special properties of random SAT instances near the satisfiability threshold
and greatly outperform general SAT solvers on such instances. The current state of theoretical
understanding is summarized by Achlioptas (2009).

Good sources for information on satisfiability, both theoretical and practical, include the
Handbook of Satisfiability (Biere et al., 2009), Donald Knuth’s (2015) fascicle on satisfia-
bility, and the regular International Conferences on Theory and Applications of Satisfiability
Testing, known as SAT.

The idea of building agents with propositional logic can be traced back to the seminal pa-
per of McCulloch and Pitts (1943), which is well known for initiating the field of neural net-
works, but actually was concerned with the implementation of a Boolean circuit-based agent
design in the brain. Stan Rosenschein (Rosenschein, 1985; Kaelbling and Rosenschein, 1990)
developed ways to compile circuit-based agents from declarative descriptions of the task en-
vironment. Rod Brooks (1986, 1989) demonstrates the effectiveness of circuit-based designs
for controlling robots (see Chapter 26). Brooks (1991) argues that circuit-based designs are
all that is needed for AI—that representation and reasoning are cumbersome, expensive, and
unnecessary. In our view, both reasoning and circuits are necessary. Williams et al. (2003)
describe a hybrid agent—not too different from our wumpus agent—that controls NASA
spacecraft, planning sequences of actions and diagnosing and recovering from faults.

The general problem of keeping track of a partially observable environment was intro-
duced for state-based representations in Chapter 4. Its instantiation for propositional repre-
sentations was studied by Amir and Russell (2003), who identified several classes of envi-
ronments that admit efficient state-estimation algorithms and showed that for several other
classes the problem is intractable. The temporal-projection problem, which involves deter- Temporal-projection

mining what propositions hold true after an action sequence is executed, can be seen as a
special case of state estimation with empty percepts. Many authors have studied this problem
because of its importance in planning; some important hardness results were established by
Liberatore (1997). The idea of representing a belief state with propositions can be traced to
Wittgenstein (1922).

The approach to logical state estimation using temporal indexes on propositional vari-
ables was proposed by Kautz and Selman (1992). Later generations of SATPLAN were able
to take advantage of the advances in SAT solvers and remain among the most effective ways
of solving difficult planning problems (Kautz, 2006).

The frame problem was first recognized by McCarthy and Hayes (1969). Many re-
searchers considered the problem unsolvable within first-order logic, and it spurred a great
deal of research into nonmonotonic logics. Philosophers from Dreyfus (1972) to Crockett
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(1994) have cited the frame problem as one symptom of the inevitable failure of the entire
AI enterprise. The solution of the frame problem with successor-state axioms is due to Ray
Reiter (1991). Thielscher (1999) identifies the inferential frame problem as a separate idea
and provides a solution. In retrospect, one can see that Rosenschein’s (1985) agents were
using circuits that implemented successor-state axioms, but Rosenschein did not notice that
the frame problem was thereby largely solved.

Modern propositional solvers have been applied to a variety of industrial applications,
such as the synthesis of computer hardware (Nowick et al., 1993). The SATMC satisfiability
checker was used to detect a previously unknown vulnerability in a Web browser sign-on
protocol (Armando et al., 2008).

The wumpus world was invented as a game by Gregory Yob (1975). Ironically, Yob
developed it because he was bored with games played on a rectangular grid: he put his wum-
pus on a dodecahedron, and we put it back onto the boring old grid. Michael Genesereth
suggested that the wumpus world be used as an agent testbed.



CHAPTER 8
FIRST-ORDER LOGIC
In which we notice that the world is blessed with many objects, some of which are related
to other objects, and in which we endeavor to reason about them.

Propositional logic sufficed to illustrate the basic concepts of logic, inference, and knowledge-
based agents. Unfortunately, propositional logic is limited in what it can say. In this chap-
ter, we examine first-order logic,1 which can concisely represent much more. We begin in First-order logic

Section 8.1 with a discussion of representation languages in general; Section 8.2 covers the
syntax and semantics of first-order logic; Sections 8.3 and 8.4 illustrate the use of first-order
logic for simple representations.

8.1 Representation Revisited

In this section, we discuss the nature of representation languages. Programming languages
(such as C++ or Java or Python) are the largest class of formal languages in common use.
Data structures within programs can be used to represent facts; for example, a program could
use a 4× 4 array to represent the contents of the wumpus world. Thus, the programming
language statement World[2,2]←Pit is a fairly natural way to assert that there is a pit in
square [2,2]. Putting together a string of such statements is sufficient for running a simulation
of the wumpus world.

What programming languages lack is a general mechanism for deriving facts from other
facts; each update to a data structure is done by a domain-specific procedure whose details
are derived by the programmer from his or her own knowledge of the domain. This proce-
dural approach can be contrasted with the declarative nature of propositional logic, in which
knowledge and inference are separate, and inference is entirely domain independent. SQL
databases take a mix of declarative and procedural knowledge.

A second drawback of data structures in programs (and of databases) is the lack of any
easy way to say, for example, “There is a pit in [2,2] or [3,1]” or “If the wumpus is in [1,1]
then he is not in [2,2].” Programs can store a single value for each variable, and some systems
allow the value to be “unknown,” but they lack the expressiveness required to directly handle
partial information.

Propositional logic is a declarative language because its semantics is based on a truth
relation between sentences and possible worlds. It also has sufficient expressive power to
deal with partial information, using disjunction and negation. Propositional logic has a third
property that is desirable in representation languages, namely, compositionality. In a com- Compositionality

positional language, the meaning of a sentence is a function of the meaning of its parts. For

1 First-order logic is also called first-order predicate calculus; it may be abbreviated as FOL or FOPC.
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example, the meaning of “S1,4∧S1,2” is related to the meanings of “S1,4” and “S1,2.” It would
be very strange if “S1,4” meant that there is a stench in square [1,4] and “S1,2” meant that
there is a stench in square [1,2], but “S1,4∧ S1,2” meant that France and Poland drew 1–1 in
last week’s ice hockey qualifying match.

However, propositional logic, as a factored representation, lacks the expressive power to
concisely describe an environment with many objects. For example, we were forced to write
a separate rule about breezes and pits for each square, such as

B1,1 ⇔ (P1,2∨P2,1) .

In English, on the other hand, it seems easy enough to say, once and for all, “Squares adjacent
to pits are breezy.” The syntax and semantics of English make it possible to describe the
environment concisely: English, like first-order logic, is a structured representation.

8.1.1 The language of thought

Natural languages (such as English or Spanish) are very expressive indeed. We managed
to write almost this whole book in natural language, with only occasional lapses into other
languages (mainly mathematics and diagrams). There is a long tradition in linguistics and
the philosophy of language that views natural language as a declarative knowledge represen-
tation language. If we could uncover the rules for natural language, we could use them in
representation and reasoning systems and gain the benefit of the billions of pages that have
been written in natural language.

The modern view of natural language is that it serves as a medium for communication
rather than pure representation. When a speaker points and says, “Look!” the listener comes
to know that, say, Superman has finally appeared over the rooftops. Yet we would not want
to say that the sentence “Look!” represents that fact. Rather, the meaning of the sentence
depends both on the sentence itself and on the context in which the sentence was spoken.
Clearly, one could not store a sentence such as “Look!” in a knowledge base and expect to
recover its meaning without also storing a representation of the context—which raises the
question of how the context itself can be represented.

Natural languages also suffer from ambiguity, a problem for a representation language.
As Pinker (1995) puts it: “When people think about spring, surely they are not confused as
to whether they are thinking about a season or something that goes boing—and if one word
can correspond to two thoughts, thoughts can’t be words.”

The famous Sapir–Whorf hypothesis (Whorf, 1956) claims that our understanding of
the world is strongly influenced by the language we speak. It is certainly true that different
speech communities divide up the world differently. The French have two words “chaise” and
“fauteuil,” for a concept that English speakers cover with one: “chair.” But English speakers
can easily recognize the category fauteuil and give it a name—roughly “open-arm chair”—so
does language really make a difference? Whorf relied mainly on intuition and speculation,
and his ideas have been largely dismissed, but in the intervening years we actually have real
data from anthropological, psychological, and neurological studies.

For example, can you remember which of the following two phrases formed the opening
of Section 8.1?

“In this section, we discuss the nature of representation languages . . .”

“This section covers the topic of knowledge representation languages . . .”
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Wanner (1974) did a similar experiment and found that subjects made the right choice at
chance level—about 50% of the time—but remembered the content of what they read with
better than 90% accuracy. This suggests that people interpret the words they read and form
an internal nonverbal representation, and that the exact words are not consequential.

More interesting is the case in which a concept is completely absent in a language. Speak-
ers of the Australian aboriginal language Guugu Yimithirr have no words for relative (or ego-
centric) directions, such as front, back, right, or left. Instead they use absolute directions,
saying, for example, the equivalent of “I have a pain in my north arm.” This difference in
language makes a difference in behavior: Guugu Yimithirr speakers are better at navigating
in open terrain, while English speakers are better at placing the fork to the right of the plate.

Language also seems to influence thought through seemingly arbitrary grammatical fea-
tures such as the gender of nouns. For example, “bridge” is masculine in Spanish and fem-
inine in German. Boroditsky (2003) asked subjects to choose English adjectives to describe
a photograph of a particular bridge. Spanish speakers chose big, dangerous, strong, and
towering, whereas German speakers chose beautiful, elegant, fragile, and slender.

Words can serve as anchor points that affect how we perceive the world. Loftus and
Palmer (1974) showed experimental subjects a movie of an auto accident. Subjects who
were asked “How fast were the cars going when they contacted each other?” reported an
average of 32 mph, while subjects who were asked the question with the word “smashed”
instead of “contacted” reported 41mph for the same cars in the same movie. Overall, there are
measurable but small differences in cognitive processing by speakers of different languages,
but no convincing evidence that this leads to a major difference in world view.

In a logical reasoning system that uses conjunctive normal form (CNF), we can see that
the linguistic forms “¬(A∨ B)” and “¬A∧¬B” are the same because we can look inside
the system and see that the two sentences are stored as the same canonical CNF form. It is
starting to become possible to do something similar with the human brain. Mitchell et al.
(2008) put subjects in a functional magnetic resonance imaging (fMRI) machine, showed
them words such as “celery,” and imaged their brains. A machine learning program trained
on (word, image) pairs was able to predict correctly 77% of the time on binary choice tasks
(e.g., “celery” or “airplane”). The system can even predict at above-chance levels for words
it has never seen an fMRI image of before (by considering the images of related words)
and for people it has never seen before (proving that fMRI reveals some level of common
representation across people). This type of work is still in its infancy, but fMRI (and other
imaging technology such as intracranial electrophysiology (Sahin et al., 2009)) promises to
give us much more concrete ideas of what human knowledge representations are like.

From the viewpoint of formal logic, representing the same knowledge in two different
ways makes absolutely no difference; the same facts will be derivable from either represen-
tation. In practice, however, one representation might require fewer steps to derive a conclu-
sion, meaning that a reasoner with limited resources could get to the conclusion using one
representation but not the other. For nondeductive tasks such as learning from experience,
outcomes are necessarily dependent on the form of the representations used. We show in
Chapter 19 that when a learning program considers two possible theories of the world, both
of which are consistent with all the data, the most common way of breaking the tie is to choose
the most succinct theory—and that depends on the language used to represent theories. Thus,
the influence of language on thought is unavoidable for any agent that does learning.
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8.1.2 Combining the best of formal and natural languages

We can adopt the foundation of propositional logic—a declarative, compositional semantics
that is context-independent and unambiguous—and build a more expressive logic on that
foundation, borrowing representational ideas from natural language while avoiding its draw-
backs. When we look at the syntax of natural language, the most obvious elements are nouns
and noun phrases that refer to objects (squares, pits, wumpuses) and verbs and verb phrasesObject

along with adjectives and adverbs that refer to relations among objects (is breezy, is ad-Relation

jacent to, shoots). Some of these relations are functions—relations in which there is onlyFunction

one “value” for a given “input.” It is easy to start listing examples of objects, relations, and
functions:

• Objects: people, houses, numbers, theories, Ronald McDonald, colors, baseball games,
wars, centuries . . .

• Relations: these can be unary relations or properties such as red, round, bogus, prime,Property

multistoried . . ., or more general n-ary relations such as brother of, bigger than, inside,
part of, has color, occurred after, owns, comes between, . . .

• Functions: father of, best friend, third inning of, one more than, beginning of . . .

Indeed, almost any assertion can be thought of as referring to objects and properties or rela-
tions. Some examples follow:

• “One plus two equals three.”
Objects: one, two, three, one plus two; Relation: equals; Function: plus. (“One plus
two” is a name for the object that is obtained by applying the function “plus” to the
objects “one” and “two.” “Three” is another name for this object.)

• “Squares neighboring the wumpus are smelly.”
Objects: wumpus, squares; Property: smelly; Relation: neighboring.

• “Evil King John ruled England in 1200.”
Objects: John, England, 1200; Relation: ruled during; Properties: evil, king.

The language of first-order logic, whose syntax and semantics we define in the next section,
is built around objects and relations. It has been important to mathematics, philosophy, and
artificial intelligence precisely because those fields—and indeed, much of everyday human
existence—can be usefully thought of as dealing with objects and the relations among them.
First-order logic can also express facts about some or all of the objects in the universe. This
enables one to represent general laws or rules, such as the statement “Squares neighboring
the wumpus are smelly.”

The primary difference between propositional and first-order logic lies in the ontological
commitment made by each language—that is, what it assumes about the nature of reality.Ontological

commitment
Mathematically, this commitment is expressed through the nature of the formal models with
respect to which the truth of sentences is defined. For example, propositional logic assumes
that there are facts that either hold or do not hold in the world. Each fact can be in one of two
states—true or false—and each model assigns true or false to each proposition symbol (see
Section 7.4.2). First-order logic assumes more; namely, that the world consists of objects with
certain relations among them that do or do not hold. (See Figure 8.1.) The formal models are
correspondingly more complicated than those for propositional logic.
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Language Ontological Commitment Epistemological Commitment
(What exists in the world) (What an agent believes about facts)

Propositional logic facts true/false/unknown
First-order logic facts, objects, relations true/false/unknown
Temporal logic facts, objects, relations, times true/false/unknown
Probability theory facts degree of belief ∈ [0,1]
Fuzzy logic facts with degree of truth ∈ [0,1] known interval value

Figure 8.1 Formal languages and their ontological and epistemological commitments.

This ontological commitment is a great strength of logic (both propositional and first-
order), because it allows us to start with true statements and infer other true statements. It is
especially powerful in domains where every proposition has clear boundaries, such as math-
ematics or the wumpus world, where a square either does or doesn’t have a pit; there is no
possibility of a square with a vaguely pit-like indentation. But in the real world, many propo-
sitions have vague boundaries: Is Vienna a large city? Does this restaurant serve delicious
food? Is that person tall? It depends who you ask, and their answer might be “kind of.”

One response is to refine the representation: if a crude line dividing cities into “large”
and “not large” leaves out too much information for the application in question, then one
can increase the number of size categories or use a Population function symbol. Another
proposed solution comes from Fuzzy logic, which makes the ontological commitment that Fuzzy logic

propositions have a degree of truth between 0 and 1. For example, the sentence “Vienna is a Degree of truth

large city” might be true to degree 0.8 in fuzzy logic, while “Paris is a large city” might be true
to degree 0.9. This corresponds better to our intuitive conception of the world, but it makes it
harder to do inference: instead of one rule to determine the truth of A∧B, fuzzy logic needs
different rules depending on the domain. Another possibility, covered in Section 25.1, is to
assign each concept to a point in a multidimensional space, and then measure the distance
between the concept “large city” and the concept “Vienna” or “Paris.”

Various special-purpose logics make still further ontological commitments; for example,
temporal logic assumes that facts hold at particular times and that those times (which may Temporal logic

be points or intervals) are ordered. Thus, special-purpose logics give certain kinds of objects
(and the axioms about them) “first class” status within the logic, rather than simply defin-
ing them within the knowledge base. Higher-order logic views the relations and functions Higher-order logic

referred to by first-order logic as objects in themselves. This allows one to make assertions
about all relations—for example, one could wish to define what it means for a relation to
be transitive. Unlike most special-purpose logics, higher-order logic is strictly more expres-
sive than first-order logic, in the sense that some sentences of higher-order logic cannot be
expressed by any finite number of first-order logic sentences.

A logic can also be characterized by its epistemological commitments—the possible Epistemological
commitment

states of knowledge that it allows with respect to each fact. In both propositional and first-
order logic, a sentence represents a fact and the agent either believes the sentence to be true,
believes it to be false, or has no opinion. These logics therefore have three possible states of
knowledge regarding any sentence.
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Systems using probability theory, on the other hand, can have any degree of belief, or
subjective likelihood, ranging from 0 (total disbelief) to 1 (total belief). It is important not
to confuse the degree of belief in probability theory with the degree of truth in fuzzy logic.
Indeed, some fuzzy systems allow uncertainty (degree of belief) about degrees of truth. For
example, a probabilistic wumpus-world agent might believe that the wumpus is in [1,3] with
probability 0.75 and in [2, 3] with probability 0.25 (although the wumpus is definitely in one
particular square).

8.2 Syntax and Semantics of First-Order Logic

We begin this section by specifying more precisely the way in which the possible worlds of
first-order logic reflect the ontological commitment to objects and relations. Then we intro-
duce the various elements of the language, explaining their semantics as we go along. The
main points are how the language facilitates concise representations and how its semantics
leads to sound reasoning procedures.

8.2.1 Models for first-order logic

Chapter 7 said that the models of a logical language are the formal structures that constitute
the possible worlds under consideration. Each model links the vocabulary of the logical sen-
tences to elements of the possible world, so that the truth of any sentence can be determined.
Thus, models for propositional logic link proposition symbols to predefined truth values.

Models for first-order logic are much more interesting. First, they have objects in them!
The domain of a model is the set of objects or domain elements it contains. The domain isDomain

Domain elements required to be nonempty—every possible world must contain at least one object. (See Exer-
cise 8.EMPT for a discussion of empty worlds.) Mathematically speaking, it doesn’t matter
what these objects are—all that matters is how many there are in each particular model—but
for pedagogical purposes we’ll use a concrete example. Figure 8.2 shows a model with five
objects: Richard the Lionheart, King of England from 1189 to 1199; his younger brother, the
evil King John, who ruled from 1199 to 1215; the left legs of Richard and John; and a crown.

The objects in the model may be related in various ways. In the figure, Richard and John
are brothers. Formally speaking, a relation is just the set of tuples of objects that are related.Tuple

(A tuple is a collection of objects arranged in a fixed order and is written with angle brackets
surrounding the objects.) Thus, the brotherhood relation in this model is the set

{〈Richard the Lionheart, King John〉, 〈King John, Richard the Lionheart〉} . (8.1)

(Here we have named the objects in English, but you may, if you wish, mentally substitute the
pictures for the names.) The crown is on King John’s head, so the “on head” relation contains
just one tuple, 〈the crown, King John〉. The “brother” and “on head” relations are binary
relations—that is, they relate pairs of objects. The model also contains unary relations, or
properties: the “person” property is true of both Richard and John; the “king” property is true
only of John (presumably because Richard is dead at this point); and the “crown” property is
true only of the crown.

Certain kinds of relationships are best considered as functions, in that a given object must
be related to exactly one object in this way. For example, each person has one left leg, so the
model has a unary “left leg” function—a mapping from a one-element tuple to an object—that
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R J
$

left leg

on head
brother

brother

person person
king

crown

left leg

Figure 8.2 A model containing five objects, two binary relations (brother and on-head), three
unary relations (person, king, and crown), and one unary function (left-leg).

includes the following mappings:

〈Richard the Lionheart〉 → Richard’s left leg
〈King John〉 → John’s left leg .

(8.2)

Strictly speaking, models in first-order logic require total functions, that is, there must be a Total functions

value for every input tuple. Thus the crown must have a left leg and so must each of the left
legs. There is a technical solution to this awkward problem involving an additional “invisible”
object that is the left leg of everything that has no left leg, including itself. Fortunately, as
long as one makes no assertions about the left legs of things that have no left legs, these
technicalities are of no import.

So far, we have described the elements that populate models for first-order logic. The
other essential part of a model is the link between those elements and the vocabulary of the
logical sentences, which we explain next.

8.2.2 Symbols and interpretations

We turn now to the syntax of first-order logic. The impatient reader can obtain a complete
description from the formal grammar in Figure 8.3.

The basic syntactic elements of first-order logic are the symbols that stand for objects,
relations, and functions. The symbols, therefore, come in three kinds: constant symbols, Constant symbol

which stand for objects; predicate symbols, which stand for relations; and function sym- Predicate symbol

bols, which stand for functions. We adopt the convention that these symbols will begin with Function symbol

uppercase letters. For example, we might use the constant symbols Richard and John; the
predicate symbols Brother, OnHead, Person, King, and Crown; and the function symbol
LeftLeg. As with proposition symbols, the choice of names is entirely up to the user. Each
predicate and function symbol comes with an arity that fixes the number of arguments. Arity
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Sentence → AtomicSentence | ComplexSentence

AtomicSentence → Predicate | Predicate(Term, . . .) | Term = Term

ComplexSentence → ( Sentence )
| ¬ Sentence

| Sentence ∧ Sentence

| Sentence ∨ Sentence

| Sentence ⇒ Sentence

| Sentence ⇔ Sentence

| Quantifier Variable, . . . Sentence

Term → Function(Term, . . .)

| Constant

| Variable

Quantifier → ∀ | ∃
Constant → A | X1 | John | · · ·
Variable → a | x | s | · · ·

Predicate → True | False | After | Loves | Raining | · · ·
Function → Mother | LeftLeg | · · ·

OPERATOR PRECEDENCE : ¬,=,∧,∨,⇒,⇔

Figure 8.3 The syntax of first-order logic with equality, specified in Backus–Naur form (see
page 1081 if you are not familiar with this notation). Operator precedences are specified,
from highest to lowest. The precedence of quantifiers is such that a quantifier holds over
everything to the right of it.

Every model must provide the information required to determine if any given sentence is
true or false. Thus, in addition to its objects, relations, and functions, each model includes an
interpretation that specifies exactly which objects, relations and functions are referred to byInterpretation

the constant, predicate, and function symbols. One possible interpretation for our example—
which a logician would call the intended interpretation—is as follows:Intended

interpretation

• Richard refers to Richard the Lionheart and John refers to the evil King John.
• Brother refers to the brotherhood relation—that is, the set of tuples of objects given

in Equation (8.1); OnHead is a relation that holds between the crown and King John;
Person, King, and Crown are unary relations that identify persons, kings, and crowns.

• LeftLeg refers to the “left leg” function as defined in Equation (8.2).

There are many other possible interpretations, of course. For example, one interpretation
maps Richard to the crown and John to King John’s left leg. There are five objects in the
model, so there are 25 possible interpretations just for the constant symbols Richard and John.
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. . . . . . . . .

R J R R R R RJ J J J J

Figure 8.4 Some members of the set of all models for a language with two constant symbols,
R and J, and one binary relation symbol. The interpretation of each constant symbol is shown
by a gray arrow. Within each model, the related objects are connected by arrows.

Notice that not all the objects need have a name—for example, the intended interpretation
does not name the crown or the legs. It is also possible for an object to have several names;
there is an interpretation under which both Richard and John refer to the crown.2 If you find
this possibility confusing, remember that, in propositional logic, it is perfectly possible to
have a model in which Cloudy and Sunny are both true; it is the job of the knowledge base to
rule out models that are inconsistent with our knowledge.

In summary, a model in first-order logic consists of a set of objects and an interpretation
that maps constant symbols to objects, function symbols to functions on those objects, and
predicate symbols to relations. Just as with propositional logic, entailment, validity, and so
on are defined in terms of all possible models. To get an idea of what the set of all possible
models looks like, see Figure 8.4. It shows that models vary in how many objects they
contain—from one to infinity—and in the way the constant symbols map to objects.

Because the number of first-order models is unbounded, we cannot check entailment by
enumerating them all (as we did for propositional logic). Even if the number of objects is
restricted, the number of combinations can be very large. (See Exercise 8.MCNT.) For the
example in Figure 8.4, there are 137,506,194,466 models with six or fewer objects.

8.2.3 Terms

A term is a logical expression that refers to an object. Constant symbols are terms, but it is Term

not always convenient to have a distinct symbol to name every object. In English we might
use the expression “King John’s left leg” rather than giving a name to his leg. This is what
function symbols are for: instead of using a constant symbol, we use LeftLeg(John).3

In the general case, a complex term is formed by a function symbol followed by a paren-
thesized list of terms as arguments to the function symbol. It is important to remember that a
complex term is just a complicated kind of name. It is not a “subroutine call” that “returns a
value.” There is no LeftLeg subroutine that takes a person as input and returns a leg. We can
reason about left legs (e.g., stating the general rule that everyone has one and then deducing

2 Later, in Section 8.2.8, we examine a semantics in which every object must have exactly one name.
3 λ-expressions (lambda expressions) provide a useful notation in which new function symbols are constructed
“on the fly.” For example, the function that squares its argument can be written as (λx : x×x) and can be applied
to arguments just like any other function symbol. A λ-expression can also be defined and used as a predicate
symbol. The lambda operator in Lisp and Python plays exactly the same role. Notice that the use of λ in this
way does not increase the formal expressive power of first-order logic, because any sentence that includes a
λ-expression can be rewritten by “plugging in” its arguments to yield an equivalent sentence.
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that John must have one) without ever providing a definition of LeftLeg. This is something
that cannot be done with subroutines in programming languages.

The formal semantics of terms is straightforward. Consider a term f (t1, . . . , tn). The
function symbol f refers to some function in the model (call it F); the argument terms refer
to objects in the domain (call them d1, . . . ,dn); and the term as a whole refers to the object that
is the value of the function F applied to d1, . . . ,dn. For example, suppose the LeftLeg function
symbol refers to the function shown in Equation (8.2) and John refers to King John, then
LeftLeg(John) refers to King John’s left leg. In this way, the interpretation fixes the referent
of every term.

8.2.4 Atomic sentences

Now that we have terms for referring to objects and predicate symbols for referring to rela-
tions, we can combine them to make atomic sentences that state facts. An atomic sentenceAtomic sentence

(or atom for short) is formed from a predicate symbol optionally followed by a parenthesizedAtom

list of terms, such as

Brother(Richard,John).

This states, under the intended interpretation given earlier, that Richard the Lionheart is the
brother of King John.4 Atomic sentences can have complex terms as arguments. Thus,

Married(Father(Richard),Mother(John))

states that Richard the Lionheart’s father is married to King John’s mother (again, under a
suitable interpretation).5

An atomic sentence is true in a given model if the relation referred to by the predicateI
symbol holds among the objects referred to by the arguments.

8.2.5 Complex sentences

We can use logical connectives to construct more complex sentences, with the same syntax
and semantics as in propositional calculus. Here are four sentences that are true in the model
of Figure 8.2 under our intended interpretation:

¬Brother(LeftLeg(Richard),John)
Brother(Richard,John)∧Brother(John,Richard)
King(Richard)∨King(John)
¬King(Richard) ⇒ King(John) .

8.2.6 Quantifiers

Once we have a logic that allows objects, it is only natural to want to express properties of
entire collections of objects, instead of enumerating the objects by name. Quantifiers let usQuantifier

do this. First-order logic contains two standard quantifiers, called universal and existential.

Universal quantification (∀)

Recall the difficulty we had in Chapter 7 with the expression of general rules in proposi-
tional logic. Rules such as “Squares neighboring the wumpus are smelly” and “All kings

4 We usually follow the argument-ordering convention that P(x,y) is read as “x is a P of y.”
5 This ontology only recognizes one father and one mother for each person. A more complex ontology could
recognize biological mother, birth mother, adoptive mother, etc.
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are persons” are the bread and butter of first-order logic. We deal with the first of these in
Section 8.3. The second rule, “All kings are persons,” is written in first-order logic as

∀x King(x) ⇒ Person(x) .

The universal quantifier ∀ is usually pronounced “For all . . .”. (Remember that the upside- Universal quantifier

down A stands for “all.”) Thus, the sentence says, “For all x, if x is a king, then x is a person.”
The symbol x is called a variable. By convention, variables are lowercase letters. A variable Variable

is a term all by itself, and as such can also serve as the argument of a function—for example,
LeftLeg(x). A term with no variables is called a ground term. Ground term

Intuitively, the sentence ∀x P, where P is any logical sentence, says that P is true for every
object x. More precisely, ∀x P is true in a given model if P is true in all possible extended
interpretations constructed from the interpretation given in the model, where each extended Extended

interpretation

interpretation specifies a domain element to which x refers.
This sounds complicated, but it is really just a careful way of stating the intuitive mean-

ing of universal quantification. Consider the model shown in Figure 8.2 and the intended
interpretation that goes with it. We can extend the interpretation in five ways:

x→ Richard the Lionheart,
x→ King John,
x→ Richard’s left leg,
x→ John’s left leg,
x→ the crown.

The universally quantified sentence ∀x King(x)⇒ Person(x) is true in the original model if
the sentence King(x)⇒Person(x) is true under each of the five extended interpretations. That
is, the universally quantified sentence is equivalent to asserting the following five sentences:

Richard the Lionheart is a king ⇒ Richard the Lionheart is a person.
King John is a king ⇒ King John is a person.
Richard’s left leg is a king ⇒ Richard’s left leg is a person.
John’s left leg is a king ⇒ John’s left leg is a person.
The crown is a king ⇒ the crown is a person.

Let us look carefully at this set of assertions. Since, in our model, King John is the only
king, the second sentence asserts that he is a person, as we would hope. But what about
the other four sentences, which appear to make claims about legs and crowns? Is that part
of the meaning of “All kings are persons”? In fact, the other four assertions are true in the
model, but make no claim whatsoever about the personhood qualifications of legs, crowns,
or indeed Richard. This is because none of these objects is a king. Looking at the truth table
for ⇒ (Figure 7.8 on page 237), we see that the implication is true whenever its premise is
false—regardless of the truth of the conclusion. Thus, by asserting the universally quantified
sentence, which is equivalent to asserting a whole list of individual implications, we end up
asserting the conclusion of the rule just for those objects for which the premise is true and
saying nothing at all about those objects for which the premise is false. Thus, the truth-table
definition of⇒ turns out to be perfect for writing general rules with universal quantifiers.

A common mistake, made frequently even by diligent readers who have read this para-
graph several times, is to use conjunction instead of implication. The sentence

∀x King(x)∧Person(x)
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would be equivalent to asserting

Richard the Lionheart is a king∧Richard the Lionheart is a person,
King John is a king∧King John is a person,
Richard’s left leg is a king∧Richard’s left leg is a person,

and so on. Obviously, this does not capture what we want.

Existential quantification (∃)

Universal quantification makes statements about every object. Similarly, we can make a
statement about some object without naming it, by using an existential quantifier. To say,Existential quantifier

for example, that King John has a crown on his head, we write

∃x Crown(x)∧OnHead(x,John) .

∃x is pronounced “There exists an x such that . . .” or “For some x . . .”.
Intuitively, the sentence ∃x P says that P is true for at least one object x. More precisely,

∃x P is true in a given model if P is true in at least one extended interpretation that assigns x
to a domain element. That is, at least one of the following is true:

Richard the Lionheart is a crown∧Richard the Lionheart is on John’s head;
King John is a crown∧King John is on John’s head;
Richard’s left leg is a crown∧Richard’s left leg is on John’s head;
John’s left leg is a crown∧ John’s left leg is on John’s head;
The crown is a crown∧ the crown is on John’s head.

The fifth assertion is true in the model, so the original existentially quantified sentence is
true in the model. Notice that, by our definition, the sentence would also be true in a model
in which King John was wearing two crowns. This is entirely consistent with the original
sentence “King John has a crown on his head.” 6

Just as⇒ appears to be the natural connective to use with ∀, ∧ is the natural connective
to use with ∃. Using ∧ as the main connective with ∀ led to an overly strong statement in
the example in the previous section; using⇒ with ∃ usually leads to a very weak statement,
indeed. Consider the following sentence:

∃x Crown(x) ⇒ OnHead(x,John) .

On the surface, this might look like a reasonable rendition of our sentence. Applying the
semantics, we see that the sentence says that at least one of the following assertions is true:

Richard the Lionheart is a crown ⇒ Richard the Lionheart is on John’s head;
King John is a crown ⇒ King John is on John’s head;
Richard’s left leg is a crown ⇒ Richard’s left leg is on John’s head;

and so on. An implication is true if both premise and conclusion are true, or if its premise
is false; so if Richard the Lionheart is not a crown, then the first assertion is true and the
existential is satisfied. So, an existentially quantified implication sentence is true whenever
any object fails to satisfy the premise; hence such sentences really do not say much at all.

6 There is a variant of the existential quantifier, usually written ∃1 or ∃!, that means “There exists exactly one.”
The same meaning can be expressed using equality statements.
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Nested quantifiers

We will often want to express more complex sentences using multiple quantifiers. The sim-
plest case is where the quantifiers are of the same type. For example, “Brothers are siblings”
can be written as

∀x ∀y Brother(x,y) ⇒ Sibling(x,y) .
Consecutive quantifiers of the same type can be written as one quantifier with several vari-
ables. For example, to say that siblinghood is a symmetric relationship, we can write

∀x,y Sibling(x,y) ⇔ Sibling(y,x) .
In other cases we will have mixtures. “Everybody loves somebody” means that for every
person, there is someone that person loves:

∀x ∃y Loves(x,y) .
On the other hand, to say “There is someone who is loved by everyone,” we write

∃y ∀x Loves(x,y) .
The order of quantification is therefore very important. It becomes clearer if we insert paren-
theses. ∀x (∃y Loves(x,y)) says that everyone has a particular property, namely, the property
that they love someone. On the other hand, ∃y (∀x Loves(x,y)) says that someone in the
world has a particular property, namely the property of being loved by everybody.

Some confusion can arise when two quantifiers are used with the same variable name.
Consider the sentence

∀x (Crown(x)∨ (∃x Brother(Richard,x))) .
Here the x in Brother(Richard,x) is existentially quantified. The rule is that the variable
belongs to the innermost quantifier that mentions it; then it will not be subject to any other
quantification. Another way to think of it is this: ∃x Brother(Richard,x) is a sentence about
Richard (that he has a brother), not about x; so putting a ∀x outside it has no effect. It
could equally well have been written ∃z Brother(Richard,z). Because this can be a source of
confusion, we will always use different variable names with nested quantifiers.

Connections between ∀ and ∃

The two quantifiers are actually intimately connected with each other, through negation. As-
serting that everyone dislikes parsnips is the same as asserting there does not exist someone
who likes them, and vice versa:

∀x ¬Likes(x,Parsnips) is equivalent to ¬∃x Likes(x,Parsnips) .
We can go one step further: “Everyone likes ice cream” means that there is no one who does
not like ice cream:

∀x Likes(x, IceCream) is equivalent to ¬∃x ¬Likes(x, IceCream) .

Because ∀ is really a conjunction over the universe of objects and ∃ is a disjunction, it should
not be surprising that they obey De Morgan’s rules. The De Morgan rules for quantified and
unquantified sentences are as follows:

¬∃x P ≡ ∀x ¬P ¬(P∨Q) ≡ ¬P∧¬Q
¬∀x P ≡ ∃x ¬P ¬(P∧Q) ≡ ¬P∨¬Q
∀x P ≡ ¬∃x ¬P P∧Q ≡ ¬(¬P∨¬Q)
∃x P ≡ ¬∀x ¬P P∨Q ≡ ¬(¬P∧¬Q) .
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Thus, we do not really need both ∀ and ∃, just as we do not really need both ∧ and ∨. Still,
readability is more important than parsimony, so we will keep both of the quantifiers.

8.2.7 Equality

First-order logic includes one more way to make atomic sentences, other than using a predi-
cate and terms as described earlier. We can use the equality symbol to signify that two termsEquality symbol

refer to the same object. For example,

Father(John)=Henry

says that the object referred to by Father(John) and the object referred to by Henry are the
same. Because an interpretation fixes the referent of any term, determining the truth of an
equality sentence is simply a matter of seeing that the referents of the two terms are the same
object.

The equality symbol can be used to state facts about a given function, as we just did for
the Father symbol. It can also be used with negation to insist that two terms are not the same
object. To say that Richard has at least two brothers, we would write

∃x,y Brother(x,Richard)∧Brother(y,Richard)∧¬(x=y) .

The sentence

∃x,y Brother(x,Richard)∧Brother(y,Richard)

does not have the intended meaning. In particular, it is true in the model of Figure 8.2, where
Richard has only one brother. To see this, consider the extended interpretation in which both
x and y are assigned to King John. The addition of ¬(x=y) rules out such models. The
notation x 6= y is sometimes used as an abbreviation for ¬(x=y).

8.2.8 Database semantics

Continuing the example from the previous section, suppose that we believe that Richard has
two brothers, John and Geoffrey.7 We could write

Brother(John,Richard)∧Brother(Geoffrey,Richard) , (8.3)

but that wouldn’t completely capture the state of affairs. First, this assertion is true in a model
where Richard has only one brother—we need to add John 6= Geoffrey. Second, the sentence
doesn’t rule out models in which Richard has many more brothers besides John and Geoffrey.
Thus, the correct translation of “Richard’s brothers are John and Geoffrey” is as follows:

Brother(John,Richard)∧Brother(Geoffrey,Richard)∧ John 6= Geoffrey
∧∀x Brother(x,Richard) ⇒ (x=John∨ x=Geoffrey) .

This logical sentence seems much more cumbersome than the corresponding English sen-
tence. But if we fail to translate the English properly, our logical reasoning system will make
mistakes. Can we devise a semantics that allows a more straightforward logical sentence?

One proposal that is very popular in database systems works as follows. First, we in-
sist that every constant symbol refer to a distinct object—the unique-names assumption.Unique-names

assumption

Second, we assume that atomic sentences not known to be true are in fact false—the closed-
world assumption. Finally, we invoke domain closure, meaning that each model containsClosed-world

assumption

Domain closure no more domain elements than those named by the constant symbols.

7 Actually he had four, the others being William and Henry.
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Figure 8.5 Some members of the set of all models for a language with two constant symbols,
R and J, and one binary relation symbol, under database semantics. The interpretation of the
constant symbols is fixed, and there is a distinct object for each constant symbol.

Under the resulting semantics, Equation (8.3) does indeed state that Richard has exactly
two brothers, John and Geoffrey. We call this database semantics to distinguish it from the Database semantics

standard semantics of first-order logic. Database semantics is also used in logic programming
systems, as explained in Section 9.4.4.

It is instructive to consider the set of all possible models under database semantics for the
same case as shown in Figure 8.4 (page 277). Figure 8.5 shows some of the models, ranging
from the model with no tuples satisfying the relation to the model with all tuples satisfying
the relation. With two objects, there are four possible two-element tuples, so there are 24=16
different subsets of tuples that can satisfy the relation. Thus, there are 16 possible models in
all—a lot fewer than the infinitely many models for the standard first-order semantics. On the
other hand, the database semantics requires definite knowledge of what the world contains.

This example brings up an important point: there is no one “correct” semantics for logic.
The usefulness of any proposed semantics depends on how concise and intuitive it makes the
expression of the kinds of knowledge we want to write down, and on how easy and natural
it is to develop the corresponding rules of inference. Database semantics is most useful
when we are certain about the identity of all the objects described in the knowledge base and
when we have all the facts at hand; in other cases, it is quite awkward. For the rest of this
chapter, we assume the standard semantics while noting instances in which this choice leads
to cumbersome expressions.

8.3 Using First-Order Logic

Now that we have defined an expressive logical language, let’s learn how to use it. In this sec-
tion, we provide example sentences in some simple domains. In knowledge representation, Domain

a domain is just some part of the world about which we wish to express some knowledge.
We begin with a brief description of the TELL/ASK interface for first-order knowledge

bases. Then we look at the domains of family relationships, numbers, sets, and lists, and at
the wumpus world. Section 8.4.2 contains a more substantial example (electronic circuits)
and Chapter 10 covers everything in the universe.

8.3.1 Assertions and queries in first-order logic

Sentences are added to a knowledge base using TELL, exactly as in propositional logic. Such
sentences are called assertions. For example, we can assert that John is a king, Richard is a Assertion
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person, and all kings are persons:

TELL(KB, King(John)) .
TELL(KB, Person(Richard)) .
TELL(KB, ∀x King(x) ⇒ Person(x)) .

We can ask questions of the knowledge base using ASK. For example,

ASK(KB, King(John))

returns true. Questions asked with ASK are called queries or goals. Generally speaking, any
query that is logically entailed by the knowledge base should be answered affirmatively. For
example, given the three assertions above, the query

ASK(KB, Person(John))

should also return true. We can ask quantified queries, such as

ASK(KB, ∃x Person(x)) .

The answer is true, but this is perhaps not as helpful as we would like. It is rather like
answering “Can you tell me the time?” with “Yes.” If we want to know what value of x
makes the sentence true, we will need a different function, which we call ASKVARS,

ASKVARS(KB,Person(x))

and which yields a stream of answers. In this case there will be two answers: {x/John}
and {x/Richard}. Such an answer is called a substitution or binding list. ASKVARS isSubstitution

Binding list usually reserved for knowledge bases consisting solely of Horn clauses, because in such
knowledge bases every way of making the query true will bind the variables to specific values.
That is not the case with first-order logic; in a KB that has been told only that King(John)∨
King(Richard) there is no single binding to x that makes the query ∃x King(x) true, even
though the query is in fact true.

8.3.2 The kinship domain

The first example we consider is the domain of family relationships, or kinship. This domain
includes facts such as “Elizabeth is the mother of Charles” and “Charles is the father of
William” and rules such as “One’s grandmother is the mother of one’s parent.”

Clearly, the objects in our domain are people. Unary predicates include Male and Female,
among others. Kinship relations—parenthood, brotherhood, marriage, and so on—are repre-
sented by binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, Son, Spouse,
Wife, Husband, Grandparent, Grandchild, Cousin, Aunt, and Uncle. We use functions for
Mother and Father, because every person has exactly one of each of these, biologically (al-
though we could introduce additional functions for adoptive mothers, surrogate mothers, etc.).

We can go through each function and predicate, writing down what we know in terms of
the other symbols. For example, one’s mother is one’s parent who is female:

∀m,c Mother(c)=m ⇔ Female(m)∧Parent(m,c) .

One’s husband is one’s male spouse:

∀w,h Husband(h,w) ⇔ Male(h)∧Spouse(h,w) .

Parent and child are inverse relations:

∀ p,c Parent(p,c) ⇔ Child(c, p) .
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A grandparent is a parent of one’s parent:

∀g,c Grandparent(g,c) ⇔ ∃ p Parent(g, p)∧Parent(p,c) .

A sibling is another child of one’s parent:

∀x,y Sibling(x,y) ⇔ x 6= y∧∃ p Parent(p,x)∧Parent(p,y) .

We could go on for several more pages like this, and Exercise 8.KINS asks you to do just that.
Each of these sentences can be viewed as an axiom of the kinship domain, as explained in

Section 7.1. Axioms are commonly associated with purely mathematical domains—we will
see some axioms for numbers shortly—but they are needed in all domains. They provide the
basic factual information from which useful conclusions can be derived. Our kinship axioms
are also definitions; they have the form ∀x,y P(x,y) ⇔ . . .. The axioms define the Mother Definition

function and the Husband, Male, Parent, Grandparent, and Sibling predicates in terms of
other predicates. Our definitions “bottom out” at a basic set of predicates (Child, Female,
etc.) in terms of which the others are ultimately defined.

This is a natural way in which to build up the representation of a domain, and it is anal-
ogous to the way in which software packages are built up by successive definitions of sub-
routines from primitive library functions. Notice that there is not necessarily a unique set
of primitive predicates; we could equally well have used Parent instead of Child. In some
domains, as we show, there is no clearly identifiable basic set.

Not all logical sentences about a domain are axioms. Some are theorems—that is, they Theorem

are entailed by the axioms. For example, consider the assertion that siblinghood is symmetric:

∀x,y Sibling(x,y) ⇔ Sibling(y,x) .

Is this an axiom or a theorem? In fact, it is a theorem that follows logically from the axiom
that defines siblinghood. If we ASK the knowledge base this sentence, it should return true.

From a purely logical point of view, a knowledge base need contain only axioms and
no theorems, because the theorems do not increase the set of conclusions that follow from
the knowledge base. From a practical point of view, theorems are essential to reduce the
computational cost of deriving new sentences. Without them, a reasoning system has to start
from first principles every time, rather like a physicist having to rederive the rules of calculus
for every new problem.

Not all axioms are definitions. Some provide more general information about certain
predicates without constituting a definition. Indeed, some predicates have no complete defi-
nition because we do not know enough to characterize them fully. For example, there is no
obvious definitive way to complete the sentence

∀x Person(x) ⇔ . . .

Fortunately, first-order logic allows us to make use of the Person predicate without completely
defining it. Instead, we can write partial specifications of properties that every person has and
properties that make something a person:

∀x Person(x) ⇒ . . .
∀x . . . ⇒ Person(x) .

Axioms can also be “just plain facts,” such as Male(Jim) and Spouse(Jim,Laura). Such
facts form the descriptions of specific problem instances, enabling specific questions to be



286 Chapter 8 First-Order Logic

answered. If all goes well, the answers to these questions will then be theorems that follow
from the axioms.

Often, one finds that the expected answers are not forthcoming—for example, from
Spouse(Jim,Laura) one expects (under the laws of many countries) to be able to infer that
¬Spouse(George,Laura); but this does not follow from the axioms given earlier—even after
we add Jim 6= George as suggested in Section 8.2.8. This is a sign that an axiom is missing.
Exercise 8.HILL asks the reader to supply it.

8.3.3 Numbers, sets, and lists

Numbers are perhaps the most vivid example of how a large theory can be built up from
a tiny kernel of axioms. We describe here the theory of natural numbers or nonnegativeNatural numbers

integers. We need a predicate NatNum that will be true of natural numbers; we need one
constant symbol, 0; and we need one function symbol, S (successor). The Peano axiomsPeano axioms

define natural numbers and addition.8 Natural numbers are defined recursively:

NatNum(0) .
∀n NatNum(n) ⇒ NatNum(S(n)) .

That is, 0 is a natural number, and for every object n, if n is a natural number, then S(n) is a
natural number. So the natural numbers are 0, S(0), S(S(0)), and so on. We also need axioms
to constrain the successor function:

∀n 0 6= S(n) .
∀m,n m 6= n ⇒ S(m) 6= S(n) .

Now we can define addition in terms of the successor function:
∀m NatNum(m) ⇒ +(0,m) = m .
∀m,n NatNum(m)∧NatNum(n) ⇒ +(S(m),n) = S(+(m,n)) .

The first of these axioms says that adding 0 to any natural number m gives m itself. Notice
the use of the binary function symbol “+” in the term +(m,0); in ordinary mathematics, the
term would be written m+0 using infix notation. (The notation we have used for first-orderInfix

logic is called prefix.) To make our sentences about numbers easier to read, we allow the usePrefix

of infix notation. We can also write S(n) as n+1, so the second axiom becomes

∀m,n NatNum(m)∧NatNum(n) ⇒ (m+1)+n = (m+n)+1 .

This axiom reduces addition to repeated application of the successor function.
The use of infix notation is an example of syntactic sugar, that is, an extension to orSyntactic sugar

abbreviation of the standard syntax that does not change the semantics. Any sentence that
uses sugar can be “desugared” to produce an equivalent sentence in ordinary first-order logic.
Another example is using square brackets rather than parentheses to make it easier to see what
left bracket matches with what right bracket. Yet another example is collapsing quantifiers:
replacing ∀x ∀y P(x,y) with ∀x,y P(x,y).

Once we have addition, it is straightforward to define multiplication as repeated addition,
exponentiation as repeated multiplication, integer division and remainders, prime numbers,
and so on. Thus, the whole of number theory (including cryptography) can be built up from
one constant, one function, one predicate and four axioms.

8 The Peano axioms also include the principle of induction, which is a sentence of second-order logic rather
than of first-order logic. The importance of this distinction is explained in Chapter 9.
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The domain of sets is also fundamental to mathematics as well as to commonsense rea- Set

soning. (In fact, it is possible to define number theory in terms of set theory.) We want to
be able to represent individual sets, including the empty set. We need a way to build up sets
from elements or from operations on other sets. We will want to know whether an element is
a member of a set and we will want to distinguish sets from objects that are not sets.

We will use the normal vocabulary of set theory as syntactic sugar. The empty set is a
constant written as {}. There is one unary predicate, Set, which is true of sets. The binary
predicates are x∈s (x is a member of set s) and s1 ⊆ s2 (set s1 is a subset of s2, possibly equal
to s2). The binary functions are s1∩s2 (intersection), s1∪s2 (union), and Add(x,s) (the set
resulting from adding element x to set s). One possible set of axioms is as follows:

1. The only sets are the empty set and those made by adding something to a set:

∀s Set(s) ⇔ (s={})∨ (∃x,s2 Set(s2)∧ s=Add(x,s2)) .

2. The empty set has no elements added into it. In other words, there is no way to decom-
pose {} into a smaller set and an element:

¬∃x,s Add(x,s)={} .
3. Adding an element already in the set has no effect:

∀x,s x∈s ⇔ s=Add(x,s) .

4. The only members of a set are the elements that were added into it. We express this
recursively, saying that x is a member of s if and only if s is equal to some element y
added to some set s2, where either y is the same as x or x is a member of s2:

∀x,s x∈s ⇔ ∃y,s2 (s=Add(y,s2)∧ (x=y∨ x∈s2)) .

5. A set is a subset of another set if and only if all of the first set’s members are members
of the second set:

∀s1,s2 s1 ⊆ s2 ⇔ (∀x x∈s1 ⇒ x∈s2) .

6. Two sets are equal if and only if each is a subset of the other:

∀s1,s2 (s1=s2) ⇔ (s1 ⊆ s2∧ s2 ⊆ s1) .

7. An object is in the intersection of two sets if and only if it is a member of both sets:

∀x,s1,s2 x∈(s1∩s2) ⇔ (x∈s1∧ x∈s2) .

8. An object is in the union of two sets if and only if it is a member of either set:

∀x,s1,s2 x∈(s1∪s2) ⇔ (x∈s1∨ x∈s2) .

Lists are similar to sets. The differences are that lists are ordered and the same element can List

appear more than once in a list. We can use the vocabulary of Lisp for lists: Nil is the constant
list with no elements; Cons, Append, First, and Rest are functions; and Find is the predicate
that does for lists what Member does for sets. List is a predicate that is true only of lists. As
with sets, it is common to use syntactic sugar in logical sentences involving lists. The empty
list is [ ]. The term Cons(x,Nil) (i.e., the list containing the element x followed by nothing)
is written as [x]. A list of several elements, such as [A,B,C], corresponds to the nested term
Cons(A,Cons(B,Cons(C,Nil))). Exercise 8.LIST asks you to write out the axioms for lists.
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8.3.4 The wumpus world

Some propositional logic axioms for the wumpus world were given in Chapter 7. The first-
order axioms in this section are much more concise, capturing in a natural way exactly what
we want to say.

Recall that the wumpus agent receives a percept vector with five elements. The corre-
sponding first-order sentence stored in the knowledge base must include both the percept and
the time at which it occurred; otherwise, the agent will get confused about when it saw what.
We use integers for time steps. A typical percept sentence would be

Percept([Stench,Breeze,Glitter,None,None],5) .

Here, Percept is a binary predicate, and Stench and so on are constants placed in a list. The
actions in the wumpus world can be represented by logical terms:

Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb .

To determine which is best, the agent program executes the query

ASKVARS(KB,BestAction(a,5)) ,

which returns a binding list such as {a/Grab}. The agent program can then return Grab as
the action to take. The raw percept data implies certain facts about the current state. For
example:

∀ t,s,g,w,c Percept([s,Breeze,g,w,c], t) ⇒ Breeze(t)
∀ t,s,g,w,c Percept([s,None,g,w,c], t) ⇒ ¬Breeze(t)
∀ t,s,b,w,c Percept([s,b,Glitter,w,c], t) ⇒ Glitter(t)
∀ t,s,b,w,c Percept([s,b,None,w,c], t) ⇒ ¬Glitter(t)

and so on. These rules exhibit a trivial form of the reasoning process called perception,
which we study in depth in Chapter 27. Notice the quantification over time t. In propositional
logic, we would need copies of each sentence for each time step.

Simple “reflex” behavior can also be implemented by quantified implication sentences.
For example, we have

∀ t Glitter(t) ⇒ BestAction(Grab, t) .

Given the percept and rules from the preceding paragraphs, this would yield the desired con-
clusion BestAction(Grab,5)—that is, Grab is the right thing to do.

We have represented the agent’s inputs and outputs; now it is time to represent the en-
vironment itself. Let us begin with objects. Obvious candidates are squares, pits, and the
wumpus. We could name each square—Square1,2 and so on—but then the fact that Square1,2
and Square1,3 are adjacent would have to be an “extra” fact, and we would need one such
fact for each pair of squares. It is better to use a complex term in which the row and column
appear as integers; for example, we can simply use the list term [1,2]. Adjacency of any two
squares can be defined as

∀x,y,a,b Adjacent([x,y], [a,b]) ⇔
(x = a∧ (y = b−1∨ y = b+1))∨ (y = b∧ (x = a−1∨ x = a+1)) .

We could name each pit, but this would be inappropriate for a different reason: there is no
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reason to distinguish among pits.9 It is simpler to use a unary predicate Pit that is true of
squares containing pits. Finally, since there is exactly one wumpus, a constant Wumpus is
just as good as a unary predicate (and perhaps more dignified from the wumpus’s viewpoint).

The agent’s location changes over time, so we write At(Agent,s, t) to mean that the
agent is at square s at time t. We can fix the wumpus to a specific location forever with
∀t At(Wumpus, [1,3], t). We can then say that objects can be at only one location at a time:

∀x,s1,s2, t At(x,s1, t)∧At(x,s2, t) ⇒ s1 = s2 .

Given its current location, the agent can infer properties of the square from properties of its
current percept. For example, if the agent is at a square and perceives a breeze, then that
square is breezy:

∀s, t At(Agent,s, t)∧Breeze(t) ⇒ Breezy(s) .

It is useful to know that a square is breezy because we know that the pits cannot move about.
Notice that Breezy has no time argument.

Having discovered which places are breezy (or smelly) and, very importantly, not breezy
(or not smelly), the agent can deduce where the pits are (and where the wumpus is). Whereas
propositional logic necessitates a separate axiom for each square (see R2 and R3 on page 238)
and would need a different set of axioms for each geographical layout of the world, first-order
logic just needs one axiom:

∀s Breezy(s) ⇔ ∃r Adjacent(r,s)∧Pit(r) . (8.4)

Similarly, in first-order logic we can quantify over time, so we need just one successor-state
axiom for each predicate, rather than a different copy for each time step. For example, the
axiom for the arrow (Equation (7.2) on page 258) becomes

∀ t HaveArrow(t +1) ⇔ (HaveArrow(t)∧¬Action(Shoot, t)) .

From these two example sentences, we can see that the first-order logic formulation is no
less concise than the original English-language description given in Chapter 7. The reader
is invited to construct analogous axioms for the agent’s location and orientation; in these
cases, the axioms quantify over both space and time. As in the case of propositional state
estimation, an agent can use logical inference with axioms of this kind to keep track of aspects
of the world that are not directly observed. Chapter 11 goes into more depth on the subject of
first-order successor-state axioms and their uses for constructing plans.

8.4 Knowledge Engineering in First-Order Logic

The preceding section illustrated the use of first-order logic to represent knowledge in three
simple domains. This section describes the general process of knowledge-base construction—
a process called knowledge engineering. A knowledge engineer is someone who investigates Knowledge

engineering

a particular domain, learns what concepts are important in that domain, and creates a for-
mal representation of the objects and relations in the domain. We illustrate the knowledge
engineering process in an electronic circuit domain. The approach we take is suitable for
developing special-purpose knowledge bases whose domain is carefully circumscribed and

9 Similarly, most of us do not name each bird that flies overhead as it migrates to warmer regions in winter. An
ornithologist wishing to study migration patterns, survival rates, and so on does name each bird, by means of a
ring on its leg, because individual birds must be tracked.
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whose range of queries is known in advance. General-purpose knowledge bases, which cover
a broad range of human knowledge and are intended to support tasks such as natural language
understanding, are discussed in Chapter 10.

8.4.1 The knowledge engineering process

Knowledge engineering projects vary widely in content, scope, and difficulty, but all such
projects include the following steps:

1. Identify the questions. The knowledge engineer must delineate the range of questions
that the knowledge base will support and the kinds of facts that will be available for
each specific problem instance. For example, does the wumpus knowledge base need to
be able to choose actions, or is it required only to answer questions about the contents
of the environment? Will the sensor facts include the current location? The task will
determine what knowledge must be represented in order to connect problem instances to
answers. This step is analogous to the PEAS process for designing agents in Chapter 2.

2. Assemble the relevant knowledge. The knowledge engineer might already be an expert
in the domain, or might need to work with real experts to extract what they know—a
process called knowledge acquisition. At this stage, the knowledge is not representedKnowledge

acquisition

formally. The idea is to understand the scope of the knowledge base, as determined by
the task, and to understand how the domain actually works.

For the wumpus world, which is defined by an artificial set of rules, the relevant
knowledge is easy to identify. (Notice, however, that the definition of adjacency was
not supplied explicitly in the wumpus-world rules.) For real domains, the issue of
relevance can be quite difficult—for example, a system for simulating VLSI designs
might or might not need to take into account stray capacitances and skin effects.

3. Decide on a vocabulary of predicates, functions, and constants. That is, translate the
important domain-level concepts into logic-level names. This involves many questions
of knowledge-engineering style. Like programming style, this can have a significant
impact on the eventual success of the project. For example, should pits be represented
by objects or by a unary predicate on squares? Should the agent’s orientation be a
function or a predicate? Should the wumpus’s location depend on time? Once the
choices have been made, the result is a vocabulary that is known as the ontology ofOntology

the domain. The word ontology means a particular theory of the nature of being or
existence. The ontology determines what kinds of things exist, but does not determine
their specific properties and interrelationships.

4. Encode general knowledge about the domain. The knowledge engineer writes down
the axioms for all the vocabulary terms. This pins down (to the extent possible) the
meaning of the terms, enabling the expert to check the content. Often, this step reveals
misconceptions or gaps in the vocabulary that must be fixed by returning to step 3 and
iterating through the process.

5. Encode a description of the problem instance. If the ontology is well thought out, this
step is easy. It involves writing simple atomic sentences about instances of concepts that
are already part of the ontology. For a logical agent, problem instances are supplied by
the sensors, whereas a “disembodied” knowledge base is given sentences in the same
way that traditional programs are given input data.
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6. Pose queries to the inference procedure and get answers. This is where the reward is:
we can let the inference procedure operate on the axioms and problem-specific facts to
derive the facts we are interested in knowing. Thus, we avoid the need for writing an
application-specific solution algorithm.

7. Debug and evaluate the knowledge base. Alas, the answers to queries will seldom be
correct on the first try. More precisely, the answers will be correct for the knowledge
base as written, assuming that the inference procedure is sound, but they will not be the
ones that the user is expecting. For example, if an axiom is missing, some queries will
not be answerable from the knowledge base. A considerable debugging process could
ensue. Missing axioms or axioms that are too weak can be easily identified by noticing
places where the chain of reasoning stops unexpectedly. For example, if the knowledge
base includes a diagnostic rule (see Exercise 8.WUMD) for finding the wumpus,

∀s Smelly(s) ⇒ Adjacent(Home(Wumpus),s) ,

instead of the biconditional, then the agent will never be able to prove the absence of
wumpuses. Incorrect axioms can be identified because they are false statements about
the world. For example, the sentence

∀x NumOfLegs(x,4) ⇒ Mammal(x)

is false for reptiles, amphibians, and tables. The falsehood of this sentence can be J
determined independently of the rest of the knowledge base. In contrast, a typical error
in a program looks like this:

offset = position + 1 .

It is impossible to tell whether offset should be position or position + 1 without
understanding the surrounding context.

When you get to the point where there are no obvious errors in your knowledge base, it is
tempting to declare success. But unless there are obviously no errors, it is better to formally
evaluate your system by running it on a test suite of queries and measuring how many you get
right. Without objective measurement, it is too easy to convince yourself that the job is done.
To understand this seven-step process better, we now apply it to an extended example—the
domain of electronic circuits.

8.4.2 The electronic circuits domain

We will develop an ontology and knowledge base that allow us to reason about digital circuits
of the kind shown in Figure 8.6. We follow the seven-step process for knowledge engineering.

Identify the questions

There are many reasoning tasks associated with digital circuits. At the highest level, one
analyzes the circuit’s functionality. For example, does the circuit in Figure 8.6 actually add
properly? If all the inputs are high, what is the output of gate A2? Questions about the
circuit’s structure are also interesting. For example, what are all the gates connected to the
first input terminal? Does the circuit contain feedback loops? These will be our tasks in this
section. There are more detailed levels of analysis, including those related to timing delays,
circuit area, power consumption, production cost, and so on. Each of these levels would
require additional knowledge.
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Assemble the relevant knowledge

What do we know about digital circuits? For our purposes, they are composed of wires and
gates. Signals flow along wires to the input terminals of gates, and each gate produces a
signal on the output terminal that flows along another wire. To determine what these signals
will be, we need to know how the gates transform their input signals. There are four types
of gates: AND, OR, and XOR gates have two input terminals, and NOT gates have one. All
gates have one output terminal. Circuits, like gates, have input and output terminals.

To reason about functionality and connectivity, we do not need to talk about the wires
themselves, the paths they take, or the junctions where they come together. All that matters
is the connections between terminals—we can say that one output terminal is connected to
another input terminal without having to say what actually connects them. Other factors such
as the size, shape, color, or cost of the various components are irrelevant to our analysis.

If our purpose were something other than verifying designs at the gate level, the ontology
would be different. For example, if we were interested in debugging faulty circuits, then it
would probably be a good idea to include the wires in the ontology, because a faulty wire can
corrupt the signal flowing along it. For resolving timing faults, we would need to include gate
delays. If we were interested in designing a product that would be profitable, then the cost of
the circuit and its speed relative to other products on the market would be important.

Decide on a vocabulary

We now know that we want to talk about circuits, terminals, signals, and gates. The next
step is to choose functions, predicates, and constants to represent them. First, we need to be
able to distinguish gates from each other and from other objects. Each gate is represented as
an object named by a constant, about which we assert that it is a gate with, say, Gate(X1).
The behavior of each gate is determined by its type: one of the constants AND,OR, XOR,
or NOT . Because a gate has exactly one type, a function is appropriate: Type(X1)=XOR.
Circuits, like gates, are identified by a predicate: Circuit(C1).

Next we consider terminals, which are identified by the predicate Terminal(x). A circuit
can have one or more input terminals and one or more output terminals. We use the function

1

2

3

1

2

X1 X2

A1

A2

O1

C1

Figure 8.6 A digital circuit C1, purporting to be a one-bit full adder. The first two inputs are
the two bits to be added, and the third input is a carry bit. The first output is the sum, and
the second output is a carry bit for the next adder. The circuit contains two XOR gates, two
AND gates, and one OR gate.
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In(1,X1) to denote the first input terminal for circuit X1. A similar function Out(n,c) is used
for output terminals. The predicate Arity(c, i, j) says that circuit c has i input and j output
terminals. The connectivity between gates can be represented by a predicate, Connected,
which takes two terminals as arguments, as in Connected(Out(1,X1), In(1,X2)).

Finally, we need to know whether a signal is on or off. One possibility is to use a unary
predicate, On(t), which is true when the signal at a terminal is on. This makes it a little
difficult, however, to pose questions such as “What are all the possible values of the signals
at the output terminals of circuit C1 ?” We therefore introduce as objects two signal values,
1 and 0, representing “on” and “off” respectively, and a function Signal(t) that denotes the
signal value for the terminal t.

Encode general knowledge of the domain

One sign that we have a good ontology is that we require only a few general rules, which can
be stated clearly and concisely. These are all the axioms we will need:

1. If two terminals are connected, then they have the same signal:
∀ t1, t2 Terminal(t1)∧Terminal(t2)∧Connected(t1, t2) ⇒

Signal(t1)=Signal(t2) .
2. The signal at every terminal is either 1 or 0:

∀ t Terminal(t) ⇒ Signal(t)=1∨Signal(t)=0 .
3. Connected is commutative:

∀ t1, t2 Connected(t1, t2) ⇔ Connected(t2, t1) .
4. There are four types of gates:

∀g Gate(g)∧ k = Type(g) ⇒ k = AND∨ k = OR∨ k = XOR∨ k = NOT .
5. An AND gate’s output is 0 if and only if any of its inputs is 0:

∀g Gate(g)∧Type(g)=AND ⇒
Signal(Out(1,g))=0 ⇔ ∃n Signal(In(n,g))=0 .

6. An OR gate’s output is 1 if and only if any of its inputs is 1:
∀g Gate(g)∧Type(g)=OR ⇒

Signal(Out(1,g))=1 ⇔ ∃n Signal(In(n,g))=1 .
7. An XOR gate’s output is 1 if and only if its inputs are different:

∀g Gate(g)∧Type(g)=XOR ⇒
Signal(Out(1,g))=1 ⇔ Signal(In(1,g)) 6= Signal(In(2,g)) .

8. A NOT gate’s output is different from its input:
∀g Gate(g)∧Type(g)=NOT ⇒

Signal(Out(1,g)) 6= Signal(In(1,g)) .
9. The gates (except for NOT) have two inputs and one output.

∀g Gate(g)∧Type(g) = NOT ⇒ Arity(g,1,1) .
∀g Gate(g)∧ k = Type(g)∧ (k = AND∨ k = OR∨ k = XOR) ⇒

Arity(g,2,1)
10. A circuit has terminals, up to its input and output arity, and nothing beyond its arity:

∀c, i, j Circuit(c)∧Arity(c, i, j) ⇒
∀n (n≤ i ⇒ Terminal(In(n,c)))∧ (n> i ⇒ In(n,c) = Nothing)∧
∀n (n≤ j ⇒ Terminal(Out(n,c)))∧ (n> j ⇒ Out(n,c) = Nothing)
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11. Gates, terminals, and signals are all distinct.
∀g, t,s Gate(g)∧Terminal(t)∧Signal(s) ⇒

g 6= t ∧g 6= s∧ t 6= s .

12. Gates are circuits.
∀g Gate(g) ⇒ Circuit(g)

Encode the specific problem instance

The circuit shown in Figure 8.6 is encoded as circuit C1 with the following description. First
we categorize the circuit and its component gates:

Circuit(C1)∧Arity(C1,3,2)
Gate(X1)∧Type(X1)=XOR
Gate(X2)∧Type(X2)=XOR
Gate(A1)∧Type(A1)=AND
Gate(A2)∧Type(A2)=AND
Gate(O1)∧Type(O1)=OR .

Then we show the connections between them:

Connected(Out(1,X1), In(1,X2)) Connected(In(1,C1), In(1,X1))
Connected(Out(1,X1), In(2,A2)) Connected(In(1,C1), In(1,A1))
Connected(Out(1,A2), In(1,O1)) Connected(In(2,C1), In(2,X1))
Connected(Out(1,A1), In(2,O1)) Connected(In(2,C1), In(2,A1))
Connected(Out(1,X2),Out(1,C1)) Connected(In(3,C1), In(2,X2))
Connected(Out(1,O1),Out(2,C1)) Connected(In(3,C1), In(1,A2)) .

Pose queries to the inference procedure

What combinations of inputs would cause the first output of C1 (the sum bit) to be 0 and the
second output of C1 (the carry bit) to be 1?

∃ i1, i2, i3 Signal(In(1,C1))= i1∧Signal(In(2,C1))= i2∧Signal(In(3,C1))= i3
∧ Signal(Out(1,C1))=0∧Signal(Out(2,C1))=1 .

The answers are substitutions for the variables i1, i2, and i3 such that the resulting sentence is
entailed by the knowledge base. ASKVARS will give us three such substitutions:

{i1/1, i2/1, i3/0} {i1/1, i2/0, i3/1} {i1/0, i2/1, i3/1} .

What are the possible sets of values of all the terminals for the adder circuit?

∃ i1, i2, i3,o1,o2 Signal(In(1,C1))= i1∧Signal(In(2,C1))= i2
∧ Signal(In(3,C1))= i3∧Signal(Out(1,C1))=o1∧Signal(Out(2,C1))=o2 .

This final query will return a complete input–output table for the device, which can be used
to check that it does in fact add its inputs correctly. This is a simple example of circuit
verification. We can also use the definition of the circuit to build larger digital systems, forCircuit verification

which the same kind of verification procedure can be carried out. (See Exercise 8.ADDR.)
Many domains are amenable to the same kind of structured knowledge-base development, in
which more complex concepts are defined on top of simpler concepts.
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Debug the knowledge base

We can perturb the knowledge base in various ways to see what kinds of erroneous behaviors
emerge. For example, suppose we fail to read Section 8.2.8 and hence forget to assert that
1 6= 0. Suppose we find that the system is unable to prove any outputs for the circuit, except
for the input cases 000 and 110. We can pinpoint the problem by asking for the outputs of
each gate. For example, we can ask

∃ i1, i2,o Signal(In(1,C1))= i1∧Signal(In(2,C1))= i2∧Signal(Out(1,X1))=o ,

which reveals that no outputs are known at X1 for the input cases 10 and 01. Then, we look
at the axiom for XOR gates, as applied to X1:

Signal(Out(1,X1))=1 ⇔ Signal(In(1,X1)) 6= Signal(In(2,X1)) .

If the inputs are known to be, say, 1 and 0, then this reduces to

Signal(Out(1,X1))=1 ⇔ 1 6= 0 .

Now the problem is apparent: the system is unable to infer that Signal(Out(1,X1))=1, so we
need to tell it that 1 6= 0.

Summary

This chapter has introduced first-order logic, a representation language that is far more pow-
erful than propositional logic. The important points are as follows:

• Knowledge representation languages should be declarative, compositional, expressive,
context independent, and unambiguous.

• Logics differ in their ontological commitments and epistemological commitments.
While propositional logic commits only to the existence of facts, first-order logic com-
mits to the existence of objects and relations and thereby gains expressive power, ap-
propriate for domains such as the wumpus world and electronic circuits.

• Both propositional logic and first-order logic share a difficulty in representing vague
propositions. This difficulty limits their applicability in domains that require personal
judgments, like politics or cuisine.

• The syntax of first-order logic builds on that of propositional logic. It adds terms to
represent objects, and has universal and existential quantifiers to construct assertions
about all or some of the possible values of the quantified variables.

• A possible world, or model, for first-order logic includes a set of objects and an inter-
pretation that maps constant symbols to objects, predicate symbols to relations among
objects, and function symbols to functions on objects.

• An atomic sentence is true only when the relation named by the predicate holds between
the objects named by the terms. Extended interpretations, which map quantifier vari-
ables to objects in the model, define the truth of quantified sentences.

• Developing a knowledge base in first-order logic requires a careful process of analyzing
the domain, choosing a vocabulary, and encoding the axioms required to support the
desired inferences.
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Bibliographical and Historical Notes

Although Aristotle’s logic dealt with generalizations over objects, it fell far short of the ex-
pressive power of first-order logic. A major barrier to its further development was its concen-
tration on one-place predicates to the exclusion of many-place relational predicates. The first
systematic treatment of relations was given by Augustus De Morgan (1864), who cited the
following example to show the sorts of inferences that Aristotle’s logic could not handle: “All
horses are animals; therefore, the head of a horse is the head of an animal.” This inference
is inaccessible to Aristotle because any valid rule that can support this inference must first
analyze the sentence using the two-place predicate “x is the head of y.” The logic of relations
was studied in depth by Charles Sanders Peirce (Peirce, 1870; Misak, 2004).

True first-order logic dates from the introduction of quantifiers in Gottlob Frege’s (1879)
Begriffschrift (“Concept Writing” or “Conceptual Notation”). Peirce (1883) also developed
first-order logic independently of Frege, although slightly later. Frege’s ability to nest quan-
tifiers was a big step forward, but he used an awkward notation. The present notation for
first-order logic is due substantially to Giuseppe Peano (1889), but the semantics is virtually
identical to Frege’s. Oddly enough, Peano’s axioms were due in large measure to Grassmann
(1861) and Dedekind (1888).

Leopold Löwenheim (1915) gave a systematic treatment of model theory for first-order
logic, including the first proper treatment of the equality symbol. Löwenheim’s results were
further extended by Thoralf Skolem (1920). Alfred Tarski (1935, 1956) gave an explicit
definition of truth and model-theoretic satisfaction in first-order logic, using set theory.

John McCarthy (1958) was primarily responsible for the introduction of first-order logic
as a tool for building AI systems. The prospects for logic-based AI were advanced signifi-
cantly by Robinson’s (1965) development of resolution, a complete procedure for first-order
inference. The logicist approach took root at Stanford University. Cordell Green (1969a,
1969b) developed a first-order reasoning system, QA3, leading to the first attempts to build
a logical robot at SRI (Fikes and Nilsson, 1971). First-order logic was applied by Zohar
Manna and Richard Waldinger (1971) for reasoning about programs and later by Michael
Genesereth (1984) for reasoning about circuits. In Europe, logic programming (a restricted
form of first-order reasoning) was developed for linguistic analysis (Colmerauer et al., 1973)
and for general declarative systems (Kowalski, 1974). Computational logic was also well en-
trenched at Edinburgh through the LCF (Logic for Computable Functions) project (Gordon
et al., 1979). These developments are chronicled further in Chapters 9 and 10.

Practical applications built with first-order logic include a system for evaluating the man-
ufacturing requirements for electronic products (Mannion, 2002), a system for reasoning
about policies for file access and digital rights management (Halpern and Weissman, 2008),
and a system for the automated composition of Web services (McIlraith and Zeng, 2001).

Reactions to the Whorf hypothesis (Whorf, 1956) and the problem of language and
thought in general, appear in multiple books (Pullum, 1991; Pinker, 2003) including the
seemingly opposing titles Why the World Looks Different in Other Languages (Deutscher,
2010) and Why The World Looks the Same in Any Language (McWhorter, 2014) (although
both authors agree that there are differences and the differences are small). The “theory” the-
ory (Gopnik and Glymour, 2002; Tenenbaum et al., 2007) views children’s learning about the
world as analogous to the construction of scientific theories. Just as the predictions of a ma-



Bibliographical and Historical Notes 297

chine learning algorithm depend strongly on the vocabulary supplied to it, so will the child’s
formulation of theories depend on the linguistic environment in which learning occurs.

There are a number of good introductory texts on first-order logic, including some by
leading figures in the history of logic: Alfred Tarski (1941), Alonzo Church (1956), and
W.V. Quine (1982) (which is one of the most readable). Enderton (1972) gives a more math-
ematically oriented perspective. A highly formal treatment of first-order logic, along with
many more advanced topics in logic, is provided by Bell and Machover (1977). Manna and
Waldinger (1985) give a readable introduction to logic from a computer science perspec-
tive, as do Huth and Ryan (2004), who concentrate on program verification. Barwise and
Etchemendy (2002) take an approach similar to the one used here. Smullyan (1995) presents
results concisely, using the tableau format. Gallier (1986) provides an extremely rigorous
mathematical exposition of first-order logic, along with a great deal of material on its use in
automated reasoning. Logical Foundations of Artificial Intelligence (Genesereth and Nilsson,
1987) is both a solid introduction to logic and the first systematic treatment of logical agents
with percepts and actions, and there are two good handbooks: van Bentham and ter Meulen
(1997) and Robinson and Voronkov (2001). The journal of record for the field of pure math-
ematical logic is the Journal of Symbolic Logic, whereas the Journal of Applied Logic deals
with concerns closer to those of artificial intelligence.



CHAPTER 9
INFERENCE IN FIRST-ORDER LOGIC
In which we define effective procedures for answering questions posed in first-order logic.

In this chapter, we describe algorithms that can answer any answerable first-order logic ques-
tion. Section 9.1 introduces inference rules for quantifiers and shows how to reduce first-order
inference to propositional inference, albeit at potentially great expense. Section 9.2 describes
how unification can be used to construct inference rules that work directly with first-order
sentences. We then discuss three major families of first-order inference algorithms: forward
chaining (Section 9.3), backward chaining (Section 9.4), and resolution-based theorem
proving (Section 9.5).

9.1 Propositional vs. First-Order Inference

One way to do first-order inference is to convert the first-order knowledge base to proposi-
tional logic and use propositional inference, which we already know how to do. A first step
is eliminating universal quantifiers. For example, suppose our knowledge base contains the
standard folkloric axiom that all greedy kings are evil:

∀x King(x)∧Greedy(x) ⇒ Evil(x) .

From that we can infer any of the following sentences:

King(John)∧Greedy(John) ⇒ Evil(John)
King(Richard)∧Greedy(Richard) ⇒ Evil(Richard)
King(Father(John))∧Greedy(Father(John)) ⇒ Evil(Father(John)) .

...

In general, the rule of Universal Instantiation (UI for short) says that we can infer anyUniversal
Instantiation

sentence obtained by substituting a ground term (a term without variables) for a universally
quantified variable.1

To write out the inference rule formally, we use the notion of substitutions introduced in
Section 8.3. Let SUBST(θ,α) denote the result of applying the substitution θ to the sentence
α. Then the rule is written

∀v α

SUBST({v/g},α)
for any variable v and ground term g. For example, the three sentences given earlier are
obtained with the substitutions {x/John}, {x/Richard}, and {x/Father(John)}.
1 Do not confuse these substitutions with the extended interpretations used to define the semantics of quantifiers
in Section 8.2.6. The substitution replaces a variable with a term (a piece of syntax) to produce a new sentence,
whereas an interpretation maps a variable to an object in the domain.
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Similarly, the rule of Existential Instantiation replaces an existentially quantified vari- Existential
Instantiation

able with a single new constant symbol. The formal statement is as follows: for any sentence
α, variable v, and constant symbol k that does not appear elsewhere in the knowledge base,

∃v α

SUBST({v/k},α)
.

For example, from the sentence

∃x Crown(x)∧OnHead(x,John)

we can infer the sentence

Crown(C1)∧OnHead(C1,John)

as long as C1 does not appear elsewhere in the knowledge base. Basically, the existential
sentence says there is some object satisfying a condition, and applying the existential instan-
tiation rule just gives a name to that object. Of course, that name must not already belong
to another object. Mathematics provides a nice example: suppose we discover that there is a
number that is a little bigger than 2.71828 and that satisfies the equation d(xy)/dy=xy for x.
We can give this number the name e, but it would be a mistake to give it the name of an
existing object, such as π. In logic, the new name is called a Skolem constant. Skolem constant

Whereas Universal Instantiation can be applied many times to the same axiom to pro-
duce many different consequences, Existential Instantiation need only be applied once, and
then the existentially quantified sentence can be discarded. For example, we no longer need
∃x Kill(x,Victim) once we have added the sentence Kill(Murderer,Victim).

9.1.1 Reduction to propositional inference

We now show how to convert any first-order knowledge base into a propositional knowledge
base. The first idea is that, just as an existentially quantified sentence can be replaced by
one instantiation, a universally quantified sentence can be replaced by the set of all possible
instantiations. For example, suppose our knowledge base contains just the sentences

∀x King(x)∧Greedy(x) ⇒ Evil(x)
King(John)
Greedy(John)
Brother(Richard,John) .

(9.1)

and that the only objects are John and Richard. We apply UI to the first sentence using all
possible substitutions, {x/John} and {x/Richard}. We obtain

King(John)∧Greedy(John) ⇒ Evil(John)
King(Richard)∧Greedy(Richard) ⇒ Evil(Richard) .

Next replace ground atomic sentences, such as King(John), with proposition symbols, such
as JohnIsKing. Finally, apply any of the complete propositional algorithms in Chapter 7 to
obtain conclusions such as JohnIsEvil, which is equivalent to Evil(John).

This technique of propositionalization can be made completely general, as we show Propositionalization

in Section 9.5. However, there is a problem: when the knowledge base includes a func-
tion symbol, the set of possible ground-term substitutions is infinite! For example, if the
knowledge base mentions the Father symbol, then infinitely many nested terms such as
Father(Father(Father(John))) can be constructed.
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Fortunately, there is a famous theorem due to Jacques Herbrand (1930) to the effect that
if a sentence is entailed by the original, first-order knowledge base, then there is a proof
involving just a finite subset of the propositionalized knowledge base. Since any such subset
has a maximum depth of nesting among its ground terms, we can find the subset by first
generating all the instantiations with constant symbols (Richard and John), then all terms of
depth 1 (Father(Richard) and Father(John)), then all terms of depth 2, and so on, until we
are able to construct a propositional proof of the entailed sentence.

We have sketched an approach to first-order inference via propositionalization that is
complete—that is, any entailed sentence can be proved. This is a major achievement, given
that the space of possible models is infinite. On the other hand, we do not know until the
proof is done that the sentence is entailed! What happens when the sentence is not entailed?
Can we tell? Well, for first-order logic, it turns out that we cannot. Our proof procedure can
go on and on, generating more and more deeply nested terms, but we will not know whether
it is stuck in a hopeless loop or whether the proof is just about to pop out. This is very much
like the halting problem for Turing machines. Alan Turing (1936) and Alonzo Church (1936)
both proved, in rather different ways, the inevitability of this state of affairs. The question ofI
entailment for first-order logic is semidecidable—that is, algorithms exist that say yes to every
entailed sentence, but no algorithm exists that also says no to every nonentailed sentence.

9.2 Unification and First-Order Inference

The sharp-eyed reader will have noticed that the propositionalization approach generates
many unnecessary instantiations of universally quantified sentences. We’d rather have an
approach that uses just the one rule, reasoning that {x/John} solves the query Evil(x) as fol-
lows: given the rule that greedy kings are evil, find some x such that x is a king and x is
greedy, and then infer that this x is evil. More generally, if there is some substitution θ that
makes each of the conjuncts of the premise of the implication identical to sentences already
in the knowledge base, then we can assert the conclusion of the implication, after applying
θ. In this case, the substitution θ={x/John} achieves that aim. Now suppose that instead of
knowing Greedy(John), we know that everyone is greedy:

∀y Greedy(y) . (9.2)

Then we would still like to be able to conclude that Evil(John), because we know that John
is a king (given) and John is greedy (because everyone is greedy). What we need for this to
work is to find a substitution for both the variables in the implication sentence and the vari-
ables in the sentences that are in the knowledge base. In this case, applying the substitution
{x/John,y/John} to the implication premises King(x) and Greedy(x) and the knowledge-
base sentences King(John) and Greedy(y) will make them identical. Thus, we can infer the
consequent of the implication.

This inference process can be captured as a single inference rule that we call Generalized
Modus Ponens:2 For atomic sentences pi, pi

′, and q, where there is a substitution θ such thatGeneralized Modus
Ponens

2 Generalized Modus Ponens is more general than Modus Ponens (page 241) in the sense that the known facts
and the premise of the implication need match only up to a substitution, rather than exactly. On the other hand,
Modus Ponens allows any sentence α as the premise, rather than just a conjunction of atomic sentences.
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SUBST(θ, pi
′)=SUBST(θ, pi), for all i,

p1
′, p2

′, . . . , pn
′, (p1∧ p2∧ . . .∧ pn⇒ q)

SUBST(θ,q)
.

There are n+1 premises to this rule: the n atomic sentences pi
′ and the one implication. The

conclusion is the result of applying the substitution θ to the consequent q. For our example:

p1
′ is King(John) p1 is King(x)

p2
′ is Greedy(y) p2 is Greedy(x)

θ is {x/John,y/John} q is Evil(x)
SUBST(θ,q) is Evil(John) .

It is easy to show that Generalized Modus Ponens is a sound inference rule. First, we observe
that, for any sentence p (whose variables are assumed to be universally quantified) and for
any substitution θ,

p |= SUBST(θ, p)

is true by Universal Instantiation. It is true in particular for a θ that satisfies the conditions of
the Generalized Modus Ponens rule. Thus, from p1

′, . . . , pn
′ we can infer

SUBST(θ, p1
′)∧ . . .∧SUBST(θ, pn

′)

and from the implication p1∧ . . .∧ pn⇒ q we can infer

SUBST(θ, p1)∧ . . .∧SUBST(θ, pn) ⇒ SUBST(θ,q) .

Now, θ in Generalized Modus Ponens is defined so that SUBST(θ, pi
′)=SUBST(θ, pi), for

all i; therefore the first of these two sentences matches the premise of the second exactly.
Hence, SUBST(θ,q) follows by Modus Ponens.

Generalized Modus Ponens is a lifted version of Modus Ponens—it raises Modus Ponens Lifting

from ground (variable-free) propositional logic to first-order logic. We will see in the rest of
this chapter that we can develop lifted versions of the forward chaining, backward chaining,
and resolution algorithms introduced in Chapter 7. The key advantage of lifted inference
rules over propositionalization is that they make only those substitutions that are required to
allow particular inferences to proceed.

9.2.1 Unification

Lifted inference rules require finding substitutions that make different logical expressions
look identical. This process is called unification and is a key component of all first-order Unification

inference algorithms. The UNIFY algorithm takes two sentences and returns a unifier for Unifier

them (a substitution) if one exists:

UNIFY(p,q)=θ where SUBST(θ, p)=SUBST(θ,q) .

Let us look at some examples of how UNIFY should behave. Suppose we have a query
AskVars(Knows(John,x)): whom does John know? Answers to this query can be found by
finding all sentences in the knowledge base that unify with Knows(John,x). Here are the
results of unification with four different sentences that might be in the knowledge base:

UNIFY(Knows(John,x), Knows(John,Jane)) = {x/Jane}
UNIFY(Knows(John,x), Knows(y,Bill)) = {x/Bill,y/John}
UNIFY(Knows(John,x), Knows(y,Mother(y))) = {y/John,x/Mother(John)}
UNIFY(Knows(John,x), Knows(x,Elizabeth)) = failure .
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The last unification fails because x cannot take on the values John and Elizabeth at the same
time. Now, remember that Knows(x,Elizabeth) means “Everyone knows Elizabeth,” so we
should be able to infer that John knows Elizabeth. The problem arises only because the two
sentences happen to use the same variable name, x. The problem can be avoided by stan-
dardizing apart one of the two sentences being unified, which means renaming its variablesStandardizing apart

to avoid name clashes. For example, we can rename x in Knows(x,Elizabeth) to x17 (a new
variable name) without changing its meaning. Now the unification will work:

UNIFY(Knows(John,x), Knows(x17,Elizabeth)) = {x/Elizabeth,x17/John} .

Exercise 9.STAN delves further into the need for standardizing apart.
There is one more complication: we said that UNIFY should return a substitution that

makes the two arguments look the same. But there could be more than one such unifier.
For example, UNIFY(Knows(John,x),Knows(y,z)) could return {y/John,x/z} or could re-
turn {y/John,x/John,z/John}. The first unifier gives Knows(John,z) as the result of unifica-
tion, whereas the second gives Knows(John,John). The second result could be obtained from
the first by an additional substitution {z/John}; we say that the first unifier is more general
than the second, because it places fewer restrictions on the values of the variables.

Every unifiable pair of expressions has a single most general unifier (MGU) that isMost general unifier
(MGU)

unique up to renaming and substitution of variables. For example, {x/John} and {y/John}
are considered equivalent, as are {x/John,y/John} and {x/John,y/x}.

An algorithm for computing most general unifiers is shown in Figure 9.1. The process
is simple: recursively explore the two expressions simultaneously “side by side,” building
up a unifier along the way, but failing if two corresponding points in the structures do not
match. There is one expensive step: when matching a variable against a complex term,
one must check whether the variable itself occurs inside the term; if it does, the match fails
because no consistent unifier can be constructed. For example, S(x) can’t unify with S(S(x)).
This so-called occur check makes the complexity of the entire algorithm quadratic in theOccur check

size of the expressions being unified. Some systems, including many logic programming
systems, simply omit the occur check and put the onus on the user to avoid making unsound
inferences as a result. Other systems use more complex unification algorithms with linear-
time complexity.

9.2.2 Storage and retrieval

Underlying the TELL, ASK, and ASKVARS functions used to inform and interrogate a knowl-
edge base are the more primitive STORE and FETCH functions. STORE(s) stores a sentence s
into the knowledge base and FETCH(q) returns all unifiers such that the query q unifies with
some sentence in the knowledge base. The problem we used to illustrate unification—finding
all facts that unify with Knows(John,x)—is an instance of FETCHing.

The simplest way to implement STORE and FETCH is to keep all the facts in one long
list and unify each query against every element of the list. Such a process is inefficient, but it
works. The remainder of this section outlines ways to make retrieval more efficient.

We can make FETCH more efficient by ensuring that unifications are attempted only with
sentences that have some chance of unifying. For example, there is no point in trying to unify
Knows(John,x) with Brother(Richard,John). We can avoid such unifications by indexingIndexing

the facts in the knowledge base. A simple scheme called predicate indexing puts all thePredicate indexing
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function UNIFY(x, y, θ=empty) returns a substitution to make x and y identical, or failure
if θ = failure then return failure
else if x = y then return θ
else if VARIABLE?(x) then return UNIFY-VAR(x, y, θ)
else if VARIABLE?(y) then return UNIFY-VAR(y, x, θ)
else if COMPOUND?(x) and COMPOUND?(y) then

return UNIFY(ARGS(x), ARGS(y), UNIFY(OP(x), OP(y), θ))
else if LIST?(x) and LIST?(y) then

return UNIFY(REST(x), REST(y), UNIFY(FIRST(x), FIRST(y), θ))
else return failure

function UNIFY-VAR(var, x, θ) returns a substitution
if {var/val} ∈ θ for some val then return UNIFY(val, x, θ)
else if {x/val} ∈ θ for some val then return UNIFY(var, val, θ)
else if OCCUR-CHECK?(var, x) then return failure
else return add {var/x} to θ

Figure 9.1 The unification algorithm. The arguments x and y can be any expression: a
constant or variable, or a compound expression such as a complex sentence or term, or a
list of expressions. The argument θ is a substitution, initially the empty substitution, but
with {var/val} pairs added to it as we recurse through the inputs, comparing the expressions
element by element. In a compound expression such as F(A,B), OP(x) field picks out the
function symbol F and ARGS(x) field picks out the argument list (A,B).

Knows facts in one bucket and all the Brother facts in another. The buckets can be stored in a
hash table for efficient access.

Predicate indexing is useful when there are many predicate symbols but only a few
clauses for each symbol. Sometimes, however, a predicate has many clauses. For example,
suppose that the tax authorities want to keep track of who employs whom, using a predi-
cate Employs(x,y). This would be a very large bucket with perhaps millions of employers
and tens of millions of employees. Answering a query such as Employs(x,Richard) with
predicate indexing would require scanning the entire bucket.

For this particular query, it would help if facts were indexed both by predicate and by
second argument, perhaps using a combined hash table key. Then we could simply construct
the key from the query and retrieve exactly those facts that unify with the query. For other
queries, such as Employs(IBM,y), we would need to have indexed the facts by combining the
predicate with the first argument. Therefore, facts can be stored under multiple index keys,
rendering them instantly accessible to various queries that they might unify with.

Given a sentence to be stored, it is possible to construct indices for all possible queries
that unify with it. For the fact Employs(IBM,Richard), the queries are

Employs(IBM,Richard) Does IBM employ Richard?
Employs(x,Richard) Who employs Richard?
Employs(IBM,y) Whom does IBM employ?
Employs(x,y) Who employs whom?

These queries form a subsumption lattice, as shown in Figure 9.2(a). The lattice has some Subsumption lattice
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Employs(x,y)

Employs(x,Richard) Employs(IBM,y)

Employs(IBM,Richard)

Employs(x,y)

Employs(John,John)

Employs(x,x)Employs(x,John) Employs(John,y)

(a) (b)

Figure 9.2 (a) The subsumption lattice whose lowest node is Employs(IBM,Richard). (b)
The subsumption lattice for the sentence Employs(John,John).

interesting properties. The child of any node in the lattice is obtained from its parent by a
single substitution; and the “highest” common descendant of any two nodes is the result of
applying their most general unifier. A sentence with repeated constants has a slightly different
lattice, as shown in Figure 9.2(b). Although function symbols are not shown in the figure,
they too can be incorporated into the lattice structure.

For predicates with a small number of arguments, it is a good tradeoff to create an index
for every point in the subsumption lattice. That requires a little more work at storage time,
but speeds up retrieval time. However, for a predicate with n arguments, the lattice contains
O(2n) nodes. If function symbols are allowed, the number of nodes is also exponential in the
size of the terms in the sentence to be stored. This can lead to a huge number of indices.

We have to somehow limit the indices to ones that are likely to be used frequently in
queries; otherwise we will waste more time in creating the indices than we save by having
them. We could adopt a fixed policy, such as maintaining indices only on keys composed of
a predicate plus a single argument. Or we could learn an adaptive policy that creates indices
to meet the demands of the kinds of queries being asked. For commercial databases where
facts number in the billions, the problem has been the subject of intensive study, technology
development, and continual optimization.

9.3 Forward Chaining

In Section 7.5 we showed a forward-chaining algorithm for knowledge bases of propositional
definite clauses. Here we expand that idea to cover first-order definite clauses.

Of course there are some logical sentences that cannot be stated as a definite clause, and
thus cannot be handled by this approach. But rules of the form Antecedent ⇒ Consequent
are sufficient to cover a wide variety of interesting real-world systems.

9.3.1 First-order definite clauses

First-order definite clauses are disjunctions of literals of which exactly one is positive. That
means a definite clause is either atomic, or is an implication whose antecedent is a conjunction
of positive literals and whose consequent is a single positive literal. Existential quantifiers are
not allowed, and universal quantifiers are left implicit: if you see an x in a definite clause, that
means there is an implicit ∀x quantifier. A typical first-order definite clause looks like this:

King(x)∧Greedy(x) ⇒ Evil(x) ,

but the literals King(John) and Greedy(y) also count as definite clauses. First-order liter-
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als can include variables, so Greedy(y) is interpreted as “everyone is greedy” (the universal
quantifier is implicit).

Let us put definite clauses to work in representing the following problem:

The law says that it is a crime for an American to sell weapons to hostile nations. The
country Nono, an enemy of America, has some missiles, and all of its missiles were sold
to it by Colonel West, who is American.

First, we will represent these facts as first-order definite clauses:

“. . . it is a crime for an American to sell weapons to hostile nations”:

American(x)∧Weapon(y)∧Sells(x,y,z)∧Hostile(z) ⇒ Criminal(x) . (9.3)

“Nono . . . has some missiles.” The sentence ∃x Owns(Nono,x)∧Missile(x) is transformed
into two definite clauses by Existential Instantiation, introducing a new constant M1:

Owns(Nono,M1) (9.4)

Missile(M1). (9.5)

“All of its missiles were sold to it by Colonel West”:

Missile(x)∧Owns(Nono,x) ⇒ Sells(West,x,Nono) . (9.6)

We will also need to know that missiles are weapons:

Missile(x)⇒Weapon(x) (9.7)

and we must know that an enemy of America counts as “hostile”:

Enemy(x,America) ⇒ Hostile(x) . (9.8)

“West, who is American . . .”:

American(West) . (9.9)

“The country Nono, an enemy of America . . .”:

Enemy(Nono,America) . (9.10)

This knowledge base happens to be a Datalog knowledge base: Datalog is a language con- Datalog

sisting of first-order definite clauses with no function symbols. Datalog gets its name because
it can represent the type of statements typically made in relational databases. The absence of
function symbols makes inference much easier.

9.3.2 A simple forward-chaining algorithm

Figure 9.3 shows a simple forward chaining inference algorithm. Starting from the known
facts, it triggers all the rules whose premises are satisfied, adding their conclusions to the
known facts. The process repeats until the query is answered (assuming that just one answer
is required) or no new facts are added. Notice that a fact is not “new” if it is just a renaming Renaming

of a known fact—a sentence is a renaming of another if they are identical except for the names
of the variables. For example, Likes(x, IceCream) and Likes(y, IceCream) are renamings of
each other. They both mean the same thing: “Everyone likes ice cream.”

We use our crime problem to illustrate FOL-FC-ASK. The implication sentences avail-
able for chaining are (9.3), (9.6), (9.7), and (9.8). Two iterations are required:
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function FOL-FC-ASK(KB,α) returns a substitution or false
inputs: KB, the knowledge base, a set of first-order definite clauses

α, the query, an atomic sentence

while true do
new←{} // The set of new sentences inferred on each iteration
for each rule in KB do

(p1∧ . . .∧ pn ⇒ q)←STANDARDIZE-VARIABLES(rule)
for each θ such that SUBST(θ, p1 ∧ . . . ∧ pn) = SUBST(θ, p′1 ∧ . . . ∧ p′n)

for some p′1, . . . ,p
′
n in KB

q′←SUBST(θ, q)
if q′ does not unify with some sentence already in KB or new then

add q′ to new
φ←UNIFY(q′,α)
if φ is not failure then return φ

if new = {} then return false
add new to KB

Figure 9.3 A conceptually straightforward, but inefficient, forward-chaining algorithm. On
each iteration, it adds to KB all the atomic sentences that can be inferred in one step
from the implication sentences and the atomic sentences already in KB. The function
STANDARDIZE-VARIABLES replaces all variables in its arguments with new ones that have
not been used before.

• On the first iteration, rule (9.3) has unsatisfied premises.
Rule (9.6) is satisfied with {x/M1}, and Sells(West,M1,Nono) is added.
Rule (9.7) is satisfied with {x/M1}, and Weapon(M1) is added.
Rule (9.8) is satisfied with {x/Nono}, and Hostile(Nono) is added.

• On the second iteration, rule (9.3) is satisfied with {x/West,y/M1,z/Nono}, and the
inference Criminal(West) is added.

Figure 9.4 shows the proof tree that is generated. Notice that no new inferences are possible
at this point because every sentence that could be concluded by forward chaining is already
contained explicitly in the KB. Such a knowledge base is called a fixed point of the inference
process. Fixed points reached by forward chaining with first-order definite clauses are similar
to those for propositional forward chaining (page 249); the principal difference is that a first-
order fixed point can include universally quantified atomic sentences.

FOL-FC-ASK is easy to analyze. First, it is sound, because every inference is just an
application of Generalized Modus Ponens, which is sound. Second, it is complete for definite
clause knowledge bases; that is, it answers every query whose answers are entailed by any
knowledge base of definite clauses.

For Datalog knowledge bases, which contain no function symbols, the proof of com-
pleteness is fairly easy. We begin by counting the number of possible facts that can be added,
which determines the maximum number of iterations. Let k be the maximum arity (number
of arguments) of any predicate, p be the number of predicates, and n be the number of con-
stant symbols. Clearly, there can be no more than pnk distinct ground facts, so after this many
iterations the algorithm must have reached a fixed point. Then we can make an argument very
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Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)American(West)

Weapon(M1)

Criminal(West)

Sells(West,M1,Nono)

Figure 9.4 The proof tree generated by forward chaining on the crime example. The initial
facts appear at the bottom level, facts inferred on the first iteration in the middle level, and
facts inferred on the second iteration at the top level.

similar to the proof of completeness for propositional forward chaining. (See page 249.) The
details of how to make the transition from propositional to first-order completeness are given
for the resolution algorithm in Section 9.5.

For general definite clauses with function symbols, FOL-FC-ASK can generate infinitely
many new facts, so we need to be more careful. For the case in which an answer to the query
sentence q is entailed, we must appeal to Herbrand’s theorem (page 300) to establish that the
algorithm will find a proof. (See Section 9.5 for the resolution case.) If the query has no
answer, the algorithm could fail to terminate in some cases. For example, if the knowledge
base includes the Peano axioms

NatNum(0)
∀n NatNum(n) ⇒ NatNum(S(n)) ,

then forward chaining adds NatNum(S(0)), NatNum(S(S(0))), NatNum(S(S(S(0)))), and so
on. This problem is unavoidable in general. As with general first-order logic, entailment with
definite clauses is semidecidable.

9.3.3 Efficient forward chaining

The forward-chaining algorithm in Figure 9.3 is designed for ease of understanding, not effi-
ciency. There are three sources of inefficiency. First, the inner loop of the algorithm tries to
match every rule against every fact in the knowledge base. Second, the algorithm rechecks
every rule on every iteration, even if very few additions have been made to the knowledge
base. Third, the algorithm can generate many facts that are irrelevant to the goal. We address
each of these issues in turn.

Matching rules against known facts

The problem of matching the premise of a rule against the facts in the knowledge base might
seem simple enough. For example, suppose we want to apply the rule

Missile(x)⇒Weapon(x) .

Then we need to find all the facts that unify with Missile(x); in a suitably indexed knowledge
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Diff (wa,nt)∧Diff (wa,sa)∧
Diff (nt,q)∧Diff (nt,sa)∧
Diff (q,nsw)∧Diff (q,sa)∧
Diff (nsw,v)∧Diff (nsw,sa)∧
Diff (v,sa) ⇒ Colorable()

Diff (Red,Blue) Diff (Red,Green)

Diff (Green,Red) Diff (Green,Blue)

Diff (Blue,Red) Diff (Blue,Green)

(a) (b)

Figure 9.5 (a) Constraint graph for coloring the map of Australia. (b) The map-coloring
CSP expressed as a single definite clause. Each map region is represented as a variable
whose value can be one of the constants Red, Green, or Blue (which are declared Diff ).

base, this can be done in constant time per fact. Now consider a rule such as

Missile(x)∧Owns(Nono,x) ⇒ Sells(West,x,Nono) .

Again, we can find all the objects owned by Nono in constant time per object; then, for each
object, we could check whether it is a missile. However, if the knowledge base contains
many objects owned by Nono and very few missiles, then it would be better to find all the
missiles first and then check whether they are owned by Nono. This is the conjunct orderingConjunct ordering

problem: find an ordering to solve the conjuncts of the rule premise so that the total cost is
minimized. It turns out that finding the optimal ordering is NP-hard, but good heuristics are
available. For example, the minimum-remaining-values (MRV) heuristic used for CSPs in
Chapter 5 would suggest ordering the conjuncts to look for missiles first if there are fewer
missiles than there are objects owned by Nono.

The connection between this pattern matching and constraint satisfaction is actuallyPattern matching

very close. We can view each conjunct as a constraint on the variables that it contains—for
example, Missile(x) is a unary constraint on x. Extending this idea, we can express everyI
finite-domain CSP as a single definite clause together with some associated ground facts.
Consider the map-coloring problem from Figure 5.1, shown again in Figure 9.5(a). An equiv-
alent formulation as a single definite clause is given in Figure 9.5(b). Clearly, the conclusion
Colorable() can be inferred only if the CSP has a solution. Because CSPs in general include
3-SAT problems as special cases, we can conclude that matching a definite clause against aI
set of facts is NP-hard.

It might seem rather depressing that forward chaining has an NP-hard matching problem
in its inner loop. There are three ways to cheer ourselves up:

• We can remind ourselves that most rules in real-world knowledge bases are small and
simple (like the rules in our crime example) rather than large and complex (like the
CSP formulation in Figure 9.5). It is common in the database world to assume that
both the sizes of rules and the arities of predicates are bounded by a constant and to
worry only about data complexity—that is, the complexity of inference as a functionData complexity
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of the number of ground facts in the knowledge base. It is easy to show that the data
complexity of forward chaining is polynomial, not exponential.

• We can consider subclasses of rules for which matching is efficient. Essentially every
Datalog clause can be viewed as defining a CSP, so matching will be tractable just
when the corresponding CSP is tractable. Chapter 5 describes several tractable families
of CSPs. For example, if the constraint graph (the graph whose nodes are variables
and whose links are constraints) forms a tree, then the CSP can be solved in linear
time. Exactly the same result holds for rule matching. For instance, if we remove South
Australia from the map in Figure 9.5, the resulting clause is

Diff (wa,nt)∧Diff (nt,q)∧Diff (q,nsw)∧Diff (nsw,v) ⇒ Colorable()

which corresponds to the reduced CSP shown in Figure 5.12 on page 185. Algorithms
for solving tree-structured CSPs can be applied directly to the problem of rule matching.

• We can try to eliminate redundant rule-matching attempts in the forward-chaining al-
gorithm, as described next.

Incremental forward chaining

When we showed how forward chaining works on the crime example, we cheated. In partic-
ular, we omitted some of the rule matching done by the algorithm shown in Figure 9.3. For
example, on the second iteration, the rule

Missile(x)⇒Weapon(x)
matches against Missile(M1) (again), and of course the conclusion Weapon(M1) is already
known so nothing happens. Such redundant rule matching can be avoided if we make the
following observation: Every new fact inferred on iteration t must be derived from at least J
one new fact inferred on iteration t − 1. This is true because any inference that does not
require a new fact from iteration t−1 could have been done at iteration t−1 already.

This observation leads naturally to an incremental forward-chaining algorithm where, at
iteration t, we check a rule only if its premise includes a conjunct pi that unifies with a fact
p′i newly inferred at iteration t−1. The rule-matching step then fixes pi to match with p′i, but
allows the other conjuncts of the rule to match with facts from any previous iteration. This
algorithm generates exactly the same facts at each iteration as the algorithm in Figure 9.3, but
is much more efficient.

With suitable indexing, it is easy to identify all the rules that can be triggered by any
given fact, and many real systems operate in an “update” mode wherein forward chaining
occurs in response to every TELL. Inferences cascade through the set of rules until the fixed
point is reached, and then the process begins again for the next new fact.

Typically, only a small fraction of the rules in the knowledge base are actually triggered
by the addition of a given fact. This means that a great deal of redundant work is done in
repeatedly constructing partial matches that have some unsatisfied premises. Our crime ex-
ample is rather too small to show this effectively, but notice that a partial match is constructed
on the first iteration between the rule

American(x)∧Weapon(y)∧Sells(x,y,z)∧Hostile(z) ⇒ Criminal(x)

and the fact American(West). This partial match is then discarded and rebuilt on the second
iteration (when the rule succeeds). It would be better to retain and gradually complete the
partial matches as new facts arrive, rather than discarding them.
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The Rete algorithm3 was the first to address this problem. The algorithm preprocessesRete algorithm

the set of rules in the knowledge base to construct a dataflow network in which each node
is a literal from a rule premise. Variable bindings flow through the network and are filtered
out when they fail to match a literal. If two literals in a rule share a variable—for example,
Sells(x,y,z)∧Hostile(z) in the crime example—then the bindings from each literal are filtered
through an equality node. A variable binding reaching a node for an n-ary literal such as
Sells(x,y,z) might have to wait for bindings for the other variables to be established before
the process can continue. At any given point, the state of a Rete network captures all the
partial matches of the rules, avoiding a great deal of recomputation.

Rete networks, and various improvements thereon, have been a key component of so-
called production systems, which were among the earliest forward-chaining systems inProduction system

widespread use.4 The XCON system (originally called R1; McDermott, 1982) was built
with a production-system architecture. XCON contained several thousand rules for designing
configurations of computer components for customers of the Digital Equipment Corporation.
It was one of the first clear commercial successes in the emerging field of expert systems.
Many other similar systems have been built with the same underlying technology, which has
been implemented in the general-purpose language OPS-5.

Production systems are also popular in cognitive architectures—that is, models of hu-Cognitive
architectures

man reasoning—such as ACT (Anderson, 1983) and SOAR (Laird et al., 1987). In such sys-
tems, the “working memory” of the system models human short-term memory, and the pro-
ductions are part of long-term memory. On each cycle of operation, productions are matched
against the working memory of facts. A production whose conditions are satisfied can add or
delete facts in working memory. In contrast to the typical situation in databases, production
systems often have many rules and relatively few facts. With suitably optimized matching
technology, systems can operate in real time with tens of millions of rules.

Irrelevant facts

Another source of inefficiency is that forward chaining makes all allowable inferences based
on the known facts, even if they are irrelevant to the goal. In our crime example, there were no
rules capable of drawing irrelevant conclusions. But if there had been many rules describing
the eating habits of Americans or the components and prices of missiles, then FOL-FC-ASK

would have generated irrelevant conclusions.
One way to avoid drawing irrelevant conclusions is to use backward chaining, as de-

scribed in Section 9.4. Another way is to restrict forward chaining to a selected subset of
rules, as in PL-FC-ENTAILS? (page 249). A third approach has emerged in the field of de-
ductive databases, which are large-scale databases, like relational databases, but which useDeductive databases

forward chaining as the standard inference tool rather than SQL queries. The idea is to rewrite
the rule set, using information from the goal, so that only relevant variable bindings—those
belonging to a so-called magic set—are considered during forward inference. For example,Magic set

if the goal is Criminal(West), the rule that concludes Criminal(x) will be rewritten to include
an extra conjunct that constrains the value of x:

Magic(x)∧American(x)∧Weapon(y)∧Sells(x,y,z)∧Hostile(z) ⇒ Criminal(x) .

3 Rete is Latin for net. It rhymes with treaty.
4 The word production in production systems denotes a condition–action rule.
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The fact Magic(West) is also added to the KB. In this way, even if the knowledge base con-
tains facts about millions of Americans, only Colonel West will be considered during the
forward inference process. The complete process for defining magic sets and rewriting the
knowledge base is too complex to go into here, but the basic idea is to perform a sort of
“generic” backward inference from the goal in order to work out which variable bindings
need to be constrained. The magic sets approach can therefore be thought of as a kind of
hybrid between forward inference and backward preprocessing.

9.4 Backward Chaining

The second major family of logical inference algorithms uses backward chaining over def-
inite clauses. These algorithms work backward from the goal, chaining through rules to find
known facts that support the proof.

9.4.1 A backward-chaining algorithm

Figure 9.6 shows a backward-chaining algorithm for definite clauses. FOL-BC-ASK(KB,
goal) will be proved if the knowledge base contains a rule of the form lhs⇒ goal, where lhs
(left-hand side) is a list of conjuncts. An atomic fact like American(West) is considered as
a clause whose lhs is the empty list. Now a query that contains variables might be proved
in multiple ways. For example, the query Person(x) could be proved with the substitution
{x/John} as well as with {x/Richard}. So we implement FOL-BC-ASK as a generator—a
function that returns multiple times, each time giving one possible result (see Appendix B).

Backward chaining is a kind of AND/OR search—the OR part because the goal query can
be proved by any rule in the knowledge base, and the AND part because all the conjuncts in
the lhs of a clause must be proved. FOL-BC-OR works by fetching all clauses that might

function FOL-BC-ASK(KB, query) returns a generator of substitutions
return FOL-BC-OR(KB, query,{})

function FOL-BC-OR(KB, goal, θ) returns a substitution
for each rule in FETCH-RULES-FOR-GOAL(KB, goal) do
(lhs ⇒ rhs)←STANDARDIZE-VARIABLES(rule)
for each θ′ in FOL-BC-AND(KB, lhs, UNIFY(rhs, goal, θ)) do

yield θ′

function FOL-BC-AND(KB, goals, θ) returns a substitution
if θ = failure then return
else if LENGTH(goals) = 0 then yield θ
else

first,rest←FIRST(goals), REST(goals)
for each θ′ in FOL-BC-OR(KB, SUBST(θ, first), θ) do

for each θ′′ in FOL-BC-AND(KB, rest, θ′) do
yield θ′′

Figure 9.6 A simple backward-chaining algorithm for first-order knowledge bases.
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Hostile(Nono)

Enemy(Nono,America)Owns(Nono,M1)Missile(M1)

Criminal(West)

Missile(y)

Weapon(y) Sells(West,M1,z)American(West)

{y/M1} { }{ }{ }

{z/Nono}{ }

Figure 9.7 Proof tree constructed by backward chaining to prove that West is a criminal.
The tree should be read depth first, left to right. To prove Criminal(West), we have to prove
the four conjuncts below it. Some of these are in the knowledge base, and others require
further backward chaining. Bindings for each successful unification are shown next to the
corresponding subgoal. Note that once one subgoal in a conjunction succeeds, its substitution
is applied to subsequent subgoals. Thus, by the time FOL-BC-ASK gets to the last conjunct,
originally Hostile(z), z is already bound to Nono.

unify with the goal, standardizing the variables in the clause to be brand-new variables, and
then, if the rhs of the clause does indeed unify with the goal, proving every conjunct in the lhs,
using FOL-BC-AND. That function works by proving each of the conjuncts in turn, keeping
track of the accumulated substitution as it goes. Figure 9.7 is the proof tree for deriving
Criminal(West) from sentences (9.3) through (9.10).

Backward chaining, as we have written it, is clearly a depth-first search algorithm. This
means that its space requirements are linear in the size of the proof. It also means that back-
ward chaining (unlike forward chaining) suffers from problems with repeated states and in-
completeness. Despite these limitations, backward chaining has proven to be popular and
effective in logic programming languages.

9.4.2 Logic programming

Logic programming is a technology that comes close to embodying the declarative ideal
described in Chapter 7: that systems should be constructed by expressing knowledge in a
formal language and that problems should be solved by running inference processes on that
knowledge. The ideal is summed up in Robert Kowalski’s equation,

Algorithm = Logic+Control .

Prolog is the most widely used logic programming language. It is used primarily as a rapid-Prolog

prototyping language and for symbol-manipulation tasks such as writing compilers (Van Roy,
1990) and parsing natural language (Pereira and Warren, 1980). Many expert systems have
been written in Prolog for legal, medical, financial, and other domains.

Prolog programs are sets of definite clauses written in a notation somewhat different
from standard first-order logic. Prolog uses uppercase letters for variables and lowercase for
constants—the opposite of our convention for logic. Commas separate conjuncts in a clause,
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and the clause is written “backwards” from what we are used to; instead of A∧B ⇒ C in
Prolog we have C :- A, B. Here is a typical example:

criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).

In Prolog the notation [E|L] denotes a list whose first element is E and whose rest is L. Here
is a Prolog program for append(X,Y,Z), which succeeds if list Z is the result of appending
lists X and Y:

append([],Y,Y).

append([A|X],Y,[A|Z]) :- append(X,Y,Z).

In English, we can read these clauses as (1) appending the empty list and the list Y pro-
duces the same list Y, and (2) [A|Z] is the result of appending [A|X] and Y, provided that
Z is the result of appending X and Y. In most high-level languages we can write a similar
recursive function that describes how to append two lists. The Prolog definition is actually
more powerful, however, because it describes a relation that holds among three arguments,
rather than a function computed from two arguments. For example, we can ask the query
append(X,Y,[1,2,3]): what two lists can be appended to give [1,2,3]? Prolog gives us
back the solutions

X=[] Y=[1,2,3];

X=[1] Y=[2,3];

X=[1,2] Y=[3];

X=[1,2,3] Y=[]

The execution of Prolog programs is done through depth-first backward chaining, where
clauses are tried in the order in which they are written in the knowledge base. Prolog’s design
represents a compromise between declarativeness and execution efficiency. Some aspects of
Prolog fall outside standard logical inference:

• Prolog uses the database semantics of Section 8.2.8 rather than first-order semantics,
and this is apparent in its treatment of equality and negation (see Section 9.4.4).

• There is a set of built-in functions for arithmetic. Literals using these function symbols
are “proved” by executing code rather than doing further inference. For example, the
goal “X is 4+3” succeeds with X bound to 7. On the other hand, the goal “5 is X+Y”
fails, because the built-in functions do not do arbitrary equation solving.

• There are built-in predicates that have side effects when executed. These include input–
output predicates and the assert/retract predicates for modifying the knowledge
base. Such predicates have no counterpart in logic and can produce confusing results—
for example, if facts are asserted in a branch of the proof tree that eventually fails.

• The occur check is omitted from Prolog’s unification algorithm. This means that some
unsound inferences can be made; these are almost never a problem in practice.

• Prolog uses depth-first backward-chaining search with no checks for infinite recursion.
This makes for a usable programming language that is very fast when used properly,
but it means that some programs that look like valid logic will fail to terminate.

9.4.3 Redundant inference and infinite loops

We now turn to the Achilles heel of Prolog: the mismatch between depth-first search and
search trees that include repeated states and infinite paths. Consider the following logic pro-
gram that decides if a path exists between two points on a directed graph:
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(a) (b)

A B C

A1

J4

Figure 9.8 (a) Finding a path from A to C can lead Prolog into an infinite loop. (b) A graph
in which each node is connected to two random successors in the next layer. Finding a path
from A1 to J4 requires 877 inferences.

path(a,c)

fail

{ }/Y b

{ }

link(a,c) path(a,Y)

link(a,Y)

link(b,c)

path(a,c)

path(a,Y) link(Y,c)

path(a,Y’) link(Y’,Y)

(a) (b)

Figure 9.9 (a) Proof that a path exists from A to C. (b) Infinite proof tree generated when
the clauses are in the “wrong” order.

path(X,Z) :- link(X,Z).

path(X,Z) :- path(X,Y), link(Y,Z).

A simple three-node graph, described by the facts link(a,b) and link(b,c), is shown in
Figure 9.8(a). With this program, the query path(a,c) generates the proof tree shown in
Figure 9.9(a). On the other hand, if we put the two clauses in the order

path(X,Z) :- path(X,Y), link(Y,Z).

path(X,Z) :- link(X,Z).

then Prolog follows the infinite path shown in Figure 9.9(b). Prolog is therefore incomplete as
a theorem prover for definite clauses—even for Datalog programs, as this example shows—
because, for some knowledge bases, it fails to prove sentences that are entailed. Notice
that forward chaining does not suffer from this problem: once path(a,b), path(b,c), and
path(a,c) are inferred, forward chaining halts.

Depth-first backward chaining also has problems with redundant computations. For ex-
ample, when finding a path from A1 to J4 in Figure 9.8(b), Prolog performs 877 inferences,
most of which involve finding all possible paths to nodes from which the goal is unreachable.
This is similar to the repeated-state problem discussed in Chapter 3. The total amount of
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inference can be exponential in the number of ground facts that are generated. If we apply
forward chaining instead, at most n2 path(X,Y) facts can be generated linking n nodes. For
the problem in Figure 9.8(b), only 62 inferences are needed.

Forward chaining on graph search problems is an example of dynamic programming, Dynamic
programming

in which the solutions to subproblems are constructed incrementally from those of smaller
subproblems and are cached to avoid recomputation. We can obtain a similar effect in a
backward chaining system, except that here we are breaking down large goals into smaller
ones, rather than building them up.

Either way, storing intermediate results to avoid duplication is key. This is the approach
taken by tabled logic programming systems, which use efficient storage and retrieval mech- Tabled logic

programming

anisms. Tabled logic programming combines the goal-directedness of backward chaining
with the dynamic-programming efficiency of forward chaining. It is also complete for Data-
log knowledge bases, which means that the programmer need worry less about infinite loops.
(It is still possible to get an infinite loop with predicates like father(X,Y) that refer to a
potentially unbounded number of objects.)

9.4.4 Database semantics of Prolog

Prolog uses database semantics, as discussed in Section 8.2.8. The unique names assumption
says that every Prolog constant and every ground term refers to a distinct object, and the
closed world assumption says that the only sentences that are true are those that are entailed
by the knowledge base. There is no way to assert that a sentence is false in Prolog. This
makes Prolog less expressive than first-order logic, but it is part of what makes Prolog more
efficient and more concise. Consider the following assertions about some course offerings:

Course(CS,101), Course(CS,102), Course(CS,106), Course(EE,101). (9.11)

Under the unique names assumption, CS and EE are different (as are 101, 102, and 106), so
this means that there are four distinct courses. Under the closed-world assumption there are
no other courses, so there are exactly four courses. But if these were assertions in FOL rather
than in database semantics, then all we could say is that there are somewhere between one
and infinity courses. That’s because the assertions (in FOL) do not deny the possibility that
other unmentioned courses are also offered, nor do they say that the courses mentioned are
different from each other. If we wanted to translate Equation (9.11) into FOL, we would get
the following sentence:

Course(d,n) ⇔ (d=CS∧n = 101)∨ (d=CS∧n = 102)

∨ (d=CS∧n = 106)∨ (d=EE∧n = 101) . (9.12)

This is called the completion of Equation (9.11). It expresses in FOL the idea that there are Completion

at most four courses. To express in FOL the idea that there are at least four courses, we need
to write the completion of the equality predicate:

x = y ⇔ (x = CS∧ y = CS)∨ (x = EE∧ y = EE)∨ (x = 101∧ y = 101)

∨ (x = 102∧ y = 102)∨ (x = 106∧ y = 106) .

The completion is useful for understanding database semantics, but for practical purposes, if
your problem can be described with database semantics, it is more efficient to reason with
Prolog or some other database semantics system, rather than translating into FOL and rea-
soning with a full FOL theorem prover.
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9.4.5 Constraint logic programming

In our discussion of forward chaining (Section 9.3), we showed how constraint satisfaction
problems (CSPs) can be encoded as definite clauses. Standard Prolog solves such problems
in exactly the same way as the backtracking algorithm given in Figure 5.5.

Because backtracking enumerates the domains of the variables, it works only for finite-
domain CSPs. In Prolog terms, there must be a finite number of solutions for any goal with
unbound variables. (For example, a map coloring problem in which each variable can take
on one of four different colors.) Infinite-domain CSPs—for example, with integer- or real-
valued variables—require quite different algorithms, such as bounds propagation or linear
programming.

Consider the following example. We define triangle(X,Y,Z) as a predicate that holds
if the three arguments are numbers that satisfy the triangle inequality:

triangle(X,Y,Z) :-

X>0, Y>0, Z>0, X+Y>Z, Y+Z>X, X+Z>Y.

If we ask Prolog the query triangle(3,4,5), it succeeds. On the other hand, if we ask
triangle(3,4,Z), no solution will be found, because the subgoal Z>0 cannot be handled
by Prolog; we can’t compare an unbound value to 0.

Constraint logic programming (CLP) allows variables to be constrained rather thanConstraint logic
programming

bound. A CLP solution is the most specific set of constraints on the query variables that can
be derived from the knowledge base. For example, the solution to the triangle(3,4,Z)

query is the constraint 7 > Z > 1. Standard logic programs are just a special case of CLP in
which the solution constraints must be equality constraints—that is, bindings.

CLP systems incorporate various constraint-solving algorithms for the constraints al-
lowed in the language. For example, a system that allows linear inequalities on real-valued
variables might include a linear programming algorithm for solving those constraints. CLP
systems also adopt a much more flexible approach to solving standard logic programming
queries. For example, instead of depth-first, left-to-right backtracking, they might use any of
the more efficient algorithms discussed in Chapter 5, including heuristic conjunct ordering,
backjumping, cutset conditioning, and so on. CLP systems therefore combine elements of
constraint satisfaction algorithms, logic programming, and deductive databases.

Several systems that allow the programmer more control over the search order for infer-
ence have been defined. The MRS language (Genesereth and Smith, 1981; Russell, 1985)
allows the programmer to write metarules to determine which conjuncts are tried first. TheMetarule

user could write a rule saying that the goal with the fewest variables should be tried first or
could write domain-specific rules for particular predicates.

9.5 Resolution

The last of our three families of logical systems, and the only one that works for any knowl-
edge base, not just definite clauses, is resolution. We saw on page 241 that propositional
resolution is a complete inference procedure for propositional logic; in this section, we ex-
tend it to first-order logic.
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9.5.1 Conjunctive normal form for first-order logic

The first step is to convert sentences to conjunctive normal form (CNF)—that is, a conjunc-
tion of clauses, where each clause is a disjunction of literals.5 In CNF, literals can contain
variables, which are assumed to be universally quantified. For example, the sentence

∀x,y,z American(x)∧Weapon(y)∧Sells(x,y,z)∧Hostile(z) ⇒ Criminal(x)

becomes, in CNF,

¬American(x)∨¬Weapon(y)∨¬Sells(x,y,z)∨¬Hostile(z)∨Criminal(x) .

The key is that Every sentence of first-order logic can be converted into an inferentially J
equivalent CNF sentence.

The procedure for conversion to CNF is similar to the propositional case, which we saw
on page 244. The principal difference arises from the need to eliminate existential quantifiers.
We illustrate the procedure by translating the sentence “Everyone who loves all animals is
loved by someone,” or

∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)] .

The steps are as follows:

• Eliminate implications: Replace P ⇒ Q with ¬P∨Q. For our sample sentence, this
needs to be done twice:

∀x ¬[∀y Animal(y) ⇒ Loves(x,y)]∨ [∃y Loves(y,x)]
∀x ¬[∀y ¬Animal(y)∨Loves(x,y)]∨ [∃y Loves(y,x)] .

• Move ¬ inwards: In addition to the usual rules for negated connectives, we need rules
for negated quantifiers. Thus, we have

¬∀x p becomes ∃x ¬p
¬∃x p becomes ∀x ¬p .

Our sentence goes through the following transformations:

∀x [∃y ¬(¬Animal(y)∨Loves(x,y))]∨ [∃y Loves(y,x)] .
∀x [∃y ¬¬Animal(y)∧¬Loves(x,y)]∨ [∃y Loves(y,x)] .
∀x [∃y Animal(y)∧¬Loves(x,y)]∨ [∃y Loves(y,x)] .

Notice how a universal quantifier (∀y) in the premise of the implication has become
an existential quantifier. The sentence now reads “Either there is some animal that x
doesn’t love, or (if this is not the case) someone loves x.” Clearly, the meaning of the
original sentence has been preserved.
• Standardize variables: For sentences like (∃xP(x))∨ (∃xQ(x)) that use the same

variable name twice, change the name of one of the variables. This avoids confusion
later when we drop the quantifiers. Thus, we have

∀x [∃y Animal(y)∧¬Loves(x,y)]∨ [∃z Loves(z,x)] .

• Skolemize: Skolemization is the process of removing existential quantifiers by elimi- Skolemization

5 A clause can also be represented as an implication with a conjunction of atoms in the premise and a disjunc-
tion of atoms in the conclusion (Exercise 9.DISJ). This is called implicative normal form or Kowalski form
(especially when written with a right-to-left implication symbol (Kowalski, 1979)) and is generally much easier
to read than a disjunction with many negated literals.
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nation. In the simple case, it is just like the Existential Instantiation rule of Section 9.1:
translate ∃x P(x) into P(A), where A is a new constant. However, we can’t apply Ex-
istential Instantiation to our sentence above because it doesn’t match the pattern ∃v α;
only parts of the sentence match the pattern. If we blindly apply the rule to the two
matching parts we get

∀x [Animal(A)∧¬Loves(x,A)]∨Loves(B,x) ,

which has the wrong meaning entirely: it says that everyone either fails to love a par-
ticular animal A or is loved by some particular entity B. In fact, our original sentence
allows each person to fail to love a different animal or to be loved by a different person.
Thus, we want the Skolem entities to depend on x:

∀x [Animal(F(x))∧¬Loves(x,F(x))]∨Loves(G(x),x) .

Here F and G are Skolem functions. The general rule is that the arguments of theSkolem function

Skolem function are all the universally quantified variables in whose scope the exis-
tential quantifier appears. As with Existential Instantiation, the Skolemized sentence is
satisfiable exactly when the original sentence is satisfiable.
• Drop universal quantifiers: At this point, all remaining variables must be universally

quantified. Therefore, we don’t lose any information if we drop the quantifier:

[Animal(F(x))∧¬Loves(x,F(x))]∨Loves(G(x),x) .

• Distribute ∨ over ∧:

[Animal(F(x))∨Loves(G(x),x)]∧ [¬Loves(x,F(x))∨Loves(G(x),x)] .

This step may also require flattening out nested conjunctions and disjunctions.

The sentence is now in CNF and consists of two clauses. It is much more difficult to read than
the original sentence with implications. (It may help to explain that the Skolem function F(x)
refers to the animal potentially unloved by x, whereas G(x) refers to someone who might
love x.) Fortunately, humans seldom need to look at CNF sentences—the translation process
is easily automated.

9.5.2 The resolution inference rule

The resolution rule for first-order clauses is simply a lifted version of the propositional reso-
lution rule given on page 244. Two clauses, which are assumed to be standardized apart so
that they share no variables, can be resolved if they contain complementary literals. Propo-
sitional literals are complementary if one is the negation of the other; first-order literals are
complementary if one unifies with the negation of the other. Thus, we have

`1∨·· ·∨ `k, m1∨·· ·∨mn

SUBST(θ,`1∨·· ·∨ `i−1∨ `i+1∨·· ·∨ `k∨m1∨·· ·∨m j−1∨m j+1∨·· ·∨mn)

where UNIFY(`i,¬m j)=θ. For example, we can resolve the two clauses

[Animal(F(x))∨Loves(G(x),x)] and [¬Loves(u,v)∨¬Kills(u,v)]

by eliminating the complementary literals Loves(G(x),x) and ¬Loves(u,v), with the unifier
θ={u/G(x),v/x}, to produce the resolvent clause

[Animal(F(x))∨¬Kills(G(x),x)] .

This rule is called the binary resolution rule because it resolves exactly two literals. TheBinary resolution
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binary resolution rule by itself does not yield a complete inference procedure. The full reso-
lution rule resolves subsets of literals in each clause that are unifiable. An alternative approach
is to extend factoring—the removal of redundant literals—to the first-order case. Proposi-
tional factoring reduces two literals to one if they are identical; first-order factoring reduces
two literals to one if they are unifiable. The unifier must be applied to the entire clause. The
combination of binary resolution and factoring is complete.

9.5.3 Example proofs

Resolution proves that KB |= α by proving that KB∧¬α unsatisfiable—that is, by deriving
the empty clause. The algorithmic approach is identical to the propositional case, described
in Figure 7.13, so we need not repeat it here. Instead, we give two example proofs. The first
is the crime example from Section 9.3. The sentences in CNF are

¬American(x)∨¬Weapon(y)∨¬Sells(x,y,z)∨¬Hostile(z)∨Criminal(x)
¬Missile(x)∨¬Owns(Nono,x)∨Sells(West,x,Nono)
¬Enemy(x,America)∨Hostile(x)
¬Missile(x)∨Weapon(x)
Owns(Nono,M1) Missile(M1)
American(West) Enemy(Nono,America) .

We also include the negated goal ¬Criminal(West). The resolution proof is shown in Fig-
ure 9.10. Notice the structure: single “spine” beginning with the goal clause, resolving against
clauses from the knowledge base until the empty clause is generated. This is characteristic
of resolution on Horn clause knowledge bases. In fact, the clauses along the main spine
correspond exactly to the consecutive values of the goals variable in the backward-chaining
algorithm of Figure 9.6. This is because we always choose to resolve with a clause whose
positive literal unifies with the leftmost literal of the “current” clause on the spine; this is

¬American(x) ¬Weapon(y) ¬Sells(x,y,z) ¬Hostile(z) Criminal(x) ¬Criminal(West)

¬Enemy(Nono, America)Enemy(Nono,America)

¬Missile(x) Weapon(x) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)

Missile(M1) ¬Missile(y) ¬Sells(West,y,z) ¬Hostile(z)

¬Missile(x) ¬Owns(Nono,x) Sells(West,x,Nono) ¬Sells(West,M1,z) ¬Hostile(z)

¬American(West) ¬Weapon(y) ¬Sells(West,y,z) ¬Hostile(z)American(West)

¬Missile(M1) ¬Owns(Nono,M1) ¬Hostile(Nono)Missile(M1)

¬Owns(Nono,M1) ¬Hostile(Nono)Owns(Nono,M1)

¬Enemy(x,America) Hostile(x) ¬Hostile(Nono)

^^^ ^

^ ^ ^

^ ^ ^

^ ^

^ ^ ^

^ ^

^

^

Figure 9.10 A resolution proof that West is a criminal. At each resolution step, the literals
that unify are in bold and the clause with the positive literal is shaded blue.
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exactly what happens in backward chaining. Thus, backward chaining is just a special case
of resolution with a particular control strategy to decide which resolution to perform next.

Our second example makes use of Skolemization and involves clauses that are not definite
clauses. This results in a somewhat more complex proof structure. In English:

Everyone who loves all animals is loved by someone.
Anyone who kills an animal is loved by no one.
Jack loves all animals.
Either Jack or Curiosity killed the cat, who is named Tuna.
Did Curiosity kill the cat?

First, we express the original sentences, some background knowledge, and the negated goal
G in first-order logic:

A. ∀x [∀y Animal(y) ⇒ Loves(x,y)] ⇒ [∃y Loves(y,x)]

B. ∀x [∃z Animal(z)∧Kills(x,z)] ⇒ [∀y ¬Loves(y,x)]

C. ∀x Animal(x) ⇒ Loves(Jack,x)

D. Kills(Jack,Tuna)∨Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. ∀x Cat(x)⇒ Animal(x)

¬G. ¬Kills(Curiosity,Tuna)

Now we apply the conversion procedure to convert each sentence to CNF:
A1. Animal(F(x))∨Loves(G(x),x)

A2. ¬Loves(x,F(x))∨Loves(G(x),x)

B. ¬Loves(y,x)∨¬Animal(z)∨¬Kills(x,z)

C. ¬Animal(x)∨Loves(Jack,x)

D. Kills(Jack,Tuna)∨Kills(Curiosity,Tuna)

E. Cat(Tuna)

F. ¬Cat(x)∨Animal(x)

¬G. ¬Kills(Curiosity,Tuna)

The resolution proof that Curiosity killed the cat is given in Figure 9.11. In English, the proof
could be paraphrased as follows:

Suppose Curiosity did not kill Tuna. We know that either Jack or Curiosity did; thus
Jack must have. Now, Tuna is a cat and cats are animals, so Tuna is an animal. Because
anyone who kills an animal is loved by no one, we know that no one loves Jack. On the
other hand, Jack loves all animals, so someone loves him; so we have a contradiction.
Therefore, Curiosity killed the cat.

The proof answers the question “Did Curiosity kill the cat?” but often we want to pose
more general questions, such as “Who killed the cat?” Resolution can do this, but it takes a
little more work to obtain the answer. The goal is ∃w Kills(w,Tuna), which, when negated,
becomes ¬Kills(w,Tuna) in CNF. Repeating the proof in Figure 9.11 with the new negated
goal, we obtain a similar proof tree, but with the substitution {w/Curiosity} in one of the
steps. So, in this case, finding out who killed the cat is just a matter of keeping track of
the bindings for the query variables in the proof. Unfortunately, resolution can sometimes
produce nonconstructive proofs for existential goals, where we know a query is true, butNonconstructive

proof

there isn’t a unique binding for the variable.
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¬Loves(y, Jack) Loves(G(Jack), Jack)

¬Kills(Curiosity, Tuna)Kills(Jack, Tuna) Kills(Curiosity, Tuna)¬Cat(x) Animal(x)Cat(Tuna)

¬Animal(F(Jack)) Loves(G(Jack), Jack) Animal(F(x)) Loves(G(x), x)¬Loves(y, x) ¬Kills(x, Tuna)

Kills(Jack, Tuna)¬Loves(y, x) ¬Animal(z) ¬Kills(x, z)Animal(Tuna) ¬Loves(x,F(x)) Loves(G(x), x) ¬Animal(x) Loves(Jack, x)

^^

^ ^ ^ ^

^^^

Figure 9.11 A resolution proof that Curiosity killed the cat. Notice the use of factoring in
the derivation of the clause Loves(G(Jack),Jack). Notice also in the upper right, the unifi-
cation of Loves(x,F(x)) and Loves(Jack,x) can only succeed after the variables have been
standardized apart.

9.5.4 Completeness of resolution

This section gives a completeness proof of resolution. It can be safely skipped by those who
are willing to take it on faith.

We show that resolution is refutation-complete, which means that if a set of sentences Refutation
completeness

is unsatisfiable, then resolution will always be able to derive a contradiction. Resolution
cannot be used to generate all logical consequences of a set of sentences, but it can be used
to establish that a given sentence is entailed by the set of sentences. Hence, it can be used to
find all answers to a given question, Q(x), by proving that KB∧¬Q(x) is unsatisfiable.

We take it as given that any sentence in first-order logic (without equality) can be rewrit-
ten as a set of clauses in CNF. This can be proved by induction on the form of the sentence,
using atomic sentences as the base case (Davis and Putnam, 1960). Our goal therefore is to
prove the following: if S is an unsatisfiable set of clauses, then the application of a finite J
number of resolution steps to S will yield a contradiction.

Our proof sketch follows Robinson’s original proof with some simplifications from Gene-
sereth and Nilsson (1987). The basic structure of the proof (Figure 9.12) is as follows:

1. First, we observe that if S is unsatisfiable, then there exists a particular set of ground
instances of the clauses of S such that this set is also unsatisfiable (Herbrand’s theorem).

2. We then appeal to the ground resolution theorem given in Chapter 7, which states that
propositional resolution is complete for ground sentences.

3. We then use a lifting lemma to show that, for any propositional resolution proof using
the set of ground sentences, there is a corresponding first-order resolution proof using
the first-order sentences from which the ground sentences were obtained.

To carry out the first step, we need three new concepts:

• Herbrand universe: If S is a set of clauses, then HS, the Herbrand universe of S, is the Herbrand universe

set of all ground terms constructible from the following:

a. The function symbols in S, if any.
b. The constant symbols in S, if any; if none, then a default constant symbol, S.



322 Chapter 9 Inference in First-Order Logic

Any set of sentences S is representable in clausal form

Assume S is unsatisfiable, and in clausal form

Some set S′ of ground instances is unsatisfiable

Resolution can find a contradiction in S′

There is a resolution proof for the contradiction in S′

Lifting lemma

Ground resolution
theorem

Herbrand’s theorem

Figure 9.12 Structure of a completeness proof for resolution.

For example, if S contains just the clause ¬P(x,F(x,A))∨¬Q(x,A)∨R(x,B), then HS

is the following infinite set of ground terms:

{A,B,F(A,A),F(A,B),F(B,A),F(B,B),F(A,F(A,A)), . . .} .
• Saturation: If S is a set of clauses and P is a set of ground terms, then P(S), theSaturation

saturation of S with respect to P, is the set of all ground clauses obtained by applying
all possible consistent substitutions of ground terms in P for variables in S.
• Herbrand base: The saturation of a set S of clauses with respect to its Herbrand uni-Herbrand base

verse is called the Herbrand base of S, written as HS(S). For example, if S contains
solely the clause given above, then HS(S) is the infinite set of clauses

{¬P(A,F(A,A))∨¬Q(A,A)∨R(A,B),
¬P(B,F(B,A))∨¬Q(B,A)∨R(B,B),
¬P(F(A,A),F(F(A,A),A))∨¬Q(F(A,A),A)∨R(F(A,A),B),
¬P(F(A,B),F(F(A,B),A))∨¬Q(F(A,B),A)∨R(F(A,B),B), . . . }

These definitions allow us to state a form of Herbrand’s theorem (Herbrand, 1930):Herbrand’s theorem

If a set S of clauses is unsatisfiable, then there exists a finite subset of HS(S) that
is also unsatisfiable.

Let S′ be this finite subset of ground sentences. Now, we can appeal to the ground resolution
theorem (page 246) to show that the resolution closure RC(S′) contains the empty clause.
That is, running propositional resolution to completion on S′ will derive a contradiction.

Now that we have established that there is always a resolution proof involving some finite
subset of the Herbrand base of S, the next step is to show that there is a resolution proof using
the clauses of S itself, which are not necessarily ground clauses. We start by considering a
single application of the resolution rule. Robinson stated this lemma:

Let C1 and C2 be two clauses with no shared variables, and let C′1 and C′2 be ground
instances of C1 and C2. If C′ is a resolvent of C′1 and C′2, then there exists a clause
C such that (1) C is a resolvent of C1 and C2 and (2) C′ is a ground instance of C.
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Gödel’s Incompleteness Theorem

By slightly extending the language of first-order logic to allow for the mathemat-
ical induction schema in arithmetic, Kurt Gödel was able to show, in his incom-
pleteness theorem, that there are true arithmetic sentences that cannot be proved.

The proof of the incompleteness theorem is somewhat beyond the scope of
this book, occupying, as it does, at least 30 pages, but we can give a hint here. We
begin with the logical theory of numbers. In this theory, there is a single constant,
0, and a single function, S (the successor function). In the intended model, S(0)
denotes 1, S(S(0)) denotes 2, and so on; the language therefore has names for all
the natural numbers. The vocabulary also includes the function symbols +, ×, and
Expt (exponentiation) and the usual set of logical connectives and quantifiers.

The first step is to notice that the set of sentences that we can write in this lan-
guage can be enumerated. (Imagine defining an alphabetical order on the symbols
and then arranging, in alphabetical order, each of the sets of sentences of length 1,
2, and so on.) We can then number each sentence α with a unique natural number
#α (the Gödel number). This is crucial: number theory contains a name for each
of its own sentences. Similarly, we can number each possible proof P with a Gödel
number G(P), because a proof is simply a finite sequence of sentences.

Now suppose we have a recursively enumerable set A of sentences that are true
statements about the natural numbers. Recalling that A can be named by a given
set of integers, we can imagine writing in our language a sentence α( j,A) of the
following sort:

∀ i i is not the Gödel number of a proof of the sentence whose Gödel
number is j, where the proof uses only premises in A.

Then let σ be the sentence α(#σ,A), that is, a sentence that states its own unprov-
ability from A. (That this sentence always exists is true but not entirely obvious.)

Now we make the following ingenious argument: Suppose that σ is provable
from A; then σ is false (because σ says it cannot be proved). But then we have a
false sentence that is provable from A, so A cannot consist of only true sentences—
a violation of our premise. Therefore, σ is not provable from A. But this is exactly
what σ itself claims; hence σ is a true sentence.

So, we have shown (barring 29 1
2 pages) that for any set of true sentences of

number theory, and in particular any set of basic axioms, there are other true sen-
tences that cannot be proved from those axioms. This establishes, among other
things, that we can never prove all the theorems of mathematics within any given
system of axioms. Clearly, this was an important discovery for mathematics. Its
significance for AI has been widely debated, beginning with speculations by Gödel
himself. We take up the debate in Chapter 28.
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This is called a lifting lemma, because it lifts a proof step from ground clauses up to generalLifting lemma

first-order clauses. In order to prove his basic lifting lemma, Robinson had to invent unifi-
cation and derive all of the properties of most general unifiers. Rather than repeat the proof
here, we simply illustrate the lemma:

C1 = ¬P(x,F(x,A))∨¬Q(x,A)∨R(x,B)

C2 = ¬N(G(y),z)∨P(H(y),z)

C′1 = ¬P(H(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B)

C′2 = ¬N(G(B),F(H(B),A))∨P(H(B),F(H(B),A))

C′ = ¬N(G(B),F(H(B),A))∨¬Q(H(B),A)∨R(H(B),B)

C = ¬N(G(y),F(H(y),A))∨¬Q(H(y),A)∨R(H(y),B) .

We see that indeed C′ is a ground instance of C. In general, for C′1 and C′2 to have any
resolvents, they must be constructed by first applying to C1 and C2 the most general unifier of
a pair of complementary literals in C1 and C2. From the lifting lemma, it is easy to derive a
similar statement about any sequence of applications of the resolution rule:

For any clause C′ in the resolution closure of S′ there is a clause C in the resolution
closure of S such that C′ is a ground instance of C and the derivation of C is the
same length as the derivation of C′.

From this fact, it follows that if the empty clause appears in the resolution closure of S′, it
must also appear in the resolution closure of S. This is because the empty clause cannot be a
ground instance of any other clause. To recap: we have shown that if S is unsatisfiable, then
there is a finite derivation of the empty clause using the resolution rule.

The lifting of theorem proving from ground clauses to first-order clauses provides a vast
increase in power. This increase comes from the fact that the first-order proof need instantiate
variables only as far as necessary for the proof, whereas the ground-clause methods were
required to examine a huge number of arbitrary instantiations.

9.5.5 Equality

None of the inference methods described so far in this chapter can handle an assertion of the
form x = y without some additional work. Three distinct approaches can be taken. The first is
to axiomatize equality—to write down sentences about the equality relation in the knowledge
base. We need to say that equality is reflexive, symmetric, and transitive, and we also have
to say that we can substitute equals for equals in any predicate or function. So we need three
basic axioms, and then one for each predicate and function:

∀x x=x
∀x,y x=y ⇒ y=x
∀x,y,z x=y∧ y=z ⇒ x=z

∀x,y x=y ⇒ (P1(x) ⇔ P1(y))
∀x,y x=y ⇒ (P2(x) ⇔ P2(y))

...
∀w,x,y,z w=y∧ x=z ⇒ (F1(w,x)=F1(y,z))
∀w,x,y,z w=y∧ x=z ⇒ (F2(w,x)=F2(y,z))

...
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Given these sentences, a standard inference procedure such as resolution can perform tasks
requiring equality reasoning, such as solving mathematical equations. However, these axioms
will generate a lot of conclusions, most of them not helpful to a proof. So the second approach
is to add inference rules rather than axioms. The simplest rule, demodulation, takes a unit
clause x=y and some clause α that contains the term x, and yields a new clause formed by
substituting y for x within α. It works if the term within α unifies with x; it need not be exactly
equal to x. Note that demodulation is directional; given x = y, the x always gets replaced with
y, never vice versa. That means that demodulation can be used for simplifying expressions
using demodulators such as z+0=z or z1=z. As another example, given

Father(Father(x)) = PaternalGrandfather(x)
Birthdate(Father(Father(Bella)),1926)

we can conclude by demodulation

Birthdate(PaternalGrandfather(Bella),1926) .

More formally, we have

• Demodulation: For any terms x, y, and z, where z appears somewhere in literal mi and Demodulation

where UNIFY(x,z) = θ 6= f ailure,
x=y, m1∨·· ·∨mn

SUB(SUBST(θ,x),SUBST(θ,y),m1∨·· ·∨mn)
.

where SUBST is the usual substitution of a binding list, and SUB(x,y,m) means to re-
place x with y somewhere within m.

The rule can also be extended to handle non-unit clauses in which an equal sign appears:

• Paramodulation: For any terms x, y, and z, where z appears somewhere in literal mi, Paramodulation

and where UNIFY(x,z) = θ,

`1∨·· ·∨ `k∨ x=y, m1∨·· ·∨mn

SUB(SUBST(θ,x),SUBST(θ,y),SUBST(θ,`1∨·· ·∨ `k∨m1∨·· ·∨mn))
.

For example, from

P(F(x,B),x)∨Q(x) and F(A,y)=y∨R(y)

we have θ=UNIFY(F(A,y),F(x,B))={x/A,y/B}, and we can conclude by paramodulation
the sentence

P(B,A)∨Q(A)∨R(B) .

Paramodulation yields a complete inference procedure for first-order logic with equality.
A third approach handles equality reasoning entirely within an extended unification algo-

rithm. That is, terms are unifiable if they are provably equal under some substitution, where
“provably” allows for equality reasoning. For example, the terms 1+2 and 2+1 normally are
not unifiable, but a unification algorithm that knows that x+ y=y+ x could unify them with
the empty substitution. Equational unification of this kind can be done with efficient algo- Equational

unification
rithms designed for the particular axioms used (commutativity, associativity, and so on) rather
than through explicit inference with those axioms. Theorem provers using this technique are
closely related to the CLP systems described in Section 9.4.
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9.5.6 Resolution strategies

We know that repeated applications of the resolution inference rule will eventually find a
proof if one exists. In this subsection, we examine strategies that help find proofs efficiently.

Unit preference: This strategy prefers to do resolutions where one of the sentences is a singleUnit preference

literal (also known as a unit clause). The idea behind the strategy is that we are trying to
produce an empty clause, so it might be a good idea to prefer inferences that produce shorter
clauses. Resolving a unit sentence (such as P) with any other sentence (such as ¬P∨¬Q∨R)
always yields a clause (in this case, ¬Q∨ R) that is shorter than the other clause. When
the unit preference strategy was first tried for propositional inference in 1964, it led to a
dramatic speedup, making it feasible to prove theorems that could not be handled without the
preference. Unit resolution is a restricted form of resolution in which every resolution step
must involve a unit clause. Unit resolution is incomplete in general, but complete for Horn
clauses. Unit resolution proofs on Horn clauses resemble forward chaining.

The OTTER theorem prover (McCune, 1990), uses a form of best-first search. Its heuristic
function measures the “weight” of each clause, where lighter clauses are preferred. The exact
choice of heuristic is up to the user, but generally, the weight of a clause should be correlated
with its size or difficulty. Unit clauses are treated as light; the search can thus be seen as a
generalization of the unit preference strategy.

Set of support: Preferences that try certain resolutions first are helpful, but in general it isSet of support

more effective to try to eliminate some potential resolutions altogether. For example, we can
insist that every resolution step involve at least one element of a special set of clauses—the
set of support. The resolvent is then added into the set of support. If the set of support is
small relative to the whole knowledge base, the search space will be reduced dramatically.

To ensure completeness of this strategy, we can choose the set of support S so that the
remainder of the sentences are jointly satisfiable. For example, one can use the negated query
as the set of support, on the assumption that the original knowledge base is consistent. (After
all, if it is not consistent, then the fact that the query follows from it is vacuous.) The set-of-
support strategy has the additional advantage of generating goal-directed proof trees that are
often easy for humans to understand.

Input resolution: In this strategy, every resolution combines one of the input sentences (fromInput resolution

the KB or the query) with some other sentence. The proof in Figure 9.10 on page 319 uses
only input resolutions and has the characteristic shape of a single “spine” with single sen-
tences combining onto the spine. Clearly, the space of proof trees of this shape is smaller
than the space of all proof graphs. In Horn knowledge bases, Modus Ponens is a kind of
input resolution strategy, because it combines an implication from the original KB with some
other sentences. Thus, it is no surprise that input resolution is complete for knowledge bases
that are in Horn form, but incomplete in the general case. The linear resolution strategy is aLinear resolution

slight generalization that allows P and Q to be resolved together either if P is in the original
KB or if P is an ancestor of Q in the proof tree. Linear resolution is complete.

Subsumption: The subsumption method eliminates all sentences that are subsumed by (thatSubsumption

is, more specific than) an existing sentence in the KB. For example, if P(x) is in the KB, then
there is no sense in adding P(A) and even less sense in adding P(A)∨Q(B). Subsumption
helps keep the KB small and thus helps keep the search space small.
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Learning: We can improve a theorem prover by learning from experience. Given a collection Learning

of previously-proved theorems, train a machine learning system to answer the question: given
a set of premises and a goal to prove, what proof steps are similar to steps that were successful
in the past? The DEEPHOL system (Bansal et al., 2019) does exactly that, using deep neural
networks (see Chapter 22) to build models (called embeddings) of goals and premises, and
using them to make selections. Training can use both human- and computer-generated proofs
as examples, starting from a collection of 10,000 proofs.

Practical uses of resolution theorem provers

We have shown how first-order logic can represent a simple real-world scenario involving
concepts like selling, weapons, and citizenship. But complex real-world scenarios have too
much uncertainty and too many unknowns. Logic has proven to be more successful for sce-
narios involving formal, strictly defined concepts, such as the synthesis and verification of Synthesis

Verificationboth hardware and software. Theorem-proving research is carried out in the fields of hard-
ware design, programming languages, and software engineering—not just in AI.

In the case of hardware, the axioms describe the interactions between signals and cir-
cuit elements. (See Section 8.4.2 on page 291 for an example.) Logical reasoners designed
specially for verification have been able to verify entire CPUs, including their timing prop-
erties (Srivas and Bickford, 1990). The AURA theorem prover has been applied to design
circuits that are more compact than any previous design (Wojciechowski and Wojcik, 1983).

In the case of software, reasoning about programs is quite similar to reasoning about
actions, as in Chapter 7: axioms describe the preconditions and effects of each statement.
The formal synthesis of algorithms was one of the first uses of theorem provers, as outlined
by Cordell Green (1969a), who built on earlier ideas by Herbert Simon (1963). The idea
is to constructively prove a theorem to the effect that “there exists a program p satisfying a
certain specification.” Although fully automated deductive synthesis, as it is called, has not
yet become feasible for general-purpose programming, hand-guided deductive synthesis has
been successful in designing several novel and sophisticated algorithms. Synthesis of special-
purpose programs, such as scientific computing code, is also an active area of research.

Similar techniques are now being applied to software verification by systems such as the
SPIN model checker (Holzmann, 1997). For example, the Remote Agent spacecraft control
program was verified before and after flight (Havelund et al., 2000). The RSA public key
encryption algorithm and the Boyer–Moore string-matching algorithm have been verified this
way (Boyer and Moore, 1984).

Summary

We have presented an analysis of logical inference in first-order logic and a number of algo-
rithms for doing it.

• A first approach uses inference rules (universal instantiation and existential instan-
tiation) to propositionalize the inference problem. Typically, this approach is slow,
unless the domain is small.

• The use of unification to identify appropriate substitutions for variables eliminates the
instantiation step in first-order proofs, making the process more efficient in many cases.
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• A lifted version of Modus Ponens uses unification to provide a natural and powerful
inference rule, generalized Modus Ponens. The forward-chaining and backward-
chaining algorithms apply this rule to sets of definite clauses.

• Generalized Modus Ponens is complete for definite clauses, although the entailment
problem is semidecidable. For Datalog knowledge bases consisting of function-free
definite clauses, entailment is decidable.

• Forward chaining is used in deductive databases, where it can be combined with re-
lational database operations. It is also used in production systems, which perform
efficient updates with very large rule sets. Forward chaining is complete for Datalog
and runs in polynomial time.

• Backward chaining is used in logic programming systems, which employ sophisti-
cated compiler technology to provide very fast inference. Backward chaining suffers
from redundant inferences and infinite loops; these can be alleviated by memoization.

• Prolog, unlike first-order logic, uses a closed world with the unique names assumption
and negation as failure. These make Prolog a more practical programming language,
but bring it further from pure logic.

• The generalized resolution inference rule provides a complete proof system for first-
order logic, using knowledge bases in conjunctive normal form.

• Several strategies exist for reducing the search space of a resolution system without
compromising completeness. One of the most important issues is dealing with equality;
we showed how demodulation and paramodulation can be used.

• Efficient resolution-based theorem provers have been used to prove interesting mathe-
matical theorems and to verify and synthesize software and hardware.

Bibliographical and Historical Notes

Gottlob Frege, who developed full first-order logic in 1879, based his system of inference
on a collection of valid schemas plus a single inference rule, Modus Ponens. Whitehead
and Russell (1910) expounded the so-called rules of passage (the actual term is from Her-
brand (1930)) that are used to move quantifiers to the front of formulas. Skolem constants
and Skolem functions were introduced, appropriately enough, by Thoralf Skolem (1920).
Oddly enough, it was Skolem who introduced the Herbrand universe (Skolem, 1928).

Herbrand’s theorem (Herbrand, 1930) has played a vital role in the development of au-
tomated reasoning. Herbrand is also the inventor of unification. Gödel (1930) built on the
ideas of Skolem and Herbrand to show that first-order logic has a complete proof proce-
dure. Alan Turing (1936) and Alonzo Church (1936) simultaneously showed, using very
different proofs, that validity in first-order logic was not decidable. The excellent text by
Enderton (1972) explains all of these results in a rigorous yet understandable fashion.

Abraham Robinson proposed that an automated reasoner could be built using proposition-
alization and Herbrand’s theorem, and Paul Gilmore (1960) wrote the first program. Davis
and Putnam (1960) introduced the propositionalization method of Section 9.1. Prawitz (1960)
developed the key idea of letting the quest for propositional inconsistency drive the search,
and generating terms from the Herbrand universe only when they were necessary to estab-
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lish propositional inconsistency. This idea led John Alan Robinson (no relation) to develop
resolution (Robinson, 1965).

Resolution was adopted for question-answering systems by Cordell Green and Bertram
Raphael (1968). Early AI implementations put a good deal of effort into data structures that
would allow efficient retrieval of facts; this work is covered in AI programming texts (Char-
niak et al., 1987; Norvig, 1992; Forbus and de Kleer, 1993). By the early 1970s, forward
chaining was well established in AI as an easily understandable alternative to resolution. AI
applications typically involved large numbers of rules, so it was important to develop efficient
rule-matching technology, particularly for incremental updates.

The technology for production systems was developed to support such applications. The
production system language OPS-5 (Forgy, 1981; Brownston et al., 1985), incorporating the
efficient Rete match process (Forgy, 1982), was used for applications such as the R1 expert
system for minicomputer configuration (McDermott, 1982). Kraska et al. (2017) describe
how neural nets can learn an efficient indexing scheme for specific data sets.

The SOAR cognitive architecture (Laird et al., 1987; Laird, 2008) was designed to handle
very large rule sets—up to a million rules (Doorenbos, 1994). Example applications of SOAR

include controlling simulated fighter aircraft (Jones et al., 1998), airspace management (Tay-
lor et al., 2007), AI characters for computer games (Wintermute et al., 2007), and training
tools for soldiers (Wray and Jones, 2005).

The field of deductive databases began with a workshop in Toulouse in 1977 attended
by experts in logical inference and databases (Gallaire and Minker, 1978). Influential work
by Chandra and Harel (1980) and Ullman (1985) led to the adoption of Datalog as a standard
language for deductive databases. The development of the magic sets technique for rule
rewriting by Bancilhon et al. (1986) allowed forward chaining to borrow the advantage of
goal-directedness from backward chaining.

The rise of the Internet led to increased availability of massive online databases. This
drove increased interest in integrating multiple databases into a consistent dataspace (Halevy,
2007). Kraska et al. (2017) showed speedups of up to 70% by using machine learning to
create learned index structures for efficient data lookup.

Backward chaining for logical inference originated in the PLANNER language (Hewitt,
1969). Meanwhile, in 1972, Alain Colmerauer had developed and implemented Prolog for
the purpose of parsing natural language—Prolog’s clauses were intended initially as context-
free grammar rules (Roussel, 1975; Colmerauer et al., 1973).

Much of the theoretical background for logic programming was developed by Robert
Kowalski at Imperial College London, working with Colmerauer; see Kowalski (1988) and
Colmerauer and Roussel (1993) for a historical overview. Efficient Prolog compilers are
generally based on the Warren Abstract Machine (WAM) model of computation developed by
David H. D. Warren (1983). Van Roy (1990) showed that Prolog programs can be competitive
with C programs in terms of speed.

Methods for avoiding unnecessary looping in recursive logic programs were developed
independently by Smith et al. (1986) and Tamaki and Sato (1986). The latter paper also
included memoization for logic programs, a method developed extensively as tabled logic
programming by David S. Warren. Swift and Warren (1994) show how to extend the WAM
to handle tabling, enabling Datalog programs to execute an order of magnitude faster than
forward-chaining deductive database systems.
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Early work on constraint logic programming was done by Jaffar and Lassez (1987). Jaffar
et al. (1992) developed the CLP(R) system for handling real-valued constraints. There are
now commercial products for solving large-scale configuration and optimization problems
with constraint programming; one of the best known is ILOG (Junker, 2003). Answer set
programming (Gelfond, 2008) extends Prolog, allowing disjunction and negation.

Texts on logic programming and Prolog include Shoham (1994), Bratko (2009), Clocksin
(2003), and Clocksin and Mellish (2003). Prior to 2000, the Journal of Logic Programming
was the journal of record; it has been replaced by Theory and Practice of Logic Programming.
Logic programming conferences include the International Conference on Logic Programming
(ICLP) and the International Logic Programming Symposium (ILPS).

Research into mathematical theorem proving began even before the first complete first-
order systems were developed. Herbert Gelernter’s Geometry Theorem Prover (Gelernter,
1959) used heuristic search methods combined with diagrams for pruning false subgoals and
was able to prove some quite intricate results in Euclidean geometry. The demodulation
and paramodulation rules for equality reasoning were introduced by Wos et al. (1967) and
Wos and Robinson (1968), respectively. These rules were also developed independently in
the context of term-rewriting systems (Knuth and Bendix, 1970). The incorporation of equal-
ity reasoning into the unification algorithm is due to Gordon Plotkin (1972). Jouannaud
and Kirchner (1991) survey equational unification from a term-rewriting perspective. An
overview of unification is given by Baader and Snyder (2001).

A number of control strategies have been proposed for resolution, beginning with the
unit preference strategy (Wos et al., 1964). The set-of-support strategy was proposed by Wos
et al. (1965) to provide a degree of goal-directedness in resolution. Linear resolution first
appeared in Loveland (1970). Genesereth and Nilsson (1987, Chapter 5) provide an analysis
of a wide variety of control strategies. Alemi et al. (2017) show how the DEEPMATH system
uses deep neural nets to select the axioms that are most likely to lead to a proof when handed
to a traditional theorem prover. In a sense, the neural net plays the role of the mathematician’s
intuition, and the theorem prover plays the role of the mathematician’s technical expertise.
(Loos et al., 2017) show that this approach can be extended to help guide the search, allowing
more theorems to be proved.

A Computational Logic (Boyer and Moore, 1979) is the basic reference on the Boyer-
Moore theorem prover. Stickel (1992) describes the Prolog Technology Theorem Prover
(PTTP), which combines Prolog compilation and model elimination. SETHEO (Letz et al.,
1992) is another widely used theorem prover based on this approach. LEANTAP (Beckert
and Posegga, 1995) is an efficient theorem prover implemented in only 25 lines of Prolog.
Weidenbach (2001) describes SPASS, one of the strongest current theorem provers. The most
successful theorem prover in recent annual competitions has been VAMPIRE (Riazanov and
Voronkov, 2002). The COQ system (Bertot et al., 2004) and the E equational solver (Schulz,
2004) have also proven to be valuable tools for proving correctness.

Theorem provers have been used to automatically synthesize and verify software. Exam-
ples include the control software for NASA’s Orion capsule (Lowry, 2008) and other space-
craft (Denney et al., 2006). The design of the FM9001 32-bit microprocessor was proved
correct by the NQTHM theorem proving system (Hunt and Brock, 1992).

The Conference on Automated Deduction (CADE) runs an annual contest for automated
theorem provers. Sutcliffe (2016) describes the 2016 competition; top-scoring systems in-
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clude VAMPIRE (Riazanov and Voronkov, 2002), PROVER9 (Sabri, 2015), and an updated
version of E (Schulz, 2013). Wiedijk (2003) compares the strength of 15 mathematical
provers. TPTP (Thousands of Problems for Theorem Provers) is a library of theorem-proving
problems, useful for comparing the performance of systems (Sutcliffe and Suttner, 1998; Sut-
cliffe et al., 2006).

Theorem provers have come up with novel mathematical results that eluded human math-
ematicians for decades, as detailed in the book Automated Reasoning and the Discovery of
Missing Elegant Proofs (Wos and Pieper, 2003). The SAM (Semi-Automated Mathematics)
program was the first, proving a lemma in lattice theory (Guard et al., 1969). The AURA

program has also answered open questions in several areas of mathematics (Wos and Winker,
1983). The Boyer–Moore theorem prover (Boyer and Moore, 1979) was used by Natarajan
Shankar to construct a formal proof of Gödel’s Incompleteness Theorem (Shankar, 1986).
The NUPRL system proved Girard’s paradox (Howe, 1987) and Higman’s Lemma (Murthy
and Russell, 1990).

In 1933, Herbert Robbins proposed a simple set of axioms—the Robbins algebra— Robbins algebra

that appeared to define Boolean algebra, but no proof could be found (despite serious work
by Alfred Tarski and others) until EQP (a version of OTTER) computed a proof (McCune,
1997). Benzmüller and Paleo (2013) used a higher-order theorem prover to verify Gödel’s
proof of the existence of “God.” The Kepler sphere-packing theorem was proved by Thomas
Hales (2005) with the help of some complicated computer calculations, but the proof was not
completely accepted until a formal proof was generated with the help of the HOL Light and
Isabelle proof assistants (Hales et al., 2017).

Many early papers in mathematical logic are collected in From Frege to Gödel: A Source
Book in Mathematical Logic (van Heijenoort, 1967). Textbooks geared toward automated
deduction include the classic Symbolic Logic and Mechanical Theorem Proving (Chang and
Lee, 1973), as well as more recent works by Duffy (1991), Wos et al. (1992), Bibel (1993),
and Kaufmann et al. (2000). The principal journal for theorem proving is the Journal of
Automated Reasoning; the main conferences are the annual Conference on Automated De-
duction (CADE) and the International Joint Conference on Automated Reasoning (IJCAR).
The Handbook of Automated Reasoning (Robinson and Voronkov, 2001) collects papers in
the field. MacKenzie’s Mechanizing Proof (2004) covers the history and technology of theo-
rem proving for the popular audience.



CHAPTER 10
KNOWLEDGE REPRESENTATION
In which we show how to represent diverse facts about the real world in a form that can be
used to reason and solve problems.

The previous chapters showed how an agent with a knowledge base can make inferences
that enable it to act appropriately. In this chapter we address the question of what content
to put into such an agent’s knowledge base—how to represent facts about the world. We
will use first-order logic as the representation language, but later chapters will introduce dif-
ferent representation formalisms such as hierarchical task networks for reasoning about plans
(Chapter 11), Bayesian networks for reasoning with uncertainty (Chapter 13), Markov models
for reasoning over time (Chapter 16), and deep neural networks for reasoning about images,
sounds, and other data (Chapter 22). But no matter what representation you use, the facts
about the world still need to be handled, and this chapter gives you a feeling for the issues.

Section 10.1 introduces the idea of a general ontology, which organizes everything in
the world into a hierarchy of categories. Section 10.2 covers the basic categories of objects,
substances, and measures; Section 10.3 covers events; and Section 10.4 discusses knowledge
about beliefs. We then return to consider the technology for reasoning with this content:
Section 10.5 discusses reasoning systems designed for efficient inference with categories,
and Section 10.6 discusses reasoning with default information.

10.1 Ontological Engineering

In “toy” domains, the choice of representation is not that important; many choices will work.
Complex domains such as shopping on the Internet or driving a car in traffic require more
general and flexible representations. This chapter shows how to create these representations,
concentrating on general concepts—such as Events, Time, Physical Objects, and Beliefs—
that occur in many different domains. Representing these abstract concepts is sometimes
called ontological engineering.Ontological

engineering

We cannot hope to represent everything in the world, even a 1000-page textbook, but
we will leave placeholders where new knowledge for any domain can fit in. For example,
we will define what it means to be a physical object, and the details of different types of
objects—robots, televisions, books, or whatever—can be filled in later. This is analogous to
the way that designers of an object-oriented programming framework (such as the Java Swing
graphical framework) define general concepts like Window, expecting users to use these to
define more specific concepts like SpreadsheetWindow. The general framework of concepts
is called an upper ontology because of the convention of drawing graphs with the generalUpper ontology

concepts at the top and the more specific concepts below them, as in Figure 10.1.



Section 10.1 Ontological Engineering 333

Anything

AbstractObjects

Sets Numbers RepresentationalObjects Intervals Places ProcessesPhysicalObjects

Humans

Categories Sentences Measurements Moments Things Stuff

Times Weights Animals Agents Solid Liquid Gas

GeneralizedEvents

Figure 10.1 The upper ontology of the world, showing the topics to be covered later in
the chapter. Each link indicates that the lower concept is a specialization of the upper one.
Specializations are not necessarily disjoint—a human is both an animal and an agent. We
will see in Section 10.3.2 why physical objects come under generalized events.

Before considering the ontology further, we should state one important caveat. We have
elected to use first-order logic to discuss the content and organization of knowledge, although
certain aspects of the real world are hard to capture in FOL. The principal difficulty is that
most generalizations have exceptions or hold only to a degree. For example, although “toma-
toes are red” is a useful rule, some tomatoes are green, yellow, or orange. Similar exceptions
can be found to almost all the rules in this chapter. The ability to handle exceptions and un-
certainty is extremely important, but is orthogonal to the task of understanding the general
ontology. For this reason, we delay the discussion of exceptions until Section 10.5 of this
chapter, and the more general topic of reasoning with uncertainty until Chapter 12.

Of what use is an upper ontology? Consider the ontology for circuits in Section 8.4.2. It
makes many simplifying assumptions: time is omitted completely; signals are fixed and do
not propagate; the structure of the circuit remains constant. A more general ontology would
consider signals at particular times, and would include the wire lengths and propagation de-
lays. This would allow us to simulate the timing properties of the circuit, and indeed such
simulations are often carried out by circuit designers.

We could also introduce more interesting classes of gates, for example, by describing
the technology (TTL, CMOS, and so on) as well as the input–output specification. If we
wanted to discuss reliability or diagnosis, we would include the possibility that the structure
of the circuit or the properties of the gates might change spontaneously. To account for stray
capacitances, we would need to represent where the wires are on the board.

If we look at the wumpus world, similar considerations apply. Although we do represent
time, it has a simple structure: Nothing happens except when the agent acts, and all changes
are instantaneous. A more general ontology, better suited for the real world, would allow for
simultaneous changes extended over time. We also used a Pit predicate to say which squares
have pits. We could have allowed for different kinds of pits by having several individuals
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belonging to the class of pits, each having different properties. Similarly, we might want to
allow for other animals besides wumpuses. It might not be possible to pin down the exact
species from the available percepts, so we would need to build up a biological taxonomy to
help the agent predict the behavior of cave dwellers from scanty clues.

For any special-purpose ontology, it is possible to make changes like these to move to-
ward greater generality. An obvious question then arises: do all these ontologies converge
on a general-purpose ontology? After centuries of philosophical and computational inves-
tigation, the answer is “Maybe.” In this section, we present one general-purpose ontology
that synthesizes ideas from those centuries. Two major characteristics of general-purpose
ontologies distinguish them from collections of special-purpose ontologies:

• A general-purpose ontology should be applicable in more or less any special-purpose
domain (with the addition of domain-specific axioms). This means that no representa-
tional issue can be finessed or swept under the carpet.

• In any sufficiently demanding domain, different areas of knowledge must be unified,
because reasoning and problem solving could involve several areas simultaneously. A
robot circuit-repair system, for instance, needs to reason about circuits in terms of elec-
trical connectivity and physical layout, and about time, both for circuit timing analysis
and estimating labor costs. The sentences describing time therefore must be capable
of being combined with those describing spatial layout and must work equally well for
nanoseconds and minutes and for angstroms and meters.

We should say up front that the enterprise of general ontological engineering has so far had
only limited success. None of the top AI applications (as listed in Chapter 1) make use of
a general ontology—they all use special-purpose knowledge engineering and machine learn-
ing. Social/political considerations can make it difficult for competing parties to agree on an
ontology. As Tom Gruber (2004) says, “Every ontology is a treaty—a social agreement—
among people with some common motive in sharing.” When competing concerns outweigh
the motivation for sharing, there can be no common ontology. The smaller the number of
stakeholders, the easier it is to create an ontology, and thus it is harder to create a general-
purpose ontology than a limited-purpose one, such as the Open Biomedical Ontology (Smith
et al., 2007). Those ontologies that do exist have been created along four routes:

1. By a team of trained ontologists or logicians, who architect the ontology and write
axioms. The CYC system was mostly built this way (Lenat and Guha, 1990).

2. By importing categories, attributes, and values from an existing database or databases.
DBPEDIA was built by importing structured facts from Wikipedia (Bizer et al., 2007).

3. By parsing text documents and extracting information from them. TEXTRUNNER was
built by reading a large corpus of Web pages (Banko and Etzioni, 2008).

4. By enticing unskilled amateurs to enter commonsense knowledge. The OPENMIND

system was built by volunteers who proposed facts in English (Singh et al., 2002;
Chklovski and Gil, 2005).

As an example, the Google Knowledge Graph uses semistructured content from Wikipedia,
combining it with other content gathered from across the web under human curation. It
contains over 70 billion facts and provides answers for about a third of Google searches
(Dong et al., 2014).
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10.2 Categories and Objects

The organization of objects into categories is a vital part of knowledge representation. Al- Category

though interaction with the world takes place at the level of individual objects, much reason- J
ing takes place at the level of categories. For example, a shopper would normally have the
goal of buying a basketball, rather than a particular basketball such as BB9. Categories also
serve to make predictions about objects once they are classified. One infers the presence of
certain objects from perceptual input, infers category membership from the perceived proper-
ties of the objects, and then uses category information to make predictions about the objects.
For example, from its green and yellow mottled skin, one-foot diameter, ovoid shape, red
flesh, black seeds, and presence in the fruit aisle, one can infer that an object is a watermelon;
from this, one infers that it would be useful for fruit salad.

There are two choices for representing categories in first-order logic: predicates and ob-
jects. That is, we can use the predicate Basketball(b), or we can reify1 the category as Reification

an object, Basketballs. We could then say Member(b,Basketballs), which we will abbre-
viate as b∈Basketballs, to say that b is a member of the category of basketballs. We say
Subset(Basketballs,Balls), abbreviated as Basketballs ⊂ Balls, to say that Basketballs is a
subcategory of Balls. We will use subcategory, subclass, and subset interchangeably. Subcategory

Categories organize knowledge through inheritance. If we say that all instances of the Inheritance

category Food are edible, and if we assert that Fruit is a subclass of Food and Apples is a sub-
class of Fruit, then we can infer that every apple is edible. We say that the individual apples
inherit the property of edibility, in this case from their membership in the Food category.

Subclass relations organize categories into a taxonomic hierarchy or taxonomy. Tax- Taxonomic hierarchy

onomies have been used explicitly for centuries in technical fields. The largest such taxonomy
organizes about 10 million living and extinct species, many of them beetles,2 into a single hi-
erarchy; library science has developed a taxonomy of all fields of knowledge, encoded as the
Dewey Decimal system; and tax authorities and other government departments have devel-
oped extensive taxonomies of occupations and commercial products.

First-order logic makes it easy to state facts about categories, either by relating objects to
categories or by quantifying over their members. Here are some example facts:

• An object is a member of a category.
BB9∈Basketballs

• A category is a subclass of another category.
Basketballs⊂ Balls

• All members of a category have some properties.
(x∈Basketballs) ⇒ Spherical(x)

• Members of a category can be recognized by some properties.
Orange(x)∧Round(x)∧Diameter(x)=9.5′′∧ x∈Balls ⇒ x∈Basketballs

• A category as a whole has some properties.
Dogs∈DomesticatedSpecies

1 Turning a proposition into an object is called reification, from the Latin word res, or thing. John McCarthy
proposed the term “thingification,” but it never caught on.
2 When asked what one could deduce about the Creator from the study of nature, biologist J. B. S. Haldane said
“An inordinate fondness for beetles.”
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Notice that because Dogs is a category and is a member of DomesticatedSpecies, the latter
must be a category of categories. Of course there are exceptions to many of the above rules
(punctured basketballs are not spherical); we deal with these exceptions later.

Although subclass and member relations are the most important ones for categories, we
also want to be able to state relations between categories that are not subclasses of each
other. For example, if we just say that Undergraduates and GraduateStudents are subclasses
of Students, then we have not said that an undergraduate cannot also be a graduate student.
We say that two or more categories are disjoint if they have no members in common. WeDisjoint

may also want to say that the classes undergrad and graduate student form an exhaustive
decomposition of university students. A exhaustive decomposition of disjoint sets is knownExhaustive

decomposition

as a partition. Here are some more examples of these three concepts:Partition

Disjoint({Animals,Vegetables})
ExhaustiveDecomposition({Americans,Canadians,Mexicans},

NorthAmericans)
Partition({Animals,Plants,Fungi,Protista,Monera},

LivingThings) .

(Note that the ExhaustiveDecomposition of NorthAmericans is not a Partition, because some
people have dual citizenship.) The three predicates are defined as follows:

Disjoint(s) ⇔ (∀c1,c2 c1∈s∧ c2∈s∧ c1 6= c2 ⇒ Intersection(c1,c2)={ })
ExhaustiveDecomposition(s,c) ⇔ (∀ i i∈c ⇔ ∃c2 c2∈s∧ i∈c2)
Partition(s,c) ⇔ Disjoint(s)∧ExhaustiveDecomposition(s,c) .

Categories can also be defined by providing necessary and sufficient conditions for mem-
bership. For example, a bachelor is an unmarried adult male:

x∈Bachelors ⇔ Unmarried(x)∧ x∈Adults∧ x∈Males .

As we discuss in the sidebar on natural kinds on page 338, strict logical definitions for cat-
egories are usually possible only for artificial formal terms, not for ordinary objects. But
definitions are not always necessary.

10.2.1 Physical composition

The idea that one object can be part of another is a familiar one. One’s nose is part of one’s
head, Romania is part of Europe, and this chapter is part of this book. We use the general
PartOf relation to say that one thing is part of another. Objects can be grouped into PartOf
hierarchies, reminiscent of the Subset hierarchy:

PartOf (Bucharest,Romania)
PartOf (Romania,EasternEurope)
PartOf (EasternEurope,Europe)
PartOf (Europe,Earth) .

The PartOf relation is transitive and reflexive; that is,

PartOf (x,y)∧PartOf (y,z) ⇒ PartOf (x,z)
PartOf (x,x) .

Therefore, we can conclude PartOf (Bucharest,Earth). Categories of composite objects areComposite object

often characterized by structural relations among parts. For example, a biped is an object
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with exactly two legs attached to a body:

Biped(a) ⇒ ∃ l1, l2,b Leg(l1)∧Leg(l2)∧Body(b) ∧
PartOf (l1,a)∧PartOf (l2,a)∧PartOf (b,a) ∧
Attached(l1,b)∧Attached(l2,b) ∧
l1 6= l2∧ [∀ l3 Leg(l3)∧PartOf (l3,a) ⇒ (l3= l1∨ l3= l2)] .

The notation for “exactly two” is a little awkward; we are forced to say that there are two
legs, that they are not the same, and that if anyone proposes a third leg, it must be the same
as one of the other two. In Section 10.5.2, we describe a formalism called description logic
that makes it easier to represent constraints like “exactly two.”

We can define a PartPartition relation analogous to the Partition relation for categories.
(See Exercise 10.DECM.) An object is composed of the parts in its PartPartition and can be
viewed as deriving some properties from those parts. For example, the mass of a composite
object is the sum of the masses of the parts. Notice that this is not the case with categories,
which have no mass, even though their elements might.

It is also useful to define composite objects with definite parts but no particular struc-
ture. For example, we might want to say “The apples in this bag weigh two pounds.” The
temptation would be to ascribe this weight to the set of apples in the bag, but this would be
a mistake because the set is an abstract mathematical concept that has elements but does not
have weight. Instead, we need a new concept, which we will call a bunch. For example, if Bunch

the apples are Apple1, Apple2, and Apple3, then

BunchOf ({Apple1,Apple2,Apple3})
denotes the composite object with the three apples as parts (not elements). We can then use the
bunch as a normal, albeit unstructured, object. Notice that BunchOf ({x})=x. Furthermore,
BunchOf (Apples) is the composite object consisting of all apples—not to be confused with
Apples, the category or set of all apples.

We can define BunchOf in terms of the PartOf relation. Obviously, each element of s is
part of BunchOf (s):

∀x x∈s ⇒ PartOf (x,BunchOf (s)) .

Furthermore, BunchOf (s) is the smallest object satisfying this condition. In other words,
BunchOf (s) must be part of any object that has all the elements of s as parts:

∀y [∀x x∈s ⇒ PartOf (x,y)] ⇒ PartOf (BunchOf (s),y) .

These axioms are an example of a general technique called logical minimization, which Logical minimization

means defining an object as the smallest one satisfying certain conditions.

10.2.2 Measurements

In both scientific and commonsense theories of the world, objects have height, mass, cost,
and so on. The values that we assign for these properties are called measures. Ordi- Measure

nary quantitative measures are quite easy to represent. We imagine that the universe in-
cludes abstract “measure objects,” such as the length that is the length of this line seg-
ment: . We can call this length 1.5 inches or 3.81 centimeters. Thus,
the same length has different names in our language. We represent the length with a units
function that takes a number as argument. (An alternative is explored in Exercise 10.ALTM.) Units function
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Natural Kinds

Some categories have strict definitions: an object is a triangle if and only if it is
a polygon with three sides. On the other hand, most categories in the real world
have no clear-cut definition; these are called natural kind categories. For example,
tomatoes tend to be a dull scarlet; roughly spherical; with an indentation at the top
where the stem was; about two to four inches in diameter; with a thin but tough
skin; and with flesh, seeds, and juice inside. However, there is variation: some
tomatoes are yellow or orange, unripe tomatoes are green, some are smaller or
larger than average, and cherry tomatoes are uniformly small. Rather than having
a complete definition of tomatoes, we have a set of features that serves to identify
objects that are clearly typical tomatoes, but might not definitively identify other
objects. (Could there be a tomato that is fuzzy like a peach?)

This poses a problem for a logical agent. The agent cannot be sure that an
object it has perceived is a tomato, and even if it were sure, it could not be cer-
tain which of the properties of typical tomatoes this one has. This problem is an
inevitable consequence of operating in partially observable environments.

One useful approach is to separate what is true of all instances of a category
from what is true only of typical instances. So in addition to the category Tomatoes,
we will also have the category Typical(Tomatoes). Here, the Typical function maps
a category to the subclass that contains only typical instances:

Typical(c)⊆ c .

Most knowledge about natural kinds will actually be about their typical instances:

x∈Typical(Tomatoes) ⇒ Red(x)∧Round(x) .

Thus, we can write down useful facts about categories without exact defini-
tions. The difficulty of providing exact definitions for most natural categories was
explained in depth by Wittgenstein (1953). He used the example of games to show
that members of a category shared “family resemblances” rather than necessary
and sufficient characteristics: what strict definition encompasses chess, tag, soli-
taire, and dodgeball?

The utility of the notion of strict definition was also challenged by
Quine (1953). He pointed out that even the definition of “bachelor” as an un-
married adult male is suspect; one might, for example, question a statement such
as “the Pope is a bachelor.” While not strictly false, this usage is certainly infe-
licitous because it induces unintended inferences on the part of the listener. The
tension could perhaps be resolved by distinguishing between logical definitions
suitable for internal knowledge representation and the more nuanced criteria for
felicitous linguistic usage. The latter may be achieved by “filtering” the assertions
derived from the former. It is also possible that failures of linguistic usage serve as
feedback for modifying internal definitions, so that filtering becomes unnecessary.
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If the line segment is called L1, we can write

Length(L1)= Inches(1.5)=Centimeters(3.81) .

Conversion between units is done by equating multiples of one unit to another:

Centimeters(2.54×d)= Inches(d) .

Similar axioms can be written for pounds and kilograms, seconds and days, and dollars and
cents. Measures can be used to describe objects as follows:

Diameter(Basketball12)= Inches(9.5)
ListPrice(Basketball12)=$(19)
Weight(BunchOf ({Apple1,Apple2,Apple3})) = Pounds(2)
d∈Days ⇒ Duration(d)=Hours(24) .

Note that $(1) is not a dollar bill—it is a price. One can have two dollar bills, but there is
only one object named $(1). Note also that, while Inches(0) and Centimeters(0) refer to the
same zero length, they are not identical to other zero measures, such as Seconds(0).

Simple, quantitative measures are easy to represent. Other measures present more of a
problem, because they have no agreed scale of values. Exercises have difficulty, desserts have
deliciousness, and poems have beauty, yet numbers cannot be assigned to these qualities. One
might, in a moment of pure accountancy, dismiss such properties as useless for the purpose of
logical reasoning; or, still worse, attempt to impose a numerical scale on beauty. This would
be a grave mistake, because it is unnecessary. The most important aspect of measures is not
the particular numerical values, but the fact that measures can be ordered.

Although measures are not numbers, we can still compare them, using an ordering symbol
such as >. For example, we might well believe that Norvig’s exercises are tougher than
Russell’s, and that one scores less on tougher exercises:

e1∈Exercises∧ e2∈Exercises∧Wrote(Norvig,e1)∧Wrote(Russell,e2) ⇒
Difficulty(e1)> Difficulty(e2) .

e1∈Exercises∧ e2∈Exercises∧Difficulty(e1)> Difficulty(e2) ⇒
ExpectedScore(e1)< ExpectedScore(e2) .

This is enough to allow one to decide which exercises to do, even though no numerical values
for difficulty were ever used. (One does, however, have to discover who wrote which exer-
cises.) These sorts of monotonic relationships among measures form the basis for the field of
qualitative physics, a subfield of AI that investigates how to reason about physical systems
without plunging into detailed equations and numerical simulations. Qualitative physics is
discussed in the historical notes section.

10.2.3 Objects: Things and stuff

The real world can be seen as consisting of primitive objects (e.g., atomic particles) and
composite objects built from them. By reasoning at the level of large objects such as apples
and cars, we can overcome the complexity involved in dealing with vast numbers of primitive
objects individually. There is, however, a significant portion of reality that seems to defy any
obvious individuation—division into distinct objects. We give this portion the generic name Individuation

stuff. For example, suppose I have some butter and an aardvark in front of me. I can say Stuff

there is one aardvark, but there is no obvious number of “butter-objects,” because any part of
a butter-object is also a butter-object, at least until we get to very small parts indeed. This is
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the major distinction between stuff and things. If we cut an aardvark in half, we do not get
two aardvarks (unfortunately).

The English language distinguishes clearly between stuff and things. We say “an aard-
vark,” but, except in pretentious California restaurants, one cannot say “a butter.” Linguists
distinguish between count nouns, such as aardvarks, holes, and theorems, and mass nouns,Count nouns

Mass noun such as butter, water, and energy. Several competing ontologies claim to handle this distinc-
tion. Here we describe just one; the others are covered in the historical notes section.

To represent stuff properly, we begin with the obvious. We need to have as objects in
our ontology at least the gross “lumps” of stuff we interact with. For example, we might
recognize a lump of butter as the one left on the table the night before; we might pick it up,
weigh it, sell it, or whatever. In these senses, it is an object just like the aardvark. Let us call
it Butter3. We also define the category Butter. Informally, its elements will be all those things
of which one might say “It’s butter,” including Butter3. With some caveats about very small
parts that we will omit for now, any part of a butter-object is also a butter-object:

b∈Butter∧PartOf (p,b) ⇒ p∈Butter .

We can now say that butter melts at around 30 degrees centigrade:

b∈Butter ⇒ MeltingPoint(b,Centigrade(30)) .

We could go on to say that butter is yellow, is less dense than water, is soft at room tempera-
ture, has a high fat content, and so on. On the other hand, butter has no particular size, shape,
or weight. We can define more specialized categories of butter such as UnsaltedButter, which
is also a kind of stuff. Note that the category PoundOfButter, which includes as members all
butter-objects weighing one pound, is not a kind of stuff. If we cut a pound of butter in half,
we do not, alas, get two pounds of butter.

What is actually going on is this: some properties are intrinsic: they belong to the veryIntrinsic

substance of the object, rather than to the object as a whole. When you cut an instance of stuff
in half, the two pieces retain the intrinsic properties—things like density, boiling point, flavor,
color, ownership, and so on. On the other hand, their extrinsic properties—weight, length,Extrinsic

shape, and so on—are not retained under subdivision. A category of objects that includes in
its definition only intrinsic properties is then a substance, or mass noun; a class that includes
any extrinsic properties in its definition is a count noun. Stuff and Thing are the most general
substance and object categories, respectively.

10.3 Events

In Section 7.7.1 we discussed actions: things that happen, such as Shoott ; and fluents: aspects
of the world that change, such as HaveArrowt . Both were represented as propositions, and
we used successor-state axioms to say that a fluent will be true at time t + 1 if the action at
time t caused it to be true, or if it was already true at time t and the action did not cause it to
be false. That was for a world in which actions are discrete, instantaneous, happen one at a
time, and have no variation in how they are performed (that is, there is only one kind of Shoot
action, there is no distinction between shooting quickly, slowly, nervously, etc.).

But as we move from simplistic domains to the real world, there is a much richer range
of actions or events3 to deal with. Consider a continuous action, such as filling a bathtub. A

3 The terms “event” and “action” may be used interchangeably—they both mean “something that can happen.”
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successor-state axiom can say that the tub is empty before the action and full when the action
is done, but it can’t talk about what happens during the action. It also can’t easily describe
two actions happening at the same time—such as brushing one’s teeth while waiting for the
tub to fill. To handle such cases we introduce an approach known as event calculus. Event calculus

The objects of event calculus are events, fluents, and time points. At(Shankar,Berkeley)
is a fluent: an object that refers to the fact of Shankar being in Berkeley. The event E1 of
Shankar flying from San Francisco to Washington, D.C., is described as

E1 ∈ Flyings∧Flyer(E1,Shankar)∧Origin(E1,SF)∧Destination(E1,DC) .

where Flyings is the category of all flying events. By reifying events we make it possible to
add any amount of arbitrary information about them. For example, we can say that Shankar’s
flight was bumpy with Bumpy(E1). In an ontology where events are n-ary predicates, there
would be no way to add extra information like this; moving to an n+1-ary predicate isn’t a
scalable solution.

To assert that a fluent is actually true starting at some point in time t1 and continuing
to time t2, we use the predicate T , as in T (At(Shankar,Berkeley), t1, t2). Similarly, we use
Happens(E1, t1, t2) to say that the event E1 actually happened, starting at time t1 and ending
at time t2. The complete set of predicates for one version of the event calculus4 is:

T ( f , t1, t2) Fluent f is true for all times between t1 and t2
Happens(e, t1, t2) Event e starts at time t1 and ends at t2
Initiates(e, f , t) Event e causes fluent f to become true at time t
Terminates(e, f , t) Event e causes fluent f to cease to be true at time t
Initiated( f , t1, t2) Fluent f become true at some point between t1 and t2
Terminated( f , t1, t2) Fluent f cease to be true at some point between t1 and t2
t1 < t2 Time point t1 occurs before time t2

We can describe the effects of a flying event:

E = Flyings(a,here, there)∧Happens(E, t1, t2) ⇒
Terminates(E,At(a,here), t1)∧ Initiates(E,At(a, there), t2)

We assume a distinguished event, Start, that describes the initial state by saying which fluents
are true (using Initiates) or false (using Terminated) at the start time. We can then describe
what fluents are true at what points in time with a pair of axioms for T and ¬T that follow the
same general format as the successor-state axioms: Assume an event happens between time
t1 and t3, and at t2 somewhere in that time interval the event changes the value of fluent f ,
either initiating it (making it true) or terminating it (making it false). Then at time t4 in the
future, if no other intervening event has changed the fluent (either terminated or initiated it,
respectively), then the fluent will have maintained its value. Formally, the axioms are:

Happens(e, t1, t3)∧ Initiates(e, f , t2)∧¬Terminated( f , t2, t4)∧ t1 ≤ t2 ≤ t3 ≤ t4 ⇒
T ( f , t2, t4)

Happens(e, t1, t3)∧Terminates(e, f , t2)∧¬Initiated( f , t2, t4))∧ t1 ≤ t2 ≤ t3 ≤ t4 ⇒
¬T ( f , t2, t4)

4 Our version is based on Shanahan (1999), but with some alterations.
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where Terminated and Initiated are defined by:

Terminated( f , t1, t5) ⇔
∃e, t2, t3, t4 Happens(e, t2, t4)∧Terminates(e, f , t3)∧ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5

Initiated( f , t1, t5) ⇔
∃e, t2, t3, t4 Happens(e, t2, t4)∧ Initiates(e, f , t3)∧ t1 ≤ t2 ≤ t3 ≤ t4 ≤ t5

We can extend event calculus to represent simultaneous events (such as two people being nec-
essary to ride a seesaw), exogenous events (such as the wind moving an object), continuous
events (such as the rising of the tide), nondeterministic events (such as flipping a coin and
having it come up heads or tails), and other complications.

10.3.1 Time

Event calculus opens us up to the possibility of talking about time points and time intervals.
We will consider two kinds of time intervals: moments and extended intervals. The distinc-
tion is that only moments have zero duration:

Partition({Moments,ExtendedIntervals}, Intervals)
i∈Moments ⇔ Duration(i)=Seconds(0) .

Next we invent a time scale and associate points on that scale with moments, giving us abso-
lute times. The time scale is arbitrary; we will measure it in seconds and say that the moment
at midnight (GMT) on January 1, 1900, has time 0. The functions Begin and End pick out
the earliest and latest moments in an interval, and the function Time delivers the point on the
time scale for a moment. The function Duration gives the difference between the end time
and the start time.

Interval(i) ⇒ Duration(i)=(Time(End(i))−Time(Begin(i))) .
Time(Begin(AD1900))=Seconds(0) .
Time(Begin(AD2001))=Seconds(3187324800) .
Time(End(AD2001))=Seconds(3218860800) .
Duration(AD2001)=Seconds(31536000) .

To make these numbers easier to read, we also introduce a function Date, which takes six
arguments (hours, minutes, seconds, day, month, and year) and returns a time point:

Time(Begin(AD2001))=Date(0,0,0,1,Jan,2001)
Date(0,20,21,24,1,1995)=Seconds(3000000000) .

Two intervals Meet if the end time of the first equals the start time of the second. The complete
set of interval relations (Allen, 1983) is shown below and in Figure 10.2:

Meet(i, j) ⇔ End(i)=Begin( j)
Before(i, j) ⇔ End(i)< Begin( j)
After( j, i) ⇔ Before(i, j)
During(i, j) ⇔ Begin( j)< Begin(i)< End(i)< End( j)
Overlap(i, j) ⇔ Begin(i)< Begin( j)< End(i)< End( j)
Starts(i, j) ⇔ Begin(i) = Begin( j)
Finishes(i, j) ⇔ End(i) = End( j)
Equals(i, j) ⇔ Begin(i) = Begin( j)∧End(i) = End( j)

These all have their intuitive meaning, with the exception of Overlap: we tend to think of
overlap as symmetric (if i overlaps j then j overlaps i), but in this definition, Overlap(i, j)
only is true if i begins before j. Experience has shown that this definition is more useful for
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Figure 10.2 Predicates on time intervals.

writing axioms. To say that the reign of Elizabeth II immediately followed that of George VI,
and the reign of Elvis overlapped with the 1950s, we can write the following:

Meets(ReignOf (GeorgeVI),ReignOf (ElizabethII)) .
Overlap(Fifties,ReignOf (Elvis)) .
Begin(Fifties)=Begin(AD1950) .
End(Fifties)=End(AD1959) .

10.3.2 Fluents and objects

Physical objects can be viewed as generalized events, in the sense that a physical object is
a chunk of space–time. For example, USA can be thought of as an event that began in 1776
as a union of 13 states and is still in progress today as a union of 50. We can describe the
changing properties of USA using state fluents, such as Population(USA). A property of USA
that changes every four or eight years, barring mishaps, is its president. One might propose
that President(USA) is a logical term that denotes a different object at different times.

Unfortunately, this is not possible, because a term denotes exactly one object in a given
model structure. (The term President(USA, t) can denote different objects, depending on the
value of t, but our ontology keeps time indices separate from fluents.) The only possibility is
that President(USA) denotes a single object that consists of different people at different times.
It is the object that is George Washington from 1789 to 1797, John Adams from 1797 to 1801,
and so on, as in Figure 10.3. To say that George Washington was president throughout 1790,
we can write

T (Equals(President(USA),GeorgeWashington),Begin(AD1790),End(AD1790)) .

We use the function symbol Equals rather than the standard logical predicate =, because
we cannot have a predicate as an argument to T , and because the interpretation is not that
GeorgeWashington and President(USA) are logically identical in 1790; logical identity is not
something that can change over time. The identity is between the subevents of the objects
President(USA) and GeorgeWashington that are defined by the period 1790.
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Figure 10.3 A schematic view of the object President(USA) for the early years.

10.4 Mental Objects and Modal Logic

The agents we have constructed so far have beliefs and can deduce new beliefs. Yet none
of them has any knowledge about beliefs or about deduction. Knowledge about one’s own
knowledge and reasoning processes is useful for controlling inference. For example, suppose
Alice asks “what is the square root of 1764” and Bob replies “I don’t know.” If Alice insists
“think harder,” Bob should realize that with some more thought, this question can in fact
be answered. On the other hand, if the question were “Is the president sitting down right
now?” then Bob should realize that thinking harder is unlikely to help. Knowledge about the
knowledge of other agents is also important; Bob should realize that the president does know.

What we need is a model of the mental objects that are in someone’s head (or something’s
knowledge base) and of the mental processes that manipulate those mental objects. The model
does not have to be detailed. We do not have to be able to predict how many milliseconds
it will take for a particular agent to make a deduction. We will be happy just to be able to
conclude that mother knows whether or not she is sitting.

We begin with the propositional attitudes that an agent can have toward mental objects:Propositional
attitude

attitudes such as Believes, Knows, Wants, and Informs. The difficulty is that these attitudes do
not behave like “normal” predicates. For example, suppose we try to assert that Lois knows
that Superman can fly:

Knows(Lois,CanFly(Superman)) .

One minor issue with this is that we normally think of CanFly(Superman) as a sentence,
but here it appears as a term. That issue can be patched up by reifying CanFly(Superman);
making it a fluent. A more serious problem is that, if it is true that Superman is Clark Kent,
then we must conclude that Lois knows that Clark can fly, which is wrong because (in most
versions of the story) Lois does not know that Clark is Superman.

(Superman = Clark)∧Knows(Lois,CanFly(Superman))
|= Knows(Lois,CanFly(Clark))

This is a consequence of the fact that equality reasoning is built into logic. Normally that is
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a good thing; if our agent knows that 2+ 2 = 4 and 4 < 5, then we want our agent to know
that 2+ 2 < 5. This property is called referential transparency—it doesn’t matter what Referential

transparency

term a logic uses to refer to an object, what matters is the object that the term names. But for
propositional attitudes like believes and knows, we would like to have referential opacity—the
terms used do matter, because not all agents know which terms are co-referential.

We could patch this up with even more reification: we could have one object to represent
Clark/Superman, another object to represent the person that Lois knows as Clark, and yet
another for the person Lois knows as Superman. However, this proliferation of objects means
that the sentences we want to write quickly become verbose and clumsy.

Modal logic is designed to address this problem. Regular logic is concerned with a single Modal logic

modality, the modality of truth, allowing us to express “P is true” or “P is false.” Modal logic
includes special modal operators that take sentences (rather than terms) as arguments. For Modal operators

example, “A knows P” is represented with the notation KAP, where K is the modal operator
for knowledge. It takes two arguments, an agent (written as the subscript) and a sentence.
The syntax of modal logic is the same as first-order logic, except that sentences can also be
formed with modal operators.

The semantics of modal logic is more complicated. In first-order logic a model contains a
set of objects and an interpretation that maps each name to the appropriate object, relation, or
function. In modal logic we want to be able to consider both the possibility that Superman’s
secret identity is Clark and the possibility that it isn’t.

Therefore, we will need a more complicated model, one that consists of a collection of
possible worlds rather than just one true world. The worlds are connected in a graph by ac- Possible world

cessibility relations, one relation for each modal operator. We say that world w1 is accessible Accessibility relation

from world w0 with respect to the modal operator KA if everything in w1 is consistent with
what A knows in w0. As an example, in the real world, Bucharest is the capital of Romania,
but for an agent that did not know that, a world where the capital of Romania is, say, Sofia is
accessible. Hopefully a world where 2+2 = 5 would not be accessible to any agent.

In general, a knowledge atom KAP is true in world w if and only if P is true in every
world accessible from w. The truth of more complex sentences is derived by recursive appli-
cation of this rule and the normal rules of first-order logic. That means that modal logic can
be used to reason about nested knowledge sentences: what one agent knows about another
agent’s knowledge. For example, we can say that even though Lois doesn’t know whether
Superman’s secret identity is Clark Kent, she does know that Clark knows:

KLois[KClarkIdentity(Superman,Clark)∨KClark¬Identity(Superman,Clark)]

Modal logic solves some tricky issues with the interplay of quantifiers and knowledge.
The English sentence “Bond knows that someone is a spy” is ambiguous. The first reading is
that there is a particular someone who Bond knows is a spy; we can write this as

∃x KBondSpy(x) ,

which in modal logic means that there is an x that, in all accessible worlds, Bond knows to be
a spy. The second reading is that Bond just knows that there is at least one spy:

KBond∃x Spy(x) .

The modal logic interpretation is that in each accessible world there is an x that is a spy, but
it need not be the same x in each world.
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Now that we have a modal operator for knowledge, we can write axioms for it. First,
we can say that agents are able to draw conclusions; if an agent knows P and knows that P
implies Q, then the agent knows Q:

(KaP∧Ka(P ⇒ Q)) ⇒ KaQ .

From this (and a few other rules about logical identities) we can establish that KA(P∨¬P) is
a tautology; every agent knows every proposition P is either true or false. On the other hand,
(KAP)∨(KA¬P) is not a tautology; in general, there will be lots of propositions that an agent
does not know to be true and does not know to be false.

It is said (going back to Plato) that knowledge is justified true belief. That is, if it is true,
if you believe it, and if you have an unassailably good reason, then you know it. That means
that if you know something, it must be true, and we have the axiom:

KaP ⇒ P .

Furthermore, logical agents (but not all people) are able to introspect on their own knowledge.
If they know something, then they know that they know it:

KaP ⇒ Ka(KaP) .

We can define similar axioms for belief (often denoted by B) and other modalities. However,
one problem with the modal logic approach is that it assumes logical omniscience on the partLogical omniscience

of agents. That is, if an agent knows a set of axioms, then it knows all consequences of those
axioms. This is on shaky ground even for the somewhat abstract notion of knowledge, but it
seems even worse for belief, because belief has more connotation of referring to things that
are physically represented in the agent, not just potentially derivable.

There have been attempts to define a form of limited rationality for agents—to say that
agents believe only those assertions that can be derived with the application of no more than
k reasoning steps, or no more than s seconds of computation. These attempts have been
generally unsatisfactory.

10.4.1 Other modal logics

Many modal logics have been proposed, for different modalities besides knowledge. One
proposal is to add modal operators for possibility and necessity: it is possibly true that one of
the authors of this book is sitting down right now, and it is necessarily true that 2+2 = 4.

As mentioned in Section 8.1.2, some logicians favor modalities related to time. In linear
temporal logic, we add the following modal operators:Linear temporal logic

• X P: “P will be true in the next time step”
• F P: “P will eventually (Finally) be true in some future time step”
• G P: “P is always (Globally) true”
• P U Q: “P remains true until Q occurs”

Sometimes there are additional operators that can be derived from these. Adding these modal
operators makes the logic itself more complex (and thus makes it harder for a logical inference
algorithm to find a proof). But the operators also allow us to state certain facts in a more
succinct form (which makes logical inference faster). The choice of which logic to use is
similar to the choice of which programming language to use: pick one that is appropriate to
your task, that is familiar to you and the others who will share your work, and that is efficient
enough for your purposes.
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10.5 Reasoning Systems for Categories

Categories are the primary building blocks of large-scale knowledge representation schemes.
This section describes systems specially designed for organizing and reasoning with cate-
gories. There are two closely related families of systems: semantic networks provide graph- Semantic networks

ical aids for visualizing a knowledge base and efficient algorithms for inferring properties
of an object on the basis of its category membership; and description logics provide a for- Description logics

mal language for constructing and combining category definitions and efficient algorithms
for deciding subset and superset relationships between categories.

10.5.1 Semantic networks

In 1909, Charles S. Peirce proposed a graphical notation of nodes and edges called existential
graphs that he called “the logic of the future.” Thus began a long-running debate between ad- Existential graphs

vocates of “logic” and advocates of “semantic networks.” Unfortunately, the debate obscured
the fact that semantic networks are a form of logic. The notation that semantic networks pro-
vide for certain kinds of sentences is often more convenient, but if we strip away the “human
interface” issues, the underlying concepts—objects, relations, quantification, and so on—are
the same.

There are many variants of semantic networks, but all are capable of representing individ-
ual objects, categories of objects, and relations among objects. A typical graphical notation
displays object or category names in ovals or boxes, and connects them with labeled links. For
example, Figure 10.4 has a MemberOf link between Mary and FemalePersons, corresponding
to the logical assertion Mary∈FemalePersons; similarly, the SisterOf link between Mary and
John corresponds to the assertion SisterOf (Mary,John). We can connect categories using
SubsetOf links, and so on. It is such fun drawing bubbles and arrows that one can get carried
away. For example, we know that persons have female persons as mothers, so can we draw a
HasMother link from Persons to FemalePersons? The answer is no, because HasMother is a
relation between a person and his or her mother, and categories do not have mothers.5

For this reason, we have used a special notation—the double-boxed link—in Figure 10.4.
This link asserts that

∀x x∈Persons ⇒ [∀y HasMother(x,y) ⇒ y∈FemalePersons] .

We might also want to assert that persons have two legs—that is,

∀x x∈Persons ⇒ Legs(x,2) .

As before, we need to be careful not to assert that a category has legs; the single-boxed link
in Figure 10.4 is used to assert properties of every member of a category.

The semantic network notation makes it convenient to perform inheritance reasoning of
the kind introduced in Section 10.2. For example, by virtue of being a person, Mary inherits
the property of having two legs. Thus, to find out how many legs Mary has, the inheritance
algorithm follows the MemberOf link from Mary to the category she belongs to, and then

5 Several early systems failed to distinguish between properties of members of a category and properties of the
category as a whole. This can lead directly to inconsistencies, as pointed out by Drew McDermott (1976) in his
article “Artificial Intelligence Meets Natural Stupidity.” Another common problem was the use of IsA links for
both subset and membership relations, in correspondence with English usage: “a cat is a mammal” and “Fifi is a
cat.” See Exercise 10.NATS for more on these issues.
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Figure 10.4 A semantic network with four objects (John, Mary, 1, and 2) and four categories.
Relations are denoted by labeled links.
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Figure 10.5 A fragment of a semantic network showing the representation of the logical
assertion Fly(Shankar,NewYork,NewDelhi,Yesterday).

follows SubsetOf links up the hierarchy until it finds a category for which there is a boxed
Legs link—in this case, the Persons category. The simplicity and efficiency of this inference
mechanism, compared with semidecidable logical theorem proving, has been one of the main
attractions of semantic networks.

Inheritance becomes complicated when an object can belong to more than one category
or when a category can be a subset of more than one other category; this is called multiple in-
heritance. In such cases, the inheritance algorithm might find two or more conflicting valuesMultiple inheritance

answering the query. For this reason, multiple inheritance is banned in some object-oriented
programming (OOP) languages, such as Java, that use inheritance in a class hierarchy. It is
usually allowed in semantic networks, but we defer discussion of that until Section 10.6.

The reader might have noticed an obvious drawback of semantic network notation, com-
pared to first-order logic: the fact that links between bubbles represent only binary relations.
For example, the sentence Fly(Shankar,NewYork,NewDelhi,Yesterday) cannot be asserted
directly in a semantic network. Nonetheless, we can obtain the effect of n-ary assertions
by reifying the proposition itself as an event belonging to an appropriate event category.
Figure 10.5 shows the semantic network structure for this particular event. Notice that the
restriction to binary relations forces the creation of a rich ontology of reified concepts.
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Reification of propositions makes it possible to represent every ground, function-free
atomic sentence of first-order logic in the semantic network notation. Certain kinds of univer-
sally quantified sentences can be asserted using inverse links and the singly boxed and doubly
boxed arrows applied to categories, but that still leaves us a long way short of full first-order
logic. Negation, disjunction, nested function symbols, and existential quantification are all
missing. Now it is possible to extend the notation to make it equivalent to first-order logic—as
in Peirce’s existential graphs—but doing so negates one of the main advantages of semantic
networks, which is the simplicity and transparency of the inference processes. Designers can
build a large network and still have a good idea about what queries will be efficient, because
(a) it is easy to visualize the steps that the inference procedure will go through and (b) in
some cases the query language is so simple that difficult queries cannot be posed.

In cases where the expressive power proves to be too limiting, many semantic network
systems provide for procedural attachment to fill in the gaps. Procedural attachment is a Procedural

attachment
technique whereby a query about (or sometimes an assertion of) a certain relation results in a
call to a special procedure designed for that relation rather than a general inference algorithm.

One of the most important aspects of semantic networks is their ability to represent de-
fault values for categories. Examining Figure 10.4 carefully, one notices that John has one Default value

leg, despite the fact that he is a person and all persons have two legs. In a strictly logical KB,
this would be a contradiction, but in a semantic network, the assertion that all persons have
two legs has only default status; that is, a person is assumed to have two legs unless this is
contradicted by more specific information. The default semantics is enforced naturally by the
inheritance algorithm, because it follows links upwards from the object itself (John in this
case) and stops as soon as it finds a value. We say that the default is overridden by the more Overriding

specific value. Notice that we could also override the default number of legs by creating a
category of OneLeggedPersons, a subset of Persons of which John is a member.

We can retain a strictly logical semantics for the network if we say that the Legs assertion
for Persons includes an exception for John:

∀x x∈Persons∧ x 6= John ⇒ Legs(x,2) .

For a fixed network, this is semantically adequate but will be much less concise than the
network notation itself if there are lots of exceptions. For a network that will be updated with
more assertions, however, such an approach fails—we really want to say that any persons as
yet unknown with one leg are exceptions too. Section 10.6 goes into more depth on this issue
and on default reasoning in general.

10.5.2 Description logics

The syntax of first-order logic is designed to make it easy to say things about objects. De-
scription logics are notations that are designed to make it easier to describe definitions and Description logic

properties of categories. Description logic systems evolved from semantic networks in re-
sponse to pressure to formalize what the networks mean while retaining the emphasis on
taxonomic structure as an organizing principle.

The principal inference tasks for description logics are subsumption (checking if one Subsumption

category is a subset of another by comparing their definitions) and classification (checking Classification

whether an object belongs to a category). Some systems also include consistency of a cate- Consistency

gory definition—whether the membership criteria are logically satisfiable.
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Concept → Thing | ConceptName

| And(Concept, . . .)

| All(RoleName,Concept)

| AtLeast(Integer,RoleName)

| AtMost(Integer,RoleName)

| Fills(RoleName, IndividualName, . . .)

| SameAs(Path,Path)

| OneOf(IndividualName, . . .)

Path → [RoleName, . . .]

ConceptName → Adult | Female | Male | . . .
RoleName → Spouse | Daughter | Son | . . .

Figure 10.6 The syntax of descriptions in a subset of the CLASSIC language.

The CLASSIC language (Borgida et al., 1989) is a typical description logic. The syntax
of CLASSIC descriptions is shown in Figure 10.6.6 For example, to say that bachelors are
unmarried adult males we would write

Bachelor = And(Unmarried,Adult,Male) .

The equivalent in first-order logic would be

Bachelor(x) ⇔ Unmarried(x)∧Adult(x)∧Male(x) .

Notice that the description logic has an algebra of operations on predicates, which of course
we can’t do in first-order logic. Any description in CLASSIC can be translated into an equiv-
alent first-order sentence, but some descriptions are more straightforward in CLASSIC. For
example, to describe the set of men with at least three sons who are all unemployed and
married to doctors, and at most two daughters who are all professors in physics or math
departments, we would use

And(Man,AtLeast(3,Son),AtMost(2,Daughter),
All(Son,And(Unemployed,Married,All(Spouse,Doctor))),
All(Daughter,And(Professor,Fills(Department,Physics,Math)))) .

We leave it as an exercise to translate this into first-order logic.
Perhaps the most important aspect of description logics is their emphasis on tractability of

inference. A problem instance is solved by describing it and then asking if it is subsumed by
one of several possible solution categories. In standard first-order logic systems, predicting
the solution time is often impossible. It is frequently left to the user to engineer the represen-
tation to detour around sets of sentences that seem to be causing the system to take several

6 Notice that the language does not allow one to simply state that one concept, or category, is a subset of
another. This is a deliberate policy: subsumption between categories must be derivable from some aspects of the
descriptions of the categories. If not, then something is missing from the descriptions.
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weeks to solve a problem. The thrust in description logics, on the other hand, is to ensure that
subsumption-testing can be solved in time polynomial in the size of the descriptions.7

This sounds wonderful in principle, until one realizes that it can only have one of two
consequences: either hard problems cannot be stated at all, or they require exponentially
large descriptions! However, the tractability results do shed light on what sorts of constructs
cause problems and thus help the user to understand how different representations behave.
For example, description logics usually lack negation and disjunction. Each forces first-
order logical systems to go through a potentially exponential case analysis in order to ensure
completeness. CLASSIC allows only a limited form of disjunction in the Fills and OneOf
constructs, which permit disjunction over explicitly enumerated individuals but not over de-
scriptions. With disjunctive descriptions, nested definitions can lead easily to an exponential
number of alternative routes by which one category can subsume another.

10.6 Reasoning with Default Information

In the preceding section, we saw a simple example of an assertion with default status: people
have two legs. This default can be overridden by more specific information, such as that
Long John Silver has one leg. We saw that the inheritance mechanism in semantic networks
implements the overriding of defaults in a simple and natural way. In this section, we study
defaults more generally, with a view toward understanding the semantics of defaults rather
than just providing a procedural mechanism.

10.6.1 Circumscription and default logic

We have seen two examples of reasoning processes that violate the monotonicity property of Monotonicity

logic that was proved in Chapter 7.8 In this chapter we saw that a property inherited by all
members of a category in a semantic network could be overridden by more specific informa-
tion for a subcategory. In Section 9.4.4, we saw that under the closed-world assumption, if a
proposition α is not mentioned in KB then KB |= ¬α, but KB∧α |= α.

Simple introspection suggests that these failures of monotonicity are widespread in com-
monsense reasoning. It seems that humans often “jump to conclusions.” For example, when
one sees a car parked on the street, one is normally willing to believe that it has four wheels
even though only three are visible. Now, probability theory can certainly provide a conclusion
that the fourth wheel exists with high probability; yet, for most people, the possibility that the
car does not have four wheels will not arise unless some new evidence presents itself. Thus,
it seems that the four-wheel conclusion is reached by default, in the absence of any reason to
doubt it. If new evidence arrives—for example, if one sees the owner carrying a wheel and
notices that the car is jacked up—then the conclusion can be retracted. This kind of reasoning
is said to exhibit nonmonotonicity, because the set of beliefs does not grow monotonically Nonmonotonicity

over time as new evidence arrives. Nonmonotonic logics have been devised with modified Nonmonotonic logic

notions of truth and entailment in order to capture such behavior. We will look at two such
logics that have been studied extensively: circumscription and default logic.

Circumscription can be seen as a more powerful and precise version of the closed-world Circumscription

7 CLASSIC provides efficient subsumption testing in practice, but the worst-case run time is exponential.
8 Recall that monotonicity requires all entailed sentences to remain entailed after new sentences are added to the
KB. That is, if KB |= α then KB∧β |= α.
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assumption. The idea is to specify particular predicates that are assumed to be “as false as
possible”—that is, false for every object except those for which they are known to be true.
For example, suppose we want to assert the default rule that birds fly. We would introduce a
predicate, say Abnormal1(x), and write

Bird(x)∧¬Abnormal1(x) ⇒ Flies(x) .

If we say that Abnormal1 is to be circumscribed, a circumscriptive reasoner is entitled to
assume ¬Abnormal1(x) unless Abnormal1(x) is known to be true. This allows the conclusion
Flies(Tweety) to be drawn from the premise Bird(Tweety), but the conclusion no longer holds
if Abnormal1(Tweety) is asserted.

Circumscription can be viewed as an example of a model preference logic. In suchModel preference

logics, a sentence is entailed (with default status) if it is true in all preferred models of the KB,
as opposed to the requirement of truth in all models in classical logic. For circumscription,
one model is preferred to another if it has fewer abnormal objects.9 Let us see how this idea
works in the context of multiple inheritance in semantic networks. The standard example for
which multiple inheritance is problematic is called the “Nixon diamond.” It arises from the
observation that Richard Nixon was both a Quaker (and hence by default a pacifist) and a
Republican (and hence by default not a pacifist). We can write this as follows:

Republican(Nixon)∧Quaker(Nixon) .
Republican(x)∧¬Abnormal2(x) ⇒ ¬Pacifist(x) .
Quaker(x)∧¬Abnormal3(x) ⇒ Pacifist(x) .

If we circumscribe Abnormal2 and Abnormal3, there are two preferred models: one in which
Abnormal2(Nixon) and Pacifist(Nixon) are true and one in which Abnormal3(Nixon) and
¬Pacifist(Nixon) are true. Thus, the circumscriptive reasoner remains properly agnostic as
to whether Nixon was a pacifist. If we wish, in addition, to assert that religious beliefs take
precedence over political beliefs, we can use a formalism called prioritized circumscriptionPrioritized

circumscription

to give preference to models where Abnormal3 is minimized.
Default logic is a formalism in which default rules can be written to generate contingent,Default logic

Default rules nonmonotonic conclusions. A default rule looks like this:

Bird(x) : Flies(x)/Flies(x) .

This rule means that if Bird(x) is true, and if Flies(x) is consistent with the knowledge base,
then Flies(x) may be concluded by default. In general, a default rule has the form

P : J1, . . . ,Jn/C

where P is called the prerequisite, C is the conclusion, and Ji are the justifications—if any one
of them can be proven false, then the conclusion cannot be drawn. Any variable that appears
in Ji or C must also appear in P. The Nixon-diamond example can be represented in default
logic with one fact and two default rules:

Republican(Nixon)∧Quaker(Nixon) .
Republican(x) : ¬Pacifist(x)/¬Pacifist(x) .
Quaker(x) : Pacifist(x)/Pacifist(x) .

9 For the closed-world assumption, one model is preferred to another if it has fewer true atoms—that is, preferred
models are minimal models. There is a natural connection between the closed-world assumption and definite-
clause KBs, because the fixed point reached by forward chaining on definite-clause KBs is the unique minimal
model. See page 249 for more on this point.
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To interpret what the default rules mean, we define the notion of an extension of a default Extension

theory to be a maximal set of consequences of the theory. That is, an extension S consists
of the original known facts and a set of conclusions from the default rules, such that no
additional conclusions can be drawn from S, and the justifications of every default conclusion
in S are consistent with S. As in the case of the preferred models in circumscription, we have
two possible extensions for the Nixon diamond: one wherein he is a pacifist and one wherein
he is not. Prioritized schemes exist in which some default rules can be given precedence over
others, allowing some ambiguities to be resolved.

Since 1980, when nonmonotonic logics were first proposed, a great deal of progress
has been made in understanding their mathematical properties. There are still unresolved
questions, however. For example, if “Cars have four wheels” is false, what does it mean to
have it in one’s knowledge base? What is a good set of default rules to have? If we cannot
decide, for each rule separately, whether it belongs in our knowledge base, then we have a
serious problem of nonmodularity. Finally, how can beliefs that have default status be used
to make decisions? This is probably the hardest issue for default reasoning.

Decisions often involve tradeoffs, and one therefore needs to compare the strengths of be-
lief in the outcomes of different actions, and the costs of making a wrong decision. In cases
where the same kinds of decisions are being made repeatedly, it is possible to interpret default
rules as “threshold probability” statements. For example, the default rule “My brakes are al-
ways OK” really means “The probability that my brakes are OK, given no other information,
is sufficiently high that the optimal decision is for me to drive without checking them.” When
the decision context changes—for example, when one is driving a heavily laden truck down a
steep mountain road—the default rule suddenly becomes inappropriate, even though there is
no new evidence of faulty brakes. These considerations have led researchers to consider how
to embed default reasoning within probability theory or utility theory.

10.6.2 Truth maintenance systems

We have seen that many of the inferences drawn by a knowledge representation system will
have only default status, rather than being absolutely certain. Inevitably, some of these in-
ferred facts will turn out to be wrong and will have to be retracted in the face of new infor-
mation. This process is called belief revision.10 Suppose that a knowledge base KB contains Belief revision

a sentence P—perhaps a default conclusion recorded by a forward-chaining algorithm, or
perhaps just an incorrect assertion—and we want to execute TELL(KB, ¬P). To avoid cre-
ating a contradiction, we must first execute RETRACT(KB, P). This sounds easy enough.
Problems arise, however, if any additional sentences were inferred from P and asserted in
the KB. For example, the implication P ⇒ Q might have been used to add Q. The obvious
“solution”—retracting all sentences inferred from P—fails because such sentences may have
other justifications besides P. For example, if R and R ⇒ Q are also in the KB, then Q does
not have to be removed after all. Truth maintenance systems, or TMSs, are designed to Truth maintenance

system

handle exactly these kinds of complications.
One simple approach to truth maintenance is to keep track of the order in which sen-

tences are told to the knowledge base by numbering them from P1 to Pn. When the call

10 Belief revision is often contrasted with belief update, which occurs when a knowledge base is revised to reflect
a change in the world rather than new information about a fixed world. Belief update combines belief revision
with reasoning about time and change; it is also related to the process of filtering described in Chapter 14.
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RETRACT(KB, Pi) is made, the system reverts to the state just before Pi was added, thereby
removing both Pi and any inferences that were derived from Pi. The sentences Pi+1 through
Pn can then be added again. This is simple, and it guarantees that the knowledge base will
be consistent, but retracting Pi requires retracting and reasserting n− i sentences as well as
undoing and redoing all the inferences drawn from those sentences. For systems to which
many facts are being added—such as large commercial databases—this is impractical.

A more efficient approach is the justification-based truth maintenance system, or JTMS.JTMS

In a JTMS, each sentence in the knowledge base is annotated with a justification consistingJustification

of the set of sentences from which it was inferred. For example, if the knowledge base already
contains P ⇒ Q, then TELL(P) will cause Q to be added with the justification {P, P ⇒ Q}.
In general, a sentence can have any number of justifications. Justifications make retraction
efficient. Given the call RETRACT(P), the JTMS will delete exactly those sentences for
which P is a member of every justification. So, if a sentence Q had the single justification
{P, P ⇒ Q}, it would be removed; if it had the additional justification {P, P∨R ⇒ Q}, it
would still be removed; but if it also had the justification {R, P∨R ⇒ Q}, then it would
be spared. In this way, the time required for retraction of P depends only on the number of
sentences derived from P rather than on the number of sentences added after P.

The JTMS assumes that sentences that are considered once will probably be considered
again, so rather than deleting a sentence from the knowledge base entirely when it loses
all justifications, we merely mark the sentence as being out of the knowledge base. If a
subsequent assertion restores one of the justifications, then we mark the sentence as being
back in. In this way, the JTMS retains all the inference chains that it uses and need not
rederive sentences when a justification becomes valid again.

In addition to handling the retraction of incorrect information, TMSs can be used to
speed up the analysis of multiple hypothetical situations. Suppose, for example, that the
Romanian Olympic Committee is choosing sites for the swimming, athletics, and equestrian
events at the 2048 Games to be held in Romania. For example, let the first hypothesis be
Site(Swimming,Pitesti), Site(Athletics,Bucharest), and Site(Equestrian,Arad).

A great deal of reasoning must then be done to work out the logistical consequences
and hence the desirability of this selection. If we want to consider Site(Athletics,Sibiu)
instead, the TMS avoids the need to start again from scratch. Instead, we simply retract
Site(Athletics,Bucharest) and assert Site(Athletics,Sibiu) and the TMS takes care of the nec-
essary revisions. Inference chains generated from the choice of Bucharest can be reused with
Sibiu, provided that the conclusions are the same.

An assumption-based truth maintenance system, or ATMS, makes this type of context-ATMS

switching between hypothetical worlds particularly efficient. In a JTMS, the maintenance of
justifications allows you to move quickly from one state to another by making a few retrac-
tions and assertions, but at any time only one state is represented. An ATMS represents all the
states that have ever been considered at the same time. Whereas a JTMS simply labels each
sentence as being in or out, an ATMS keeps track, for each sentence, of which assumptions
would cause the sentence to be true. In other words, each sentence has a label that consists of
a set of assumption sets. The sentence is true just in those cases in which all the assumptions
in one of the assumption sets are true.

Truth maintenance systems also provide a mechanism for generating explanations. Tech-Explanation

nically, an explanation of a sentence P is a set of sentences E such that E entails P. If the
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sentences in E are already known to be true, then E simply provides a sufficient basis for
proving that P must be the case. But explanations can also include assumptions—sentences Assumption

that are not known to be true, but would suffice to prove P if they were true. For example,
if your car won’t start, you probably don’t have enough information to definitively prove the
reason for the problem. But a reasonable explanation might include the assumption that the
battery is dead. This, combined with knowledge of how cars operate, explains the observed
nonbehavior. In most cases, we will prefer an explanation E that is minimal, meaning that
there is no proper subset of E that is also an explanation. An ATMS can generate explanations
for the “car won’t start” problem by making assumptions (such as “no gas in car” or “battery
dead”) in any order we like, even if some assumptions are contradictory. Then we look at the
label for the sentence “car won’t start” to read off the sets of assumptions that would justify
the sentence.

The exact algorithms used to implement truth maintenance systems are a little compli-
cated, and we do not cover them here. The computational complexity of the truth maintenance
problem is at least as great as that of propositional inference—that is, NP-hard. Therefore,
you should not expect truth maintenance to be a panacea. When used carefully, however, a
TMS can provide a substantial increase in the ability of a logical system to handle complex
environments and hypotheses.

Summary

By delving into the details of how one represents a variety of knowledge, we hope we have
given the reader a sense of how real knowledge bases are constructed and a feeling for the
interesting philosophical issues that arise. The major points are as follows:

• Large-scale knowledge representation requires a general-purpose ontology to organize
and tie together the various specific domains of knowledge.

• A general-purpose ontology needs to cover a wide variety of knowledge and should be
capable, in principle, of handling any domain.

• Building a large, general-purpose ontology is a significant challenge that has yet to be
fully realized, although current frameworks seem to be quite robust.

• We presented an upper ontology based on categories and the event calculus. We
covered categories, subcategories, parts, structured objects, measurements, substances,
events, time and space, change, and beliefs.

• Natural kinds cannot be defined completely in logic, but properties of natural kinds can
be represented.

• Actions, events, and time can be represented with the event calculus. Such represen-
tations enable an agent to construct sequences of actions and make logical inferences
about what will be true when these actions happen.

• Special-purpose representation systems, such as semantic networks and description
logics, have been devised to help in organizing a hierarchy of categories. Inheritance
is an important form of inference, allowing the properties of objects to be deduced from
their membership in categories.
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• The closed-world assumption, as implemented in logic programs, provides a simple
way to avoid having to specify lots of negative information. It is best interpreted as a
default that can be overridden by additional information.

• Nonmonotonic logics, such as circumscription and default logic, are intended to cap-
ture default reasoning in general.

• Truth maintenance systems handle knowledge updates and revisions efficiently.
• It is difficult to construct large ontologies by hand; extracting knowledge from text

makes the job easier.

Bibliographical and Historical Notes

Briggs (1985) claims that knowledge representation research began with first millennium BCE

Indian theorizing about the grammar of Shastric Sanskrit. Western philosophers trace their
work on the subject back to c. 300 BCE in Aristotle’s Metaphysics (literally, what comes after
the book on physics). The development of technical terminology in any field can be regarded
as a form of knowledge representation.

Early discussions of representation in AI tended to focus on “problem representation”
rather than “knowledge representation.” (See, for example, Amarel’s (1968) discussion of
the “Missionaries and Cannibals” problem.) In the 1970s, AI emphasized the development of
“expert systems” (also called “knowledge-based systems”) that could, if given the appropriate
domain knowledge, match or exceed the performance of human experts on narrowly defined
tasks. For example, the first expert system, DENDRAL (Feigenbaum et al., 1971; Lindsay
et al., 1980), interpreted the output of a mass spectrometer (a type of instrument used to ana-
lyze the structure of organic chemical compounds) as accurately as expert chemists. Although
the success of DENDRAL was instrumental in convincing the AI research community of the
importance of knowledge representation, the representational formalisms used in DENDRAL

are highly specific to the domain of chemistry.
Over time, researchers became interested in standardized knowledge representation for-

malisms and ontologies that could assist in the creation of new expert systems. This brought
them into territory previously explored by philosophers of science and of language. The disci-
pline imposed in AI by the need for one’s theories to “work” has led to more rapid and deeper
progress than when these problems were the exclusive domain of philosophy (although it has
at times also led to the repeated reinvention of the wheel).

But to what extent can we trust expert knowledge? As far back as 1955, Paul Meehl
(see also Grove and Meehl, 1996) studied the decision-making processes of trained experts
at subjective tasks such as predicting the success of a student in a training program or the
recidivism of a criminal. In 19 out of the 20 studies he looked at, Meehl found that simple
statistical learning algorithms (such as linear regression or naive Bayes) predict better than
the experts. Tetlock (2017) also studies expert knowledge and finds it lacking in difficult
cases. The Educational Testing Service has used an automated program to grade millions of
essay questions on the GMAT exam since 1999. The program agrees with human graders
97% of the time, about the same level that two human graders agree (Burstein et al., 2001).
(This does not mean the program understands essays, just that it can distinguish good ones
from bad ones about as well as human graders can.)
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The creation of comprehensive taxonomies or classifications dates back to ancient times.
Aristotle (384–322 BCE) strongly emphasized classification and categorization schemes. His
Organon, a collection of works on logic assembled by his students after his death, included a
treatise called Categories in which he attempted to construct what we would now call an upper
ontology. He also introduced the notions of genus and species for lower-level classification.
Our present system of biological classification, including the use of “binomial nomenclature”
(classification via genus and species in the technical sense), was invented by the Swedish
biologist Carolus Linnaeus, or Carl von Linne (1707–1778). The problems associated with
natural kinds and inexact category boundaries have been addressed by Wittgenstein (1953),
Quine (1953), Lakoff (1987), and Schwartz (1977), among others.

See Chapter 25 for a discussion of deep neural network representations of words and
concepts that escape some of the problems of a strict ontology, but also sacrifice some of the
precision. We still don’t know the best way to combine the advantages of neural networks
and logical semantics for representation.

Interest in larger-scale ontologies is increasing, as documented by the Handbook on On-
tologies (Staab, 2004). The OPENCYC project (Lenat and Guha, 1990; Matuszek et al.,
2006) has released a 150,000-concept ontology, with an upper ontology similar to the one in
Figure 10.1 as well as specific concepts like “OLED Display” and “iPhone,” which is a type
of “cellular phone,” which in turn is a type of “consumer electronics,” “phone,” “wireless
communication device,” and other concepts. The NEXTKB project extends CYC and other
resources including FrameNet and WordNet into a knowledge base with almost 3 million
facts, and provides a reasoning engine, FIRE to go with it (Forbus et al., 2010).

The DBPEDIA project extracts structured data from Wikipedia, specifically from In-
foboxes: the attribute/value pairs that accompany many Wikipedia articles (Wu and Weld,
2008; Bizer et al., 2007). As of 2015, DBPEDIA contained 400 million facts about 4 mil-
lion objects in the English version alone; counting all 110 languages yields 1.5 billion facts
(Lehmann et al., 2015).

The IEEE working group P1600.1 created SUMO, the Suggested Upper Merged Ontol-
ogy (Niles and Pease, 2001; Pease and Niles, 2002), with about 1000 terms in the upper
ontology and links to over 20,000 domain-specific terms. Stoffel et al. (1997) describe algo-
rithms for efficiently managing a very large ontology. A survey of techniques for extracting
knowledge from Web pages is given by Etzioni et al. (2008).

On the Web, representation languages are emerging. RDF (Brickley and Guha, 2004)
allows for assertions to be made in the form of relational triples and provides some means for
evolving the meaning of names over time. OWL (Smith et al., 2004) is a description logic
that supports inferences over these triples. So far, usage seems to be inversely proportional
to representational complexity: the traditional HTML and CSS formats account for over 99%
of Web content, followed by the simplest representation schemes, such as RDFa (Adida and
Birbeck, 2008), and microformats (Khare, 2006; Patel-Schneider, 2014) which use HTML
and XHTML markup to add attributes to text on web pages. Usage of sophisticated RDF and
OWL ontologies is not yet widespread, and the full vision of the Semantic Web (Berners-
Lee et al., 2001) has not been realized. The conferences on Formal Ontology in Information
Systems (FOIS) covers both general and domain-specific ontologies.

The taxonomy used in this chapter was developed by the authors and is based in part
on their experience in the CYC project and in part on work by Hwang and Schubert (1993)
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and Davis (1990, 2005). An inspirational discussion of the general project of commonsense
knowledge representation appears in Hayes’s (1978, 1985b) “Naive Physics Manifesto.”

Successful deep ontologies within a specific field include the Gene Ontology project
(Gene Ontology Consortium, 2008) and the Chemical Markup Language (Murray-Rust et al.,
2003). Doubts about the feasibility of a single ontology for all knowledge are expressed by
Doctorow (2001), Gruber (2004), Halevy et al. (2009), and Smith (2004).

The event calculus was introduced by Kowalski and Sergot (1986) to handle continuous
time, and there have been several variations (Sadri and Kowalski, 1995; Shanahan, 1997) and
overviews (Shanahan, 1999; Mueller, 2006). James Allen introduced time intervals for the
same reason (Allen, 1984), arguing that intervals were much more natural than situations for
reasoning about extended and concurrent events. In van Lambalgen and Hamm (2005) we see
how the logic of events maps onto the language we use to talk about events. An alternative to
the event and situation calculi is the fluent calculus (Thielscher, 1999), which reifies the facts
out of which states are composed.

Peter Ladkin (1986a, 1986b) introduced “concave” time intervals (intervals with gaps—
essentially, unions of ordinary “convex” time intervals) and applied the techniques of math-
ematical abstract algebra to time representation. Allen (1991) systematically investigates the
wide variety of techniques available for time representation; van Beek and Manchak (1996)
analyze algorithms for temporal reasoning. There are significant commonalities between the
event-based ontology given in this chapter and an analysis of events due to the philosopher
Donald Davidson (1980). The histories in Pat Hayes’s (1985a) ontology of liquids and the
chronicles in McDermott’s (1985) theory of plans were also important influences on the field
and on this chapter.

The question of the ontological status of substances has a long history. Plato proposed
that substances were abstract entities entirely distinct from physical objects; he would say
MadeOf (Butter3,Butter) rather than Butter3∈Butter. This leads to a substance hierarchy in
which, for example, UnsaltedButter is a more specific substance than Butter. The position
adopted in this chapter, in which substances are categories of objects, was championed by
Richard Montague (1973). It has also been adopted in the CYC project. Copeland (1993)
mounts a serious, but not invincible, attack.

The alternative approach mentioned in the chapter, in which butter is one object con-
sisting of all buttery objects in the universe, was proposed originally by the Polish logician
Leśniewski (1916). His mereology (the name is derived from the Greek word for “part”)
used the part–whole relation as a substitute for mathematical set theory, with the aim of elim-
inating abstract entities such as sets. A more readable exposition of these ideas is given by
Leonard and Goodman (1940), and Goodman’s The Structure of Appearance (1977) applies
the ideas to various problems in knowledge representation.

While some aspects of the mereological approach are awkward—for example, the need
for a separate inheritance mechanism based on part–whole relations—the approach gained
the support of Quine (1960). Harry Bunt (1985) has provided an extensive analysis of its
use in knowledge representation. Casati and Varzi (1999) cover parts, wholes, and a general
theory of spatial locations.

There are three main approaches to the study of mental objects. The one taken in this
chapter, based on modal logic and possible worlds, is the classical approach from philosophy
(Hintikka, 1962; Kripke, 1963; Hughes and Cresswell, 1996). The book Reasoning about
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Knowledge (Fagin et al., 1995) provides a thorough introduction, and Gordon and Hobbs
(2017) provide A Formal Theory of Commonsense Psychology.

The second approach is a first-order theory in which mental objects are fluents. Davis
(2005) and Davis and Morgenstern (2005) describe this approach. It relies on the possible-
worlds formalism, and builds on work by Robert Moore (1980, 1985).

The third approach is a syntactic theory, in which mental objects are represented by
character strings. A string is just a complex term denoting a list of symbols, so CanFly(Clark)
can be represented by the list of symbols [C,a,n,F, l,y,(,C, l,a,r,k,)]. The syntactic theory
of mental objects was first studied in depth by Kaplan and Montague (1960), who showed
that it led to paradoxes if not handled carefully. Ernie Davis (1990) provides an excellent
comparison of the syntactic and modal theories of knowledge. Pnueli (1977) describes a
temporal logic used to reason about programs, work that won him the Turing Award and
which was expanded upon by Vardi (1996). Littman et al. (2017) show that a temporal logic
can be a good language for specifying goals to a reinforcement learning robot in a way that
is easy for a human to specify, and generalizes well to different environments.

The Greek philosopher Porphyry (c. 234–305 CE), commenting on Aristotle’s Cate-
gories, drew what might qualify as the first semantic network. Charles S. Peirce (1909)
developed existential graphs as the first semantic network formalism using modern logic.
Ross Quillian (1961), driven by an interest in human memory and language processing, ini-
tiated work on semantic networks within AI. An influential paper by Marvin Minsky (1975)
presented a version of semantic networks called frames; a frame was a representation of an
object or category, with attributes and relations to other objects or categories.

The question of semantics arose quite acutely with respect to Quillian’s semantic net-
works (and those of others who followed his approach), with their ubiquitous and very vague
“IS-A links.” Bill Woods’s (1975) famous article “What’s In a Link?” drew the attention of AI
researchers to the need for precise semantics in knowledge representation formalisms. Ron
Brachman (1979) elaborated on this point and proposed solutions. Patrick Hayes’s (1979)
“The Logic of Frames” cut even deeper, claiming that “Most of ‘frames’ is just a new syntax
for parts of first-order logic.” Drew McDermott’s (1978b) “Tarskian Semantics, or, No No-
tation without Denotation!” argued that the model-theoretic approach to semantics used in
first-order logic should be applied to all knowledge representation formalisms. This remains
a controversial idea; notably, McDermott himself has reversed his position in “A Critique of
Pure Reason” (McDermott, 1987). Selman and Levesque (1993) discuss the complexity of
inheritance with exceptions, showing that in most formulations it is NP-complete.

Description logics were developed as a useful subset of first-order logic for which infer-
ence is computationally tractable. Hector Levesque and Ron Brachman (1987) showed that
certain uses of disjunction and negation were primarily responsible for the intractability of
logical inference. This led to a better understanding of the interaction between complexity
and expressiveness in reasoning systems. Calvanese et al. (1999) summarize the state of the
art, and Baader et al. (2007) present a comprehensive handbook of description logic.

The three main formalisms for dealing with nonmonotonic inference—circumscription
(McCarthy, 1980), default logic (Reiter, 1980), and modal nonmonotonic logic (McDermott
and Doyle, 1980)—were all introduced in one special issue of the AI Journal. Delgrande
and Schaub (2003) discuss the merits of the variants, given 25 years of hindsight. Answer
set programming can be seen as an extension of negation as failure or as a refinement of
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circumscription; the underlying theory of stable model semantics was introduced by Gelfond
and Lifschitz (1988), and the leading answer set programming systems are DLV (Eiter et al.,
1998) and SMODELS (Niemelä et al., 2000). Brewka et al. (1997) give a good overview of
the various approaches to nonmonotonic logic. Clark (1978) covers the negation-as-failure
approach to logic programming and Clark completion. Lifschitz (2001) discusses the appli-
cation of answer set programming to planning. A variety of nonmonotonic reasoning systems
based on logic programming are documented in the proceedings of the conferences on Logic
Programming and Nonmonotonic Reasoning (LPNMR).

The study of truth maintenance systems began with the TMS (Doyle, 1979) and RUP
(McAllester, 1980) systems, both of which were essentially JTMSs. Forbus and de Kleer
(1993) explain in depth how TMSs can be used in AI applications. Nayak and Williams
(1997) show how an efficient incremental TMS called an ITMS makes it feasible to plan the
operations of a NASA spacecraft in real time.

This chapter could not cover every area of knowledge representation in depth. The three
principal topics omitted are the following:

Qualitative physics: Qualitative physics is a subfield of knowledge representation concernedQualitative physics

specifically with constructing a logical, nonnumeric theory of physical objects and processes.
The term was coined by Johan de Kleer (1975), although the enterprise could be said to
have started in Fahlman’s (1974) BUILD, a sophisticated planner for constructing complex
towers of blocks. Fahlman discovered in the process of designing it that most of the effort
(80%, by his estimate) went into modeling the physics of the blocks world to calculate the
stability of various subassemblies of blocks, rather than into planning per se. He sketches
a hypothetical naive-physics-like process to explain why young children can solve BUILD-
like problems without access to the high-speed floating-point arithmetic used in BUILD’s
physical modeling. Hayes (1985a) uses “histories”—four-dimensional slices of space-time
similar to Davidson’s events—to construct a fairly complex naive physics of liquids. Davis
(2008) gives an update to the ontology of liquids that describes the pouring of liquids into
containers.

De Kleer and Brown (1985), Ken Forbus (1985), and Benjamin Kuipers (1985) indepen-
dently and almost simultaneously developed systems that can reason about a physical system
based on qualitative abstractions of the underlying equations. Qualitative physics soon devel-
oped to the point where it became possible to analyze an impressive variety of complex phys-
ical systems (Yip, 1991). Qualitative techniques have been used to construct novel designs
for clocks, windshield wipers, and six-legged walkers (Subramanian and Wang, 1994). The
collection Readings in Qualitative Reasoning about Physical Systems (Weld and de Kleer,
1990), an encyclopedia article by Kuipers (2001), and a handbook article by Davis (2007)
provide good introductions to the field.

Spatial reasoning: The reasoning necessary to navigate in the wumpus world is trivial inSpatial reasoning

comparison to the rich spatial structure of the real world. The earliest serious attempt to
capture commonsense reasoning about space appears in the work of Ernest Davis (1986,
1990). The region connection calculus of Cohn et al. (1997) supports a form of qualitative
spatial reasoning and has led to new kinds of geographical information systems; see also
(Davis, 2006). As with qualitative physics, an agent can go a long way, so to speak, without
resorting to a full metric representation.
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Psychological reasoning: Psychological reasoning involves the development of a working Psychological
reasoning

psychology for artificial agents to use in reasoning about themselves and other agents. This
is often based on so-called folk psychology, the theory that humans in general are believed
to use in reasoning about themselves and other humans. When AI researchers provide their
artificial agents with psychological theories for reasoning about other agents, the theories are
frequently based on the researchers’ description of the logical agents’ own design. Psycholog-
ical reasoning is currently most useful within the context of natural language understanding,
where divining the speaker’s intentions is of paramount importance.

Minker (2001) collects papers by leading researchers in knowledge representation, sum-
marizing 40 years of work in the field. The proceedings of the international conferences on
Principles of Knowledge Representation and Reasoning provide the most up-to-date sources
for work in this area. Readings in Knowledge Representation (Brachman and Levesque,
1985) and Formal Theories of the Commonsense World (Hobbs and Moore, 1985) are ex-
cellent anthologies on knowledge representation; the former focuses more on historically
important papers in representation languages and formalisms, the latter on the accumulation
of the knowledge itself. Davis (1990), Stefik (1995), and Sowa (1999) provide textbook in-
troductions to knowledge representation, van Harmelen et al. (2007) contributes a handbook,
and Davis and Morgenstern (2004) edited a special issue of the AI Journal on the topic. Davis
(2017) gives a survey of logic for commonsense reasoning. The biennial conference on The-
oretical Aspects of Reasoning About Knowledge (TARK) covers applications of the theory of
knowledge in AI, economics, and distributed systems.



CHAPTER 11
AUTOMATED PLANNING
In which we see how an agent can take advantage of the structure of a problem to efficiently
construct complex plans of action.

Planning a course of action is a key requirement for an intelligent agent. The right represen-
tation for actions and states and the right algorithms can make this easier. In Section 11.1
we introduce a general factored representation language for planning problems that can nat-
urally and succinctly represent a wide variety of domains, can efficiently scale up to large
problems, and does not require ad hoc heuristics for a new domain. Section 11.4 extends the
representation language to allow for hierarchical actions, allowing us to tackle more complex
problems. We cover efficient algorithms for planning in Section 11.2, and heuristics for them
in Section 11.3. In Section 11.5 we account for partially observable and nondeterministic
domains, and in Section 11.6 we extend the language once again to cover scheduling prob-
lems with resource constraints. This gets us closer to planners that are used in the real world
for planning and scheduling the operations of spacecraft, factories, and military campaigns.
Section 11.7 analyzes the effectiveness of these techniques.

11.1 Definition of Classical Planning

Classical planning is defined as the task of finding a sequence of actions to accomplish aClassical planning

goal in a discrete, deterministic, static, fully observable environment. We have seen two ap-
proaches to this task: the problem-solving agent of Chapter 3 and the hybrid propositional
logical agent of Chapter 7. Both share two limitations. First, they both require ad hoc heuris-
tics for each new domain: a heuristic evaluation function for search, and hand-written code
for the hybrid wumpus agent. Second, they both need to explicitly represent an exponentially
large state space. For example, in the propositional logic model of the wumpus world, the
axiom for moving a step forward had to be repeated for all four agent orientations, T time
steps, and n2 current locations.

In response to these limitations, planning researchers have invested in a factored repre-
sentation using a family of languages called PDDL, the Planning Domain Definition Lan-PDDL

guage (Ghallab et al., 1998), which allows us to express all 4T n2 actions with a single action
schema, and does not need domain-specific knowledge. Basic PDDL can handle classical
planning domains, and extensions can handle non-classical domains that are continuous, par-
tially observable, concurrent, and multi-agent. The syntax of PDDL is based on Lisp, but we
will translate it into a form that matches the notation used in this book.

In PDDL, a state is represented as a conjunction of ground atomic fluents. Recall thatState

“ground” means no variables, “fluent” means an aspect of the world that changes over time,
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and “ground atomic” means there is a single predicate, and if there are any arguments, they
must be constants. For example, Poor∧Unknown might represent the state of a hapless agent,
and At(Truck1,Melbourne)∧At(Truck2,Sydney) could represent a state in a package delivery
problem. PDDL uses database semantics: the closed-world assumption means that any
fluents that are not mentioned are false, and the unique names assumption means that Truck1
and Truck2 are distinct.

The following fluents are not allowed in a state: At(x,y) (because it has variables), ¬Poor
(because it is a negation), and At(Spouse(Ali),Sydney) (because it uses a function symbol,
Spouse). When convenient, we can think of the conjunction of fluents as a set of fluents.

An action schema represents a family of ground actions. For example, here is an action Action schema

schema for flying a plane from one location to another:

Action(Fly(p, from, to),
PRECOND:At(p, from)∧Plane(p)∧Airport(from)∧Airport(to)
EFFECT:¬At(p, from)∧At(p, to))

The schema consists of the action name, a list of all the variables used in the schema, a
precondition and an effect. The precondition and the effect are each conjunctions of literals Precondition

Effect(positive or negated atomic sentences). We can choose constants to instantiate the variables,
yielding a ground (variable-free) action:

Action(Fly(P1,SFO,JFK),
PRECOND:At(P1,SFO)∧Plane(P1)∧Airport(SFO)∧Airport(JFK)
EFFECT:¬At(P1,SFO)∧At(P1,JFK))

A ground action a is applicable in state s if s entails the precondition of a; that is, if every
positive literal in the precondition is in s and every negated literal is not.

The result of executing applicable action a in state s is defined as a state s′ which is
represented by the set of fluents formed by starting with s, removing the fluents that appear as
negative literals in the action’s effects (what we call the delete list or DEL(a)), and adding the Delete list

fluents that are positive literals in the action’s effects (what we call the add list or ADD(a)): Add list

RESULT(s,a) = (s−DEL(a))∪ADD(a) . (11.1)

For example, with the action Fly(P1,SFO,JFK), we would remove the fluent At(P1,SFO)
and add the fluent At(P1,JFK).

A set of action schemas serves as a definition of a planning domain. A specific problem
within the domain is defined with the addition of an initial state and a goal. The initial
state is a conjunction of ground fluents (introduced with the keyword Init in Figure 11.1).
As with all states, the closed-world assumption is used, which means that any atoms that
are not mentioned are false. The goal (introduced with Goal) is just like a precondition: a
conjunction of literals (positive or negative) that may contain variables. For example, the goal
At(C1,SFO)∧¬At(C2,SFO)∧At(p,SFO), refers to any state in which cargo C1 is at SFO but
C2 is not, and in which there is a plane at SFO.

11.1.1 Example domain: Air cargo transport

Figure 11.1 shows an air cargo transport problem involving loading and unloading cargo and
flying it from place to place. The problem can be defined with three actions: Load, Unload,
and Fly. The actions affect two predicates: In(c, p) means that cargo c is inside plane p,
and At(x,a) means that object x (either plane or cargo) is at airport a. Note that some care
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Init(At(C1, SFO) ∧ At(C2, JFK) ∧ At(P1, SFO) ∧ At(P2, JFK)
∧ Cargo(C1) ∧ Cargo(C2) ∧ Plane(P1) ∧ Plane(P2)
∧ Airport(JFK) ∧ Airport(SFO))

Goal(At(C1, JFK) ∧ At(C2, SFO))
Action(Load(c, p, a),

PRECOND: At(c, a) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: ¬ At(c, a) ∧ In(c, p))

Action(Unload(c, p, a),
PRECOND: In(c, p) ∧ At(p, a) ∧ Cargo(c) ∧ Plane(p) ∧ Airport(a)
EFFECT: At(c, a) ∧ ¬ In(c, p))

Action(Fly(p, from, to),
PRECOND: At(p, from) ∧ Plane(p) ∧ Airport(from) ∧ Airport(to)
EFFECT: ¬ At(p, from) ∧ At(p, to))

Figure 11.1 A PDDL description of an air cargo transportation planning problem.

must be taken to make sure the At predicates are maintained properly. When a plane flies
from one airport to another, all the cargo inside the plane goes with it. In first-order logic it
would be easy to quantify over all objects that are inside the plane. But PDDL does not have
a universal quantifier, so we need a different solution. The approach we use is to say that a
piece of cargo ceases to be At anywhere when it is In a plane; the cargo only becomes At the
new airport when it is unloaded. So At really means “available for use at a given location.”
The following plan is a solution to the problem:

[Load(C1,P1,SFO),Fly(P1,SFO,JFK),Unload(C1,P1,JFK),
Load(C2,P2,JFK),Fly(P2,JFK,SFO),Unload(C2,P2,SFO)] .

11.1.2 Example domain: The spare tire problem

Consider the problem of changing a flat tire (Figure 11.2). The goal is to have a good spare
tire properly mounted onto the car’s axle, where the initial state has a flat tire on the axle and
a good spare tire in the trunk. To keep it simple, our version of the problem is an abstract
one, with no sticky lug nuts or other complications. There are just four actions: removing
the spare from the trunk, removing the flat tire from the axle, putting the spare on the axle,
and leaving the car unattended overnight. We assume that the car is parked in a particu-
larly bad neighborhood, so that the effect of leaving it overnight is that the tires disappear.
[Remove(Flat,Axle),Remove(Spare,Trunk),PutOn(Spare,Axle)] is a solution to the problem.

11.1.3 Example domain: The blocks world

One of the most famous planning domains is the blocks world. This domain consists of a set
of cube-shaped blocks sitting on an arbitrarily-large table.1 The blocks can be stacked, but
only one block can fit directly on top of another. A robot arm can pick up a block and move it
to another position, either on the table or on top of another block. The arm can pick up only
one block at a time, so it cannot pick up a block that has another one on top of it. A typical
goal to get block A on B and block B on C (see Figure 11.3).

1 The blocks world commonly used in planning research is much simpler than SHRDLU’s version (page 38).
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Init(Tire(Flat) ∧ Tire(Spare) ∧ At(Flat,Axle) ∧ At(Spare,Trunk))
Goal(At(Spare,Axle))
Action(Remove(obj, loc),

PRECOND: At(obj, loc)
EFFECT: ¬ At(obj, loc) ∧ At(obj,Ground))

Action(PutOn(t, Axle),
PRECOND: Tire(t) ∧ At(t,Ground) ∧ ¬ At(Flat,Axle) ∧ ¬ At(Spare,Axle)
EFFECT: ¬ At(t,Ground) ∧ At(t,Axle))

Action(LeaveOvernight,
PRECOND:
EFFECT: ¬ At(Spare,Ground) ∧ ¬ At(Spare,Axle) ∧ ¬ At(Spare,Trunk)

∧ ¬ At(Flat,Ground) ∧ ¬ At(Flat,Axle) ∧ ¬ At(Flat, Trunk))

Figure 11.2 The simple spare tire problem.

Start State Goal State

B A

C

A

B

C

Figure 11.3 Diagram of the blocks-world problem in Figure 11.4.

Init(On(A,Table) ∧ On(B,Table) ∧ On(C,A)
∧ Block(A) ∧ Block(B) ∧ Block(C) ∧ Clear(B) ∧ Clear(C) ∧ Clear(Table))

Goal(On(A,B) ∧ On(B,C))
Action(Move(b,x,y),

PRECOND: On(b,x) ∧ Clear(b) ∧ Clear(y) ∧ Block(b) ∧ Block(y) ∧
(b6=x) ∧ (b6=y) ∧ (x 6=y),

EFFECT: On(b,y) ∧ Clear(x) ∧ ¬On(b,x) ∧ ¬Clear(y))
Action(MoveToTable(b,x),

PRECOND: On(b,x) ∧ Clear(b) ∧ Block(b) ∧ Block(x),
EFFECT: On(b,Table) ∧ Clear(x) ∧ ¬On(b,x))

Figure 11.4 A planning problem in the blocks world: building a three-block tower. One
solution is the sequence [MoveToTable(C,A),Move(B,Table,C),Move(A,Table,B)].
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We use On(b,x) to indicate that block b is on x, where x is either another block or the
table. The action for moving block b from the top of x to the top of y will be Move(b,x,y).
Now, one of the preconditions on moving b is that no other block be on it. In first-order logic,
this would be ¬∃x On(x,b) or, alternatively, ∀x ¬On(x,b). Basic PDDL does not allow
quantifiers, so instead we introduce a predicate Clear(x) that is true when nothing is on x.
(The complete problem description is in Figure 11.4.)

The action Move moves a block b from x to y if both b and y are clear. After the move is
made, b is still clear but y is not. A first attempt at the Move schema is

Action(Move(b,x,y),
PRECOND:On(b,x)∧Clear(b)∧Clear(y),
EFFECT:On(b,y)∧Clear(x)∧¬On(b,x)∧¬Clear(y)) .

Unfortunately, this does not maintain Clear properly when x or y is the table. When x is
the Table, this action has the effect Clear(Table), but the table should not become clear; and
when y=Table, it has the precondition Clear(Table), but the table does not have to be clear
for us to move a block onto it. To fix this, we do two things. First, we introduce another
action to move a block b from x to the table:

Action(MoveToTable(b,x),
PRECOND:On(b,x)∧Clear(b),
EFFECT:On(b,Table)∧Clear(x)∧¬On(b,x)) .

Second, we take the interpretation of Clear(x) to be “there is a clear space on x to hold a
block.” Under this interpretation, Clear(Table) will always be true. The only problem is that
nothing prevents the planner from using Move(b,x,Table) instead of MoveToTable(b,x). We
could live with this problem—it will lead to a larger-than-necessary search space, but will
not lead to incorrect answers—or we could introduce the predicate Block and add Block(b)∧
Block(y) to the precondition of Move, as shown in Figure 11.4.

11.2 Algorithms for Classical Planning

The description of a planning problem provides an obvious way to search from the initial
state through the space of states, looking for a goal. A nice advantage of the declarative
representation of action schemas is that we can also search backward from the goal, looking
for the initial state (Figure 11.5 compares forward and backward searches). A third possibility
is to translate the problem description into a set of logic sentences, to which we can apply a
logical inference algorithm to find a solution.

11.2.1 Forward state-space search for planning

We can solve planning problems by applying any of the heuristic search algorithms from
Chapter 3 or Chapter 4. The states in this search state space are ground states, where every
fluent is either true or not. The goal is a state that has all the positive fluents in the prob-
lem’s goal and none of the negative fluents. The applicable actions in a state, Actions(s), are
grounded instantiations of the action schemas—that is, actions where the variables have all
been replaced by constant values.

To determine the applicable actions we unify the current state against the preconditions
of each action schema. For each unification that successfully results in a substitution, we
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apply the substitution to the action schema to yield a ground action with no variables. (It
is a requirement of action schemas that any variable in the effect must also appear in the
precondition; that way, we are guaranteed that no variables remain after the substitution.)

Each schema may unify in multiple ways. In the spare tire example (page 364), the
Remove action has the precondition At(obj, loc), which matches against the initial state in two
ways, resulting in the two substitutions {obj/Flat, loc/Axle} and {obj/Spare, loc/Trunk};
applying these substitutions yields two ground actions. If an action has multiple literals in
the precondition, then each of them can potentially be matched against the current state in
multiple ways.

At first, it seems that the state space might be too big for many problems. Consider an
air cargo problem with 10 airports, where each airport initially has 5 planes and 20 pieces of
cargo. The goal is to move all the cargo at airport A to airport B. There is a 41-step solution
to the problem: load the 20 pieces of cargo into one of the planes at A, fly the plane to B, and
unload the 20 pieces.

Finding this apparently straightforward solution can be difficult because the average
branching factor is huge: each of the 50 planes can fly to 9 other airports, and each of the 200
packages can be either unloaded (if it is loaded) or loaded into any plane at its airport (if it
is unloaded). So in any state there is a minimum of 450 actions (when all the packages are
at airports with no planes) and a maximum of 10,450 (when all packages and planes are at

(a)

(b)

At(P1, A)
Fly(P1, A, B)

Fly(P2, A, B)

Fly(P1, A, B)

Fly(P2, A, B)

At(P2, A)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

At(P1, B)

At(P2, B)

At(P1, B)

At(P2, A)

At(P1, A)

At(P2, B)

Figure 11.5 Two approaches to searching for a plan. (a) Forward (progression) search
through the space of ground states, starting in the initial state and using the problem’s ac-
tions to search forward for a member of the set of goal states. (b) Backward (regression)
search through state descriptions, starting at the goal and using the inverse of the actions to
search backward for the initial state.
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the same airport). On average, let’s say there are about 2000 possible actions per state, so the
search graph up to the depth of the 41-step solution has about 200041 nodes.

Clearly, even this relatively small problem instance is hopeless without an accurate heuris-
tic. Although many real-world applications of planning have relied on domain-specific heuris-
tics, it turns out (as we see in Section 11.3) that strong domain-independent heuristics can be
derived automatically; that is what makes forward search feasible.

11.2.2 Backward search for planning

In backward search (also called regression search) we start at the goal and apply the actionsRegression search

backward until we find a sequence of steps that reaches the initial state. At each step we
consider relevant actions (in contrast to forward search, which considers actions that areRelevant action

applicable). This reduces the branching factor significantly, particularly in domains with
many possible actions.

A relevant action is one with an effect that unifies with one of the goal literals, but with
no effect that negates any part of the goal. For example, with the goal ¬Poor∧Famous, an
action with the sole effect Famous would be relevant, but one with the effect Poor∧Famous
is not considered relevant: even though that action might be used at some point in the plan (to
establish Famous), it cannot appear at this point in the plan because then Poor would appear
in the final state.

What does it mean to apply an action in the backward direction? Given a goal g and
an action a, the regression from g over a gives us a state description g′ whose positive andRegression

negative literals are given by
POS(g′) = (POS(g)−ADD(a))∪POS(Precond(a))
NEG(g′) = (NEG(g)−DEL(a))∪NEG(Precond(a)) .

That is, the preconditions must have held before, or else the action could not have been
executed, but the positive/negative literals that were added/deleted by the action need not
have been true before.

These equations are straightforward for ground literals, but some care is required when
there are variables in g and a. For example, suppose the goal is to deliver a specific piece
of cargo to SFO: At(C2,SFO). The Unload action schema has the effect At(c,a). When we
unify that with the goal, we get the substitution {c/C2,a/SFO}; applying that substitution to
the schema gives us a new schema which captures the idea of using any plane that is at SFO:

Action(Unload(C2, p′,SFO),
PRECOND:In(C2, p′)∧At(p′,SFO)∧Cargo(C2)∧Plane(p′)∧Airport(SFO)
EFFECT:At(C2,SFO)∧¬In(C2, p′)) .

Here we replaced p with a new variable named p′. This is an instance of standardizing apart
variable names so there will be no conflict between different variables that happen to have the
same name (see page 302). The regressed state description gives us a new goal:

g′ = In(C2, p′)∧At(p′,SFO)∧Cargo(C2)∧Plane(p′)∧Airport(SFO) .

As another example, consider the goal of owning a book with a specific ISBN number:
Own(9780134610993). Given a trillion 13-digit ISBNs and the single action schema

A = Action(Buy(i),PRECOND:ISBN(i),EFFECT:Own(i)) .
a forward search without a heuristic would have to start enumerating the 10 billion ground
Buy actions. But with backward search, we would unify the goal Own(9780134610993) with
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the effect Own(i′), yielding the substitution θ= {i′/9780134610993}. Then we would regress
over the action Subst(θ,A) to yield the predecessor state description ISBN(9780134610993).
This is part of the initial state, so we have a solution and we are done, having considered just
one action, not a trillion.

More formally, assume a goal description g that contains a goal literal gi and an action
schema A. If A has an effect literal e′j where Unify(gi,e′j)=θ and where we define A′ =
SUBST(θ,A) and if there is no effect in A′ that is the negation of a literal in g, then A′ is a
relevant action towards g.

For most problem domains backward search keeps the branching factor lower than for-
ward search. However, the fact that backward search uses states with variables rather than
ground states makes it harder to come up with good heuristics. That is the main reason why
the majority of current systems favor forward search.

11.2.3 Planning as Boolean satisfiability

In Section 7.7.4 we showed how some clever axiom-rewriting could turn a wumpus world
problem into a propositional logic satisfiability problem that could be handed to an efficient
satisfiability solver. SAT-based planners such as SATPLAN operate by translating a PDDL
problem description into propositional form. The translation involves a series of steps:

• Propositionalize the actions: for each action schema, form ground propositions by sub-
stituting constants for each of the variables. So instead of a single Unload(c, p,a)
schema, we would have separate action propositions for each combination of cargo,
plane, and airport (here written with subscripts), and for each time step (here written as
a superscript).

• Add action exclusion axioms saying that no two actions can occur at the same time, e.g.
¬(FlyP1SFOJFK1∧FlyP1SFOBUH1).

• Add precondition axioms: For each ground action At , add the axiom At ⇒ PRE(A)t ,
that is, if an action is taken at time t, then the preconditions must have been true. For
example, FlyP1SFOJFK1 ⇒ At(P1,SFO)∧Plane(P1)∧Airport(SFO)∧Airport(JFK).

• Define the initial state: assert F0 for every fluent F in the problem’s initial state, and
¬F0 for every fluent not mentioned in the initial state.

• Propositionalize the goal: the goal becomes a disjunction over all of its ground in-
stances, where variables are replaced by constants. For example, the goal of having
block A on another block, On(A,x)∧Block(x) in a world with objects A,B and C, would
be replaced by the goal

(On(A,A)∧Block(A))∨ (On(A,B)∧Block(B))∨ (On(A,C)∧Block(C)) .

• Add successor-state axioms: For each fluent F , add an axiom of the form

F t+1 ⇔ ActionCausesFt ∨ (F t ∧¬ActionCausesNotFt) ,

where ActionCausesF stands for a disjunction of all the ground actions that add F , and
ActionCausesNotF stands for a disjunction of all the ground actions that delete F .

The resulting translation is typically much larger than the original PDDL, but the efficiency
of modern SAT solvers often more than makes up for this.
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11.2.4 Other classical planning approaches

The three approaches we covered above are not the only ones tried in the 50-year history of
automated planning. We briefly describe some others here.

An approach called Graphplan uses a specialized data structure, a planning graph, toPlanning graph

encode constraints on how actions are related to their preconditions and effects, and on which
things are mutually exclusive.

Situation calculus is a method of describing planning problems in first-order logic. ItSituation calculus

uses successor-state axioms just as SATPLAN does, but first-order logic allows for more
flexibility and more succinct axioms. Overall the approach has contributed to our theoretical
understanding of planning, but has not made a big impact in practical applications, perhaps
because first-order provers are not as well developed as propositional satisfiability programs.

It is possible to encode a bounded planning problem (i.e., the problem of finding a plan
of length k) as a constraint satisfaction problem (CSP). The encoding is similar to the
encoding to a SAT problem (Section 11.2.3), with one important simplification: at each time
step we need only a single variable, Actiont , whose domain is the set of possible actions. We
no longer need one variable for every action, and we don’t need the action exclusion axioms.

All the approaches we have seen so far construct totally ordered plans consisting of
strictly linear sequences of actions. But if an air cargo problem has 30 packages being loaded
onto one plane and 50 packages being loaded onto another, it seems pointless to decree a
specific linear ordering of the 80 load actions.

An alternative called partial-order planning represents a plan as a graph rather than aPartial-order
planning

linear sequence: each action is a node in the graph, and for each precondition of the action
there is an edge from another action (or from the initial state) that indicates that the predeces-
sor action establishes the precondition. So we could have a partial-order plan that says that ac-
tions Remove(Spare,Trunk) and Remove(Flat,Axle) must come before PutOn(Spare,Axle),
but without saying which of the two Remove actions should come first. We search in the space
of plans rather than world-states, inserting actions to satisfy conditions.

In the 1980s and 1990s, partial-order planning was seen as the best way to handle plan-
ning problems with independent subproblems. By 2000, forward-search planners had devel-
oped excellent heuristics that allowed them to efficiently discover the independent subprob-
lems that partial-order planning was designed for. Moreover, SATPLAN was able to take ad-
vantage of Moore’s law: a propositionalization that was hopelessly large in 1980 now looks
tiny, because computers have 10,000 times more memory today. As a result, partial-order
planners are not competitive on fully automated classical planning problems.

Nonetheless, partial-order planning remains an important part of the field. For some
specific tasks, such as operations scheduling, partial-order planning with domain-specific
heuristics is the technology of choice. Many of these systems use libraries of high-level
plans, as described in Section 11.4.

Partial-order planning is also often used in domains where it is important for humans
to understand the plans. For example, operational plans for spacecraft and Mars rovers are
generated by partial-order planners and are then checked by human operators before being
uploaded to the vehicles for execution. The plan refinement approach makes it easier for the
humans to understand what the planning algorithms are doing and to verify that the plans are
correct before they are executed.
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11.3 Heuristics for Planning

Neither forward nor backward search is efficient without a good heuristic function. Recall
from Chapter 3 that a heuristic function h(s) estimates the distance from a state s to the
goal, and that if we can derive an admissible heuristic for this distance—one that does not
overestimate—then we can use A∗ search to find optimal solutions.

By definition, there is no way to analyze an atomic state, and thus it requires some in-
genuity by an analyst (usually human) to define good domain-specific heuristics for search
problems with atomic states. But planning uses a factored representation for states and ac-
tions, which makes it possible to define good domain-independent heuristics.

Recall that an admissible heuristic can be derived by defining a relaxed problem that is
easier to solve. The exact cost of a solution to this easier problem then becomes the heuristic
for the original problem. A search problem is a graph where the nodes are states and the
edges are actions. The problem is to find a path connecting the initial state to a goal state.
There are two main ways we can relax this problem to make it easier: by adding more edges
to the graph, making it strictly easier to find a path, or by grouping multiple nodes together,
forming an abstraction of the state space that has fewer states, and thus is easier to search.

We look first at heuristics that add edges to the graph. Perhaps the simplest is the ignore-
preconditions heuristic, which drops all preconditions from actions. Every action becomes Ignore-preconditions

heuristic
applicable in every state, and any single goal fluent can be achieved in one step (if there
are any applicable actions—if not, the problem is impossible). This almost implies that the
number of steps required to solve the relaxed problem is the number of unsatisfied goals—
almost but not quite, because (1) some action may achieve multiple goals and (2) some actions
may undo the effects of others.

For many problems an accurate heuristic is obtained by considering (1) and ignoring (2).
First, we relax the actions by removing all preconditions and all effects except those that are
literals in the goal. Then, we count the minimum number of actions required such that the
union of those actions’ effects satisfies the goal. This is an instance of the set-cover problem. Set-cover problem

There is one minor irritation: the set-cover problem is NP-hard. Fortunately a simple greedy
algorithm is guaranteed to return a set covering whose size is within a factor of logn of the
true minimum covering, where n is the number of literals in the goal. Unfortunately, the
greedy algorithm loses the guarantee of admissibility.

It is also possible to ignore only selected preconditions of actions. Consider the sliding-
tile puzzle (8-puzzle or 15-puzzle) from Section 3.2. We could encode this as a planning
problem involving tiles with a single schema Slide:

Action(Slide(t,s1,s2),
PRECOND:On(t,s1)∧Tile(t)∧Blank(s2)∧Adjacent(s1,s2)
EFFECT:On(t,s2)∧Blank(s1)∧¬On(t,s1)∧¬Blank(s2))

As we saw in Section 3.6, if we remove the preconditions Blank(s2)∧Adjacent(s1,s2) then
any tile can move in one action to any space and we get the number-of-misplaced-tiles heuris-
tic. If we remove only the Blank(s2) precondition then we get the Manhattan-distance heuris-
tic. It is easy to see how these heuristics could be derived automatically from the action
schema description. The ease of manipulating the action schemas is the great advantage of
the factored representation of planning problems, as compared with the atomic representation
of search problems.



372 Chapter 11 Automated Planning

Figure 11.6 Two state spaces from planning problems with the ignore-delete-lists heuristic.
The height above the bottom plane is the heuristic score of a state; states on the bottom
plane are goals. There are no local minima, so search for the goal is straightforward. From
Hoffmann (2005).

Another possibility is the ignore-delete-lists heuristic. Assume for a moment that allIgnore-delete-lists
heuristic

goals and preconditions contain only positive literals.2 We want to create a relaxed version
of the original problem that will be easier to solve, and where the length of the solution
will serve as a good heuristic. We can do that by removing the delete lists from all actions
(i.e., removing all negative literals from effects). That makes it possible to make monotonic
progress towards the goal—no action will ever undo progress made by another action. It turns
out it is still NP-hard to find the optimal solution to this relaxed problem, but an approximate
solution can be found in polynomial time by hill climbing.

Figure 11.6 diagrams part of the state space for two planning problems using the ignore-
delete-lists heuristic. The dots represent states and the edges actions, and the height of each
dot above the bottom plane represents the heuristic value. States on the bottom plane are
solutions. In both of these problems, there is a wide path to the goal. There are no dead ends,
so no need for backtracking; a simple hill-climbing search will easily find a solution to these
problems (although it may not be an optimal solution).

11.3.1 Domain-independent pruning

Factored representations make it obvious that many states are just variants of other states. For
example, suppose we have a dozen blocks on a table, and the goal is to have block A on top
of a three-block tower. The first step in a solution is to place some block x on top of block y
(where x, y, and A are all different). After that, place A on top of x and we’re done. There are
11 choices for x, and given x, 10 choices for y, and thus 110 states to consider. But all these
states are symmetric: choosing one over another makes no difference, and thus a planner
should only consider one of them. This is the process of symmetry reduction: we prune outSymmetry reduction

2 Many problems are written with this convention. For problems that aren’t, replace every negative literal ¬P in
a goal or precondition with a new positive literal, P′, and modify the initial state and the action effects accordingly.
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of consideration all symmetric branches of the search tree except for one. For many domains,
this makes the difference between intractable and efficient solving.

Another possibility is to do forward pruning, accepting the risk that we might prune
away an optimal solution, in order to focus the search on promising branches. We can define
a preferred action as follows: First, define a relaxed version of the problem, and solve it to Preferred action

get a relaxed plan. Then a preferred action is either a step of the relaxed plan, or it achieves
some precondition of the relaxed plan.

Sometimes it is possible to solve a problem efficiently by recognizing that negative in-
teractions can be ruled out. We say that a problem has serializable subgoals if there exists Serializable subgoals

an order of subgoals such that the planner can achieve them in that order without having to
undo any of the previously achieved subgoals. For example, in the blocks world, if the goal
is to build a tower (e.g., A on B, which in turn is on C, which in turn is on the Table, as in
Figure 11.3 on page 365), then the subgoals are serializable bottom to top: if we first achieve
C on Table, we will never have to undo it while we are achieving the other subgoals. A
planner that uses the bottom-to-top trick can solve any problem in the blocks world without
backtracking (although it might not always find the shortest plan). As another example, if
there is a room with n light switches, each controlling a separate light, and the goal is to have
them all on, then we don’t have to consider permutations of the order; we could arbitrarily
restrict ourselves to plans that flip switches in, say, ascending order.

For the Remote Agent planner that commanded NASA’s Deep Space One spacecraft, it
was determined that the propositions involved in commanding a spacecraft are serializable.
This is perhaps not too surprising, because a spacecraft is designed by its engineers to be as
easy as possible to control (subject to other constraints). Taking advantage of the serialized
ordering of goals, the Remote Agent planner was able to eliminate most of the search. This
meant that it was fast enough to control the spacecraft in real time, something previously
considered impossible.

11.3.2 State abstraction in planning

A relaxed problem leaves us with a simplified planning problem just to calculate the value
of the heuristic function. Many planning problems have 10100 states or more, and relaxing
the actions does nothing to reduce the number of states, which means that it may still be
expensive to compute the heuristic. Therefore, we now look at relaxations that decrease the
number of states by forming a state abstraction—a many-to-one mapping from states in the State abstraction

ground representation of the problem to the abstract representation.
The easiest form of state abstraction is to ignore some fluents. For example, consider an

air cargo problem with 10 airports, 50 planes, and 200 pieces of cargo. Each plane can be
at one of 10 airports and each package can be either in one of the planes or unloaded at one
of the airports. So there are 1050× (50+ 10)200 ≈ 10405 states. Now consider a particular
problem in that domain in which it happens that all the packages are at just 5 of the airports,
and all packages at a given airport have the same destination. Then a useful abstraction of the
problem is to drop all the At fluents except for the ones involving one plane and one package
at each of the 5 airports. Now there are only 105× (5+10)5 ≈ 1011 states. A solution in this
abstract state space will be shorter than a solution in the original space (and thus will be an
admissible heuristic), and the abstract solution is easy to extend to a solution to the original
problem (by adding additional Load and Unload actions).
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A key idea in defining heuristics is decomposition: dividing a problem into parts, solvingDecomposition

each part independently, and then combining the parts. The subgoal independence assump-Subgoal
independence

tion is that the cost of solving a conjunction of subgoals is approximated by the sum of
the costs of solving each subgoal independently. The subgoal independence assumption can
be optimistic or pessimistic. It is optimistic when there are negative interactions between
the subplans for each subgoal—for example, when an action in one subplan deletes a goal
achieved by another subplan. It is pessimistic, and therefore inadmissible, when subplans
contain redundant actions—for instance, two actions that could be replaced by a single action
in the merged plan.

Suppose the goal is a set of fluents G, which we divide into disjoint subsets G1, . . . ,Gn.
We then find optimal plans P1, . . . ,Pn that solve the respective subgoals. What is an estimate
of the cost of the plan for achieving all of G? We can think of each COST(Pi) as a heuristic
estimate, and we know that if we combine estimates by taking their maximum value, we
always get an admissible heuristic. So maxi COST(Pi) is admissible, and sometimes it is
exactly correct: it could be that P1 serendipitously achieves all the Gi. But usually the estimate
is too low. Could we sum the costs instead? For many problems that is a reasonable estimate,
but it is not admissible. The best case is when Gi and G j are independent, in the sense
that plans for one cannot reduce the cost of plans for the other. In that case, the estimate
COST(Pi)+COST(Pj) is admissible, and more accurate than the max estimate.

It is clear that there is great potential for cutting down the search space by forming ab-
stractions. The trick is choosing the right abstractions and using them in a way that makes
the total cost—defining an abstraction, doing an abstract search, and mapping the abstraction
back to the original problem—less than the cost of solving the original problem. The tech-
niques of pattern databases from Section 3.6.3 can be useful, because the cost of creating
the pattern database can be amortized over multiple problem instances.

A system that makes use of effective heuristics is FF, or FASTFORWARD (Hoffmann,
2005), a forward state-space searcher that uses the ignore-delete-lists heuristic, estimating
the heuristic with the help of a planning graph. FF then uses hill climbing search (modified
to keep track of the plan) with the heuristic to find a solution. FF’s hill climbing algorithm is
nonstandard: it avoids local maxima by running a breadth-first search from the current state
until a better one is found. If this fails, FF switches to a greedy best-first search instead.

11.4 Hierarchical Planning

The problem-solving and planning methods of the preceding chapters all operate with a fixed
set of atomic actions. Actions can be strung together, and state-of-the-art algorithms can
generate solutions containing thousands of actions. That’s fine if we are planning a vacation
and the actions are at the level of “fly from San Francisco to Honolulu,” but at the motor-
control level of “bend the left knee by 5 degrees” we would need to string together millions
or billions of actions, not thousands.

Bridging this gap requires planning at higher levels of abstraction. A high-level plan for
a Hawaii vacation might be “Go to San Francisco airport; take flight HA 11 to Honolulu;
do vacation stuff for two weeks; take HA 12 back to San Francisco; go home.” Given such
a plan, the action “Go to San Francisco airport” can be viewed as a planning task in itself,
with a solution such as “Choose a ride-hailing service; order a car; ride to airport.” Each of
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these actions, in turn, can be decomposed further, until we reach the low-level motor control
actions like a button-press.

In this example, planning and acting are interleaved; for example, one would defer the
problem of planning the walk from the curb to the gate until after being dropped off. Thus,
that particular action will remain at an abstract level prior to the execution phase. We defer
discussion of this topic until Section 11.5. Here, we concentrate on the idea of hierarchi-
cal decomposition, an idea that pervades almost all attempts to manage complexity. For Hierarchical

decomposition

example, complex software is created from a hierarchy of subroutines and classes; armies,
governments and corporations have organizational hierarchies. The key benefit of hierarchi-
cal structure is that at each level of the hierarchy, a computational task, military mission, or
administrative function is reduced to a small number of activities at the next lower level, so
the computational cost of finding the correct way to arrange those activities for the current
problem is small.

11.4.1 High-level actions

The basic formalism we adopt to understand hierarchical decomposition comes from the area
of hierarchical task networks or HTN planning. For now we assume full observability and Hierarchical task

network
determinism and a set of actions, now called primitive actions, with standard precondition– Primitive action

effect schemas. The key additional concept is the high-level action or HLA—for example, High-level action

the action “Go to San Francisco airport.” Each HLA has one or more possible refinements, Refinement

into a sequence of actions, each of which may be an HLA or a primitive action. For example,
the action “Go to San Francisco airport,” represented formally as Go(Home,SFO), might
have two possible refinements, as shown in Figure 11.7. The same figure shows a recursive
refinement for navigation in the vacuum world: to get to a destination, take a step, and then
go to the destination.

These examples show that high-level actions and their refinements embody knowledge
about how to do things. For instance, the refinements for Go(Home,SFO) say that to get to
the airport you can drive or take a ride-hailing service; buying milk, sitting down, and moving
the knight to e4 are not to be considered.

An HLA refinement that contains only primitive actions is called an implementation Implementation

of the HLA. In a grid world, the sequences [Right,Right,Down] and [Down,Right,Right]
both implement the HLA Navigate([1,3], [3,2]). An implementation of a high-level plan (a
sequence of HLAs) is the concatenation of implementations of each HLA in the sequence.
Given the precondition–effect definitions of each primitive action, it is straightforward to
determine whether any given implementation of a high-level plan achieves the goal.

We can say, then, that a high-level plan achieves the goal from a given state if at least J
one of its implementations achieves the goal from that state. The “at least one” in this
definition is crucial—not all implementations need to achieve the goal, because the agent gets
to decide which implementation it will execute. Thus, the set of possible implementations in
HTN planning—each of which may have a different outcome—is not the same as the set of
possible outcomes in nondeterministic planning. There, we required that a plan work for all
outcomes because the agent doesn’t get to choose the outcome; nature does.

The simplest case is an HLA that has exactly one implementation. In that case, we can
compute the preconditions and effects of the HLA from those of the implementation (see
Exercise 11.HLAU) and then treat the HLA exactly as if it were a primitive action itself. It
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Refinement(Go(Home,SFO),
STEPS: [Drive(Home,SFOLongTermParking),

Shuttle(SFOLongTermParking,SFO)] )
Refinement(Go(Home,SFO),

STEPS: [Taxi(Home,SFO)] )

Refinement(Navigate([a,b], [x,y]),
PRECOND: a=x ∧ b=y
STEPS: [ ] )

Refinement(Navigate([a,b], [x,y]),
PRECOND:Connected([a,b], [a−1,b])
STEPS: [Left,Navigate([a−1,b], [x,y])] )

Refinement(Navigate([a,b], [x,y]),
PRECOND:Connected([a,b], [a+1,b])
STEPS: [Right,Navigate([a+1,b], [x,y])] )

. . .

Figure 11.7 Definitions of possible refinements for two high-level actions: going to San
Francisco airport and navigating in the vacuum world. In the latter case, note the recursive
nature of the refinements and the use of preconditions.

can be shown that the right collection of HLAs can result in the time complexity of blind
search dropping from exponential in the solution depth to linear in the solution depth, al-
though devising such a collection of HLAs may be a nontrivial task in itself. When HLAs
have multiple possible implementations, there are two options: one is to search among the
implementations for one that works, as in Section 11.4.2; the other is to reason directly about
the HLAs—despite the multiplicity of implementations—as explained in Section 11.4.3. The
latter method enables the derivation of provably correct abstract plans, without the need to
consider their implementations.

11.4.2 Searching for primitive solutions

HTN planning is often formulated with a single “top level” action called Act, where the aim
is to find an implementation of Act that achieves the goal. This approach is entirely general.
For example, classical planning problems can be defined as follows: for each primitive action
ai, provide one refinement of Act with steps [ai,Act]. That creates a recursive definition of Act
that lets us add actions. But we need some way to stop the recursion; we do that by providing
one more refinement for Act, one with an empty list of steps and with a precondition equal
to the goal of the problem. This says that if the goal is already achieved, then the right
implementation is to do nothing.

The approach leads to a simple algorithm: repeatedly choose an HLA in the current plan
and replace it with one of its refinements, until the plan achieves the goal. One possible im-
plementation based on breadth-first tree search is shown in Figure 11.8. Plans are considered
in order of depth of nesting of the refinements, rather than number of primitive steps. It is
straightforward to design a graph-search version of the algorithm as well as depth-first and
iterative deepening versions.
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function HIERARCHICAL-SEARCH(problem, hierarchy) returns a solution or failure

frontier←a FIFO queue with [Act] as the only element
while true do

if IS-EMPTY( frontier) then return failure
plan←POP( frontier) // chooses the shallowest plan in frontier
hla← the first HLA in plan, or null if none
prefix,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem.INITIAL, prefix)
if hla is null then // so plan is primitive and outcome is its result

if problem.IS-GOAL(outcome) then return plan
else for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

Figure 11.8 A breadth-first implementation of hierarchical forward planning search. The
initial plan supplied to the algorithm is [Act]. The REFINEMENTS function returns a set of
action sequences, one for each refinement of the HLA whose preconditions are satisfied by
the specified state, outcome.

In essence, this form of hierarchical search explores the space of sequences that conform
to the knowledge contained in the HLA library about how things are to be done. A great deal
of knowledge can be encoded, not just in the action sequences specified in each refinement but
also in the preconditions for the refinements. For some domains, HTN planners have been
able to generate huge plans with very little search. For example, O-PLAN (Bell and Tate,
1985), which combines HTN planning with scheduling, has been used to develop production
plans for Hitachi. A typical problem involves a product line of 350 different products, 35
assembly machines, and over 2000 different operations. The planner generates a 30-day
schedule with three 8-hour shifts a day, involving tens of millions of steps. Another important
aspect of HTN plans is that they are, by definition, hierarchically structured; usually this
makes them easy for humans to understand.

The computational benefits of hierarchical search can be seen by examining an ideal-
ized case. Suppose that a planning problem has a solution with d primitive actions. For
a nonhierarchical, forward state-space planner with b allowable actions at each state, the
cost is O(bd), as explained in Chapter 3. For an HTN planner, let us suppose a very reg-
ular refinement structure: each nonprimitive action has r possible refinements, each into
k actions at the next lower level. We want to know how many different refinement trees
there are with this structure. Now, if there are d actions at the primitive level, then the
number of levels below the root is logk d, so the number of internal refinement nodes is
1+ k+ k2 + · · ·+ klogk d−1 = (d−1)/(k−1). Each internal node has r possible refinements,
so r(d−1)/(k−1) possible decomposition trees could be constructed.

Examining this formula, we see that keeping r small and k large can result in huge sav-
ings: we are taking the kth root of the nonhierarchical cost, if b and r are comparable. Small r
and large k means a library of HLAs with a small number of refinements each yielding a long
action sequence. This is not always possible: long action sequences that are usable across a
wide range of problems are extremely rare.
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The key to HTN planning is a plan library containing known methods for implementing
complex, high-level actions. One way to construct the library is to learn the methods from
problem-solving experience. After the excruciating experience of constructing a plan from
scratch, the agent can save the plan in the library as a method for implementing the high-level
action defined by the task. In this way, the agent can become more and more competent over
time as new methods are built on top of old methods. One important aspect of this learning
process is the ability to generalize the methods that are constructed, eliminating detail that
is specific to the problem instance (e.g., the name of the builder or the address of the plot of
land) and keeping just the key elements of the plan. It seems to us inconceivable that humans
could be as competent as they are without some such mechanism.

11.4.3 Searching for abstract solutions

The hierarchical search algorithm in the preceding section refines HLAs all the way to primi-
tive action sequences to determine if a plan is workable. This contradicts common sense: one
should be able to determine that the two-HLA high-level plan

[Drive(Home,SFOLongTermParking),Shuttle(SFOLongTermParking,SFO)]

gets one to the airport without having to determine a precise route, choice of parking spot,
and so on. The solution is to write precondition–effect descriptions of the HLAs, just as we
do for primitive actions. From the descriptions, it ought to be easy to prove that the high-level
plan achieves the goal. This is the holy grail, so to speak, of hierarchical planning, because if
we derive a high-level plan that provably achieves the goal, working in a small search space
of high-level actions, then we can commit to that plan and work on the problem of refining
each step of the plan. This gives us the exponential reduction we seek.

For this to work, it has to be the case that every high-level plan that “claims” to achieve
the goal (by virtue of the descriptions of its steps) does in fact achieve the goal in the sense
defined earlier: it must have at least one implementation that does achieve the goal. This
property has been called the downward refinement property for HLA descriptions.Downward

refinement property

Writing HLA descriptions that satisfy the downward refinement property is, in principle,
easy: as long as the descriptions are true, then any high-level plan that claims to achieve
the goal must in fact do so—otherwise, the descriptions are making some false claim about
what the HLAs do. We have already seen how to write true descriptions for HLAs that have
exactly one implementation (Exercise 11.HLAU); a problem arises when the HLA has multiple
implementations. How can we describe the effects of an action that can be implemented in
many different ways?

One safe answer (at least for problems where all preconditions and goals are positive) is
to include only the positive effects that are achieved by every implementation of the HLA and
the negative effects of any implementation. Then the downward refinement property would
be satisfied. Unfortunately, this semantics for HLAs is much too conservative.

Consider again the HLA Go(Home,SFO), which has two refinements, and suppose, for
the sake of argument, a simple world in which one can always drive to the airport and park,
but taking a taxi requires Cash as a precondition. In that case, Go(Home,SFO) doesn’t al-
ways get you to the airport. In particular, it fails if Cash is false, and so we cannot assert
At(Agent,SFO) as an effect of the HLA. This makes no sense, however; if the agent didn’t
have Cash, it would drive itself. Requiring that an effect hold for every implementation is
equivalent to assuming that someone else—an adversary—will choose the implementation.
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(a) (b)

Figure 11.9 Schematic examples of reachable sets. The set of goal states is shaded in purple.
Black and red arrows indicate possible implementations of h1 and h2, respectively. (a) The
reachable set of an HLA h1 in a state s. (b) The reachable set for the sequence [h1,h2].
Because this intersects the goal set, the sequence achieves the goal.

It treats the HLA’s multiple outcomes exactly as if the HLA were a nondeterministic action,
as in Section 4.3. For our case, the agent itself will choose the implementation.

The programming languages community has coined the term demonic nondeterminism Demonic
nondeterminism

for the case where an adversary makes the choices, contrasting this with angelic nondeter-
minism, where the agent itself makes the choices. We borrow this term to define angelic Angelic

nondeterminism
semantics for HLA descriptions. The basic concept required for understanding angelic se- Angelic semantics

mantics is the reachable set of an HLA: given a state s, the reachable set for an HLA h, Reachable set

written as REACH(s,h), is the set of states reachable by any of the HLA’s implementations.
The key idea is that the agent can choose which element of the reachable set it ends up in

when it executes the HLA; thus, an HLA with multiple refinements is more “powerful” than
the same HLA with fewer refinements. We can also define the reachable set of a sequence of
HLAs. For example, the reachable set of a sequence [h1,h2] is the union of all the reachable
sets obtained by applying h2 in each state in the reachable set of h1:

REACH(s, [h1,h2]) =
⋃

s′∈REACH(s, h1)

REACH(s′,h2) .

Given these definitions, a high-level plan—a sequence of HLAs—achieves the goal if its
reachable set intersects the set of goal states. (Compare this to the much stronger condition
for demonic semantics, where every member of the reachable set has to be a goal state.)
Conversely, if the reachable set doesn’t intersect the goal, then the plan definitely doesn’t
work. Figure 11.9 illustrates these ideas.

The notion of reachable sets yields a straightforward algorithm: search among high-
level plans, looking for one whose reachable set intersects the goal; once that happens, the
algorithm can commit to that abstract plan, knowing that it works, and focus on refining the
plan further. We will return to the algorithmic issues later; for now consider how the effects
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of an HLA—the reachable set for each possible initial state—are represented. A primitive
action can set a fluent to true or false or leave it unchanged. (With conditional effects (see
Section 11.5.1) there is a fourth possibility: flipping a variable to its opposite.)

An HLA under angelic semantics can do more: it can control the value of a fluent, setting
it to true or false depending on which implementation is chosen. That means that an HLA can
have nine different effects on a fluent: if the variable starts out true, it can always keep it true,
always make it false, or have a choice; if the fluent starts out false, it can always keep it false,
always make it true, or have a choice; and the three choices for both cases can be combined
arbitrarily, making nine.

Notationally, this is a bit challenging. We’ll use the language of add lists and delete
lists (rather than true/false fluents) along with the ˜ symbol to mean “possibly, if the agent
so chooses.” Thus, the effect +̃A means “possibly add A,” that is, either leave A unchanged
or make it true. Similarly, −̃A means “possibly delete A” and ±̃A means “possibly add
or delete A.” For example, the HLA Go(Home,SFO), with the two refinements shown in
Figure 11.7, possibly deletes Cash (if the agent decides to take a taxi), so it should have the
effect −̃Cash. Thus, we see that the descriptions of HLAs are derivable from the descriptions
of their refinements. Now, suppose we have the following schemas for the HLAs h1 and h2:

Action(h1,PRECOND:¬A,EFFECT:A∧−̃B) ,
Action(h2,PRECOND:¬B,EFFECT:+̃A∧±̃C) .

That is, h1 adds A and possibly deletes B, while h2 possibly adds A and has full control over
C. Now, if only B is true in the initial state and the goal is A∧C then the sequence [h1,h2]
achieves the goal: we choose an implementation of h1 that makes B false, then choose an
implementation of h2 that leaves A true and makes C true.

The preceding discussion assumes that the effects of an HLA—the reachable set for any
given initial state—can be described exactly by describing the effect on each fluent. It would
be nice if this were always true, but in many cases we can only approximate the effects be-
cause an HLA may have infinitely many implementations and may produce arbitrarily wig-
gly reachable sets—rather like the wiggly-belief-state problem illustrated in Figure 7.21 on
page 261. For example, we said that Go(Home,SFO) possibly deletes Cash; it also possibly
adds At(Car,SFOLongTermParking); but it cannot do both—in fact, it must do exactly one.
As with belief states, we may need to write approximate descriptions. We will use two kinds
of approximation: an optimistic description REACH+(s,h) of an HLA h may overstate theOptimistic

description

reachable set, while a pessimistic description REACH−(s,h) may understate the reachablePessimistic
description

set. Thus, we have

REACH−(s,h)⊆ REACH(s,h)⊆ REACH+(s,h) .

For example, an optimistic description of Go(Home,SFO) says that it possibly deletes Cash
and possibly adds At(Car,SFOLongTermParking). Another good example arises in the 8-
puzzle, half of whose states are unreachable from any given state (see Exercise 11.PART):
the optimistic description of Act might well include the whole state space, since the exact
reachable set is quite wiggly.

With approximate descriptions, the test for whether a plan achieves the goal needs to
be modified slightly. If the optimistic reachable set for the plan doesn’t intersect the goal,
then the plan doesn’t work; if the pessimistic reachable set intersects the goal, then the plan
does work (Figure 11.10(a)). With exact descriptions, a plan either works or it doesn’t, but
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(a) (b)

Figure 11.10 Goal achievement for high-level plans with approximate descriptions. The set
of goal states is shaded in purple. For each plan, the pessimistic (solid lines, light blue) and
optimistic (dashed lines, light green) reachable sets are shown. (a) The plan indicated by the
black arrow definitely achieves the goal, while the plan indicated by the red arrow definitely
doesn’t. (b) A plan that possibly achieves the goal (the optimistic reachable set intersects
the goal) but does not necessarily achieve the goal (the pessimistic reachable set does not
intersect the goal). The plan would need to be refined further to determine if it really does
achieve the goal.

with approximate descriptions, there is a middle ground: if the optimistic set intersects the
goal but the pessimistic set doesn’t, then we cannot tell if the plan works (Figure 11.10(b)).
When this circumstance arises, the uncertainty can be resolved by refining the plan. This is
a very common situation in human reasoning. For example, in planning the aforementioned
two-week Hawaii vacation, one might propose to spend two days on each of seven islands.
Prudence would indicate that this ambitious plan needs to be refined by adding details of
inter-island transportation.

An algorithm for hierarchical planning with approximate angelic descriptions is shown
in Figure 11.11. For simplicity, we have kept to the same overall scheme used previously
in Figure 11.8, that is, a breadth-first search in the space of refinements. As just explained,
the algorithm can detect plans that will and won’t work by checking the intersections of
the optimistic and pessimistic reachable sets with the goal. (The details of how to compute
the reachable sets of a plan, given approximate descriptions of each step, are covered in
Exercise 11.HLAP.)

When a workable abstract plan is found, the algorithm decomposes the original problem
into subproblems, one for each step of the plan. The initial state and goal for each subproblem
are obtained by regressing a guaranteed-reachable goal state through the action schemas for
each step of the plan. (See Section 11.2.2 for a discussion of how regression works.) Fig-
ure 11.9(b) illustrates the basic idea: the right-hand circled state is the guaranteed-reachable
goal state, and the left-hand circled state is the intermediate goal obtained by regressing the
goal through the final action.
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function ANGELIC-SEARCH(problem, hierarchy, initialPlan) returns a solution or fail

frontier←a FIFO queue with initialPlan as the only element
while true do

if IS-EMPTY?( frontier) then return fail
plan←POP( frontier) // chooses the shallowest node in frontier
if REACH+(problem.INITIAL,plan) intersects problem.GOAL then

if plan is primitive then return plan // REACH+ is exact for primitive plans
guaranteed←REACH−(problem.INITIAL,plan) ∩ problem.GOAL
if guaranteed 6={} and MAKING-PROGRESS(plan, initialPlan) then

finalState←any element of guaranteed
return DECOMPOSE(hierarchy, problem.INITIAL, plan, finalState)

hla←some HLA in plan
prefix,suffix← the action subsequences before and after hla in plan
outcome←RESULT(problem.INITIAL, prefix)
for each sequence in REFINEMENTS(hla, outcome, hierarchy) do

add APPEND(prefix, sequence, suffix) to frontier

function DECOMPOSE(hierarchy, s0, plan, sf ) returns a solution

solution←an empty plan
while plan is not empty do

action←REMOVE-LAST(plan)
si←a state in REACH−(s0,plan) such that sf∈REACH−(si,action)
problem←a problem with INITIAL = si and GOAL = sf
solution←APPEND(ANGELIC-SEARCH(problem, hierarchy, action), solution)
sf←si

return solution

Figure 11.11 A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t. The predi-
cate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements. At top level, call ANGELIC-SEARCH with [Act] as the initialPlan.

The ability to commit to or reject high-level plans can give ANGELIC-SEARCH a sig-
nificant computational advantage over HIERARCHICAL-SEARCH, which in turn may have a
large advantage over plain old BREADTH-FIRST-SEARCH. Consider, for example, cleaning
up a large vacuum world consisting of an arrangement of rooms connected by narrow corri-
dors, where each room is a w× h rectangle of squares. It makes sense to have an HLA for
Navigate (as shown in Figure 11.7) and one for CleanWholeRoom. (Cleaning the room could
be implemented with the repeated application of another HLA to clean each row.) Since there
are five primitive actions, the cost for BREADTH-FIRST-SEARCH grows as 5d , where d is the
length of the shortest solution (roughly twice the total number of squares); the algorithm
cannot manage even two 3×3 rooms. HIERARCHICAL-SEARCH is more efficient, but still
suffers from exponential growth because it tries all ways of cleaning that are consistent with
the hierarchy. ANGELIC-SEARCH scales approximately linearly in the number of squares—
it commits to a good high-level sequence of room-cleaning and navigation steps and prunes
away the other options.
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Cleaning a set of rooms by cleaning each room in turn is hardly rocket science: it is
easy for humans because of the hierarchical structure of the task. When we consider how
difficult humans find it to solve small puzzles such as the 8-puzzle, it seems likely that the
human capacity for solving complex problems derives not from considering combinatorics,
but rather from skill in abstracting and decomposing problems to eliminate combinatorics.

The angelic approach can be extended to find least-cost solutions by generalizing the
notion of reachable set. Instead of a state being reachable or not, each state will have a cost
for the most efficient way to get there. (The cost is infinite for unreachable states.) The
optimistic and pessimistic descriptions bound these costs. In this way, angelic search can
find provably optimal abstract plans without having to consider their implementations. The
same approach can be used to obtain effective hierarchical look-ahead algorithms for online Hierarchical

look-ahead
search, in the style of LRTA∗ (page 158).

In some ways, such algorithms mirror aspects of human deliberation in tasks such as
planning a vacation to Hawaii—consideration of alternatives is done initially at an abstract
level over long time scales; some parts of the plan are left quite abstract until execution time,
such as how to spend two lazy days on Moloka‘i, while others parts are planned in detail,
such as the flights to be taken and lodging to be reserved—without these latter refinements,
there is no guarantee that the plan would be feasible.

11.5 Planning and Acting in Nondeterministic Domains

In this section we extend planning to handle partially observable, nondeterministic, and un-
known environments. The basic concepts mirror those in Chapter 4, but there are differences
arising from the use of factored representations rather than atomic representations. This af-
fects the way we represent the agent’s capability for action and observation and the way
we represent belief states—the sets of possible physical states the agent might be in—for
partially observable environments. We can also take advantage of many of the domain-
independent methods given in Section 11.3 for calculating search heuristics.

We will cover sensorless planning (also known as conformant planning) for environ-
ments with no observations; contingency planning for partially observable and nondetermin-
istic environments; and online planning and replanning for unknown environments. This
will allow us to tackle sizable real-world problems.

Consider this problem: given a chair and a table, the goal is to have them match—have
the same color. In the initial state we have two cans of paint, but the colors of the paint and
the furniture are unknown. Only the table is initially in the agent’s field of view:

Init(Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2)∧ InView(Table))
Goal(Color(Chair,c)∧Color(Table,c))

There are two actions: removing the lid from a paint can and painting an object using the
paint from an open can.

Action(RemoveLid(can),
PRECOND:Can(can)
EFFECT:Open(can))

Action(Paint(x,can),
PRECOND:Object(x)∧Can(can)∧Color(can,c)∧Open(can)
EFFECT:Color(x,c))
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The action schemas are straightforward, with one exception: preconditions and effects now
may contain variables that are not part of the action’s variable list. That is, Paint(x,can)
does not mention the variable c, representing the color of the paint in the can. In the fully
observable case, this is not allowed—we would have to name the action Paint(x,can,c). But
in the partially observable case, we might or might not know what color is in the can.

To solve a partially observable problem, the agent will have to reason about the percepts
it will obtain when it is executing the plan. The percept will be supplied by the agent’s
sensors when it is actually acting, but when it is planning it will need a model of its sensors.
In Chapter 4, this model was given by a function, PERCEPT(s). For planning, we augment
PDDL with a new type of schema, the percept schema:Percept schema

Percept(Color(x,c),
PRECOND:Object(x)∧ InView(x)

Percept(Color(can,c),
PRECOND:Can(can)∧ InView(can)∧Open(can))

The first schema says that whenever an object is in view, the agent will perceive the color
of the object (that is, for the object x, the agent will learn the truth value of Color(x,c) for
all c). The second schema says that if an open can is in view, then the agent perceives the
color of the paint in the can. Because there are no exogenous events in this world, the color
of an object will remain the same, even if it is not being perceived, until the agent performs
an action to change the object’s color. Of course, the agent will need an action that causes
objects (one at a time) to come into view:

Action(LookAt(x),
PRECOND:InView(y)∧ (x 6= y)
EFFECT:InView(x)∧¬InView(y))

For a fully observable environment, we would have a Percept schema with no preconditions
for each fluent. A sensorless agent, on the other hand, has no Percept schemas at all. Note
that even a sensorless agent can solve the painting problem. One solution is to open any can
of paint and apply it to both chair and table, thus coercing them to be the same color (even
though the agent doesn’t know what the color is).

A contingent planning agent with sensors can generate a better plan. First, look at the
table and chair to obtain their colors; if they are already the same then the plan is done. If
not, look at the paint cans; if the paint in a can is the same color as one piece of furniture,
then apply that paint to the other piece. Otherwise, paint both pieces with any color.

Finally, an online planning agent might generate a contingent plan with fewer branches
at first—perhaps ignoring the possibility that no cans match any of the furniture—and deal
with problems when they arise by replanning. It could also deal with incorrectness of its
action schemas. Whereas a contingent planner simply assumes that the effects of an action
always succeed—that painting the chair does the job—a replanning agent would check the
result and make an additional plan to fix any unexpected failure, such as an unpainted area or
the original color showing through.

In the real world, agents use a combination of approaches. Car manufacturers sell spare
tires and air bags, which are physical embodiments of contingent plan branches designed
to handle punctures or crashes. On the other hand, most car drivers never consider these
possibilities; when a problem arises they respond as replanning agents. In general, agents
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plan only for contingencies that have important consequences and a nonnegligible chance
of happening. Thus, a car driver contemplating a trip across the Sahara desert should make
explicit contingency plans for breakdowns, whereas a trip to the supermarket requires less
advance planning. We next look at each of the three approaches in more detail.

11.5.1 Sensorless planning

Section 4.4.1 (page 144) introduced the basic idea of searching in belief-state space to find
a solution for sensorless problems. Conversion of a sensorless planning problem to a belief-
state planning problem works much the same way as it did in Section 4.4.1; the main dif-
ferences are that the underlying physical transition model is represented by a collection of
action schemas, and the belief state can be represented by a logical formula instead of by
an explicitly enumerated set of states. We assume that the underlying planning problem is
deterministic.

The initial belief state for the sensorless painting problem can ignore InView fluents
because the agent has no sensors. Furthermore, we take as given the unchanging facts
Object(Table)∧Object(Chair)∧Can(C1)∧Can(C2) because these hold in every belief state.
The agent doesn’t know the colors of the cans or the objects, or whether the cans are open
or closed, but it does know that objects and cans have colors: ∀x ∃c Color(x,c). After
Skolemizing (see Section 9.5.1), we obtain the initial belief state:

b0 = Color(x,C(x)) .

In classical planning, where the closed-world assumption is made, we would assume that
any fluent not mentioned in a state is false, but in sensorless (and partially observable) plan-
ning we have to switch to an open-world assumption in which states contain both positive
and negative fluents, and if a fluent does not appear, its value is unknown. Thus, the belief
state corresponds exactly to the set of possible worlds that satisfy the formula. Given this
initial belief state, the following action sequence is a solution:

[RemoveLid(Can1),Paint(Chair,Can1),Paint(Table,Can1)] .

We now show how to progress the belief state through the action sequence to show that the
final belief state satisfies the goal.

First, note that in a given belief state b, the agent can consider any action whose pre-
conditions are satisfied by b. (The other actions cannot be used because the transition model
doesn’t define the effects of actions whose preconditions might be unsatisfied.) According
to Equation (4.4) (page 145), the general formula for updating the belief state b given an
applicable action a in a deterministic world is as follows:

b′ = RESULT(b,a) = {s′ : s′=RESULTP(s,a) and s ∈ b}
where RESULTP defines the physical transition model. For the time being, we assume that the
initial belief state is always a conjunction of literals, that is, a 1-CNF formula. To construct
the new belief state b′, we must consider what happens to each literal ` in each physical state
s in b when action a is applied. For literals whose truth value is already known in b, the truth
value in b′ is computed from the current value and the add list and delete list of the action.
(For example, if ` is in the delete list of the action, then ¬` is added to b′.) What about a
literal whose truth value is unknown in b? There are three cases:

1. If the action adds `, then ` will be true in b′ regardless of its initial value.
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2. If the action deletes `, then ` will be false in b′ regardless of its initial value.

3. If the action does not affect `, then ` will retain its initial value (which is unknown) and
will not appear in b′.

Hence, we see that the calculation of b′ is almost identical to the observable case, which was
specified by Equation (11.1) on page 363:

b′ = RESULT(b,a) = (b−DEL(a))∪ADD(a) .

We cannot quite use the set semantics because (1) we must make sure that b′ does not con-
tain both ` and ¬`, and (2) atoms may contain unbound variables. But it is still the case
that RESULT(b,a) is computed by starting with b, setting any atom that appears in DEL(a)
to false, and setting any atom that appears in ADD(a) to true. For example, if we apply
RemoveLid(Can1) to the initial belief state b0, we get

b1 = Color(x,C(x))∧Open(Can1) .

When we apply the action Paint(Chair,Can1), the precondition Color(Can1,c) is satisfied
by the literal Color(x,C(x)) with binding {x/Can1,c/C(Can1)} and the new belief state is

b2 = Color(x,C(x))∧Open(Can1)∧Color(Chair,C(Can1)) .

Finally, we apply the action Paint(Table,Can1) to obtain

b3 = Color(x,C(x))∧Open(Can1)∧Color(Chair,C(Can1))
∧Color(Table,C(Can1)) .

The final belief state satisfies the goal, Color(Table,c)∧Color(Chair,c), with the variable c
bound to C(Can1).

The preceding analysis of the update rule has shown a very important fact: the familyI
of belief states defined as conjunctions of literals is closed under updates defined by PDDL
action schemas. That is, if the belief state starts as a conjunction of literals, then any update
will yield a conjunction of literals. That means that in a world with n fluents, any belief
state can be represented by a conjunction of size O(n). This is a very comforting result,
considering that there are 2n states in the world. It says we can compactly represent all the
subsets of those 2n states that we will ever need. Moreover, the process of checking for belief
states that are subsets or supersets of previously visited belief states is also easy, at least in
the propositional case.

The fly in the ointment of this pleasant picture is that it only works for action schemas
that have the same effects for all states in which their preconditions are satisfied. It is this
property that enables the preservation of the 1-CNF belief-state representation. As soon as
the effect can depend on the state, dependencies are introduced between fluents, and the 1-
CNF property is lost.

Consider, for example, the simple vacuum world defined in Section 3.2.1. Let the fluents
be AtL and AtR for the location of the robot and CleanL and CleanR for the state of the
squares. According to the definition of the problem, the Suck action has no precondition—it
can always be done. The difficulty is that its effect depends on the robot’s location: when the
robot is AtL, the result is CleanL, but when it is AtR, the result is CleanR. For such actions,
our action schemas will need something new: a conditional effect. These have the syntaxConditional effect



Section 11.5 Planning and Acting in Nondeterministic Domains 387

“when condition: effect,” where condition is a logical formula to be compared against the
current state, and effect is a formula describing the resulting state. For the vacuum world:

Action(Suck,
EFFECT:when AtL: CleanL∧when AtR: CleanR) .

When applied to the initial belief state True, the resulting belief state is (AtL∧CleanL)∨
(AtR∧CleanR), which is no longer in 1-CNF. (This transition can be seen in Figure 4.14
on page 147.) In general, conditional effects can induce arbitrary dependencies among the
fluents in a belief state, leading to belief states of exponential size in the worst case.

It is important to understand the difference between preconditions and conditional effects.
All conditional effects whose conditions are satisfied have their effects applied to generate the
resulting belief state; if none are satisfied, then the resulting state is unchanged. On the other
hand, if a precondition is unsatisfied, then the action is inapplicable and the resulting state
is undefined. From the point of view of sensorless planning, it is better to have conditional
effects than an inapplicable action. For example, we could split Suck into two actions with
unconditional effects as follows:

Action(SuckL,
PRECOND:AtL; EFFECT:CleanL)

Action(SuckR,
PRECOND:AtR; EFFECT:CleanR) .

Now we have only unconditional schemas, so the belief states all remain in 1-CNF; unfortu-
nately, we cannot determine the applicability of SuckL and SuckR in the initial belief state.

It seems inevitable, then, that nontrivial problems will involve wiggly belief states, just
like those encountered when we considered the problem of state estimation for the wumpus
world (see Figure 7.21 on page 261). The solution suggested then was to use a conservative
approximation to the exact belief state; for example, the belief state can remain in 1-CNF
if it contains all literals whose truth values can be determined and treats all other literals as
unknown. While this approach is sound, in that it never generates an incorrect plan, it is
incomplete because it may be unable to find solutions to problems that necessarily involve
interactions among literals. To give a trivial example, if the goal is for the robot to be on
a clean square, then [Suck] is a solution but a sensorless agent that insists on 1-CNF belief
states will not find it.

Perhaps a better solution is to look for action sequences that keep the belief state as simple
as possible. In the sensorless vacuum world, the action sequence [Right,Suck,Left,Suck]
generates the following sequence of belief states:

b0 = True

b1 = AtR

b2 = AtR∧CleanR

b3 = AtL∧CleanR

b4 = AtL∧CleanR∧CleanL

That is, the agent can solve the problem while retaining a 1-CNF belief state, even though
some sequences (e.g., those beginning with Suck) go outside 1-CNF. The general lesson is
not lost on humans: we are always performing little actions (checking the time, patting our
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pockets to make sure we have the car keys, reading street signs as we navigate through a city)
to eliminate uncertainty and keep our belief state manageable.

There is another, quite different approach to the problem of unmanageably wiggly belief
states: don’t bother computing them at all. Suppose the initial belief state is b0 and we would
like to know the belief state resulting from the action sequence [a1, . . . ,am]. Instead of com-
puting it explicitly, just represent it as “b0 then [a1, . . . ,am].” This is a lazy but unambiguous
representation of the belief state, and it’s quite concise—O(n+m) where n is the size of the
initial belief state (assumed to be in 1-CNF) and m is the maximum length of an action se-
quence. As a belief-state representation, it suffers from one drawback, however: determining
whether the goal is satisfied, or an action is applicable, may require a lot of computation.

The computation can be implemented as an entailment test: if Am represents the collec-
tion of successor-state axioms required to define occurrences of the actions a1, . . . ,am—as
explained for SATPLAN in Section 11.2.3—and Gm asserts that the goal is true after m steps,
then the plan achieves the goal if b0 ∧Am |= Gm—that is, if b0 ∧Am ∧¬Gm is unsatisfiable.
Given a modern SAT solver, it may be possible to do this much more quickly than computing
the full belief state. For example, if none of the actions in the sequence has a particular goal
fluent in its add list, the solver will detect this immediately. It also helps if partial results
about the belief state—for example, fluents known to be true or false—are cached to simplify
subsequent computations.

The final piece of the sensorless planning puzzle is a heuristic function to guide the
search. The meaning of the heuristic function is the same as for classical planning: an esti-
mate (perhaps admissible) of the cost of achieving the goal from the given belief state. With
belief states, we have one additional fact: solving any subset of a belief state is necessarily
easier than solving the belief state:

if b1 ⊆ b2 then h∗(b1)≤ h∗(b2) .

Hence, any admissible heuristic computed for a subset is admissible for the belief state itself.
The most obvious candidates are the singleton subsets, that is, individual physical states. We
can take any random collection of states s1, . . . ,sN that are in the belief state b, apply any
admissible heuristic h, and return

H(b) = max{h(s1), . . . ,h(sN)}
as the heuristic estimate for solving b. We can also use inadmissible heuristics such as the
ignore-delete-lists heuristic (page 372), which seems to work quite well in practice.

11.5.2 Contingent planning

We saw in Chapter 4 that contingency planning—the generation of plans with conditional
branching based on percepts—is appropriate for environments with partial observability, non-
determinism, or both. For the partially observable painting problem with the percept schemas
given earlier, one possible conditional solution is as follows:

[LookAt(Table),LookAt(Chair),
if Color(Table,c)∧Color(Chair,c) then NoOp

else [RemoveLid(Can1),LookAt(Can1),RemoveLid(Can2),LookAt(Can2),
if Color(Table,c)∧Color(can,c) then Paint(Chair,can)
else if Color(Chair,c)∧Color(can,c) then Paint(Table,can)
else [Paint(Chair,Can1),Paint(Table,Can1)]]]
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Variables in this plan should be considered existentially quantified; the second line says
that if there exists some color c that is the color of the table and the chair, then the agent
need not do anything to achieve the goal. When executing this plan, a contingent-planning
agent can maintain its belief state as a logical formula and evaluate each branch condition
by determining if the belief state entails the condition formula or its negation. (It is up to
the contingent-planning algorithm to make sure that the agent will never end up in a be-
lief state where the condition formula’s truth value is unknown.) Note that with first-order
conditions, the formula may be satisfied in more than one way; for example, the condition
Color(Table,c)∧Color(can,c) might be satisfied by {can/Can1} and by {can/Can2} if both
cans are the same color as the table. In that case, the agent can choose any satisfying substi-
tution to apply to the rest of the plan.

As shown in Section 4.4.2, calculating the new belief state b̂ after an action a and subse-
quent percept is done in two stages. The first stage calculates the belief state after the action,
just as for the sensorless agent:

b̂ = (b−DEL(a))∪ADD(a)

where, as before, we have assumed a belief state represented as a conjunction of literals. The
second stage is a little trickier. Suppose that percept literals p1, . . . , pk are received. One might
think that we simply need to add these into the belief state; in fact, we can also infer that the
preconditions for sensing are satisfied. Now, if a percept p has exactly one percept schema,
Percept(p,PRECOND:c), where c is a conjunction of literals, then those literals can be thrown
into the belief state along with p. On the other hand, if p has more than one percept schema
whose preconditions might hold according to the predicted belief state b̂, then we have to add
in the disjunction of the preconditions. Obviously, this takes the belief state outside 1-CNF
and brings up the same complications as conditional effects, with much the same classes of
solutions.

Given a mechanism for computing exact or approximate belief states, we can generate
contingent plans with an extension of the AND–OR forward search over belief states used
in Section 4.4. Actions with nondeterministic effects—which are defined simply by using a
disjunction in the EFFECT of the action schema—can be accommodated with minor changes
to the belief-state update calculation and no change to the search algorithm.3 For the heuristic
function, many of the methods suggested for sensorless planning are also applicable in the
partially observable, nondeterministic case.

11.5.3 Online planning

Imagine watching a spot-welding robot in a car plant. The robot’s fast, accurate motions are
repeated over and over again as each car passes down the line. Although technically im-
pressive, the robot probably does not seem at all intelligent because the motion is a fixed,
preprogrammed sequence; the robot obviously doesn’t “know what it’s doing” in any mean-
ingful sense. Now suppose that a poorly attached door falls off the car just as the robot is
about to apply a spot-weld. The robot quickly replaces its welding actuator with a gripper,
picks up the door, checks it for scratches, reattaches it to the car, sends an email to the floor
supervisor, switches back to the welding actuator, and resumes its work. All of a sudden,

3 If cyclic solutions are required for a nondeterministic problem, AND–OR search must be generalized to a loopy
version such as LAO∗ (Hansen and Zilberstein, 2001).
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the robot’s behavior seems purposive rather than rote; we assume it results not from a vast,
precomputed contingent plan but from an online replanning process—which means that the
robot does need to know what it’s trying to do.

Replanning presupposes some form of execution monitoring to determine the need forExecution
monitoring

a new plan. One such need arises when a contingent planning agent gets tired of planning
for every little contingency, such as whether the sky might fall on its head.4 This means
that the contingent plan is left in an incomplete form. For example, some branches of a
partially constructed contingent plan can simply say Replan; if such a branch is reached
during execution, the agent reverts to planning mode. As we mentioned earlier, the decision
as to how much of the problem to solve in advance and how much to leave to replanning
is one that involves tradeoffs among possible events with different costs and probabilities of
occurring. Nobody wants to have a car break down in the middle of the Sahara desert and
only then think about having enough water.

Replanning may be needed if the agent’s model of the world is incorrect. The model
for an action may have a missing precondition—for example, the agent may not know thatMissing precondition

removing the lid of a paint can often requires a screwdriver. The model may have a missing
effect—painting an object may get paint on the floor as well. Or the model may have aMissing effect

missing fluent that is simply absent from the representation altogether—for example, theMissing fluent

model given earlier has no notion of the amount of paint in a can, of how its actions affect
this amount, or of the need for the amount to be nonzero. The model may also lack provision
for exogenous events such as someone knocking over the paint can. Exogenous events canExogenous event

also include changes in the goal, such as the addition of the requirement that the table and
chair not be painted black. Without the ability to monitor and replan, an agent’s behavior is
likely to be fragile if it relies on absolute correctness of its model.

The online agent has a choice of (at least) three different approaches for monitoring the
environment during plan execution:

• Action monitoring: before executing an action, the agent verifies that all the precondi-Action monitoring

tions still hold.

• Plan monitoring: before executing an action, the agent verifies that the remaining planPlan monitoring

will still succeed.

• Goal monitoring: before executing an action, the agent checks to see if there is a betterGoal monitoring

set of goals it could be trying to achieve.

In Figure 11.12 we see a schematic of action monitoring. The agent keeps track of both its
original plan, whole plan, and the part of the plan that has not been executed yet, which is
denoted by plan. After executing the first few steps of the plan, the agent expects to be in
state E. But the agent observes that it is actually in state O. It then needs to repair the plan by
finding some point P on the original plan that it can get back to. (It may be that P is the goal
state, G.) The agent tries to minimize the total cost of the plan: the repair part (from O to P)
plus the continuation (from P to G).

4 In 1954, a Mrs. Hodges of Alabama was hit by meteorite that crashed through her roof. In 1992, a piece of
the Mbale meteorite hit a small boy on the head; fortunately, its descent was slowed by banana leaves (Jenniskens
et al., 1994). And in 2009, a German boy claimed to have been hit in the hand by a pea-sized meteorite. No serious
injuries resulted from any of these incidents, suggesting that the need for preplanning against such contingencies
is sometimes overstated.
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Figure 11.12 At first, the sequence “whole plan” is expected to get the agent from S to G.
The agent executes steps of the plan until it expects to be in state E, but observes that it is
actually in O. The agent then replans for the minimal repair plus continuation to reach G.

Now let’s return to the example problem of achieving a chair and table of matching color.
Suppose the agent comes up with this plan:

[LookAt(Table),LookAt(Chair),
if Color(Table,c)∧Color(Chair,c) then NoOp

else [RemoveLid(Can1),LookAt(Can1),
if Color(Table,c)∧Color(Can1,c) then Paint(Chair,Can1)
else REPLAN]] .

Now the agent is ready to execute the plan. The agent observes that the table and can of
paint are white and the chair is black. It then executes Paint(Chair,Can1). At this point a
classical planner would declare victory; the plan has been executed. But an online execution
monitoring agent needs to check that the action succeeded.

Suppose the agent perceives that the chair is a mottled gray because the black paint is
showing through. The agent then needs to figure out a recovery position in the plan to aim for
and a repair action sequence to get there. The agent notices that the current state is identical
to the precondition before the Paint(Chair,Can1) action, so the agent chooses the empty
sequence for repair and makes its plan be the same [Paint] sequence that it just attempted.
With this new plan in place, execution monitoring resumes, and the Paint action is retried.
This behavior will loop until the chair is perceived to be completely painted. But notice that
the loop is created by a process of plan–execute–replan, rather than by an explicit loop in a
plan. Note also that the original plan need not cover every contingency. If the agent reaches
the step marked REPLAN, it can then generate a new plan (perhaps involving Can2).

Action monitoring is a simple method of execution monitoring, but it can sometimes lead
to less than intelligent behavior. For example, suppose there is no black or white paint, and
the agent constructs a plan to solve the painting problem by painting both the chair and table
red. Suppose that there is only enough red paint for the chair. With action monitoring, the
agent would go ahead and paint the chair red, then notice that it is out of paint and cannot
paint the table, at which point it would replan a repair—perhaps painting both chair and table
green. A plan-monitoring agent can detect failure whenever the current state is such that the
remaining plan no longer works. Thus, it would not waste time painting the chair red.
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Plan monitoring achieves this by checking the preconditions for success of the entire
remaining plan—that is, the preconditions of each step in the plan, except those preconditions
that are achieved by another step in the remaining plan. Plan monitoring cuts off execution of
a doomed plan as soon as possible, rather than continuing until the failure actually occurs.5

Plan monitoring also allows for serendipity—accidental success. If someone comes along
and paints the table red at the same time that the agent is painting the chair red, then the final
plan preconditions are satisfied (the goal has been achieved), and the agent can go home early.

It is straightforward to modify a planning algorithm so that each action in the plan is an-
notated with the action’s preconditions, thus enabling action monitoring. It is slightly more
complex to enable plan monitoring. Partial-order planners have the advantage that they have
already built up structures that contain the relations necessary for plan monitoring. Augment-
ing state-space planners with the necessary annotations can be done by careful bookkeeping
as the goal fluents are regressed through the plan.

Now that we have described a method for monitoring and replanning, we need to ask,
“Does it work?” This is a surprisingly tricky question. If we mean, “Can we guarantee
that the agent will always achieve the goal?” then the answer is no, because the agent could
inadvertently arrive at a dead end from which there is no repair. For example, the vacuum
agent might have a faulty model of itself and not know that its batteries can run out. Once
they do, it cannot repair any plans. If we rule out dead ends—assume that there exists a plan
to reach the goal from any state in the environment—and assume that the environment is
really nondeterministic, in the sense that such a plan always has some chance of success on
any given execution attempt, then the agent will eventually reach the goal.

Trouble occurs when a seemingly-nondeterministic action is not actually random, but
rather depends on some precondition that the agent does not know about. For example,
sometimes a paint can may be empty, so painting from that can has no effect. No amount
of retrying is going to change this.6 One solution is to choose randomly from among the set
of possible repair plans, rather than to try the same one each time. In this case, the repair
plan of opening another can might work. A better approach is to learn a better model. Every
prediction failure is an opportunity for learning; an agent should be able to modify its model
of the world to accord with its percepts. From then on, the replanner will be able to come up
with a repair that gets at the root problem, rather than relying on luck to choose a good repair.

11.6 Time, Schedules, and Resources

Classical planning talks about what to do, in what order, but does not talk about time: how
long an action takes and when it occurs. For example, in the airport domain we could produce
a plan saying what planes go where, carrying what, but could not specify departure and arrival
times. This is the subject matter of scheduling.Scheduling

The real world also imposes resource constraints: an airline has a limited number ofResource constraint

staff, and staff who are on one flight cannot be on another at the same time. This section
introduces techniques for planning and scheduling problems with resource constraints.

5 Plan monitoring means that finally, after 374 pages, we have an agent that is smarter than a dung beetle (see
page 59). A plan-monitoring agent would notice that the dung ball was missing from its grasp and would replan
to get another ball and plug its hole.
6 Futile repetition of a plan repair is exactly the behavior exhibited by the sphex wasp (page 59).
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Jobs({AddEngine1≺AddWheels1≺ Inspect1},
{AddEngine2≺AddWheels2≺ Inspect2})

Resources(EngineHoists(1), WheelStations(1), Inspectors(2), LugNuts(500))

Action(AddEngine1, DURATION:30,
USE:EngineHoists(1))

Action(AddEngine2, DURATION:60,
USE:EngineHoists(1))

Action(AddWheels1, DURATION:30,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(AddWheels2, DURATION:15,
CONSUME:LugNuts(20), USE:WheelStations(1))

Action(Inspecti, DURATION:10,
USE:Inspectors(1))

Figure 11.13 A job-shop scheduling problem for assembling two cars, with resource con-
straints. The notation A≺B means that action A must precede action B.

The approach we take is “plan first, schedule later”: divide the overall problem into a
planning phase in which actions are selected, with some ordering constraints, to meet the
goals of the problem, and a later scheduling phase, in which temporal information is added to
the plan to ensure that it meets resource and deadline constraints. This approach is common
in real-world manufacturing and logistical settings, where the planning phase is sometimes
automated, and sometimes performed by human experts.

11.6.1 Representing temporal and resource constraints

A typical job-shop scheduling problem (see Section 5.1.2), consists of a set of jobs, each Job-shop scheduling
problem

Jobof which has a collection of actions with ordering constraints among them. Each action has
a duration and a set of resource constraints required by the action. A constraint specifies Duration

a type of resource (e.g., bolts, wrenches, or pilots), the number of that resource required,
and whether that resource is consumable (e.g., the bolts are no longer available for use) or Consumable

reusable (e.g., a pilot is occupied during a flight but is available again when the flight is over). Reusable

Actions can also produce resources (e.g., manufacturing and resupply actions).
A solution to a job-shop scheduling problem specifies the start times for each action and

must satisfy all the temporal ordering constraints and resource constraints. As with search
and planning problems, solutions can be evaluated according to a cost function; this can be
quite complicated, with nonlinear resource costs, time-dependent delay costs, and so on. For
simplicity, we assume that the cost function is just the total duration of the plan, which is
called the makespan. Makespan

Figure 11.13 shows a simple example: a problem involving the assembly of two cars.
The problem consists of two jobs, each of the form [AddEngine,AddWheels, Inspect]. Then
the Resources statement declares that there are four types of resources, and gives the number
of each type available at the start: 1 engine hoist, 1 wheel station, 2 inspectors, and 500 lug
nuts. The action schemas give the duration and resource needs of each action. The lug nuts
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are consumed as wheels are added to the car, whereas the other resources are “borrowed” at
the start of an action and released at the action’s end.

The representation of resources as numerical quantities, such as Inspectors(2), rather
than as named entities, such as Inspector(I1) and Inspector(I2), is an example of a technique
called aggregation: grouping individual objects into quantities when the objects are all in-Aggregation

distinguishable. In our assembly problem, it does not matter which inspector inspects the car,
so there is no need to make the distinction. Aggregation is essential for reducing complexity.
Consider what happens when a proposed schedule has 10 concurrent Inspect actions but only
9 inspectors are available. With inspectors represented as quantities, a failure is detected im-
mediately and the algorithm backtracks to try another schedule. With inspectors represented
as individuals, the algorithm would try all 9! ways of assigning inspectors to actions before
noticing that none of them work.

11.6.2 Solving scheduling problems

We begin by considering just the temporal scheduling problem, ignoring resource constraints.
To minimize makespan (plan duration), we must find the earliest start times for all the actions
consistent with the ordering constraints supplied with the problem. It is helpful to view these
ordering constraints as a directed graph relating the actions, as shown in Figure 11.14. We can
apply the critical path method (CPM) to this graph to determine the possible start and endCritical path method

times of each action. A path through a graph representing a partial-order plan is a linearly
ordered sequence of actions beginning with Start and ending with Finish. (For example, there
are two paths in the partial-order plan in Figure 11.14.)

The critical path is that path whose total duration is longest; the path is “critical” becauseCritical path

it determines the duration of the entire plan—shortening other paths doesn’t shorten the plan
as a whole, but delaying the start of any action on the critical path slows down the whole plan.
Actions that are off the critical path have a window of time in which they can be executed.
The window is specified in terms of an earliest possible start time, ES, and a latest possible
start time, LS. The quantity LS – ES is known as the slack of an action. We can see inSlack

Figure 11.14 that the whole plan will take 85 minutes, that each action in the top job has
15 minutes of slack, and that each action on the critical path has no slack (by definition).
Together the ES and LS times for all the actions constitute a schedule for the problem.Schedule

The following formulas define ES and LS and constitute a dynamic-programming algo-
rithm to compute them. A and B are actions, and A≺B means that A precedes B:

ES(Start) = 0
ES(B) = maxA≺B ES(A)+Duration(A)
LS(Finish) = ES(Finish)
LS(A) = minB�A LS(B)−Duration(A) .

The idea is that we start by assigning ES(Start) to be 0. Then, as soon as we get an action
B such that all the actions that come immediately before B have ES values assigned, we
set ES(B) to be the maximum of the earliest finish times of those immediately preceding
actions, where the earliest finish time of an action is defined as the earliest start time plus
the duration. This process repeats until every action has been assigned an ES value. The LS
values are computed in a similar manner, working backward from the Finish action.

The complexity of the critical path algorithm is just O(Nb), where N is the number of
actions and b is the maximum branching factor into or out of an action. (To see this, note
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Figure 11.14 Top: a representation of the temporal constraints for the job-shop scheduling
problem of Figure 11.13. The duration of each action is given at the bottom of each rectangle.
In solving the problem, we compute the earliest and latest start times as the pair [ES,LS],
displayed in the upper left. The difference between these two numbers is the slack of an
action; actions with zero slack are on the critical path, shown with bold arrows. Bottom: the
same solution shown as a timeline. Blue rectangles represent time intervals during which an
action may be executed, provided that the ordering constraints are respected. The unoccupied
portion of a blue rectangle indicates the slack.

that the LS and ES computations are done once for each action, and each computation iterates
over at most b other actions.) Therefore, finding a minimum-duration schedule, given a partial
ordering on the actions and no resource constraints, is quite easy.

Mathematically speaking, critical-path problems are easy to solve because they are de-
fined as a conjunction of linear inequalities on the start and end times. When we introduce
resource constraints, the resulting constraints on start and end times become more compli-
cated. For example, the AddEngine actions, which begin at the same time in Figure 11.14,
require the same EngineHoist and so cannot overlap. The “cannot overlap” constraint is a
disjunction of two linear inequalities, one for each possible ordering. The introduction of
disjunctions turns out to make scheduling with resource constraints NP-hard.

Figure 11.15 shows the solution with the fastest completion time, 115 minutes. This is
30 minutes longer than the 85 minutes required for a schedule without resource constraints.
Notice that there is no time at which both inspectors are required, so we can immediately
move one of our two inspectors to a more productive position.

There is a long history of work on optimal scheduling. A challenge problem posed in
1963—to find the optimal schedule for a problem involving just 10 machines and 10 jobs of
100 actions each—went unsolved for 23 years (Lawler et al., 1993). Many approaches have
been tried, including branch-and-bound, simulated annealing, tabu search, and constraint sat-
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Figure 11.15 A solution to the job-shop scheduling problem from Figure 11.13, taking into
account resource constraints. The left-hand margin lists the three reusable resources, and
actions are shown aligned horizontally with the resources they use. There are two possi-
ble schedules, depending on which assembly uses the engine hoist first; we’ve shown the
shortest-duration solution, which takes 115 minutes.

isfaction. One popular approach is the minimum slack heuristic: on each iteration, scheduleMinimum slack

for the earliest possible start whichever unscheduled action has all its predecessors sched-
uled and has the least slack; then update the ES and LS times for each affected action and
repeat. This greedy heuristic resembles the minimum-remaining-values (MRV) heuristic in
constraint satisfaction. It often works well in practice, but for our assembly problem it yields
a 130-minute solution, not the 115-inute solution of Figure 11.15.

Up to this point, we have assumed that the set of actions and ordering constraints is
fixed. Under these assumptions, every scheduling problem can be solved by a nonoverlapping
sequence that avoids all resource conflicts, provided that each action is feasible by itself.
However if a scheduling problem is proving very difficult, it may not be a good idea to solve
it this way—it may be better to reconsider the actions and constraints, in case that leads to a
much easier scheduling problem. Thus, it makes sense to integrate planning and scheduling
by taking into account durations and overlaps during the construction of a plan. Several of
the planning algorithms in Section 11.2 can be augmented to handle this information.

11.7 Analysis of Planning Approaches

Planning combines the two major areas of AI we have covered so far: search and logic. A
planner can be seen either as a program that searches for a solution or as one that (construc-
tively) proves the existence of a solution. The cross-fertilization of ideas from the two areas
has allowed planners to scale up from toy problems where the number of actions and states
was limited to around a dozen, to real-world industrial applications with millions of states
and thousands of actions.

Planning is foremost an exercise in controlling combinatorial explosion. If there are n
propositions in a domain, then there are 2n states. Against such pessimism, the identification
of independent subproblems can be a powerful weapon. In the best case—full decomposabil-
ity of the problem—we get an exponential speedup. Decomposability is destroyed, however,
by negative interactions between actions. SATPLAN can encode logical relations between
subproblems. Forward search addresses the problem heuristically by trying to find patterns
(subsets of propositions) that cover the independent subproblems. Since this approach is
heuristic, it can work even when the subproblems are not completely independent.



Summary 397

Unfortunately, we do not yet have a clear understanding of which techniques work best
on which kinds of problems. Quite possibly, new techniques will emerge, perhaps providing
a synthesis of highly expressive first-order and hierarchical representations with the highly
efficient factored and propositional representations that dominate today. We are seeing exam-
ples of portfolio planning systems, where a collection of algorithms are available to apply to Portfolio

any given problem. This can be done selectively (the system classifies each new problem to
choose the best algorithm for it), or in parallel (all the algorithms run concurrently, each on a
different CPU), or by interleaving the algorithms according to a schedule.

Summary

In this chapter, we described the PDDL representation for both classical and extended plan-
ning problems, and presented several algorithmic approaches for finding solutions. The points
to remember:

• Planning systems are problem-solving algorithms that operate on explicit factored rep-
resentations of states and actions. These representations make possible the derivation of
effective domain-independent heuristics and the development of powerful and flexible
algorithms for solving problems.

• PDDL, the Planning Domain Definition Language, describes the initial and goal states
as conjunctions of literals, and actions in terms of their preconditions and effects. Ex-
tensions represent time, resources, percepts, contingent plans, and hierarchical plans.

• State-space search can operate in the forward direction (progression) or the backward
direction (regression). Effective heuristics can be derived by subgoal independence
assumptions and by various relaxations of the planning problem.

• Other approaches include encoding a planning problem as a Boolean satisfiability prob-
lem or as a constraint satisfaction problem; and explicitly searching through the space
of partially ordered plans.

• Hierarchical task network (HTN) planning allows the agent to take advice from the
domain designer in the form of high-level actions (HLAs) that can be implemented in
various ways by lower-level action sequences. The effects of HLAs can be defined with
angelic semantics, allowing provably correct high-level plans to be derived without
consideration of lower-level implementations. HTN methods can create the very large
plans required by many real-world applications.

• Contingent plans allow the agent to sense the world during execution to decide what
branch of the plan to follow. In some cases, sensorless or conformant planning can be
used to construct a plan that works without the need for perception. Both conformant
and contingent plans can be constructed by search in the space of belief states. Efficient
representation or computation of belief states is a key problem.

• An online planning agent uses execution monitoring and splices in repairs as needed
to recover from unexpected situations, which can be due to nondeterministic actions,
exogenous events, or incorrect models of the environment.

• Many actions consume resources, such as money, gas, or raw materials. It is convenient
to treat these resources as numeric measures in a pool rather than try to reason about,
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say, each individual coin and bill in the world. Time is one of the most important
resources. It can be handled by specialized scheduling algorithms, or scheduling can be
integrated with planning.

• This chapter extends classical planning to cover nondeterministic environments (where
outcomes of actions are uncertain), but it is not the last word on planning. Chapter 16
describes techniques for stochastic environments (in which outcomes of actions have
probabilities associated with them): Markov decision processes, partially observable
Markov decision processes, and game theory. In Chapter 23 we show that reinforcement
learning allows an agent to learn how to behave from past successes and failures.

Bibliographical and Historical Notes

AI planning arose from investigations into state-space search, theorem proving, and control
theory. STRIPS (Fikes and Nilsson, 1971, 1993), the first major planning system, was de-
signed as the planner for the Shakey robot at SRI. The first version of the program ran on a
computer with only 192 KB of memory. Its overall control structure was modeled on GPS,
the General Problem Solver (Newell and Simon, 1961), a state-space search system that used
means–ends analysis.

The STRIPS representation language evolved into the Action Description Language, or
ADL (Pednault, 1986), and then the Problem Domain Description Language, or PDDL
(Ghallab et al., 1998), which has been used for the International Planning Competition since
1998. The most recent version is PDDL 3.1 (Kovacs, 2011).

Planners in the early 1970s decomposed problems by computing a subplan for each sub-
goal and then stringing the subplans together in some order. This approach, called linear
planning by Sacerdoti (1975), was soon discovered to be incomplete. It cannot solve someLinear planning

very simple problems, such as the Sussman anomaly (see Exercise 11.SUSS), found by Allen
Brown during experimentation with the HACKER system (Sussman, 1975). A complete plan-
ner must allow for interleaving of actions from different subplans within a single sequence.
Warren’s (1974) WARPLAN system achieved that, and demonstrated how the logic program-
ming language Prolog can produce concise programs; WARPLAN is only 100 lines of code.

Partial-order planning dominated the next 20 years of research, with theoretical work
describing the detection of conflicts (Tate, 1975a) and the protection of achieved condi-
tions (Sussman, 1975), and implementations including NOAH (Sacerdoti, 1977) and NONLIN

(Tate, 1977). That led to formal models (Chapman, 1987; McAllester and Rosenblitt, 1991)
that allowed for theoretical analysis of various algorithms and planning problems, and to a
widely distributed system, UCPOP (Penberthy and Weld, 1992).

Drew McDermott suspected that the emphasis on partial-order planning was crowding out
other techniques that should perhaps be reconsidered now that computers had 100 times the
memory of Shakey’s day. His UNPOP (McDermott, 1996) was a state-space planning pro-
gram employing the ignore-delete-list heuristic. HSP, the Heuristic Search Planner (Bonet
and Geffner, 1999; Haslum, 2006) made state-space search practical for large planning prob-
lems. The FF or Fast Forward planner (Hoffmann, 2001; Hoffmann and Nebel, 2001; Hoff-
mann, 2005) and the FASTDOWNWARD variant (Helmert, 2006) won international planning
competitions in the 2000s.
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Bidirectional search (see Section 3.4.5) has also been known to suffer from a lack of
heuristics, but some success has been obtained by using backward search to create a perime-
ter around the goal, and then refining a heuristic to search forward towards that perime-
ter (Torralba et al., 2016). The SYMBA* bidirectional search planner (Torralba et al., 2016)
won the 2016 competition.

Researchers turned to PDDL and the planning paradigm so that they could use domain
independent heuristics. Hoffmann (2005) analyzes the search space of the ignore-delete-
list heuristic. Edelkamp (2009) and Haslum et al. (2007) describe how to construct pattern
databases for planning heuristics. Felner et al. (2004) show encouraging results using pat-
tern databases for sliding-tile puzzles, which can be thought of as a planning domain, but
Hoffmann et al. (2006) show some limitations of abstraction for classical planning problems.
(Rintanen, 2012) discusses planning-specific variable-selection heuristics for SAT solving.

Helmert et al. (2011) describe the Fast Downward Stone Soup (FDSS) system, a portfolio
planner that, as in the fable of stone soup, invites us to throw in as many planning algorithms
as possible. The system maintains a set of training problems, and for each problem and each
algorithm records the run time and resulting plan cost of the problem’s solution. Then when
faced with a new problem, it uses the past experience to decide which algorithm(s) to try, with
what time limits, and takes the solution with minimal cost. FDSS was a winner in the 2018
International Planning Competition (Seipp and Röger, 2018). Seipp et al. (2015) describe
a machine learning approach to automatically learn a good portfolio, given a new problem.
Vallati et al. (2015) give an overview of portfolio planning. The idea of algorithm portfolios
for combinatorial search problems goes back to Gomes and Selman (2001).

Sistla and Godefroid (2004) cover symmetry reduction, and Godefroid (1990) covers
heuristics for partial ordering. Richter and Helmert (2009) demonstrate the efficiency gains
of forward pruning using preferred actions.

Blum and Furst (1997) revitalized the field of planning with their Graphplan system,
which was orders of magnitude faster than the partial-order planners of the time. Bryce and
Kambhampati (2007) give an overview of planning graphs. The use of situation calculus for
planning was introduced by John McCarthy (1963) and refined by Ray Reiter (2001).

Kautz et al. (1996) investigated various ways to propositionalize action schemas, finding
that the most compact forms did not necessarily lead to the fastest solution times. A system-
atic analysis was carried out by Ernst et al. (1997), who also developed an automatic “com-
piler” for generating propositional representations from PDDL problems. The BLACKBOX

planner, which combines ideas from Graphplan and SATPLAN, was developed by Kautz and
Selman (1998). Planners based on constraint satisfaction include CPLAN van Beek and Chen
(1999) and GP-CSP (Do and Kambhampati, 2003).

There has also been interest in the representation of a plan as a binary decision diagram
(BDD), a compact data structure for Boolean expressions widely studied in the hardware Binary decision

diagram (BDD)

verification community (Clarke and Grumberg, 1987; McMillan, 1993). There are techniques
for proving properties of binary decision diagrams, including the property of being a solution
to a planning problem. Cimatti et al. (1998) present a planner based on this approach. Other
representations have also been used, such as integer programming (Vossen et al., 2001).

There are some interesting comparisons of the various approaches to planning. Helmert
(2001) analyzes several classes of planning problems, and shows that constraint-based ap-
proaches such as Graphplan and SATPLAN are best for NP-hard domains, while search-based
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approaches do better in domains where feasible solutions can be found without backtracking.
Graphplan and SATPLAN have trouble in domains with many objects because that means
they must create many actions. In some cases the problem can be delayed or avoided by gen-
erating the propositionalized actions dynamically, only as needed, rather than instantiating
them all before the search begins.

The first mechanism for hierarchical planning was a facility in the STRIPS program for
learning macrops—“macro-operators” consisting of a sequence of primitive steps (FikesMacrops

et al., 1972). The ABSTRIPS system (Sacerdoti, 1974) introduced the idea of an abstraction
hierarchy, whereby planning at higher levels was permitted to ignore lower-level precon-Abstraction

hierarchy

ditions of actions in order to derive the general structure of a working plan. Austin Tate’s
Ph.D. thesis (1975b) and work by Earl Sacerdoti (1977) developed the basic ideas of HTN
planning. Erol, Hendler, and Nau (1994, 1996) present a complete hierarchical decomposi-
tion planner as well as a range of complexity results for pure HTN planners. Our presentation
of HLAs and angelic semantics is due to Marthi et al. (2007, 2008).

One of the goals of hierarchical planning has been the reuse of previous planning ex-
perience in the form of generalized plans. The technique of explanation-based learning
has been used as a means of generalizing previously computed plans in systems such as
SOAR (Laird et al., 1986) and PRODIGY (Carbonell et al., 1989). An alternative approach is
to store previously computed plans in their original form and then reuse them to solve new,
similar problems by analogy to the original problem. This is the approach taken by the field
called case-based planning (Carbonell, 1983; Alterman, 1988). Kambhampati (1994) arguesCase-based planning

that case-based planning should be analyzed as a form of refinement planning and provides a
formal foundation for case-based partial-order planning.

Early planners lacked conditionals and loops, but some could use coercion to form con-
formant plans. Sacerdoti’s NOAH solved the “keys and boxes” problem (in which the planner
knows little about the initial state) using coercion. Mason (1993) argued that sensing often
can and should be dispensed with in robotic planning, and described a sensorless plan that
can move a tool into a specific position on a table by a sequence of tilting actions, regardless
of the initial position.

Goldman and Boddy (1996) introduced the term conformant planning, noting that sen-
sorless plans are often effective even if the agent has sensors. The first moderately efficient
conformant planner was Smith and Weld’s (1998) Conformant Graphplan (CGP). Ferraris
and Giunchiglia (2000) and Rintanen (1999) independently developed SATPLAN-based con-
formant planners. Bonet and Geffner (2000) describe a conformant planner based on heuristic
search in the space of belief states, drawing on ideas first developed in the 1960s for partially
observable Markov decision processes, or POMDPs (see Chapter 16).

Currently, there are three main approaches to conformant planning. The first two use
heuristic search in belief-state space: HSCP (Bertoli et al., 2001a) uses binary decision di-
agrams (BDDs) to represent belief states, whereas Hoffmann and Brafman (2006) adopt the
lazy approach of computing precondition and goal tests on demand using a SAT solver.

The third approach, championed primarily by Jussi Rintanen (2007), formulates the entire
sensorless planning problem as a quantified Boolean formula (QBF) and solves it using a
general-purpose QBF solver. Current conformant planners are five orders of magnitude faster
than CGP. The winner of the 2006 conformant-planning track at the International Planning
Competition was T0 (Palacios and Geffner, 2007), which uses heuristic search in belief-state
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space while keeping the belief-state representation simple by defining derived literals that
cover conditional effects. Bryce and Kambhampati (2007) discuss how a planning graph can
be generalized to generate good heuristics for conformant and contingent planning.

The contingent-planning approach described in the chapter is based on Hoffmann and
Brafman (2005), and was influenced by the efficient search algorithms for cyclic AND–OR

graphs developed by Jimenez and Torras (2000) and Hansen and Zilberstein (2001). The
problem of contingent planning received more attention after the publication of Drew Mc-
Dermott’s (1978a) influential article, Planning and Acting. Bertoli et al. (2001b) describe
MBP (Model-Based Planner), which uses binary decision diagrams to do conformant and
contingent planning. Some authors use “conditional planning” and “contingent planning” as
synonyms; others make the distinction that “conditional” refers to actions with nondetermin-
istic effects, and “contingent” means using sensing to overcome partial observability.

In retrospect, it is now possible to see how the major classical planning algorithms led to
extended versions for uncertain domains. Fast-forward heuristic search through state space
led to forward search in belief space (Bonet and Geffner, 2000; Hoffmann and Brafman,
2005); SATPLAN led to stochastic SATPLAN (Majercik and Littman, 2003) and to planning
with quantified Boolean logic (Rintanen, 2007); partial order planning led to UWL (Etzioni
et al., 1992) and CNLP (Peot and Smith, 1992); Graphplan led to Sensory Graphplan or SGP
(Weld et al., 1998).

The first online planner with execution monitoring was PLANEX (Fikes et al., 1972),
which worked with the STRIPS planner to control the robot Shakey. SIPE (System for In-
teractive Planning and Execution monitoring) (Wilkins, 1988) was the first planner to deal
systematically with the problem of replanning. It has been used in demonstration projects in
several domains, including planning operations on the flight deck of an aircraft carrier, job-
shop scheduling for an Australian beer factory, and planning the construction of multistory
buildings (Kartam and Levitt, 1990).

In the mid-1980s, pessimism about the slow run times of planning systems led to the pro-
posal of reflex agents called reactive planning systems (Brooks, 1986; Agre and Chapman, Reactive planning

1987). “Universal plans” (Schoppers, 1989) were developed as a lookup-table method for
reactive planning, but turned out to be a rediscovery of the idea of policies that had long been
used in Markov decision processes (see Chapter 16). Koenig (2001) surveys online planning
techniques, under the name Agent-Centered Search.

Planning with time constraints was first dealt with by DEVISER (Vere, 1983). The rep-
resentation of time in plans was addressed by Allen (1984) and by Dean et al. (1990) in the
FORBIN system. NONLIN+ (Tate and Whiter, 1984) and SIPE (Wilkins, 1990) could rea-
son about the allocation of limited resources to various plan steps. O-PLAN (Bell and Tate,
1985) has been applied to resource problems such as software procurement planning at Price
Waterhouse and back-axle assembly planning at Jaguar Cars.

The two planners SAPA (Do and Kambhampati, 2001) and T4 (Haslum and Geffner,
2001) both used forward state-space search with sophisticated heuristics to handle actions
with durations and resources. An alternative is to use very expressive action languages, but
guide them by human-written, domain-specific heuristics, as is done by ASPEN (Fukunaga
et al., 1997), HSTS (Jonsson et al., 2000), and IxTeT (Ghallab and Laruelle, 1994).

A number of hybrid planning-and-scheduling systems have been deployed: ISIS (Fox
et al., 1982; Fox, 1990) has been used for job-shop scheduling at Westinghouse, GARI (De-
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scotte and Latombe, 1985) planned the machining and construction of mechanical parts,
FORBIN was used for factory control, and NONLIN+ was used for naval logistics planning.
We chose to present planning and scheduling as two separate problems; Cushing et al. (2007)
show that this can lead to incompleteness on certain problems.

There is a long history of scheduling in aerospace. T-SCHED (Drabble, 1990) was used
to schedule mission-command sequences for the UOSAT-II satellite. OPTIMUM-AIV (Aarup
et al., 1994) and PLAN-ERS1 (Fuchs et al., 1990), both based on O-PLAN, were used for
spacecraft assembly and observation planning, respectively, at the European Space Agency.
SPIKE (Johnston and Adorf, 1992) was used for observation planning at NASA for the Hub-
ble Space Telescope, while the Space Shuttle Ground Processing Scheduling System (Deale
et al., 1994) does job-shop scheduling of up to 16,000 worker-shifts. Remote Agent (Muscet-
tola et al., 1998) became the first autonomous planner–scheduler to control a spacecraft, when
it flew onboard the Deep Space One probe in 1999. Space applications have driven the de-
velopment of algorithms for resource allocation; see Laborie (2003) and Muscettola (2002).
The literature on scheduling is presented in a classic survey article (Lawler et al., 1993), a
book (Pinedo, 2008), and an edited handbook (Blazewicz et al., 2007).

The computational complexity of planning has been analyzed by several authors (By-
lander, 1994; Ghallab et al., 2004; Rintanen, 2016). There are two main tasks: PlanSAT
is the question of whether there exists any plan that solves a planning problem. Bounded
PlanSAT asks whether there is a solution of length k or less; this can be used to find an op-
timal plan. Both are decidable for classical planning (because the number of states is finite).
But if we add function symbols to the language, then the number of states becomes infinite,
and PlanSAT becomes only semidecidable. For propositionalized problems both are in the
complexity class PSPACE, a class that is larger (and hence more difficult) than NP and refers
to problems that can be solved by a deterministic Turing machine with a polynomial amount
of space. These theoretical results are discouraging, but in practice, the problems we want
to solve tend to be not so bad. The true advantage of the classical planning formalism is
that it has facilitated the development of very accurate domain-independent heuristics; other
approaches have not been as fruitful.

Readings in Planning (Allen et al., 1990) is a comprehensive anthology of early work
in the field. Weld (1994, 1999) provides two excellent surveys of planning algorithms of the
1990s. It is interesting to see the change in the five years between the two surveys: the first
concentrates on partial-order planning, and the second introduces Graphplan and SATPLAN.
Automated Planning and Acting (Ghallab et al., 2016) is an excellent textbook on all aspects
of the field. LaValle’s text Planning Algorithms (2006) covers both classical and stochastic
planning, with extensive coverage of robot motion planning.

Planning research has been central to AI since its inception, and papers on planning are
a staple of mainstream AI journals and conferences. There are also specialized conferences
such as the International Conference on Automated Planning and Scheduling and the Inter-
national Workshop on Planning and Scheduling for Space.



CHAPTER 12
QUANTIFYING UNCERTAINTY
In which we see how to tame uncertainty with numeric degrees of belief.

12.1 Acting under Uncertainty

Agents in the real world need to handle uncertainty, whether due to partial observability, Uncertainty

nondeterminism, or adversaries. An agent may never know for sure what state it is in now or
where it will end up after a sequence of actions.

We have seen problem-solving and logical agents handle uncertainty by keeping track of
a belief state—a representation of the set of all possible world states that it might be in—and
generating a contingency plan that handles every possible eventuality that its sensors may
report during execution. This approach works on simple problems, but it has drawbacks:

• The agent must consider every possible explanation for its sensor observations, no mat-
ter how unlikely. This leads to a large belief-state full of unlikely possibilities.

• A correct contingent plan that handles every eventuality can grow arbitrarily large and
must consider arbitrarily unlikely contingencies.

• Sometimes there is no plan that is guaranteed to achieve the goal—yet the agent must
act. It must have some way to compare the merits of plans that are not guaranteed.

Suppose, for example, that an automated taxi has the goal of delivering a passenger to the
airport on time. The taxi forms a plan, A90, that involves leaving home 90 minutes before the
flight departs and driving at a reasonable speed. Even though the airport is only 5 miles away,
a logical agent will not be able to conclude with absolute certainty that “Plan A90 will get us
to the airport in time.” Instead, it reaches the weaker conclusion “Plan A90 will get us to the
airport in time, as long as the car doesn’t break down, and I don’t get into an accident, and
the road isn’t closed, and no meteorite hits the car, and . . . .” None of these conditions can be
deduced for sure, so we can’t infer that the plan succeeds. This is the logical qualification
problem (page 259), for which we so far have seen no real solution.

Nonetheless, in some sense A90 is in fact the right thing to do. What do we mean by this?
As we discussed in Chapter 2, we mean that out of all the plans that could be executed, A90
is expected to maximize the agent’s performance measure (where the expectation is relative
to the agent’s knowledge about the environment). The performance measure includes getting
to the airport in time for the flight, avoiding a long, unproductive wait at the airport, and
avoiding speeding tickets along the way. The agent’s knowledge cannot guarantee any of
these outcomes for A90, but it can provide some degree of belief that they will be achieved.
Other plans, such as A180, might increase the agent’s belief that it will get to the airport
on time, but also increase the likelihood of a long, boring wait. The right thing to do—the J
rational decision—therefore depends on both the relative importance of various goals and
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the likelihood that, and degree to which, they will be achieved. The remainder of this section
hones these ideas, in preparation for the development of the general theories of uncertain
reasoning and rational decisions that we present in this and subsequent chapters.

12.1.1 Summarizing uncertainty

Let’s consider an example of uncertain reasoning: diagnosing a dental patient’s toothache.
Diagnosis—whether for medicine, automobile repair, or whatever—almost always involves
uncertainty. Let us try to write rules for dental diagnosis using propositional logic, so that we
can see how the logical approach breaks down. Consider the following simple rule:

Toothache ⇒ Cavity .

The problem is that this rule is wrong. Not all patients with toothaches have cavities; some
of them have gum disease, an abscess, or one of several other problems:

Toothache ⇒ Cavity∨GumProblem∨Abscess . . .

Unfortunately, in order to make the rule true, we have to add an almost unlimited list of
possible problems. We could try turning the rule into a causal rule:

Cavity ⇒ Toothache .

But this rule is not right either; not all cavities cause pain. The only way to fix the rule
is to make it logically exhaustive: to augment the left-hand side with all the qualifications
required for a cavity to cause a toothache. Trying to use logic to cope with a domain like
medical diagnosis thus fails for three main reasons:

• Laziness: It is too much work to list the complete set of antecedents or consequentsLaziness

needed to ensure an exceptionless rule and too hard to use such rules.
• Theoretical ignorance: Medical science has no complete theory for the domain.Theoretical

ignorance

• Practical ignorance: Even if we know all the rules, we might be uncertain about aPractical ignorance

particular patient because not all the necessary tests have been or can be run.

The connection between toothaches and cavities is not a strict logical consequence in either
direction. This is typical of the medical domain, as well as most other judgmental domains:
law, business, design, automobile repair, gardening, dating, and so on. The agent’s knowledge
can at best provide only a degree of belief in the relevant sentences. Our main tool forDegree of belief

dealing with degrees of belief is probability theory. In the terminology of Section 8.1, theProbability theory

ontological commitments of logic and probability theory are the same—that the world is
composed of facts that do or do not hold in any particular case—but the epistemological
commitments are different: a logical agent believes each sentence to be true or false or has
no opinion, whereas a probabilistic agent may have a numerical degree of belief between 0
(for sentences that are certainly false) and 1 (certainly true).

The theory of probability provides a way of summarizing the uncertainty that comes fromI
our laziness and ignorance, thereby solving the qualification problem. We might not know
for sure what afflicts a particular patient, but we believe that there is, say, an 80% chance—
that is, a probability of 0.8—that the patient who has a toothache has a cavity. That is, we
expect that out of all the situations that are indistinguishable from the current situation as far
as our knowledge goes, the patient will have a cavity in 80% of them. This belief could be
derived from statistical data—80% of the toothache patients seen so far have had cavities—or
from some general dental knowledge, or from a combination of evidence sources.
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One confusing point is that at the time of our diagnosis, there is no uncertainty in the
actual world: the patient either has a cavity or doesn’t. So what does it mean to say the
probability of a cavity is 0.8? Shouldn’t it be either 0 or 1? The answer is that probability
statements are made with respect to a knowledge state, not with respect to the real world. We
say “The probability that the patient has a cavity, given that she has a toothache, is 0.8.” If we
later learn that the patient has a history of gum disease, we can make a different statement:
“The probability that the patient has a cavity, given that she has a toothache and a history of
gum disease, is 0.4.” If we gather further conclusive evidence against a cavity, we can say
“The probability that the patient has a cavity, given all we now know, is almost 0.” Note that
these statements do not contradict each other; each is a separate assertion about a different
knowledge state.

12.1.2 Uncertainty and rational decisions

Consider again the A90 plan for getting to the airport. Suppose it gives us a 97% chance
of catching our flight. Does this mean it is a rational choice? Not necessarily: there might
be other plans, such as A180, with higher probabilities. If it is vital not to miss the flight,
then it is worth risking the longer wait at the airport. What about A1440, a plan that involves
leaving home 24 hours in advance? In most circumstances, this is not a good choice, because
although it almost guarantees getting there on time, it involves an intolerable wait—not to
mention a possibly unpleasant diet of airport food.

To make such choices, an agent must first have preferences among the different possible Preference

outcomes of the various plans. An outcome is a completely specified state, including such Outcome

factors as whether the agent arrives on time and the length of the wait at the airport. We
use utility theory to represent preferences and reason quantitatively with them. (The term Utility theory

utility is used here in the sense of “the quality of being useful,” not in the sense of the electric
company or water works.) Utility theory says that every state (or state sequence) has a degree
of usefulness, or utility, to an agent and that the agent will prefer states with higher utility.

The utility of a state is relative to an agent. For example, the utility of a state in which
White has checkmated Black in a game of chess is obviously high for the agent playing
White, but low for the agent playing Black. But we can’t go strictly by the scores of 1, 1/2,
and 0 that are dictated by the rules of tournament chess—some players (including the authors)
might be thrilled with a draw against the world champion, whereas other players (including
the former world champion) might not. There is no accounting for taste or preferences: you
might think that an agent who prefers jalapeño bubble-gum ice cream to chocolate chip is
odd, but you could not say the agent is irrational. A utility function can account for any set of
preferences—quirky or typical, noble or perverse. Note that utilities can account for altruism,
simply by including the welfare of others as one of the factors.

Preferences, as expressed by utilities, are combined with probabilities in the general the-
ory of rational decisions called decision theory: Decision theory

Decision theory = probability theory+utility theory .
The fundamental idea of decision theory is that an agent is rational if and only if it chooses J
the action that yields the highest expected utility, averaged over all the possible outcomes
of the action. This is called the principle of maximum expected utility (MEU). Here, “ex- Maximum expected

utility (MEU)

pected” means the “average,” or “statistical mean” of the outcome utilities, weighted by the
probability of the outcome. We saw this principle in action in Chapter 6 when we touched
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function DT-AGENT(percept) returns an action
persistent: belief state, probabilistic beliefs about the current state of the world

action, the agent’s action

update belief state based on action and percept
calculate outcome probabilities for actions,

given action descriptions and current belief state
select action with highest expected utility

given probabilities of outcomes and utility information
return action

Figure 12.1 A decision-theoretic agent that selects rational actions.

briefly on optimal decisions in backgammon; it is in fact a completely general principle for
single-agent decision making.

Figure 12.1 sketches the structure of an agent that uses decision theory to select actions.
The agent is identical, at an abstract level, to the agents described in Chapters 4 and 7 that
maintain a belief state reflecting the history of percepts to date. The primary difference is
that the decision-theoretic agent’s belief state represents not just the possibilities for world
states but also their probabilities. Given the belief state and some knowledge of the effects of
actions, the agent can make probabilistic predictions of action outcomes and hence select the
action with the highest expected utility.

This chapter and the next concentrate on the task of representing and computing with
probabilistic information in general. Chapter 14 deals with methods for the specific tasks
of representing and updating the belief state over time and predicting outcomes. Chapter 18
looks at ways of combining probability theory with expressive formal languages such as first-
order logic and general-purpose programming languages. Chapter 15 covers utility theory in
more depth, and Chapter 16 develops algorithms for planning sequences of actions in stochas-
tic environments. Chapter 17 covers the extension of these ideas to multiagent environments.

12.2 Basic Probability Notation

For our agent to represent and use probabilistic information, we need a formal language.
The language of probability theory has traditionally been informal, written by human mathe-
maticians for other human mathematicians. Appendix A includes a standard introduction to
elementary probability theory; here, we take an approach more suited to the needs of AI and
connect it with the concepts of formal logic.

12.2.1 What probabilities are about

Like logical assertions, probabilistic assertions are about possible worlds. Whereas logical
assertions say which possible worlds are strictly ruled out (all those in which the assertion is
false), probabilistic assertions talk about how probable the various worlds are. In probability
theory, the set of all possible worlds is called the sample space. The possible worlds areSample space

mutually exclusive and exhaustive—two possible worlds cannot both be the case, and one



Section 12.2 Basic Probability Notation 407

possible world must be the case. For example, if we are about to roll two (distinguishable)
dice, there are 36 possible worlds to consider: (1,1), (1,2), . . ., (6,6). The Greek letter Ω

(uppercase omega) is used to refer to the sample space, and ω (lowercase omega) refers to
elements of the space, that is, particular possible worlds.

A fully specified probability model associates a numerical probability P(ω) with each Probability model

possible world.1 The basic axioms of probability theory say that every possible world has a
probability between 0 and 1 and that the total probability of the set of possible worlds is 1:

0≤ P(ω)≤ 1 for every ω and ∑
ω∈Ω

P(ω) = 1 . (12.1)

For example, if we assume that each die is fair and the rolls don’t interfere with each other,
then each of the possible worlds (1,1), (1,2), . . ., (6,6) has probability 1/36. If the dice are
loaded then some worlds will have higher probabilities and some lower, but they will all still
sum to 1.

Probabilistic assertions and queries are not usually about particular possible worlds, but
about sets of them. For example, we might ask for the probability that the two dice add up
to 11, the probability that doubles are rolled, and so on. In probability theory, these sets
are called events—a term already used extensively in Chapter 10 for a different concept. In Event

logic, a set of worlds corresponds to a proposition in a formal language; specifically, for each
proposition, the corresponding set contains just those possible worlds in which the proposi-
tion holds. (Hence, “event” and “proposition” mean roughly the same thing in this context,
except that a proposition is expressed in a formal language.) The probability associated with
a proposition is defined to be the sum of the probabilities of the worlds in which it holds:

For any proposition φ, P(φ) = ∑
ω∈φ

P(ω) . (12.2)

For example, when rolling fair dice, we have P(Total=11) = P((5,6))+P((6,5)) = 1/36+
1/36 = 1/18. Note that probability theory does not require complete knowledge of the prob-
abilities of each possible world. For example, if we believe the dice conspire to produce
the same number, we might assert that P(doubles) = 1/4 without knowing whether the dice
prefer double 6 to double 2. Just as with logical assertions, this assertion constrains the
underlying probability model without fully determining it.

Probabilities such as P(Total=11) and P(doubles) are called unconditional or prior Unconditional
probability

probabilities (and sometimes just “priors” for short); they refer to degrees of belief in propo- Prior probability

sitions in the absence of any other information. Most of the time, however, we have some
information, usually called evidence, that has already been revealed. For example, the first Evidence

die may already be showing a 5 and we are waiting with bated breath for the other one to
stop spinning. In that case, we are interested not in the unconditional probability of rolling
doubles, but the conditional or posterior probability (or just “posterior” for short) of rolling Conditional

probability
Posterior probabilitydoubles given that the first die is a 5. This probability is written P(doubles |Die1=5), where

the “ |” is pronounced “given.”2

Similarly, if I am going to the dentist for a regularly scheduled checkup, then the prior
probability P(cavity)=0.2 might be of interest; but if I go to the dentist because I have a
toothache, it’s the conditional probability P(cavity | toothache)=0.6 that matters.

1 For now, we assume a discrete, countable set of worlds. The proper treatment of the continuous case brings in
certain complications that are less relevant for most purposes in AI.
2 Note that the precedence of “ |” is such that any expression of the form P(. . . | . . .) always means P((. . .) |(. . .)).
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It is important to understand that P(cavity)=0.2 is still valid after toothache is observed;
it just isn’t especially useful. When making decisions, an agent needs to condition on all the
evidence it has observed. It is also important to understand the difference between condi-
tioning and logical implication. The assertion that P(cavity | toothache)=0.6 does not mean
“Whenever toothache is true, conclude that cavity is true with probability 0.6” rather it means
“Whenever toothache is true and we have no further information, conclude that cavity is true
with probability 0.6.” The extra condition is important; for example, if we had the further
information that the dentist found no cavities, we definitely would not want to conclude that
cavity is true with probability 0.6; instead we need to use P(cavity|toothache∧¬cavity)=0.

Mathematically speaking, conditional probabilities are defined in terms of unconditional
probabilities as follows: for any propositions a and b, we have

P(a |b) = P(a∧b)
P(b)

, (12.3)

which holds whenever P(b)> 0. For example,

P(doubles |Die1=5) =
P(doubles∧Die1=5)

P(Die1=5)
.

The definition makes sense if you remember that observing b rules out all those possible
worlds where b is false, leaving a set whose total probability is just P(b). Within that set, the
worlds where a is true must satisfy a∧b and constitute a fraction P(a∧b)/P(b).

The definition of conditional probability, Equation (12.3), can be written in a different
form called the product rule:Product rule

P(a∧b) = P(a |b)P(b) . (12.4)

The product rule is perhaps easier to remember: it comes from the fact that for a and b to be
true, we need b to be true, and we also need a to be true given b.

12.2.2 The language of propositions in probability assertions

In this chapter and the next, propositions describing sets of possible worlds are usually writ-
ten in a notation that combines elements of propositional logic and constraint satisfaction
notation. In the terminology of Section 2.4.7, it is a factored representation, in which a
possible world is represented by a set of variable/value pairs. A more expressive structured
representation is also possible, as shown in Chapter 18.

Variables in probability theory are called random variables, and their names begin withRandom variable

an uppercase letter. Thus, in the dice example, Total and Die1 are random variables. Ev-
ery random variable is a function that maps from the domain of possible worlds Ω to some
range—the set of possible values it can take on. The range of Total for two dice is the setRange

{2, . . . ,12} and the range of Die1 is {1, . . . ,6}. Names for values are always lowercase, so
we might write ∑x P(X =x) to sum over the values of X . A Boolean random variable has
the range {true, false}. For example, the proposition that doubles are rolled can be written
as Doubles= true. (An alternative range for Boolean variables is the set {0,1}, in which
case the variable is said to have a Bernoulli distribution.) By convention, propositions of theBernoulli

form A= true are abbreviated simply as a, while A= false is abbreviated as ¬a. (The uses of
doubles, cavity, and toothache in the preceding section are abbreviations of this kind.)

Ranges can be sets of arbitrary tokens. We might choose the range of Age to be the set
{juvenile, teen,adult} and the range of Weather might be {sun,rain,cloud,snow}. When no
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ambiguity is possible, it is common to use a value by itself to stand for the proposition that a
particular variable has that value; thus, sun can stand for Weather=sun.3

The preceding examples all have finite ranges. Variables can have infinite ranges, too—
either discrete (like the integers) or continuous (like the reals). For any variable with an
ordered range, inequalities are also allowed, such as NumberOfAtomsInUniverse≥ 1070.

Finally, we can combine these sorts of elementary propositions (including the abbreviated
forms for Boolean variables) by using the connectives of propositional logic. For example,
we can express “The probability that the patient has a cavity, given that she is a teenager with
no toothache, is 0.1” as follows:

P(cavity |¬toothache∧ teen) = 0.1 .

In probability notation, it is also common to use a comma for conjunction, so we could write
P(cavity |¬toothache, teen).
Sometimes we will want to talk about the probabilities of all the possible values of a random
variable. We could write:

P(Weather=sun) = 0.6
P(Weather=rain) = 0.1
P(Weather=cloud) = 0.29
P(Weather=snow) = 0.01 ,

but as an abbreviation we will allow

P(Weather)=〈0.6,0.1,0.29,0.01〉 ,

where the bold P indicates that the result is a vector of numbers, and where we assume
a predefined ordering 〈sun,rain,cloud,snow〉 on the range of Weather. We say that the P
statement defines a probability distribution for the random variable Weather—that is, an Probability

distribution
assignment of a probability for each possible value of the random variable. (In this case, with
a finite, discrete range, the distribution is called a categorical distribution.) The P notation Categorical

distribution
is also used for conditional distributions: P(X |Y ) gives the values of P(X =xi |Y =y j) for
each possible i, j pair.

For continuous variables, it is not possible to write out the entire distribution as a vector,
because there are infinitely many values. Instead, we can define the probability that a random
variable takes on some value x as a parameterized function of x, usually called a probability
density function. For example, the sentence Probability density

function

P(NoonTemp=x) = Uniform(x;18C,26C)

expresses the belief that the temperature at noon is distributed uniformly between 18 and 26
degrees Celsius.

Probability density functions (sometimes called pdfs) differ in meaning from discrete
distributions. Saying that the probability density is uniform from 18C to 26C means that
there is a 100% chance that the temperature will fall somewhere in that 8C-wide region and
a 50% chance that it will fall in any 4C-wide sub-region, and so on. We write the probability
density for a continuous random variable X at value x as P(X =x) or just P(x); the intuitive

3 These conventions taken together lead to a potential ambiguity in notation when summing over values of a
Boolean variable: P(a) is the probability that A is true, whereas in the expression ∑a P(a) it just refers to the
probability of one of the values a of A.
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definition of P(x) is the probability that X falls within an arbitrarily small region beginning
at x, divided by the width of the region:

P(x) = lim
dx→0

P(x≤ X ≤ x+dx)/dx .

For NoonTemp we have

P(NoonTemp=x) = Uniform(x;18C,26C) =

{ 1
8C if 18C ≤ x≤ 26C
0 otherwise

,

where C stands for centigrade (not for a constant). In P(NoonTemp=20.18C)= 1
8C , note that

1
8C is not a probability, it is a probability density. The probability that NoonTemp is exactly
20.18C is zero, because 20.18C is a region of width 0. Some authors use different symbols
for discrete probabilities and probability densities; we use P for specific probability values
and P for vectors of values in both cases, since confusion seldom arises and the equations
are usually identical. Note that probabilities are unitless numbers, whereas density functions
are measured with a unit, in this case reciprocal degrees centigrade. If the same temperature
interval were to be expressed in degrees Fahrenheit, it would have a width of 14.4 degrees,
and the density would be 1/14.4F .

In addition to distributions on single variables, we need notation for distributions on
multiple variables. Commas are used for this. For example, P(Weather,Cavity) denotes the
probabilities of all combinations of the values of Weather and Cavity. This is a 4×2 table of
probabilities called the joint probability distribution of Weather and Cavity. We can alsoJoint probability

distribution
mix variables and specific values; P(sun,Cavity) would be a two-element vector giving the
probabilities of a cavity with a sunny day and no cavity with a sunny day.

The P notation makes certain expressions much more concise than they might otherwise
be. For example, the product rules (see Equation (12.4)) for all possible values of Weather
and Cavity can be written as a single equation:

P(Weather,Cavity) = P(Weather |Cavity)P(Cavity) ,

instead of as these 4×2=8 equations (using abbreviations W and C):
P(W =sun∧C= true) = P(W =sun|C= true)P(C= true)
P(W =rain∧C= true) = P(W =rain|C= true)P(C= true)
P(W =cloud∧C= true) = P(W =cloud|C= true)P(C= true)
P(W =snow∧C= true) = P(W =snow|C= true)P(C= true)
P(W =sun∧C= false) = P(W =sun|C= false)P(C= false)
P(W =rain∧C= false) = P(W =rain|C= false)P(C= false)
P(W =cloud∧C= false) = P(W =cloud|C= false)P(C= false)
P(W =snow∧C= false) = P(W =snow|C= false)P(C= false) .

As a degenerate case, P(sun,cavity) has no variables and thus is a zero-dimensional vector,
which we can think of as a scalar value.

Now we have defined a syntax for propositions and probability assertions and we have
given part of the semantics: Equation (12.2) defines the probability of a proposition as the sum
of the probabilities of worlds in which it holds. To complete the semantics, we need to say
what the worlds are and how to determine whether a proposition holds in a world. We borrow
this part directly from the semantics of propositional logic, as follows. A possible world isI
defined to be an assignment of values to all of the random variables under consideration.

It is easy to see that this definition satisfies the basic requirement that possible worlds be
mutually exclusive and exhaustive (Exercise 12.EXEX). For example, if the random variables
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are Cavity, Toothache, and Weather, then there are 2×2×4=16 possible worlds. Further-
more, the truth of any given proposition can be determined easily in such worlds by the same
recursive truth calculation we used for propositional logic (see page 236).

Note that some random variables may be redundant, in that their values can be obtained in
all cases from the values of other variables. For example, the Doubles variable in the two-dice
world is true exactly when Die1=Die2. Including Doubles as one of the random variables,
in addition to Die1 and Die2, seems to increase the number of possible worlds from 36 to 72,
but of course exactly half of the 72 will be logically impossible and will have probability 0.

From the preceding definition of possible worlds, it follows that a probability model is
completely determined by the joint distribution for all of the random variables—the so-called
full joint probability distribution. For example, given Cavity, Toothache, and Weather, Full joint probability

distribution
the full joint distribution is P(Cavity,Toothache,Weather). This joint distribution can be
represented as a 2×2×4 table with 16 entries. Because every proposition’s probability is
a sum over possible worlds, a full joint distribution suffices, in principle, for calculating the
probability of any proposition. We will see examples of how to do this in Section 12.3.

12.2.3 Probability axioms and their reasonableness

The basic axioms of probability (Equations (12.1) and (12.2)) imply certain relationships
among the degrees of belief that can be accorded to logically related propositions. For exam-
ple, we can derive the familiar relationship between the probability of a proposition and the
probability of its negation:

P(¬a) = ∑ω∈¬a P(ω) by Equation (12.2)
= ∑ω∈¬a P(ω)+∑ω∈a P(ω)−∑ω∈a P(ω)
= ∑ω∈Ω P(ω)−∑ω∈a P(ω) grouping the first two terms
= 1−P(a) by (12.1) and (12.2).

We can also derive the well-known formula for the probability of a disjunction, sometimes
called the inclusion–exclusion principle: Inclusion–exclusion

principle

P(a∨b) = P(a)+P(b)−P(a∧b) . (12.5)

This rule is easily remembered by noting that the cases where a holds, together with the cases
where b holds, certainly cover all the cases where a∨ b holds; but summing the two sets of
cases counts their intersection twice, so we need to subtract P(a∧b).

Equations (12.1) and (12.5) are often called Kolmogorov’s axioms in honor of the math- Kolmogorov’s
axioms

ematician Andrei Kolmogorov, who showed how to build up the rest of probability theory
from this simple foundation and how to handle the difficulties caused by continuous vari-
ables.4 While Equation (12.2) has a definitional flavor, Equation (12.5) reveals that the ax-
ioms really do constrain the degrees of belief an agent can have concerning logically related
propositions. This is analogous to the fact that a logical agent cannot simultaneously believe
A, B, and ¬(A∧B), because there is no possible world in which all three are true. With prob-
abilities, however, statements refer not to the world directly, but to the agent’s own state of
knowledge. Why, then, can an agent not hold the following set of beliefs (even though they
violate Kolmogorov’s axioms)?

P(a)=0.4 P(b)=0.3 P(a∧b)=0.0 P(a∨b)=0.8 . (12.6)

4 The difficulties include the Vitali set, a well-defined subset of the interval [0,1] with no well-defined size.
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Proposition Agent 1’s Agent 2 Agent 1 Agent 1 payoffs for each outcome
belief bets bets a,b a,¬b ¬a,b ¬a,¬b

a 0.4 $4 on a $6 on ¬a –$6 –$6 $4 $4
b 0.3 $3 on b $7 on ¬b –$7 $3 –$7 $3

a∨b 0.8 $2 on ¬(a∨b) $8 on a∨b $2 $2 $2 –$8

–$11 –$1 –$1 –$1

Figure 12.2 Because Agent 1 has inconsistent beliefs, Agent 2 is able to devise a set of
three bets that guarantees a loss for Agent 1, no matter what the outcome of a and b.

This kind of question has been the subject of decades of intense debate between those who
advocate the use of probabilities as the only legitimate form for degrees of belief and those
who advocate alternative approaches.

One argument for the axioms of probability, first stated in 1931 by Bruno de Finetti (see
de Finetti, 1993, for an English translation), is as follows: If an agent has some degree of
belief in a proposition a, then the agent should be able to state odds at which it is indifferent
to a bet for or against a.5 Think of it as a game between two agents: Agent 1 states, “my
degree of belief in event a is 0.4.” Agent 2 is then free to choose whether to wager for or
against a at stakes that are consistent with the stated degree of belief. That is, Agent 2 could
choose to accept Agent 1’s bet that a will occur, offering $6 against Agent 1’s $4. Or Agent
2 could accept Agent 1’s bet that ¬a will occur, offering $4 against Agent 1’s $6. Then we
observe the outcome of a, and whoever is right collects the money. If one’s degrees of belief
do not accurately reflect the world, then one would expect to lose money over the long run to
an opposing agent whose beliefs more accurately reflect the state of the world.

De Finetti’s theorem is not concerned with choosing the right values for individual prob-
abilities, but with choosing values for the probabilities of logically related propositions: IfI
Agent 1 expresses a set of degrees of belief that violate the axioms of probability theory then
there is a combination of bets by Agent 2 that guarantees that Agent 1 will lose money every
time. For example, suppose that Agent 1 has the set of degrees of belief from Equation (12.6).
Figure 12.2 shows that if Agent 2 chooses to bet $4 on a, $3 on b, and $2 on ¬(a∨b), then
Agent 1 always loses money, regardless of the outcomes for a and b. De Finetti’s theorem
implies that no rational agent can have beliefs that violate the axioms of probability.

One common objection to de Finetti’s theorem is that this betting game is rather contrived.
For example, what if one refuses to bet? Does that end the argument? The answer is that the
betting game is an abstract model for the decision-making situation in which every agent is
unavoidably involved at every moment. Every action (including inaction) is a kind of bet,
and every outcome can be seen as a payoff of the bet. Refusing to bet is like refusing to allow
time to pass.

Other strong philosophical arguments have been put forward for the use of probabilities,
most notably those of Cox (1946), Carnap (1950), and Jaynes (2003). They each construct a

5 One might argue that the agent’s preferences for different bank balances are such that the possibility of losing
$1 is not counterbalanced by an equal possibility of winning $1. One possible response is to make the bet amounts
small enough to avoid this problem. Savage’s analysis (1954) circumvents the issue altogether.
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set of axioms for reasoning with degrees of beliefs: no contradictions, correspondence with
ordinary logic (for example, if belief in A goes up, then belief in ¬A must go down), and so
on. The only controversial axiom is that degrees of belief must be numbers, or at least act
like numbers in that they must be transitive (if belief in A is greater than belief in B, which is
greater than belief in C, then belief in A must be greater than C) and comparable (the belief
in A must be one of equal to, greater than, or less than belief in B). It can then be proved that
probability is the only approach that satisfies these axioms.

The world being the way it is, however, practical demonstrations sometimes speak louder
than proofs. The success of reasoning systems based on probability theory has been much
more effective than philosophical arguments in making converts. We now look at how the
axioms can be deployed to make inferences.

12.3 Inference Using Full Joint Distributions

In this section we describe a simple method for probabilistic inference—that is, the compu- Probabilistic
inference

tation of posterior probabilities for query propositions given observed evidence. We use the Query

full joint distribution as the “knowledge base” from which answers to all questions may be de-
rived. Along the way we also introduce several useful techniques for manipulating equations
involving probabilities.

We begin with a simple example: a domain consisting of just the three Boolean variables
Toothache, Cavity, and Catch (the dentist’s nasty steel probe catches in my tooth). The full
joint distribution is a 2×2×2 table as shown in Figure 12.3.

toothache ¬toothache

catch ¬catch catch ¬catch

cavity 0.108 0.012 0.072 0.008
¬cavity 0.016 0.064 0.144 0.576

Figure 12.3 A full joint distribution for the Toothache, Cavity, Catch world.

Notice that the probabilities in the joint distribution sum to 1, as required by the axioms of
probability. Notice also that Equation (12.2) gives us a direct way to calculate the probability
of any proposition, simple or complex: simply identify those possible worlds in which the
proposition is true and add up their probabilities. For example, there are six possible worlds
in which cavity∨ toothache holds:

P(cavity∨ toothache) = 0.108+0.012+0.072+0.008+0.016+0.064 = 0.28 .

One particularly common task is to extract the distribution over some subset of variables or
a single variable. For example, adding the entries in the first row gives the unconditional or
marginal probability6 of cavity: Marginal probability

P(cavity) = 0.108+0.012+0.072+0.008 = 0.2 .

6 So called because of a common practice among actuaries of writing the sums of observed frequencies in the
margins of insurance tables.
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This process is called marginalization, or summing out—because we sum up the probabil-Marginalization

ities for each possible value of the other variables, thereby taking them out of the equation.
We can write the following general marginalization rule for any sets of variables Y and Z:

P(Y) = ∑
z

P(Y,Z=z) , (12.7)

where ∑z sums over all the possible combinations of values of the set of variables Z. As
usual we can abbreviate P(Y,Z=z) in this equation by P(Y,z). For the Cavity example,
Equation (12.7) corresponds to the following equation:

P(Cavity) = P(Cavity, toothache,catch)+P(Cavity, toothache,¬catch)

+ P(Cavity,¬toothache,catch)+P(Cavity,¬toothache,¬catch)

= 〈0.108,0.016〉+ 〈0.012,0.064〉+ 〈0.072,0.144〉+ 〈0.008,0.576〉
= 〈0.2,0.8〉 .

Using the product rule (Equation (12.4)), we can replace P(Y,z) in Equation (12.7) by
P(Y |z)P(z), obtaining a rule called conditioning:Conditioning

P(Y) = ∑
z

P(Y |z)P(z) . (12.8)

Marginalization and conditioning turn out to be useful rules for all kinds of derivations in-
volving probability expressions.

In most cases, we are interested in computing conditional probabilities of some variables,
given evidence about others. Conditional probabilities can be found by first using Equa-
tion (12.3) to obtain an expression in terms of unconditional probabilities and then evaluating
the expression from the full joint distribution. For example, we can compute the probability
of a cavity, given evidence of a toothache, as follows:

P(cavity | toothache) =
P(cavity∧ toothache)

P(toothache)

=
0.108+0.012

0.108+0.012+0.016+0.064
= 0.6 .

Just to check, we can also compute the probability that there is no cavity, given a toothache:

P(¬cavity | toothache) =
P(¬cavity∧ toothache)

P(toothache)

=
0.016+0.064

0.108+0.012+0.016+0.064
= 0.4 .

The two values sum to 1.0, as they should. Notice that the term P(toothache) is in the de-
nominator for both of these calculations. If the variable Cavity had more than two values, it
would be in the denominator for all of them. In fact, it can be viewed as a normalization
constant for the distribution P(Cavity | toothache), ensuring that it adds up to 1. Throughout
the chapters dealing with probability, we use α to denote such constants. With this notation,
we can write the two preceding equations in one:

P(Cavity | toothache) = αP(Cavity, toothache)

= α [P(Cavity, toothache,catch)+P(Cavity, toothache,¬catch)]

= α [〈0.108,0.016〉+ 〈0.012,0.064〉] = α〈0.12,0.08〉= 〈0.6,0.4〉 .
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In other words, we can calculate P(Cavity | toothache) even if we don’t know the value of
P(toothache)! We temporarily forget about the factor 1/P(toothache) and add up the values
for cavity and ¬cavity, getting 0.12 and 0.08. Those are the correct relative proportions, but
they don’t sum to 1, so we normalize them by dividing each one by 0.12+ 0.08, getting
the true probabilities of 0.6 and 0.4. Normalization turns out to be a useful shortcut in many
probability calculations, both to make the computation easier and to allow us to proceed when
some probability assessment (such as P(toothache)) is not available.

From the example, we can extract a general inference procedure. We begin with the case
in which the query involves a single variable, X (Cavity in the example). Let E be the list
of evidence variables (just Toothache in the example), let e be the list of observed values for
them, and let Y be the remaining unobserved variables (just Catch in the example). The query
is P(X |e) and can be evaluated as

P(X |e) = αP(X ,e) = α∑
y

P(X ,e,y) , (12.9)

where the summation is over all possible ys (i.e., all possible combinations of values of the
unobserved variables Y). Notice that together the variables X , E, and Y constitute the com-
plete set of variables for the domain, so P(X ,e,y) is simply a subset of probabilities from the
full joint distribution.

Given the full joint distribution to work with, Equation (12.9) can answer probabilistic
queries for discrete variables. It does not scale well, however: for a domain described by n
Boolean variables, it requires an input table of size O(2n) and takes O(2n) time to process
the table. In a realistic problem we could easily have n = 100, making O(2n) impractical—a
table with 2100 ≈ 1030 entries! The problem is not just memory and computation: the real
issue is that if each of the 1030 probabilities has to be estimated separately from examples,
the number of examples required will be astronomical.

For these reasons, the full joint distribution in tabular form is seldom a practical tool
for building reasoning systems. Instead, it should be viewed as the theoretical foundation
on which more effective approaches may be built, just as truth tables formed a theoretical
foundation for more practical algorithms like DPLL in Chapter 7. The remainder of this
chapter introduces some of the basic ideas required in preparation for the development of
realistic systems in Chapter 13.

12.4 Independence

Let us expand the full joint distribution in Figure 12.3 by adding a fourth variable, Weather.
The full joint distribution then becomes P(Toothache,Catch,Cavity,Weather), which has 2×
2× 2× 4 = 32 entries. It contains four “editions” of the table shown in Figure 12.3, one
for each kind of weather. What relationship do these editions have to each other and to the
original three-variable table? How is the value of P(toothache,catch,cavity,cloud) related to
the value of P(toothache,catch,cavity)? We can use the product rule (Equation (12.4)):

P(toothache,catch,cavity,cloud)

= P(cloud | toothache,catch,cavity)P(toothache,catch,cavity) .

Now, unless one is in the deity business, one should not imagine that one’s dental problems
influence the weather. And for indoor dentistry, at least, it seems safe to say that the weather
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Weather

Toothache Catch

Cavity

decomposes

      into

WeatherToothache Catch

Cavity

decomposes

       into

Coin1 Coinn

Coin1 Coinn

(a) (b)

Figure 12.4 Two examples of factoring a large joint distribution into smaller distributions,
using absolute independence. (a) Weather and dental problems are independent. (b) Coin
flips are independent.

does not influence the dental variables. Therefore, the following assertion seems reasonable:

P(cloud | toothache,catch,cavity) = P(cloud) . (12.10)

From this, we can deduce

P(toothache,catch,cavity,cloud) = P(cloud)P(toothache,catch,cavity) .
A similar equation exists for every entry in P(Toothache,Catch,Cavity,Weather). In fact, we
can write the general equation

P(Toothache,Catch,Cavity,Weather) = P(Toothache,Catch,Cavity)P(Weather) .

Thus, the 32-element table for four variables can be constructed from one 8-element table
and one 4-element table. This decomposition is illustrated schematically in Figure 12.4(a).

The property we used in Equation (12.10) is called independence (also marginal inde-Independence

pendence and absolute independence). In particular, the weather is independent of one’s
dental problems. Independence between propositions a and b can be written as

P(a |b)=P(a) or P(b |a)=P(b) or P(a∧b)=P(a)P(b) . (12.11)

All these forms are equivalent (Exercise 12.INDI). Independence between variables X and Y
can be written as follows (again, these are all equivalent):

P(X |Y )=P(X) or P(Y |X)=P(Y ) or P(X ,Y )=P(X)P(Y ) .
Independence assertions are usually based on knowledge of the domain. As the toothache–
weather example illustrates, they can dramatically reduce the amount of information nec-
essary to specify the full joint distribution. If the complete set of variables can be divided
into independent subsets, then the full joint distribution can be factored into separate joint
distributions on those subsets. For example, the full joint distribution on the outcome of n in-
dependent coin flips, P(C1, . . . ,Cn), has 2n entries, but it can be represented as the product of
n single-variable distributions P(Ci). In a more practical vein, the independence of dentistry
and meteorology is a good thing, because otherwise the practice of dentistry might require
intimate knowledge of meteorology, and vice versa.
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When they are available, then, independence assertions can help in reducing the size of
the domain representation and the complexity of the inference problem. Unfortunately, clean
separation of entire sets of variables by independence is quite rare. Whenever a connection,
however indirect, exists between two variables, independence will fail to hold. Moreover,
even independent subsets can be quite large—for example, dentistry might involve dozens of
diseases and hundreds of symptoms, all of which are interrelated. To handle such problems,
we need more subtle methods than the straightforward concept of independence.

12.5 Bayes’ Rule and Its Use

On page 408, we defined the product rule (Equation (12.4)). It can actually be written in
two forms:

P(a∧b) = P(a |b)P(b) and P(a∧b) = P(b |a)P(a) .
Equating the two right-hand sides and dividing by P(a), we get

P(b |a) = P(a |b)P(b)
P(a)

. (12.12)

This equation is known as Bayes’ rule (also Bayes’ law or Bayes’ theorem). This simple Bayes’ rule

equation underlies most modern AI systems for probabilistic inference.
The more general case of Bayes’ rule for multivalued variables can be written in the P

notation as follows:

P(Y |X) =
P(X |Y )P(Y )

P(X)
.

As before, this is to be taken as representing a set of equations, each dealing with specific val-
ues of the variables. We will also have occasion to use a more general version conditionalized
on some background evidence e:

P(Y |X ,e) = P(X |Y,e)P(Y |e)
P(X |e)

. (12.13)

12.5.1 Applying Bayes’ rule: The simple case

On the surface, Bayes’ rule does not seem very useful. It allows us to compute the single
term P(b |a) in terms of three terms: P(a |b), P(b), and P(a). That seems like two steps
backwards; but Bayes’ rule is useful in practice because there are many cases where we do
have good probability estimates for these three numbers and need to compute the fourth.
Often, we perceive as evidence the effect of some unknown cause and we would like to
determine that cause. In that case, Bayes’ rule becomes

P(cause |effect) =
P(effect |cause)P(cause)

P(effect)
.

The conditional probability P(effect |cause) quantifies the relationship in the causal direc- Causal

tion, whereas P(cause |effect) describes the diagnostic direction. In a task such as medical Diagnostic

diagnosis, we often have conditional probabilities on causal relationships. The doctor knows
P(symptoms |disease) and wants to derive a diagnosis, P(disease |symptoms).

For example, a doctor knows that the disease meningitis causes a patient to have a stiff
neck, say, 70% of the time. The doctor also knows some unconditional facts: the prior
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probability that any patient has meningitis is 1/50,000, and the prior probability that any
patient has a stiff neck is 1%. Letting s be the proposition that the patient has a stiff neck and
m be the proposition that the patient has meningitis, we have

P(s |m) = 0.7

P(m) = 1/50000

P(s) = 0.01

P(m |s) =
P(s |m)P(m)

P(s)
=

0.7×1/50000
0.01

= 0.0014 . (12.14)

That is, we expect only 0.14% of patients with a stiff neck to have meningitis. Notice that
even though a stiff neck is quite strongly indicated by meningitis (with probability 0.7), the
probability of meningitis in patients with stiff necks remains small. This is because the prior
probability of stiff necks (from any cause) is much higher than the prior for meningitis.

Section 12.3 illustrated a process by which one can avoid assessing the prior probability
of the evidence (here, P(s)) by instead computing a posterior probability for each value of the
query variable (here, m and ¬m) and then normalizing the results. The same process can be
applied when using Bayes’ rule. We have

P(M |s) = α〈P(s |m)P(m),P(s |¬m)P(¬m)〉 .

Thus, to use this approach we need to estimate P(s |¬m) instead of P(s). There is no free
lunch—sometimes this is easier, sometimes it is harder. The general form of Bayes’ rule with
normalization is

P(Y |X) = αP(X |Y )P(Y ) , (12.15)

where α is the normalization constant needed to make the entries in P(Y |X) sum to 1.
One obvious question to ask about Bayes’ rule is why one might have available the con-

ditional probability in one direction, but not the other. In the meningitis domain, perhaps the
doctor knows that a stiff neck implies meningitis in 1 out of 5000 cases; that is, the doctor has
quantitative information in the diagnostic direction from symptoms to causes. Such a doctor
has no need to use Bayes’ rule.

Unfortunately, diagnostic knowledge is often more fragile than causal knowledge. If thereI
is a sudden epidemic of meningitis, the unconditional probability of meningitis, P(m), will
go up. The doctor who derived the diagnostic probability P(m |s) directly from statistical
observation of patients before the epidemic will have no idea how to update the value, but
the doctor who computes P(m |s) from the other three values will see that P(m |s) should go
up proportionately with P(m). Most important, the causal information P(s |m) is unaffected
by the epidemic, because it simply reflects the way meningitis works. The use of this kind
of direct causal or model-based knowledge provides the crucial robustness needed to make
probabilistic systems feasible in the real world.

12.5.2 Using Bayes’ rule: Combining evidence

We have seen that Bayes’ rule can be useful for answering probabilistic queries conditioned
on one piece of evidence—for example, the stiff neck. In particular, we have argued that
probabilistic information is often available in the form P(effect |cause). What happens when
we have two or more pieces of evidence? For example, what can a dentist conclude if her
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nasty steel probe catches in the aching tooth of a patient? If we know the full joint distribution
(Figure 12.3), we can read off the answer:

P(Cavity | toothache∧ catch) = α〈0.108,0.016〉 ≈ 〈0.871,0.129〉 .
We know, however, that such an approach does not scale up to larger numbers of variables.
We can try using Bayes’ rule to reformulate the problem:

P(Cavity | toothache∧ catch)

= αP(toothache∧ catch |Cavity)P(Cavity) . (12.16)

For this reformulation to work, we need to know the conditional probabilities of the conjunc-
tion toothache∧ catch for each value of Cavity. That might be feasible for just two evidence
variables, but again it does not scale up. If there are n possible evidence variables (X rays,
diet, oral hygiene, etc.), then there are O(2n) possible combinations of observed values for
which we would need to know conditional probabilities. This is no better than using the full
joint distribution.

To make progress, we need to find some additional assertions about the domain that will
enable us to simplify the expressions. The notion of independence in Section 12.4 provides
a clue, but needs refining. It would be nice if Toothache and Catch were independent, but
they are not: if the probe catches in the tooth, then it is likely that the tooth has a cavity
and that the cavity causes a toothache. These variables are independent, however, given
the presence or the absence of a cavity. Each is directly caused by the cavity, but neither
has a direct effect on the other: toothache depends on the state of the nerves in the tooth,
whereas the probe’s accuracy depends primarily on the dentist’s skill, to which the toothache
is irrelevant.7 Mathematically, this property is written as

P(toothache∧ catch |Cavity) = P(toothache |Cavity)P(catch |Cavity) . (12.17)

This equation expresses the conditional independence of toothache and catch given Cavity. Conditional
independence

We can plug it into Equation (12.16) to obtain the probability of a cavity:

P(Cavity | toothache∧ catch)

= αP(toothache |Cavity)P(catch |Cavity)P(Cavity) . (12.18)

Now the information requirements are the same as for inference, using each piece of evi-
dence separately: the prior probability P(Cavity) for the query variable and the conditional
probability of each effect, given its cause.

The general definition of conditional independence of two variables X and Y , given a
third variable Z, is

P(X ,Y |Z) = P(X |Z)P(Y |Z) .
In the dentist domain, for example, it seems reasonable to assert conditional independence of
the variables Toothache and Catch, given Cavity:

P(Toothache,Catch |Cavity) = P(Toothache |Cavity)P(Catch |Cavity) . (12.19)

Notice that this assertion is somewhat stronger than Equation (12.17), which asserts indepen-
dence only for specific values of Toothache and Catch. As with absolute independence in
Equation (12.11), the equivalent forms

P(X |Y,Z)=P(X |Z) and P(Y |X ,Z)=P(Y |Z)
7 We assume that the patient and dentist are distinct individuals.
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can also be used (see Exercise 12.PXYZ). Section 12.4 showed that absolute independence
assertions allow a decomposition of the full joint distribution into much smaller pieces. It
turns out that the same is true for conditional independence assertions. For example, given
the assertion in Equation (12.19), we can derive a decomposition as follows:

P(Toothache,Catch,Cavity)

= P(Toothache,Catch |Cavity)P(Cavity) (product rule)

= P(Toothache |Cavity)P(Catch |Cavity)P(Cavity) (using 12.19).

(The reader can easily check that this equation does in fact hold in Figure 12.3.) In this
way, the original large table is decomposed into three smaller tables. The original table has
7 independent numbers. (The table has 23=8 entries, but they must sum to 1, so 7 are
independent). The smaller tables contain a total of 2+2+1=5 independent numbers. (For
a conditional probability distribution such as P(Toothache |Cavity) there are two rows of two
numbers, and each row sums to 1, so that’s two independent numbers; for a prior distribution
such as P(Cavity) there is only one independent number.) Going from 7 to 5 might not seem
like a major triumph, but the gains can be much greater with larger number of symptoms.

In general, for n symptoms that are all conditionally independent given Cavity, the size
of the representation grows as O(n) instead of O(2n). That means that conditional indepen-I
dence assertions can allow probabilistic systems to scale up; moreover, they are much more
commonly available than absolute independence assertions. Conceptually, Cavity separatesSeparation

Toothache and Catch because it is a direct cause of both of them. The decomposition of
large probabilistic domains into weakly connected subsets through conditional independence
is one of the most important developments in the recent history of AI.

12.6 Naive Bayes Models

The dentistry example illustrates a commonly occurring pattern in which a single cause di-
rectly influences a number of effects, all of which are conditionally independent, given the
cause. The full joint distribution can be written as

P(Cause,Effect1, . . . ,Effectn) = P(Cause)∏
i

P(Effecti |Cause) . (12.20)

Such a probability distribution is called a naive Bayes model—“naive” because it is oftenNaive Bayes

used (as a simplifying assumption) in cases where the “effect” variables are not strictly inde-
pendent given the cause variable. (The naive Bayes model is sometimes called a Bayesian
classifier, a somewhat careless usage that has prompted true Bayesians to call it the idiot
Bayes model.) In practice, naive Bayes systems often work very well, even when the condi-
tional independence assumption is not strictly true.

To use a naive Bayes model, we can apply Equation (12.20) to obtain the probability of
the cause given some observed effects. Call the observed effects E=e, while the remaining
effect variables Y are unobserved. Then the standard method for inference from the joint
distribution (Equation (12.9)) can be applied:

P(Cause |e) = α∑
y

P(Cause,e,y) .
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From Equation (12.20), we then obtain

P(Cause |e) = α∑
y

P(Cause)P(y |Cause)
(

∏
j

P(e j |Cause)
)

= αP(Cause)
(

∏
j

P(e j |Cause)
)

∑
y

P(y |Cause)

= αP(Cause)∏
j

P(e j |Cause) (12.21)

where the last line follows because the summation over y is 1. Reinterpreting this equation
in words: for each possible cause, multiply the prior probability of the cause by the product
of the conditional probabilities of the observed effects given the cause; then normalize the
result. The run time of this calculation is linear in the number of observed effects and does
not depend on the number of unobserved effects (which may be very large in domains such
as medicine). We will see in the next chapter that this is a common phenomenon in proba-
bilistic inference: evidence variables whose values are unobserved usually “disappear” from
the computation altogether.

12.6.1 Text classification with naive Bayes

Let’s see how a naive Bayes model can be used for the task of text classification: given a Text classification

text, decide which of a predefined set of classes or categories it belongs to. Here the “cause”
is the Category variable, and the “effect” variables are the presence or absence of certain key
words, HasWordi. Consider these two example sentences, taken from newspaper articles:

1. Stocks rallied on Monday, with major indexes gaining 1% as optimism persisted over
the first quarter earnings season.

2. Heavy rain continued to pound much of the east coast on Monday, with flood warnings
issued in New York City and other locations.

The task is to classify each sentence into a Category—the major sections of the newspa-
per: news, sports, business, weather, or entertainment. The naive Bayes model consists of
the prior probabilities P(Category) and the conditional probabilities P(HasWordi |Category).
For each category c, P(Category=c) is estimated as the fraction of all previously seen doc-
uments that are of category c. For example, if 9% of articles are about weather, we set
P(Category=weather)=0.09. Similarly, P(HasWordi |Category) is estimated as the fraction
of documents of each category that contain word i; perhaps 37% of articles about business
contain word 6, “stocks,” so P(HasWord6= true |Category=business) is set to 0.37.8

To categorize a new document, we check which key words appear in the document and
then apply Equation (12.21) to obtain the posterior probability distribution over categories. If
we have to predict just one category, we take the one with the highest posterior probability.
Notice that, for this task, every effect variable is observed, since we can always tell whether
a given word appears in the document.

8 One needs to be careful not to assign probability zero to words that have not been seen previously in a given
category of documents, since the zero would wipe out all the other evidence in Equation (12.21). Just because
you haven’t seen a word yet doesn’t mean you will never see it. Instead, reserve a small portion of the probability
distribution to represent “previously unseen” words. See Chapter 21 for more on this issue in general, and
Section 24.1.4 for the particular case of word models.



422 Chapter 12 Quantifying Uncertainty

OK

 1,1  2,1  3,1  4,1

 1,2  2,2  3,2  4,2

 1,3  2,3  3,3  4,3

 1,4  2,4

OKOK

 3,4  4,4

B

B

1,1  2,1  3,1  4,1

1,2 2,2  3,2  4,2

 2,3  3,3  4,3

 2,4  3,4  4,4

KNOWN

FRONTIER

1,3

1,4

QUERY

OTHER

(a) (b)

Figure 12.5 (a) After finding a breeze in both [1,2] and [2,1], the agent is stuck—there is
no safe place to explore. (b) Division of the squares into Known, Frontier, and Other, for a
query about [1,3].

The naive Bayes model assumes that words occur independently in documents, with fre-
quencies determined by the document category. This independence assumption is clearly
violated in practice. For example, the phrase “first quarter” occurs more frequently in busi-
ness (or sports) articles than would be suggested by multiplying the probabilities of “first” and
“quarter.” The violation of independence usually means that the final posterior probabilities
will be much closer to 1 or 0 than they should be; in other words, the model is overconfi-
dent in its predictions. On the other hand, even with these errors, the ranking of the possible
categories is often quite accurate.

Naive Bayes models are widely used for language determination, document retrieval,
spam filtering, and other classification tasks. For tasks such as medical diagnosis, where the
actual values of the posterior probabilities really matter—for example, in deciding whether to
perform an appendectomy—one would usually prefer to use the more sophisticated models
described in the next chapter.

12.7 The Wumpus World Revisited

We can combine the ideas in this chapter to solve probabilistic reasoning problems in the
wumpus world. (See Chapter 7 for a complete description of the wumpus world.) Uncertainty
arises in the wumpus world because the agent’s sensors give only partial information about
the world. For example, Figure 12.5 shows a situation in which each of the three unvisited
but reachable squares—[1,3], [2,2], and [3,1]—might contain a pit. Pure logical inference
can conclude nothing about which square is most likely to be safe, so a logical agent might
have to choose randomly. We will see that a probabilistic agent can do much better than the
logical agent.

Our aim is to calculate the probability that each of the three squares contains a pit. (For
this example we ignore the wumpus and the gold.) The relevant properties of the wumpus
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world are that (1) a pit causes breezes in all neighboring squares, and (2) each square other
than [1,1] contains a pit with probability 0.2. The first step is to identify the set of random
variables we need:

• As in the propositional logic case, we want one Boolean variable Pi j for each square,
which is true iff square [i, j] actually contains a pit.

• We also have Boolean variables Bi j that are true iff square [i, j] is breezy; we include
these variables only for the observed squares—in this case, [1,1], [1,2], and [2,1].

The next step is to specify the full joint distribution, P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1). Applying
the product rule, we have

P(P1,1, . . . ,P4,4,B1,1,B1,2,B2,1) =
P(B1,1,B1,2,B2,1 | P1,1, . . . ,P4,4)P(P1,1, . . . ,P4,4) .

This decomposition makes it easy to see what the joint probability values should be. The
first term is the conditional probability distribution of a breeze configuration, given a pit
configuration; its values are 1 if all the breezy squares are adjacent to the pits and 0 otherwise.
The second term is the prior probability of a pit configuration. Each square contains a pit with
probability 0.2, independently of the other squares; hence,

P(P1,1, . . . ,P4,4) =
4,4

∏
i, j=1,1

P(Pi, j) . (12.22)

For a particular configuration with exactly n pits, the probability is 0.2n×0.816−n.
In the situation in Figure 12.5(a), the evidence consists of the observed breeze (or its

absence) in each square that is visited, combined with the fact that each such square contains
no pit. We abbreviate these facts as b=¬b1,1∧b1,2∧b2,1 and known=¬p1,1∧¬p1,2∧¬p2,1.
We are interested in answering queries such as P(P1,3 |known,b): how likely is it that [1,3]
contains a pit, given the observations so far?

To answer this query, we can follow the standard approach of Equation (12.9), namely,
summing over entries from the full joint distribution. Let Unknown be the set of Pi, j vari-
ables for squares other than the known squares and the query square [1,3]. Then, by Equa-
tion (12.9), we have

P(P1,3 |known,b) = α ∑
unknown

P(P1,3,known,b,unknown) . (12.23)

The full joint probabilities have already been specified, so we are done—that is, unless we
care about computation. There are 12 unknown squares; hence the summation contains
212=4096 terms. In general, the summation grows exponentially with the number of squares.

Surely, one might ask, aren’t the other squares irrelevant? How could [4,4] affect whether
[1,3] has a pit? Indeed, this intuition is roughly correct, but it needs to be made more precise.
What we really mean is that if we knew the values of all the pit variables adjacent to the
squares we care about, then pits (or their absence) in other, more distant squares could have
no further effect on our belief.

Let Frontier be the pit variables (other than the query variable) that are adjacent to visited
squares, in this case just [2,2] and [3,1]. Also, let Other be the pit variables for the other
unknown squares; in this case, there are 10 other squares, as shown in Figure 12.5(b). With
these definitions, Unknown=Frontier∪Other. The key insight given above can now be stated
as follows: the observed breezes are conditionally independent of the other variables, given
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the known, frontier, and query variables. To use this insight, we manipulate the query formula
into a form in which the breezes are conditioned on all the other variables, and then we apply
conditional independence:

P(P1,3 |known,b)

= α ∑
unknown

P(P1,3,known,b,unknown) (from Equation (12.23))

= α ∑
unknown

P(b |P1,3,known,unknown)P(P1,3,known,unknown) (product rule)

= α ∑
frontier

∑
other

P(b |known,P1,3, frontier,other)P(P1,3,known, frontier,other)

= α ∑
frontier

∑
other

P(b |known,P1,3, frontier)P(P1,3,known, frontier,other) ,

where the final step uses conditional independence: b is independent of other given known,
P1,3, and frontier. Now, the first term in this expression does not depend on the Other vari-
ables, so we can move the summation inward:

P(P1,3 |known,b)

= α ∑
frontier

P(b |known,P1,3, frontier) ∑
other

P(P1,3,known, frontier,other) .

By independence, as in Equation (12.22), the term on the right can be factored, and then the
terms can be reordered:

P(P1,3 |known,b)

= α ∑
frontier

P(b |known,P1,3, frontier) ∑
other

P(P1,3)P(known)P(frontier)P(other)

= αP(known)P(P1,3) ∑
frontier

P(b |known,P1,3, frontier)P(frontier) ∑
other

P(other)

= α′P(P1,3) ∑
frontier

P(b |known,P1,3, frontier)P(frontier) ,

where the last step folds P(known) into the normalizing constant and uses the fact that
∑other P(other) equals 1.

Now, there are just four terms in the summation over the frontier variables, P2,2 and P3,1.
The use of independence and conditional independence has completely eliminated the other
squares from consideration.

Notice that the probabilities in P(b |known,P1,3, frontier) are 1 when the breeze observa-
tions are consistent with the other variables and 0 otherwise. Thus, for each value of P1,3,
we sum over the logical models for the frontier variables that are consistent with the known
facts. (Compare with the enumeration over models in Figure 7.5 on page 233.) The models
and their associated prior probabilities—P(frontier)—are shown in Figure 12.6. We have

P(P1,3 |known,b) = α′ 〈0.2(0.04+0.16+0.16), 0.8(0.04+0.16)〉 ≈ 〈0.31,0.69〉 .

That is, [1,3] (and [3,1] by symmetry) contains a pit with roughly 31% probability. A similar
calculation, which the reader might wish to perform, shows that [2,2] contains a pit with
roughly 86% probability. The wumpus agent should definitely avoid [2,2]! Note that our
logical agent from Chapter 7 did not know that [2,2] was worse than the other squares. Logic
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Figure 12.6 Consistent models for the frontier variables, P2,2 and P3,1, showing P(frontier)
for each model: (a) three models with P1,3= true showing two or three pits, and (b) two
models with P1,3= false showing one or two pits.

can tell us that it is unknown whether there is a pit in [2, 2], but we need probability to tell us
how likely it is.

What this section has shown is that even seemingly complicated problems can be for-
mulated precisely in probability theory and solved with simple algorithms. To get efficient
solutions, independence and conditional independence relationships can be used to simplify
the summations required. These relationships often correspond to our natural understanding
of how the problem should be decomposed. In the next chapter, we develop formal represen-
tations for such relationships as well as algorithms that operate on those representations to
perform probabilistic inference efficiently.

Summary

This chapter has suggested probability theory as a suitable foundation for uncertain reasoning
and provided a gentle introduction to its use.

• Uncertainty arises because of both laziness and ignorance. It is inescapable in complex,
nondeterministic, or partially observable environments.

• Probabilities express the agent’s inability to reach a definite decision regarding the
truth of a sentence. Probabilities summarize the agent’s beliefs relative to the evidence.

• Decision theory combines the agent’s beliefs and desires, defining the best action as
the one that maximizes expected utility.

• Basic probability statements include prior or unconditional probabilities and poste-
rior or conditional probabilities over simple and complex propositions.

• The axioms of probability constrain the probabilities of logically related propositions.
An agent that violates the axioms must behave irrationally in some cases.

• The full joint probability distribution specifies the probability of each complete as-
signment of values to random variables. It is usually too large to create or use in its
explicit form, but when it is available it can be used to answer queries simply by adding
up entries for the possible worlds corresponding to the query propositions.

• Absolute independence between subsets of random variables allows the full joint dis-
tribution to be factored into smaller joint distributions, greatly reducing its complexity.
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• Bayes’ rule allows unknown probabilities to be computed from known conditional
probabilities, usually in the causal direction. Applying Bayes’ rule with many pieces of
evidence runs into the same scaling problems as does the full joint distribution.

• Conditional independence brought about by direct causal relationships in the domain
allows the full joint distribution to be factored into smaller, conditional distributions.
The naive Bayes model assumes the conditional independence of all effect variables,
given a single cause variable; its size grows linearly with the number of effects.

• A wumpus-world agent can calculate probabilities for unobserved aspects of the world,
thereby improving on the decisions of a purely logical agent. Conditional independence
makes these calculations tractable.

Bibliographical and Historical Notes

Probability theory was invented as a way of analyzing games of chance. In about 850 CE the
Indian mathematician Mahaviracarya described how to arrange a set of bets that can’t lose
(what we now call a Dutch book). In Europe, the first significant systematic analyses were
produced by Girolamo Cardano around 1565, although publication was posthumous (1663).
By that time, probability had been established as a mathematical discipline due to a series of
results from a famous correspondence between Blaise Pascal and Pierre de Fermat in 1654.
The first published textbook on probability was De Ratiociniis in Ludo Aleae (On Reasoning
in a Game of Chance) by Huygens (1657). The “laziness and ignorance” view of uncertainty
was described by John Arbuthnot in the preface of his translation of Huygens (Arbuthnot,
1692): “It is impossible for a Die, with such determin’d force and direction, not to fall on
such determin’d side, only I don’t know the force and direction which makes it fall on such
determin’d side, and therefore I call it Chance, which is nothing but the want of art.”

The connection between probability and reasoning dates back at least to the nineteenth
century: in 1819, Pierre Laplace said, “Probability theory is nothing but common sense re-
duced to calculation.” In 1850, James Maxwell said, “The true logic for this world is the
calculus of Probabilities, which takes account of the magnitude of the probability which is,
or ought to be, in a reasonable man’s mind.”

There has been endless debate over the source and status of probability numbers. The
frequentist position is that the numbers can come only from experiments: if we test 100Frequentist

people and find that 10 of them have a cavity, then we can say that the probability of a cavity
is approximately 0.1. In this view, the assertion “the probability of a cavity is 0.1” means that
0.1 is the fraction that would be observed in the limit of infinitely many samples. From any
finite sample, we can estimate the true fraction and also calculate how accurate our estimate
is likely to be.

The objectivist view is that probabilities are real aspects of the universe—propensitiesObjectivist

of objects to behave in certain ways—rather than being just descriptions of an observer’s
degree of belief. For example, the fact that a fair coin comes up heads with probability
0.5 is a propensity of the coin itself. In this view, frequentist measurements are attempts to
observe these propensities. Most physicists agree that quantum phenomena are objectively
probabilistic, but uncertainty at the macroscopic scale—e.g., in coin tossing—usually arises
from ignorance of initial conditions and does not seem consistent with the propensity view.



Bibliographical and Historical Notes 427

The subjectivist view describes probabilities as a way of characterizing an agent’s be- Subjectivist

liefs, rather than as having any external physical significance. The subjective Bayesian view
allows any self-consistent ascription of prior probabilities to propositions, but then insists on
proper Bayesian updating as evidence arrives.

Even a strict frequentist position involves subjectivity because of the reference class Reference class

problem: in trying to determine the outcome probability of a particular experiment, the fre-
quentist has to place it in a reference class of “similar” experiments with known outcome
frequencies. But what’s the right class? I. J. Good wrote, “every event in life is unique,
and every real-life probability that we estimate in practice is that of an event that has never
occurred before” (Good, 1983, p. 27).

For example, given a particular patient, a frequentist who wants to estimate the probabil-
ity of a cavity will consider a reference class of other patients who are similar in important
ways—age, symptoms, diet—and see what proportion of them had a cavity. If the dentist
considers everything that is known about the patient—hair color, weight to the nearest gram,
mother’s maiden name—then the reference class becomes empty. This has been a vexing
problem in the philosophy of science.

Pascal used probability in ways that required both the objective interpretation, as a prop-
erty of the world based on symmetry or relative frequency, and the subjective interpretation,
based on degree of belief—the former in his analyses of probabilities in games of chance, the
latter in the famous “Pascal’s wager” argument about the possible existence of God. How-
ever, Pascal did not clearly realize the distinction between these two interpretations. The
distinction was first drawn clearly by James Bernoulli (1654–1705).

Leibniz introduced the “classical” notion of probability as a proportion of enumerated,
equally probable cases, which was also used by Bernoulli, although it was brought to promi-
nence by Laplace (1816). This notion is ambiguous between the frequency interpretation and
the subjective interpretation. The cases can be thought to be equally probable either because
of a natural, physical symmetry between them, or simply because we do not have any knowl-
edge that would lead us to consider one more probable than another. The use of this latter,
subjective consideration to justify assigning equal probabilities is known as the principle
of indifference. The principle is often attributed to Laplace (1816), but he never used the Principle of

indifference
name explicitly; Keynes (1921) did. George Boole and John Venn both referred to it as the
principle of insufficient reason. Principle of

insufficient reason
The debate between objectivists and subjectivists became sharper in the 20th century.

Kolmogorov (1963), R. A. Fisher (1922), and Richard von Mises (1928) were advocates
of the relative frequency interpretation. Karl Popper’s “propensity” interpretation (1959, first
published in German in 1934) traces relative frequencies to an underlying physical symmetry.
Frank Ramsey (1931), Bruno de Finetti (1937), R. T. Cox (1946), Leonard Savage (1954),
Richard Jeffrey (1983), and E. T. Jaynes (2003) interpreted probabilities as the degrees of
belief of specific individuals. Their analyses of degree of belief were closely tied to utilities
and to behavior—specifically, to the willingness to place bets.

Rudolf Carnap offered a different interpretation of probability—not as the degree of belief
that an individual actually has, but as the degree of belief that an idealized reasoner should
have in a particular proposition a, given a particular body of evidence e. Carnap attempted
to make this notion of degree of confirmation mathematically precise, as a logical relation
between a and e. Currently it is believed that there is no unique logic of this kind; rather, any
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such logic rests on a subjective prior probability distribution whose effect is diminished as
more observations are collected.

The study of this relation was intended to constitute a mathematical discipline called
inductive logic, analogous to ordinary deductive logic (Carnap, 1948, 1950). Carnap was not
able to extend his inductive logic much beyond the propositional case, and Putnam (1963)
showed by adversarial arguments that some difficulties were inherent. More recent work by
Bacchus, Grove, Halpern, and Koller (1992) extends Carnap’s methods to first-order theories.

The first rigorously axiomatic framework for probability theory was proposed by Kol-
mogorov (1950, first published in German in 1933). Rényi (1970) later gave an axiomatic
presentation that took conditional probability, rather than absolute probability, as primitive.

In addition to de Finetti’s arguments for the validity of the axioms, Cox (1946) showed
that any system for uncertain reasoning that meets his set of assumptions is equivalent to
probability theory. This gave renewed confidence to probability fans, but others were not
convinced, objecting to the assumption that belief must be represented by a single number.
Halpern (1999) describes the assumptions and shows some gaps in Cox’s original formu-
lation. Horn (2003) shows how to patch up the difficulties. Jaynes (2003) has a similar
argument that is easier to read.

The Rev. Thomas Bayes (1702–1761) introduced the rule for reasoning about conditional
probabilities that was posthumously named after him (Bayes, 1763). Bayes only considered
the case of uniform priors; it was Laplace who independently developed the general case.
Bayesian probabilistic reasoning has been used in AI since the 1960s, especially in medical
diagnosis. It was used not only to make a diagnosis from available evidence, but also to
select further questions and tests by using the theory of information value (Section 15.6)
when available evidence was inconclusive (Gorry, 1968; Gorry et al., 1973). One system
outperformed human experts in the diagnosis of acute abdominal illnesses (de Dombal et al.,
1974). Lucas et al. (2004) provide an overview.

These early Bayesian systems suffered from a number of problems. Because they lacked
any theoretical model of the conditions they were diagnosing, they were vulnerable to unrep-
resentative data occurring in situations for which only a small sample was available (de Dom-
bal et al., 1981). Even more fundamentally, because they lacked a concise formalism (such as
the one to be described in Chapter 13) for representing and using conditional independence
information, they depended on the acquisition, storage, and processing of enormous tables of
probabilistic data. Because of these difficulties, probabilistic methods for coping with uncer-
tainty fell out of favor in AI from the 1970s to the mid-1980s. Developments since the late
1980s are described in the next chapter.

The naive Bayes model for joint distributions has been studied extensively in the pat-
tern recognition literature since the 1950s (Duda and Hart, 1973). It has also been used,
often unwittingly, in information retrieval, beginning with the work of Maron (1961). The
probabilistic foundations of this technique, described further in Exercise 12.BAYS, were elu-
cidated by Robertson and Sparck Jones (1976). Domingos and Pazzani (1997) provide an
explanation for the surprising success of naive Bayesian reasoning even in domains where
the independence assumptions are clearly violated.

There are many good introductory textbooks on probability theory, including those by
Bertsekas and Tsitsiklis (2008), Ross (2015), and Grinstead and Snell (1997). DeGroot and
Schervish (2001) offer a combined introduction to probability and statistics from a Bayesian
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standpoint, and Walpole et al. (2016) offer an introduction for scientists and engineers. Jaynes
(2003) gives a very persuasive exposition of the Bayesian approach. Billingsley (2012) and
Venkatesh (2012) provide more mathematical treatments, including all the complications with
continuous variables that we have left out. Hacking (1975) and Hald (1990) cover the early
history of the concept of probability, and Bernstein (1996) gives a popular account.



CHAPTER 13
PROBABILISTIC REASONING
In which we explain how to build efficient network models to reason under uncertainty
according to the laws of probability theory, and how to distinguish between correlation
and causality.

Chapter 12 introduced the basic elements of probability theory and noted the importance of
independence and conditional independence relationships in simplifying probabilistic repre-
sentations of the world. This chapter introduces a systematic way to represent such relation-
ships explicitly in the form of Bayesian networks. We define the syntax and semantics of
these networks and show how they can be used to capture uncertain knowledge in a natu-
ral and efficient way. We then show how probabilistic inference, although computationally
intractable in the worst case, can be done efficiently in many practical situations. We also
describe a variety of approximate inference algorithms that are often applicable when exact
inference is infeasible. Chapter 18 extends the basic ideas of Bayesian networks to more
expressive formal languages for defining probability models.

13.1 Representing Knowledge in an Uncertain Domain

In Chapter 12, we saw that the full joint probability distribution can answer any question about
the domain, but can become intractably large as the number of variables grows. Furthermore,
specifying probabilities for possible worlds one by one is unnatural and tedious.

We also saw that independence and conditional independence relationships among vari-
ables can greatly reduce the number of probabilities that need to be specified in order to
define the full joint distribution. This section introduces a data structure called a Bayesian
network1 to represent the dependencies among variables. Bayesian networks can representBayesian network

essentially any full joint probability distribution and in many cases can do so very concisely.
A Bayesian network is a directed graph in which each node is annotated with quantitative

probability information. The full specification is as follows:

1. Each node corresponds to a random variable, which may be discrete or continuous.
2. Directed links or arrows connect pairs of nodes. If there is an arrow from node X to

node Y, X is said to be a parent of Y. The graph has no directed cycles and hence is a
directed acyclic graph, or DAG.

3. Each node Xi has associated probability information θ(Xi |Parents(Xi)) that quantifies
the effect of the parents on the node using a finite number of parameters.Parameter

1 Bayesian networks, often abbreviated to “Bayes net,” were called belief networks in the 1980s and 1990s. A
causal network is a Bayes net with additional constraints on the meaning of the arrows (see Section 13.5). The
term graphical model refers to a broader class that includes Bayesian networks.
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Weather Cavity

Toothache Catch

Figure 13.1 A simple Bayesian network in which Weather is independent of the other three
variables and Toothache and Catch are conditionally independent, given Cavity.

The topology of the network—the set of nodes and links—specifies the conditional indepen-
dence relationships that hold in the domain, in a way that will be made precise shortly. The
intuitive meaning of an arrow is typically that X has a direct influence on Y, which suggests
that causes should be parents of effects. It is usually easy for a domain expert to decide what
direct influences exist in the domain—much easier, in fact, than actually specifying the prob-
abilities themselves. Once the topology of the Bayes net is laid out, we need only specify the
local probability information for each variable, in the form of a conditional distribution given
its parents. The full joint distribution for all the variables is defined by the topology and the
local probability information.

Recall the simple world described in Chapter 12, consisting of the variables Toothache,
Cavity, Catch, and Weather. We argued that Weather is independent of the other vari-
ables; furthermore, we argued that Toothache and Catch are conditionally independent, given
Cavity. These relationships are represented by the Bayes net structure shown in Figure 13.1.
Formally, the conditional independence of Toothache and Catch, given Cavity, is indicated
by the absence of a link between Toothache and Catch. Intuitively, the network represents the
fact that Cavity is a direct cause of Toothache and Catch, whereas no direct causal relationship
exists between Toothache and Catch.

Now consider the following example, which is just a little more complex. You have a new
burglar alarm installed at home. It is fairly reliable at detecting a burglary, but is occasionally
set off by minor earthquakes. (This example is due to Judea Pearl, a resident of earthquake-
prone Los Angeles.) You also have two neighbors, John and Mary, who have promised to call
you at work when they hear the alarm. John nearly always calls when he hears the alarm, but
sometimes confuses the telephone ringing with the alarm and calls then, too. Mary, on the
other hand, likes rather loud music and often misses the alarm altogether. Given the evidence
of who has or has not called, we would like to estimate the probability of a burglary.

A Bayes net for this domain appears in Figure 13.2. The network structure shows that
burglary and earthquakes directly affect the probability of the alarm’s going off, but whether
John and Mary call depends only on the alarm. The network thus represents our assumptions
that they do not perceive burglaries directly, they do not notice minor earthquakes, and they
do not confer before calling.

The local probability information attached to each node in Figure 13.2 takes the form
of a conditional probability table (CPT). (CPTs can be used only for discrete variables;

Conditional
probability table
(CPT)

other representations, including those suitable for continuous variables, are described in Sec-
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Figure 13.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

tion 13.2.) Each row in a CPT contains the conditional probability of each node value for a
conditioning case. A conditioning case is just a possible combination of values for the parentConditioning case

nodes—a miniature possible world, if you like. Each row must sum to 1, because the entries
represent an exhaustive set of cases for the variable. For Boolean variables, once you know
that the probability of a true value is p, the probability of false must be 1− p, so we often
omit the second number, as in Figure 13.2. In general, a table for a Boolean variable with k
Boolean parents contains 2k independently specifiable probabilities. A node with no parents
has only one row, representing the prior probabilities of each possible value of the variable.

Notice that the network does not have nodes corresponding to Mary’s currently listening
to loud music or to the telephone ringing and confusing John. These factors are summarized
in the uncertainty associated with the links from Alarm to JohnCalls and MaryCalls. This
shows both laziness and ignorance in operation, as explained on page 404: it would be a lot
of work to find out why those factors would be more or less likely in any particular case, and
we have no reasonable way to obtain the relevant information anyway.

The probabilities actually summarize a potentially infinite set of circumstances in which
the alarm might fail to go off (high humidity, power failure, dead battery, cut wires, a dead
mouse stuck inside the bell, etc.) or John or Mary might fail to call and report it (out to lunch,
on vacation, temporarily deaf, passing helicopter, etc.). In this way, a small agent can cope
with a very large world, at least approximately.

13.2 The Semantics of Bayesian Networks

The syntax of a Bayes net consists of a directed acyclic graph with some local probability
information attached to each node. The semantics defines how the syntax corresponds to a
joint distribution over the variables of the network.

Assume that the Bayes net contains n variables, X1, . . . ,Xn. A generic entry in the joint
distribution is then P(X1=x1 ∧ . . .∧Xn=xn), or P(x1, . . . ,xn) for short. The semantics of
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Bayes nets defines each entry in the joint distribution as follows:

P(x1, . . . ,xn) =
n

∏
i=1

θ(xi | parents(Xi)) , (13.1)

where parents(Xi) denotes the values of Parents(Xi) that appear in x1, . . . ,xn. Thus, each
entry in the joint distribution is represented by the product of the appropriate elements of the
local conditional distributions in the Bayes net.

To illustrate this, we can calculate the probability that the alarm has sounded, but neither
a burglary nor an earthquake has occurred, and both John and Mary call. We simply multiply
the relevant entries from the local conditional distributions (abbreviating the variable names):

P( j,m,a,¬b,¬e) = P( j |a)P(m |a)P(a |¬b∧¬e)P(¬b)P(¬e)

= 0.90×0.70×0.001×0.999×0.998 = 0.000628 .

Section 12.3 explained that the full joint distribution can be used to answer any query about
the domain. If a Bayes net is a representation of the joint distribution, then it too can be used
to answer any query, by summing all the relevant joint probability values, each calculated by
multiplying probabilities from the local conditional distributions. Section 13.3 explains this
in more detail, but also describes methods that are much more efficient.

So far, we have glossed over one important point: what is the meaning of the numbers
that go into the local conditional distributions θ(xi | parents(Xi))? It turns out that from Equa-
tion (13.1) we can prove that the parameters θ(xi | parents(Xi)) are exactly the conditional
probabilities P(xi | parents(Xi)) implied by the joint distribution. Remember that the condi-
tional probabilities can be computed from the joint distribution as follows:

P(xi | parents(Xi)) ≡
P(xi, parents(Xi))

P(parents(Xi))

=
∑y P(xi, parents(Xi),y)

∑x′i, yP(x′i, parents(Xi),y)
where y represents the values of all variables other than Xi and its parents. From this last line
one can prove that P(xi | parents(Xi)) = θ(xi | parents(Xi)) (Exercise 13.CPTE). Hence, we
can rewrite Equation (13.1) as

P(x1, . . . ,xn) =
n

∏
i=1

P(xi | parents(Xi)) . (13.2)

This means that when one estimates values for the local conditional distributions, they need
to be the actual conditional probabilities for the variable given its parents. So, for example,
when we specify θ(JohnCalls= true |Alarm= true)=0.90, it should be the case that about
90% of the time when the alarm sounds, John calls. The fact that each parameter of the
network has a precise meaning in terms of only a small set of variables is crucially important
for robustness and ease of specification of the models.

A method for constructing Bayesian networks

Equation (13.2) defines what a given Bayes net means. The next step is to explain how to
construct a Bayesian network in such a way that the resulting joint distribution is a good
representation of a given domain. We will now show that Equation (13.2) implies certain
conditional independence relationships that can be used to guide the knowledge engineer in
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constructing the topology of the network. First, we rewrite the entries in the joint distribution
in terms of conditional probability, using the product rule (see page 408):

P(x1, . . . ,xn) = P(xn |xn−1, . . . ,x1)P(xn−1, . . . ,x1) .

Then we repeat the process, reducing each joint probability to a conditional probability and a
joint probability on a smaller set of variables. We end up with one big product:

P(x1, . . . ,xn) = P(xn |xn−1, . . . ,x1)P(xn−1 |xn−2, . . . ,x1) · · · P(x2 |x1)P(x1)

=
n

∏
i=1

P(xi |xi−1, . . . ,x1) .

This identity is called the chain rule. It holds for any set of random variables. Comparing itChain rule

with Equation (13.2), we see that the specification of the joint distribution is equivalent to the
general assertion that, for every variable Xi in the network,

P(Xi |Xi−1, . . . ,X1) = P(Xi |Parents(Xi)) , (13.3)

provided that Parents(Xi)⊆ {Xi−1, . . . ,X1}. This last condition is satisfied by numbering the
nodes in topological order—that is, in any order consistent with the directed graph structure.Topological ordering

For example, the nodes in Figure 13.2 could be ordered B,E,A,J,M; E,B,A,M,J; and so on.
What Equation (13.3) says is that the Bayesian network is a correct representation of the

domain only if each node is conditionally independent of its other predecessors in the node
ordering, given its parents. We can satisfy this condition with this methodology:

1. Nodes: First determine the set of variables that are required to model the domain. Now
order them, {X1, . . . ,Xn}. Any order will work, but the resulting network will be more
compact if the variables are ordered such that causes precede effects.

2. Links: For i = 1 to n do:

• Choose a minimal set of parents for Xi from X1, . . . ,Xi−1, such that Equation (13.3)
is satisfied.

• For each parent insert a link from the parent to Xi.
• CPTs: Write down the conditional probability table, P(Xi|Parents(Xi)).

Intuitively, the parents of node Xi should contain all those nodes in X1, . . . , Xi−1 that directlyI
influence Xi. For example, suppose we have completed the network in Figure 13.2 except for
the choice of parents for MaryCalls. MaryCalls is certainly influenced by whether there is
a Burglary or an Earthquake, but not directly influenced. Intuitively, our knowledge of the
domain tells us that these events influence Mary’s calling behavior only through their effect
on the alarm. Also, given the state of the alarm, whether John calls has no influence on
Mary’s calling. Formally speaking, we believe that the following conditional independence
statement holds:

P(MaryCalls |JohnCalls,Alarm,Earthquake,Burglary) = P(MaryCalls |Alarm) .

Thus, Alarm will be the only parent node for MaryCalls.
Because each node is connected only to earlier nodes, this construction method guaran-

tees that the network is acyclic. Another important property of Bayes nets is that they contain
no redundant probability values. If there is no redundancy, then there is no chance for incon-
sistency: it is impossible for the knowledge engineer or domain expert to create a BayesianI
network that violates the axioms of probability.
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Compactness and node ordering

As well as being a complete and nonredundant representation of the domain, a Bayes net
can often be far more compact than the full joint distribution. This property is what makes
it feasible to handle domains with many variables. The compactness of Bayesian networks
is an example of a general property of locally structured (also called sparse) systems. In a Locally structured

Sparselocally structured system, each subcomponent interacts directly with only a bounded number
of other components, regardless of the total number of components. Local structure is usually
associated with linear rather than exponential growth in complexity.

In the case of Bayes nets, it is reasonable to suppose that in most domains each ran-
dom variable is directly influenced by at most k others, for some constant k. If we assume
n Boolean variables for simplicity, then the amount of information needed to specify each
conditional probability table will be at most 2k numbers, and the complete network can be
specified by 2k ·n numbers. In contrast, the joint distribution contains 2n numbers. To make
this concrete, suppose we have n=30 nodes, each with five parents (k=5). Then the Bayesian
network requires 960 numbers, but the full joint distribution requires over a billion.

Specifying the conditional probability tables for a fully connected network, in which
each variable has all of its predecessors as parents, requires the same amount of information
as specifying the joint distribution in tabular form. For this reason, we often leave out links
even though a slight dependency exists, because the slight gain in accuracy is not worth the
the additional complexity in the network. For example, one might object to our burglary
network on the grounds that if there is a large earthquake, then John and Mary would not call
even if they heard the alarm, because they assume that the earthquake is the cause. Whether
to add the link from Earthquake to JohnCalls and MaryCalls (and thus enlarge the tables)
depends on the importance of getting more accurate probabilities compared with the cost of
specifying the extra information.

Even in a locally structured domain, we will get a compact Bayes net only if we choose
the node ordering well. What happens if we happen to choose the wrong order? Consider
the burglary example again. Suppose we decide to add the nodes in the order MaryCalls,
JohnCalls, Alarm, Burglary, Earthquake. We then get the somewhat more complicated net-
work shown in Figure 13.3(a). The process goes as follows:

• Adding MaryCalls: No parents.
• Adding JohnCalls: If Mary calls, that probably means the alarm has gone off, which

makes it more likely that John calls. Therefore, JohnCalls needs MaryCalls as a parent.
• Adding Alarm: Clearly, if both call, it is more likely that the alarm has gone off than if

just one or neither calls, so we need both MaryCalls and JohnCalls as parents.
• Adding Burglary: If we know the alarm state, then the call from John or Mary might

give us information about our phone ringing or Mary’s music, but not about burglary:

P(Burglary |Alarm,JohnCalls,MaryCalls) = P(Burglary |Alarm) .

Hence we need just Alarm as parent.
• Adding Earthquake: If the alarm is on, it is more likely that there has been an earth-

quake. (The alarm is an earthquake detector of sorts.) But if we know that there has
been a burglary, then that explains the alarm, and the probability of an earthquake would
be only slightly above normal. Hence, we need both Alarm and Burglary as parents.
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Figure 13.3 Network structure and number of parameters depends on order of introduc-
tion. (a) The structure obtained with ordering M,J,A,B,E. (b) The structure obtained with
M,J,E,B,A. Each node is annotated with the number of parameters required; 13 in all for
(a) and 31 for (b). In Figure 13.2, only 10 parameters were required.

The resulting network has two more links than the original network in Figure 13.2 and re-
quires 13 conditional probabilities rather than 10. What’s worse, some of the links represent
tenuous relationships that require difficult and unnatural probability judgments, such as as-
sessing the probability of Earthquake, given Burglary and Alarm. This phenomenon is quite
general and is related to the distinction between causal and diagnostic models introduced
in Section 12.5.1 (see also Exercise 13.WUMD). If we stick to a causal model, we end upI
having to specify fewer numbers, and the numbers will often be easier to come up with. For
example, in the domain of medicine, it has been shown by Tversky and Kahneman (1982)
that expert physicians prefer to give probability judgments for causal rules rather than for
diagnostic ones. Section 13.5 explores the idea of causal models in more depth.

Figure 13.3(b) shows a very bad node ordering: MaryCalls, JohnCalls, Earthquake,
Burglary, Alarm. This network requires 31 distinct probabilities to be specified—exactly
the same number as the full joint distribution. It is important to realize, however, that any
of the three networks can represent exactly the same joint distribution. The two versions in
Figure 13.3 simply fail to represent all the conditional independence relationships and hence
end up specifying a lot of unnecessary numbers instead.

13.2.1 Conditional independence relations in Bayesian networks

From the semantics of Bayes nets as defined in Equation (13.2), we can derive a number of
conditional independence properties. We have already seen the property that a variable is
conditionally independent of its other predecessors, given its parents. It is also possible to
prove the more general “non-descendants” property that:

Each variable is conditionally independent of its non-descendants, given its parents.Descendant



Section 13.2 The Semantics of Bayesian Networks 437

. . .

. . .U1

X

Um

Yn

Znj

Y1

Z1j

. . .

. . .U1 Um

Yn

Znj

Y1

Z1j
X

(a) (b)

Figure 13.4 (a) A node X is conditionally independent of its non-descendants (e.g., the Zi js)
given its parents (the Uis shown in the lavender area). (b) A node X is conditionally indepen-
dent of all other nodes in the network given its Markov blanket (the lavender area).

For example, in Figure 13.2, the variable JohnCalls is independent of Burglary, Earthquake,
and MaryCalls given the value of Alarm. The definition is illustrated in Figure 13.4(a).

It turns out that the non-descendants property combined with interpretation of the net-
work parameters θ(Xi |Parents(Xi)) as conditional probabilities P(Xi |Parents(Xi)) suffices to
reconstruct the full joint distribution given in Equation (13.2). In other words, one can view
the semantics of Bayes nets in a different way: instead of defining the full joint distribution as
the product of conditional distributions, the network defines a set of conditional independence
properties. The full joint distribution can be derived from those properties.

Another important independence property is implied by the non-descendants property:

a variable is conditionally independent of all other nodes in the network, given its parents,
children, and children’s parents—that is, given its Markov blanket. Markov blanket

(Exercise 13.MARB asks you to prove this.) For example, the variable Burglary is independent
of JohnCalls and MaryCalls, given Alarm and Earthquake. This property is illustrated in Fig-
ure 13.4(b). The Markov blanket property makes possible inference algorithms that use com-
pletely local and distributed stochastic sampling processes, as explained in Section 13.4.2.

The most general conditional independence question one might ask in a Bayes net is
whether a set of nodes X is conditionally independent of another set Y, given a third set Z.
This can be determined efficiently by examining the Bayes net to see whether Z d-separates D-separation

X and Y. The process works as follows:

1. Consider just the ancestral subgraph consisting of X, Y, Z, and their ancestors. Ancestral subgraph

2. Add links between any unlinked pair of nodes that share a common child; now we have
the so-called moral graph. Moral graph

3. Replace all directed links by undirected links.
4. If Z blocks all paths between X and Y in the resulting graph, then Z d-separates X and

Y. In that case, X is conditionally independent of Y, given Z. Otherwise, the original
Bayes net does not require conditional independence.
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In brief, then, d-separation means separation in the undirected, moralized, ancestral subgraph.
Applying the definition to the burglary network in Figure 13.2, we can deduce that Burglary
and Earthquake are independent given the empty set (i.e., they are absolutely independent);
that they are not necessarily conditionally independent given Alarm; and that JohnCalls and
MaryCalls are conditionally independent given Alarm. Notice also that the Markov blanket
property follows directly from the d-separation property, since a variable’s Markov blanket
d-separates it from all other variables.

13.2.2 Efficient Representation of Conditional Distributions

Even if the maximum number of parents k is smallish, filling in the CPT for a node requires
up to O(2k) numbers and perhaps a great deal of experience with all the possible conditioning
cases. In fact, this is a worst-case scenario in which the relationship between the parents and
the child is completely arbitrary. Usually, such relationships are describable by a canonical
distribution that fits some standard pattern. In such cases, the complete table can be specifiedCanonical

distribution
just by naming the pattern and perhaps supplying a few parameters.

The simplest example is provided by deterministic nodes. A deterministic node has itsDeterministic nodes

value specified exactly by the values of its parents, with no uncertainty. The relationship
can be a logical one: for example, the relationship between the parent nodes Canadian, US,
Mexican and the child node NorthAmerican is simply that the child is the disjunction of the
parents. The relationship can also be numerical: for example, the BestPrice for a car is the
minimum of the prices at each dealer in the area; and the WaterStored in a reservoir at year’s
end is the sum of the original amount, plus the inflows (rivers, runoff, precipitation) and
minus the outflows (releases, evaporation, seepage).

Many Bayes net systems allow the user to specify deterministic functions using a general-
purpose programming language; this makes it possible to include complex elements such as
global climate models or power-grid simulators within a probabilistic model.

Another important pattern that occurs often in practice is context-specific independenceContext-specific
independence

or CSI. A conditional distribution exhibits CSI if a variable is conditionally independent of
some of its parents given certain values of others. For example, let’s suppose that the Damage
to your car occurring during a given period of time depends on the Ruggedness of your car
and whether or not an Accident occurred in that period. Clearly, if Accident is false, then the
Damage, if any, doesn’t depend on the Ruggedness of your car. (There might be vandalism
damage to the car’s paintwork or windows, but we’ll assume all cars are equally subject to
such damage.) We say that Damage is context-specifically independent of Ruggedness given
Accident= false. Bayes net systems often implement CSI using an if-then-else syntax for
specifying conditional distributions; for example, one might write

P(Damage |Ruggedness,Accident) =

if (Accident= false) then d1 else d2(Ruggedness)

where d1 and d2 represent arbitrary distributions. As with determinism, the presence of CSI in
a network may facilitate efficient inference. All of the exact inference algorithms mentioned
in Section 13.3 can be modified to take advantage of CSI to speed up computation.

Uncertain relationships can often be characterized by so-called noisy logical relation-
ships. The standard example is the noisy-OR relation, which is a generalization of the logicalNoisy-OR

OR. In propositional logic, we might say that Fever is true if and only if Cold, Flu, or Malaria
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Cold Flu Malaria P(fever | ·) P(¬fever | ·)

f f f 0.0 1.0
f f t 0.9 0.1
f t f 0.8 0.2
f t t 0.98 0.02 = 0.2×0.1
t f f 0.4 0.6
t f t 0.94 0.06 = 0.6×0.1
t t f 0.88 0.12 = 0.6×0.2
t t t 0.988 0.012 = 0.6×0.2×0.1

Figure 13.5 A complete conditional probability table for P(Fever |Cold,Flu,Malaria), as-
suming a noisy-OR model with the the three q-values shown in bold.

are true. The noisy-OR model allows for uncertainty about the ability of each parent to cause
the child to be true—the causal relationship between parent and child may be inhibited, and
so a patient could have a cold, but not exhibit a fever.

The model makes two assumptions. First, it assumes that all the possible causes are listed.
(If some are missing, we can always add a so-called leak node that covers “miscellaneous Leak node

causes.”) Second, it assumes that inhibition of each parent is independent of inhibition of any
other parents: for example, whatever inhibits Malaria from causing a fever is independent of
whatever inhibits Flu from causing a fever. Given these assumptions, Fever is false if and only
if all its true parents are inhibited, and the probability of this is the product of the inhibition
probabilities q j for each parent. Let us suppose these individual inhibition probabilities are
as follows:

qcold = P(¬fever |cold,¬flu,¬malaria) = 0.6 ,

qflu = P(¬fever |¬cold,flu,¬malaria) = 0.2 ,

qmalaria = P(¬fever |¬cold,¬flu,malaria) = 0.1 .

Then, from this information and the noisy-OR assumptions, the entire CPT can be built. The
general rule is that

P(xi | parents(Xi)) = 1− ∏
{ j:X j = true}

q j ,

where the product is taken over the parents that are set to true for that row of the CPT.
Figure 13.5 illustrates this calculation.

In general, noisy logical relationships in which a variable depends on k parents can be
described using O(k) parameters instead of O(2k) for the full conditional probability table.
This makes assessment and learning much easier. For example, the CPCS network (Prad-
han et al., 1994) uses noisy-OR and noisy-MAX distributions to model relationships among
diseases and symptoms in internal medicine. With 448 nodes and 906 links, it requires only
8,254 parameters instead of 133,931,430 for a network with full CPTs.
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13.2.3 Bayesian nets with continuous variables

Many real-world problems involve continuous quantities, such as height, mass, temperature,
and money. By definition, continuous variables have an infinite number of possible values,
so it is impossible to specify conditional probabilities explicitly for each value. One way to
handle continuous variables is with discretization—that is, dividing up the possible valuesDiscretization

into a fixed set of intervals. For example, temperatures could be divided into three categories:
(<0oC), (0oC−100oC), and (>100oC). In choosing the number of categories, there is a
tradeoff between loss of accuracy and large CPTs which can lead to slow run times.

Another approach is to define a continuous variable using one of the standard families
of probability density functions (see Appendix A). For example, a Gaussian (or normal)
distribution N (x;µ,σ2) is specified by just two parameters, the mean µ and the variance
σ2. Yet another solution—sometimes called a nonparametric representation—is to defineNonparametric

the conditional distribution implicitly with a collection of instances, each containing specific
values of the parent and child variables. We explore this approach further in Chapter 19.

A network with both discrete and continuous variables is called a hybrid Bayesian net-
work. To specify a hybrid network, we have to specify two new kinds of distributions: theHybrid Bayesian

network
conditional distribution for a continuous variable given discrete or continuous parents; and the
conditional distribution for a discrete variable given continuous parents. Consider the simple
example in Figure 13.6, in which a customer buys some fruit depending on its cost, which
depends in turn on the size of the harvest and whether the government’s subsidy scheme is op-
erating. The variable Cost is continuous and has continuous and discrete parents; the variable
Buys is discrete and has a continuous parent.

For the Cost variable, we need to specify P(Cost |Harvest,Subsidy). The discrete par-
ent is handled by enumeration—that is, by specifying both P(Cost |Harvest,subsidy) and
P(Cost |Harvest,¬subsidy). To handle Harvest, we specify how the distribution over the cost
c depends on the continuous value h of Harvest. In other words, we specify the parameters
of the cost distribution as a function of h. The most common choice is the linear–GaussianLinear–Gaussian

conditional distribution, in which the child has a Gaussian distribution whose mean µ varies
linearly with the value of the parent and whose standard deviation σ is fixed. We need two
distributions, one for subsidy and one for ¬subsidy, with different parameters:

P(c |h,subsidy) = N (c;ath+bt ,σ
2
t ) =

1
σt
√

2π
e−

1
2

(
c−(at h+bt )

σt

)2

P(c |h,¬subsidy) = N (c;a f h+b f ,σ
2
f ) =

1
σ f
√

2π
e
− 1

2

(
c−(a f h+b f )

σ f

)2

.

For this example, then, the conditional distribution for Cost is specified by naming the linear–
Gaussian distribution and providing the parameters at , bt , σt , a f , b f , and σ f . Figures 13.7(a)
and (b) show these two relationships. Notice that in each case the slope of c versus h is
negative, because cost decreases as the harvest size increases. (Of course, the assumption of
linearity implies that the cost becomes negative at some point; the linear model is reasonable
only if the harvest size is limited to a narrow range.) Figure 13.7(c) shows the distribution
P(c |h), averaging over the two possible values of Subsidy and assuming that each has prior
probability 0.5. This shows that even with very simple models, quite interesting distributions
can be represented.
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HarvestSubsidy

Buys

Cost

Figure 13.6 A simple network with discrete variables (Subsidy and Buys) and continuous
variables (Harvest and Cost).
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Figure 13.7 The graphs in (a) and (b) show the probability distribution over Cost as a func-
tion of Harvest size, with Subsidy true and false, respectively. Graph (c) shows the distribu-
tion P(Cost |Harvest), obtained by summing over the two subsidy cases.

The linear–Gaussian conditional distribution has some special properties. A network con-
taining only continuous variables with linear–Gaussian distributions has a joint distribution
that is a multivariate Gaussian distribution (see Appendix A) over all the variables (Exer-
cise 13.LGEX). Furthermore, the posterior distribution given any evidence also has this prop-
erty.2 When discrete variables are added as parents (not as children) of continuous variables,
the network defines a conditional Gaussian, or CG, distribution: given any assignment to the Conditional Gaussian

discrete variables, the distribution over the continuous variables is a multivariate Gaussian.
Now we turn to the distributions for discrete variables with continuous parents. Consider,

for example, the Buys node in Figure 13.6. It seems reasonable to assume that the customer
will buy if the cost is low and will not buy if it is high and that the probability of buying
varies smoothly in some intermediate region. In other words, the conditional distribution is
like a “soft” threshold function. One way to make soft thresholds is to use the integral of the
standard normal distribution:

Φ(x) =
∫ x

−∞

N (s;0,1)ds .

2 It follows that inference in linear–Gaussian networks takes only O(n3) time in the worst case, regardless of the
network topology. In Section 13.3, we see that inference for networks of discrete variables is NP-hard.
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Figure 13.8 (a) A normal (Gaussian) distribution for the cost threshold, centered on µ=6.0
with standard deviation σ=1.0. (b) Expit and probit models for the probability of buys given
cost, for the parameters µ=6.0 and σ=1.0.

Φ(x) is an increasing function of x, whereas the probability of buying decreases with cost, so
here we flip the function around:

P(buys |Cost=c) = 1−Φ((c−µ)/σ) ,
which means that the cost threshold occurs around µ, the width of the threshold region is pro-
portional to σ, and the probability of buying decreases as cost increases. This probit modelProbit

(pronounced “pro-bit” and short for “probability unit”) is illustrated in Figure 13.8(a). The
form can be justified by proposing that the underlying decision process has a hard threshold,
but that the precise location of the threshold is subject to random Gaussian noise.

An alternative to the probit model is the expit or inverse logit model. It uses the logisticExpit

Inverse logit function 1/(1+ e−x) to produce a soft threshold—it maps any x to a value between 0 and 1.
Logistic function Again, for our example, we flip it around to make a decreasing function; we also scale the

exponent by 4/
√

2π to match the probit’s slope at the mean:

P(buys |Cost=c) = 1− 1
1+ exp(− 4√

2π
. c−µσ )

.

This is illustrated in Figure 13.8(b). The two distributions look similar, but the logit actually
has much longer “tails.” The probit is often a better fit to real situations, but the logistic
function is sometimes easier to deal with mathematically. It is used widely in machine learn-
ing. Both models can be generalized to handle multiple continuous parents by taking a linear
combination of the parent values. This also works for discrete parents if their values are in-
tegers; for example, with k Boolean parents, each viewed as having values 0 or 1, the input
to the expit or probit distribution would be a weighted linear combination with k parameters,
yielding a model quite similar to the noisy-OR model discussed earlier.

13.2.4 Case study: Car insurance

A car insurance company receives an application from an individual to insure a specific ve-
hicle and must decide on the appropriate annual premium to charge, based on the anticipated
claims it will pay out for this applicant. The task is to build a Bayes net that captures the
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Figure 13.9 A Bayesian network for evaluating car insurance applications.

causal structure of the domain and gives an accurate, well-calibrated distribution over the
output variables given the evidence available from the application form.3 The Bayes net will
include hidden variables that are neither input nor output variables, but are essential for Hidden variable

structuring the network so that it is reasonably sparse with a manageable number of parame-
ters. The hidden variables are shaded brown in Figure 13.9.

The claims to be paid out—shaded lavender in Figure 13.9—are of three kinds: the
MedicalCost for any injuries sustained by the applicant; the LiabilityCost for lawsuits filed by
other parties against the applicant and the company; and the PropertyCost for vehicle damage
to either party and vehicle loss by theft. The application form asks for the following input
information (the light blue nodes in Figure 13.9):

• About the applicant: Age; YearsLicensed—how long since a driving license was first
obtained; DrivingRecord—some summary, perhaps based on “points,” of recent acci-
dents and traffic violations; and (for students) a GoodStudent indicator for a grade-point
average of 3.0 (B) on a 4-point scale.

• About the vehicle: the MakeModel and VehicleYear; whether it has an Airbag; and some
summary of SafetyFeatures such as anti-lock braking and collision warning.

• About the driving situation: the annual Mileage driven and how securely the vehicle is
Garaged, if at all.

3 The network shown in Figure 13.9 is not in actual use, but its structure has been vetted with insurance experts.
In practice, the information requested on application forms varies by company and jurisdiction—for example,
some ask for Gender—and the model could certainly be made more detailed and sophisticated.
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Now we need to think about how to arrange these into a causal structure. The key hidden
variables are whether or not a Theft or Accident will occur in the next time period. Obviously,
one cannot ask the applicant to predict these; they have to be inferred from the available
information and the insurer’s previous experience.

What are the causal factors leading to Theft? The MakeModel is certainly important—
some models are stolen much more often than others because there is an efficient resale
market for vehicles and parts; the CarValue also matters, because an old, beat-up, or high-
mileage vehicle has lower resale value. Moreover, a vehicle that is Garaged and has an
AntiTheft device is harder to steal. The hidden variable CarValue depends in turn on the
MakeModel, VehicleYear, and Mileage. CarValue also dictates the loss amount when a Theft
occurs, so that is one of the contributors to OwnCarCost (the other being accidents, which
we will get to shortly).

It is common in models of this type to introduce another hidden variable, SocioEcon,
the socioeconomic category of the applicant. This is thought to influence a wide range of
behaviors and characteristics. In our model, there is no direct evidence in the form of observed
income and occupation variables;4 but SocioEcon influences MakeModel and VehicleYear; it
also affects ExtraCar and GoodStudent, and depends somewhat on Age.

For any insurance company, perhaps the most important hidden variable is RiskAversion:
people who are risk-averse are good insurance risks! Age and SocioEcon affect RiskAversion,
and its “symptoms” include the applicant’s choice of whether the vehicle is Garaged and has
AntiTheft devices and SafetyFeatures.

In predicting future accidents, the key is the applicant’s future DrivingBehavior, which
is influenced by both RiskAversion and DrivingSkill; the latter in turn depends on Age and
YearsLicensed. The applicant’s past driving behavior is reflected in the DrivingRecord, which
also depends on RiskAversion and DrivingSkill as well as on YearsLicensed (because some-
one who started driving only recently may not have had time to accumulate a litany of acci-
dents and violations). In this way, DrivingRecord provides evidence about RiskAversion and
DrivingSkill, which in turn help to predict future DrivingBehavior.

We can think of DrivingBehavior as a per-mile tendency to drive in an accident-prone
way; whether an Accident actually occurs in a fixed time period depends also on the annual
Mileage and on the SafetyFeatures of the vehicle. If an Accident occurs, there are three
kinds of costs: the MedicalCost for the applicant depends on Age and Cushioning, which
depends in turn on the Ruggedness of the car and whether it has an Airbag; the LiabilityCost
(medical, pain and suffering, loss of income, etc.) for the other driver; and the PropertyCost
for the applicant and the other driver, both of which depend (in different ways) on the car’s
Ruggedness and on the applicant’s CarValue.

We have illustrated the kind of reasoning that goes into developing the topology and
hidden variables in a Bayes net. We also need to specify the ranges and the conditional distri-
butions for each variable. For the ranges, the primary decision is often whether to make the
variable discrete or continuous. For example, the Ruggedness of the vehicle could be a con-
tinuous variable between 0 and 1, or a discrete variable with range {TinCan,Normal,Tank}.

4 Some insurance companies also acquire the applicant’s credit history to help in assessing risk; this provides
considerably more information about socioeconomic category. Whenever using hidden variables of this kind, one
must be careful that they do not inadvertently become proxies for variables such as race that may not be used in
insurance decisions. Techniques for avoiding biases of this kind are described in Chapter 19.
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Continuous variables provide more precision, but they make exact inference impossible
except in a few special cases. A discrete variable with many possible values can make it te-
dious to fill in the correspondingly large conditional probability tables and makes exact infer-
ence more expensive unless the variable’s value is always observed. For example, MakeModel
in a real system would have thousands of possible values, and this causes its child CarValue
to have an enormous CPT that would have to be filled in from industry databases; but, be-
cause the MakeModel is always observed, this does not contribute to inference complexity:
in fact, the observed values for the three parents pick out exactly one relevant row of the CPT
for CarValue.

The conditional distributions in the model are given in the code repository for the book;
we provide a version with only discrete variables, for which exact inference can be per-
formed. In practice, many of the variables would be continuous and the conditional distribu-
tions would be learned from historical data on applicants and their insurance claims. We will
see how to learn Bayes net models from data in Chapter 21.

The final question is, of course, how to do inference in the network to make predictions.
We turn now to this question. For each inference method that we describe, we will evaluate
the method on the insurance net to measure the time and space requirements of the method.

13.3 Exact Inference in Bayesian Networks

The basic task for any probabilistic inference system is to compute the posterior probability
distribution for a set of query variables, given some observed event—usually, some assign- Event

ment of values to a set of evidence variables.5 To simplify the presentation, we will consider
only one query variable at a time; the algorithms can easily be extended to queries with mul-
tiple variables. (For example, we can solve the query P(U,V |e) by multiplying P(V |e) and
P(U |V,e).) We will use the notation from Chapter 12: X denotes the query variable; E de-
notes the set of evidence variables E1, . . . ,Em, and e is a particular observed event; Y denotes
the hidden (nonevidence, nonquery) variables Y1, . . . ,Y`. Thus, the complete set of variables
is {X}∪E∪Y. A typical query asks for the posterior probability distribution P(X |e).

In the burglary network, we might observe the event in which JohnCalls= true and
MaryCalls= true. We could then ask for, say, the probability that a burglary has occurred:

P(Burglary |JohnCalls= true,MaryCalls= true) = 〈0.284,0.716〉 .

In this section we discuss exact algorithms for computing posterior probabilities as well as
the complexity of this task. It turns out that the general case is intractable, so Section 13.4
covers methods for approximate inference.

13.3.1 Inference by enumeration

Chapter 12 explained that any conditional probability can be computed by summing terms
from the full joint distribution. More specifically, a query P(X |e) can be answered using
Equation (12.9), which we repeat here for convenience:

P(X |e) = αP(X ,e) = α∑
y

P(X ,e,y) .

5 Another widely studied task is finding the most probable explanation for some observed evidence. This and
other tasks are discussed in the notes at the end of the chapter.
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Now, a Bayes net gives a complete representation of the full joint distribution. More specifi-
cally, Equation (13.2) on page 433 shows that the terms P(x,e,y) in the joint distribution can
be written as products of conditional probabilities from the network. Therefore, a query canI
be answered using a Bayes net by computing sums of products of conditional probabilities
from the network.

Consider the query P(Burglary |JohnCalls= true,MaryCalls= true). The hidden vari-
ables for this query are Earthquake and Alarm. From Equation (12.9), using initial letters for
the variables to shorten the expressions, we have

P(B | j,m) = αP(B, j,m) = α∑
e

∑
a

P(B, j,m,e,a) .

The semantics of Bayes nets (Equation (13.2)) then gives us an expression in terms of CPT
entries. For simplicity, we do this just for Burglary= true:

P(b | j,m) = α∑
e

∑
a

P(b)P(e)P(a |b,e)P( j |a)P(m |a) . (13.4)

To compute this expression, we have to add four terms, each computed by multiplying five
numbers. In the worst case, where we have to sum out almost all the variables, there will be
O(2n) terms in the sum, each a product of O(n) probability values. A naive implementation
would therefore have complexity O(n2n).

This can be reduced to O(2n) by taking advantage of the nested structure of the compu-
tation. In symbolic terms, this means moving the summations inwards as far as possible in
expressions such as Equation (13.4). We can do this because not all the factors in the product
of probabilities depend on all the variables. Thus we have

P(b | j,m) = αP(b)∑
e

P(e)∑
a

P(a |b,e)P( j |a)P(m |a) . (13.5)

This expression can be evaluated by looping through the variables in order, multiplying CPT
entries as we go. For each summation, we also need to loop over the variable’s possible val-
ues. The structure of this computation is shown as a tree in Figure 13.10. Using the numbers
from Figure 13.2, we obtain P(b | j,m) = α×0.00059224. The corresponding computation
for ¬b yields α×0.0014919; hence,

P(B | j,m) = α〈0.00059224,0.0014919〉 ≈ 〈0.284,0.716〉 .
That is, the chance of a burglary, given calls from both neighbors, is about 28%.

The ENUMERATION-ASK algorithm in Figure 13.11 evaluates these expression trees us-
ing depth-first, left-to-right recursion. The algorithm is very similar in structure to the back-
tracking algorithm for solving CSPs (Figure 5.5) and the DPLL algorithm for satisfiability
(Figure 7.17). Its space complexity is only linear in the number of variables: the algorithm
sums over the full joint distribution without ever constructing it explicitly. Unfortunately, its
time complexity for a network with n Boolean variables (not counting the evidence variables)
is always O(2n)—better than the O(n2n) for the simple approach described earlier, but still
rather grim. For the insurance network in Figure 13.9, which is relatively small, exact infer-
ence using enumeration requires around 227 million arithmetic operations for a typical query
on the cost variables.

If you look carefully at the tree in Figure 13.10, however, you will see that it contains
repeated subexpressions. The products P( j |a)P(m |a) and P( j |¬a)P(m |¬a) are computed
twice, once for each value of E. The key to efficient inference in Bayes nets is avoiding such
wasted computations. The next section describes a general method for doing this.
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P(b)
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.998

P(a |b,e)
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P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)

Figure 13.10 The structure of the expression shown in Equation (13.5). The evaluation
proceeds top down, multiplying values along each path and summing at the “+” nodes. Notice
the repetition of the paths for j and m.

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayes net with variables vars

Q(X)←a distribution over X, initially empty
for each value xi of X do

Q(xi)←ENUMERATE-ALL(vars, exi )
where exi is e extended with X = xi

return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, e) returns a real number
if EMPTY?(vars) then return 1.0
V←FIRST(vars)
if V is an evidence variable with value v in e

then return P(v | parents(V )) × ENUMERATE-ALL(REST(vars), e)
else return ∑v P(v | parents(V )) × ENUMERATE-ALL(REST(vars), ev)

where ev is e extended with V = v

Figure 13.11 The enumeration algorithm for exact inference in Bayes nets.
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13.3.2 The variable elimination algorithm

The enumeration algorithm can be improved substantially by eliminating repeated calcula-
tions of the kind illustrated in Figure 13.10. The idea is simple: do the calculation once
and save the results for later use. This is a form of dynamic programming. There are sev-
eral versions of this approach; we present the variable elimination algorithm, which is theVariable elimination

simplest. Variable elimination works by evaluating expressions such as Equation (13.5) in
right-to-left order (that is, bottom up in Figure 13.10). Intermediate results are stored, and
summations over each variable are done only for those portions of the expression that depend
on the variable.

Let us illustrate this process for the burglary network. We evaluate the expression

P(B | j,m) = α P(B)︸︷︷︸
f1(B)

∑
e

P(e)︸︷︷︸
f2(E)

∑
a

P(a |B,e)︸ ︷︷ ︸
f3(A,B,E)

P( j |a)︸ ︷︷ ︸
f4(A)

P(m |a)︸ ︷︷ ︸
f5(A)

.

Notice that we have annotated each part of the expression with the name of the corresponding
factor; each factor is a matrix indexed by the values of its argument variables. For example,Factor

the factors f4(A) and f5(A) corresponding to P( j |a) and P(m |a) depend just on A because J
and M are fixed by the query. They are therefore two-element vectors:

f4(A) =
(

P( j |a)
P( j |¬a)

)
=

(
0.90
0.05

)
f5(A) =

(
P(m |a)

P(m |¬a)

)
=

(
0.70
0.01

)
.

f3(A,B,E) will be a 2×2×2 matrix, which is hard to show on the printed page. (The “first”
element is given by P(a |b,e)=0.95 and the “last” by P(¬a |¬b,¬e)=0.999.) In terms of
factors, the query expression is written as

P(B | j,m) = α f1(B)×∑
e

f2(E)×∑
a

f3(A,B,E)× f4(A)× f5(A) .

Here the “×” operator is not ordinary matrix multiplication but instead the pointwise productPointwise product

operation, to be described shortly.
The evaluation process sums out variables (right to left) from pointwise products of fac-

tors to produce new factors, eventually yielding a factor that constitutes the solution—that is,
the posterior distribution over the query variable. The steps are as follows:

• First, we sum out A from the product of f3, f4, and f5. This gives us a new 2×2 factor
f6(B,E) whose indices range over just B and E:

f6(B,E) = ∑
a

f3(A,B,E)× f4(A)× f5(A)

= (f3(a,B,E)× f4(a)× f5(a))+(f3(¬a,B,E)× f4(¬a)× f5(¬a)) .

Now we are left with the expression

P(B | j,m) = α f1(B)×∑
e

f2(E)× f6(B,E) .

• Next, we sum out E from the product of f2 and f6:

f7(B) = ∑
e

f2(E)× f6(B,E)

= f2(e)× f6(B,e)+ f2(¬e)× f6(B,¬e) .

This leaves the expression

P(B | j,m) = α f1(B)× f7(B)

which can be evaluated by taking the pointwise product and normalizing the result.
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X Y f(X ,Y ) Y Z g(Y,Z) X Y Z h(X ,Y,Z)

t t .3 t t .2 t t t .3× .2= .06
t f .7 t f .8 t t f .3× .8= .24
f t .9 f t .6 t f t .7× .6= .42
f f .1 f f .4 t f f .7× .4= .28

f t t .9× .2= .18
f t f .9× .8= .72
f f t .1× .6= .06
f f f .1× .4= .04

Figure 13.12 Illustrating pointwise multiplication: f(X ,Y )×g(Y,Z) = h(X ,Y,Z).

Examining this sequence, we see that two basic computational operations are required: point-
wise product of a pair of factors, and summing out a variable from a product of factors. The
next section describes each of these operations.

Operations on factors

The pointwise product of two factors f and g yields a new factor h whose variables are the
union of the variables in f and g and whose elements are given by the product of the corre-
sponding elements in the two factors. Suppose the two factors have variables Y1, . . . ,Yk in
common. Then we have

f(X1 . . .X j,Y1 . . .Yk)×g(Y1 . . .Yk,Z1, . . .Z`) = h(X1 . . .X j,Y1 . . .Yk,Z1 . . .Z`)

If all the variables are binary, then f and g have 2 j+k and 2k+` entries, respectively, and the
pointwise product has 2 j+k+` entries. For example, given two factors f(X ,Y ) and g(Y,Z),
the pointwise product f×g=h(X ,Y,Z) has 21+1+1=8 entries, as illustrated in Figure 13.12.
Notice that the factor resulting from a pointwise product can contain more variables than any
of the factors being multiplied and that the size of a factor is exponential in the number of
variables. This is where both space and time complexity arise in the variable elimination
algorithm.

Summing out a variable from a product of factors is done by adding up the submatrices
formed by fixing the variable to each of its values in turn. For example, to sum out X from
h(X ,Y,Z), we write

h2(Y,Z) = ∑
x

h(X ,Y,Z) = h(x,Y,Z)+h(¬x,Y,Z)

=

(
.06 .24
.42 .28

)
+

(
.18 .72
.06 .04

)
=

(
.24 .96
.48 .32

)
.

The only trick is to notice that any factor that does not depend on the variable to be summed
out can be moved outside the summation. For example, to sum out X from the product of f
and g, we can move g outside the summation:

∑
x

f(X ,Y )×g(Y,Z) = g(Y,Z)×∑
x

f(X ,Y ) .
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function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network with variables vars

factors← [ ]
for each V in ORDER(vars) do

factors← [MAKE-FACTOR(V, e)] + factors
if V is a hidden variable then factors←SUM-OUT(V , factors)

return NORMALIZE(POINTWISE-PRODUCT(factors))

Figure 13.13 The variable elimination algorithm for exact inference in Bayes nets.

This is potentially much more efficient than computing the larger pointwise product h first
and then summing X out from that.

Notice that matrices are not multiplied until we need to sum out a variable from the
accumulated product. At that point, we multiply just those matrices that include the variable
to be summed out. Given functions for pointwise product and summing out, the variable
elimination algorithm itself can be written quite simply, as shown in Figure 13.13.

Variable ordering and variable relevance

The algorithm in Figure 13.13 includes an unspecified ORDER function to choose an ordering
for the variables. Every choice of ordering yields a valid algorithm, but different orderings
cause different intermediate factors to be generated during the calculation. For example, in
the calculation shown previously, we eliminated A before E; if we do it the other way, the
calculation becomes

P(B | j,m) = α f1(B)×∑
a

f4(A)× f5(A)×∑
e

f2(E)× f3(A,B,E) ,

during which a new factor f6(A,B) will be generated.
In general, the time and space requirements of variable elimination are dominated by

the size of the largest factor constructed during the operation of the algorithm. This in turn
is determined by the order of elimination of variables and by the structure of the network.
It turns out to be intractable to determine the optimal ordering, but several good heuristics
are available. One fairly effective method is a greedy one: eliminate whichever variable
minimizes the size of the next factor to be constructed.

Let us consider one more query: P(JohnCalls |Burglary= true). As usual (see Equa-
tion (13.5)), the first step is to write out the nested summation:

P(J |b) = αP(b)∑
e

P(e)∑
a

P(a |b,e)P(J |a)∑
m

P(m |a) .

Evaluating this expression from right to left, we notice something interesting: ∑m P(m |a) is
equal to 1 by definition! Hence, there was no need to include it in the first place; the vari-
able M is irrelevant to this query. Another way of saying this is that the result of the query
P(JohnCalls |Burglary= true) is unchanged if we remove MaryCalls from the network alto-
gether. In general, we can remove any leaf node that is not a query variable or an evidence
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variable. After its removal, there may be some more leaf nodes, and these too may be irrele-
vant. Continuing this process, we eventually find that every variable that is not an ancestor J
of a query variable or evidence variable is irrelevant to the query. A variable elimination
algorithm can therefore remove all these variables before evaluating the query.

When applied to the insurance network shown in Figure 13.9, variable elimination shows
considerable improvement over the naive enumeration algorithm. Using reverse topological
order for the variables, exact inference using elimination is about 1,000 times faster than the
enumeration algorithm.

13.3.3 The complexity of exact inference

The complexity of exact inference in Bayes nets depends strongly on the structure of the
network. The burglary network of Figure 13.2 belongs to the family of networks in which
there is at most one undirected path (i.e., ignoring the direction of the arrows) between any
two nodes in the network. These are called singly connected networks or polytrees, and Singly connected

Polytreethey have a particularly nice property: The time and space complexity of exact inference in

Jpolytrees is linear in the size of the network. Here, the size is defined as the number of CPT
entries; if the number of parents of each node is bounded by a constant, then the complexity
will also be linear in the number of nodes. These results hold for any ordering consistent with
the topological ordering of the network (Exercise 13.VEEX).

For multiply connected networks, such as the insurance network in Figure 13.9, variable Multiply connected

elimination can have exponential time and space complexity in the worst case, even when the
number of parents per node is bounded. This is not surprising when one considers that be- J
cause it includes inference in propositional logic as a special case, inference in Bayes nets
is NP-hard. To prove this, we need to work out how to encode a propositional satisfiability
problem as a Bayes net, such that running inference on this net tells us whether or not the
original propositional sentences are satisfiable. (In the language of complexity theory, we
reduce satisfiability problems to Bayes net inference problems.) This turns out to be quite Reduction

straightforward. Figure 13.14 shows how to encode a particular 3-SAT problem. The propo-
sitional variables become the root variables of the network, each with prior probability 0.5.
The next layer of nodes corresponds to the clauses, with each clause variable C j connected
to the appropriate variables as parents. The conditional distribution for a clause variable is a
deterministic disjunction, with negation as needed, so that each clause variable is true if and
only if the assignment to its parents satisfies that clause. Finally, S is the conjunction of the
clause variables.

To determine if the original sentence is satisfiable, we simply evaluate P(S= true). If
the sentence is satisfiable, then there is some possible assignment to the logical variables
that makes S true; in the Bayes net, this means that there is a possible world with nonzero
probability in which the root variables have that assignment, the clause variables have value
true, and S has value true. Therefore, P(S= true)> 0 for a satisfiable sentence. Conversely,
P(S= true)=0 for an unsatisfiable sentence: all worlds with S= true have probability 0.
Hence, we can use Bayes net inference to solve 3-SAT problems; from this, we conclude that
Bayes net inference is NP-hard.

We can, in fact, do more than this. Notice that the probability of each satisfying assign-
ment is 2−n for a problem with n variables. Hence, the number of satisfying assignments
is P(S= true)/(2−n). Because computing the number of satisfying assignments for a 3-SAT
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Figure 13.14 Bayes net encoding of the 3-CNF sentence

(W ∨X ∨Y )∧ (¬W ∨Y ∨Z)∧ (X ∨Y ∨¬Z) .

problem is #P-complete (“number-P complete”), this means that Bayes net inference is #P-
hard—that is, strictly harder than NP-complete problems.

There is a close connection between the complexity of Bayes net inference and the com-
plexity of constraint satisfaction problems (CSPs). As we discussed in Chapter 5, the diffi-
culty of solving a discrete CSP is related to how “treelike” its constraint graph is. Measures
such as tree width, which bound the complexity of solving a CSP, can also be applied directly
to Bayes nets. Moreover, the variable elimination algorithm can be generalized to solve CSPs
as well as Bayes nets.

As well as reducing satisfiability problems to Bayes net inference, we can reduce Bayes
net inference to satisfiability, which allows us to take advantage of the powerful machinery
developed for SAT-solving (see Chapter 7). In this case, the reduction is to a particular
form of SAT solving called weighted model counting (WMC). Regular model countingWeighted model

counting

counts the number of satisfying assignments for a SAT expression; WMC sums the total
weight of those satisfying assignments—where, in this application, the weight is essentially
the product of the conditional probabilities for each variable assignment given its parents.
(See Exercise 13.WMCX for details.) Partly because SAT-solving technology has been so
well optimized for large-scale applications, Bayes net inference via WMC is competitive
with and sometimes superior to other exact algorithms on networks with large tree width.

13.3.4 Clustering algorithms

The variable elimination algorithm is simple and efficient for answering individual queries. If
we want to compute posterior probabilities for all the variables in a network, however, it can
be less efficient. For example, in a polytree network, one would need to issue O(n) queries
costing O(n) each, for a total of O(n2) time. Using clustering algorithms (also known asClustering

join tree algorithms), the time can be reduced to O(n). For this reason, these algorithms areJoin tree

widely used in commercial Bayes net tools.
The basic idea of clustering is to join individual nodes of the network to form cluster

nodes in such a way that the resulting network is a polytree. For example, the multiply
connected network shown in Figure 13.15(a) can be converted into a polytree by combining
the Sprinkler and Rain node into a cluster node called Sprinkler+Rain, as shown in Fig-
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Figure 13.15 (a) A multiply connected network describing Mary’s daily lawn routine: each
morning, she checks the weather; if it’s cloudy, she usually doesn’t turn on the sprinkler;
if the sprinkler is on, or if it rains during the day, the grass will be wet. Thus, Cloudy
affects WetGrass via two different causal pathways. (b) A clustered equivalent of the multiply
connected network.

ure 13.15(b). The two Boolean nodes are replaced by a meganode that takes on four possible Meganode

values: tt, t f , f t, and f f . The meganode has only one parent, the Boolean variable Cloudy,
so there are two conditioning cases. Although this example doesn’t show it, the process of
clustering often produces meganodes that share some variables.

Once the network is in polytree form, a special-purpose inference algorithm is required,
because ordinary inference methods cannot handle meganodes that share variables with each
other. Essentially, the algorithm is a form of constraint propagation (see Chapter 5) where the
constraints ensure that neighboring meganodes agree on the posterior probability of any vari-
ables that they have in common. With careful bookkeeping, this algorithm is able to compute
posterior probabilities for all the nonevidence nodes in the network in time linear in the size
of the clustered network. However, the NP-hardness of the problem has not disappeared: if a
network requires exponential time and space with variable elimination, then the CPTs in the
clustered network will necessarily be exponentially large.

13.4 Approximate Inference for Bayesian Networks

Given the intractability of exact inference in large networks, we will now consider approxi-
mate inference methods. This section describes randomized sampling algorithms, also called
Monte Carlo algorithms, that provide approximate answers whose accuracy depends on Monte Carlo

the number of samples generated. They work by generating random events based on the
probabilities in the Bayes net and counting up the different answers found in those random
events. With enough samples, we can get arbitrarily close to recovering the true probability
distribution—provided the Bayes net has no deterministic conditional distributions.



454 Chapter 13 Probabilistic Reasoning

Monte Carlo algorithms, of which simulated annealing (page 133) is an example, are used
in many branches of science to estimate quantities that are difficult to calculate exactly. In this
section, we are interested in sampling applied to the computation of posterior probabilities
in Bayes nets. We describe two families of algorithms: direct sampling and Markov chain
sampling. Several other approaches for approximate inference are mentioned in the notes at
the end of the chapter.

13.4.1 Direct sampling methods

The primitive element in any sampling algorithm is the generation of samples from a known
probability distribution. For example, an unbiased coin can be thought of as a random vari-
able Coin with values 〈heads, tails〉 and a prior distribution P(Coin) = 〈0.5,0.5〉. Sampling
from this distribution is exactly like flipping the coin: with probability 0.5 it will return heads,
and with probability 0.5 it will return tails. Given a source of random numbers r uniformly
distributed in the range [0,1], it is a simple matter to sample any distribution on a single
variable, whether discrete or continuous. This is done by constructing the cumulative distri-
bution for the variable and returning the first value whose cumulative probability exceeds r
(see Exercise 13.PRSA).

We begin with a random sampling process for a Bayes net that has no evidence associated
with it. The idea is to sample each variable in turn, in topological order. The probability
distribution from which the value is sampled is conditioned on the values already assigned to
the variable’s parents. (Because we sample in topological order, the parents are guaranteed
to have values already.) This algorithm is shown in Figure 13.16. Applying it to the network
in Figure 13.15(a) with the ordering Cloudy, Sprinkler, Rain, WetGrass, we might produce a
random event as follows:

1. Sample from P(Cloudy) = 〈0.5,0.5〉, value is true.
2. Sample from P(Sprinkler |Cloudy= true) = 〈0.1,0.9〉, value is false.
3. Sample from P(Rain |Cloudy= true) = 〈0.8,0.2〉, value is true.
4. Sample from P(WetGrass |Sprinkler= false,Rain= true) = 〈0.9,0.1〉, value is true.

In this case, PRIOR-SAMPLE returns the event [true, false, true, true].
It is easy to see that PRIOR-SAMPLE generates samples from the prior joint distribution

specified by the network. First, let SPS(x1, . . . ,xn) be the probability that a specific event is

function PRIOR-SAMPLE(bn) returns an event sampled from the prior specified by bn
inputs: bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)

x←an event with n elements
for each variable Xi in X1, . . . ,Xn do

x[i]←a random sample from P(Xi | parents(Xi))
return x

Figure 13.16 A sampling algorithm that generates events from a Bayesian network. Each
variable is sampled according to the conditional distribution given the values already sampled
for the variable’s parents.
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generated by the PRIOR-SAMPLE algorithm. Just looking at the sampling process, we have

SPS(x1 . . .xn) =
n

∏
i=1

P(xi | parents(Xi))

because each sampling step depends only on the parent values. This expression should look
familiar, because it is also the probability of the event according to the Bayesian net’s repre-
sentation of the joint distribution, as stated in Equation (13.2). That is, we have

SPS(x1 . . .xn) = P(x1 . . .xn) .

This simple fact makes it easy to answer questions by using samples.
In any sampling algorithm, the answers are computed by counting the actual samples

generated. Suppose there are N total samples produced by the PRIOR-SAMPLE algorithm,
and let NPS(x1, . . . ,xn) be the number of times the specific event x1, . . . ,xn occurs in the set
of samples. We expect this number, as a fraction of the total, to converge in the limit to its
expected value according to the sampling probability:

lim
N→∞

NPS(x1, . . . ,xn)

N
= SPS(x1, . . . ,xn) = P(x1, . . . ,xn) . (13.6)

For example, consider the event produced earlier: [true, false, true, true]. The sampling prob-
ability for this event is

SPS(true, false, true, true) = 0.5×0.9×0.8×0.9 = 0.324 .

Hence, in the limit of large N, we expect 32.4% of the samples to be of this event.
Whenever we use an approximate equality (“≈”) in what follows, we mean it in exactly

this sense—that the estimated probability becomes exact in the large-sample limit. Such an
estimate is called consistent. For example, one can produce a consistent estimate of the Consistent

probability of any partially specified event x1, . . . ,xm, where m≤ n, as follows:

P(x1, . . . ,xm)≈ NPS(x1, . . . ,xm)/N . (13.7)

That is, the probability of the event can be estimated as the fraction of all complete events
generated by the sampling process that match the partially specified event. We will use P̂
(pronounced “P-hat”) to mean an estimated probability. So, if we generate 1,000 samples
from the sprinkler network, and 511 of them have Rain= true, then the estimated probability
of rain is P̂(Rain= true)=0.511.

Rejection sampling in Bayesian networks

Rejection sampling is a general method for producing samples from a hard-to-sample distri- Rejection sampling

bution given an easy-to-sample distribution. In its simplest form, it can be used to compute
conditional probabilities—that is, to determine P(X |e). The REJECTION-SAMPLING algo-
rithm is shown in Figure 13.17. First, it generates samples from the prior distribution specified
by the network. Then, it rejects all those that do not match the evidence. Finally, the estimate
P̂(X =x |e) is obtained by counting how often X =x occurs in the remaining samples.

Let P̂(X |e) be the estimated distribution that the algorithm returns; this distribution is
computed by normalizing NPS(X ,e), the vector of sample counts for each value of X where
the sample agrees with the evidence e:

P̂(X |e) = αNPS(X ,e) =
NPS(X ,e)

NPS(e)
.
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function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network
N, the total number of samples to be generated

local variables: C, a vector of counts for each value of X, initially zero

for j = 1 to N do
x←PRIOR-SAMPLE(bn)
if x is consistent with e then

C[j]←C[j]+1 where x j is the value of X in x
return NORMALIZE(C)

Figure 13.17 The rejection-sampling algorithm for answering queries given evidence in a
Bayesian network.

From Equation (13.7), this becomes

P̂(X |e)≈ P(X ,e)
P(e)

= P(X |e) .

That is, rejection sampling produces a consistent estimate of the true probability.
Continuing with our example from Figure 13.15(a), let us assume that we wish to estimate

P(Rain |Sprinkler= true), using 100 samples. Of the 100 that we generate, suppose that 73
have Sprinkler= false and are rejected, while 27 have Sprinkler= true; of the 27, 8 have
Rain= true and 19 have Rain= false. Hence,

P(Rain |Sprinkler= true)≈ NORMALIZE(〈8,19〉) = 〈0.296,0.704〉 .
The true answer is 〈0.3,0.7〉. As more samples are collected, the estimate will converge to
the true answer. The standard deviation of the error in each probability will be proportional
to 1/

√
n, where n is the number of samples used in the estimate.

Now we know that rejection sampling converges to the correct answer, the next ques-
tion is, how fast does that happen? More precisely, how many samples are required before
we know that the resulting estimates are close to the correct answers with high probability?
Whereas the complexity of exact algorithms depends to a large extent on the topology of the
network—trees are easy, densely connected networks are hard—the complexity of rejection
sampling depends primarily on the fraction of samples that are accepted. This fraction is
exactly equal to the prior probability of the evidence, P(e). Unfortunately, for complex prob-
lems with many evidence variables, this fraction is vanishingly small. When applied to the
discrete version of the car insurance network in Figure 13.9, the fraction of samples consis-
tent with a typical evidence case sampled from the network itself is usually between one in a
thousand and one in ten thousand. Convergence is extremely slow (see Figure 13.19 below).

We expect the fraction of samples consistent with the evidence e to drop exponentially as
the number of evidence variables grows, so the procedure is unusable for complex problems.
It also has difficulties with continuous-valued evidence variables, because the probability of
producing a sample consistent with such evidence is zero (if it is really continuous-valued) or
infinitesimal (if it is merely a finite-precision floating-point number).
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Notice that rejection sampling is very similar to the estimation of conditional probabilities
in the real world. For example, to estimate the conditional probability that any humans survive
after a 1km-diameter asteroid crashes into the Earth, one can simply count how often any
humans survive after a 1km-diameter asteroid crashes into the Earth, ignoring all those days
when no such event occurs. (Here, the universe itself plays the role of the sample-generation
algorithm.) To get a decent estimate, one might need to wait for 100 such events to occur.
Obviously, this could take a long time, and that is the weakness of rejection sampling.

Importance sampling

The general statistical technique of importance sampling aims to emulate the effect of sam- Importance sampling

pling from a distribution P using samples from another distribution Q. We ensure that the
answers are correct in the limit by applying a correction factor P(x)/Q(x), also known as a
weight, to each sample x when counting up the samples.

The reason for using importance sampling in Bayes nets is simple: we would like to sam-
ple from the true posterior distribution conditioned on all the evidence, but usually this is too
hard;6 so instead, we sample from an easy distribution and apply the necessary corrections.
The reason why importance sampling works is also simple. Let the nonevidence variables be
Z. If we could sample directly from P(z |e), we could construct estimates like this:

P̂(z |e) = NP(z)
N
≈ P(z |e)

where NP(z) is the number of samples with Z=z when sampling from P. Now suppose
instead that we sample from Q(z). The estimate in this case includes the correction factors:

P̂(z |e) = NQ(z)
N

P(z |e)
Q(z)

≈ Q(z)
P(z |e)
Q(z)

= P(z |e) .

Thus, the estimate converges to the correct value regardless of which sampling distribution
Q is used. (The only technical requirement is that Q(z) should not be zero for any z where
P(z |e) is nonzero.) Intuitively, the correction factor compensates for oversampling or under-
sampling. For example, if Q(z) is much bigger than P(z |e) for some z, then there will be
many more samples of that z than there should be, but each will have a small weight, so it
works out just as if there were the right number.

As for which Q to use, we want one that is easy to sample from and as close as possible
to the true posterior P(z |e). The most common approach is called likelihood weighting (for Likelihood weighting

reasons we will see shortly). As shown in the WEIGHTED-SAMPLE function in Figure 13.18,
the algorithm fixes the values for the evidence variables E and samples all the nonevidence
variables in topological order, each conditioned on its parents. This guarantees that each
event generated is consistent with the evidence.

Let’s call the sampling distribution produced by this algorithm QWS. If the nonevidence
variables are Z={Z1, . . . ,Zl}, then we have

QWS(z) =
l

∏
i=1

P(zi | parents(Zi)) (13.8)

6 If it was easy, then we could approximate the desired probability to arbitrary accuracy with a polynomial
number of samples. It can be shown that no such polynomial-time approximation scheme can exist.
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function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X |e)
inputs: X, the query variable

e, observed values for variables E
bn, a Bayesian network specifying joint distribution P(X1, . . . ,Xn)
N, the total number of samples to be generated

local variables: W, a vector of weighted counts for each value of X, initially zero

for j = 1 to N do
x, w←WEIGHTED-SAMPLE(bn, e)
W[j]←W[j]+w where x j is the value of X in x

return NORMALIZE(W)

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight

w←1; x←an event with n elements, with values fixed from e
for i = 1 to n do

if Xi is an evidence variable with value xi j in e
then w←w× P(Xi= xi j | parents(Xi))
else x[i]←a random sample from P(Xi | parents(Xi))

return x, w

Figure 13.18 The likelihood-weighting algorithm for inference in Bayesian networks. In
WEIGHTED-SAMPLE, each nonevidence variable is sampled according to the conditional
distribution given the values already sampled for the variable’s parents, while a weight is
accumulated based on the likelihood for each evidence variable.

because each variable is sampled conditioned on its parents. In order to complete the algo-
rithm, we need to know how to compute the weight for each sample generated from QWS.
According to the general scheme for importance sampling, the weight should be

w(z) = P(z |e)/QWS(z) = αP(z,e)/QWS(z)
where the normalizing factor α=1/P(e) is the same for all samples. Now z and e together
cover all the variables in the Bayes net, so P(z,e) is just the product of all the conditional prob-
abilities (Equation (13.2) page 433); and we can write this as the product of the conditional
probabilities for the nonevidence variables times the product of the conditional probabilities
for the evidence variables:

w(z) = α
P(z,e)
QWS(z)

= α
∏

l
i=1 P(zi | parents(Zi)) ∏

m
i=1 P(ei | parents(Ei))

∏
l
i=1 P(zi | parents(Zi))

= α
m

∏
i=1

P(ei | parents(Ei)) . (13.9)

Thus the weight is the product of the conditional probabilities for the evidence variables
given their parents. (Probabilities of evidence are generally called likelihoods, hence the
name.) The weight calculation is implemented incrementally in WEIGHTED-SAMPLE, mul-
tiplying by the conditional probability each time an evidence variable is encountered. The
normalization is done at the end before the query result is returned.

Let us apply the algorithm to the network shown in Figure 13.15(a), with the query
P(Rain |Cloudy= true,WetGrass= true) and the ordering Cloudy, Sprinkler, Rain, WetGrass.
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(Any topological ordering will do.) The process goes as follows: First, the weight w is set to
1.0. Then an event is generated:

1. Cloudy is an evidence variable with value true. Therefore, we set

w← w×P(Cloudy= true) = 0.5 .

2. Sprinkler is not an evidence variable, so sample from P(Sprinkler |Cloudy= true) =
〈0.1,0.9〉; suppose this returns false.

3. Rain is not an evidence variable, so sample from P(Rain |Cloudy= true) = 〈0.8,0.2〉;
suppose this returns true.

4. WetGrass is an evidence variable with value true. Therefore, we set

w ← w×P(WetGrass= true |Sprinkler= false,Rain= true)

= 0.5×0.9 = 0.45 .

Here WEIGHTED-SAMPLE returns the event [true, false, true, true] with weight 0.45, and this
is tallied under Rain= true.

Notice that Parents(Zi) can include both nonevidence variables and evidence variables.
Unlike the prior distribution P(z), the distribution QWS pays some attention to the evidence:
the sampled values for each Zi will be influenced by evidence among Zi’s ancestors. For
example, when sampling Sprinkler the algorithm pays attention to the evidence Cloudy= true
in its parent variable. On the other hand, QWS pays less attention to the evidence than does
the true posterior distribution P(z |e), because the sampled values for each Zi ignore evidence
among Zi’s non-ancestors. For example, when sampling Sprinkler and Rain the algorithm
ignores the evidence in the child variable WetGrass= true; this means it will generate many
samples with Sprinkler= false and Rain= false despite the fact that the evidence actually
rules out this case. Those samples will have zero weight.

Because likelihood weighting uses all the samples generated, it can be much more effi-
cient than rejection sampling. It will, however, suffer a degradation in performance as the
number of evidence variables increases. This is because most samples will have very low
weights and hence the weighted estimate will be dominated by the tiny fraction of samples
that accord more than an infinitesimal likelihood to the evidence. The problem is exacerbated
if the evidence variables occur “downstream”—that is, late in the variable ordering—because
then the nonevidence variables will have no evidence in their parents and ancestors to guide
the generation of samples. This means the samples will be mere hallucinations—simulations
that bear little resemblance to the reality suggested by the evidence.

When applied to the discrete version of the car insurance network in Figure 13.9, like-
lihood weighting is considerably more efficient than rejection sampling (see Figure 13.19).
The insurance network is a relatively benign case for likelihood weighting because much of
the evidence is “upstream” and the query variables are leaf nodes of the network.

13.4.2 Inference by Markov chain simulation

Markov chain Monte Carlo (MCMC) algorithms work differently from rejection sampling Markov chain Monte
Carlo

and likelihood weighting. Instead of generating each sample from scratch, MCMC algorithms
generate a sample by making a random change to the preceding sample. Think of an MCMC
algorithm as being in a particular current state that specifies a value for every variable and
generating a next state by making random changes to the current state.
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Figure 13.19 Performance of rejection sampling and likelihood weighting on the insurance
network. The x-axis shows the number of samples generated and the y-axis shows the maxi-
mum absolute error in any of the probability values for a query on PropertyCost.

The term Markov chain refers to a random process that generates a sequence of states.Markov chain

(Markov chains also figure prominently in Chapters 14 and 16; the simulated annealing algo-
rithm in Chapter 4 and the WALKSAT algorithm in Chapter 7 are also members of the MCMC
family.) We begin by describing a particular form of MCMC called Gibbs sampling, whichGibbs sampling

is especially well suited for Bayes nets. We then describe the more general Metropolis–
Hastings algorithm, which allows much greater flexibility in generating samples.Metropolis–Hastings

Gibbs sampling in Bayesian networks

The Gibbs sampling algorithm for Bayesian networks starts with an arbitrary state (with the
evidence variables fixed at their observed values) and generates a next state by randomly
sampling a value for one of the nonevidence variables Xi. Recall from page 437 that Xi is in-
dependent of all other variables given its Markov blanket (its parents, children, and children’s
other parents); therefore, Gibbs sampling for Xi means sampling conditioned on the current
values of the variables in its Markov blanket. The algorithm wanders randomly around the
state space—the space of possible complete assignments—flipping one variable at a time, but
keeping the evidence variables fixed. The complete algorithm is shown in Figure 13.20.

Consider the query P(Rain |Sprinkler= true,WetGrass= true) for the network in Fig-
ure 13.15(a). The evidence variables Sprinkler and WetGrass are fixed to their observed
values (both true), and the nonevidence variables Cloudy and Rain are initialized randomly
to, say, true and false respectively. Thus, the initial state is [true, true, false, true], where we
have marked the fixed evidence values in bold. Now the nonevidence variables Zi are sam-
pled repeatedly in some random order according to a probability distribution ρ(i) for choosing
variables. For example:

1. Cloudy is chosen and then sampled, given the current values of its Markov blanket: in
this case, we sample from P(Cloudy |Sprinkler= true,Rain= false). Suppose the result
is Cloudy= false. Then the new current state is [false, true, false, true].
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function GIBBS-ASK(X, e, bn, N) returns an estimate of P(X |e)
local variables: C, a vector of counts for each value of X, initially zero

Z, the nonevidence variables in bn
x, the current state of the network, initialized from e

initialize x with random values for the variables in Z
for k = 1 to N do

choose any variable Zi from Z according to any distribution ρ(i)
set the value of Zi in x by sampling from P(Zi |mb(Zi))
C[j]←C[j]+1 where x j is the value of X in x

return NORMALIZE(C)

Figure 13.20 The Gibbs sampling algorithm for approximate inference in Bayes nets; this
version chooses variables at random, but cycling through the variables but also works.

2. Rain is chosen and then sampled, given the current values of its Markov blanket: in
this case, we sample from P(Rain |Cloudy= false,Sprinkler= true,WetGrass= true).
Suppose this yields Rain= true. The new current state is [false, true, true, true].

The one remaining detail concerns the method of calculating the Markov blanket distribu-
tion P(Xi |mb(Xi)), where mb(Xi) denotes the values of the variables in Xi’s Markov blan-
ket, MB(Xi). Fortunately, this does not involve any complex inference. As shown in Exer-
cise 13.MARB, the distribution is given by

P(xi |mb(Xi)) = αP(xi | parents(Xi)) ∏
Yj∈Children(Xi)

P(y j | parents(Yj)) . (13.10)

In other words, for each value xi, the probability is given by multiplying probabilities from the
CPTs of Xi and its children. For example, in the first sampling step shown above, we sampled
from P(Cloudy |Sprinkler= true,Rain= false). By Equation (13.10), and abbreviating the
variable names, we have

P(c |s,¬r) = αP(c)P(s |c)P(¬r |c) = α0.5 ·0.1 ·0.2
P(¬c |s,¬r) = αP(¬c)P(s |¬c)P(¬r |¬c) = α0.5 ·0.5 ·0.8 ,

so the sampling distribution is α〈0.001,0.020〉 ≈ 〈0.048,0.952〉.
Figure 13.21(a) shows the complete Markov chain for the case where variables are chosen

uniformly, i.e., ρ(Cloudy)=ρ(Rain)=0.5. The algorithm is simply wandering around in this
graph, following links with the stated probabilities. Each state visited during this process is
a sample that contributes to the estimate for the query variable Rain. If the process visits 20
states where Rain is true and 60 states where Rain is false, then the answer to the query is
NORMALIZE(〈20,60〉) = 〈0.25,0.75〉.

Analysis of Markov chains

We have said that Gibbs sampling works by wandering randomly around the state space to
generate samples. To explain why Gibbs sampling works correctly—that is, why its estimates
converge to correct values in the limit—we will need some careful analysis. (This section is
somewhat mathematical and can be skipped on first reading.)
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Figure 13.21 (a) The states and transition probabilities of the Markov chain for the query
P(Rain |Sprinkler= true,WetGrass= true). Note the self-loops: the state stays the same
when either variable is chosen and then resamples the same value it already has. (b) The
transition probabilities when the CPT for Rain constrains it to have the same value as Cloudy.

We begin with some of the basic concepts for analyzing Markov chains in general. Any
such chain is defined by its initial state and its transition kernel k(x→ x′)—the probabilityTransition kernel

of a transition to state x′ starting from state x. Now suppose that we run the Markov chain
for t steps, and let πt(x) be the probability that the system is in state x at time t. Similarly,
let πt+1(x′) be the probability of being in state x′ at time t +1. Given πt(x), we can calculate
πt+1(x′) by summing, for all states x the system could be in at time t, the probability of being
in x times the probability of making the transition to x′:

πt+1(x′) = ∑
x
πt(x)k(x→ x′) .

We say that the chain has reached its stationary distribution if πt =πt+1. Let us call thisStationary
distribution

stationary distribution π; its defining equation is therefore

π(x′) = ∑
x
π(x)k(x→ x′) for all x′ . (13.11)

Provided the transition kernel k is ergodic—that is, every state is reachable from every otherErgodic

and there are no strictly periodic cycles—there is exactly one distribution π satisfying this
equation for any given k.

Equation (13.11) can be read as saying that the expected “outflow” from each state (i.e.,
its current “population”) is equal to the expected “inflow” from all the states. One obvious
way to satisfy this relationship is if the expected flow between any pair of states is the same
in both directions; that is,

π(x)k(x→ x′) = π(x′)k(x′→ x) for all x, x′ . (13.12)

When these equations hold, we say that k(x→ x′) is in detailed balance with π(x). OneDetailed balance

special case is the self-loop x = x′, i.e., a transition from a state to itself. In that case, the
detailed balance condition becomes π(x)k(x→ x)=π(x)k(x→ x) which is of course trivially
true for any stationary distribution π and any transition kernel k.
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We can show that detailed balance implies stationarity simply by summing over x in
Equation (13.12). We have

∑
x
π(x)k(x→ x′) = ∑

x
π(x′)k(x′→ x) = π(x′)∑

x
k(x′→ x) = π(x′)

where the last step follows because a transition from x′ is guaranteed to occur.

Why Gibbs sampling works

We will now show that Gibbs sampling returns consistent estimates for posterior probabil-
ities. The basic claim is straightforward: the stationary distribution of the Gibbs sampling J
process is exactly the posterior distribution for the nonevidence variables conditioned on
the evidence. This remarkable property follows from the specific way in which the Gibbs
sampling process moves from state to state.

The general definition of Gibbs sampling is that a variable Xi is chosen and then sam-
pled conditionally on the current values of all the other variables. (When applied specif-
ically to Bayes nets, we simply use the additional fact that sampling conditionally on all
variables is equivalent to sampling conditionally on the variable’s Markov blanket, as shown
on page 437.) We will use the notation Xi to refer to these other variables (except the evidence
variables); their values in the current state are xi.

To write down the transition kernel k(x→ x′) for Gibbs sampling, there are three cases
to consider:

1. The states x and x′ differ in two or more variables. In that case, k(x→ x′)=0 because
Gibbs sampling changes only a single variable.

2. The states differ in exactly one variable Xi that changes its value from xi to x′i. The
probability of such an occurrence is

k(x→ x′) = k((xi,xi)→ (x′i,xi)) = ρ(i)P(x′i |xi) . (13.13)

3. The states are the same: x = x′. In that case, any variable could be chosen but then the
sampling process produces the same value the variable already has. The probability of
such an occurrence is

k(x→ x) = ∑
i
ρ(i)k((xi,xi)→ (xi,xi)) = ∑

i
ρ(i)P(xi |xi) .

Now we show that this general definition of Gibbs sampling satisfies the detailed balance
equation with a stationary distribution equal to P(x |e), the true posterior distribution on
the nonevidence variables. That is, we show that π(x)k(x→ x′)=π(x′)k(x′ → x) where
π(x)=P(x |e), for all states x and x′.

For the first and third cases given above, detailed balance is always satisfied: if two states
differ in two or more variables, the transition probability in both directions is zero. If x 6= x′
then from Equation (13.13), we have

π(x)k(x→ x′) = P(x |e)ρ(i)P(x′i |xi,e) = ρ(i)P(xi,xi |e)P(x′i |xi,e)
= ρ(i)P(xi |xi,e)P(xi |e)P(x′i |xi,e) (using the chain rule on the first term)

= ρ(i)P(xi |xi,e)P(x′i,xi |e) (reverse chain rule on last two terms)

= π(x′)k(x′→ x) .
The final piece of the puzzle is the ergodicity of the chain—that is, every state must be reach-
able from every other and there are no periodic cycles. Both conditions are satisfied provided
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Figure 13.22 Performance of Gibbs sampling compared to likelihood weighting on the car
insurance network: (a) for the standard query on PropertyCost, and (b) for the case where
the output variables are observed and Age is the query variable.

the CPTs do not contain probabilities of 0 or 1. Reachability comes from the fact that we can
convert one state into another by changing one variable at a time, and the absence of periodic
cycles comes from the fact that every state has a self-loop with nonzero probability. Hence,
under the stated conditions, k is ergodic, which means that the samples generated by Gibbs
sampling will eventually be drawn from the true posterior distribution.

Complexity of Gibbs sampling

First, the good news: each Gibbs sampling step involves calculating the Markov blanket dis-
tribution for the chosen variable Xi, which requires a number of multiplications proportional
to the number of Xi’s children and the size of Xi’s range. This is important because it means
that the work required to generate each sample is independent of the size of the network.I

Now, the not necessarily bad news: the complexity of Gibbs sampling is much harder
to analyze than that of rejection sampling and likelihood weighting. The first thing to notice
is that Gibbs sampling, unlike likelihood weighting, does pay attention to downstream evi-
dence. Information propagates from evidence nodes in all directions: first, any neighbors of
the evidence nodes sample values that reflect the evidence in those nodes; then their neigh-
bors, and so on. Thus, we expect Gibbs sampling to outperform likelihood weighting when
evidence is mostly downstream; and indeed, this is borne out in Figure 13.22.

The rate of convergence for Gibbs sampling—the mixing rate of the Markov chain de-Mixing rate

fined by the algorithm—depends strongly on the quantitative properties of the conditional
distributions in the network. To see this, consider what happens in Figure 13.15(a) as the
CPT for Rain becomes deterministic: it rains if and only if it is cloudy. In that case, the true
posterior distribution for the query P(Rain |sprinkler,wetGrass) is roughly 〈0.18,0.82〉 but
Gibbs sampling will never reach this value. The problem is that the only two joint states
for Cloudy and Rain that have non-zero probability are [true, true] and [false, false]. Starting
in [true, true], the chain can never reach [false, false] because transitions to the intermediate
states have probability zero (see Figure 13.21(b)). So, if the process starts in [true, true] it

news:each
news:the
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always reports a posterior probability for the query of 〈1.0,0.0〉; if it starts in [false, false] it
always reports a posterior probability for the query of 〈0.0,1.0〉.

Gibbs sampling fails in this case because the deterministic relationship between Cloudy
and Rain breaks the property of ergodicity that is required for convergence. If, however,
we make the relationship nearly deterministic, then convergence is restored, but happens
arbitrarily slowly. There are several fixes that help MCMC algorithms mix more quickly.
One is block sampling: sampling multiple variables simultaneously. In this case, we could Block sampling

sample Cloudy and Rain jointly, conditioned on their combined Markov blanket. Another is
to generate next states more intelligently, as we will see in the next section.

Metropolis–Hastings sampling

The Metropolis–Hastings or MH sampling method is perhaps the most broadly applicable
MCMC algorithm. Like Gibbs sampling, MH is designed to generate samples x (eventually)
according to target probabilities π(x); in the case of inference in Bayesian networks, we want
π(x)=P(x |e). Like simulated annealing (page 133), MH has two stages in each iteration of
the sampling process:

1. Sample a new state x′ from a proposal distribution q(x′ |x), given the current state x. Proposal distribution

2. Probabilistically accept or reject x′ according to the acceptance probability Acceptance
probability

a(x′ |x) = min
(

1,
π(x′)q(x |x′)
π(x)q(x′ |x)

)
.

If the proposal is rejected, the state remains at x.

The transition kernel for MH consists of this two-step process. Note that if the proposal is
rejected, the chain stays in the same state.

The proposal distribution is responsible, as its name suggests, for proposing a next state
x′. For example, q(x′ |x) could be defined as follows:

• With probability 0.95, perform a Gibbs sampling step to generate x′.
• Otherwise, generate x′ by running the WEIGHTED-SAMPLE algorithm from page 458.

This proposal distribution causes MH to do about 20 steps of Gibbs sampling then “restarts”
the process from a new state (assuming it is accepted) that is generated from scratch. By this
stratagem, it gets around the problem of Gibbs sampling getting stuck in one part of the state
space and being unable to reach the other parts.

You might ask how on Earth we know that MH with such a weird proposal actually con-
verges to the right answer. The remarkable thing about MH is that convergence to the correct J
stationary distribution is guaranteed for any proposal distribution, provided the resulting
transition kernel is ergodic.

This property follows from the way the acceptance probability is defined. As with Gibbs
sampling, the self-loop with x=x′ automatically satisfies detailed balance, so we focus on
the case where x 6= x′. This can occur only if the proposal is accepted. The probability of
such a transition occurring is

k(x→ x′) = q(x′ |x)a(x′ |x) .
As with Gibbs sampling, proving detailed balance means showing that the flow from x to
x′, π(x)k(x→ x′), matches the flow from x′ to x, π(x′)k(x′ → x). After plugging in the
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expression above for k(x→ x′), the proof is quite straightforward:

π(x)q(x′ |x)a(x′ |x) = π(x)q(x′ |x)min
(

1,
π(x′)q(x |x′)
π(x)q(x′ |x)

)
(definition of a(· | ·))

= min
(
π(x)q(x′ |x),π(x′)q(x |x′)

)
(multiplying in)

= π(x′)q(x |x′)min
(
π(x)q(x′ |x)
π(x′)q(x |x′)

,1
)

(dividing out)

= π(x′)q(x |x′)a(x |x′) .

Mathematical properties aside, the important part of MH to focus on is the ratio π(x′)/π(x)
in the acceptance probability. This says that if a next state is proposed that is more likely
than the current state, it will definitely be accepted. (We are overlooking, for now, the term
q(x |x′)/q(x′ |x), which is there to ensure detailed balance and is, in many state spaces, equal
to 1 because of symmetry.) If the proposed state is less likely than the current state, its
probability of being accepted drops proportionally.

Thus, one guideline for designing proposal distributions is to make sure the new states
being proposed are reasonably likely. Gibbs sampling does this automatically: it proposes
from the Gibbs distribution P(Xi |xi), which means that the probability of generating any
particular new value for Xi is directly proportional to its probability. (Exercise 13.GIBM asks
you to show that Gibbs is a special case of MH with an acceptance probability of 1.)

Another guideline is to make sure that the chain mixes well, which means sometimes
proposing large moves to distant parts of the state space. In the example given above, the
occasional use of WEIGHTED-SAMPLE to restart the chain in a new state serves this purpose.

Besides near-complete freedom in designing proposal distributions, MH has two addi-
tional properties that make it practical. First, the posterior probability π(x)=P(x |e) appears
in the acceptance calculation only in the form of a ratio π(x′)/π(x), which is very fortunate.
Computing P(x |e) directly is the very computation we’re trying to approximate using MH,
so it wouldn’t make sense to do it for each sample! Instead, we use the following trick:

π(x′)
π(x)

=
P(x′ |e)
P(x |e)

=
P(x′,e)

P(e)
P(e)

P(x,e)
=

P(x′,e)
P(x,e)

.

The terms in this ratio are full joint probabilities, i.e., products of conditional probabilities
in the Bayes net. The second useful property of this ratio is that as long as the proposal
distribution makes only local changes in x to produce x′, only a small number of terms in
the product of conditional probabilities will be different. All of the conditional probabilities
involving variables whose values are unchanged will cancel out in the ratio. So, as with Gibbs
sampling, the work required to generate each sample is independent of the size of the network
as long as the state changes are local.

13.4.3 Compiling approximate inference

The sampling algorithms in Figures 13.17, 13.18, and 13.20 share a common property: they
operate on a Bayes net represented as a data structure. This seems quite natural: after all, a
Bayes net is a directed acyclic graph, so how else could it be represented? The problem with
this approach is that the operations required to access the data structure—for example to find
a node’s parents—are repeated thousands or millions of times as the sampling algorithm runs,
and all of these computations are completely unnecessary.
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The network’s structure and conditional probabilities remain fixed throughout the com-
putation, so there is an opportunity to compile the network into model-specific inference code
that carries out just the inference computations needed for that specific network. (In case this
sounds familiar, it is the same idea used in the compilation of logic programs in Chapter 9.)
For example, suppose we want to Gibbs-sample the Earthquake variable in the burglary net-
work of Figure 13.2. According to the GIBBS-ASK algorithm in Figure 13.20, we need to
perform the following computation:

set the value of Earthquake in x by sampling from P(Earthquake |mb(Earthquake))

where the latter distribution is computed according to Equation (13.10), repeated here:

P(xi |mb(Xi)) = αP(xi | parents(Xi)) ∏
Yj∈Children(Xi)

P(y j | parents(Yj)) .

This computation, in turn, requires looking up the parents and children of Earthquake in
the Bayes net structure; looking up their current values; using those values to index into
the corresponding CPTs (which also have to be found from the Bayes net); and multiplying
together all the appropriate rows from those CPTs to form a new distribution from which to
sample. Finally, as noted on page 454, the sampling step itself has to construct the cumulative
version of the discrete distribution and then find the value therein that corresponds to a random
number sampled from [0,1].

If, instead, we compile the network, we obtain model-specific sampling code for the
Earthquake variable that looks like this:

r←a uniform random sample from [0,1]
if Alarm= true

then if Burglary= true
then return [r < 0.0020212]
else return [r < 0.36755]

else if Burglary= true
then return [r < 0.0016672]
else return [r < 0.0014222]

Here, Bayes net variables Alarm, Burglary, and so on become ordinary program variables
with values that comprise the current state of the Markov chain. The numerical threshold
expressions evaluate to true or false and represent the precomputed Gibbs distributions for
each combination of values in the Markov blanket of Earthquake. The code is not especially
pretty—typically, it will be roughly as large as the Bayes net itself—but it is incredibly effi-
cient. Compared to GIBBS-ASK, the compiled code will typically be 2–3 orders of magnitude
faster. It can perform tens of millions of sampling steps per second on an ordinary laptop,
and its speed is limited largely by the cost of generating random numbers.

13.5 Causal Networks

We have discussed several advantages of keeping node ordering in Bayes nets compatible
with the direction of causation. In particular, we noted the ease with which conditional prob-
abilities can be assessed if such ordering is maintained, as well as the compactness of the
resultant network structure. We noted however that, in principle, any node ordering permits
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a consistent construction of the network to represent the joint distribution function. This
was demonstrated in Figure 13.3, where changing the node ordering produced networks that
were bushier and a lot less natural than the original network in Figure 13.2 but enabled us,
nevertheless, to represent the same distribution on all variables.

This section describes causal networks, a restricted class of Bayesian networks that for-Causal network

bids all but causally compatible orderings. We will explore how to construct such networks,
what is gained by such construction, and how to leverage this gain in decision-making tasks.

Consider the simplest Bayesian network imaginable, a single arrow, Fire→ Smoke. It
tells us that variables Fire and Smoke may be dependent, so one needs to specify the prior
P(Fire) and the conditional probability P(Smoke |Fire) in order to specify the joint distri-
bution P(Fire,Smoke). However, this distribution can be represented equally well by the
reverse arrow Fire← Smoke, using the appropriate P(Smoke) and P(Fire |Smoke) computed
from Bayes’ rule. The idea that these two networks are equivalent, hence convey the same
information, evokes discomfort and even resistance in most people. How could they convey
the same information when we know that Fire causes Smoke and not the other way around?

In other words, we know from our experience and scientific understanding that clearing
the smoke would not stop the fire and extinguishing the fire will stop the smoke. We ex-
pect therefore to represent this asymmetry through the directionality of the arrow between
them. But if arrow reversal only makes things equivalent, how can we hope to represent this
important information formally?

Causal Bayesian networks, sometimes called Causal Diagrams, were devised to permit
us to represent causal asymmetries and to leverage the asymmetries towards reasoning with
causal information. The idea is to decide on arrow directionality by considerations that go
beyond probabilistic dependence and invoke a totally different type of judgment. Instead of
asking an expert whether Smoke and Fire are probabilistically dependent, as we do in ordinary
Bayesian networks, we now ask which responds to which, Smoke to Fire or Fire to Smoke?

This may sound a bit mystical, but it can be made precise through the notion of “as-
signment,” similar to the assignment operator in programming languages. If nature assigns a
value to Smoke on the basis of what nature learns about Fire, we draw an arrow from Fire to
Smoke. More importantly, if we judge that nature assigns Fire a truth value that depends on
other variables, not Smoke, we refrain from drawing the arrow Fire← Smoke. In other words,
the value xi of each variable Xi is determined by an equation xi= fi(OtherVariables), and an
arrow X j→ Xi is drawn if and only if X j is one of the arguments of fi.

The equation xi= fi(·) is called a structural equation, because it describes a stableStructural equation

mechanism in nature which, unlike the probabilities that quantify a Bayesian network, re-
mains invariant to measurements and local changes in the environment.

To appreciate this stability to local changes, consider Figure 13.23(a), which depicts a
slightly modified version of the lawn sprinkler story of Figure 13.15. To represent a disabled
sprinkler, for example, we simply delete from the network all links incident to the Sprinkler
node. To represent a lawn covered by a tent, we simply delete the arrow Rain→WetGrass.
Any local reconfiguration of the mechanisms in the environment can thus be translated, with
only minor modification, into an isomorphic reconfiguration of the network topology. A much
more elaborate transformation would be required had the network been constructed contrary
to causal ordering. This local stability is particularly important for representing actions or
interventions, our next topic of discussion.
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Figure 13.23 (a) A causal Bayesian network representing cause–effect relations among five
variables. (b) The network after performing the action “turn Sprinkler on.”

13.5.1 Representing actions: The do-operator

Consider again the Sprinkler story of Figure 13.23(a). According to the standard semantics of
Bayes nets, the joint distribution of the five variables is given by a product of five conditional
distributions:

P(c,r,s,w,g) = P(c) P(r |c) P(s |c) P(w |r,s) P(g |w) (13.14)

where we have abbreviated each variable name by its first letter. As a system of structural
equations, the model looks like this:

C = fC(UC)

R = fR(C,UR)

S = fS(C,US) (13.15)

W = fW (R,S,UW )

G = fG(W,UG)

where, without loss of generality, fC can be the identity function. The U-variables in these
equations represent unmodeled variables, also called error terms or disturbances, that per- Unmodeled variable

turb the functional relationship between each variable and its parents. For example, UW may
represent another potential source of wetness, in addition to Sprinkler and Rain—perhaps
MorningDew or FirefightingHelicopter.

If all the U-variables are mutually independent random variables with suitably chosen
priors, the joint distribution in Equation (13.14) can be represented exactly by the structural
equations in Equation (13.15). Thus, a system of stochastic relationships can be captured
by a system of deterministic relationships, each of which is affected by an exogenous dis-
turbance. However, the system of structural equations gives us more than that: it allows us
to predict how interventions will affect the operation of the system and hence the observable
consequences of those interventions. This is not possible given just the joint distribution.
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For example, suppose we turn the sprinkler on—that is, if we (who are, by definition,
not part of the causal processes described by the model) intervene to impose the condition
Sprinkler= true. In the notation of the do-calculus, which is a key part of the theory of causalDo-calculus

networks, this is written as do(Sprinkler= true). Once done, this means that the sprinkler
variable is no longer dependent on whether it’s a cloudy day. We therefore delete the equation
S= fS(C,US) from the system of structural equations and replace it with S= true, giving us

C = fC(UC)

R = fR(C,UR)

S = true (13.16)

W = fW (R,S,UW )

G = fG(W,UG) .

From these equations, we obtain the new joint distribution for the remaining variables condi-
tioned on do(Sprinkler= true):

P(c,r,w,g |do(S= true)) = P(c) P(r |c) P(w |r,s= true) P(g |w) (13.17)
This corresponds to the “mutilated” network in Figure 13.23(b). From Equation (13.17), we
see that the only variables whose probabilities change are WetGrass and GreenerGrass, that
is, the descendants of the manipulated variable Sprinkler.

Note the difference between conditioning on the action do(Sprinkler= true) in the origi-
nal network and conditioning on the observation Sprinkler= true. The original network tells
us that the sprinkler is less likely to be on when the weather is cloudy, so if we observe
the sprinkler to be on, that reduces the probability that the weather is cloudy. But common
sense tells us that if we (operating from outside the world, so to speak) reach in and turn
on the sprinkler, that doesn’t affect the weather or provide new information about what the
weather is like that day. As shown in Figure 13.23(b), intervening breaks the normal causal
link between the weather and the sprinkler. This prevents any influence flowing backward
from Sprinkler to Cloudy. Thus, conditioning on do(Sprinkler= true) in the original graph is
equivalent to conditioning on Sprinkler= true in the mutilated graph.

A similar approach can be taken to analyze the effect of do(X j =x jk) in a general causal
network with variables X1, . . . ,Xn. The network corresponds to a joint distribution defined in
the usual way (see Equation (13.2)):

P(x1, . . . ,xn) =
n

∏
i=1

P(xi | parents(Xi)) . (13.18)

After applying do(X j =x jk), the new joint distribution Px jk simply omits the factor for X j:

Px jk(x1, . . . ,xn) =

{
∏i 6= j P(xi | parents(Xi)) =

P(x1,...,xn)
P(x j | parents(X j))

if x j =x jk

0 if x j 6= x jk
(13.19)

This follows from the fact that setting X j to a particular value x jk corresponds to deleting
the equation X j = f j(Parents(X j),U j) from the system of structural equations and replacing it
with X j =x jk. With a bit more algebraic manipulation, one can derive a formula for the effect
of setting variable X j on any other variable Xi:

P(Xi = xi |do(X j =x jk)) = Px jk(Xi=xi)

= ∑
parents(X j)

P(xi |x jk, parents(X j))P(parents(X j)) . (13.20)
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The probability terms in the sum are obtained by computation on the original network, by
any of the standard inference algorithms. This equation is known as an adjustment formula; Adjustment formula

it is a probability-weighted average of the influence of X j and its parents on Xi, where the
weights are the priors on the parent values. The effects of intervening on multiple variables
can be computed by imagining that the individual interventions happen in sequence, each one
in turn deleting the causal influences on a variable and yielding a new, mutilated model.

13.5.2 The back-door criterion

The ability to predict the effect of any intervention is a remarkable result, but it does re-
quire accurate knowledge of the necessary conditional distributions in the model, particularly
P(x j | parents(X j)). In many real-world settings, however, this is too much to ask. For exam-
ple, we know that “genetic factors” play a role in obesity, but we do not know which genes
play a role or the precise nature of their effects. Even in the simple story of Mary’s sprin-
kler decisions (Figure 13.15, which also applies in Figure 13.23(a)), we might know that she
checks the weather before deciding whether to turn on the sprinkler, but we might not know
how she makes her decision.

The specific reason this is problematic in this instance is that we would like to predict
the effect of turning on the sprinkler on a downstream variable such as GreenerGrass, but the
adjustment formula (Equation (13.20)) must take into account not only the direct route from
Sprinkler, but also the “back door” route via Cloudy and Rain. If we knew the value of Rain,
this back-door path would be blocked—which suggests that there might be a way to write an
adjustment formula that conditions on Rain instead of Cloudy. And indeed this is possible:

P(g |do(S= true)) = ∑
r

P(g |S= true,r)P(r) (13.21)

In general, if we wish to find the effect of do(X j =x jk) on a variable Xi, the back-door
criterion allows us to write an adjustment formula that conditions on any set of variables Z Back-door criterion

that closes the back door, so to speak. In more technical language, we want a set Z such
that Xi is conditionally independent of Parents(X j) given X j and Z. This is a straightforward
application of d-separation (see page 437).

The back-door criterion is a basic building block for a theory of causal reasoning that has
emerged in the past two decades. It provides a way to argue against a century of statistical
dogma asserting that only a randomized controlled trial can provide causal information. Randomized

controlled trial
The theory has provided conceptual tools and algorithms for causal analysis in a wide range
of non-experimental and quasi-experimental settings; for computing probabilities on counter-
factual statements (“if this had happened instead, what would the probability have been?”);
for determining when findings in one population can be transferred to another; and for han-
dling all forms of missing data when learning probability models.

Summary

This chapter has described Bayesian networks, a well-developed representation for uncertain
knowledge. Bayesian networks play a role roughly analogous to that of propositional logic
for definite knowledge.
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• A Bayesian network is a directed acyclic graph whose nodes correspond to random
variables; each node has a conditional distribution for the node, given its parents.

• Bayesian networks provide a concise way to represent conditional independence rela-
tionships in the domain.

• A Bayesian network specifies a joint probability distribution over its variables. The
probability of any given assignment to all the variables is defined as the product of the
corresponding entries in the local conditional distributions. A Bayesian network is often
exponentially smaller than an explicitly enumerated joint distribution.

• Many conditional distributions can be represented compactly by canonical families of
distributions. Hybrid Bayesian networks, which include both discrete and continuous
variables, use a variety of canonical distributions.

• Inference in Bayesian networks means computing the probability distribution of a set
of query variables, given a set of evidence variables. Exact inference algorithms, such
as variable elimination, evaluate sums of products of conditional probabilities as effi-
ciently as possible.

• In polytrees (singly connected networks), exact inference takes time linear in the size
of the network. In the general case, the problem is intractable.

• Random sampling techniques such as likelihood weighting and Markov chain Monte
Carlo can give reasonable estimates of the true posterior probabilities in a network and
can cope with much larger networks than can exact algorithms.

• Whereas Bayes nets capture probabilistic influences, causal networks capture causal
relationships and allow prediction of the effects of interventions as well as observations.

Bibliographical and Historical Notes

The use of networks to represent probabilistic information began early in the 20th century,
with the work of Sewall Wright on the probabilistic analysis of genetic inheritance and an-
imal growth factors (Wright, 1921, 1934). I. J. Good (1961), in collaboration with Alan
Turing, developed probabilistic representations and Bayesian inference methods that could
be regarded as a forerunner of modern Bayesian networks—although the paper is not often
cited in this context.7 The same paper is the original source for the noisy-OR model.

The influence diagram representation for decision problems, which incorporated a DAG
representation for random variables, was used in decision analysis in the late 1970s (see Chap-
ter 15), but only enumeration was used for evaluation. Judea Pearl developed the message-
passing method for inference in tree networks (Pearl, 1982a) and polytree networks (Kim
and Pearl, 1983) and explained the importance of causal rather than diagnostic probability
models. The first expert system using Bayesian networks was CONVINCE (Kim, 1983).

As chronicled in Chapter 1, the mid-1980s saw a boom in rule-based expert systems,
which incorporated ad hoc methods for handling uncertainty. Probability was considered both
impractical and “cognitively implausible” as a basis for reasoning. Peter Cheeseman’s (1985)

7 I. J. Good was chief statistician for Turing’s code-breaking team in World War II. In 2001: A Space Odyssey
(Clarke, 1968), Good and Minsky are credited with making the breakthrough that led to the development of the
HAL 9000 computer.
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pugnacious “In Defense of Probability” and his later article “An Inquiry into Computer Un-
derstanding” (Cheeseman, 1988, with commentaries) helped to turn the tables.

The resurgence of probability depended mainly, however, on Pearl’s development of
Bayesian networks and the broad development of a probabilistic approach to AI as outlined
in his book, Probabilistic Reasoning in Intelligent Systems (Pearl, 1988). The book cov-
ered both representational issues, including conditional independence relationships and the
d-separation criterion, and algorithmic approaches. Geiger et al. (1990a) and Tian et al.
(1998) presented key computational results on efficient detection of d-separation.

Eugene Charniak helped present Pearl’s ideas to AI researchers with a popular article,
“Bayesian networks without tears”8 (1991), and book (1993). The book by Dean and Well-
man (1991) also helped introduce Bayesian networks to AI researchers. Shachter (1998)
presented a simplified way to determine d-separation called the “Bayes-ball” algorithm.

As applications of Bayes nets were developed, researchers found it necessary to go be-
yond the basic model of discrete variables with CPTs. For example, the CPCS system (Prad-
han et al., 1994), a Bayesian network for internal medicine with 448 nodes and 906 links,
made extensive use of the noisy logical operators proposed by Good (1961). Boutilier et al.
(1996) analyzed the algorithmic benefits of context-specific independence. The inclusion
of continuous random variables in Bayesian networks was considered by Pearl (1988) and
Shachter and Kenley (1989); these papers discussed networks containing only continuous
variables with linear Gaussian distributions.

Hybrid networks with both discrete and continuous variables were investigated by Lau-
ritzen and Wermuth (1989) and implemented in the cHUGIN system (Olesen, 1993). Further
analysis of linear–Gaussian models, with connections to many other models used in statis-
tics, appears in Roweis and Ghahramani (1999); Lerner (2002) provides a very thorough
discussion of their use in hybrid Bayes nets. The probit distribution is usually attributed to
Gaddum (1933) and Bliss (1934), although it had been discovered several times in the 19th
century. Bliss’s work was expanded considerably by Finney (1947). The probit has been used
widely for modeling discrete choice phenomena and can be extended to handle more than two
choices (Daganzo, 1979). The expit (inverse logit) model was introduced by Berkson (1944);
initially much derided, it eventually became more popular than the probit model. Bishop
(1995) gives a simple justification for its use.

Early applications of Bayes nets in medicine included the MUNIN system for diagnosing
neuromuscular disorders (Andersen et al., 1989) and the PATHFINDER system for pathology
(Heckerman, 1991). Applications in engineering include the Electric Power Research Insti-
tute’s work on monitoring power generators (Morjaria et al., 1995), NASA’s work on display-
ing time-critical information at Mission Control in Houston (Horvitz and Barry, 1995), and
the general field of network tomography, which aims to infer unobserved local properties of
nodes and links in the Internet from observations of end-to-end message performance (Cas-
tro et al., 2004). Perhaps the most widely used Bayesian network systems have been the
diagnosis-and-repair modules (e.g., the Printer Wizard) in Microsoft Windows (Breese and
Heckerman, 1996) and the Office Assistant in Microsoft Office (Horvitz et al., 1998).

Another important application area is biology: the mathematical models used to analyze
genetic inheritance in family trees (so-called pedigree analysis) are in fact a special form Pedigree analysis

8 The title of the original version of the article was “Pearl for swine.”
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of Bayesian networks. Exact inference algorithms for pedigree analysis, resembling variable
elimination, were developed in the 1970s (Cannings et al., 1978). Bayesian networks have
been used for identifying human genes by reference to mouse genes (Zhang et al., 2003), in-
ferring cellular networks (Friedman, 2004), genetic linkage analysis to locate disease-related
genes (Silberstein et al., 2013), and many other tasks in bioinformatics. We could go on, but
instead we’ll refer you to Pourret et al. (2008), a 400-page guide to applications of Bayesian
networks. Published applications over the last decade run into the tens of thousands, ranging
from dentistry to global climate models.

Judea Pearl (1985), in the first paper to use the term “Bayesian networks,” briefly de-
scribed an inference algorithm for general networks based on the cutset conditioning idea
introduced in Chapter 5. Independently, Ross Shachter (1986), working in the influence di-
agram community, developed a complete algorithm based on goal-directed reduction of the
network using posterior-preserving transformations.

Pearl (1986) developed a clustering algorithm for exact inference in general Bayesian
networks, utilizing a conversion to a directed polytree of clusters in which message pass-
ing was used to achieve consistency over variables shared between clusters. A similar ap-
proach, developed by the statisticians David Spiegelhalter and Steffen Lauritzen (Lauritzen
and Spiegelhalter, 1988), is based on conversion to an undirected form of graphical model
called a Markov network. This approach is implemented in the HUGIN system, an efficient
and widely used tool for uncertain reasoning (Andersen et al., 1989).

The basic idea of variable elimination—that repeated computations within the overall
sum-of-products expression can be avoided by caching—appeared in the symbolic probabilis-
tic inference (SPI) algorithm (Shachter et al., 1990). The elimination algorithm we describe
is closest to that developed by Zhang and Poole (1994). Criteria for pruning irrelevant vari-
ables were developed by Geiger et al. (1990b) and by Lauritzen et al. (1990); the criterion we
give is a simple special case of these. Dechter (1999) shows how the variable elimination idea
is essentially identical to nonserial dynamic programming (Bertele and Brioschi, 1972).Nonserial dynamic

programming

This connects Bayesian network algorithms to related methods for solving CSPs and
gives a direct measure of the complexity of exact inference in terms of the tree width of the
network. Preventing the exponential growth in the size of factors in variable elimination can
be done by dropping variables from large factors (Dechter and Rish, 2003); it is also possible
to bound the error introduced thereby (Wexler and Meek, 2009). Alternatively, factors can be
compressed by representing them using algebraic decision diagrams instead of tables (Gogate
and Domingos, 2011).

Exact methods based on recursive enumeration (see Figure 13.11) combined with caching
include the recursive conditioning algorithm (Darwiche, 2001), the value elimination algo-
rithm (Bacchus et al., 2003), and AND–OR search (Dechter and Mateescu, 2007). The method
of weighted model counting (Sang et al., 2005; Chavira and Darwiche, 2008) is usually based
on a DPLL-style SAT solver (see Figure 7.17 on page 252). As such, it is also performing a
recursive enumeration of variable assignments with caching, so the approach is in fact quite
similar. All three of these algorithms can implement a complete range of space/time tradeoffs.
Because they consider variable assignments, the algorithms can easily take advantage of de-
terminism and context-specific independence in the model. They can also be modified to use
an efficient linear-time algorithm whenever the partial assignment makes the remaining net-
work a polytree. (This is a version of the method of cutset conditioning, which was described
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for CSPs in Chapter 5.) For exact inference in large models, where the space requirements
of clustering and variable elimination become enormous, these recursive algorithms are often
the most practical approach.

There are other important inference tasks in Bayes nets besides computing marginal prob-
abilities. The most probable explanation or MPE is the most likely assignment to the Most probable

explanation

nonevidence variables given the evidence. (MPE is a special case of MAP—maximum a
posteriori—inference, which asks for the most likely assignment to a subset of nonevidence
variables given the evidence.) For such problems, many different algorithms have been de-
veloped, some related to shortest-path or AND–OR search algorithms; for a summary, see
Marinescu and Dechter (2009).

The first result on the complexity of inference in Bayes nets is due to Cooper (1990),
who showed that the general problem of computing marginals in Bayesian networks is NP-
hard; as noted in the chapter, this can be strengthened to #P-hardness through a reduction
from counting satisfying assignments (Roth, 1996). This also implies the NP-hardness of
approximate inference (Dagum and Luby, 1993); however, for the case where probabilities
can be bounded away from 0 and 1, a form of likelihood weighting converges in (random-
ized) polynomial time (Dagum and Luby, 1997). Shimony (1994) showed that finding the
most probable explanation is NP-complete—intractable, but somewhat easier than comput-
ing marginals—while Park and Darwiche (2004) provide a thorough complexity analysis of
MAP computation, showing that it falls into the class of NPPP-complete problems—that is,
somewhat harder than computing marginals.

The development of fast approximation algorithms for Bayesian network inference is a
very active area, with contributions from statistics, computer science, and physics. The rejec-
tion sampling method is a general technique dating back at least to Buffon’s needle (1777);
it was first applied to Bayesian networks by Max Henrion (1988), who called it logic sam-
pling. Importance sampling was invented originally for applications in physics (Kahn, 1950a,
1950b) and applied to Bayes net inference by Fung and Chang (1989) (who called the algo-
rithm “evidence weighting”) and by Shachter and Peot (1989).

In statistics, adaptive sampling has been applied to all sorts of Monte Carlo algorithms
to speed up convergence. The basic idea is to adapt the distribution from which samples are
generated, based on the outcome from previous samples. Gilks and Wild (1992) developed
adaptive rejection sampling, while adaptive importance sampling appears to have originated
independently in physics (Lepage, 1978), civil engineering (Karamchandani et al., 1989),
statistics (Oh and Berger, 1992), and computer graphics (Veach and Guibas, 1995). Cheng
and Druzdzel (2000) describe an adaptive version of importance sampling applied to Bayes
net inference. More recently, Le et al. (2017) have demonstrated the use of deep learning
systems to produce proposal distributions that speed up importance sampling by many orders
of magnitude.

Markov chain Monte Carlo (MCMC) algorithms began with the Metropolis algorithm,
due to Metropolis et al. (1953), which was also the source of the simulated annealing algo-
rithm described in Chapter 4. Hastings (1970) introduced the accept/reject step that is an
integral part of what we now call the Metropolis–Hastings algorithm. The Gibbs sampler was
devised by Geman and Geman (1984) for inference in undirected Markov networks. The ap-
plication of Gibbs sampling to Bayesian networks is due to Pearl (1987). The papers collected
by Gilks et al. (1996) cover both theory and applications of MCMC.
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Since the mid-1990s, MCMC has become the workhorse of Bayesian statistics and statis-
tical computation in many other disciplines including physics and biology. The Handbook of
Markov Chain Monte Carlo (Brooks et al., 2011) covers many aspects of this literature. The
BUGS package (Gilks et al., 1994) was an early and influential system for Bayes net model-
ing and inference using Gibbs sampling. STAN (named after Stanislaw Ulam, an originator
of Monte Carlo methods in physics) is a more recent system that uses Hamiltonian Monte
Carlo inference (Carpenter et al., 2017).

There are two very important families of approximation methods that we did not cover
in the chapter. The first is the family of variational approximation methods, which can be
used to simplify complex calculations of all kinds. The basic idea is to propose a reduced
version of the original problem that is simple to work with, but that resembles the original
problem as closely as possible. The reduced problem is described by some variational pa-
rameters λ that are adjusted to minimize a distance function D between the original and
the reduced problem, often by solving the system of equations ∂D/∂λ=0. In many cases,
strict upper and lower bounds can be obtained. Variational methods have long been used in
statistics (Rustagi, 1976). In statistical physics, the mean-field method is a particular varia-
tional approximation in which the individual variables making up the model are assumed to
be completely independent.

This idea was applied to solve large undirected Markov networks (Peterson and Ander-
son, 1987; Parisi, 1988). Saul et al. (1996) developed the mathematical foundations for
applying variational methods to Bayesian networks and obtained accurate lower-bound ap-
proximations for sigmoid networks with the use of mean-field methods. Jaakkola and Jordan
(1996) extended the methodology to obtain both lower and upper bounds. Since these early
papers, variational methods have been applied to many specific families of models. The re-
markable paper by Wainwright and Jordan (2008) provides a unifying theoretical analysis of
the literature on variational methods.

A second important family of approximation algorithms is based on Pearl’s polytree
message-passing algorithm (1982a). This algorithm can be applied to general “loopy” net-
works, as suggested by Pearl (1988). The results might be incorrect, or the algorithm might
fail to terminate, but in many cases, the values obtained are close to the true values. Little
attention was paid to this so-called loopy belief propagation approach until McEliece et al.Loopy belief

propagation

(1998) observed that it is exactly the computation performed by the turbo decoding algo-Turbo decoding

rithm (Berrou et al., 1993), which provided a major breakthrough in the design of efficient
error-correcting codes.

The implication of these observations is if loopy BP is both fast and accurate on the very
large and very highly connected networks used for decoding, it might therefore be useful
more generally. Theoretical support for these findings, including convergence proofs for
some special cases, was provided by Weiss (2000b), Weiss and Freeman (2001), and Yedidia
et al. (2005), drawing on connections to ideas from statistical physics.

Theories of causal inference going beyond randomized controlled trials were proposed
by Rubin (1974) and Robins (1986), but these ideas remained both obscure and controver-
sial until Judea Pearl developed and presented a fully articulated theory of causality based
on causal networks (Pearl, 2000). Peters et al. (2017) further develop the theory, with an
emphasis on learning. A more recent work, The Book of Why (Pearl and McKenzie, 2018),
provides a less mathematical but more readable and wide-ranging introduction.
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Uncertain reasoning in AI has not always been based on probability theory. As noted
in Chapter 12, early probabilistic systems fell out of favor in the early 1970s, leaving a par-
tial vacuum to be filled by alternative methods. These included rule-based expert systems,
Dempster–Shafer theory, and (to some extent) fuzzy logic.9

Rule-based approaches to uncertainty hoped to build on the success of logical rule-
based systems, but add a sort of “fudge factor”—more politely called a certainty factor—
to each rule to accommodate uncertainty. The first such system was MYCIN (Shortliffe,
1976), a medical expert system for bacterial infections. The collection Rule-Based Expert
Systems (Buchanan and Shortliffe, 1984) provides a complete overview of MYCIN and its
descendants (see also Stefik, 1995).

David Heckerman (1986) showed that a slightly modified version of certainty factor cal-
culations gives correct probabilistic results in some cases, but results in serious overcounting
of evidence in other cases. As rule sets became larger, undesirable interactions between rules
became more common, and practitioners found that the certainty factors of many other rules
had to be “tweaked” when new rules were added. The basic mathematical properties that
allow chains of reasoning in logic simply do not hold for probability.

Dempster–Shafer theory originates with a paper by Arthur Dempster (1968) proposing a
generalization of probability to interval values and a combination rule for using them. Such
an approach might alleviate the difficulty of specifying probabilities exactly. Later work by
Glenn Shafer (1976) led to the Dempster–Shafer theory’s being viewed as a competing ap-
proach to probability. Pearl (1988) and Ruspini et al. (1992) analyze the relationship between
the Dempster–Shafer theory and standard probability theory. In many cases, probability the-
ory does not require probabilities to be specified exactly: we can express uncertainty about
probability values as (second-order) probability distributions, as explained in Chapter 21.

Fuzzy sets were developed by Lotfi Zadeh (1965) in response to the perceived difficulty
of providing exact inputs to intelligent systems. A fuzzy set is one in which membership is a
matter of degree. Fuzzy logic is a method for reasoning with logical expressions describing
membership in fuzzy sets. Fuzzy control is a methodology for constructing control systems
in which the mapping between real-valued input and output parameters is represented by
fuzzy rules. Fuzzy control has been very successful in commercial products such as automatic
transmissions, video cameras, and electric shavers. The text by Zimmermann (2001) provides
a thorough introduction to fuzzy set theory; papers on fuzzy applications are collected in
Zimmermann (1999).

Fuzzy logic has often been perceived incorrectly as a direct competitor to probability the-
ory, whereas in fact it addresses a different set of issues: rather than considering uncertainty
about the truth of well-defined propositions, fuzzy logic handles vagueness in the mapping
from terms in a symbolic theory to an actual world. Vagueness is a real issue in any applica-
tion of logic, probability, or indeed standard mathematical models to reality. Even a variable
as impeccable as the mass of the Earth turns out, on inspection, to vary with time as mete-
orites and molecules come and go. It is also imprecise—does it include the atmosphere? If
so, to what height? In some cases, further elaboration of the model can reduce vagueness, but
fuzzy logic takes vagueness as a given and develops a theory around it.

9 A fourth approach, default reasoning, treats conclusions not as “believed to a certain degree,” but as “believed
until a better reason is found to believe something else.” It is covered in Chapter 10.
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Possibility theory (Zadeh, 1978) was introduced to handle uncertainty in fuzzy systemsPossibility theory

and has much in common with probability (Dubois and Prade, 1994).
Many AI researchers in the 1970s rejected probability because the numerical calcula-

tions that probability theory was thought to require were not apparent to introspection and
presumed an unrealistic level of precision in our uncertain knowledge. The development
of qualitative probabilistic networks (Wellman, 1990a) provided a purely qualitative ab-
straction of Bayesian networks, using the notion of positive and negative influences between
variables. Wellman shows that in many cases such information is sufficient for optimal deci-
sion making without the need for the precise specification of probability values. Goldszmidt
and Pearl (1996) take a similar approach. Work by Darwiche and Ginsberg (1992) extracts
the basic properties of conditioning and evidence combination from probability theory and
shows that they can also be applied in logical and default reasoning.

Several excellent texts (Jensen, 2007; Darwiche, 2009; Koller and Friedman, 2009; Korb
and Nicholson, 2010; Dechter, 2019) provide thorough treatments of the topics we have cov-
ered in this chapter. New research on probabilistic reasoning appears both in mainstream
AI journals, such as Artificial Intelligence and the Journal of AI Research, and in more spe-
cialized journals, such as the International Journal of Approximate Reasoning. Many papers
on graphical models, which include Bayesian networks, appear in statistical journals. The
proceedings of the conferences on Uncertainty in Artificial Intelligence (UAI), Neural Infor-
mation Processing Systems (NeurIPS), and Artificial Intelligence and Statistics (AISTATS)
are good sources for current research.



CHAPTER 14
PROBABILISTIC REASONING OVER
TIME
In which we try to interpret the present, understand the past, and perhaps predict the future,
even when very little is crystal clear.

Agents in partially observable environments must be able to keep track of the current state, to
the extent that their sensors allow. In Section 4.4 we showed a methodology for doing that: an
agent maintains a belief state that represents which states of the world are currently possible.
From the belief state and a transition model, the agent can predict how the world might
evolve in the next time step. From the percepts observed and a sensor model, the agent can
update the belief state. This is a pervasive idea: in Chapter 4 belief states were represented by
explicitly enumerated sets of states, whereas in Chapters 7 and 11 they were represented by
logical formulas. Those approaches defined belief states in terms of which world states were
possible, but could say nothing about which states were likely or unlikely. In this chapter, we
use probability theory to quantify the degree of belief in elements of the belief state.

As we show in Section 14.1, time itself is handled in the same way as in Chapter 7: a
changing world is modeled using a variable for each aspect of the world state at each point
in time. The transition and sensor models may be uncertain: the transition model describes
the probability distribution of the variables at time t, given the state of the world at past
times, while the sensor model describes the probability of each percept at time t, given the
current state of the world. Section 14.2 defines the basic inference tasks and describes the
general structure of inference algorithms for temporal models. Then we describe three spe-
cific kinds of models: hidden Markov models, Kalman filters, and dynamic Bayesian
networks (which include hidden Markov models and Kalman filters as special cases).

14.1 Time and Uncertainty

We have developed our techniques for probabilistic reasoning in the context of static worlds,
in which each random variable has a single fixed value. For example, when repairing a car,
we assume that whatever is broken remains broken during the process of diagnosis; our job
is to infer the state of the car from observed evidence, which also remains fixed.

Now consider a slightly different problem: treating a diabetic patient. As in the case of
car repair, we have evidence such as recent insulin doses, food intake, blood sugar measure-
ments, and other physical signs. The task is to assess the current state of the patient, including
the actual blood sugar level and insulin level. Given this information, we can make a deci-
sion about the patient’s food intake and insulin dose. Unlike the case of car repair, here the
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dynamic aspects of the problem are essential. Blood sugar levels and measurements thereof
can change rapidly over time, depending on recent food intake and insulin doses, metabolic
activity, the time of day, and so on. To assess the current state from the history of evidence
and to predict the outcomes of treatment actions, we must model these changes.

The same considerations arise in many other contexts, such as tracking the location of a
robot, tracking the economic activity of a nation, and making sense of a spoken or written
sequence of words. How can dynamic situations like these be modeled?

14.1.1 States and observations

This chapter discusses discrete-time models, in which the world is viewed as a series ofDiscrete time

snapshots or time slices.1 We’ll just number the time slices 0, 1, 2, and so on, rather thanTime slice

assigning specific times to them. Typically, the time interval ∆ between slices is assumed to
be the same for every interval. For any particular application, a specific value of ∆ has to be
chosen. Sometimes this is dictated by the sensor; for example, a video camera might supply
images at intervals of 1/30 of a second. In other cases, the interval is dictated by the typical
rates of change of the relevant variables; for example, in the case of blood glucose monitoring,
things can change significantly in the course of ten minutes, so a one-minute interval might
be appropriate. On the other hand, in modeling continental drift over geological time, an
interval of a million years might be fine.

Each time slice in a discrete-time probability model contains a set of random variables,
some observable and some not. For simplicity, we will assume that the same subset of vari-
ables is observable in each time slice (although this is not strictly necessary in anything that
follows). We will use Xt to denote the set of state variables at time t, which are assumed to
be unobservable, and Et to denote the set of observable evidence variables. The observation
at time t is Et =et for some set of values et .

Consider the following example: You are the security guard stationed at a secret under-
ground installation. You want to know whether it’s raining today, but your only access to the
outside world occurs each morning when you see the director coming in with, or without,
an umbrella. For each day t, the set Et thus contains a single evidence variable Umbrellat

or Ut for short (whether the umbrella appears), and the set Xt contains a single state vari-
able Raint or Rt for short (whether it is raining). Other problems can involve larger sets of
variables. In the diabetes example, the evidence variables might be MeasuredBloodSugart

and PulseRatet while the state variables might include BloodSugart and StomachContentst .
(Notice that BloodSugart and MeasuredBloodSugart are not the same variable; this is how
we deal with noisy measurements of actual quantities.)

We will assume that the state sequence starts at t=0 and evidence starts arriving at t=1.
Hence, our umbrella world is represented by state variables R0, R1, R2, . . . and evidence vari-
ables U1,U2, . . .. We will use the notation a:b to denote the sequence of integers from a to
b inclusive and the notation Xa:b to denote the set of variables from Xa to Xb inclusive. For
example, U1:3 corresponds to U1, U2, U3. (Note that this is different from the notation used in
programming languages such as Python and Go, where U[1:3] would not include U[3].)

1 Uncertainty over continuous time can be modeled by stochastic differential equations (SDEs). The models
studied in this chapter can be viewed as discrete-time approximations to SDEs.
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Figure 14.1 (a) Bayesian network structure corresponding to a first-order Markov process
with state defined by the variables Xt . (b) A second-order Markov process.

14.1.2 Transition and sensor models

With the set of state and evidence variables for a given problem decided on, the next step is
to specify how the world evolves (the transition model) and how the evidence variables get
their values (the sensor model).

The transition model specifies the probability distribution over the latest state variables,
given the previous values, that is, P(Xt |X0:t−1). Now we face a problem: the set X0:t−1 is
unbounded in size as t increases. We solve the problem by making a Markov assumption— Markov assumption

that the current state depends on only a finite fixed number of previous states. Processes
satisfying this assumption were first studied in depth by the statistician Andrei Markov (1856–
1922) and are called Markov processes or Markov chains. They come in various flavors; Markov process

the simplest is the first-order Markov process, in which the current state depends only on First-order Markov
process

the previous state and not on any earlier states. In other words, a state provides enough
information to make the future conditionally independent of the past, and we have

P(Xt |X0:t−1) = P(Xt |Xt−1) . (14.1)

Hence, in a first-order Markov process, the transition model is the conditional distribution
P(Xt |Xt−1). The transition model for a second-order Markov process is the conditional dis-
tribution P(Xt |Xt−2,Xt−1). Figure 14.1 shows the Bayesian network structures correspond-
ing to first-order and second-order Markov processes.

Even with the Markov assumption there is still a problem: there are infinitely many pos-
sible values of t. Do we need to specify a different distribution for each time step? We avoid
this problem by assuming that changes in the world state are caused by a time-homogeneous Time-homogeneous

process—that is, a process of change that is governed by laws that do not themselves change
over time. In the umbrella world, then, the conditional probability of rain, P(Rt |Rt−1), is the
same for all t, and we need specify only one conditional probability table.

Now for the sensor model. The evidence variables Et could depend on previous vari-
ables as well as the current state variables, but any state that’s worth its salt should suffice to
generate the current sensor values. Thus, we make a sensor Markov assumption as follows: Sensor Markov

assumption

P(Et |X0:t ,E1:t−1) = P(Et |Xt) . (14.2)

Thus, P(Et |Xt) is our sensor model (sometimes called the observation model). Figure 14.2
shows both the transition model and the sensor model for the umbrella example. Notice the
direction of the dependence between state and sensors: the arrows go from the actual state
of the world to sensor values because the state of the world causes the sensors to take on
particular values: the rain causes the umbrella to appear. (The inference process, of course,
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P(Rt|Rt-1)

0.7
0.3

P(Ut|Rt)

Figure 14.2 Bayesian network structure and conditional distributions describing the um-
brella world. The transition model is P(Raint |Raint−1) and the sensor model is
P(Umbrellat |Raint).

goes in the other direction; the distinction between the direction of modeled dependencies
and the direction of inference is one of the principal advantages of Bayesian networks.)

In addition to specifying the transition and sensor models, we need to say how everything
gets started—the prior probability distribution at time 0, P(X0). With that, we have a specifi-
cation of the complete joint distribution over all the variables, using Equation (13.2). For any
time step t,

P(X0:t ,E1:t) = P(X0)
t

∏
i=1

P(Xi |Xi−1)P(Ei |Xi) . (14.3)

The three terms on the right-hand side are the initial state model P(X0), the transition model
P(Xi |Xi−1), and the sensor model P(Ei |Xi). This equation defines the semantics of the
family of temporal models represented by the three terms. Notice that standard Bayesian net-
works cannot represent such models because they require a finite set of variables. The ability
to handle an infinite set of variables comes from two things: first, defining the infinite set us-
ing integer indices; and second, the use of implicit universal quantification (see Section 8.2)
to define the sensor and transition models for every time step.

The structure in Figure 14.2 is a first-order Markov process—the probability of rain is
assumed to depend only on whether it rained the previous day. Whether such an assumption
is reasonable depends on the domain itself. The first-order Markov assumption says that the
state variables contain all the information needed to characterize the probability distribution
for the next time slice. Sometimes the assumption is exactly true—for example, if a particle
is executing a random walk along the x-axis, changing its position by ±1 at each time step,
then using the x-coordinate as the state gives a first-order Markov process. Sometimes the
assumption is only approximate, as in the case of predicting rain only on the basis of whether
it rained the previous day. There are two ways to improve the accuracy of the approximation:

1. Increasing the order of the Markov process model. For example, we could make a
second-order model by adding Raint−2 as a parent of Raint , which might give slightly
more accurate predictions. For example, in Palo Alto, California, it very rarely rains
more than two days in a row.
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2. Increasing the set of state variables. For example, we could add Seasont to allow
us to incorporate historical records of rainy seasons, or we could add Temperaturet ,
Humidityt , and Pressuret (perhaps at a range of locations) to allow us to use a physical
model of rainy conditions.

Exercise 14.AUGM asks you to show that the first solution—increasing the order—can always
be reformulated as an increase in the set of state variables, keeping the order fixed. Notice
that adding state variables might improve the system’s predictive power but also increases
the prediction requirements: we now have to predict the new variables as well. Thus, we are
looking for a “self-sufficient” set of variables, which really means that we have to understand
the “physics” of the process being modeled. The requirement for accurate modeling of the
process is obviously lessened if we can add new sensors (e.g., measurements of temperature
and pressure) that provide information directly about the new state variables.

Consider, for example, the problem of tracking a robot wandering randomly on the X–Y
plane. One might propose that the position and velocity are a sufficient set of state variables:
one can simply use Newton’s laws to calculate the new position, and the velocity may change
unpredictably. If the robot is battery-powered, however, then battery exhaustion would tend
to have a systematic effect on the change in velocity. Because this in turn depends on how
much power was used by all previous maneuvers, the Markov property is violated.

We can restore the Markov property by including the charge level Batteryt as one of the
state variables that make up Xt . This helps in predicting the motion of the robot, but in turn
requires a model for predicting Batteryt from Batteryt−1 and the velocity. In some cases, that
can be done reliably, but more often we find that error accumulates over time. In that case,
accuracy can be improved by adding a new sensor for the battery level. We will return to the
battery example in Section 14.5.

14.2 Inference in Temporal Models

Having set up the structure of a generic temporal model, we can formulate the basic inference
tasks that must be solved:

• Filtering2 or state estimation is the task of computing the belief state P(Xt |e1:t)— Filtering

State estimation

Belief state

the posterior distribution over the most recent state given all evidence to date. In the
umbrella example, this would mean computing the probability of rain today, given all
the umbrella observations made so far. Filtering is what a rational agent does to keep
track of the current state so that rational decisions can be made. It turns out that an
almost identical calculation provides the likelihood of the evidence sequence, P(e1:t).
• Prediction: This is the task of computing the posterior distribution over the future state, Prediction

given all evidence to date. That is, we wish to compute P(Xt+k |e1:t) for some k > 0.
In the umbrella example, this might mean computing the probability of rain three days
from now, given all the observations to date. Prediction is useful for evaluating possible
courses of action based on their expected outcomes.
• Smoothing: This is the task of computing the posterior distribution over a past state, Smoothing

given all evidence up to the present. That is, we wish to compute P(Xk |e1:t) for some k

2 The term “filtering” refers to the roots of this problem in early work on signal processing, where the problem
is to filter out the noise in a signal by estimating its underlying properties.
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such that 0≤ k < t. In the umbrella example, it might mean computing the probability
that it rained last Wednesday, given all the observations of the umbrella carrier made up
to today. Smoothing provides a better estimate of the state at time k than was available
at that time, because it incorporates more evidence.3

• Most likely explanation: Given a sequence of observations, we might wish to find the
sequence of states that is most likely to have generated those observations. That is, we
wish to compute argmaxx1:t

P(x1:t |e1:t). For example, if the umbrella appears on each
of the first three days and is absent on the fourth, then the most likely explanation is that
it rained on the first three days and did not rain on the fourth. Algorithms for this task
are useful in many applications, including speech recognition—where the aim is to find
the most likely sequence of words, given a series of sounds—and the reconstruction of
bit strings transmitted over a noisy channel.

In addition to these inference tasks, we also have
• Learning: The transition and sensor models, if not yet known, can be learned from

observations. Just as with static Bayesian networks, dynamic Bayes net learning can be
done as a by-product of inference. Inference provides an estimate of what transitions
actually occurred and of what states generated the sensor readings, and these estimates
can be used to learn the models. The learning process can operate via an iterative up-
date algorithm called expectation–maximization or EM, or it can result from Bayesian
updating of the model parameters given the evidence. See Chapter 21 for more details.

The remainder of this section describes generic algorithms for the four inference tasks, inde-
pendent of the particular kind of model employed. Improvements specific to each model are
described in subsequent sections.

14.2.1 Filtering and prediction

As we pointed out in Section 7.7.3, a useful filtering algorithm needs to maintain a current
state estimate and update it, rather than going back over the entire history of percepts for each
update. (Otherwise, the cost of each update increases as time goes by.) In other words, given
the result of filtering up to time t, the agent needs to compute the result for t+1 from the new
evidence et+1. So we have

P(Xt+1 |e1:t+1) = f (et+1,P(Xt |e1:t))

for some function f . This process is called recursive estimation. (See also Sections 4.4
and 7.7.3.) We can view the calculation as being composed of two parts: first, the current
state distribution is projected forward from t to t+1; then it is updated using the new evidence
et+1. This two-part process emerges quite simply when the formula is rearranged:

P(Xt+1 |e1:t+1) = P(Xt+1 |e1:t ,et+1) (dividing up the evidence)

= αP(et+1 |Xt+1,e1:t)P(Xt+1 |e1:t) (using Bayes’ rule, given e1:t)

= α P(et+1 |Xt+1)︸ ︷︷ ︸
update

P(Xt+1 |e1:t)︸ ︷︷ ︸
prediction

(by the sensor Markov assumption). (14.4)

Here and throughout this chapter, α is a normalizing constant used to make probabilities sum
up to 1. Now we plug in an expression for the one-step prediction P(Xt+1 |e1:t), obtained by

3 In particular, when tracking a moving object with inaccurate position observations, smoothing gives a smoother
estimated trajectory than filtering—hence the name.
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conditioning on the current state Xt . The resulting equation for the new state estimate is the
central result in this chapter:

P(Xt+1 |e1:t+1) = αP(et+1 |Xt+1)∑
xt

P(Xt+1 |xt ,e1:t)P(xt |e1:t)

= α P(et+1 |Xt+1)︸ ︷︷ ︸
sensor model

∑
xt

P(Xt+1 |xt)︸ ︷︷ ︸
transition model

P(xt |e1:t)︸ ︷︷ ︸
recursion

(Markov assumption). (14.5)

In this expression, all the terms come either from the model or from the previous state esti-
mate. Hence, we have the desired recursive formulation. We can think of the filtered estimate
P(Xt |e1:t) as a “message” f1:t that is propagated forward along the sequence, modified by
each transition and updated by each new observation. The process is given by

f1:t+1 = FORWARD(f1:t ,et+1) ,

where FORWARD implements the update described in Equation (14.5) and the process begins
with f1:0 = P(X0). When all the state variables are discrete, the time for each update is
constant (i.e., independent of t), and the space required is also constant. (The constants
depend, of course, on the size of the state space and the specific type of the temporal model
in question.) The time and space requirements for updating must be constant if a finite agent J
is to keep track of the current state distribution indefinitely.

Let us illustrate the filtering process for two steps in the basic umbrella example (Fig-
ure 14.2). That is, we will compute P(R2 |u1:2) as follows:

• On day 0, we have no observations, only the security guard’s prior beliefs; let’s assume
that consists of P(R0) = 〈0.5,0.5〉.

• On day 1, the umbrella appears, so U1= true. The prediction from t=0 to t=1 is

P(R1) = ∑
r0

P(R1 |r0)P(r0)

= 〈0.7,0.3〉×0.5+ 〈0.3,0.7〉×0.5 = 〈0.5,0.5〉 .

Then the update step simply multiplies by the probability of the evidence for t=1 and
normalizes, as shown in Equation (14.4):

P(R1 |u1) = αP(u1 |R1)P(R1) = α〈0.9,0.2〉〈0.5,0.5〉
= α〈0.45,0.1〉 ≈ 〈0.818,0.182〉 .

• On day 2, the umbrella appears, so U2= true. The prediction from t=1 to t=2 is

P(R2 |u1) = ∑
r1

P(R2 |r1)P(r1 |u1)

= 〈0.7,0.3〉×0.818+ 〈0.3,0.7〉×0.182≈ 〈0.627,0.373〉 ,

and updating it with the evidence for t=2 gives

P(R2 |u1,u2) = αP(u2 |R2)P(R2 |u1) = α〈0.9,0.2〉〈0.627,0.373〉
= α〈0.565,0.075〉 ≈ 〈0.883,0.117〉 .

Intuitively, the probability of rain increases from day 1 to day 2 because rain persists. Exer-
cise 14.CONV(a) asks you to investigate this tendency further.

The task of prediction can be seen simply as filtering without the addition of new evi-
dence. In fact, the filtering process already incorporates a one-step prediction, and it is easy
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to derive the following recursive computation for predicting the state at t + k+1 from a pre-
diction for t + k:

P(Xt+k+1 |e1:t) = ∑
xt+k

P(Xt+k+1 |xt+k)︸ ︷︷ ︸
transition model

P(xt+k |e1:t)︸ ︷︷ ︸
recursion

. (14.6)

Naturally, this computation involves only the transition model and not the sensor model.
It is interesting to consider what happens as we try to predict further and further into

the future. As Exercise 14.CONV(b) shows, the predicted distribution for rain converges to
a fixed point 〈0.5,0.5〉, after which it remains constant for all time.4 This is the stationary
distribution of the Markov process defined by the transition model. (See also page 462.) A
great deal is known about the properties of such distributions and about the mixing time—Mixing time

roughly, the time taken to reach the fixed point. In practical terms, this dooms to failure any
attempt to predict the actual state for a number of steps that is more than a small fraction of
the mixing time, unless the stationary distribution itself is strongly peaked in a small area of
the state space. The more uncertainty there is in the transition model, the shorter will be the
mixing time and the more the future is obscured.

In addition to filtering and prediction, we can use a forward recursion to compute the
likelihood of the evidence sequence, P(e1:t). This is a useful quantity if we want to compare
different temporal models that might have produced the same evidence sequence (e.g., two
different models for the persistence of rain). For this recursion, we use a likelihood message
`1:t(Xt)=P(Xt ,e1:t). It is easy to show (Exercise 14.LIKL) that the message calculation is
identical to that for filtering:

`1:t+1 = FORWARD(`1:t ,et+1) .

Having computed `1:t , we obtain the actual likelihood by summing out Xt :

L1:t = P(e1:t) = ∑
xt

`1:t(xt) . (14.7)

Notice that the likelihood message represents the probabilities of longer and longer evidence
sequences as time goes by and so becomes numerically smaller and smaller, leading to under-
flow problems with floating-point arithmetic. This is an important problem in practice, but
we shall not go into solutions here.

14.2.2 Smoothing

As we said earlier, smoothing is the process of computing the distribution over past states
given evidence up to the present—that is, P(Xk |e1:t) for 0 ≤ k < t. (See Figure 14.3.) In
anticipation of another recursive message-passing approach, we can split the computation
into two parts—the evidence up to k and the evidence from k+1 to t,

P(Xk |e1:t) = P(Xk |e1:k,ek+1:t)

= αP(Xk |e1:k)P(ek+1:t |Xk,e1:k) (using Bayes’ rule, given e1:k)

= αP(Xk |e1:k)P(ek+1:t |Xk) (using conditional independence)

= α f1:k×bk+1:t . (14.8)

where “×” represents pointwise multiplication of vectors. Here we have defined a “back-

4 If one picks an arbitrary day to be t=0, then it makes sense to choose the prior P(Rain0) to match the stationary
distribution, which is why we picked 〈0.5,0.5〉 as the prior. Had we picked a different prior, the stationary
distribution would still have worked out to 〈0.5,0.5〉.



Section 14.2 Inference in Temporal Models 487

Figure 14.3 Smoothing computes P(Xk |e1:t), the posterior distribution of the state at some
past time k given a complete sequence of observations from 1 to t.

ward” message bk+1:t =P(ek+1:t |Xk), analogous to the forward message f1:k. The forward
message f1:k can be computed by filtering forward from 1 to k, as given by Equation (14.5). It
turns out that the backward message bk+1:t can be computed by a recursive process that runs
backward from t:

P(ek+1:t |Xk) = ∑
xk+1

P(ek+1:t |Xk,xk+1)P(xk+1 |Xk) (conditioning on Xk+1)

= ∑
xk+1

P(ek+1:t |xk+1)P(xk+1 |Xk) (by conditional independence)

= ∑
xk+1

P(ek+1,ek+2:t |xk+1)P(xk+1 |Xk)

= ∑
xk+1

P(ek+1 |xk+1)︸ ︷︷ ︸
sensor model

P(ek+2:t |xk+1)︸ ︷︷ ︸
recursion

P(xk+1 |Xk)︸ ︷︷ ︸
transition model

, (14.9)

where the last step follows by the conditional independence of ek+1 and ek+2:t , given xk+1.
In this expression, all the terms come either from the model or from the previous backward
message. Hence, we have the desired recursive formulation. In message form, we have

bk+1:t = BACKWARD(bk+2:t ,ek+1) ,

where BACKWARD implements the update described in Equation (14.9). As with the forward
recursion, the time and space needed for each update are constant and thus independent of t.

We can now see that the two terms in Equation (14.8) can both be computed by recursions
through time, one running forward from 1 to k and using the filtering equation (14.5) and the
other running backward from t to k+1 and using Equation (14.9).

For the initialization of the backward phase, we have bt+1:t =P(et+1:t |Xt)=P( |Xt)=1,
where 1 is a vector of 1s. The reason for this is that et+1:t is an empty sequence, so the
probability of observing it is 1.

Let us now apply this algorithm to the umbrella example, computing the smoothed esti-
mate for the probability of rain at time k=1, given the umbrella observations on days 1 and
2. From Equation (14.8), this is given by

P(R1 |u1,u2) = αP(R1 |u1)P(u2 |R1) . (14.10)

The first term we already know to be 〈.818, .182〉, from the forward filtering process de-
scribed earlier. The second term can be computed by applying the backward recursion in
Equation (14.9):

P(u2 |R1) = ∑
r2

P(u2 |r2)P( |r2)P(r2 |R1)

= (0.9×1×〈0.7,0.3〉)+(0.2×1×〈0.3,0.7〉) = 〈0.69,0.41〉 .
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function FORWARD-BACKWARD(ev, prior) returns a vector of probability distributions
inputs: ev, a vector of evidence values for steps 1, . . . , t

prior, the prior distribution on the initial state, P(X0)
local variables: fv, a vector of forward messages for steps 0, . . . , t

b, a representation of the backward message, initially all 1s
sv, a vector of smoothed estimates for steps 1, . . . , t

fv[0]←prior
for i= 1 to t do

fv[i]←FORWARD(fv[i−1],ev[i])
for i= t down to 1 do

sv[i]←NORMALIZE(fv[i]×b)
b←BACKWARD(b,ev[i])

return sv

Figure 14.4 The forward–backward algorithm for smoothing: computing posterior prob-
abilities of a sequence of states given a sequence of observations. The FORWARD and
BACKWARD operators are defined by Equations (14.5) and (14.9), respectively.

Plugging this into Equation (14.10), we find that the smoothed estimate for rain on day 1 is

P(R1 |u1,u2) = α〈0.818,0.182〉×〈0.69,0.41〉 ≈ 〈0.883,0.117〉 .
Thus, the smoothed estimate for rain on day 1 is higher than the filtered estimate (0.818) in
this case. This is because the umbrella on day 2 makes it more likely to have rained on day
2; in turn, because rain tends to persist, that makes it more likely to have rained on day 1.

Both the forward and backward recursions take a constant amount of time per step; hence,
the time complexity of smoothing with respect to evidence e1:t is O(t). This is the complexity
for smoothing at a particular time step k. If we want to smooth the whole sequence, one
obvious method is simply to run the whole smoothing process once for each time step to be
smoothed. This results in a time complexity of O(t2).

A better approach uses a simple application of dynamic programming to reduce the com-
plexity to O(t). A clue appears in the preceding analysis of the umbrella example, where we
were able to reuse the results of the forward-filtering phase. The key to the linear-time algo-
rithm is to record the results of forward filtering over the whole sequence. Then we run the
backward recursion from t down to 1, computing the smoothed estimate at each step k from
the computed backward message bk+1:t and the stored forward message f1:k. The algorithm,
aptly called the forward–backward algorithm, is shown in Figure 14.4.Forward–backward

algorithm

The alert reader will have spotted that the Bayesian network structure shown in Fig-
ure 14.3 is a polytree as defined on page 451. This means that a straightforward application
of the clustering algorithm also yields a linear-time algorithm that computes smoothed es-
timates for the entire sequence. It is now understood that the forward–backward algorithm
is in fact a special case of the polytree propagation algorithm used with clustering methods
(although the two were developed independently).

The forward–backward algorithm forms the computational backbone for many applica-
tions that deal with sequences of noisy observations. As described so far, it has two practical
drawbacks. The first is that its space complexity can be too high when the state space is large
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and the sequences are long. It uses O(|f|t) space where |f| is the size of the representation of
the forward message. The space requirement can be reduced to O(|f| log t) with a concomitant
increase in the time complexity by a factor of log t, as shown in Exercise 14.ISLE. In some
cases (see Section 14.3), a constant-space algorithm can be used.

The second drawback of the basic algorithm is that it needs to be modified to work in an
online setting where smoothed estimates must be computed for earlier time slices as new ob-
servations are continuously added to the end of the sequence. The most common requirement
is for fixed-lag smoothing, which requires computing the smoothed estimate P(Xt−d |e1:t) Fixed-lag smoothing

for fixed d. That is, smoothing is done for the time slice d steps behind the current time t; as t
increases, the smoothing has to keep up. Obviously, we can run the forward–backward algo-
rithm over the d-step “window” as each new observation is added, but this seems inefficient.
In Section 14.3, we will see that fixed-lag smoothing can, in some cases, be done in constant
time per update, independent of the lag d.

14.2.3 Finding the most likely sequence

Suppose that [true, true, false, true, true] is the observed umbrella sequence for the security
guard’s first five days on the job. What weather sequence is most likely to explain this? Does
the absence of the umbrella on day 3 mean that it wasn’t raining, or did the director forget
to bring it? If it didn’t rain on day 3, perhaps (because weather tends to persist) it didn’t
rain on day 4 either, but the director brought the umbrella just in case. In all, there are 25

possible weather sequences we could pick. Is there a way to find the most likely one, short of
enumerating all of them and calculating their likelihoods?

We could try this linear-time procedure: use smoothing to find the posterior distribution
for the weather at each time step; then construct the sequence, using at each step the weather
that is most likely according to the posterior. Such an approach should set off alarm bells
in the reader’s head, because the posterior distributions computed by smoothing are distri-
butions over single time steps, whereas to find the most likely sequence we must consider
joint probabilities over all the time steps. The results can in fact be quite different. (See
Exercise 14.VITE.)

There is a linear-time algorithm for finding the most likely sequence, but it requires more
thought. It relies on the same Markov property that yielded efficient algorithms for filtering
and smoothing. The idea is to view each sequence as a path through a graph whose nodes
are the possible states at each time step. Such a graph is shown for the umbrella world in
Figure 14.5(a). Now consider the task of finding the most likely path through this graph,
where the likelihood of any path is the product of the transition probabilities along the path
and the probabilities of the given observations at each state.

Let’s focus in particular on paths that reach the state Rain5= true. Because of the Markov
property, it follows that the most likely path to the state Rain5= true consists of the most
likely path to some state at time 4 followed by a transition to Rain5= true; and the state at
time 4 that will become part of the path to Rain5= true is whichever maximizes the likelihood
of that path. In other words, there is a recursive relationship between most likely paths to each J
state xt+1 and most likely paths to each state xt .

We can use this property directly to construct a recursive algorithm for computing the
most likely path given the evidence. We will use a recursively computed message m1:t , like
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Figure 14.5 (a) Possible state sequences for Raint can be viewed as paths through a graph of
the possible states at each time step. (States are shown as rectangles to avoid confusion with
nodes in a Bayes net.) (b) Operation of the Viterbi algorithm for the umbrella observation
sequence [true, true, false, true, true], where the evidence starts at time 1. For each t, we
have shown the values of the message m1:t , which gives the probability of the best sequence
reaching each state at time t. Also, for each state, the bold arrow leading into it indicates
its best predecessor as measured by the product of the preceding sequence probability and
the transition probability. Following the bold arrows back from the most likely state in m1:5
gives the most likely sequence, shown by the bold outlines and darker shading.

the forward message f1:t in the filtering algorithm. The message is defined as follows:5

m1:t = max
x1:t−1

P(x1:t−1,Xt ,e1:t) .

To obtain the recursive relationship between m1:t+1 and m1:t , we can repeat more or less the
same steps that we used for Equation (14.5):

m1:t+1 = max
x1:t

P(x1:t ,Xt+1,e1:t+1) = max
x1:t

P(x1:t ,Xt+1,e1:t ,et+1)

= max
x1:t

P(et+1 |x1:t ,Xt+1,e1:t)P(x1:t ,Xt+1,e1:t)

= P(et+1 |Xt+1)max
x1:t

P(Xt+1, |xt)P(x1:t ,e1:t)

= P(et+1 |Xt+1)max
xt

P(Xt+1, |xt)max
x1:t−1

P(x1:t−1,xt ,e1:t) (14.11)

where the final term maxx1:t−1 P(x1:t−1,xt ,e1:t) is exactly the entry for the particular state xt

in the message vector m1:t . Equation (14.11) is essentially identical to the filtering equa-
tion (14.5) except that the summation over xt in Equation (14.5) is replaced by the maximiza-
tion over xt in Equation (14.11), and there is no normalization constant α in Equation (14.11).
Thus, the algorithm for computing the most likely sequence is similar to filtering: it starts at
time 0 with the prior m1:0=P(X0) and then runs forward along the sequence, computing the

5 Notice that these are not quite the probabilities of the most likely paths to reach the states Xt given the evidence,
which would be the conditional probabilities maxx1:t−1 P(x1:t−1,Xt |e1:t); but the two vectors are related by a
constant factor P(e1:t). The difference is immaterial because the max operator doesn’t care about constant factors.
We get a slightly simpler recursion with m1:t defined this way.
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m message at each time step using Equation (14.11). The progress of this computation is
shown in Figure 14.5(b).

At the end of the observation sequence, m1:t will contain the probability for the most
likely sequence reaching each of the final states. One can thus easily select the final state of
the most likely sequence overall (the state outlined in bold at step 5). In order to identify the
actual sequence, as opposed to just computing its probability, the algorithm will also need to
record, for each state, the best state that leads to it; these are indicated by the bold arrows in
Figure 14.5(b). The optimal sequence is identified by following these bold arrows backwards
from the best final state.

The algorithm we have just described is called the Viterbi algorithm, after its inventor, Viterbi algorithm

Andrew Viterbi. Like the filtering algorithm, its time complexity is linear in t, the length of
the sequence. Unlike filtering, which uses constant space, its space requirement is also linear
in t. This is because the Viterbi algorithm needs to keep the pointers that identify the best
sequence leading to each state.

One final practical point: numerical underflow is a significant issue for the Viterbi algo-
rithm. In Figure 14.5(b), the probabilities are getting smaller and smaller—and this is just a
toy example. Real applications in DNA analysis or message decoding may have thousands or
millions of steps. One possible solution is simply to normalize m at each step; this rescaling
does not affect correctness because max(cx,cy)=c ·max(x,y). A second solution is to use
log probabilities everywhere and replace multiplication by addition. Again, correctness is
unaffected because the log function is monotonic, so max(logx, logy)= logmax(x,y).

14.3 Hidden Markov Models

The preceding section developed algorithms for temporal probabilistic reasoning using a gen-
eral framework that was independent of the specific form of the transition and sensor models
and independent of the nature of the state and evidence variables. In this and the next two
sections, we discuss more concrete models and applications that illustrate the power of the
basic algorithms and in some cases allow further improvements.

We begin with the hidden Markov model, or HMM. An HMM is a temporal probabilis- Hidden Markov
model

tic model in which the state of the process is described by a single, discrete random variable.
The possible values of the variable are the possible states of the world. The umbrella example
described in the preceding section is therefore an HMM, since it has just one state variable:
Raint . What happens if you have a model with two or more state variables? You can still fit
it into the HMM framework by combining the variables into a single “megavariable” whose
values are all possible tuples of values of the individual state variables. We will see that the
restricted structure of HMMs allows for a simple and elegant matrix implementation of all
the basic algorithms.6

Although HMMs require the state to be a single, discrete variable, there is no correspond-
ing restriction on the evidence variables. This is because the evidence variables are always
observed, which means that there is no need to keep track of any distribution over their val-
ues. (If a variable is not observed, it can simply be dropped from the model for that time
step.) There can be many evidence variables, both discrete and continuous.

6 The reader unfamiliar with basic operations on vectors and matrices might wish to consult Appendix A before
proceeding with this section.



492 Chapter 14 Probabilistic Reasoning over Time

14.3.1 Simplified matrix algorithms

With a single, discrete state variable Xt , we can give concrete form to the representations of
the transition model, the sensor model, and the forward and backward messages. Let the state
variable Xt have values denoted by integers 1, . . . ,S, where S is the number of possible states.
The transition model P(Xt |Xt−1) becomes an S×S matrix T, where

Ti j = P(Xt = j |Xt−1= i) .

That is, Ti j is the probability of a transition from state i to state j. For example, if we number
the states Rain= true and Rain= false as 1 and 2, respectively, then the transition matrix for
the umbrella world defined in Figure 14.2 is

T = P(Xt |Xt−1) =

(
0.7 0.3
0.3 0.7

)
.

We also put the sensor model in matrix form. In this case, because the value of the evidence
variable Et is known at time t (call it et), we need only specify, for each state, how likely it
is that the state causes et to appear: we need P(et |Xt = i) for each state i. For mathematical
convenience we place these values into an S× S diagonal observation matrix, Ot , one forObservation matrix

each time step. The ith diagonal entry of Ot is P(et |Xt = i) and the other entries are 0. For
example, on day 1 in the umbrella world of Figure 14.5, U1= true, and on day 3, U3= false,
so we have

O1 =

(
0.9 0
0 0.2

)
; O3 =

(
0.1 0
0 0.8

)
.

Now, if we use column vectors to represent the forward and backward messages, all the com-
putations become simple matrix–vector operations. The forward equation (14.5) becomes

f1:t+1 = αOt+1T>f1:t (14.12)

and the backward equation (14.9) becomes

bk+1:t = TOk+1bk+2:t . (14.13)

From these equations, we can see that the time complexity of the forward–backward algo-
rithm (Figure 14.4) applied to a sequence of length t is O(S2t), because each step requires
multiplying an S-element vector by an S×S matrix. The space requirement is O(St), because
the forward pass stores t vectors of size S.

Besides providing an elegant description of the filtering and smoothing algorithms for
HMMs, the matrix formulation reveals opportunities for improved algorithms. The first is a
simple variation on the forward–backward algorithm that allows smoothing to be carried out
in constant space, independently of the length of the sequence. The idea is that smoothing
for any particular time slice k requires the simultaneous presence of both the forward and
backward messages, f1:k and bk+1:t , according to Equation (14.8). The forward–backward al-
gorithm achieves this by storing the fs computed on the forward pass so that they are available
during the backward pass. Another way to achieve this is with a single pass that propagates
both f and b in the same direction. For example, the “forward” message f can be propagated
backward if we manipulate Equation (14.12) to work in the other direction:

f1:t = α′(T>)−1O−1
t+1f1:t+1 .

The modified smoothing algorithm works by first running the standard forward pass to com-
pute ft:t (forgetting all the intermediate results) and then running the backward pass for both
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function FIXED-LAG-SMOOTHING(et , hmm, d) returns a distribution over Xt−d
inputs: et , the current evidence for time step t

hmm, a hidden Markov model with S× S transition matrix T
d, the length of the lag for smoothing

persistent: t, the current time, initially 1
f, the forward message P(Xt |e1:t), initially hmm.PRIOR
B, the d-step backward transformation matrix, initially the identity matrix
et−d:t , double-ended list of evidence from t−d to t, initially empty

local variables: Ot−d ,Ot , diagonal matrices containing the sensor model information

add et to the end of et−d:t
Ot←diagonal matrix containing P(et |Xt)
if t > d then

f←FORWARD(f,et−d)
remove et−d−1 from the beginning of et−d:t
Ot−d←diagonal matrix containing P(et−d |Xt−d)
B←O−1

t−dT−1BTOt
else B←BTOt
t← t+1
if t > d +1 then return NORMALIZE(f × B1) else return null

Figure 14.6 An algorithm for smoothing with a fixed time lag of d steps, implemented as an
online algorithm that outputs the new smoothed estimate given the observation for a new time
step. Notice that the final output NORMALIZE(f×B1) is just α f×b, by Equation (14.14).

b and f together, using them to compute the smoothed estimate at each step. Since only one
copy of each message is needed, the storage requirements are constant (i.e., independent of
t, the length of the sequence). There are two significant restrictions on this algorithm: it re-
quires that the transition matrix be invertible and that the sensor model have no zeroes—that
is, that every observation be possible in every state.

A second area in which the matrix formulation reveals an improvement is in online
smoothing with a fixed lag. The fact that smoothing can be done in constant space sug-
gests that there should exist an efficient recursive algorithm for online smoothing—that is,
an algorithm whose time complexity is independent of the length of the lag. Let us suppose
that the lag is d; that is, we are smoothing at time slice t−d, where the current time is t. By
Equation (14.8), we need to compute

α f1:t−d×bt−d+1:t

for slice t−d. Then, when a new observation arrives, we need to compute

α f1:t−d+1×bt−d+2:t+1

for slice t−d +1. How can this be done incrementally? First, we can compute f1:t−d+1 from
f1:t−d , using the standard filtering process, Equation (14.5).

Computing the backward message incrementally is trickier, because there is no simple
relationship between the old backward message bt−d+1:t and the new backward message
bt−d+2:t+1. Instead, we will examine the relationship between the old backward message
bt−d+1:t and the backward message at the front of the sequence, bt+1:t . To do this, we apply
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Equation (14.13) d times to get

bt−d+1:t =

(
t

∏
i= t−d+1

TOi

)
bt+1:t = Bt−d+1:t1 , (14.14)

where the matrix Bt−d+1:t is the product of the sequence of T and O matrices and 1 is a vector
of 1s. B can be thought of as a “transformation operator” that transforms a later backward
message into an earlier one. A similar equation holds for the new backward messages after
the next observation arrives:

bt−d+2:t+1 =

(
t+1

∏
i= t−d+2

TOi

)
bt+2:t+1 = Bt−d+2:t+11 . (14.15)

Examining the product expressions in Equations (14.14) and (14.15), we see that they have a
simple relationship: to get the second product, “divide” the first product by the first element
TOt−d+1, and multiply by the new last element TOt+1. In matrix language, then, there is a
simple relationship between the old and new B matrices:

Bt−d+2:t+1 = O−1
t−d+1T−1Bt−d+1:tTOt+1 . (14.16)

This equation provides an incremental update for the B matrix, which in turn (through Equa-
tion (14.15)) allows us to compute the new backward message bt−d+2:t+1. The complete
algorithm, which requires storing and updating f and B, is shown in Figure 14.6.

14.3.2 Hidden Markov model example: Localization

On page 151, we introduced a simple form of the localization problem for the vacuum world.
In that version, the robot had a single nondeterministic Move action and its sensors reported
perfectly whether or not obstacles lay immediately to the north, south, east, and west; the
robot’s belief state was the set of possible locations it could be in.

Here we make the problem slightly more realistic by allowing for noise in the sensors,
and formalizing the idea that the robot moves randomly—it is equally likely to move to
any adjacent empty square. The state variable Xt represents the location of the robot on the
discrete grid; the domain of this variable is the set of empty squares, which we will label by
the integers{1, . . . ,S}. Let NEIGHBORS(i) be the set of empty squares that are adjacent to i
and let N(i) be the size of that set. Then the transition model for the Move action says that
the robot is equally likely to end up at any neighboring square:

P(Xt+1= j |Xt = i) = Ti j =

{
1/N(i) if j ∈ NEIGHBORS(i)
0 otherwise.

We don’t know where the robot starts, so we will assume a uniform distribution over all the
squares; that is, P(X0= i)=1/S. For the particular environment we consider (Figure 14.7),
S=42 and the transition matrix T has 42×42=1764 entries.

The sensor variable Et has 16 possible values, each a four-bit sequence giving the pres-
ence or absence of an obstacle in each of the compass directions NESW. For example, 1010
means that the north and south sensors report an obstacle and the east and west do not. Sup-
pose that each sensor’s error rate is ε and that errors occur independently for the four sensor
directions. In that case, the probability of getting all four bits right is (1− ε)4 and the proba-
bility of getting them all wrong is ε4. Furthermore, if dit is the discrepancy—the number of
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(a) Posterior distribution over robot location after  E1 = 1011

(b) Posterior distribution over robot location after  E1 = 1011, E2 = 1010

Figure 14.7 Posterior distribution over robot location: (a) after one observation E1=1011
(i.e., obstacles to the north, south, and west); (b) after a random move to an adjacent location
and a second observation E2=1010 (i.e., obstacles to the north and south). The darkness of
each square corresponds to the probability that the robot is at that location. The sensor error
rate for each bit is ε=0.2.

bits that are different—between the true values for square i and the actual reading et , then the
probability that a robot in square i would receive a sensor reading et is

P(Et =et |Xt = i) = (Ot)ii = (1− ε)4−dit εdit .

For example, the probability that a square with obstacles to the north and south would produce
a sensor reading 1110 is (1− ε)3ε1.

Given the matrices T and Ot , the robot can use Equation (14.12) to compute the posterior
distribution over locations—that is, to work out where it is. Figure 14.7 shows the distri-
butions P(X1 |E1=1011) and P(X2 |E1=1011,E2=1010). This is the same maze we saw
before in Figure 4.18 (page 152), but there we used logical filtering to find the locations that
were possible, assuming perfect sensing. Those same locations are still the most likely with
noisy sensing, but now every location has some nonzero probability because any location
could produce any sensor values.

In addition to filtering to estimate its current location, the robot can use smoothing (Equa-
tion (14.13)) to work out where it was at any given past time—for example, where it began
at time 0—and it can use the Viterbi algorithm to work out the most likely path it has taken
to get where it is now. Figure 14.8 shows the localization error and Viterbi path error for
various values of the per-bit sensor error rate ε. Even when ε is 0.20—which means that the
overall sensor reading is wrong 59% of the time—the robot is usually able to work out its lo-
cation to within two squares after 20 observations. This is because of the algorithm’s ability
to integrate evidence over time and to take into account the probabilistic constraints imposed
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Figure 14.8 Performance of HMM localization as a function of the length of the observation
sequence for various different values of the sensor error probability ε; data averaged over 400
runs. (a) The localization error, defined as the Manhattan distance from the true location. (b)
The Viterbi path error, defined as the average Manhattan distance of states on the Viterbi path
from corresponding states on the true path.

on the location sequence by the transition model. When ε is 0.10 or less, the robot needs
only a few observations to work out where it is and to track its position accurately. When
ε is 0.40, both the localization error and the Viterbi path error remain large; in other words,
the robot is lost. This is because a sensor with an error probability of 0.40 provides too little
information to counteract the loss of information about the robot’s position that comes from
the unpredictable random motion.

The state variable for the example we have considered in this section is a physical loca-
tion in the world. Other problems can, of course, include other aspects of the world. Exer-
cise 14.ROOM asks you to consider a version of the vacuum robot that has the policy of going
straight for as long as it can; only when it encounters an obstacle does it change to a new
heading. To model this robot, each state in the model consists of a (location, heading) pair.
For the environment in Figure 14.7, which has 42 empty squares, this leads to 168 states and
a transition matrix with 1682=28,224 entries—still a manageable number.

If we add the possibility of dirt in each of the 42 squares, the number of states is multiplied
by 242 and the transition matrix has more than 1029 entries—no longer a manageable number.
In general, if the state is composed of n discrete variables with at most d values each, the
corresponding HMM transition matrix will have size O(d2n) and the per-update computation
time will also be O(d2n).

For these reasons, although HMMs have many uses in areas ranging from speech recogni-
tion to molecular biology, they are fundamentally limited in their ability to represent complex
processes. In the terminology introduced in Chapter 2, HMMs are an atomic representation:
states of the world have no internal structure and are simply labeled by integers. Section 14.5
shows how to use dynamic Bayesian networks—a factored representation—to model domains
with many state variables. The next section shows how to handle domains with continuous
state variables, which of course lead to an infinite state space.



Section 14.4 Kalman Filters 497

14.4 Kalman Filters

Imagine watching a small bird flying through dense jungle foliage at dusk: you glimpse
brief, intermittent flashes of motion; you try hard to guess where the bird is and where it will
appear next so that you don’t lose it. Or imagine that you are a World War II radar operator
peering at a faint, wandering blip that appears once every 10 seconds on the screen. Or, going
back further still, imagine you are Kepler trying to reconstruct the motions of the planets
from a collection of highly inaccurate angular observations taken at irregular and imprecisely
measured intervals.

In all these cases, you are doing filtering: estimating state variables (here, the position
and velocity of a moving object) from noisy observations over time. If the variables were
discrete, we could model the system with a hidden Markov model. This section examines
methods for handling continuous variables, using an algorithm called Kalman filtering, after Kalman filtering

one of its inventors, Rudolf Kalman.
The bird’s flight might be specified by six continuous variables at each time point; three

for position (Xt ,Yt ,Zt) and three for velocity (Ẋt ,Ẏt , Żt). We will need suitable conditional
densities to represent the transition and sensor models; as in Chapter 13, we will use linear–
Gaussian distributions. This means that the next state Xt+1 must be a linear function of the
current state Xt , plus some Gaussian noise, a condition that turns out to be quite reasonable in
practice. Consider, for example, the X-coordinate of the bird, ignoring the other coordinates
for now. Let the time interval between observations be ∆, and assume constant velocity during
the interval; then the position update is given by Xt+∆ = Xt + Ẋ ∆. Adding Gaussian noise (to
account for wind variation, etc.), we obtain a linear–Gaussian transition model:

P(Xt+∆=xt+∆ |Xt =xt , Ẋt = ẋt) =N (xt+∆;xt + ẋt ∆,σ2) .

The Bayesian network structure for a system with position vector Xt and velocity Ẋt is shown
in Figure 14.9. Note that this is a very specific form of linear–Gaussian model; the general
form will be described later in this section and covers a vast array of applications beyond the
simple motion examples of the first paragraph. The reader might wish to consult Appendix A
for some of the mathematical properties of Gaussian distributions; for our immediate pur-
poses, the most important is that a multivariate Gaussian distribution for d variables is
specified by a d-element mean µ and a d×d covariance matrix Σ.

14.4.1 Updating Gaussian distributions

In Chapter 13 on page 441, we alluded to a key property of the linear–Gaussian family of
distributions: it remains closed under Bayesian updating. (That is, given any evidence, the
posterior is still in the linear–Gaussian family.) Here we make this claim precise in the context
of filtering in a temporal probability model. The required properties correspond to the two-
step filtering calculation in Equation (14.5):

1. If the current distribution P(Xt |e1:t) is Gaussian and the transition model P(Xt+1 |xt)
is linear–Gaussian, then the one-step predicted distribution given by

P(Xt+1 |e1:t) =
∫

xt

P(Xt+1 |xt)P(xt |e1:t)dxt (14.17)

is also a Gaussian distribution.
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Figure 14.9 Bayesian network structure for a linear dynamical system with position Xt ,
velocity Ẋt , and position measurement Zt .

2. If the prediction P(Xt+1 |e1:t) is Gaussian and the sensor model P(et+1 |Xt+1) is linear–
Gaussian, then, after conditioning on the new evidence, the updated distribution

P(Xt+1 |e1:t+1) = αP(et+1 |Xt+1)P(Xt+1 |e1:t) (14.18)

is also a Gaussian distribution.

Thus, the FORWARD operator for Kalman filtering takes a Gaussian forward message f1:t ,
specified by a mean µt and covariance Σt , and produces a new multivariate Gaussian forward
message f1:t+1, specified by a mean µt+1 and covariance Σt+1. So if we start with a Gaussian
prior f1:0=P(X0)=N (µ0,Σ0), filtering with a linear–Gaussian model produces a Gaussian
state distribution for all time.

This seems to be a nice, elegant result, but why is it so important? The reason is that
except for a few special cases such as this, filtering with continuous or hybrid (discrete andI
continuous) networks generates state distributions whose representation grows without bound
over time. This statement is not easy to prove in general, but Exercise 14.KFSW shows what
happens for a simple example.

14.4.2 A simple one-dimensional example

We have said that the FORWARD operator for the Kalman filter maps a Gaussian into a new
Gaussian. This translates into computing a new mean and covariance from the previous mean
and covariance. Deriving the update rule in the general (multivariate) case requires rather a
lot of linear algebra, so we will stick to a very simple univariate case for now, and later give
the results for the general case. Even for the univariate case, the calculations are somewhat
tedious, but we feel that they are worth seeing because the usefulness of the Kalman filter is
tied so intimately to the mathematical properties of Gaussian distributions.

The temporal model we consider describes a random walk of a single continuous state
variable Xt with a noisy observation Zt . An example might be the “consumer confidence” in-
dex, which can be modeled as undergoing a random Gaussian-distributed change each month
and is measured by a random consumer survey that also introduces Gaussian sampling noise.
The prior distribution is assumed to be Gaussian with variance σ2

0:

P(x0) = αe
− 1

2

(
(x0−µ0)

2

σ2
0

)
.
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(For simplicity, we use the same symbol α for all normalizing constants in this section.) The
transition model adds a Gaussian perturbation of constant variance σ2

x to the current state:

P(xt+1 |xt) = αe
− 1

2

(
(xt+1−xt )2

σ2x

)
.

The sensor model assumes Gaussian noise with variance σ2
z :

P(zt |xt) = αe
− 1

2

(
(zt−xt )2

σ2z

)
.

Now, given the prior P(X0), the one-step predicted distribution comes from Equation (14.17):

P(x1) =
∫

∞

−∞

P(x1 |x0)P(x0)dx0 = α
∫

∞

−∞

e
− 1

2

(
(x1−x0)

2

σ2x

)
e
− 1

2

(
(x0−µ0)

2

σ2
0

)
dx0

= α
∫

∞

−∞

e
− 1

2

(
σ2

0 (x1−x0)
2+σ2

x (x0−µ0)
2

σ2
0σ

2x

)
dx0 .

This integral looks rather complicated. The key to progress is to notice that the exponent is the
sum of two expressions that are quadratic in x0 and hence is itself a quadratic in x0. A simple
trick known as completing the square allows the rewriting of any quadratic ax2

0 +bx0 + c as Completing the
square

the sum of a squared term a(x0− −b
2a )

2 and a residual term c− b2

4a that is independent of x0.
In this case, we have a=(σ2

0 +σ2
x )/(σ

2
0σ

2
x ), b=−2(σ2

0x1 +σ2
xµ0)/(σ

2
0σ

2
x ), and c=(σ2

0x2
1 +

σ2
xµ

2
0)/(σ

2
0σ

2
x ). The residual term can be taken outside the integral, giving us

P(x1) = αe−
1
2

(
c− b2

4a

) ∫
∞

−∞

e−
1
2(a(x0−−b

2a )
2) dx0 .

Now the integral is just the integral of a Gaussian over its full range, which is simply 1. Thus,
we are left with only the residual term from the quadratic. Plugging back in the expressions
for a, b, and c and simplifying, we obtain

P(x1) = αe
− 1

2

(
(x1−µ0)

2

σ2
0+σ2x

)
.

That is, the one-step predicted distribution is a Gaussian with the same mean µ0 and a variance
equal to the sum of the original variance σ2

0 and the transition variance σ2
x .

To complete the update step, we need to condition on the observation at the first time
step, namely, z1. From Equation (14.18), this is given by

P(x1 |z1) = αP(z1 |x1)P(x1)

= αe
− 1

2

(
(z1−x1)

2

σ2z

)
e
− 1

2

(
(x1−µ0)

2

σ2
0+σ2x

)
.

Once again, we combine the exponents and complete the square (Exercise 14.KALM), obtain-
ing the following expression for the posterior:

P(x1 |z1) = αe
− 1

2

(
x1−

(σ2
0+σ2

x )z1+σ2
z µ0

σ2
0+σ2x+σ2z

)2

(σ2
0+σ2x )σ2z /(σ2

0+σ2x+σ2z ) . (14.19)

Thus, after one update cycle, we have a new Gaussian distribution for the state variable.
From the Gaussian formula in Equation (14.19), we see that the new mean and standard

deviation can be calculated from the old mean and standard deviation as follows:

µt+1 =
(σ2

t +σ
2
x )zt+1 +σ

2
zµt

σ2
t +σ

2
x +σ

2
z

and σ2
t+1 =

(σ2
t +σ

2
x )σ

2
z

σ2
t +σ

2
x +σ

2
z
. (14.20)
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Figure 14.10 Stages in the Kalman filter update cycle for a random walk with a prior given
by µ0=0.0 and σ0=1.5, transition noise given by σx=2.0, sensor noise given by σz=1.0,
and a first observation z1=2.5 (marked on the x-axis). Notice how the prediction P(x1) is
flattened out, relative to P(x0), by the transition noise. Notice also that the mean of the
posterior distribution P(x1 |z1) is slightly to the left of the observation z1 because the mean is
a weighted average of the prediction and the observation.

Figure 14.10 shows one update cycle of the Kalman filter in the one-dimensional case for
particular values of the transition and sensor models.

Equation (14.20) plays exactly the same role as the general filtering equation (14.5) or
the HMM filtering equation (14.12). Because of the special nature of Gaussian distributions,
however, the equations have some interesting additional properties.

First, we can interpret the calculation for the new mean µt+1 as a weighted mean of the
new observation zt+1 and the old mean µt . If the observation is unreliable, then σ2

z is large
and we pay more attention to the old mean; if the old mean is unreliable (σ2

t is large) or the
process is highly unpredictable (σ2

x is large), then we pay more attention to the observation.
Second, notice that the update for the variance σ2

t+1 is independent of the observation. We
can therefore compute in advance what the sequence of variance values will be. Third, the
sequence of variance values converges quickly to a fixed value that depends only on σ2

x and
σ2

z , thereby substantially simplifying the subsequent calculations. (See Exercise 14.VARI.)

14.4.3 The general case

The preceding derivation illustrates the key property of Gaussian distributions that allows
Kalman filtering to work: the fact that the exponent is a quadratic form. This is true not just
for the univariate case; the full multivariate Gaussian distribution has the form

N (x;µ,Σ) = αe−
1
2

(
(x−µ)>Σ

−1
(x−µ)

)
.

Multiplying out the terms in the exponent, we see that the exponent is also a quadratic func-
tion of the values xi in x. Thus, filtering preserves the Gaussian nature of the state distribution.
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Let us first define the general temporal model used with Kalman filtering. Both the tran-
sition model and the sensor model are required to be a linear transformation with additive
Gaussian noise. Thus, we have

P(xt+1 |xt) = N (xt+1;Fxt ,Σx)
P(zt |xt) = N (zt ;Hxt ,Σz) ,

(14.21)

where F and Σx are matrices describing the linear transition model and transition noise co-
variance, and H and Σz are the corresponding matrices for the sensor model. Now the update
equations for the mean and covariance, in their full, hairy horribleness, are

µt+1 = Fµt +Kt+1(zt+1−HFµt)

Σt+1 = (I−Kt+1H)(FΣtF>+Σx) ,
(14.22)

where Kt+1=(FΣtF>+Σx)H>(H(FΣtF>+Σx)H>+Σz)
−1 is the Kalman gain matrix. Be- Kalman gain matrix

lieve it or not, these equations make some intuitive sense. For example, consider the up-
date for the mean state estimate µ. The term Fµt is the predicted state at t + 1, so HFµt is
the predicted observation. Therefore, the term zt+1−HFµt represents the error in the pre-
dicted observation. This is multiplied by Kt+1 to correct the predicted state; hence, Kt+1
is a measure of how seriously to take the new observation relative to the prediction. As in
Equation (14.20), we also have the property that the variance update is independent of the
observations. The sequence of values for Σt and Kt can therefore be computed offline, and
the actual calculations required during online tracking are quite modest.

To illustrate these equations at work, we have applied them to the problem of tracking an
object moving on the X–Y plane. The state variables are X = (X ,Y, Ẋ ,Ẏ )>, so F, Σx, H, and
Σz are 4×4 matrices. Figure 14.11(a) shows the true trajectory, a series of noisy observations,
and the trajectory estimated by Kalman filtering, along with the covariances indicated by the
one-standard-deviation contours. The filtering process does a good job of tracking the actual
motion, and, as expected, the variance quickly reaches a fixed point.

We can also derive equations for smoothing as well as filtering with linear–Gaussian
models. The smoothing results are shown in Figure 14.11(b). Notice how the variance in the
position estimate is sharply reduced, except at the ends of the trajectory (why?), and that the
estimated trajectory is much smoother.

14.4.4 Applicability of Kalman filtering

The Kalman filter and its elaborations are used in a vast array of applications. The “classical”
application is in radar tracking of aircraft and missiles. Related applications include acoustic
tracking of submarines and ground vehicles and visual tracking of vehicles and people. In a
slightly more esoteric vein, Kalman filters are used to reconstruct particle trajectories from
bubble-chamber photographs and ocean currents from satellite surface measurements. The
range of application is much larger than just the tracking of motion: any system characterized
by continuous state variables and noisy measurements will do. Such systems include pulp
mills, chemical plants, nuclear reactors, plant ecosystems, and national economies.

The fact that Kalman filtering can be applied to a system does not mean that the re-
sults will be valid or useful. The assumptions made—linear–Gaussian transition and sensor
models—are very strong. The extended Kalman filter (EKF) attempts to overcome nonlin- Extended Kalman

filter (EKF)

earities in the system being modeled. A system is nonlinear if the transition model cannot Nonlinear

be described as a matrix multiplication of the state vector, as in Equation (14.21). The EKF
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Figure 14.11 (a) Results of Kalman filtering for an object moving on the X–Y plane, showing
the true trajectory (left to right), a series of noisy observations, and the trajectory estimated
by Kalman filtering. Variance in the position estimate is indicated by the ovals. (b) The
results of Kalman smoothing for the same observation sequence.

works by modeling the system as locally linear in xt in the region of xt =µt , the mean of the
current state distribution. This works well for smooth, well-behaved systems and allows the
tracker to maintain and update a Gaussian state distribution that is a reasonable approximation
to the true posterior. A detailed example is given in Chapter 26.

What does it mean for a system to be “unsmooth” or “poorly behaved”? Technically,
it means that there is significant nonlinearity in system response within the region that is
“close” (according to the covariance Σt) to the current mean µt . To understand this idea
in nontechnical terms, consider the example of trying to track a bird as it flies through the
jungle. The bird appears to be heading at high speed straight for a tree trunk. The Kalman
filter, whether regular or extended, can make only a Gaussian prediction of the location of the
bird, and the mean of this Gaussian will be centered on the trunk, as shown in Figure 14.12(a).
A reasonable model of the bird, on the other hand, would predict evasive action to one side or
the other, as shown in Figure 14.12(b). Such a model is highly nonlinear, because the bird’s
decision varies sharply depending on its precise location relative to the trunk.

To handle examples like these, we clearly need a more expressive language for repre-
senting the behavior of the system being modeled. Within the control theory community, for
which problems such as evasive maneuvering by aircraft raise the same kinds of difficulties,
the standard solution is the switching Kalman filter. In this approach, multiple Kalman fil-Switching Kalman

filter
ters run in parallel, each using a different model of the system—for example, one for straight
flight, one for sharp left turns, and one for sharp right turns. A weighted sum of predictions
is used, where the weight depends on how well each filter fits the current data. We will see
in the next section that this is simply a special case of the general dynamic Bayesian net-
work model, obtained by adding a discrete “maneuver” state variable to the network shown
in Figure 14.9. Switching Kalman filters are discussed further in Exercise 14.KFSW.



Section 14.5 Dynamic Bayesian Networks 503

Figure 14.12 A bird flying toward a tree (top views). (a) A Kalman filter will predict the
location of the bird using a single Gaussian centered on the obstacle. (b) A more realistic
model allows for the bird’s evasive action, predicting that it will fly to one side or the other.

14.5 Dynamic Bayesian Networks

Dynamic Bayesian networks, or DBNs, extend the semantics of standard Bayesian networks Dynamic Bayesian
network

to handle temporal probability models of the kind described in Section 14.1. We have already
seen examples of DBNs: the umbrella network in Figure 14.2 and the Kalman filter network
in Figure 14.9. In general, each slice of a DBN can have any number of state variables Xt

and evidence variables Et . For simplicity, we assume that the variables, their links, and their
conditional distributions are exactly replicated from slice to slice and that the DBN represents
a first-order Markov process, so that each variable can have parents only in its own slice or
the immediately preceding slice. In this way, the DBN corresponds to a Bayesian network
with infinitely many variables.

It should be clear that every hidden Markov model can be represented as a DBN with
a single state variable and a single evidence variable. It is also the case that every discrete-
variable DBN can be represented as an HMM; as explained in Section 14.3, we can combine
all the state variables in the DBN into a single state variable whose values are all possible
tuples of values of the individual state variables. Now, if every HMM is a DBN and every
DBN can be translated into an HMM, what’s the difference? The difference is that, by de- J
composing the state of a complex system into its constituent variables, we can take advantage
of sparseness in the temporal probability model.

To see what this means in practice, remember that in Section 14.3 we said that an HMM
representation for a temporal process with n discrete variables, each with up to d values,
needs a transition matrix of size O(d2n). The DBN representation, on the other hand, has size
O(ndk) if the number of parents of each variable is bounded by k. In other words, the DBN
representation is linear rather than exponential in the number of variables. For the vacuum
robot with 42 possibly dirty locations, the number of probabilities required is reduced from
5×1029 to a few thousand.

We have already explained that every Kalman filter model can be represented in a DBN
with continuous variables and linear–Gaussian conditional distributions (Figure 14.9). It
should be clear from the discussion at the end of the preceding section that not every DBN
can be represented by a Kalman filter model. In a Kalman filter, the current state distribution
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R1 P(U1|R1)

Figure 14.13 Left: Specification of the prior, transition model, and sensor model for the
umbrella DBN. Subsequent slices are copies of slice 1. Right: A simple DBN for robot
motion in the X–Y plane.

is always a single multivariate Gaussian distribution—that is, a single “bump” in a particular
location. DBNs, on the other hand, can model arbitrary distributions.

For many real-world applications, this flexibility is essential. Consider, for example, the
current location of my keys. They might be in my pocket, on the bedside table, on the kitchen
counter, dangling from the front door, or locked in the car. A single Gaussian bump that
included all these places would have to allocate significant probability to the keys being in
mid-air above the front garden. Aspects of the real world such as purposive agents, obstacles,
and pockets introduce “nonlinearities” that require combinations of discrete and continuous
variables in order to get reasonable models.

14.5.1 Constructing DBNs

To construct a DBN, one must specify three kinds of information: the prior distribution over
the state variables, P(X0); the transition model P(Xt+1 |Xt); and the sensor model P(Et |Xt).
To specify the transition and sensor models, one must also specify the topology of the con-
nections between successive slices and between the state and evidence variables. Because
the transition and sensor models are assumed to be time-homogeneous—the same for all t—
it is most convenient simply to specify them for the first slice. For example, the complete
DBN specification for the umbrella world is given by the three-node network shown in Fig-
ure 14.13(a). From this specification, the complete DBN with an unbounded number of time
slices can be constructed as needed by copying the first slice.

Let us now consider a more interesting example: monitoring a battery-powered robot
moving in the X–Y plane, as introduced at the end of Section 14.1. First, we need state
variables, which will include both Xt =(Xt ,Yt) for position and Ẋt =(Ẋt ,Ẏt) for velocity. We
assume some method of measuring position—perhaps a fixed camera or onboard GPS (Global
Positioning System)—yielding measurements Zt . The position at the next time step depends
on the current position and velocity, as in the standard Kalman filter model. The velocity at
the next step depends on the current velocity and the state of the battery. We add Batteryt to
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represent the actual battery charge level, which has as parents the previous battery level and
the velocity, and we add BMetert , which measures the battery charge level. This gives us the
basic model shown in Figure 14.13(b).

It is worth looking in more depth at the nature of the sensor model for BMetert . Let us
suppose, for simplicity, that both Batteryt and BMetert can take on discrete values 0 through
5. (Exercise 14.BATT asks you to relate this discrete model to a corresponding continuous
model.) If the meter is always accurate, then the CPT P(BMetert |Batteryt) should have
probabilities of 1.0 “along the diagonal” and probabilities of 0.0 elsewhere. In reality, noise
always creeps into measurements. For continuous measurements, a Gaussian distribution
with a small variance might be used.7 For our discrete variables, we can approximate a
Gaussian using a distribution in which the probability of error drops off in the appropriate
way, so that the probability of a large error is very small. We use the term Gaussian error
model to cover both the continuous and discrete versions. Gaussian error model

Anyone with hands-on experience of robotics, computerized process control, or other
forms of automatic sensing will readily testify to the fact that small amounts of measurement
noise are often the least of one’s problems. Real sensors fail. When a sensor fails, it does
not necessarily send a signal saying, “Oh, by the way, the data I’m about to send you is a
load of nonsense.” Instead, it simply sends the nonsense. The simplest kind of failure is
called a transient failure, where the sensor occasionally decides to send some nonsense. For Transient failure

example, the battery level sensor might have a habit of sending a reading of 0 when someone
bumps the robot, even if the battery is fully charged.

Let’s see what happens when a transient failure occurs with a Gaussian error model that
doesn’t accommodate such failures. Suppose, for example, that the robot is sitting quietly
and observes 20 consecutive battery readings of 5. Then the battery meter has a temporary
seizure and the next reading is BMeter21=0. What will the simple Gaussian error model lead
us to believe about Battery21? According to Bayes’ rule, the answer depends on both the
sensor model P(BMeter21=0 |Battery21) and the prediction P(Battery21 |BMeter1:20). If the
probability of a large sensor error is significantly less than the probability of a transition to
Battery21=0, even if the latter is very unlikely, then the posterior distribution will assign a
high probability to the battery’s being empty.

A second reading of 0 at t=22 will make this conclusion almost certain. If the transient
failure then disappears and the reading returns to 5 from t=23 onwards, the estimate for the
battery level will quickly return to 5. (This does not mean the algorithm thinks the battery
magically recharged itself, which may be physically impossible; instead, the algorithm now
believes that the battery was never low and the extremely unlikely hypothesis that the battery
meter had two consecutive huge errors must be the right explanation.) This course of events
is illustrated in the upper curve of Figure 14.14(a), which shows the expected value (see
Appendix A) of Batteryt over time, using a discrete Gaussian error model.

Despite the recovery, there is a time (t=22) when the robot is convinced that its battery
is empty; presumably, then, it should send out a mayday signal and shut down. Alas, its
oversimplified sensor model has led it astray. The moral of the story is simple: for the system J
to handle sensor failure properly, the sensor model must include the possibility of failure.

7 Strictly speaking, a Gaussian distribution is problematic because it assigns nonzero probability to large nega-
tive charge levels. The beta distribution is sometimes a better choice for a variable whose range is restricted.
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Figure 14.14 (a) Upper curve: trajectory of the expected value of Batteryt for an observation
sequence consisting of all 5s except for 0s at t=21 and t=22, using a simple Gaussian error
model. Lower curve: trajectory when the observation remains at 0 from t=21 onwards. (b)
The same experiment run with the transient failure model. The transient failure is handled
well, but the persistent failure results in excessive pessimism about the battery charge.

The simplest kind of failure model for a sensor allows a certain probability that the sensor
will return some completely incorrect value, regardless of the true state of the world. For
example, if the battery meter fails by returning 0, we might say that

P(BMetert =0 |Batteryt =5)=0.03 ,

which is presumably much larger than the probability assigned by the simple Gaussian error
model. Let’s call this the transient failure model. How does it help when we are facedTransient failure

model
with a reading of 0? Provided that the predicted probability of an empty battery, according
to the readings so far, is much less than 0.03, then the best explanation of the observation
BMeter21=0 is that the sensor has temporarily failed. Intuitively, we can think of the belief
about the battery level as having a certain amount of “inertia” that helps to overcome tempo-
rary blips in the meter reading. The upper curve in Figure 14.14(b) shows that the transient
failure model can handle transient failures without a catastrophic change in beliefs.

So much for temporary blips. What about a persistent sensor failure? Sadly, failures of
this kind are all too common. If the sensor returns 20 readings of 5 followed by 20 readings
of 0, then the transient sensor failure model described in the preceding paragraph will result
in the robot gradually coming to believe that its battery is empty when in fact it may be that
the meter has failed. The lower curve in Figure 14.14(b) shows the belief “trajectory” for
this case. By t=25—five readings of 0—the robot is convinced that its battery is empty.
Obviously, we would prefer the robot to believe that its battery meter is broken—if indeed
this is the more likely event.

Unsurprisingly, to handle persistent failure, we need a persistent failure model thatPersistent failure
model

describes how the sensor behaves under normal conditions and after failure. To do this,
we need to augment the state of the system with an additional variable, say, BMBroken, that
describes the status of the battery meter. The persistence of failure must be modeled by an
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Figure 14.15 (a) A DBN fragment showing the sensor status variable required for modeling
persistent failure of the battery sensor. (b) Upper curves: trajectories of the expected value of
Batteryt for the “transient failure” and “permanent failure” observations sequences. Lower
curves: probability trajectories for BMBroken given the two observation sequences.

arc linking BMBroken0 to BMBroken1. This persistence arc has a CPT that gives a small Persistence arc

probability of failure in any given time step, say, 0.001, but specifies that the sensor stays
broken once it breaks. When the sensor is OK, the sensor model for BMeter is identical to
the transient failure model; when the sensor is broken, it says BMeter is always 0, regardless
of the actual battery charge.

The persistent failure model for the battery sensor is shown in Figure 14.15(a). Its per-
formance on the two data sequences (temporary blip and persistent failure) is shown in Fig-
ure 14.15(b). There are several things to notice about these curves. First, in the case of the
temporary blip, the probability that the sensor is broken rises significantly after the second
0 reading, but immediately drops back to zero once a 5 is observed. Second, in the case of
persistent failure, the probability that the sensor is broken rises quickly to almost 1 and stays
there. Finally, once the sensor is known to be broken, the robot can only assume that its
battery discharges at the “normal” rate. This is shown by the gradually descending level of
E(Batteryt | . . . ).

So far, we have merely scratched the surface of the problem of representing complex
processes. The variety of transition models is huge, encompassing topics as disparate as
modeling the human endocrine system and modeling multiple vehicles driving on a freeway.
Sensor modeling is also a vast subfield in itself. But dynamic Bayesian networks can model
even subtle phenomena, such as sensor drift, sudden decalibration, and the effects of exoge-
nous conditions (such as weather) on sensor readings.

14.5.2 Exact inference in DBNs

Having sketched some ideas for representing complex processes as DBNs, we now turn to the
question of inference. In a sense, this question has already been answered: dynamic Bayesian
networks are Bayesian networks, and we already have algorithms for inference in Bayesian
networks. Given a sequence of observations, one can construct the full Bayesian network rep-
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Figure 14.16 Unrolling a dynamic Bayesian network: slices are replicated to accommodate
the observation sequence Umbrella1:3. Further slices have no effect on inferences within the
observation period.

resentation of a DBN by replicating slices until the network is large enough to accommodate
the observations, as in Figure 14.16. This technique is called unrolling. (Technically, the
DBN is equivalent to the semi-infinite network obtained by unrolling forever. Slices added
beyond the last observation have no effect on inferences within the observation period and
can be omitted.) Once the DBN is unrolled, one can use any of the inference algorithms—
variable elimination, clustering methods, and so on—described in Chapter 13.

Unfortunately, a naive application of unrolling would not be particularly efficient. If
we want to perform filtering or smoothing with a long sequence of observations e1:t , the
unrolled network would require O(t) space and would thus grow without bound as more
observations were added. Moreover, if we simply run the inference algorithm anew each
time an observation is added, the inference time per update will also increase as O(t).

Looking back to Section 14.2.1, we see that constant time and space per filtering update
can be achieved if the computation can be done recursively. Essentially, the filtering update
in Equation (14.5) works by summing out the state variables of the previous time step to get
the distribution for the new time step. Summing out variables is exactly what the variable
elimination (Figure 13.13) algorithm does, and it turns out that running variable elimination
with the variables in temporal order exactly mimics the operation of the recursive filtering
update in Equation (14.5). The modified algorithm keeps at most two slices in memory at
any one time: starting with slice 0, we add slice 1, then sum out slice 0, then add slice 2, then
sum out slice 1, and so on. In this way, we can achieve constant space and time per filtering
update. (The same performance can be achieved by suitable modifications to the clustering
algorithm.) Exercise 14.DBNE asks you to verify this fact for the umbrella network.

So much for the good news; now for the bad news: It turns out that the “constant” for the
per-update time and space complexity is, in almost all cases, exponential in the number of
state variables. What happens is that, as the variable elimination proceeds, the factors grow
to include all the state variables (or, more precisely, all those state variables that have parents
in the previous time slice). The maximum factor size is O(dn+k) and the total update cost per
step is O(ndn+k), where d is the domain size of the variables and k is the maximum number
of parents of any state variable.

Of course, this is much less than the cost of HMM updating, which is O(d2n), but it is still
infeasible for large numbers of variables. This grim fact means is that even though we can useI
DBNs to represent very complex temporal processes with many sparsely connected variables,

news:It
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we cannot reason efficiently and exactly about those processes. The DBN model itself, which
represents the prior joint distribution over all the variables, is factorable into its constituent
CPTs, but the posterior joint distribution conditioned on an observation sequence—that is,
the forward message—is generally not factorable. The problem is intractable in general, so
we must fall back on approximate methods.

14.5.3 Approximate inference in DBNs

Section 13.4 described two approximation algorithms: likelihood weighting (Figure 13.18)
and Markov chain Monte Carlo (MCMC, Figure 13.20). Of the two, the former is most easily
adapted to the DBN context. (An MCMC filtering algorithm is described briefly in the notes
at the end of this chapter.) We will see, however, that several improvements are required over
the standard likelihood weighting algorithm before a practical method emerges.

Recall that likelihood weighting works by sampling the nonevidence nodes of the net-
work in topological order, weighting each sample by the likelihood it accords to the observed
evidence variables. As with the exact algorithms, we could apply likelihood weighting di-
rectly to an unrolled DBN, but this would suffer from the same problems of increasing time
and space requirements per update as the observation sequence grows. The problem is that
the standard algorithm runs each sample in turn, all the way through the network.

Instead, we can simply run all N samples together through the DBN, one slice at a time.
The modified algorithm fits the general pattern of filtering algorithms, with the set of N sam-
ples as the forward message. The first key innovation, then, is to use the samples themselves J
as an approximate representation of the current state distribution. This meets the require-
ment of a “constant” time per update, although the constant depends on the number of samples
required to maintain an accurate approximation. There is also no need to unroll the DBN, be-
cause we need to have in memory only the current slice and the next slice. This approach is
called sequential importance sampling or SIS. Sequential

importance sampling

In our discussion of likelihood weighting in Chapter 13, we pointed out that the algo-
rithm’s accuracy suffers if the evidence variables are “downstream” from the variables being
sampled, because in that case the samples are generated without any influence from the evi-
dence and will nearly all have very low weights.

Now if we look at the typical structure of a DBN—say, the umbrella DBN in Fig-
ure 14.16—we see that indeed the early state variables will be sampled without the benefit of
the later evidence. In fact, looking more carefully, we see that none of the state variables have
any evidence variables among its ancestors! Hence, although the weight of each sample will
depend on the evidence, the actual set of samples generated will be completely independent
of the evidence. For example, even if the boss brings in the umbrella every day, the sampling
process could still hallucinate endless days of sunshine.

What this means in practice is that the fraction of samples that remain reasonably close
to the actual series of events (and therefore have non-negligible weights) drops exponentially
with t, the length of the sequence. In other words, to maintain a given level of accuracy, we
need to increase the number of samples exponentially with t. Given that a real-time filtering
algorithm can use only a bounded number of samples, what happens in practice is that the
error blows up after a very small number of update steps. Figure 14.19 on page 512 shows
this effect for SIS applied to the grid-world localization problem from Section 14.3: even
with 100,000 samples, the SIS approximation fails completely after about 20 steps.
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function PARTICLE-FILTERING(e, N, dbn) returns a set of samples for the next time step
inputs: e, the new incoming evidence

N, the number of samples to be maintained
dbn, a DBN defined by P(X0), P(X1 |X0), and P(E1 |X1)

persistent: S, a vector of samples of size N, initially generated from P(X0)
local variables: W, a vector of weights of size N

for i = 1 to N do
S[i]←sample from P(X1 |X0= S[i]) // step 1
W[i]←P(e |X1= S[i]) // step 2

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S, W) // step 3
return S

Figure 14.17 The particle filtering algorithm implemented as a recursive update oper-
ation with state (the set of samples). Each of the sampling operations involves sam-
pling the relevant slice variables in topological order, much as in PRIOR-SAMPLE. The
WEIGHTED-SAMPLE-WITH-REPLACEMENT operation can be implemented to run in O(N)
expected time. The step numbers refer to the description in the text.

Clearly, we need a better solution. The second key innovation is to focus the set ofI
samples on the high-probability regions of the state space. This can be done by throwing
away samples that have very low weight, according to the observations, while replicating
those that have high weight. In that way, the population of samples will stay reasonably close
to reality. If we think of samples as a resource for modeling the posterior distribution, then it
makes sense to use more samples in regions of the state space where the posterior is higher.

A family of algorithms called particle filtering is designed to do just that. (Another earlyParticle filtering

name was sequential importance sampling with resampling, but for some reason it failed
on catch on.) Particle filtering works as follows: First, we generate a population of N samples
from the prior distribution P(X0). Then the update cycle is repeated for each time step:

1. Each sample is propagated forward by sampling the next state value xt+1 given the
current value xt for the sample, based on the transition model P(Xt+1 |xt).

2. Each sample is weighted by the likelihood it assigns to the new evidence, P(et+1 |xt+1).
3. The population is resampled to generate a new population of N samples. Each new

sample is selected from the current population; the probability that a particular sample
is selected is proportional to its weight. The new samples are unweighted.

The algorithm is shown in detail in Figure 14.17, and its operation for the umbrella DBN is
illustrated in Figure 14.18.

We can show that this algorithm is consistent—gives the correct probabilities as N tends
to infinity—by examining the operations in one update cycle. We assume that the sample pop-
ulation starts with a correct representation of the forward message—that is, f1:t =P(Xt |e1:t)
at time t. Writing N(xt |e1:t) for the number of samples occupying state xt after observations
e1:t have been processed, we therefore have

N(xt |e1:t)/N = P(xt |e1:t) (14.23)

for large N. Now we propagate each sample forward by sampling the state variables at t +1,
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Figure 14.18 The particle filtering update cycle for the umbrella DBN with N=10, showing
the sample populations of each state. (a) At time t, 8 samples indicate rain and 2 indicate
¬rain. Each is propagated forward by sampling the next state through the transition model.
At time t + 1, 6 samples indicate rain and 4 indicate ¬rain. (b) ¬umbrella is observed at
t +1. Each sample is weighted by its likelihood for the observation, as indicated by the size
of the circles. (c) A new set of 10 samples is generated by weighted random selection from
the current set, resulting in 2 samples that indicate rain and 8 that indicate ¬rain.

given the values for the sample at t. The number of samples reaching state xt+1 from each
xt is the transition probability times the population of xt ; hence, the total number of samples
reaching xt+1 is

N(xt+1 |e1:t) = ∑
xt

P(xt+1 |xt)N(xt |e1:t) .

Now we weight each sample by its likelihood for the evidence at t + 1. A sample in state
xt+1 receives weight P(et+1 |xt+1). The total weight of the samples in xt+1 after seeing et+1
is therefore

W (xt+1 |e1:t+1) = P(et+1 |xt+1)N(xt+1 |e1:t) .

Now for the resampling step. Since each sample is replicated with probability proportional
to its weight, the number of samples in state xt+1 after resampling is proportional to the total
weight in xt+1 before resampling:

N(xt+1 |e1:t+1)/N = αW (xt+1 |e1:t+1)

= αP(et+1 |xt+1)N(xt+1 |e1:t)

= αP(et+1 |xt+1)∑
xt

P(xt+1 |xt)N(xt |e1:t)

= αNP(et+1 |xt+1)∑
xt

P(xt+1 |xt)P(xt |e1:t) (by 14.23)

= α′P(et+1 |xt+1)∑
xt

P(xt+1 |xt)P(xt |e1:t)

= P(xt+1 |e1:t+1) (by 14.5).

Therefore the sample population after one update cycle correctly represents the forward mes-
sage at time t +1.

Particle filtering is consistent, therefore, but is it efficient? For many practical cases, it
seems that the answer is yes: particle filtering seems to maintain a good approximation to the
true posterior using a constant number of samples. Figure 14.19 shows that particle filtering
does a good job on the grid-world localization problem with only a thousand samples. It also
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Figure 14.19 Max norm error in the grid-world location estimate (compared to exact infer-
ence) for likelihood weighting (sequential importance sampling) with 100,000 samples and
particle filtering with 1,000 samples; data averaged over 50 runs.

works on real-world problems: the algorithm supports thousands of applications in science
and engineering. (Some references are given at the end of the chapter.) It handles combina-
tions of discrete and continuous variables as well as nonlinear and non-Gaussian models for
continuous variables. Under certain assumptions—in particular, that the probabilities in the
transition and sensor models are bounded away from 0 and 1—it is also possible to prove that
the approximation maintains bounded error with high probability, as the figure suggests.

The particle filtering algorithm does have weaknesses, however. Let’s see how it performs
for the vacuum world with dirt added. Recall from Section 14.3.2 that this increases the state
space size by a factor of 242, making exact HMM inference infeasible. We want the robot
to wander around and build a map of where the dirt is located. (This is a simple example
of simultaneous localization and mapping or SLAM, which we cover in more depth in
Chapter 26.) Let Dirti,t mean that square i is dirty at time t and let DirtSensort be true if and
only if the robot detects dirt at time t. We’ll assume that, in any given square, dirt persists
with probability p, whereas a clean square becomes dirty with probability 1− p (which means
that each square is dirty half the time, on average). The robot has a dirt sensor for its current
location; the sensor is accurate with probability 0.9. Figure 14.20 shows the DBN.

For simplicity, we’ll start by assuming that the robot has a perfect location sensor, rather
than the noisy wall sensor. The algorithm’s performance is shown in Figure 14.21(a), where
its estimates for dirt are compared to the results of exact inference. (We’ll see shortly how
exact inference is possible.) For low values of the dirt persistence p, the error remains small—
but this is no great achievement, because for every square the true posterior for dirt is close to
0.5 if the robot hasn’t visited that square recently. For higher values of p, the dirt stays around
longer, so visiting a square yields more useful information that is valid over a longer period.
Perhaps surprisingly, particle filtering does worse for higher values of p. It fails completely
when p=1, even though that seems like the easiest case: the dirt arrives at time 0 and stays
put forever, so after a few tours of the world, the robot should have a close-to-perfect dirt
map. Why does particle filtering fail in this case?
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Figure 14.20 A dynamic Bayes net for simultaneous localization and mapping in the
stochastic-dirt vacuum world. Dirty squares persist with probability p, and clean squares
become dirty with probability 1− p. The local dirt sensor is 90% accurate, for the square in
which the robot is currently located.
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Figure 14.21 (a) Performance of the standard particle filtering algorithm with 1,000 par-
ticles, showing RMS error in marginal dirt probabilities compared to exact inference for
different values of the dirt persistence p. (b) Performance of Rao-Blackwellized particle fil-
tering (100 particles) compared to ground truth, for both exact location sensing and noisy
wall sensing and with deterministic dirt. Data averaged over 20 runs.

It turns out that the theoretical condition requiring that “the probabilities in the transition
and sensor models are strictly greater than 0 and less than 1” is more than mere mathematical
pedantry. What happens is first each particle initially contains 42 guesses from P(X0) about
which squares have dirt and which do not. Then, the state for each particle is projected
forward in time according to the transition model. Unfortunately, the transition model for
deterministic dirt is deterministic: the dirt stays exactly where it is. Thus, the initial guesses
in each particle are never updated by the evidence.
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The chance that the initial guesses are all correct is 2−42 or about 2×10−13, so it is
vanishingly unlikely that a thousand particles (or even a million particles) will include one
with the correct dirt map. Typically, the best particle out of a thousand will get about 32 right
and 10 wrong, and usually there will be only one such particle, or perhaps a handful. One
of those best particles will come to dominate the total likelihood as time progresses and the
diversity of the population of particles will collapse. Then, because all the particles agree on
a single, incorrect map, the algorithm becomes convinced that that map is correct and never
changes its mind.

Fortunately, the problem of simultaneous localization and mapping has a special struc-
ture: conditioned on the sequence of robot locations, the dirt statuses of the individual squares
are independent (Exercise 14.RBPF). More specifically,

P(Dirt1,0:t , . . . ,Dirt42,0:t |DirtSensor1:t ,WallSensor1:t ,Location1:t)

= ∏
i

P(Dirti,0:t |DirtSensor1:t ,Location1:t) . (14.24)

This means it is useful to apply a statistical trick called Rao-Blackwellization, which is basedRao-Blackwellization

on the simple idea that exact inference is always more accurate than sampling, even if it’s only
for a subset of the variables. (See Exercise 14.RAOB.) For the SLAM problem, we run particle
filtering on the robot location and then, for each particle, we run exact HMM inference for
each dirt square independently, conditioned on the location sequence in that particle. Each
particle therefore contains a sampled location plus 42 exact marginal posteriors for the 42
squares—exact, that is, assuming that the hypothesized location trajectory followed by that
particle is correct. This approach, called the Rao-Blackwellized particle filter, handles theRao-Blackwellized

particle filter

case of deterministic dirt with no difficulty, gradually building an exact dirt map with either
exact location sensing or noisy wall sensing, as shown in Figure 14.21(b).

In cases that do not satisfy the kind of conditional independence structure exemplified by
Equation (14.24), Rao-Blackwellization is not applicable. The notes at the end of the chapter
mention a number of algorithms that have been proposed to handle the general problem of
filtering with static variables. None has the elegance and broad applicability of the particle
filter, but several are effective in practice on certain classes of problems.

Summary

This chapter has addressed the general problem of representing and reasoning about proba-
bilistic temporal processes. The main points are as follows:

• The changing state of the world is handled by using a set of random variables to repre-
sent the state at each point in time.

• Representations can be designed to (roughly) satisfy the Markov property, so that the
future is independent of the past given the present. Combined with the assumption that
the process is time-homogeneous, this greatly simplifies the representation.

• A temporal probability model can be thought of as containing a transition model de-
scribing the state evolution and a sensor model describing the observation process.

• The principal inference tasks in temporal models are filtering (state estimation), pre-
diction, smoothing, and computing the most likely explanation. Each of these tasks
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can be achieved using simple, recursive algorithms whose run time is linear in the length
of the sequence.

• Three families of temporal models were studied in more depth: hidden Markov mod-
els, Kalman filters, and dynamic Bayesian networks (which include the other two as
special cases).

• Unless special assumptions are made, as in Kalman filters, exact inference with many
state variables is intractable. In practice, the particle filtering algorithm and its descen-
dants are an effective family of approximation algorithms.

Bibliographical and Historical Notes

Many of the basic ideas for estimating the state of dynamical systems came from the mathe-
matician C. F. Gauss (1809), who formulated a deterministic least-squares algorithm for the
problem of estimating orbits from astronomical observations. A. A. Markov (1913) devel-
oped what was later called the Markov assumption in his analysis of stochastic processes;
he estimated a first-order Markov chain on letters from the text of Eugene Onegin. The gen-
eral theory of Markov chains and their mixing times is covered by Levin et al. (2008).

Significant classified work on filtering was done during World War II by Wiener (1942)
for continuous-time processes and by Kolmogorov (1941) for discrete-time processes. Al-
though this work led to important technological developments over the next 20 years, its
use of a frequency-domain representation made many calculations quite cumbersome. Direct
state-space modeling of the stochastic process turned out to be simpler, as shown by Peter
Swerling (1959) and Rudolf Kalman (1960). The latter paper described what is now known
as the Kalman filter for forward inference in linear systems with Gaussian noise; Kalman’s
results had, however, been obtained previously by the Danish astronomer Thorvold Thiele
(1880) and by the Russian physicist Ruslan Stratonovich (1959). After a visit to NASA
Ames Research Center in 1960, Kalman saw the applicability of the method to the tracking
of rocket trajectories, and the filter was later implemented for the Apollo missions.

Key results on smoothing were derived by Rauch et al. (1965), and the impressively
named Rauch–Tung–Striebel smoother is still a standard technique today. Many early results
are gathered in Gelb (1974). Bar-Shalom and Fortmann (1988) give a more modern treatment
with a Bayesian flavor, as well as many references to the vast literature on the subject. Chat-
field (1989) and Box et al. (2016) cover the control theory approach to time series analysis.

The hidden Markov model and associated algorithms for inference and learning, includ-
ing the forward–backward algorithm, were developed by Baum and Petrie (1966). The Viterbi
algorithm first appeared in (Viterbi, 1967). Similar ideas also appeared independently in the
Kalman filtering community (Rauch et al., 1965).

The forward–backward algorithm was one of the main precursors of the general formu-
lation of the EM algorithm (Dempster et al., 1977); see also Chapter 21. Constant-space
smoothing appears in Binder et al. (1997b), as does the divide-and-conquer algorithm devel-
oped in Exercise 14.ISLE. Constant-time fixed-lag smoothing for HMMs first appeared in
Russell and Norvig (2003).

HMMs have found many applications in language processing (Charniak, 1993), speech
recognition (Rabiner and Juang, 1993), machine translation (Och and Ney, 2003), computa-
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tional biology (Krogh et al., 1994; Baldi et al., 1994), financial economics (Bhar and Hamori,
2004) and other fields. There have been several extensions to the basic HMM model: for ex-
ample, the Hierarchical HMM (Fine et al., 1998) and Layered HMM (Oliver et al., 2004)
introduce structure back into the model, replacing the single state variable of HMMs.

Dynamic Bayesian networks (DBNs) can be viewed as a sparse encoding of a Markov
process and were first used in AI by Dean and Kanazawa (1989b), Nicholson and Brady
(1992), and Kjaerulff (1992). The last work extends the HUGIN Bayes net system to ac-
commodate dynamic Bayesian networks. The book by Dean and Wellman (1991) helped
popularize DBNs and the probabilistic approach to planning and control within AI. Murphy
(2002) provides a thorough analysis of DBNs.

Dynamic Bayesian networks have become popular for modeling a variety of complex mo-
tion processes in computer vision (Huang et al., 1994; Intille and Bobick, 1999). Like HMMs,
they have found applications in speech recognition (Zweig and Russell, 1998; Livescu et al.,
2003), robot localization (Theocharous et al., 2004), and genomics (Murphy and Mian, 1999;
Li et al., 2011). Other application areas include gesture analysis (Suk et al., 2010), driver
fatigue detection (Yang et al., 2010), and urban traffic modeling (Hofleitner et al., 2012).

The link between HMMs and DBNs, and between the forward–backward algorithm and
Bayesian network propagation, was explicated by Smyth et al. (1997). A further unification
with Kalman filters (and other statistical models) appears in Roweis and Ghahramani (1999).
Procedures exist for learning the parameters (Binder et al., 1997a; Ghahramani, 1998) and
structures (Friedman et al., 1998) of DBNs. Continuous-time Bayesian networks (Nodel-
man et al., 2002) are the discrete-state, continuous-time analog of DBNs, avoiding the need
to choose a particular duration for time steps.

The first sampling algorithms for filtering (also called sequential Monte Carlo methods)
were developed in the control theory community by Handschin and Mayne (1969), and the re-
sampling idea that is the core of particle filtering appeared in a Russian control journal (Zarit-
skii et al., 1975). It was later reinvented in statistics as sequential importance sampling
with resampling, or SIR (Rubin, 1988; Liu and Chen, 1998), in control theory as particle fil-
tering (Gordon et al., 1993; Gordon, 1994), in AI as survival of the fittest (Kanazawa et al.,
1995), and in computer vision as condensation (Isard and Blake, 1996).

The paper by Kanazawa et al. (1995) includes an improvement called evidence reversalEvidence reversal

whereby the state at time t + 1 is sampled conditional on both the state at time t and the
evidence at time t +1. This allows the evidence to influence sample generation directly and
was proved by Doucet (1997) and Liu and Chen (1998) to reduce the approximation error.

Particle filtering has been applied in many areas, including tracking complex motion pat-
terns in video (Isard and Blake, 1996), predicting the stock market (de Freitas et al., 2000),
and diagnosing faults on planetary rovers (Verma et al., 2004). Since its invention, tens of
thousands of papers have been published on applications and variants of the algorithm. Scal-
able implementations on parallel hardware have become important; although one might think
it straightforward to distribute N particles across up to N processor threads, the basic algo-
rithm requires synchronized communication among threads for the resampling step (Hendeby
et al., 2010). The particle cascade algorithm (Paige et al., 2015) removes the synchroniza-
tion requirement, resulting in much faster parallel computation.

The Rao-Blackwellized particle filter is due to Doucet et al. (2000) and Murphy and
Russell (2001); its application to practical localization and mapping problems in robotics is
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described in Chapter 26. Many other algorithms have been proposed to handle more general
filtering problems with static or nearly-static variables, including the resample–move algo-
rithm (Gilks and Berzuini, 2001), the Liu–West algorithm (Liu and West, 2001), the Storvik
filter (Storvik, 2002), the extended parameter filter (Erol et al., 2013), and the assumed pa-
rameter filter (Erol et al., 2017). The latter is a hybrid of particle filtering with a much older
idea called assumed-density filter. An assumed-density filter assumes that the posterior dis- Assumed-density

filter
tribution over states at time t belongs to a particular finitely parameterized family; if the pro-
jection and update steps take it outside this family, the distribution is projected back to give
the best approximation within the family. For DBNs, the Boyen–Koller algorithm (Boyen
et al., 1999) and the factored frontier algorithm (Murphy and Weiss, 2001) assume that the Factored frontier

posterior distribution can be approximated well by a product of small factors.
MCMC methods (see Section 13.4.2) can be applied to the filtering problem; for example,

Gibbs sampling can be applied directly to an unrolled DBN. The particle MCMC family of Particle MCMC

algorithms (Andrieu et al., 2010; Lindsten et al., 2014) combines MCMC on the unrolled
temporal model with particle filtering to generate the MCMC proposals; although it provably
converges to the correct posterior distribution in the general case (i.e., with both static and
dynamic variables), it is an offline algorithm. To avoid the problem of increasing update
times as the unrolled network grows, the decayed MCMC filter (Marthi et al., 2002) prefers Decayed MCMC

to sample more recent state variables, with a probability that decreases for variables further
in the past.

The book by Doucet et al. (2001) collects many important papers on sequential Monte
Carlo (SMC) algorithms, of which particle filtering is the most important instance. There are Sequential Monte

Carlo
useful tutorials by Arulampalam et al. (2002) and Doucet and Johansen (2011). There are also
several theoretical results concerning conditions under which SMC methods retain a bounded
error indefinitely compared to the true posterior (Crisan and Doucet, 2002; Del Moral, 2004;
Del Moral et al., 2006).



CHAPTER 15
MAKING SIMPLE DECISIONS
In which we see how an agent should make decisions so that it gets what it wants in an
uncertain world—at least as much as possible and on average.

In this chapter, we fill in the details of how utility theory combines with probability theory to
yield a decision-theoretic agent—an agent that can make rational decisions based on what it
believes and what it wants. Such an agent can make decisions in contexts in which uncertainty
and conflicting goals leave a logical agent with no way to decide. A goal-based agent has a
binary distinction between good (goal) and bad (non-goal) states, while a decision-theoretic
agent assigns a continuous range of values to states, and thus can more easily choose a better
state even when no best state is available.

Section 15.1 introduces the basic principle of decision theory: the maximization of ex-
pected utility. Section 15.2 shows that the behavior of a rational agent can be modeled by
maximizing a utility function. Section 15.3 discusses the nature of utility functions in more
detail, and in particular their relation to individual quantities such as money. Section 15.4
shows how to handle utility functions that depend on several quantities. In Section 15.5,
we describe the implementation of decision-making systems. In particular, we introduce a
formalism called a decision network (also known as an influence diagram) that extends
Bayesian networks by incorporating actions and utilities. Section 15.6 shows how a decision-
theoretic agent can calculate the value of acquiring new information to improve its decisions.

While Sections 15.1–15.6 assume that the agent operates with a given, known utility
function, Section 15.7 relaxes this assumption. We discuss the consequences of preference
uncertainty on the part of the machine—the most important of which is deference to humans.

15.1 Combining Beliefs and Desires under Uncertainty

We begin with an agent that, like all agents, has to make a decision. It has available some
actions a. There may be uncertainty about the current state, so we’ll assume that the agent
assigns a probability P(s) to each possible current state s. There may also be uncertainty
about the action outcomes; the transition model is given by P(s′ |s,a), the probability that
action a in state s reaches state s′. Because we’re primarily interested in the outcome s′, we’ll
also use the abbreviated notation P(RESULT(a)=s′), the probability of reaching s′ by doing
a in the current state, whatever that is. The two are related as follows:

P(RESULT(a)=s′) = ∑
s

P(s)P(s′ |s,a) .

Decision theory, in its simplest form, deals with choosing among actions based on the desir-
ability of their immediate outcomes; that is, the environment is assumed to be episodic in the



Section 15.2 The Basis of Utility Theory 519

sense defined on page 63. (This assumption is relaxed in Chapter 16.) The agent’s prefer-
ences are captured by a utility function, U(s), which assigns a single number to express the Utility function

desirability of a state. The expected utility of an action given the evidence, EU(a), is just the Expected utility

average utility value of the outcomes, weighted by the probability that the outcome occurs:

EU(a) = ∑
s′

P(RESULT(a)=s′)U(s′) . (15.1)

The principle of maximum expected utility (MEU) says that a rational agent should choose
the action that maximizes the agent’s expected utility:

action = argmax
a

EU(a) .

In a sense, the MEU principle could be seen as a prescription for intelligent behavior. All an
intelligent agent has to do is calculate the various quantities, maximize utility over its actions,
and away it goes. But this does not mean that the AI problem is solved by the definition!

The MEU principle formalizes the general notion that an intelligent agent should “do the
right thing,” but does not operationalize that advice. Estimating the probability distribution
P(s) over possible states of the world, which folds into P(RESULT(a)=s′), requires percep-
tion, learning, knowledge representation, and inference. Computing P(RESULT(a)=s′) itself
requires a causal model of the world. There may be many actions to consider, and computing
the outcome utilities U(s′) may itself require further searching or planning because an agent
may not know how good a state is until it knows where it can get to from that state. An AI
system acting on behalf of a human may not know the human’s true utility function, so there
may be uncertainty about U . In summary, decision theory is not a panacea that solves the
AI problem—but it does provide the beginnings of a basic mathematical framework that is
general enough to define the AI problem.

The MEU principle has a clear relation to the idea of performance measures introduced
in Chapter 2. The basic idea is simple. Consider the environments that could lead to an agent
having a given percept history, and consider the different agents that we could design. If an J
agent acts so as to maximize a utility function that correctly reflects the performance measure,
then the agent will achieve the highest possible performance score (averaged over all the
possible environments). This is the central justification for the MEU principle itself. While
the claim may seem tautological, it does in fact embody a very important transition from the
external performance measure to an internal utility function. The performance measure gives
a score for a history—a sequence of states. Thus it is applied retrospectively after an agent
completes a sequence of actions. The utility function applies to the very next state, so it can
be used to guide actions step by step.

15.2 The Basis of Utility Theory

Intuitively, the principle of Maximum Expected Utility (MEU) seems like a reasonable way
to make decisions, but it is by no means obvious that it is the only rational way. After all,
why should maximizing the average utility be so special? What’s wrong with an agent that
maximizes the weighted sum of the cubes of the possible utilities, or tries to minimize the
worst possible loss? Could an agent act rationally just by expressing preferences between
states, without giving them numeric values? Finally, why should a utility function with the
required properties exist at all? We shall see.
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15.2.1 Constraints on rational preferences

These questions can be answered by writing down some constraints on the preferences that a
rational agent should have and then showing that the MEU principle can be derived from the
constraints. We use the following notation to describe an agent’s preferences:

A� B the agent prefers A over B.

A∼ B the agent is indifferent between A and B.

A�∼ B the agent prefers A over B or is indifferent between them.

Now the obvious question is, what sorts of things are A and B? They could be states of the
world, but more often than not there is uncertainty about what is really being offered. For
example, an airline passenger who is offered “the pasta dish or the chicken” does not know
what lurks beneath the tinfoil cover.1 The pasta could be delicious or congealed, the chicken
juicy or overcooked beyond recognition. We can think of the set of outcomes for each action
as a lottery—think of each action as a ticket. A lottery L with possible outcomes S1, . . . ,SnLottery

that occur with probabilities p1, . . . , pn is written

L = [p1,S1; p2,S2; . . . pn,Sn] .

In general, each outcome Si of a lottery can be either an atomic state or another lottery. The
primary issue for utility theory is to understand how preferences between complex lotteries
are related to preferences between the underlying states in those lotteries. To address this
issue we list six constraints that we require any reasonable preference relation to obey:

• Orderability: Given any two lotteries, a rational agent must either prefer one or elseOrderability

rate them as equally preferable. That is, the agent cannot avoid deciding. As noted on
page 412, refusing to bet is like refusing to allow time to pass.

Exactly one of (A� B), (B� A), or (A∼ B) holds.

• Transitivity: Given any three lotteries, if an agent prefers A to B and prefers B to C,Transitivity

then the agent must prefer A to C.

(A� B)∧ (B�C) ⇒ (A�C) .

• Continuity: If some lottery B is between A and C in preference, then there is someContinuity

probability p for which the rational agent will be indifferent between getting B for sure
and the lottery that yields A with probability p and C with probability 1− p.

A� B�C ⇒ ∃ p [p,A; 1− p,C]∼ B .

• Substitutability: If an agent is indifferent between two lotteries A and B, then theSubstitutability

agent is indifferent between two more complex lotteries that are the same except that
B is substituted for A in one of them. This holds regardless of the probabilities and the
other outcome(s) in the lotteries.

A∼ B ⇒ [p,A; 1− p,C]∼ [p,B;1− p,C] .

This also holds if we substitute � for ∼ in this axiom.
• Monotonicity: Suppose two lotteries have the same two possible outcomes, A andMonotonicity

B. If an agent prefers A to B, then the agent must prefer the lottery that has a higher
probability for A (and vice versa).

A� B ⇒ (p> q ⇔ [p,A; 1− p,B]� [q,A; 1−q,B]) .
1 We apologize to readers whose local airlines no longer offer food on long flights.
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Figure 15.1 (a) Nontransitive preferences A� B�C� A can result in irrational behavior: a
cycle of exchanges each costing one cent. (b) The decomposability axiom.

• Decomposability: Compound lotteries can be reduced to simpler ones using the laws Decomposability

of probability. This has been called the “no fun in gambling” rule: as Figure 15.1(b)
shows, it compresses two consecutive lotteries into a single equivalent lottery.2

[p,A; 1− p, [q,B; 1−q,C]]∼ [p,A; (1− p)q,B; (1− p)(1−q),C] .

These constraints are known as the axioms of utility theory. Each axiom can be motivated
by showing that an agent that violates it will exhibit patently irrational behavior in some
situations. For example, we can motivate transitivity by making an agent with nontransitive
preferences give us all its money. Suppose that the agent has the nontransitive preferences
A � B � C � A, where A, B, and C are goods that can be freely exchanged. If the agent
currently has A, then we could offer to trade C for A plus one cent. The agent prefers C,
and so would be willing to make this trade. We could then offer to trade B for C, extracting
another cent, and finally trade A for B. This brings us back where we started from, except
that the agent has given us three cents (Figure 15.1(a)). We can keep going around the cycle
until the agent has no money at all. Clearly, the agent has acted irrationally in this case.

15.2.2 Rational preferences lead to utility

Notice that the axioms of utility theory are really axioms about preferences—they say nothing
about a utility function. But in fact from the axioms of utility we can derive the following
consequences (for the proof, see von Neumann and Morgenstern, 1944):

• Existence of Utility Function: If an agent’s preferences obey the axioms of utility, then
there exists a function U such that U(A)>U(B) if and only if A is preferred to B, and
U(A) =U(B) if and only if the agent is indifferent between A and B. That is,

U(A)>U(B) ⇔ A� B and U(A) =U(B) ⇔ A∼ B .
2 We can account for the enjoyment of gambling by encoding gambling events into the state description; for
example, “Have $10 and gambled” could be preferred to “Have $10 and didn’t gamble.”
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• Expected Utility of a Lottery: The utility of a lottery is the sum of the probability of
each outcome times the utility of that outcome.

U([p1,S1; . . . ; pn,Sn]) = ∑
i

piU(Si) .

In other words, once the probabilities and utilities of the possible outcome states are specified,
the utility of a compound lottery involving those states is completely determined. Because the
outcome of a nondeterministic action is a lottery, it follows that an agent can act rationally—
that is, consistently with its preferences—only by choosing an action that maximizes expected
utility according to Equation (15.1).

The preceding theorems establish that (assuming the constraints on rational preferences)
a utility function exists for any rational agent. The theorems do not establish that the utility
function is unique. It is easy to see, in fact, that an agent’s behavior would not change if its
utility function U(S) were transformed according to

U ′(S) = aU(S)+b , (15.2)

where a and b are constants and a> 0; a positive affine transformation.3 This fact was noted
in Chapter 6 (page 213) for two-player games of chance; here, we see that it applies to all
kinds of decision scenarios.

As in game-playing, in a deterministic environment an agent needs only a preference
ranking on states—the numbers don’t matter. This is called a value function or ordinalValue function

utility function.Ordinal utility
function

It is important to remember that the existence of a utility function that describes an agent’s
preference behavior does not necessarily mean that the agent is explicitly maximizing that
utility function in its own deliberations. As we showed in Chapter 2, rational behavior can be
generated in any number of ways. A rational agent might be implemented with a table lookup
(if the number of possible states is small enough).

By observing a rational agent’s behavior, an observer can learn about the utility function
that represents what the agent is actually trying to achieve (even if the agent doesn’t know it).
We return to this point in Section 15.7.

15.3 Utility Functions

Utility functions map from lotteries to real numbers. We know they must obey the axioms
of orderability, transitivity, continuity, substitutability, monotonicity, and decomposability. Is
that all we can say about utility functions? Strictly speaking, that is it: an agent can have any
preferences it likes. For example, an agent might prefer to have a prime number of dollars in
its bank account; in which case, if it had $16 it would give away $3. This might be unusual,
but we can’t call it irrational. An agent might prefer a dented 1973 Ford Pinto to a shiny new
Mercedes. The agent might prefer prime numbers of dollars only when it owns the Pinto, but
when it owns the Mercedes, it might prefer more dollars to fewer. Fortunately, the preferences
of real agents are usually more systematic and thus easier to deal with.

3 In this sense, utilities resemble temperatures: a temperature in Fahrenheit is 1.8 times the Celsius temperature
plus 32, but converting from one to the other doesn’t make you hotter or colder.
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15.3.1 Utility assessment and utility scales

If we want to build a decision-theoretic system that helps a human make decisions or acts on
his or her behalf, we must first work out what the human’s utility function is. This process,
often called preference elicitation, involves presenting choices to the human and using the Preference elicitation

observed preferences to pin down the underlying utility function.
Equation (15.2) says that there is no absolute scale for utilities, but it is helpful, nonethe-

less, to establish some scale on which utilities can be recorded and compared for any particu-
lar problem. A scale can be established by fixing the utilities of any two particular outcomes,
just as we fix a temperature scale by fixing the freezing point and boiling point of water.
Typically, we fix the utility of a “best possible prize” at U(S) = u> and a “worst possible
catastrophe” at U(S) = u⊥. (Both of these should be finite.) Normalized utilities use a scale Normalized utilities

with u⊥ = 0 and u> = 1. With such a scale, an England fan might assign a utility of 1 to
England winning the World Cup and a utility of 0 to England failing to qualify.

Given a utility scale between u> and u⊥, we can assess the utility of any particular prize
S by asking the agent to choose between S and a standard lottery [p,u>; (1− p),u⊥]. The Standard lottery

probability p is adjusted until the agent is indifferent between S and the standard lottery.
Assuming normalized utilities, the utility of S is given by p. Once this is done for each prize,
the utilities for all lotteries involving those prizes are determined. Suppose, for example,
we want to know how much our England fan values the outcome of England reaching the
semi-final and then losing. We compare that outcome to a standard lottery with probability p
of winning the trophy and probability 1− p of an ignominious failure to qualify. If there is
indifference at p=0.3, then 0.3 is the value of reaching the semi-final and then losing.

In medical, transportation, environmental and other decision problems, people’s lives are
at stake. (Yes, there are things more important than England’s fortunes in the World Cup.) In
such cases, u⊥ is the value assigned to immediate death (or in the really worst cases, many
deaths). Although nobody feels comfortable with putting a value on human life, it is a fact J
that tradeoffs on matters of life and death are made all the time. Aircraft are given a complete
overhaul at intervals, rather than after every trip. Cars are manufactured in a way that trades
off costs against accident survival rates. We tolerate a level of air pollution that kills four
million people a year.

Paradoxically, a refusal to put a monetary value on life can mean that life is undervalued.
Ross Shachter describes a government agency that commissioned a study on removing as-
bestos from schools. The decision analysts performing the study assumed a particular dollar
value for the life of a school-age child, and argued that the rational choice under that assump-
tion was to remove the asbestos. The agency, morally outraged at the idea of setting the value
of a life, rejected the report out of hand. It then decided against asbestos removal—implicitly
asserting a lower value for the life of a child than that assigned by the analysts.

Currently several agencies of the U.S. government, including the Environmental Protec-
tion Agency, the Food and Drug Administration, and the Department of Transportation, use
the value of a statistical life to determine the costs and benefits of regulations and interven- Value of a statistical

life
tions. Typical values in 2019 are roughly $10 million.

Some attempts have been made to find out the value that people place on their own lives.
One common “currency” used in medical and safety analysis is the micromort, a one in a Micromort

million chance of death. If you ask people how much they would pay to avoid a risk—for
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example, to avoid playing Russian roulette with a million-barreled revolver—they will re-
spond with very large numbers, perhaps tens of thousands of dollars, but their actual behavior
reflects a much lower monetary value for a micromort.

For example, in the UK, driving in a car for 230 miles incurs a risk of one micromort.
Over the life of your car—say, 92,000 miles—that’s 400 micromorts. People appear to be
willing to pay about $12,000 more for a safer car that halves the risk of death. Thus, their
car-buying action says they have a value of $60 per micromort. A number of studies have
confirmed a figure in this range across many individuals and risk types. However, government
agencies such as the U.S. Department of Transportation typically set a lower figure; they will
spend only about $6 in road repairs per expected life saved. Of course, these calculations
hold only for small risks. Most people won’t agree to kill themselves, even for $60 million.

Another measure is the QALY, or quality-adjusted life year. Patients are willing to acceptQALY

a shorter life expectancy to avoid a disability. For example, kidney patients on average are
indifferent between living two years on dialysis and one year at full health.

15.3.2 The utility of money

Utility theory has its roots in economics, and economics provides one obvious candidate
for a utility measure: money (or more specifically, an agent’s total net assets). The almost
universal exchangeability of money for all kinds of goods and services suggests that money
plays a significant role in human utility functions.

It will usually be the case that an agent prefers more money to less, all other things being
equal. We say that the agent exhibits a monotonic preference for more money. This doesMonotonic

preference

not mean that money behaves as a utility function, because it says nothing about preferences
between lotteries involving money.

Suppose you have triumphed over the other competitors in a television game show. The
host now offers you a choice: either you can take the $1,000,000 prize or you can gamble it
on the flip of a coin. If the coin comes up heads, you end up with nothing, but if it comes
up tails, you get $2,500,000. If you’re like most people, you would decline the gamble and
pocket the million. Are you being irrational?

Assuming the coin is fair, the expected monetary value (EMV) of the gamble is 1
2 ($0) +Expected monetary

value
1
2 ($2,500,000) = $1,250,000, which is more than the original $1,000,000. But that does not
necessarily mean that accepting the gamble is a better decision. Suppose we use Sn to denote
the state of possessing total wealth $n, and that your current wealth is $k. Then the expected
utilities of the two actions of accepting and declining the gamble are

EU(Accept) = 1
2U(Sk)+

1
2U(Sk+2,500,000) ,

EU(Decline) = U(Sk+1,000,000) .

To determine what to do, we need to assign utilities to the outcome states. Utility is not
directly proportional to monetary value, because the utility for your first million is very high
(or so they say), whereas the utility for an additional million is smaller. Suppose you assign
a utility of 5 to your current financial status (Sk), a 9 to the state Sk+2,500,000, and an 8 to the
state Sk+1,000,000. Then the rational action would be to decline, because the expected utility
of accepting is only 7 (less than the 8 for declining). On the other hand, a billionaire would
most likely have a utility function that is locally linear over the range of a few million more,
and thus would accept the gamble.
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Figure 15.2 The utility of money. (a) Empirical data for Mr. Beard over a limited range. (b)
A typical curve for the full range.

In a pioneering study of actual utility functions, Grayson (1960) found that the utility
of money was almost exactly proportional to the logarithm of the amount. (This idea was
first suggested by Bernoulli (1738); see Exercise 15.STPT.) One particular utility curve, for a
certain Mr. Beard, is shown in Figure 15.2(a). The data obtained for Mr. Beard’s preferences
are consistent with a utility function

U(Sk+n) =−263.31+22.09log(n+150,000)

for the range between n =−$150,000 and n = $800,000.
We should not assume that this is the definitive utility function for monetary value, but

it is likely that most people have a utility function that is concave for positive wealth. Going
into debt is bad, but preferences between different levels of debt can display a reversal of
the concavity associated with positive wealth. For example, someone already $10,000,000 in
debt might well accept a gamble on a fair coin with a gain of $10,000,000 for heads and a
loss of $20,000,000 for tails.4 This yields the S-shaped curve shown in Figure 15.2(b).

If we restrict our attention to the positive part of the curves, where the slope is decreasing,
then for any lottery L, the utility of being faced with that lottery is less than the utility of being
handed the expected monetary value of the lottery as a sure thing:

U(L)<U(SEMV(L)) .

That is, agents with curves of this shape are risk-averse: they prefer a sure thing with a Risk-averse

payoff that is less than the expected monetary value of a gamble. On the other hand, in the
“desperate” region at large negative wealth in Figure 15.2(b), the behavior is risk-seeking. Risk-seeking

The value an agent will accept in lieu of a lottery is called the certainty equivalent of the Certainty equivalent

lottery. Studies have shown that most people will accept about $400 in lieu of a gamble that
gives $1000 half the time and $0 the other half—that is, the certainty equivalent of the lottery
is $400, while the EMV is $500.

The difference between the EMV of a lottery and its certainty equivalent is called the in-
surance premium. Risk aversion is the basis for the insurance industry, because it means that Insurance premium

4 Such behavior might be called desperate, but it is rational if one is already in a desperate situation.
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insurance premiums are positive. People would rather pay a small insurance premium than
gamble the price of their house against the chance of a fire. From the insurance company’s
point of view, the price of the house is very small compared with the firm’s total reserves.
This means that the insurer’s utility curve is approximately linear over such a small region,
and the gamble costs the company almost nothing.

Notice that for small changes in wealth relative to the current wealth, almost any curve
will be approximately linear. An agent that has a linear curve is said to be risk-neutral. ForRisk-neutral

gambles with small sums, therefore, we expect risk neutrality. In a sense, this justifies the
simplified procedure that proposed small gambles to assess probabilities and to justify the
axioms of probability in Section 12.2.3.

15.3.3 Expected utility and post-decision disappointment

The rational way to choose the best action, a∗, is to maximize expected utility:

a∗ = argmax
a

EU(a) .

If we have calculated the expected utility correctly according to our probability model, and if
the probability model correctly reflects the underlying stochastic processes that generate the
outcomes, then, on average, we will get the utility we expect if the whole process is repeated
many times.

In reality, however, our model usually oversimplifies the real situation, either because we
don’t know enough (e.g., when making a complex investment decision) or because the com-
putation of the true expected utility is too difficult (e.g., when making a move in backgammon,
needing to take into account all possible future dice rolls). In that case, we are really working
with estimates ÊU(a) of the true expected utility. We will assume, kindly perhaps, that the
estimates are unbiased—that is, the expected value of the error, E(ÊU(a)−EU(a)), is zero.Unbiased

In that case, it still seems reasonable to choose the action with the highest estimated utility
and to expect to receive that utility, on average, when the action is executed.

Unfortunately, the real outcome will usually be significantly worse than we estimated,
even though the estimate was unbiased! To see why, consider a decision problem in which
there are k choices, each of which has true estimated utility of 0. Suppose that the error in
each utility estimate is independent and has a unit normal distribution—that is, a Gaussian
with zero mean and standard deviation of 1, shown as the bold curve in Figure 15.3. Now, as
we actually start to generate the estimates, some of the errors will be negative (pessimistic)
and some will be positive (optimistic). Because we select the action with the highest utility
estimate, we are favoring the overly optimistic estimates, and that is the source of the bias.

It is a straightforward matter to calculate the distribution of the maximum of the k es-
timates and hence quantify the extent of our disappointment. (This calculation is a special
case of computing an order statistic, the distribution of any particular ranked element of aOrder statistic

sample.) Suppose that each estimate Xi has a probability density function f (x) and cumula-
tive distribution F(x). (As explained in Appendix A, the cumulative distribution F measures
the probability that the cost is less than or equal to any given amount—that is, it integrates
the original density f .) Now let X∗ be the largest estimate, i.e., max{X1, . . . ,Xk}. Then the
cumulative distribution for X∗ is

P(max{X1, . . . ,Xk} ≤ x) = P(X1 ≤ x, . . . ,Xk ≤ x)

= P(X1 ≤ x) . . .P(Xk ≤ x) = F(x)k .
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Figure 15.3 Unjustified optimism caused by choosing the best of k options: we assume that
each option has a true utility of 0 but a utility estimate that is distributed according to a
unit normal (brown curve). The other curves show the distributions of the maximum of k
estimates for k=3, 10, and 30.

The probability density function is the derivative of the cumulative distribution function, so
the density for X∗, the maximum of k estimates, is

P(x) =
d
dx

(
F(x)k

)
= k f (x)(F(x))k−1 .

These densities are shown for different values of k in Figure 15.3 for the case where f (x) is the
unit normal. For k=3, the density for X∗ has a mean around 0.85, so the average disappoint-
ment will be about 85% of the standard deviation in the utility estimates. With more choices,
extremely optimistic estimates are more likely to arise: for k=30, the disappointment will be
around twice the standard deviation in the estimates.

This tendency for the estimated expected utility of the best choice to be too high is called
the optimizer’s curse (Smith and Winkler, 2006). It afflicts even the most seasoned decision Optimizer’s curse

analysts and statisticians. Serious manifestations include believing that an exciting new drug
that has cured 80% of patients in a trial will cure 80% of patients (it’s been chosen from
k= thousands of candidate drugs) or that a mutual fund advertised as having above-average
returns will continue to have them (it’s been chosen to appear in the advertisement out of k=
dozens of funds in the company’s overall portfolio). It can even be the case that what appears
to be the best choice may not be, if the variance in the utility estimate is high: a drug that has
cured 9 of 10 patients and has been selected from thousands tried is probably worse than one
that has cured 800 of 1000.

The optimizer’s curse crops up everywhere because of the ubiquity of utility-maximizing
selection processes, so taking the utility estimates at face value is a bad idea. We can avoid
the curse with a Bayesian approach that uses an explicit probability model P(ÊU |EU) of
the error in the utility estimates. Given this model and a prior on what we might reasonably
expect the utilities to be, we treat the utility estimate as evidence and compute the posterior
distribution for the true utility using Bayes’ rule.
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15.3.4 Human judgment and irrationality

Decision theory is a normative theory: it describes how a rational agent should act. ANormative theory

descriptive theory, on the other hand, describes how actual agents—for example, humans—Descriptive theory

really do act. The application of economic theory would be greatly enhanced if the two
coincided, but there appears to be some experimental evidence to the contrary. The evidence
suggests that humans are “predictably irrational” (Ariely, 2009).

The best-known problem is the Allais paradox (Allais, 1953). People are given a choice
between lotteries A and B and then between C and D, which have the following prizes:

A : 80% chance of $4000 C : 20% chance of $4000
B : 100% chance of $3000 D : 25% chance of $3000

Most people consistently prefer B over A (taking the sure thing), and C over D (taking the
higher EMV). The normative analysis disagrees! We can see this most easily if we use the
freedom implied by Equation (15.2) to set U($0) = 0. In that case, then B � A implies that
U($3000)> 0.8U($4000), whereas C � D implies exactly the reverse. In other words, there
is no utility function that is consistent with these choices.

One explanation for the apparently irrational preferences is the certainty effect (Kahne-Certainty effect

man and Tversky, 1979): people are strongly attracted to gains that are certain. There are
several reasons why this may be so.

First, people may prefer to reduce their computational burden; by choosing certain out-
comes, they don’t have to compute with probabilities. But the effect persists even when the
computations involved are very easy ones.

Second, people may distrust the legitimacy of the stated probabilities. I trust that a coin
flip is roughly 50/50 if I have control over the coin and the flip, but I may distrust the result if
the flip is done by someone with a vested interest in the outcome.5 In the presence of distrust,
it might be better to go for the sure thing.6

Third, people may be accounting for their emotional state as well as their financial state.
People know they would experience regret if they gave up a certain reward (B) for an 80%
chance at a higher reward and then lost.

In other words, if A is chosen, there is a 20% chance of getting no money and feeling like
a complete idiot, which is worse than just getting no money. So perhaps people who choose
B over A and C over D are not irrational; they are willing to give up $200 of EMV to avoid a
20% chance of feeling like an idiot.

A related problem is the Ellsberg paradox. Here the prizes are fixed, but the probabilities
are underconstrained. Your payoff will depend on the color of a ball chosen from an urn.
You are told that the urn contains 1/3 red balls, and 2/3 either black or yellow balls, but you
don’t know how many black and how many yellow. Again, you are asked whether you prefer
lottery A or B; and then C or D:

A : $100 for a red ball C : $100 for a red or yellow ball
B : $100 for a black ball D : $100 for a black or yellow ball .

It should be clear that if you think there are more red than black balls then you should prefer

5 For example, the mathematician/magician Persi Diaconis can make a coin flip come out the way he wants
every time (Landhuis, 2004).
6 Even the sure thing may not be certain. Despite cast-iron promises, we have not yet received that $27,000,000
from the Nigerian bank account of a previously unknown deceased relative.
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A over B and C over D; if you think there are fewer red than black you should prefer the op-
posite. But it turns out that most people prefer A over B and also prefer D over C, even though
there is no state of the world for which this is rational. It seems that people have ambiguity
aversion: A gives you a 1/3 chance of winning, while B could be anywhere between 0 and Ambiguity aversion

2/3. Similarly, D gives you a 2/3 chance, while C could be anywhere between 1/3 and 3/3.
Most people elect the known probability rather than the unknown unknowns.

Yet another problem is that the exact wording of a decision problem can have a big impact
on the agent’s choices; this is called the framing effect. Experiments show that people like a Framing effect

medical procedure that is described as having a “90% survival rate” about twice as much as
one described as having a “10% death rate,” even though these two statements mean exactly
the same thing. This discrepancy in judgment has been found in multiple experiments and is
about the same whether the subjects are patients in a clinic, statistically sophisticated business
school students, or experienced doctors.

People feel more comfortable making relative utility judgments rather than absolute ones.
I may have little idea how much I might enjoy the various wines offered by a restaurant. The
restaurant takes advantage of this by offering a $200 bottle that nobody will buy, but which
serves to skew upward the customer’s estimate of the value of all wines, making a $55 bottle
seem like a bargain. This is called the anchoring effect. Anchoring effect

If human informants insist on contradictory preference judgments, there is nothing that
automated agents can do to be consistent with them. Fortunately, preference judgments made
by humans are often open to revision in the light of further consideration. Paradoxes like
the Allais and Ellsberg paradoxes are greatly reduced (but not eliminated) if the choices are
explained better. In work at the Harvard Business School on assessing the utility of money,
Keeney and Raiffa (1976, p. 210) found the following:

Subjects tend to be too risk-averse in the small and therefore . . . the fitted utility functions
exhibit unacceptably large risk premiums for lotteries with a large spread. . . . Most of the
subjects, however, can reconcile their inconsistencies and feel that they have learned an
important lesson about how they want to behave. As a consequence, some subjects cancel
their automobile collision insurance and take out more term insurance on their lives.

The evidence for human irrationality is also questioned by researchers in the field of evo-
lutionary psychology, who point to the fact that our brain’s decision-making mechanisms Evolutionary

psychology

did not evolve to solve word problems with probabilities and prizes stated as decimal num-
bers. Let us grant, for the sake of argument, that the brain has built-in neural mechanisms
for computing with probabilities and utilities, or something functionally equivalent. If so, the
required inputs would be obtained through accumulated experience of outcomes and rewards
rather than through linguistic presentations of numerical values.

It is far from obvious that we can directly access the brain’s built-in neural mechanisms by
presenting decision problems in linguistic/numerical form. The very fact that different word-
ings of the same decision problem elicit different choices suggests that the decision problem
itself is not getting through. Spurred by this observation, psychologists have tried presenting
problems in uncertain reasoning and decision making in “evolutionarily appropriate” forms;
for example, instead of saying “90% survival rate,” the experimenter might show 100 stick-
figure animations of the operation, where the patient dies in 10 of them and survives in 90.
With decision problems posed in this way, people’s behavior seems to be much closer to the
standard of rationality.
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15.4 Multiattribute Utility Functions

Decision making in the field of public policy involves high stakes, in both money and lives.
For example, in deciding what levels of harmful emissions to allow from a power plant,
policy makers must weigh the prevention of death and disability against the benefit of the
power and the economic burden of mitigating the emissions. Picking a site for a new airport
requires consideration of the disruption caused by construction; the cost of land; the distance
from centers of population; the noise of flight operations; safety issues arising from local
topography and weather conditions; and so on. Problems like these, in which outcomes are
characterized by two or more attributes, are handled by multiattribute utility theory. InMultiattribute utility

theory

essence, it’s the theory of comparing apples to oranges.
Let the attributes be X=X1, . . . ,Xn and let x=〈x1, . . . ,xn〉 be a complete vector of assign-

ments, where each xi is either a numeric value or a discrete value with an assumed ordering
on values. The analysis is easier if we arrange it so that higher values of an attribute always
correspond to higher utilities: utilities are monotonically increasing. That means that we can’t
use, say, the number of deaths, d as an attribute; we would have to use −d. It also means that
we can’t use the room temperature, t, as an attribute. If the utility function for temperature
has a peak at 70◦F and falls off monotonically on either side, then we could split the attribute
into two pieces. We could use t − 70 to measure whether the room is warm enough, and
70− t to measure whether it is cool enough; both of these attributes would be monotonically
increasing until they reach their maximum utility value at 0; the utility curve is flat from that
point on, meaning that you dont’t get any more “warm enough” above 70◦F, nor any more
“cool enough” below 70◦F.

The attributes in the airport problem could be:

• Throughput, measured by the number of flights per day;
• Safety, measured by minus the expected number of deaths per year;
• Quietness, measured by minus the number of people living under the flight paths;
• Frugality, measured by the negative cost of construction.

We begin by examining cases in which decisions can be made without combining the attribute
values into a single utility value. Then we look at cases in which the utilities of attribute
combinations can be specified very concisely.

15.4.1 Dominance

Suppose that airport site S1 costs less, generates less noise pollution, and is safer than site S2.
One would not hesitate to reject S2. We then say that there is strict dominance of S1 overStrict dominance

S2. In general, if an option is of lower value on all attributes than some other option, it need
not be considered further. Strict dominance is often very useful in narrowing down the field
of choices to the real contenders, although it seldom yields a unique choice. Figure 15.4(a)
shows a schematic diagram for the two-attribute case.

That is fine for the deterministic case, in which the attribute values are known for sure.
What about the general case, where the outcomes are uncertain? A direct analog of strict
dominance can be constructed, where, despite the uncertainty, all possible concrete outcomes
for S1 strictly dominate all possible outcomes for S2. (See Figure 15.4(b).) Of course, this
will probably occur even less often than in the deterministic case.
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Figure 15.4 Strict dominance. (a) Deterministic: Option A is strictly dominated by B but
not by C or D. (b) Uncertain: A is strictly dominated by B but not by C.

Fortunately, there is a more useful generalization called stochastic dominance, which Stochastic
dominance

occurs very frequently in real problems. Stochastic dominance is easiest to understand in
the context of a single attribute. Suppose we believe that the cost of placing the airport at
S1 is uniformly distributed between $2.8 billion and $4.8 billion and that the cost at S2 is
uniformly distributed between $3 billion and $5.2 billion. Define the Frugality attribute to
be the negative cost. Figure 15.5(a) shows the distributions for the frugality of sites S1 and
S2. Then, given only the information that the more frugal choice is better (all other things
being equal), we can say that S1 stochastically dominates S2 (i.e., S2 can be discarded). It is
important to note that this does not follow from comparing the expected costs. For example,
if we knew the cost of S1 to be exactly $3.8 billion, then we would be unable to make a
decision without additional information on the utility of money. (It might seem odd that
more information on the cost of S1 could make the agent less able to decide. The paradox
is resolved by noting that in the absence of exact cost information, the decision is easier to
make but is more likely to be wrong.)

The exact relationship between the attribute distributions needed to establish stochastic
dominance is best seen by examining the cumulative distributions, shown in Figure 15.5(b).
If the cumulative distribution for S1 is always to the right of the cumulative distribution for S2,
then, stochastically speaking, S1 is cheaper than S2. Formally, if two actions A1 and A2 lead
to probability distributions p1(x) and p2(x) on attribute X , then A1 stochastically dominates
A2 on X if

∀x
x∫

−∞

p1(x′) dx′ ≤
x∫

−∞

p2(x′) dx′ .

The relevance of this definition to the selection of optimal decisions comes from the following
property: if A1 stochastically dominates A2, then for any monotonically nondecreasing utility J
function U(x), the expected utility of A1 is at least as high as the expected utility of A2. To see
why this is true, consider the two expected utilities,

∫
p1(x)U(x)dx and

∫
p2(x)U(x)dx. Ini-

tially, it’s not obvious why the first integral is bigger than the second, given that the stochastic
dominance condition has a p1-integral that is smaller than the p2-integral.
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Figure 15.5 Stochastic dominance. (a) S1 stochastically dominates S2 on frugality (negative
cost). (b) Cumulative distributions for the frugality of S1 and S2.

Instead of thinking about the integral over x, however, think about the integral over y, the
cumulative probability, as shown in Figure 15.5(b). For any value of y, the corresponding
value of x (and hence of U(x)) is bigger for S1 than for S2; so if we integrate a bigger quantity
over the whole range of y, we are bound to get a bigger result. Formally, it’s just a substitution
of y=P1(x) in the integral for S1’s expected value and y=P2(x) in the integral for S2’s. With
these substitutions, we have dy= d

dx(P1(x))dx= p1(x)dx for S1 and dy= p2(x)dx for S2, hence
∞∫
−∞

p1(x)U(x)dx =
1∫

0

U(P−1
1 (y))dy≥

1∫
0

U(P−1
2 (y))dy =

∞∫
−∞

p2(x)U(x)dx .

This inequality allows us to prefer A1 to A2 in a single-attribute problem. More generally,
if an action is stochastically dominated by another action on all attributes in a multiattribute
problem, then it can be discarded.

The stochastic dominance condition might seem rather technical and perhaps not so easy
to evaluate without extensive probability calculations. In fact, it can be decided very easily in
many cases. For example, would you rather fall head-first onto concrete from 3 millimeters
or 3 meters? Assuming you chose 3 millimeters—good choice! Why is it necessarily a better
decision? There is a good deal of uncertainty about the degree of damage you will incur in
both cases; but for any given level of damage, the probability that you’ll incur at least that
level of damage is higher when falling from 3 meters than from 3 millimeters. In other words,
3 millimeters stochastically dominates 3 meters on the Safety attribute.

This kind of reasoning comes as second nature to humans; it’s so obvious we don’t even
think about it. Stochastic domination abounds in the airport problem too. Suppose, for exam-
ple, that the construction transportation cost depends on the distance to the supplier. The cost
itself is uncertain, but the greater the distance, the greater the cost. If S1 is closer than S2, then
S1 will dominate S2 on frugality. Although we will not present them here, algorithms exist
for propagating this kind of qualitative information among uncertain variables in qualitative
probabilistic networks, enabling a system to make rational decisions based on stochastic

Qualitative
probabilistic
networks dominance, without using any numeric values.
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15.4.2 Preference structure and multiattribute utility

Suppose we have n attributes, each of which has d distinct possible values. To specify the
complete utility function U(x1, . . . ,xn), we need dn values in the worst case. Multiattribute
utility theory aims to identify additional structure in human preferences so that we don’t
need to specify all dn values individually. Having identified some regularity in preference
behavior, we then derive representation theorems to show that an agent with a certain kind Representation

theorem
of preference structure has a utility function

U(x1, . . . ,xn) = F [ f1(x1), . . . , fn(xn)] ,

where F is (we hope) a simple function such as addition. Notice the similarity to the use of
Bayesian networks to decompose the joint probability of several random variables.

As an example, suppose each xi is the amount of money the agent has in a particular
currency: dollars, euros, marks, lira, etc. The fi functions could then convert each amount
into a common currency, and F would then be simply addition.

Preferences without uncertainty

Let us begin with the deterministic case. On page 522 we noted that for deterministic envi-
ronments, the agent has a value function, which we write here as V (x1, . . . ,xn); the aim is to
represent this function concisely. The basic regularity that arises in deterministic preference
structures is called preference independence. Two attributes X1 and X2 are preferentially in- Preference

independence

dependent of a third attribute X3 if the preference between outcomes 〈x1,x2,x3〉 and 〈x′1,x′2,x3〉
does not depend on the particular value x3 for attribute X3.

Going back to the airport example, where we have (among other attributes) Quietness,
Frugality, and Safety to consider, one may propose that Quietness and Frugality are prefer-
entially independent of Safety. For example, if we prefer an outcome with 20,000 people
residing in the flight path and a construction cost of $4 billion over an outcome with 70,000
people residing in the flight path and a cost of $3.7 billion when the safety level is 0.006
deaths per billion passenger miles in both cases, then we would have the same preference
when the safety level is 0.012 or 0.003; and the same independence would hold for pref-
erences between any other pair of values for Quietness and Frugality. It is also apparent
that Frugality and Safety are preferentially independent of Quietness and that Quietness and
Safety are preferentially independent of Frugality.

We say that the set of attributes {Quietness,Frugality,Safety} exhibits mutual preferen-
tial independence (MPI). MPI says that, whereas each attribute may be important, it does Mutual preferential

independence (MPI)

not affect the way in which one trades off the other attributes against each other.
Mutual preferential independence is a complicated name, but it leads to a simple form for

the agent’s value function (Debreu, 1960): If attributes X1, . . . , Xn are mutually preferentially J
independent, then the agent’s preferences can be represented by a value function

V (x1, . . . ,xn) = ∑
i

Vi(xi) ,

where each Vi refers only to the attribute Xi. For example, it might well be the case that the
airport decision can be made using a value function

V (quietness, frugality,safety) = quietness×104 + frugality+ safety×1012 .

A value function of this type is called an additive value function. Additive functions are an Additive value
function
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extremely natural way to describe an agent’s preferences and are valid in many real-world
situations. For n attributes, assessing an additive value function requires assessing n separate
one-dimensional value functions rather than one n-dimensional function; typically, this repre-
sents an exponential reduction in the number of preference experiments that are needed. Even
when MPI does not strictly hold, as might be the case at extreme values of the attributes, an
additive value function might still provide a good approximation to the agent’s preferences.
This is especially true when the violations of MPI occur in portions of the attribute ranges
that are unlikely to occur in practice.

To understand MPI better, it helps to look at cases where it doesn’t hold. Suppose you
are at a medieval market, considering the purchase of some hunting dogs, some chickens,
and some wicker cages for the chickens. The hunting dogs are very valuable, but if you
don’t have enough cages for the chickens, the dogs will eat the chickens; hence, the tradeoff
between dogs and chickens depends strongly on the number of cages, and MPI is violated.
The existence of these kinds of interactions among various attributes makes it much harder to
assess the overall value function.

Preferences with uncertainty

When uncertainty is present in the domain, we also need to consider the structure of prefer-
ences between lotteries and to understand the resulting properties of utility functions, rather
than just value functions. The mathematics of this problem can become quite complicated,
so we present just one of the main results to give a flavor of what can be done.

The basic notion of utility independence extends preference independence to cover lot-Utility independence

teries: a set of attributes X is utility independent of a set of attributes Y if preferences be-
tween lotteries on the attributes in X are independent of the particular values of the attributes
in Y. A set of attributes is mutually utility independent (MUI) if each of its subsets isMutually utility

independent

utility-independent of the remaining attributes. Again, it seems reasonable to propose that
the airport attributes are MUI.

MUI implies that the agent’s behavior can be described using a multiplicative utility
function (Keeney, 1974). The general form of a multiplicative utility function is best seen byMultiplicative utility

function
looking at the case for three attributes. For conciseness, we use Ui to mean Ui(xi):

U = k1U1 + k2U2 + k3U3 + k1k2U1U2 + k2k3U2U3 + k3k1U3U1
+ k1k2k3U1U2U3 .

Although this does not look very simple, it contains just three single-attribute utility functions
and three constants. In general, an n-attribute problem exhibiting MUI can be modeled using
n single-attribute utilities and n constants. Each of the single-attribute utility functions can
be developed independently of the other attributes, and this combination will be guaranteed
to generate the correct overall preferences. Additional assumptions are required to obtain a
purely additive utility function.

15.5 Decision Networks

In this section, we look at a general mechanism for making rational decisions. The notation
is often called an influence diagram (Howard and Matheson, 1984), but we will use theInfluence diagram

more descriptive term decision network. Decision networks combine Bayesian networksDecision network
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with additional node types for actions and utilities. We use the problem of picking an airport
site as an example.

15.5.1 Representing a decision problem with a decision network

In its most general form, a decision network represents information about the agent’s current
state, its possible actions, the state that will result from the agent’s action, and the utility of
that state. It therefore provides a substrate for implementing utility-based agents of the type
first introduced in Section 2.4.5. Figure 15.6 shows a decision network for the airport-siting
problem. It illustrates the three types of nodes used:

• Chance nodes (ovals) represent random variables, just as they do in Bayesian networks. Chance nodes

The agent could be uncertain about the construction cost, the level of air traffic and the
potential for litigation, and the Safety, Quietness, and total Frugality variables, each
of which also depends on the site chosen. Each chance node has associated with it a
conditional distribution that is indexed by the state of the parent nodes. In decision
networks, the parent nodes can include decision nodes as well as chance nodes. Note
that each of the current-state chance nodes could be part of a large Bayesian network
for assessing construction costs, air traffic levels, or litigation potentials.
• Decision nodes (rectangles) represent points where the decision maker has a choice of Decision nodes

actions. In this case, the AirportSite action can take on a different value for each site
under consideration. The choice influences the safety, quietness, and frugality of the
solution. In this chapter, we assume that we are dealing with a single decision node.
Chapter 16 deals with cases in which more than one decision must be made.
• Utility nodes (diamonds) represent the agent’s utility function.7 The utility node has Utility nodes

as parents all variables describing the outcomes that directly affect utility. Associated
with the utility node is a description of the agent’s utility as a function of the parent
attributes. The description could be just a tabulation of the function, or it might be
a parameterized additive or linear function of the attribute values. For now, we will
assume that the function is deterministic; that is, given the values of its parent variables,
the value of the utility node is fully determined.

A simplified form is also used in many cases. The notation remains identical, but the
chance nodes describing the outcome states are omitted. Instead, the utility node is connected
directly to the current-state nodes and the decision node. In this case, rather than representing
a utility function on outcome states, the utility node represents the expected utility associated
with each action, as defined in Equation (15.1) on page 519; that is, the node is associated
with an action-utility function (also known as a Q-function in reinforcement learning, as Action-utility

function
described in Chapter 23). Figure 15.7 shows the action-utility representation of the airport
siting problem.

Notice that, because the Quietness, Safety, and Frugality chance nodes in Figure 15.6
refer to future states, they can never have their values set as evidence variables. Thus, the
simplified version that omits these nodes can be used whenever the more general form can
be used. Although the simplified form contains fewer nodes, the omission of an explicit
description of the outcome of the siting decision means that it is less flexible with respect to
changes in circumstances.

7 These nodes are also called value nodes in the literature.
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Figure 15.6 A decision network for the airport-siting problem.
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Figure 15.7 A simplified representation of the airport-siting problem. Chance nodes corre-
sponding to outcome states have been factored out.

For example, in Figure 15.6, a change in aircraft noise levels can be reflected by a change
in the conditional probability table associated with the Quietness node, whereas a change in
the weight accorded to noise pollution in the utility function can be reflected by a change
in the utility table. In the action-utility diagram, Figure 15.7, on the other hand, all such
changes have to be reflected by changes to the action-utility table. Essentially, the action-
utility formulation is a compiled version of the original formulation, obtained by summing
out the outcome state variables.

15.5.2 Evaluating decision networks

Actions are selected by evaluating the decision network for each possible setting of the deci-
sion node. Once the decision node is set, it behaves exactly like a chance node that has been
set as an evidence variable. The algorithm for evaluating decision networks is the following:
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1. Set the evidence variables for the current state.
2. For each possible value of the decision node:

(a) Set the decision node to that value.
(b) Calculate the posterior probabilities for the parent nodes of the utility node, using

a standard probabilistic inference algorithm.
(c) Calculate the resulting utility for the action.

3. Return the action with the highest utility.

This is a straightforward approach that can utilize any available Bayesian network algorithm
and can be incorporated directly into the agent design given in Figure 12.1 on page 406. We
will see in Chapter 16 that the possibility of executing several actions in sequence makes the
problem much more interesting.

15.6 The Value of Information

In the preceding analysis, we have assumed that all relevant information, or at least all avail-
able information, is provided to the agent before it makes its decision. In practice, this is
hardly ever the case. One of the most important parts of decision making is knowing what J
questions to ask. For example, a doctor cannot expect to be provided with the results of all
possible diagnostic tests and questions at the time a patient first enters the consulting room.
Tests are often expensive and sometimes hazardous (both directly and because of associated
delays). Their importance depends on two factors: whether the test results would lead to a
significantly better treatment plan, and how likely the various test results are.

This section describes information value theory, which enables an agent to choose what Information value
theory

information to acquire. We assume that prior to selecting a “real” action represented by the
decision node, the agent can acquire the value of any of the potentially observable chance
variables in the model. Thus, information value theory involves a simplified form of se-
quential decision making—simplified because the observation actions affect only the agent’s
belief state, not the external physical state. The value of any particular observation must
derive from the potential to affect the agent’s eventual physical action; and this potential can
be estimated directly from the decision model itself.

15.6.1 A simple example

Suppose an oil company is hoping to buy one of n indistinguishable blocks of ocean-drilling
rights. Let us assume further that exactly one of the blocks contains oil that will generate net
profits of C dollars, while the others are worthless. The asking price of each block is C/n
dollars. If the company is risk-neutral, then it will be indifferent between buying a block and
not buying one because the expected profit is zero in both cases.

Now suppose that a seismologist offers the company the results of a survey of block
number 3, which indicates definitively whether the block contains oil. How much should
the company be willing to pay for the information? The way to answer this question is to
examine what the company would do if it had the information:

• With probability 1/n, the survey will indicate oil in block 3. In this case, the company
will buy block 3 for C/n dollars and make a profit of C−C/n = (n−1)C/n dollars.
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• With probability (n−1)/n, the survey will show that the block contains no oil, in which
case the company will buy a different block. Now the probability of finding oil in one
of the other blocks changes from 1/n to 1/(n−1), so the company makes an expected
profit of C/(n−1)−C/n =C/n(n−1) dollars.

Now we can calculate the expected profit, given access to the survey information:
1
n
× (n−1)C

n
+

n−1
n
× C

n(n−1)
=C/n .

Thus, the information is worth C/n dollars to the company, and the company should be willing
to pay the seismologist some significant fraction of this amount.

The value of information derives from the fact that with the information, one’s course
of action can be changed to suit the actual situation. One can discriminate according to the
situation, whereas without the information, one has to do what’s best on average over the
possible situations. In general, the value of a given piece of information is defined to be the
difference in expected value between best actions before and after information is obtained.

15.6.2 A general formula for perfect information

It is simple to derive a general mathematical formula for the value of information. We assume
that exact evidence can be obtained about the value of some random variable E j (that is, we
learn E j = e j), so the phrase value of perfect information (VPI) is used.8Value of perfect

information
In the agent’s initial information state, the value of the current best action α is, from

Equation (15.1),

EU(α) = max
a ∑

s′
P(RESULT(a)=s′)U(s′) ,

and the value of the new best action (after the new evidence E j = e j is obtained) will be

EU(αe j |e j) = max
a ∑

s′
P(RESULT(a)=s′ |e j)U(s′) .

But E j is a random variable whose value is currently unknown, so to determine the value of
discovering E j we must average over all possible values e j that we might discover for E j,
using our current beliefs about its value:

VPI(E j) =

(
∑
e j

P(E j =e j) EU(αe j |E j =e j)

)
−EU(α) .

To get some intuition for this formula, consider the simple case where there are only two
actions, a1 and a2, from which to choose. Their current expected utilities are U1 and U2.
The information E j = e j will yield some new expected utilities U ′1 and U ′2 for the actions, but
before we obtain E j, we will have some probability distributions over the possible values of
U ′1 and U ′2 (which we assume are independent).

Suppose that a1 and a2 represent two different routes through a mountain range in winter:
a1 is a nice, straight highway through a tunnel, and a2 is a winding dirt road over the top. Just

8 There is no loss of expressiveness in requiring perfect information. Suppose we wanted to model the case
in which we become somewhat more certain about a variable. We can do that by introducing another variable
about which we learn perfect information. For example, suppose we initially have broad uncertainty about the
variable Temperature. Then we gain the perfect knowledge Thermometer = 37; this gives us imperfect informa-
tion about the true Temperature, and the uncertainty due to measurement error is encoded in the sensor model
P(Thermometer |Temperature). See Exercise 15.VPIX for another example.
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Figure 15.8 Three generic cases for the value of information. In (a), a1 will almost certainly
remain superior to a2, so the information is not needed. In (b), the choice is unclear and the
information is crucial. In (c), the choice is unclear, but because it makes little difference, the
information is less valuable. (Note: The fact that U2 has a high peak in (c) means that its
expected value is known with higher certainty than U1.)

given this information, a1 is clearly preferable, because it is quite possible that a2 is blocked
by snow, whereas it is unlikely that anything blocks a1. U1 is therefore clearly higher than
U2. It is possible to obtain satellite reports E j on the actual state of each road that would give
new expectations, U ′1 and U ′2, for the two crossings. The distributions for these expectations
are shown in Figure 15.8(a). Obviously, in this case, it is not worth the expense of obtaining
satellite reports, because it is unlikely that the information derived from them will change the
plan. With no change, information has no value.

Now suppose that we are choosing between two different winding dirt roads of slightly
different lengths and we are carrying a seriously injured passenger. Then, even when U1
and U2 are quite close, the distributions of U ′1 and U ′2 are very broad. There is a significant
possibility that the second route will turn out to be clear while the first is blocked, and in this
case the difference in utilities will be very high. The VPI formula indicates that it might be
worthwhile getting the satellite reports. Such a situation is shown in Figure 15.8(b).

Finally, suppose that we are choosing between the two dirt roads in summertime, when
blockage by snow is unlikely. In this case, satellite reports might show one route to be more
scenic than the other because of flowering alpine meadows, or perhaps wetter because of re-
cent rain. It is therefore quite likely that we would change our plan if we had the information.
In this case, however, the difference in value between the two routes is still likely to be very
small, so we will not bother to obtain the reports. This situation is shown in Figure 15.8(c).

In sum, information has value to the extent that it is likely to cause a change of plan and J
to the extent that the new plan will be significantly better than the old plan.

15.6.3 Properties of the value of information

One might ask whether it is possible for information to be deleterious: can it actually have
negative expected value? Intuitively, one should expect this to be impossible. After all, one
could in the worst case just ignore the information and pretend that one has never received
it. This is confirmed by the following theorem, which applies to any decision-theoretic agent
using any decision network with possible observations E j:
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The expected value of information is nonnegative:I
∀ j VPI(E j)≥ 0 .

The theorem follows directly from the definition of VPI, and we leave the proof as an exercise
(Exercise 15.NNVP). It is, of course, a theorem about expected value, not actual value. Ad-
ditional information can easily lead to a plan that turns out to be worse than the original plan
if the information happens to be misleading. For example, a medical test that gives a false
positive result may lead to unnecessary surgery; but that does not mean that the test shouldn’t
be done.

It is important to remember that VPI depends on the current state of information. It can
change as more information is acquired. For any given piece of evidence E j, the value of
acquiring it can go down (e.g., if another variable strongly constrains the posterior for E j) or
up (e.g., if another variable provides a clue on which E j builds, enabling a new and better
plan to be devised). Thus, VPI is not additive. That is,

VPI(E j,Ek) 6= VPI(E j)+VPI(Ek) (in general) .

VPI is, however, order-independent. That is,

VPI(E j,Ek) = VPI(E j)+VPI(Ek|E j) = VPI(Ek)+VPI(E j|Ek) = VPI(Ek,E j)

where the notation VPI(·|E) denotes the VPI calculated according to the posterior distribution
where E is already observed. Order independence distinguishes sensing actions from ordinary
actions and simplifies the problem of calculating the value of a sequence of sensing actions.
We return to this question in the next section.

15.6.4 Implementation of an information-gathering agent

A sensible agent should ask questions in a reasonable order, should avoid asking questions
that are irrelevant, should take into account the importance of each piece of information in
relation to its cost, and should stop asking questions when that is appropriate. All of these
capabilities can be achieved by using the value of information as a guide.

Figure 15.9 shows the overall design of an agent that can gather information intelligently
before acting. For now, we assume that with each observable evidence variable E j, there is
an associated cost, C(E j), which reflects the cost of obtaining the evidence through tests,
consultants, questions, or whatever. The agent requests what appears to be the most efficient
observation in terms of utility gain per unit cost. We assume that the result of the action
Request(E j) is that the next percept provides the value of E j. If no observation is worth its
cost, the agent selects a “real” action.

The agent algorithm we have described implements a form of information gathering that
is called myopic. This is because it uses the VPI formula shortsightedly, calculating the valueMyopic

of information as if only a single evidence variable will be acquired. Myopic control is based
on the same heuristic idea as greedy search and often works well in practice. (For example,
it has been shown to outperform expert physicians in selecting diagnostic tests.) However,
if there is no single evidence variable that will help a lot, a myopic agent might hastily take
an action when it would have been better to request two or more variables first and then take
action. The next section considers the possibility of obtaining multiple observations.
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function INFORMATION-GATHERING-AGENT(percept) returns an action
persistent: D, a decision network

integrate percept into D
j← the value that maximizes VPI(E j) / C(E j)
if VPI(E j) > C(E j)

then return Request(E j)
else return the best action from D

Figure 15.9 Design of a simple, myopic information-gathering agent. The agent works by
repeatedly selecting the observation with the highest information value, until the cost of the
next observation is greater than its expected benefit.

15.6.5 Nonmyopic information gathering

The fact that the value of a sequence of observations is invariant under permutations of the
sequence is intriguing but doesn’t, by itself, lead to efficient algorithms for optimal infor-
mation gathering. Even if we restrict ourselves to choosing in advance a fixed subset of
observations to collect, there are 2n possible such subsets from n potential observations. In
the general case, we face an even more complex problem of finding an optimal conditional
plan (as described in Section 11.5.2) that chooses an observation and then acts or chooses
more observations, depending on the outcome. Such plans form trees, and the number of
such trees is superexponential in n.9

For observations of variables in a decision network, it turns out that this problem is in-
tractable even when the network is a polytree. There are, however, special cases in which the
problem can be solved efficiently. Here we present one such case: the treasure hunt problem Treasure hunt

(or the least-cost testing sequence problem, for the less romantically inclined). There are n
locations 1, . . . ,n; each location i contains treasure with independent probability P(i); and it
costs C(i) to check location i. This corresponds to a decision network where all the potential
evidence variables Treasurei are absolutely independent. The agent examines locations in
some order until treasure is found; the question is, what is the optimal order?

To answer this question, we will need to consider the expected costs and success prob-
abilities of various sequences of observations, assuming the agent stops when treasure is
found. Let x be such a sequence; xy be the concatenation of sequences x and y; C(x) be the
expected cost of x; P(x) be the probability that sequence x succeeds in finding treasure; and
F(x)=1−P(x) be the probability that it fails. Given these definitions, we have

C(xy) =C(x)+F(x)C(y) , (15.3)

that is, the sequence xy will definitely incur the cost of x and, if x fails, it will also incur the
cost of y.

The basic idea in any sequence optimization problem is to look at the change in cost,
defined by ∆=C(wxyz)−C(wyxz), when two adjacent subsequences x and y in a general
sequence wxyz are flipped. When the sequence is optimal, all such changes make the se-
quence worse. The first step is to show that the sign of the effect (increasing or decreasing

9 The general problem of generating sequential behavior in a partially observable environment falls under the
heading of partially observable Markov decision processes, which are described in Chapter 16.
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the cost) doesn’t depend on the context provided by w and z. We have

∆ = [C(w)+F(w)C(xyz)]− [C(w)+F(w)C(yxz)] (by Equation (15.3))

= F(w)[C(xyz)−C(yxz)]
= F(w)[(C(xy)+F(xy)C(z))− (C(yx)+F(yx)C(z))] (by Equation (15.3))

= F(w)[C(xy)−C(yx)] (since F(xy)=F(yx)) .

So we have shown that the direction of the change in the cost of the whole sequence depends
only on the direction of the change in cost of the pair of elements being flipped; the context
of the pair doesn’t matter. This gives us a way to sort the sequence by pairwise comparisons
to obtain an optimal solution. Specifically, we now have

∆ = F(w)[(C(x)+F(x)C(y))− (C(y)+F(y)C(x))] (by Equation (15.3))

= F(w)[C(x)(1−F(y))−C(y)(1−F(x))] = F(w)[C(x)P(y)−C(y)P(x)] .

This holds for any sequences x and y, so it holds specifically when x and y are single ob-
servations of locations i and j, respectively. So we know that, for i and j to be adjacent
in an optimal sequence, we must have C(i)P( j) ≤C( j)P(i), or P(i)

C(i) ≥
P( j)
C( j) . In other words,

the optimal order ranks the locations according to the success probability per unit cost. Ex-
ercise 15.HUNT asks you to determine whether this is in fact the policy followed by the
algorithm in Figure 15.9 for this problem.

15.6.6 Sensitivity analysis and robust decisions

The practice of sensitivity analysis is widespread in technological disciplines: it means an-Sensitivity analysis

alyzing how much the output of a process changes as the model parameters are tweaked.
Sensitivity analysis in probabilistic and decision-theoretic systems is particularly important
because the probabilities used are typically either learned from data or estimated by human
experts, which means that they are themselves subject to considerable uncertainty. Only in
rare cases, such as the dice rolls in backgammon, are the probabilities objectively known.

For a utility-driven decision-making process, you can think of the output as either the
actual decision made or the expected utility of that decision. Consider the latter first: because
expectation depends on probabilities from the model, we can compute the derivative of the
expected utility of any given action with respect to each of those probability values. (For
example, if all the conditional probability distributions in the model are explicitly tabulated,
then computing the expectation involves computing a ratio of two sum-of-product expres-
sions; for more on this, see Chapter 21.) Thus, one can determine which parameters in the
model have the largest effect on the expected utility of the final decision.

If, instead, we are concerned about the actual decision made, rather than its utility ac-
cording to the model, then we can simply vary the parameters systematically (perhaps using
binary search) to see whether the decision changes, and, if so, what is the smallest perturba-
tion that causes such a change. One might think it doesn’t matter that much which decision
is made, only what its utility is. That’s true, but in practice there may be a very substantial
difference between the real utility of a decision and the utility according to the model.

If all reasonable perturbations of the parameters leave the optimal decision unchanged,
then it is reasonable to assume the decision is a good one, even if the utility estimate for
that decision is substantially incorrect. If, on the other hand, the optimal decision changes
considerably as the parameters of the model change, then there is a good chance that the
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model may produce a decision that is substantially suboptimal in reality. In that case, it is
worth investing further effort to refine the model.

These intuitions have been formalized in several fields (control theory, decision analysis,
risk management) that propose the notion of a robust or minimax decision—that is, one Robust

that gives the best result in the worst case. Here, “worst case” means worst with respect
to all plausible variations in the parameter values of the model. Letting θ stand for all the
parameters in the model, the robust decision is defined by

a∗ = argmax
a

min
θ

EU(a;θ) .

In many cases, particularly in control theory, the robust approach leads to designs that work
very reliably in practice. In other cases, it leads to overly conservative decisions. For example,
when designing a self-driving car, the robust approach would assume the worst case for the
behavior of the other vehicles on the road—that is, they are all driven by homicidal maniacs.
In that case, the optimal solution for the car is to stay in the garage.

Bayesian decision theory offers an alternative to robust methods: if there is uncertainty
about the parameters of the model, then model that uncertainty using hyperparameters.

Whereas the robust approach might say that some probability θi in the model could be
anywhere between 0.3 and 0.7, with the actual value chosen by an adversary to make things
come out as badly as possible, the Bayesian approach would put a prior probability distribu-
tion on θi and then proceed as before. This requires more modeling effort—for example, the
Bayesian modeler must decide if parameters θi and θ j are independent—but often results in
better performance in practice.

In addition to parametric uncertainty, applications of decision theory in the real world
also suffer from structural uncertainty. For example, the assumption of independence of
AirTraffic, Litigation, and Construction in Figure 15.6 may be incorrect, and there may be
additional variables that the model simply omits. At present, we do not have a good under-
standing of how to take this kind of uncertainty into account. One possibility is to keep an
ensemble of models, perhaps generated by machine learning algorithms, in the hope that the
ensemble captures the significant variations that matter.

15.7 Unknown Preferences

In this section we discuss what happens when there is uncertainty about the utility function
whose expected value is to be optimized. There are two versions of this problem: one in
which an agent (machine or human) is uncertain about its own utility function, and another in
which a machine is supposed to help a human but is uncertain about what the human wants.

15.7.1 Uncertainty about one’s own preferences

Imagine that you are at an ice-cream shop in Thailand and they have only two flavors left:
vanilla and durian. Both cost $2. You know you have a moderate liking for vanilla and you’d
be willing to pay up to $3 for a vanilla ice cream on such a hot day, so there is a net gain of
$1 for choosing vanilla. On the other hand, you have no idea whether you like durian or not,
but you’ve read on Wikipedia that the durian elicits different responses from different people:
some find that “it surpasses in flavour all other fruits of the world” while others liken it to
“sewage, stale vomit, skunk spray and used surgical swabs.”
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Figure 15.10 (a) A decision network for the ice cream choice with an uncertain utility func-
tion. (b) The network with the expected utility of each action. (c) Moving the uncertainty
from the utility function into a new random variable.

To put some numbers on this, let’s say there’s a 50% chance you’ll find it sublime (+$100)
and a 50% chance you’ll hate it (-$80 if the taste lingers all afternoon). Here, there’s no uncer-
tainty about what prize you’re going to win—it’s the same durian ice cream either way—but
there’s uncertainty about your own preferences for that prize.

We could extend the decision network formalism to allow for uncertain utilities, as shown
in Figure 15.10(a). If there is no more information to be obtained about your durian prefer-
ences, however—for example, if the shop won’t let you taste it first—then the decision prob-
lem is identical to the one shown in Figure 15.10(b). We can simply replace the uncertain
value of the durian with its expected net gain of (0.5×$100)− (0.5×$80)− $2=$8 and
your decision will remain unchanged.

If it’s possible for your beliefs about durian to change—perhaps you get a tiny taste,
or you find out that all of your living relatives love durian—then the transformation in Fig-
ure 15.10(b) is not valid. It turns out, however, that we can still find an equivalent model in
which the utility function is deterministic. Rather than saying there is uncertainty about the
utility function, we move that uncertainty “into the world,” so to speak. That is, we create a
new random variable LikesDurian with prior probabilities of 0.5 for true and false, as shown
in Figure 15.10(c). With this extra variable, the utility function becomes deterministic, but
we can still handle changing beliefs about your durian preferences.

The fact that unknown preferences can be modeled by ordinary random variables means
that we can keep using the machinery and theorems developed for known preferences. On
the other hand, it doesn’t mean that we can always assume that preferences are known. The
uncertainty is still there and still affects how agents should behave.

15.7.2 Deference to humans

Now let’s turn to the second case mentioned above: a machine that is supposed to help a
human but is uncertain about what the human wants. The full treatment of this case must be
deferred to Chapter 17, where we discuss decisions involving more than one agent. Here, we
ask one simple question: under what circumstances will such a machine defer to the human?
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Figure 15.11 The off-switch game. R, the robot, can choose to act now, with a highly un-
certain payoff; to switch itself off; or to defer to H, the human. H can switch R off or let it
go ahead. R now has the same choice again. Acting still has an uncertain payoff, but now R
knows the payoff is nonnegative.

To study this question, let’s consider a very simple scenario, as shown in Figure 15.11.
Robbie is a software robot working for Harriet, a busy human, as her personal assistant.
Harriet needs a hotel room for her next business meeting in Geneva. Robbie can act now—
let’s say he can book Harriet into a very expensive hotel near the meeting venue. He is quite
unsure how much Harriet will like the hotel and its price; let’s say he has a uniform probability
for its net value to Harriet between −40 and +60, with an average of +10. He could also
“switch himself off”—less melodramatically, take himself out of the hotel booking process
altogether—which we define (without loss of generality) to have value 0 to Harriet. If those
were his two choices, he would go ahead and book the hotel, incurring a significant risk of
making Harriet unhappy. (If the range were −60 to +40, with average −10, he would switch
himself off instead.) We’ll give Robbie a third choice, however: explain his plan, wait, and
let Harriet switch him off. Harriet can either switch him off or let him go ahead and book
the hotel. What possible good could this do, one might ask, given that he could make both of
those choices himself?

The point is that Harriet’s choice—to switch Robbie off or let him go ahead—provides
Robbie with information about Harriet’s preferences. We’ll assume, for now, that Harriet is
rational, so if Harriet lets Robbie go ahead, it means the value to Harriet is positive. Now, as
shown in Figure 15.11, Robbie’s belief changes: it is uniform between 0 and +60, with an
average of +30.

So, if we evaluate Robbie’s initial choices from his point of view:

1. Acting now and booking the hotel has an expected value of +10.
2. Switching himself off has a value of 0.
3. Waiting and letting Harriet switch him off leads to two possible outcomes:

(a) There is a 40% chance, based on Robbie’s uncertainty about Harriet’s preferences,
that she will hate the plan and will switch Robbie off, with value 0.

(b) There is a 60% chance Harriet will like the plan and allow Robbie to go ahead,
with expected value +30.

Thus, waiting has expected value (0.4×0)+(0.6×30)= +18, which is better than the +10
Robbie expects if he acts now.
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The upshot is that Robbie has a positive incentive to defer to Harriet—that is, to allow
himself to be switched off. This incentive comes directly from Robbie’s uncertainty about
Harriet’s preferences. Robbie is aware that there’s a chance (40% in this example) that he
might be about to do something that will make Harriet unhappy, in which case being switched
off would be preferable to going ahead. Were Robbie already certain about Harriet’s prefer-
ences, he would just go ahead and make the decision (or switch himself off); there would
be absolutely nothing to be gained from consulting Harriet, because, according to Robbie’s
definite beliefs, he can already predict exactly what she is going to decide.

In fact, it is possible to prove the same result in the general case: as long as Robbie is
not completely certain that he’s about to do what Harriet herself would do, he is better off
allowing her to switch him off. Intuitively, her decision provides Robbie with information,
and the expected value of information is always nonnegative. Conversely, if Robbie is certain
about Harriet’s decision, her decision provides no new information, and so Robbie has no
incentive to allow her to decide.

Formally, let P(u) be Robbie’s prior probability density over Harriet’s utility for the pro-
posed action a. Then the value of going ahead with a is

EU(a) =
∫

∞

−∞

P(u) ·udu =
∫ 0

−∞

P(u) ·udu+
∫

∞

0
P(u) ·udu .

(We will see shortly why the integral is split up in this way.) On the other hand, the value of
action d, deferring to Harriet, is composed of two parts: if u > 0 then Harriet lets Robbie go
ahead, so the value is u, but if u< 0 then Harriet switches Robbie off, so the value is 0:

EU(d) =
∫ 0

−∞

P(u) ·0du+
∫

∞

0
P(u) ·udu .

Comparing the expressions for EU(a) and EU(d), we see immediately that

EU(d)≥ EU(a)

because the expression for EU(d) has the negative-utility region zeroed out. The two choices
have equal value only when the negative region has zero probability—that is, when Robbie is
already certain that Harriet likes the proposed action.

There are some obvious elaborations on the model that are worth exploring immediately.
The first elaboration is to impose a cost for Harriet’s time. In that case, Robbie is less inclined
to bother Harriet if the downside risk is small. This is as it should be. And if Harriet is really
grumpy about being interrupted, she shouldn’t be too surprised if Robbie occasionally does
things she doesn’t like.

The second elaboration is to allow for some probability of human error—that is, Harriet
might sometimes switch Robbie off even when his proposed action is reasonable, and she
might sometimes let Robbie go ahead even when his proposed action is undesirable. It is
straightforward to fold this error probability into the model (see Exercise 15.OFFS). As one
might expect, the solution shows that Robbie is less inclined to defer to an irrational Harriet
who sometimes acts against her own best interests. The more randomly she behaves, the more
uncertain Robbie has to be about her preferences before deferring to her. Again, this is as it
should be: for example, if Robbie is a self-driving car and Harriet is his naughty two-year-old
passenger, Robbie should not allow Harriet to switch him off in the middle of the highway.
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Summary

This chapter shows how to combine utility theory with probability to enable an agent to select
actions that will maximize its expected performance.

• Probability theory describes what an agent should believe on the basis of evidence,
utility theory describes what an agent wants, and decision theory puts the two together
to describe what an agent should do.

• We can use decision theory to build a system that makes decisions by considering all
possible actions and choosing the one that leads to the best expected outcome. Such a
system is known as a rational agent.

• Utility theory shows that an agent whose preferences between lotteries are consistent
with a set of simple axioms can be described as possessing a utility function; further-
more, the agent selects actions as if maximizing its expected utility.

• Multiattribute utility theory deals with utilities that depend on several distinct at-
tributes of states. Stochastic dominance is a particularly useful technique for making
unambiguous decisions, even without precise utility values for attributes.

• Decision networks provide a simple formalism for expressing and solving decision
problems. They are a natural extension of Bayesian networks, containing decision and
utility nodes in addition to chance nodes.

• Sometimes, solving a problem involves finding more information before making a de-
cision. The value of information is defined as the expected improvement in utility
compared with making a decision without the information; it is particularly useful for
guiding the process of information-gathering prior to making a final decision.

• When, as is often the case, it is impossible to specify the human’s utility function com-
pletely and correctly, machines must operate under uncertainty about the true objective.
This makes a significant difference when the possibility exists for the machine to ac-
quire more information about human preferences. We showed by a simple argument
that uncertainty about preferences ensures that the machine defers to the human, to the
point of allowing itself to be switched off.

Bibliographical and Historical Notes

In the 17th century treatise L’art de Penser, or Port-Royal Logic, Arnauld (1662) states:

To judge what one must do to obtain a good or avoid an evil, it is necessary to consider
not only the good and the evil in itself, but also the probability that it happens or does not
happen; and to view geometrically the proportion that all these things have together.

Modern texts talk of utility rather than good and evil, but this statement correctly notes that
one should multiply utility by probability (“view geometrically”) to give expected utility,
and maximize that over all outcomes (“all these things”) to “judge what one must do.” It is
remarkable how much Arnauld got right, more than 350 years ago, and only 8 years after
Pascal and Fermat first showed how to use probability correctly.

Daniel Bernoulli (1738), investigating the St. Petersburg paradox (see Exercise 15.STPT),
was the first to realize the importance of preference measurement for lotteries, writing “the
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value of an item must not be based on its price, but rather on the utility that it yields” (ital-
ics his). Utilitarian philosopher Jeremy Bentham (1823) proposed the hedonic calculus forHedonic calculus

weighing “pleasures” and “pains,” arguing that all decisions (not just monetary ones) could
be reduced to utility comparisons.

Bernoulli’s introduction of utility—an internal, subjective quantity—to explain human
behavior via a mathematical theory was an utterly remarkable proposal for its time. It was all
the more remarkable for the fact that unlike monetary amounts, the utility values of various
bets and prizes are not directly observable; instead, utilities are to be inferred from the pref-
erences exhibited by an individual. It would be two centuries before the implications of the
idea were fully worked out and it became broadly accepted by statisticians and economists.

The derivation of numerical utilities from preferences was first carried out by Ram-
sey (1931); the axioms for preference in the present text are closer in form to those rediscov-
ered in Theory of Games and Economic Behavior (von Neumann and Morgenstern, 1944).
Ramsey had derived subjective probabilities (not just utilities) from an agent’s preferences;
Savage (1954) and Jeffrey (1983) carry out more recent constructions of this kind. Beardon
et al. (2002) show that a utility function does not suffice to represent nontransitive preferences
and other anomalous situations.

In the post-war period, decision theory became a standard tool in economics, finance,
and management science. A field of decision analysis emerged to aid in making policyDecision analysis

decisions more rational in areas such as military strategy, medical diagnosis, public health,
engineering design, and resource management. The process involves a decision maker whoDecision maker

states preferences between outcomes and a decision analyst who enumerates the possibleDecision analyst

actions and outcomes and elicits preferences from the decision maker to determine the best
course of action. Von Winterfeldt and Edwards (1986) provide a nuanced perspective on
decision analysis and its relationship to human preference structures. Smith (1988) gives an
overview of the methodology of decision analysis.

Until the 1980s, multivariate decision problems were handled by constructing “decision
trees” of all possible instantiations of the variables. Influence diagrams or decision networks,
which take advantage of the same conditional independence properties as Bayesian networks,
were introduced by Howard and Matheson (1984), based on earlier work at SRI (Miller et al.,
1976). Howard and Matheson’s algorithm constructed the complete (exponentially large)
decision tree from the decision network. Shachter (1986) developed a method for making
decisions based directly on a decision network, without the creation of an intermediate deci-
sion tree. This algorithm was also one of the first to provide complete inference for multiply
connected Bayesian networks. Nilsson and Lauritzen (2000) link algorithms for decision
networks to ongoing developments in clustering algorithms for Bayesian networks. The col-
lection by Oliver and Smith (1990) has a number of useful early articles on decision networks,
as does the 1990 special issue of the journal Networks. The text by Fenton and Neil (2018)
provides a hands-on guide to solving real-world decision problems using decision networks.
Papers on decision networks and utility modeling also appear regularly in the journals Man-
agement Science and Decision Analysis.

Surprisingly few early AI researchers adopted decision-theoretic tools after the early ap-
plications in medical decision making described in Chapter 12. One of the few exceptions
was Jerry Feldman, who applied decision theory to problems in vision (Feldman and Yaki-
movsky, 1974) and planning (Feldman and Sproull, 1977). Rule-based expert systems of the
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late 1970s and early 1980s concentrated on answering questions, rather than on making de-
cisions. Those systems that did recommend actions generally did so using condition–action
rules rather than explicit representations of outcomes and preferences.

Decision networks offer a far more flexible approach, for example by allowing prefer-
ences to change while keeping the transition model constant, or vice versa. They also al-
low a principled calculation of what information to seek next. In the late 1980s, partly due
to Pearl’s work on Bayes nets, decision-theoretic expert systems gained widespread accep-
tance (Horvitz et al., 1988; Cowell et al., 2002). In fact, from 1991 onward, the cover design
of the journal Artificial Intelligence has depicted a decision network, although some artistic
license appears to have been taken with the direction of the arrows.

Practical attempts to measure human utilities began with post-war decision analysis (see
above). The micromort utility measure is discussed by Howard (1989). Thaler Thaler (1992)
found that for a 1/1000 chance of death, a respondent wouldn’t pay more than $200 to remove
the risk, but wouldn’t accept $50,000 to take on the risk.

The use of QALYs (quality-adjusted life years) to perform cost–benefit analyses of med-
ical interventions and related social policies dates back at least to work by Klarman et al.
(1968), although the term itself was first used by Zeckhauser and Shepard (1976). Like
money, QALYs correspond directly to utilities only under fairly strong assumptions, such as
risk neutrality, that are often violated (Beresniak et al., 2015); nonetheless, QALYs are much
widely used in practice, for example in forming National Health Service policies in the UK.
See Russell (1990) for a typical example of an argument for a major change in public health
policy on grounds of increased expected utility measured in QALYs.

Keeney and Raiffa (1976) give an introduction to multiattribute utility theory. They
describe early computer implementations of methods for eliciting the necessary parameters
for a multiattribute utility function and include extensive accounts of real applications of the
theory. Abbas (2018) covers many advances since 1976. The theory was introduced to AI pri-
marily by the work of Wellman (1985), who also investigated the use of stochastic dominance
and qualitative probability models (Wellman, 1988, 1990a). Wellman and Doyle (1992) pro-
vide a preliminary sketch of how a complex set of utility-independence relationships might be
used to provide a structured model of a utility function, in much the same way that Bayesian
networks provide a structured model of joint probability distributions. Bacchus and Grove
(1995, 1996) and La Mura and Shoham (1999) give further results along these lines. Boutilier
et al. (2004) describe CP-nets, a fully worked out graphical model formalism for conditional
ceteribus paribus preference statements.

The optimizer’s curse was brought to the attention of decision analysts in a forceful
way by Smith and Winkler (2006), who pointed out that the financial benefits to the client
projected by analysts for their proposed course of action almost never materialized. They
trace this directly to the bias introduced by selecting an optimal action and show that a more
complete Bayesian analysis eliminates the problem.

The same underlying concept has been called post-decision disappointment by Harrison Post-decision
disappointment

and March (1984) and was noted in the context of analyzing capital investment projects by
Brown (1974). The optimizer’s curse is also closely related to the winner’s curse (Capen Winner’s curse

et al., 1971; Thaler, 1992), which applies to competitive bidding in auctions: whoever wins
the auction is very likely to have overestimated the value of the object in question. Capen et
al. quote a petroleum engineer on the topic of bidding for oil-drilling rights: “If one wins a
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tract against two or three others he may feel fine about his good fortune. But how should he
feel if he won against 50 others? Ill.”

The Allais paradox, due to Nobel Prize–winning economist Maurice Allais (1953), was
tested experimentally to show that people are consistently inconsistent in their judgments
(Tversky and Kahneman, 1982; Conlisk, 1989). The Ellsberg paradox on ambiguity aversion
was introduced in the Ph.D. thesis of Daniel Ellsberg (1962).10 Fox and Tversky (1995)
describe a further study of ambiguity aversion. Machina (2005) gives an overview of choice
under uncertainty and how it can vary from expected utility theory. See the classic text by
Keeney and Raiffa (1976) and the more recent work by Abbas (2018) for an in-depth analysis
of preferences with uncertainty.

2009 was a big year for popular books on human irrationality, including PredictablyIrrationality

Irrational (Ariely, 2009), Sway (Brafman and Brafman, 2009), Nudge (Thaler and Sunstein,
2009), Kluge (Marcus, 2009), How We Decide (Lehrer, 2009) and On Being Certain (Burton,
2009). They complement the classic book Judgment Under Uncertainty (Kahneman et al.,
1982) and the article that started it all (Kahneman and Tversky, 1979). Kahneman himself
provides an insightful and readable account in Thinking: Fast and Slow (Kahneman, 2011).

The field of evolutionary psychology (Buss, 2005), on the other hand, has run counter to
this literature, arguing that humans are quite rational in evolutionarily appropriate contexts.
Its adherents point out that irrationality is penalized by definition in an evolutionary context
and show that in some cases it is an artifact of the experimental setup (Cummins and Allen,
1998). There has been a recent resurgence of interest in Bayesian models of cognition, over-
turning decades of pessimism (Elio, 2002; Chater and Oaksford, 2008; Griffiths et al., 2008);
this resurgence is not without its detractors, however (Jones and Love, 2011).

The theory of information value was explored first in the context of statistical experi-
ments, where a quasi-utility (entropy reduction) was used (Lindley, 1956). The control theo-
rist Ruslan Stratonovich (1965) developed the more general theory presented here, in which
information has value by virtue of its ability to affect decisions. Stratonovich’s work was not
known in the West, where Ron Howard (1966) pioneered the same idea. His paper ends with
the remark “If information value theory and associated decision theoretic structures do not
in the future occupy a large part of the education of engineers, then the engineering profes-
sion will find that its traditional role of managing scientific and economic resources for the
benefit of man has been forfeited to another profession.” To date, the implied revolution in
managerial methods has not occurred.

The myopic information-gathering algorithm described in the chapter is ubiquitous in
the decision analysis literature; its basic outlines can be discerned in the original paper on
influence diagrams (Howard and Matheson, 1984). Efficient calculation methods are studied
by Dittmer and Jensen (1997). Laskey (1995) and Nielsen and Jensen (2003) discuss meth-
ods for sensitivity analysis in Bayesian networks and decision networks, respectively. The
classic text Robust and Optimal Control (Zhou et al., 1995) provides thorough coverage and
comparison of the robust and decision-theoretic approaches to decisions under uncertainty.

The treasure hunt problem was solved independently by many authors, dating back at
least to papers on sequential testing by Gluss (1959) and Mitten (1960). The style of proof

10 Ellsberg later became a military analyst at the RAND Corporation and leaked documents known as the Pen-
tagon Papers, thereby contributing to the end of the Vietnam war.
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in this chapter draws on a basic result, due to Smith (1956), relating the value of a sequence
to the value of the same sequence with two adjacent elements permuted. These results for
independent tests were extended to more general tree and graph search problems (where the
tests are partially ordered) by Kadane and Simon (1977). Results on the complexity of non-
myopic calculations of the value of information were obtained by Krause and Guestrin (2009).
Krause et al. (2008) identified cases where submodularity leads to a tractable approximation
algorithm, drawing on the seminal work of Nemhauser et al. (1978) on submodular functions;
Krause and Guestrin (2005) identify cases where an exact dynamic programming algorithm
gives an efficient solution for both evidence subset election and conditional plan generation.

Harsanyi (1967) studied the problem of incomplete information in game theory, where
players may not know each others’ payoff functions exactly. He showed that such games were
identical to games with imperfect information, where players are uncertain about the state of
the world, via the trick of adding state variables referring to players’ payoffs. Cyert and
de Groot (1979) developed a theory of adaptive utility in which an agent could be uncertain Adaptive utility

about its own utility function and could obtain more information through experience.
Work on Bayesian preference elicitation (Chajewska et al., 2000; Boutilier, 2002) be-

gins from the assumption of a prior probability over the agent’s utility function. Fern et al.
(2014) propose a decision-theoretic model of assistance in which a robot tries to ascertain Assistance

and assist with a human goal about which it is initially uncertain. The off-switch example
in Section 15.7.2 is adapted from Hadfield-Menell et al. (2017b). Russell (2019) proposes a
general framework for benefical AI in which the off-switch game is a key example.



CHAPTER 16
MAKING COMPLEX DECISIONS
In which we examine methods for deciding what to do today, given that we may face another
decision tomorrow.

In this chapter, we address the computational issues involved in making decisions in a stochas-
tic environment. Whereas Chapter 15 was concerned with one-shot or episodic decision prob-
lems, in which the utility of each action’s outcome was well known, we are concerned here
with sequential decision problems, in which the agent’s utility depends on a sequence ofSequential decision

problem

decisions. Sequential decision problems incorporate utilities, uncertainty, and sensing, and
include search and planning problems as special cases. Section 16.1 explains how sequential
decision problems are defined, and Section 16.2 describes methods for solving them to pro-
duce behaviors that are appropriate for a stochastic environment. Section 16.3 covers multi-
armed bandit problems, a specific and fascinating class of sequential decision problems
that arise in many contexts. Section 16.4 explores decision problems in partially observable
environments and Section 16.5 describes how to solve them.

16.1 Sequential Decision Problems

Suppose that an agent is situated in the 4×3 environment shown in Figure 16.1(a). Beginning
in the start state, it must choose an action at each time step. The interaction with the environ-
ment terminates when the agent reaches one of the goal states, marked +1 or –1. Just as for
search problems, the actions available to the agent in each state are given by ACTIONS(s),
sometimes abbreviated to A(s); in the 4×3 environment, the actions in every state are Up,
Down, Left, and Right. We assume for now that the environment is fully observable, so that
the agent always knows where it is.

If the environment were deterministic, a solution would be easy: [Up, Up, Right, Right,
Right]. Unfortunately, the environment won’t always go along with this solution, because the
actions are unreliable. The particular model of stochastic motion that we adopt is illustrated
in Figure 16.1(b). Each action achieves the intended effect with probability 0.8, but the rest
of the time, the action moves the agent at right angles to the intended direction. Furthermore,
if the agent bumps into a wall, it stays in the same square. For example, from the start square
(1,1), the action Up moves the agent to (1,2) with probability 0.8, but with probability 0.1, it
moves right to (2,1), and with probability 0.1, it moves left, bumps into the wall, and stays
in (1,1). In such an environment, the sequence [Up,Up,Right,Right,Right] goes up around
the barrier and reaches the goal state at (4,3) with probability 0.85=0.32768. There is also a
small chance of accidentally reaching the goal by going the other way around with probability
0.14×0.8, for a grand total of 0.32776. (See also Exercise 16.MDPX.)
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Figure 16.1 (a) A simple, stochastic 4×3 environment that presents the agent with a se-
quential decision problem. (b) Illustration of the transition model of the environment: the
“intended” outcome occurs with probability 0.8, but with probability 0.2 the agent moves
at right angles to the intended direction. A collision with a wall results in no movement.
Transitions into the two terminal states have reward +1 and –1, respectively, and all other
transitions have a reward of –0.04.

As in Chapter 3, the transition model (or just “model,” when the meaning is clear) de-
scribes the outcome of each action in each state. Here, the outcome is stochastic, so we write
P(s′ |s,a) for the probability of reaching state s′ if action a is done in state s. (Some authors
write T (s,a,s′) for the transition model.) We will assume that transitions are Markovian: the
probability of reaching s′ from s depends only on s and not on the history of earlier states.

To complete the definition of the task environment, we must specify the utility function
for the agent. Because the decision problem is sequential, the utility function will depend
on a sequence of states and actions—an environment history—rather than on a single state.
Later in this section, we investigate the nature of utility functions on histories; for now, we
simply stipulate that for every transition from s to s′ via action a, the agent receives a reward Reward

R(s,a,s′). The rewards may be positive or negative, but they are bounded by ±Rmax.1

For our particular example, the reward is −0.04 for all transitions except those entering
terminal states (which have rewards +1 and –1). The utility of an environment history is just
(for now) the sum of the rewards received. For example, if the agent reaches the +1 state after
10 steps, its total utility will be (9× −0.04)+1=0.64. The negative reward of –0.04 gives
the agent an incentive to reach (4,3) quickly, so our environment is a stochastic generalization
of the search problems of Chapter 3. Another way of saying this is that the agent does not
enjoy living in this environment and so it wants to leave as soon as possible.

To sum up: a sequential decision problem for a fully observable, stochastic environment
with a Markovian transition model and additive rewards is called a Markov decision process, Markov decision

process

or MDP, and consists of a set of states (with an initial state s0); a set ACTIONS(s) of actions
in each state; a transition model P(s′ |s,a); and a reward function R(s,a,s′). Methods for
solving MDPs usually involve dynamic programming: simplifying a problem by recursively Dynamic

programming

breaking it into smaller pieces and remembering the optimal solutions to the pieces.

1 It is also possible to use costs c(s,a,s′), as we did in the definition of search problems in Chapter 3. The use
of rewards is, however, standard in the literature on sequential decisions under uncertainty.
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The next question is, what does a solution to the problem look like? No fixed action
sequence can solve the problem, because the agent might end up in a state other than the
goal. Therefore, a solution must specify what the agent should do for any state that the agent
might reach. A solution of this kind is called a policy. It is traditional to denote a policy by π,Policy

and π(s) is the action recommended by the policy π for state s. No matter what the outcome
of the action, the resulting state will be in the policy, and the agent will know what to do next.

Each time a given policy is executed starting from the initial state, the stochastic nature
of the environment may lead to a different environment history. The quality of a policy is
therefore measured by the expected utility of the possible environment histories generated
by that policy. An optimal policy is a policy that yields the highest expected utility. WeOptimal policy

use π∗ to denote an optimal policy. Given π∗, the agent decides what to do by consulting
its current percept, which tells it the current state s, and then executing the action π∗(s). A
policy represents the agent function explicitly and is therefore a description of a simple reflex
agent, computed from the information used for a utility-based agent.

The optimal policies for the world of Figure 16.1 are shown in Figure 16.2(a). There are
two policies because the agent is exactly indifferent between going left and going up from
(3,1): going left is safer but longer, while going up is quicker but risks falling into (4,2) by
accident. In general there will often be multiple optimal policies.

The balance of risk and reward changes depending on the value of r=R(s,a,s′) for tran-
sitions between nonterminal states. The policies shown in Figure 16.2(a) are optimal for
−0.0850 < r < −0.0273. Figure 16.2(b) shows optimal policies for four other ranges of r.
When r < −1.6497, life is so painful that the agent heads straight for the nearest exit, even
if the exit is worth –1. When −0.7311 < r < −0.4526, life is quite unpleasant; the agent
takes the shortest route to the +1 state from (2,1), (3,1), and (3,2), but from (4,1) the cost of
reaching +1 is so high that the agent prefers to dive straight into –1. When life is only slightly
dreary (−0.0274 < r < 0), the optimal policy takes no risks at all. In (4,1) and (3,2), the
agent heads directly away from the –1 state so that it cannot fall in by accident, even though
this means banging its head against the wall quite a few times. Finally, if r > 0, then life is
positively enjoyable and the agent avoids both exits. As long as the actions in (4,1), (3,2),
and (3,3) are as shown, every policy is optimal, and the agent obtains infinite total reward
because it never enters a terminal state. It turns out that there are nine optimal policies in all
for various ranges of r; Exercise 16.THRC asks you to find them.

The introduction of uncertainty brings MDPs closer to the real world than deterministic
search problems. For this reason, MDPs have been studied in several fields, including AI,
operations research, economics, and control theory. Dozens of solution algorithms have been
proposed, several of which we discuss in Section 16.2. First, however, we spell out in more
detail the definitions of utilities, optimal policies, and models for MDPs.

16.1.1 Utilities over time

In the MDP example in Figure 16.1, the performance of the agent was measured by a sum of
rewards for the transitions experienced. This choice of performance measure is not arbitrary,
but it is not the only possibility for the utility function2 on environment histories, which we
write as Uh([s0,a0,s1,a1 . . . ,sn]).

2 In this chapter we use U for the utility function (to be consistent with the rest of the book), but many works
about MDPs use V (for value) instead.
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Figure 16.2 (a) The optimal policies for the stochastic environment with r= − 0.04 for
transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. (b) Optimal policies for four different ranges of r.

The first question to answer is whether there is a finite horizon or an infinite horizon Finite horizon

Infinite horizonfor decision making. A finite horizon means that there is a fixed time N after which nothing
matters—the game is over, so to speak. Thus,

Uh([s0,a0,s1,a1, . . . ,sN+k]) =Uh([s0,a0,s1,a1, . . . ,sN ])

for all k > 0. For example, suppose an agent starts at (3,1) in the 4×3 world of Figure 16.1,
and suppose that N=3. Then, to have any chance of reaching the +1 state, the agent must
head directly for it, and the optimal action is to go Up. On the other hand, if N=100, then
there is plenty of time to take the safe route by going Left. So, with a finite horizon, an optimal J
action in a given state may depend on how much time is left. A policy that depends on the
time is called nonstationary. Nonstationary policy

With no fixed time limit, on the other hand, there is no reason to behave differently in the
same state at different times. Hence, an optimal action depends only on the current state, and
the optimal policy is stationary. Policies for the infinite-horizon case are therefore simpler Stationary policy

than those for the finite-horizon case, and we deal mainly with the infinite-horizon case in
this chapter. (We will see later that for partially observable environments, the infinite-horizon
case is not so simple.) Note that “infinite horizon” does not necessarily mean that all state
sequences are infinite; it just means that there is no fixed deadline. There can be finite state
sequences in an infinite-horizon MDP that contains a terminal state.

The next question we must decide is how to calculate the utility of state sequences.
Throughout this chapter, we will additive discounted rewards: the utility of a history is Additive discounted

reward

Uh([s0,a0,s1,a1,s2, . . .]) = R(s0,a0,s1)+γR(s1,a1,s2)+γ
2R(s2,a2,s3)+ · · · ,

where the discount factor γ is a number between 0 and 1. The discount factor describes the Discount factor

preference of an agent for current rewards over future rewards. When γ is close to 0, rewards
in the distant future are viewed as insignificant. When γ is close to 1, an agent is more willing
to wait for long-term rewards. When γ is exactly 1, discounted rewards reduce to the special
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case of purely additive rewards. Notice that additivity was used implicitly in our use of pathAdditive reward

cost functions in heuristic search algorithms (Chapter 3).
There are several reasons why additive discounted rewards make sense. One is empirical:

both humans and animals appear to value near-term rewards more highly than rewards in the
distant future. Another is economic: if the rewards are monetary, then it really is better to
get them sooner rather than later because early rewards can be invested and produce returns
while you’re waiting for the later rewards. In this context, a discount factor of γ is equivalent
to an interest rate of (1/γ)−1. For example, a discount factor of γ=0.9 is equivalent to an
interest rate of 11.1%.

A third reason is uncertainty about the true rewards: they may never arrive for all sorts of
reasons that are not taken into account in the transition model. Under certain assumptions, a
discount factor of gamma is equivalent to adding a probability 1−γ of accidental termination
at every time step, independent of the action taken.

A fourth justification arises from a natural property of preferences over histories. In the
terminology of multiattribute utility theory (see Section 15.4), each transition st

at−→ st+1
can be viewed as an attribute of the history [s0,a0,s1,a1,s2 . . .]. In principle, the utility
function could depend in arbitrarily complex ways on these attributes. There is, however,
a highly plausible preference-independence assumption that can be made, namely that the
agent’s preferences between state sequences are stationary.Stationary

preference

Assume two histories [s0,a0,s1,a1,s2, . . .] and [s′0,a
′
0,s
′
1,a
′
1,s
′
2, . . .] begin with the same

transition (i.e., s0=s′0, a0=a′0, and s1=s′1). Then stationarity for preferences means that
the two histories should be preference-ordered the same way as the histories [s1,a1,s2, . . .]
and [s′1,a

′
1,s
′
2, . . .]. In English, this means that if you prefer one future to another starting

tomorrow, then you should still prefer that future if it were to start today instead. Stationarity
is a fairly innocuous-looking assumption, but additive discounting is the only form of utility
on histories that satisfies it.

A final justification for discounted rewards is that it conveniently makes some nasty in-
finities go away. With infinite horizons there is a potential difficulty: if the environment does
not contain a terminal state, or if the agent never reaches one, then all environment histories
will be infinitely long, and utilities with additive undiscounted rewards will generally be infi-
nite. While we can agree that +∞ is better than−∞, comparing two state sequences with +∞

utility is more difficult. There are three solutions, two of which we have seen already:

1. With discounted rewards, the utility of an infinite sequence is finite. In fact, if γ < 1
and rewards are bounded by ±Rmax, we have

Uh([s0,a0,s1, . . .]) =
∞

∑
t=0

γtR(st ,at ,st+1)≤
∞

∑
t=0

γtRmax =
Rmax

1−γ
, (16.1)

using the standard formula for the sum of an infinite geometric series.
2. If the environment contains terminal states and if the agent is guaranteed to get to one

eventually, then we will never need to compare infinite sequences. A policy that is
guaranteed to reach a terminal state is called a proper policy. With proper policies,Proper policy

we can use γ=1 (i.e., additive undiscounted rewards). The first three policies shown
in Figure 16.2(b) are proper, but the fourth is improper. It gains infinite total reward
by staying away from the terminal states when the reward for transitions between non-
terminal states is positive. The existence of improper policies can cause the standard
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algorithms for solving MDPs to fail with additive rewards, and so provides a good rea-
son for using discounted rewards.

3. Infinite sequences can be compared in terms of the average reward obtained per time Average reward

step. Suppose that transitions to square (1,1) in the 4×3 world have a reward of 0.1
while transitions to other nonterminal states have a reward of 0.01. Then a policy that
does its best to stay in (1,1) will have higher average reward than one that stays else-
where. Average reward is a useful criterion for some problems, but the analysis of
average-reward algorithms is complex.

Additive discounted rewards present the fewest difficulties in evaluating histories, so we shall
use them henceforth.

16.1.2 Optimal policies and the utilities of states

Having decided that the utility of a given history is the sum of discounted rewards, we can
compare policies by comparing the expected utilities obtained when executing them. We
assume the agent is in some initial state s and define St (a random variable) to be the state the
agent reaches at time t when executing a particular policy π. (Obviously, S0=s, the state the
agent is in now.) The probability distribution over state sequences S1,S2, . . . , is determined
by the initial state s, the policy π, and the transition model for the environment.

The expected utility obtained by executing π starting in s is given by

Uπ(s) = E

[
∞

∑
t=0

γtR(St ,π(St),St+1)

]
, (16.2)

where the expectation E is with respect to the probability distribution over state sequences
determined by s and π. Now, out of all the policies the agent could choose to execute starting
in s, one (or more) will have higher expected utilities than all the others. We’ll use π∗s to
denote one of these policies:

π∗s = argmax
π

Uπ(s) . (16.3)

Remember that π∗s is a policy, so it recommends an action for every state; its connection
with s in particular is that it’s an optimal policy when s is the starting state. A remarkable
consequence of using discounted utilities with infinite horizons is that the optimal policy is
independent of the starting state. (Of course, the action sequence won’t be independent;
remember that a policy is a function specifying an action for each state.) This fact seems
intuitively obvious: if policy π∗a is optimal starting in a and policy π∗b is optimal starting in b,
then, when they reach a third state c, there’s no good reason for them to disagree with each
other, or with π∗c , about what to do next.3 So we can simply write π∗ for an optimal policy.

Given this definition, the true utility of a state is just Uπ∗(s)—that is, the expected sum of
discounted rewards if the agent executes an optimal policy. We write this as U(s), matching
the notation used in Chapter 15 for the utility of an outcome. Figure 16.3 shows the utilities
for the 4×3 world. Notice that the utilities are higher for states closer to the +1 exit, because
fewer steps are required to reach the exit.

3 Although this seems obvious, it does not hold for finite-horizon policies or for other ways of combining rewards
over time, such as taking the max. The proof follows directly from the uniqueness of the utility function on states,
as shown in Section 16.2.1.



558 Chapter 16 Making Complex Decisions

0.8516 0.9078 0.9578

0.8016 0.7003

0.7453 0.6953 0.6514 0.4279

Figure 16.3 The utilities of the states in the 4×3 world with γ=1 and r= −0.04 for tran-
sitions to nonterminal states.

The utility function U(s) allows the agent to select actions by using the principle of
maximum expected utility from Chapter 15—that is, choose the action that maximizes the
reward for the next step plus the expected discounted utility of the subsequent state:

π∗(s) = argmax
a∈A(s)

∑
s′

P(s′ |s,a)[R(s,a,s′)+γU(s′)] . (16.4)

We have defined the utility of a state, U(s), as the expected sum of discounted rewards from
that point onwards. From this, it follows that there is a direct relationship between the utility
of a state and the utility of its neighbors: the utility of a state is the expected reward for theI
next transition plus the discounted utility of the next state, assuming that the agent chooses
the optimal action. That is, the utility of a state is given by

U(s) = max
a∈A(s)

∑
s′

P(s′ |s,a)[R(s,a,s′)+γU(s′)] . (16.5)

This is called the Bellman equation, after Richard Bellman (1957). The utilities of theBellman equation

states—defined by Equation (16.2) as the expected utility of subsequent state sequences—are
solutions of the set of Bellman equations. In fact, they are the unique solutions, as we show
in Section 16.2.1.

Let us look at one of the Bellman equations for the 4×3 world. The expression for
U(1,1) is

max{ [0.8(−0.04+γU(1,2))+0.1(−0.04+γU(2,1))+0.1(−0.04+γU(1,1))],
[0.9(−0.04+γU(1,1))+0.1(−0.04+γU(1,2))],
[0.9(−0.04+γU(1,1))+0.1(−0.04+γU(2,1))],
[0.8(−0.04+γU(2,1))+0.1(−0.04+γU(1,2))+0.1(−0.04+γU(1,1))]}

where the four expressions correspond to Up, Left, Down and Right moves. When we plug in
the numbers from Figure 16.3, with γ=1, we find that Up is the best action.

Another important quantity is the action-utility function, or Q-function: Q(s,a) is theQ-function

expected utility of taking a given action in a given state. The Q-function is related to utilities
in the obvious way:

U(s) = max
a

Q(s,a) . (16.6)
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Furthermore, the optimal policy can be extracted from the Q-function as follows:

π∗(s) = argmax
a

Q(s,a) . (16.7)

We can also develop a Bellman equation for Q-functions, noting that the expected total reward
for taking an action is its immediate reward plus the discounted utility of the outcome state,
which in turn can be expressed in terms of the Q-function:

Q(s,a) = ∑
s′

P(s′ |s,a)[R(s,a,s′)+γ U(s′)]

= ∑
s′

P(s′ |s,a)[R(s,a,s′)+γ max
a′

Q(s′,a′)] (16.8)

Solving the Bellman equations for U (or for Q) gives us what we need to find an optimal
policy. The Q-function shows up again and again in algorithms for solving MDPs, so we
shall use the following definition:

function Q-VALUE(mdp, s, a, U) returns a utility value
return ∑

s′
P(s′ |s,a)[R(s,a,s′) + γU[s′]]

16.1.3 Reward scales

Chapter 15 noted that the scale of utilities is arbitrary: an affine transformation leaves the op-
timal decision unchanged. We can replace U(s) by U ′(s) = mU(s)+b where m and b are any
constants such that m> 0. It is easy to see, from the definition of utilities as discounted sums
of rewards, that a similar transformation of rewards will leave the optimal policy unchanged
in an MDP:

R′(s,a,s′) = mR(s,a,s′)+b .

It turns out, however, that the additive reward decomposition of utilities leads to significantly
more freedom in defining rewards. Let Φ(s) be any function of the state s. Then, according
to the shaping theorem, the following transformation leaves the optimal policy unchanged: Shaping theorem

R′(s,a,s′) = R(s,a,s′)+γΦ(s′)−Φ(s) . (16.9)

To show that this is true, we need to prove that two MDPs, M and M′, have identical optimal
policies as long as they differ only in their reward functions as specified in Equation (16.9).
We start from the Bellman equation for Q, the Q-function for MDP M:

Q(s,a) = ∑
s′

P(s′ |s,a)[R(s,a,s′)+γ max
a′

Q(s′,a′)] .

Now let Q′(s,a)=Q(s,a)−Φ(s) and plug it into this equation; we get

Q′(s,a)+Φ(s) = ∑
s′

P(s′ |s,a)[R(s,a,s′)+γ max
a′

(Q′(s′,a′)+Φ(s′))] .

which then simplifies to

Q′(s,a) = ∑
s′

P(s′ |s,a)[R(s,a,s′)+γΦ(s′)−Φ(s)+γ max
a′

Q′(s′,a′)]

= ∑
s′

P(s′ |s,a)[R′(s,a,s′)+γ max
a′

Q′(s′,a′)] .
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In other words, Q′(s,a) satisfies the Bellman equation for MDP M′. Now we can extract the
optimal policy for M′ using Equation (16.7):

π∗M′(s) = argmax
a

Q′(s,a) = argmax
a

Q(s,a)−Φ(s) = argmax
a

Q(s,a) = π∗M(s) .

The function Φ(s) is often called a potential, by analogy to the electrical potential (volt-
age) that gives rise to electric fields. The term γΦ(s′)−Φ(s) functions as a gradient of the
potential. Thus, if Φ(s) has higher value in states that have higher utility, the addition of
γΦ(s′)−Φ(s) to the reward has the effect of leading the agent “uphill” in utility.

At first sight, it may seem rather counterintuitive that we can modify the reward in this
way without changing the optimal policy. It helps if we remember that all policies are optimal
with a reward function that is zero everywhere. This means, according to the shaping theorem,
that all policies are optimal for any potential-based reward of the form R(s,a,s′) = γΦ(s′)−
Φ(s). Intuitively, this is because with such a reward it doesn’t matter which way the agent
goes from A to B. (This is easiest to see when γ=1: along any path the sum of rewards
collapses to Φ(B)−Φ(A), so all paths are equally good.) So adding a potential-based reward
to any other reward shouldn’t change the optimal policy.

The flexibility afforded by the shaping theorem means that we can actually help out the
agent by making the immediate reward more directly reflect what the agent should do. In
fact, if we set Φ(s)=U(s), then the greedy policy πG with respect to the modified reward R′

is also an optimal policy:

πG(s) = argmax
a

∑
s′

P(s′ |s,a)R′(s,a,s′)

= argmax
a

∑
s′

P(s′ |s,a)[R(s,a,s′)+γΦ(s′)−Φ(s)]

= argmax
a

∑
s′

P(s′ |s,a)[R(s,a,s′)+γU(s′)−U(s)]

= argmax
a

∑
s′

P(s′ |s,a)[R(s,a,s′)+γU(s′)]

= π∗(s) (by Equation (16.4)) .

Of course, in order to set Φ(s)=U(s), we would need to know U(s); so there is no free lunch,
but there is still considerable value in defining a reward function that is helpful to the extent
possible. This is precisely what animal trainers do when they provide a small treat to the
animal for each step in the target sequence.

16.1.4 Representing MDPs

The simplest way to represent P(s′ |s,a) and R(s,a,s′) is with big, three-dimensional tables
of size |S|2|A|. This is fine for small problems such as the 4×3 world, for which the tables
have 112×4=484 entries each. In some cases, the tables are sparse—most entries are zero
because each state s can transition to only a bounded number of states s′—which means the
tables are of size O(|S‖A|). For larger problems, even sparse tables are far too big.

Just as in Chapter 15, where Bayesian networks were extended with action and utility
nodes to create decision networks, we can represent MDPs by extending dynamic Bayesian
networks (DBNs, see Chapter 14) with decision, reward, and utility nodes to create dynamic
decision networks, or DDNs. DDNs are factored representations in the terminology ofDynamic decision

network
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Figure 16.4 A dynamic decision network for a mobile robot with state variables for battery
level, charging status, location, and velocity, and action variables for the left and right wheel
motors and for charging.

Chapter 2; they typically have an exponential complexity advantage over atomic representa-
tions and can model quite substantial real-world problems.

Figure 16.4, which is based on the DBN in Figure 14.13(b) (page 504), shows some
elements of a slightly realistic model for a mobile robot that can charge itself. The state St is
decomposed into four state variables:

• Xt consists of the two-dimensional location on a grid plus the orientation;
• Ẋt is the rate of change of Xt ;
• Chargingt is true when the robot is plugged in to a power source;
• Batteryt is the battery level, which we model as an integer in the range 0, . . . ,5.

The state space for the MDP is the Cartesian product of the ranges of these four variables. The
action is now a set At of action variables, comprised of Plug/Unplug, which has three values
(plug, unplug, and noop); LeftWheel for the power sent to the left wheel; and RightWheel for
the power sent to the right wheel. The set of actions for the MDP is the Cartesian product of
the ranges of these three variables. Notice that each action variable affects only a subset of
the state variables.

The overall transition model is the conditional distribution P(Xt+1|Xt ,At), which can be
computed as a product of conditional probabilities from the DDN. The reward here is a single
variable that depends only on the location X (for, say, arriving at a destination) and Charging,
as the robot has to pay for electricity used; in this particular model, the reward doesn’t depend
on the action or the outcome state.

The network in Figure 16.4 has been projected two steps into the future. Notice that the
network includes nodes for the rewards for times t and t+1, but the utility for time t+2. This
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Next

Figure 16.5 (a) The game of Tetris. The T-shaped piece at the top center can be dropped
in any orientation and in any horizontal position. If a row is completed, that row disappears
and the rows above it move down, and the agent receives one point. The next piece (here, the
L-shaped piece at top right) becomes the current piece, and a new next piece appears, chosen
at random from the seven piece types. The game ends if the board fills up to the top. (b) The
DDN for the Tetris MDP.

is because the agent must maximize the (discounted) sum of all future rewards, and U(Xt+3)
represents the reward for all rewards from t +3 onwards. If a heuristic approximation to U is
available, it can be included in the MDP representation in this way and used in lieu of further
expansion. This approach is closely related to the use of bounded-depth search and heuristic
evaluation functions for games in Chapter 6.

Another interesting and well-studied MDP is the game of Tetris (Figure 16.5(a)). The
state variables for the game are the CurrentPiece, the NextPiece, and a bit-vector-valued
variable Filled with one bit for each of the 10×20 board locations. Thus, the state space has
7×7×2200 ≈ 1062 states. The DDN for Tetris is shown in Figure 16.5(b). Note that Filledt+1
is a deterministic function of Filledt and At . It turns out that every policy for Tetris is proper
(reaches a terminal state): eventually the board fills despite one’s best efforts to empty it.

16.2 Algorithms for MDPs

In this section, we present four different algorithms for solving MDPs. The first three, value
iteration, policy iteration, and linear programming, generate exact solutions offline. The
fourth is a family of online approximate algorithms that includes Monte Carlo planning.Monte Carlo

planning

16.2.1 Value Iteration

The Bellman equation (Equation (16.5)) is the basis of the value iteration algorithm for solv-Value iteration

ing MDPs. If there are n possible states, then there are n Bellman equations, one for each
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function VALUE-ITERATION(mdp, ε) returns a utility function
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ |s,a),

rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U, U′, vectors of utilities for states in S, initially zero
δ, the maximum relative change in the utility of any state

repeat
U←U′; δ←0
for each state s in S do

U′[s]←maxa∈A(s) Q-VALUE(mdp, s,a,U)
if |U′[s] − U[s]| > δ then δ←|U′[s] − U[s]|

until δ ≤ ε(1−γ)/γ
return U

Figure 16.6 The value iteration algorithm for calculating utilities of states. The termination
condition is from Equation (16.12).

state. The n equations contain n unknowns—the utilities of the states. So we would like to
solve these simultaneous equations to find the utilities. There is one problem: the equations
are nonlinear, because the “max” operator is not a linear operator. Whereas systems of linear
equations can be solved quickly using linear algebra techniques, systems of nonlinear equa-
tions are more problematic. One thing to try is an iterative approach. We start with arbitrary
initial values for the utilities, calculate the right-hand side of the equation, and plug it into the
left-hand side—thereby updating the utility of each state from the utilities of its neighbors.
We repeat this until we reach an equilibrium.

Let Ui(s) be the utility value for state s at the ith iteration. The iteration step, called a
Bellman update, looks like this: Bellman update

Ui+1(s)← max
a∈A(s)

∑
s′

P(s′ |s,a)[R(s,a,s′)+γUi(s′)] , (16.10)

where the update is assumed to be applied simultaneously to all the states at each iteration.
If we apply the Bellman update infinitely often, we are guaranteed to reach an equilibrium
(see “convergence of value iteration” below), in which case the final utility values must be
solutions to the Bellman equations. In fact, they are also the unique solutions, and the corre-
sponding policy (obtained using Equation (16.4)) is optimal. The detailed algorithm, includ-
ing a termination condition when the utilities are “close enough,” is shown in Figure 16.6.
Notice that we make use of the Q-VALUE function defined on page 559.

We can apply value iteration to the 4×3 world in Figure 16.1(a). Starting with initial
values of zero, the utilities evolve as shown in Figure 16.7(a). Notice how the states at differ-
ent distances from (4,3) accumulate negative reward until a path is found to (4,3), whereupon
the utilities start to increase. We can think of the value iteration algorithm as propagating
information through the state space by means of local updates.
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Figure 16.7 (a) Graph showing the evolution of the utilities of selected states using value
iteration. (b) The number of value iterations required to guarantee an error of at most ε=c ·
Rmax, for different values of c, as a function of the discount factor γ.

Convergence of value iteration

We said that value iteration eventually converges to a unique set of solutions of the Bellman
equations. In this section, we explain why this happens. We introduce some useful mathe-
matical ideas along the way, and we obtain some methods for assessing the error in the utility
function returned when the algorithm is terminated early; this is useful because it means that
we don’t have to run forever. This section is quite technical.

The basic concept used in showing that value iteration converges is the notion of a con-
traction. Roughly speaking, a contraction is a function of one argument that, when applied toContraction

two different inputs in turn, produces two output values that are “closer together,” by at least
some constant factor, than the original inputs. For example, the function “divide by two” is
a contraction, because, after we divide any two numbers by two, their difference is halved.
Notice that the “divide by two” function has a fixed point, namely zero, that is unchanged by
the application of the function. From this example, we can discern two important properties
of contractions:

• A contraction has only one fixed point; if there were two fixed points they would not
get closer together when the function was applied, so it would not be a contraction.

• When the function is applied to any argument, the value must get closer to the fixed
point (because the fixed point does not move), so repeated application of a contraction
always reaches the fixed point in the limit.

Now, suppose we view the Bellman update (Equation (16.10)) as an operator B that is ap-
plied simultaneously to update the utility of every state. Then the Bellman equation becomes
U =BU and the Bellman update equation can be written as

Ui+1← BUi .

Next, we need a way to measure distances between utility vectors. We will use the max norm,Max norm

which measures the “length” of a vector by the absolute value of its biggest component:

‖U‖= max
s
|U(s)| .
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With this definition, the “distance” between two vectors, ‖U −U ′‖, is the maximum dif-
ference between any two corresponding elements. The main result of this section is the
following: Let Ui and U ′i be any two utility vectors. Then we have

‖BUi−BU ′i ‖ ≤ γ ‖Ui−U ′i ‖ . (16.11)

That is, the Bellman update is a contraction by a factor of γ on the space of utility vectors. J
(Exercise 16.VICT provides some guidance on proving this claim.) Hence, from the properties
of contractions in general, it follows that value iteration always converges to a unique solution
of the Bellman equations whenever γ < 1.

We can also use the contraction property to analyze the rate of convergence to a solu-
tion. In particular, we can replace U ′i in Equation (16.11) with the true utilities U , for which
BU =U . Then we obtain the inequality

‖BUi−U‖ ≤ γ ‖Ui−U‖ .

If we view ‖Ui−U‖ as the error in the estimate Ui, we see that the error is reduced by a factor
of at least γ on each iteration. Thus, value iteration converges exponentially fast. We can
calculate the number of iterations required as follows: First, recall from Equation (16.1) that
the utilities of all states are bounded by±Rmax/(1−γ). This means that the maximum initial
error ‖U0−U‖ ≤ 2Rmax/(1−γ). Suppose we run for N iterations to reach an error of at most
ε. Then, because the error is reduced by at least γ each time, we require γN ·2Rmax/(1−γ)≤
ε. Taking logs, we find that

N=dlog(2Rmax/ε(1−γ))/ log(1/γ)e

iterations suffice. Figure 16.7(b) shows how N varies with γ, for different values of the ratio
ε/Rmax. The good news is that, because of the exponentially fast convergence, N does not
depend much on the ratio ε/Rmax. The bad news is that N grows rapidly as γ becomes close
to 1. We can get fast convergence if we make γ small, but this effectively gives the agent a
short horizon and could miss the long-term effects of the agent’s actions.

The error bound in the preceding paragraph gives some idea of the factors influencing the
run time of the algorithm, but is sometimes overly conservative as a method of deciding when
to stop the iteration. For the latter purpose, we can use a bound relating the error to the size of
the Bellman update on any given iteration. From the contraction property (Equation (16.11)),
it can be shown that if the update is small (i.e., no state’s utility changes by much), then the
error, compared with the true utility function, also is small. More precisely,

if ‖Ui+1−Ui‖< ε(1−γ)/γ then ‖Ui+1−U‖< ε. (16.12)

This is the termination condition used in the VALUE-ITERATION algorithm of Figure 16.6.
So far, we have analyzed the error in the utility function returned by the value iteration

algorithm. What the agent really cares about, however, is how well it will do if it makes its J
decisions on the basis of this utility function. Suppose that after i iterations of value iteration,
the agent has an estimate Ui of the true utility U and obtains the maximum expected utility
(MEU) policy πi based on one-step look-ahead using Ui (as in Equation (16.4)). Will the
resulting behavior be nearly as good as the optimal behavior? This is a crucial question for
any real agent, and it turns out that the answer is yes. Uπi(s) is the utility obtained if πi

is executed starting in s, and the policy loss ‖Uπi −U‖ is the most the agent can lose by Policy loss
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Figure 16.8 The maximum error ‖Ui−U‖ of the utility estimates and the policy loss ‖U πi −
U‖, as a function of the number of iterations of value iteration on the 4×3 world.

executing πi instead of the optimal policy π∗. The policy loss of πi is connected to the error
in Ui by the following inequality:

if ‖Ui−U‖< ε then ‖Uπi −U‖< 2ε . (16.13)

In practice, it often occurs that πi becomes optimal long before Ui has converged. Figure 16.8
shows how the maximum error in Ui and the policy loss approach zero as the value iteration
process proceeds for the 4×3 environment with γ=0.9. The policy πi is optimal when i=5,
even though the maximum error in Ui is still 0.51.

Now we have everything we need to use value iteration in practice. We know that it
converges to the correct utilities, we can bound the error in the utility estimates if we stop
after a finite number of iterations, and we can bound the policy loss that results from executing
the corresponding MEU policy. As a final note, all of the results in this section depend on
discounting with γ < 1. If γ=1 and the environment contains terminal states, then a similar
set of convergence results and error bounds can be derived.

16.2.2 Policy iteration

In the previous section, we observed that it is possible to get an optimal policy even when
the utility function estimate is inaccurate. If one action is clearly better than all others, then
the exact magnitude of the utilities on the states involved need not be precise. This insight
suggests an alternative way to find optimal policies. The policy iteration algorithm alternatesPolicy iteration

the following two steps, beginning from some initial policy π0:

• Policy evaluation: given a policy πi, calculate Ui=Uπi , the utility of each state if πiPolicy evaluation

were to be executed.

• Policy improvement: Calculate a new MEU policy πi+1, using one-step look-aheadPolicy improvement

based on Ui (as in Equation (16.4)).

The algorithm terminates when the policy improvement step yields no change in the utilities.
At this point, we know that the utility function Ui is a fixed point of the Bellman update, so
it is a solution to the Bellman equations, and πi must be an optimal policy. Because there are
only finitely many policies for a finite state space, and each iteration can be shown to yield a
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function POLICY-ITERATION(mdp) returns a policy
inputs: mdp, an MDP with states S, actions A(s), transition model P(s′ |s,a)
local variables: U, a vector of utilities for states in S, initially zero

π, a policy vector indexed by state, initially random

repeat
U←POLICY-EVALUATION(π, U, mdp)
unchanged?← true
for each state s in S do

a∗← argmax
a∈A(s)

Q-VALUE(mdp, s,a,U)

if Q-VALUE(mdp, s,a∗,U) > Q-VALUE(mdp, s, π[s],U) then
π[s]←a∗; unchanged?← false

until unchanged?
return π

Figure 16.9 The policy iteration algorithm for calculating an optimal policy.

better policy, policy iteration must terminate. The algorithm is shown in Figure 16.9. As with
value iteration, we use the Q-VALUE function defined on page 559.

How do we implement POLICY-EVALUATION? It turns out that doing so is simpler than
solving the standard Bellman equations (which is what value iteration does), because the
action in each state is fixed by the policy. At the ith iteration, the policy πi specifies the action
πi(s) in state s. This means that we have a simplified version of the Bellman equation (16.5)
relating the utility of s (under πi) to the utilities of its neighbors:

Ui(s) = ∑
s′

P(s′ |s,πi(s))[R(s,πi(s),s′)+γUi(s′)] . (16.14)

For example, suppose πi is the policy shown in Figure 16.2(a). Then we have πi(1,1)=Up,
πi(1,2)=Up, and so on, and the simplified Bellman equations are

Ui(1,1) = 0.8[−0.04+Ui(1,2)]+0.1[−0.04+Ui(2,1)+0.1[−0.04+Ui(1,1)]] ,

Ui(1,2) = 0.8[−0.04+Ui(1,3)]+0.2[−0.04+Ui(1,2)] ,

and so on for all the states. The important point is that these equations are linear, because
the “max” operator has been removed. For n states, we have n linear equations with n un-
knowns, which can be solved exactly in time O(n3) by standard linear algebra methods. If the
transition model is sparse—that is, if each state transitions only to a small number of other
states—then the solution process can be faster still.

For small state spaces, policy evaluation using exact solution methods is often the most
efficient approach. For large state spaces, O(n3) time might be prohibitive. Fortunately, it
is not necessary to do exact policy evaluation. Instead, we can perform some number of
simplified value iteration steps (simplified because the policy is fixed) to give a reasonably
good approximation of the utilities. The simplified Bellman update for this process is

Ui+1(s)←∑
s′

P(s′ |s,πi(s))[R(s,πi(s),s′)+γUi(s′)] ,
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and this is repeated several times to efficiently produce the next utility estimate. The resulting
algorithm is called modified policy iteration.Modified policy

iteration
The algorithms we have described so far require updating the utility or policy for all states

at once. It turns out that this is not strictly necessary. In fact, on each iteration, we can pick
any subset of states and apply either kind of updating (policy improvement or simplified value
iteration) to that subset. This very general algorithm is called asynchronous policy iteration.Asynchronous policy

iteration
Given certain conditions on the initial policy and initial utility function, asynchronous policy
iteration is guaranteed to converge to an optimal policy. The freedom to choose any states to
work on means that we can design much more efficient heuristic algorithms—for example,
algorithms that concentrate on updating the values of states that are likely to be reached by a
good policy. There’s no sense planning for the results of an action you will never do.

16.2.3 Linear programming

Linear programming or LP, which was mentioned briefly in Chapter 4 (page 139), is a
general approach for formulating constrained optimization problems, and there are many
industrial-strength LP solvers available. Given that the Bellman equations involve a lot of
sums and maxes, it is perhaps not surprising that solving an MDP can be reduced to solving
a suitably formulated linear program.

The basic idea of the formulation is to consider as variables in the LP the utilities U(s) of
each state s, noting that the utilities for an optimal policy are the highest utilities attainable that
are consistent with the Bellman equations. In LP language, that means we seek to minimize
U(s) for all s subject to the inequalities

U(s)≥∑
s′

P(s′ |s,a)[R(s,a,s′)+γU(s′)]

for every state s and every action a.
This creates a connection from dynamic programming to linear programming, for which

algorithms and complexity issues have been studied in great depth. For example, from the
fact that linear programming is solvable in polynomial time, one can show that MDPs can
be solved in time polynomial in the number of states and actions and the number of bits
required to specify the model. In practice, it turns out that LP solvers are seldom as efficient
as dynamic programming for solving MDPs. Moreover, polynomial time may sound good,
but the number of states is often very large. Finally, it’s worth remembering that even the
simplest and most uninformed of the search algorithms in Chapter 3 runs in linear time in the
number of states and actions.

16.2.4 Online algorithms for MDPs

Value iteration and policy iteration are offline algorithms: like the A∗ algorithm in Chapter 3,
they generate an optimal solution for the problem, which can then be executed by a simple
agent. For sufficiently large MDPs, such as the Tetris MDP with 1062 states, exact offline
solution, even by a polynomial-time algorithm, is not possible. Several techniques have been
developed for approximate offline solution of MDPs; these are covered in the notes at the end
of the chapter and in Chapter 23 (Reinforcement Learning).

Here we will consider online algorithms, analogous to those used for game playing in
Chapter 6, where the agent does a significant amount of computation at each decision point
rather than operating primarily with precomputed information.
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Figure 16.10 Part of an expectimax tree for the 4×3 MDP rooted at (3,2). The triangular
nodes are max modes and the circular nodes are chance nodes.

The most straightforward approach is actually a simplification of the EXPECTIMINIMAX

algorithm for game trees with chance nodes: the EXPECTIMAX algorithm builds a tree of
alternating max and chance nodes, as illustrated in Figure 16.10. (There is a slight difference
from standard EXPECTIMINIMAX in that there are rewards on nonterminal as well as terminal
transitions.) An evaluation function can be applied to the nonterminal leaves of the tree, or
they can be given a default value. A decision can be extracted from the search tree by backing
up the utility values from the leaves, taking an average at the chance nodes and taking the
maximum at the decision nodes.

For problems in which the discount factor γ is not too close to 1, the ε-horizon is a useful
concept. Let ε be a desired bound on the absolute error in the utilities computed from an
expectimax tree of bounded depth, compared to the exact utilities in the MDP. Then the ε-
horizon is the tree depth H such that the sum of rewards beyond any leaf at that depth is less
than ε—roughly speaking, anything that happens after H is irrelevant because it’s so far in
the future. Because the sum of rewards beyond H is bounded by γHRmax/(1− γ), a depth
of H=dlogγ ε(1− γ)/Rmaxe suffices. So, building a tree to this depth gives near-optimal
decisions. For example, with γ=0.5, ε=0.1, and Rmax=1, we find H=5, which seems
reasonable. On the other hand, if γ=0.9, H=44, which seems less reasonable!

In addition to limiting the depth, it is also possible to avoid the potentially enormous
branching factor at the chance nodes. (For example, if all the conditional probabilities in
a DBN transition model are nonzero, the transition probabilities, which are given by the
product of the conditional probabilities, are also nonzero, meaning that every state has some
probability of transitioning to every other state.)

As noted in Section 13.4, expectations with respect to a probability distribution P can be
approximated by generating N samples from P and using the sample mean. In mathematical
form, we have

∑
x

P(x) f (x)≈ 1
N

N

∑
i=1

f (xi) .

So, if the branching factor is very large, meaning that there are very many possible x values, a
good approximation to the value of the chance node can be obtained by sampling a bounded
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Figure 16.11 Performance of UCT as a function of the number of playouts per move for the
4×3 world using a random playout policy, averaged over 1000 runs per data point.

number of outcomes from the action. Typically, the samples will focus on the most likely
outcomes because those are most likely to be generated.

If you look closely at the tree in Figure 16.10, you will notice something: it isn’t really
a tree. For example, the root (3,2) is also a leaf, so one ought to consider this as a graph,
and one ought to constrain the value of the leaf (3,2) to be the same as the value of the root
(3,2), since they are the same state. In fact, this line of thinking quickly brings us back to
the Bellman equations that relate the values of states to the values of neighboring states. The
explored states actually constitute a sub-MDP of the original MDP, and this sub-MDP can
be solved using any of the algorithms in this chapter to yield a decision for the current state.
(Frontier states are typically given a fixed estimated value.)

This general approach is called real-time dynamic programming (RTDP) and is quite
Real-time dynamic
programming
(RTDP) analogous to LRTA∗ in Chapter 4. Algorithms of this kind can be quite effective in moderate-

sized domains such as grid worlds; in larger domains such as Tetris, there are two issues.
First, the state space is such that any manageable set of explored states contains very few
repeated states, so one might as well use a simple expectimax tree. Second, a simple heuristic
for frontier nodes may not be enough to guide the agent, particularly if rewards are sparse.

One possible fix is to apply reinforcement learning to generate a much more accurate
heuristic (see Chapter 23). Another approach is to look further ahead in the MDP using the
Monte Carlo approach of Section 6.4. In fact, the UCT algorithm from Figure 6.10 was
developed originally for MDPs rather than games. The changes required to solve MDPs
rather than games are minimal: they arise primarily from the fact that the opponent (nature)
is stochastic and from the need to keep track of rewards rather than just wins and losses.

When applied to the 4×3 world, the performance of UCT is not especially impres-
sive. As Figure 16.11 shows, it takes 160 playouts on average to reach a total reward of
0.4, whereas an optimal policy has an expected total reward of 0.7453 from the initial state
(see Figure 16.3). One reason UCT can have difficulty is that is builds a tree rather than a
graph and uses (an approximation to) expectimax rather than dynamic programming. The
4×3 world is very “loopy”: although there are only 9 nonterminal states, UCT’s playouts
often continue for more than 50 actions.
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UCT seems better suited for Tetris, where the playouts go far enough into the future to
give the agent a sense of whether a potentially risky move will work out in the end or cause
a massive pile-up. Exercise 16.UCTT explores the application of UCT to Tetris. One partic-
ularly interesting question is how much a simple simulation policy can help—for example,
one that avoids creating overhangs and puts pieces as low as possible.

16.3 Bandit Problems

In Las Vegas, a one-armed bandit is a slot machine. A gambler can insert a coin, pull the
lever, and collect the winnings (if any). An n-armed bandit has n levers. Behind each N-armed bandit

lever is a fixed but unknown probability distribution of winnings; each pull samples from that
unknown distribution.

The gambler must choose which lever to play on each successive coin—the one that has
paid off best, or maybe one that has not been tried yet? This is an example of the ubiquitous
tradeoff between exploitation of the current best action to obtain rewards and exploration
of previously unknown states and actions to gain information, which can in some cases be
converted into a better policy and better long-term rewards. In the real world, one constantly
has to decide between continuing in a comfortable existence, versus striking out into the
unknown in the hopes of a better life.

The n-armed bandit problem is a formal model for real problems in many vitally im-
portant areas, such as deciding which of n possible new treatments to try to cure a disease,
which of n possible investments to put part of your savings into, which of n possible re-
search projects to fund, or which of n possible advertisements to show when the user visits a
particular web page.

Early work on the problem began in the U.S. during World War II; it proved so recalcitrant
that Allied scientists proposed that “the problem be dropped over Germany, as the ultimate
instrument of intellectual sabotage” (Whittle, 1979).

It turns out that the scientists, both during and after the war, were trying to prove “obvi-
ously true” facts about bandit problems that are, in fact, false. (As Bradt et al. (1956) put it,
“There are many nice properties which optimal strategies do not possess.”) For example, it
was generally assumed that an optimal policy would eventually settle on the best arm in the
long run; in fact, there is a finite probability that an optimal policy settles on a suboptimal
arm. We now have a solid theoretical understanding of bandit problems as well as useful
algorithms for solving them.

There are several different definitions of bandit problems; one of the cleanest and most Bandit problems

general is as follows:

• Each arm Mi is a Markov reward process or MRP, that is, an MDP with only one Markov reward
process

possible action ai. It has states Si, transition model Pi(s′ |s,ai), and reward Ri(s,ai,s′).
The arm defines a distribution over sequences of rewards Ri,0,Ri,1,Ri,2, . . ., where each
Ri,t is a random variable.

• The overall bandit problem is an MDP: the state space is given by the Cartesian product
S=S1× ·· · ×Sn; the actions are a1, . . . ,an; the transition model updates the state of
whichever arm Mi is selected, according to its specific transition model, leaving the
other arms unchanged; and the discount factor is γ.
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Figure 16.12 (a) A simple deterministic bandit problem with two arms. The arms can be
pulled in any order, and each yields the sequence of rewards shown. (b) A more general case
of the bandit in (a), where the first arm gives an arbitrary sequence of rewards and the second
arm gives a fixed reward λ.

This definition is very general, covering a wide range of cases. The key property is that the
arms are independent, coupled only by the fact that the agent can work on only one arm at
a time. It’s possible to define a still more general version in which fractional efforts can be
applied to all arms simultaneously, but the total effort across all arms is bounded; the basic
results described here carry over to this case.

We will see shortly how to formulate a typical bandit problem within this framework, but
let’s warm up with the simple special case of deterministic reward sequences. Let γ=0.5,
and suppose that there are two arms labeled M and M1. Pulling M multiple times yields the
sequence of rewards 0,2,0,7.2,0,0, . . ., while pulling M1 yields 1,1,1, . . . (Figure 16.12(a)).
If, at the beginning, one had to commit to one arm or the other and stick with it, the choice
would be made by computing the utility (total discounted reward) for each arm:

U(M) = (1.0×0)+(0.5×2)+(0.52×0)+(0.53×7.2) = 1.9

U(M1) =
∞

∑
t=0

0.5t = 2.0 .

One might think the best choice is to go with M1, but a moment’s more thought shows
that starting with M and then switching to M1 after the fourth reward gives the sequence
S=0,2,0,7.2,1,1,1, . . ., for which

U(S) = (1.0×0)+(0.5×2)+(0.52×0)+(0.53×7.2)+
∞

∑
t=4

0.5t = 2.025 .

Hence the strategy S that switches from M to M1 at the right time is better than either arm
individually. In fact, S is optimal for this problem: all other switching times give less reward.

Let’s generalize this case slightly, so that now the first arm M yields an arbitrary sequence
R0,R1,R2, . . . (which may be known or unknown) and the second arm Mλ yields λ,λ,λ, . . .
for some known fixed constant λ (see Figure 16.12(b)). This is called a one-armed banditOne-armed bandit

in the literature, because it is formally equivalent to the case where there is one arm M that
produces rewards R0,R1,R2, . . . and costs λ for each pull. (Pulling arm M is equivalent to not
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pulling Mλ, so it gives up a reward of λ each time.) With just one arm, the only choice is to
whether to pull again or to stop. If you pull the first arm T times (i.e., at times 0,1, . . . ,T −1
we say that the stopping time is T . Stopping time

Going back to our version with M and Mλ, let’s assume that after T pulls of the first arm,
an optimal strategy eventually pulls the second arm for the first time. Since no information
is gained from this move (we already know the payoff will be λ), at time T +1 we will be in
the same situation and thus an optimal strategy must make the same choice.

Equivalently, we can say that an optimal strategy is to run arm M up to time T and
then switch to Mλ for the rest of time. It’s possible that T =0 if the strategy chooses Mλ

immediately, or T =∞ if the strategy never chooses Mλ, or somewhere in between. Now let’s
consider the value of λ such that an optimal strategy is exactly indifferent between (a) running
M up to the best possible stopping time and then switching to Mλ forever, and (b) choosing
Mλ immediately. At the tipping point we have

max
T>0

E

[(
T−1

∑
t=0

γtRt

)
+

∞

∑
t=T

γtλ

]
=

∞

∑
t=0

γtλ,

which simplifies to

λ= max
T>0

E
(
∑

T−1
t=0 γ

tRt
)

E
(
∑

T−1
t=0 γ

t
) . (16.15)

This equation defines a kind of “value” for M in terms of its ability to deliver a stream of
timely rewards; the numerator of the fraction represents a utility while the denominator can
be thought of as a “discounted time,” so the value describes the maximum obtainable utility
per unit of discounted time. (It’s important to remember that T in the equation is a stopping
time, which is governed by a rule for stopping rather than being a simple integer; it reduces
to a simple integer only when M is a deterministic reward sequence.) The value defined in
Equation (16.15) is called the Gittins index of M. Gittins index

The remarkable thing about the Gittins index is that it provides a very simple optimal
policy for any bandit problem: pull the arm that has the highest Gittins index, then update the J
Gittins indices. Furthermore, because the index of arm Mi depends only on the properties of
that arm, an optimal decision on the first iteration can be calculated in O(n) time, where n is
the number of arms. And because the Gittins indices of the arms that are not selected remain
unchanged, each decision after the first one can be calculated in O(1) time.

16.3.1 Calculating the Gittins index

To get more of a feel for the index, let’s calculate the value of the numerator, denominator,
and ratio in Equation (16.15) for different possible stopping times on the deterministic reward
sequence 0,2,0,7.2,0,0,0, . . .:

T 1 2 3 4 5 6
Rt 0 2 0 7.2 0 0
∑γtRt 0.0 1.0 1.0 1.9 1.9 1.9
∑γt 1.0 1.5 1.75 1.875 1.9375 1.9687
ratio 0.0 0.6667 0.5714 1.0133 0.9806 0.9651

Clearly, the ratio will decrease from here on, because the numerator remains constant while
the denominator continues to increase. Thus, the Gittins index for this arm is 1.0133, the
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Figure 16.13 (a) The reward sequence M=0,2,0,7.2,0,0,0, . . . augmented with a choice to
switch permanently to a constant arm Mλ at each point. (b) An MDP whose optimal value
is exactly equivalent to the optimal value for (a), at the point where the optimal policy is
indifferent between M and Mλ.

maximum value attained by the ratio. In combination with a fixed arm Mλ with 0 < λ ≤
1.0133, the optimal policy collects the first four rewards from M and then switches to Mλ.
For λ > 1.0133, the optimal policy always chooses Mλ.

To calculate the Gittins index for a general arm M with current state s, we simply make
the following observation: at the tipping point where an optimal policy is indifferent between
choosing arm M and choosing the fixed arm Mλ, the value of choosing M is the same as the
value of choosing an infinite sequence of λ-rewards.

Suppose we augment M so that at each state in M, the agent has two choices: either
continue with M as before, or quit and receive an infinite sequence of λ-rewards (see Fig-
ure 16.13(a)). This turns M into an MDP, whose optimal policy is just the optimal stopping
rule for M. Hence the value of an optimal policy in this new MDP is equal to the value of
an infinite sequence of λ-rewards, that is, λ/(1−γ). So we can just solve this MDP . . . but,
unfortunately, we don’t know the value of λ to put into the MDP, as this is precisely what
we are trying to calculate. But we do know that, at the tipping point, an optimal policy is
indifferent between M and Mλ, so we could replace the choice to get an infinite sequence of
λ-rewards with the choice to go back and restart M from its initial state s. (More precisely, we
add a new action in every state that has the same rewards and outcomes as the action avail-
able in s; see Exercise 16.KATV.) This new MDP Ms, called a restart MDP, is illustrated inRestart MDP

Figure 16.13(b).
We have the general result that the Gittins index for an arm M in state s is equal to 1−γ

times the value of an optimal policy for the restart MDP Ms. This MDP can be solved by any
of the algorithms in Section 16.2. Value iteration applied to Ms in Figure 16.13(b) gives a
value of 2.0266 for the start state, so we have λ=2.0266 · (1−γ)=1.0133 as before.

16.3.2 The Bernoulli bandit

Perhaps the simplest and best-known instance of a bandit problem is the Bernoulli bandit,Bernoulli bandit

where each arm Mi produces a reward of 0 or 1 with a fixed but unknown probability µi.
The state of arm Mi is defined by si and fi, the counts of successes (1s) and failures (0s) so
far for that arm; the transition probability predicts the next outcome to be 1 with probability
(si)/(si + fi) and 0 with probability ( fi)/(si + fi). The counts are initialized to 1 so that
the initial probabilities are 1/2 rather than 0/0.4 The Markov reward process is shown in
Figure 16.14(a).

4 The probabilities are those of a Bayesian updating process with a Beta(1,1) prior (see Section 21.2.5).
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Figure 16.14 (a) States, rewards, and transition probabilities for the Bernoulli bandit. (b)
Gittins indices for the states of the Bernoulli bandit process.

We cannot quite apply the transformation of the preceding section to calculate the Gittins
index of the Bernoulli arm because it has infinitely many states. We can, however, obtain
a very accurate approximation by solving the truncated MDP with states up to si + fi=100
and γ=0.9. The results are shown in Figure 16.14(b). The results are intuitively reasonable:
we see that, generally speaking, arms with higher payoff probabilities are preferred, but there
is also an exploration bonus associated with arms that have only been tried a few times. Exploration bonus

For example, the index for the state (3,2) is higher than the index for the state (7,4) (0.7057
vs. 0.6922), even though the estimated value at (3,2) is lower (0.6 vs. 0.6364).

16.3.3 Approximately optimal bandit policies

Calculating Gittins indices for more realistic problems is rarely easy. Fortunately, the general
properties observed in the preceding section—namely, the desirability of some combination
of estimated value and uncertainty—lend themselves to the creation of simple policies that
turn out to be “nearly as good” as optimal policies.

The first class of methods uses the upper confidence bound or UCB heuristic, previously Upper confidence
bound

introduced for Monte Carlo tree search (Figure 6.11 on page 209). The basic idea is to use
the samples from each arm to establish a confidence interval for the value of the arm, that is,
a range within which the value can be estimated to lie with high confidence; then choose the
arm with the highest upper bound on its confidence interval. The upper bound is the current
mean value estimate µ̂i plus some multiple of the standard deviation of the uncertainty in the
value. The standard deviation is proportional to

√
1/Ni, where Ni is the number of times arm

Mi has been sampled. So we have an approximate index value for arm Mi given by

UCB(Mi) = µ̂i +g(N)/
√

Ni ,

where g(N) is an appropriately chosen function of N, the total number of samples drawn
from all arms. A UCB policy simply picks the arm with the highest UCB value. Notice that
the UCB value is not strictly an index because it depends on N, the total number of samples
drawn across all arms, and not just on the arm itself.

The precise definition of g determines the regret relative to the clairvoyant policy, which
simply picks the best arm and yields average reward µ∗. A famous result due to Lai and
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Robbins (1985) shows that, for the undiscounted case, no possible algorithm can have regret
that grows more slowly than O(logN). Several different choices of g lead to a UCB policy
that matches this growth; for example, we can use g(N)=(2log(1+N log2 N))1/2.

A second method, Thompson sampling (Thompson, 1933), chooses an arm randomlyThompson sampling

according to the probability that the arm is in fact optimal, given the samples so far. Suppose
that Pi(µi) is the current probability distribution for the true value of arm Mi. Then a simple
way to implement Thompson sampling is to generate one sample from each Pi and then pick
the best sample. This algorithm also has a regret that grows as O(logN).

16.3.4 Non-indexable variants

Bandit problems were motivated in part by the task of testing new medical treatments on
seriously ill patients. For this task, the goal of maximizing the total number of successes over
time clearly makes sense: each successful test means a life saved, each failure a life lost.

If we change the assumptions slightly, however, a different problem emerges. Suppose
that, instead of determining the best medical treatment for each new human patient, we are
instead testing different drugs on samples of bacteria with the goal of deciding which drug is
best. We will then put that drug into production and forgo the others. In this scenario there is
no additional cost if the bacteria dies—there is a fixed cost for each test, but we don’t have to
minimize test failures; rather we are just trying to make a good decision as fast as possible.

The task of choosing the best option under these conditions is called a selection problem.Selection problem

Selection problems are ubiquitous in industrial and personnel contexts. One often must decide
which supplier to use for a process; or which candidate employees to hire. Selection problems
are superficially similar to the bandit problem but have different mathematical properties. In
particular, no index function exists for selection problems. The proof of this fact requiresI
showing any scenario where the optimal policy switches its preferences for two arms M1 and
M2 when a third arm M3 is added (see Exercise 16.SELC).

Chapter 6 introduced the concept of metalevel decision problems such as deciding what
computations to make during a game-tree search prior to making a move. A metalevel de-
cision of this kind is also a selection problem rather than a bandit problem. Clearly, a node
expansion or evaluation costs the same amount of time whether it produces a high or a low
output value. It is perhaps surprising, then, that the Monte Carlo tree search algorithm (see
page 209) has been so successful, given that it tries to solve selection problems with the UCB
heuristic, which was designed for bandit problems. Generally speaking, one expects optimal
bandit algorithms to explore much less than optimal selection algorithms, because the bandit
algorithm assumes that a failed trial costs real money.

An important generalization of the bandit process is the bandit superprocess or BSP, inBandit superprocess

BSP which each arm is a full Markov decision process in its own right, rather than being a Markov
reward process with only one possible action. All other properties remain the same: the arms
are independent, only one (or a bounded number) can be worked on at a time, and there is a
single discount factor.

Examples of BSPs include daily life, where one can attend to one task at a time, even
though several tasks may need attention; project management with multiple projects; teaching
with multiple pupils needing individual guidance; and so on. The ordinary term for this is
multitasking. It is so ubiquitous as to be barely noticeable: when formulating a real-worldMultitasking

decision problem, decision analysts rarely ask if their client has other, unrelated problems.
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One might reason as follows: “If there are n disjoint MDPs then it is obvious that an
optimal policy overall is built from the optimal solutions of the individual MDPs. Given
its optimal policy πi, each MDP becomes a Markov reward process where there is only one
action πi(s) in each state s. So we have reduced the n-armed bandit superprocess to an n-
armed bandit process.” For example, if a real-estate developer has one construction crew and
several shopping centers to build, it seems to be just common sense that one should devise
the optimal construction plan for each shopping center and then solve the bandit problem to
decide where to send the crew each day.

While this sounds highly plausible, it is incorrect. In fact, the globally optimal policy for a
BSP may include actions that are locally suboptimal from the point of view of the constituent
MDP in which they are taken. The reason for this is that the availability of other MDPs in
which to act changes the balance between short-term and long-term rewards in a component
MDP. In fact, it tends to lead to greedier behavior in each MDP (seeking short-term rewards)
because aiming for long-term reward in one MDP would delay rewards in all the other MDPs.

For example, suppose the locally optimal construction schedule for one shopping center
has the first shop available for rent by week 15, whereas a suboptimal schedule costs more but
has the first shop available by week 5. If there are four shopping centers to build, it might be
better to use the locally suboptimal schedule in each so that rents start coming in from weeks
5, 10, 15, and 20, rather than weeks 15, 30, 45, and 60. In other words, what would be only a
10-week delay for a single MDP turns into a 40-week delay for the fourth MDP. In general,
the globally and locally optimal policies necessarily coincide only when the discount factor
is 1; in that case, there is no cost to delaying rewards in any MDP.

The next question is how to solve BSPs. Obviously, the globally optimal solution for a
BSP could be computed by converting it into a global MDP on the Cartesian-product state
space. The number of states would be exponential in the number of arms of the BSP, so this
would be horrendously impractical.

Instead, we can take advantage of the loose nature of the interaction between the arms.
This interaction arises only from the agent’s limited ability to attend to the arms simultane-
ously. To some extent, the interaction can be modeled by the notion of opportunity cost: Opportunity cost

how much utility is given up per time step by not devoting that time step to another arm.
The higher the opportunity cost, the more necessary it is to generate early rewards in a given
arm. In some cases, an optimal policy in a given arm is unaffected by the opportunity cost.
(Trivially, this is true in a Markov reward process because there is only one policy.) In that
case, an optimal policy can be applied, converting that arm into a Markov reward process.

Such an optimal policy, if it exists, is called a dominating policy. It turns out that by Dominating policy

adding actions to states, it is always possible to create a relaxed version of an MDP (see
Section 3.6.2) so that it has a dominating policy, which thus gives an upper bound on the
value of acting in the arm. A lower bound can be computed by solving each arm separately
(which may yield a suboptimal policy overall) and then computing the Gittins indices. If the
lower bound for acting in one arm is higher than the upper bounds for all other actions, then
the problem is solved; if not, then a combination of look-ahead search and recomputation of
bounds is guaranteed to eventually identify an optimal policy for the BSP. With this approach,
relatively large BSPs (1040 states or more) can be solved in a few seconds.
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16.4 Partially Observable MDPs

The description of Markov decision processes in Section 16.1 assumed that the environment
was fully observable. With this assumption, the agent always knows which state it is in.
This, combined with the Markov assumption for the transition model, means that the optimal
policy depends only on the current state.

When the environment is only partially observable, the situation is, one might say, much
less clear. The agent does not necessarily know which state it is in, so it cannot execute the
action π(s) recommended for that state. Furthermore, the utility of a state s and the optimal
action in s depend not just on s, but also on how much the agent knows when it is in s. For
these reasons, partially observable MDPs (or POMDPs—pronounced “pom-dee-pees”) arePartially observable

MDP
usually viewed as much more difficult than ordinary MDPs. We cannot avoid POMDPs,
however, because the real world is one.

16.4.1 Definition of POMDPs

To get a handle on POMDPs, we must first define them properly. A POMDP has the same
elements as an MDP—the transition model P(s′ |s,a), actions A(s), and reward function
R(s,a,s′)—but, like the partially observable search problems of Section 4.4, it also has a
sensor model P(e |s). Here, as in Chapter 14, the sensor model specifies the probability of
perceiving evidence e in state s.5 For example, we can convert the 4×3 world of Figure 16.1
into a POMDP by adding a noisy or partial sensor instead of assuming that the agent knows
its location exactly. The noisy four-bit sensor from page 494 could be used, which reports the
presence or absence of a wall in each compass direction with accuracy 1− ε.

As with MDPs, we can obtain compact representations for large POMDPs by using dy-
namic decision networks (see Section 16.1.4). We add sensor variables Et , assuming that the
state variables Xt may not be directly observable. The POMDP sensor model is then given
by P(Et |Xt). For example, we might add sensor variables to the DDN in Figure 16.4 such as
BatteryMetert to estimate the actual charge Batteryt and Speedometert to estimate the mag-
nitude of the velocity vector Ẋt . A sonar sensor Wallst might give estimated distances to the
nearest wall in each of the four cardinal directions relative to the robot’s current orientation;
these values depends on the current position and orientation Xt .

In Chapters 4 and 11, we studied nondeterministic and partially observable planning
problems and identified the belief state—the set of actual states the agent might be in—as a
key concept for describing and calculating solutions. In POMDPs, the belief state b becomes
a probability distribution over all possible states, just as in Chapter 14. For example, the initial
belief state for the 4×3 POMDP could be the uniform distribution over the nine nonterminal
states along with 0s for the terminal states, that is, 〈1

9 ,
1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,

1
9 ,0,0〉.

We use the notation b(s) to refer to the probability assigned to the actual state s by be-
lief state b. The agent can calculate its current belief state as the conditional probability
distribution over the actual states given the sequence of percepts and actions so far. This is
essentially the filtering task described in Chapter 14. The basic recursive filtering equation
(14.5 on page 485) shows how to calculate the new belief state from the previous belief state
and the new evidence. For POMDPs, we also have an action to consider, but the result is
essentially the same. If b was the previous belief state, and the agent does action a and then

5 The sensor model can also depend on the action and outcome state, but this change is not fundamental.
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perceives evidence e, then the new belief state is obtained by calculating the probability of
now being in state s′, for each s′, with the following formula:

b′(s′) = αP(e |s′)∑
s

P(s′ |s,a)b(s) ,

where α is a normalizing constant that makes the belief state sum to 1. By analogy with the
update operator for filtering (page 485), we can write this as

b′ = αFORWARD(b,a,e) . (16.16)

In the 4×3 POMDP, suppose the agent moves Left and its sensor reports one adjacent wall;
then it’s quite likely (although not guaranteed, because both the motion and the sensor are
noisy) that the agent is now in (3,1). Exercise 16.POMD asks you to calculate the exact
probability values for the new belief state.

The fundamental insight required to understand POMDPs is this: the optimal action J
depends only on the agent’s current belief state. That is, an optimal policy can be described
by a mapping π∗(b) from belief states to actions. It does not depend on the actual state the
agent is in. This is a good thing, because the agent does not know its actual state; all it knows
is the belief state. Hence, the decision cycle of a POMDP agent can be broken down into the
following three steps:

1. Given the current belief state b, execute the action a=π∗(b).

2. Observe the percept e.

3. Set the current belief state to FORWARD(b,a,e) and repeat.

We can think of POMDPs as requiring a search in belief-state space, just like the methods for
sensorless and contingency problems in Chapter 4. The main difference is that the POMDP
belief-state space is continuous, because a POMDP belief state is a probability distribution.
For example, a belief state for the 4×3 world is a point in an 11-dimensional continuous
space. An action changes the belief state, not just the physical state, because it affects the
percept that is received. Hence, the action is evaluated at least in part according to the in-
formation the agent acquires as a result. POMDPs therefore include the value of information
(Section 15.6) as one component of the decision problem.

Let’s look more carefully at the outcome of actions. In particular, let’s calculate the
probability that an agent in belief state b reaches belief state b′ after executing action a. Now,
if we knew the action and the subsequent percept, then Equation (16.16) would provide a
deterministic update to the belief state: b′ = FORWARD(b,a,e). Of course, the subsequent
percept is not yet known, so the agent might arrive in one of several possible belief states b′,
depending on the percept that is received. The probability of perceiving e, given that a was
performed starting in belief state b, is given by summing over all the actual states s′ that the
agent might reach:

P(e|a,b) = ∑
s′

P(e|a,s′,b)P(s′|a,b)

= ∑
s′

P(e |s′)P(s′|a,b)

= ∑
s′

P(e |s′)∑
s

P(s′ |s,a)b(s) .
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Let us write the probability of reaching b′ from b, given action a, as P(b′ |b,a). This proba-
bility can be calculated as follows:

P(b′ |b,a) = ∑
e

P(b′|e,a,b)P(e|a,b)

= ∑
e

P(b′|e,a,b)∑
s′

P(e |s′)∑
s

P(s′ |s,a)b(s) , (16.17)

where P(b′|e,a,b) is 1 if b′=FORWARD(b,a,e) and 0 otherwise.
Equation (16.17) can be viewed as defining a transition model for the belief-state space.

We can also define a reward function for belief-state transitions, which is derived from the
expected reward of the real state transitions that might be occurring. Here, we use the simple
form ρ(b,a), the expected reward if the agent does a in belief state b:

ρ(b,a) = ∑
s

b(s)∑
s′

P(s′ |s,a)R(s,a,s′) .

Together, P(b′ |b,a) and ρ(b,a) define an observable MDP on the space of belief states.
Furthermore, it can be shown that an optimal policy for this MDP, π∗(b), is also an optimal
policy for the original POMDP. In other words, solving a POMDP on a physical state spaceI
can be reduced to solving an MDP on the corresponding belief-state space. This fact is
perhaps less surprising if we remember that the belief state is always observable to the agent,
by definition.

16.5 Algorithms for Solving POMDPs

We have shown how to reduce POMDPs to MDPs, but the MDPs we obtain have a contin-
uous (and usually high-dimensional) state space. This means we will have to redesign the
dynamic programming algorithms from Sections 16.2.1 and 16.2.2, which assumed a finite
state space and a finite number of actions. Here we describe a value iteration algorithm de-
signed specifically for POMDPs, followed by an online decision-making algorithm similar to
those developed for games in Chapter 6.

16.5.1 Value iteration for POMDPs

Section 16.2.1 described a value iteration algorithm that computed one utility value for each
state. With infinitely many belief states, we need to be more creative. Consider an optimal
policy π∗ and its application in a specific belief state b: the policy generates an action, then,
for each subsequent percept, the belief state is updated and a new action is generated, and so
on. For this specific b, therefore, the policy is exactly equivalent to a conditional plan, as de-
fined in Chapter 4 for nondeterministic and partially observable problems. Instead of thinking
about policies, let us think about conditional plans and how the expected utility of executing
a fixed conditional plan varies with the initial belief state. We make two observations:

1. Let the utility of executing a fixed conditional plan p starting in physical state s be αp(s).
Then the expected utility of executing p in belief state b is just ∑s b(s)αp(s), or b ·αp if
we think of them both as vectors. Hence, the expected utility of a fixed conditional plan
varies linearly with b; that is, it corresponds to a hyperplane in belief space.

2. At any given belief state b, an optimal policy will choose to execute the conditional plan
with highest expected utility; and the expected utility of b under an optimal policy is just
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Figure 16.15 (a) Utility of two one-step plans as a function of the initial belief state b(B) for
the two-state world, with the corresponding utility function shown in bold. (b) Utilities for 8
distinct two-step plans. (c) Utilities for four undominated two-step plans. (d) Utility function
for optimal eight-step plans.

the utility of that conditional plan: U(b) =Uπ∗(b) = maxp b ·αp . If an optimal policy
π∗ chooses to execute p starting at b, then it is reasonable to expect that it might choose
to execute p in belief states that are very close to b; in fact, if we bound the depth of the
conditional plans, then there are only finitely many such plans and the continuous space
of belief states will generally be divided into regions, each corresponding to a particular
conditional plan that is optimal in that region.

From these two observations, we see that the utility function U(b) on belief states, being the
maximum of a collection of hyperplanes, will be piecewise linear and convex.

To illustrate this, we use a simple two-state world. The states are labeled A and B and
there are two actions: Stay stays put with probability 0.9 and Go switches to the other state
with probability 0.9. The rewards are R(·, ·,A)=0 and R(·, ·,B)=1; that is, any transition
ending in A has reward zero and any transition ending in B has reward 1. For now we will
assume the discount factor γ=1. The sensor reports the correct state with probability 0.6.
Obviously, the agent should Stay when it’s in state B and Go when it’s in state A. The problem
is that it doesn’t know where it is!

The advantage of a two-state world is that the belief space can be visualized in one di-
mension, because the two probabilities b(A) and b(B) sum to 1. In Figure 16.15(a), the x-axis
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represents the belief state, defined by b(B), the probability of being in state B. Now let us con-
sider the one-step plans [Stay] and [Go], each of which receives the reward for one transition
as follows:

α[Stay](A) = 0.9R(A,Stay,A)+0.1R(A,Stay,B) = 0.1

α[Stay](B) = 0.1R(B,Stay,A)+0.9R(B,Stay,B) = 0.9

α[Go](A) = 0.1R(A,Go,A)+0.9R(A,Go,B) = 0.9

α[Go](B) = 0.9R(B,Go,A)+0.1R(B,Go,B) = 0.1

The hyperplanes (lines, in this case) for b ·α[Stay] and b ·α[Go] are shown in Figure 16.15(a) and
their maximum is shown in bold. The bold line therefore represents the utility function for
the finite-horizon problem that allows just one action, and in each “piece” of the piecewise
linear utility function an optimal action is the first action of the corresponding conditional
plan. In this case, the optimal one-step policy is to Stay when b(B)> 0.5 and Go otherwise.

Once we have utilities αp(s) for all the conditional plans p of depth 1 in each physical
state s, we can compute the utilities for conditional plans of depth 2 by considering each
possible first action, each possible subsequent percept, and then each way of choosing a
depth-1 plan to execute for each percept:

[Stay; if Percept=A then Stay else Stay]

[Stay; if Percept=A then Stay else Go]

[Go; if Percept=A then Stay else Stay]

. . .

There are eight distinct depth-2 plans in all, and their utilities are shown in Figure 16.15(b).
Notice that four of the plans, shown as dashed lines, are suboptimal across the entire belief
space—we say these plans are dominated, and they need not be considered further. ThereDominated plan

are four undominated plans, each of which is optimal in a specific region, as shown in Fig-
ure 16.15(c). The regions partition the belief-state space.

We repeat the process for depth 3, and so on. In general, let p be a depth-d conditional
plan whose initial action is a and whose depth-(d−1) subplan for percept e is p.e; then

αp(s) = ∑
s′

P(s′ |s,a)[R(s,a,s′)+γ ∑
e

P(e |s′)αp.e(s′)] . (16.18)

This recursion naturally gives us a value iteration algorithm, which is given in Figure 16.16.
The structure of the algorithm and its error analysis are similar to those of the basic value
iteration algorithm in Figure 16.6 on page 563; the main difference is that instead of comput-
ing one utility number for each state, POMDP-VALUE-ITERATION maintains a collection of
undominated plans with their utility hyperplanes.

The algorithm’s complexity depends primarily on how many plans get generated. Given
|A| actions and |E| possible observations, there are |A|O(|E|d−1) distinct depth-d plans. Even for
the lowly two-state world with d=8, that’s 2255 plans. The elimination of dominated plans
is essential for reducing this doubly exponential growth: the number of undominated plans
with d=8 is just 144. The utility function for these 144 plans is shown in Figure 16.15(d).

Notice that the intermediate belief states have lower value than state A and state B, be-
cause in the intermediate states the agent lacks the information needed to choose a good
action. This is why information has value in the sense defined in Section 15.6 and optimal
policies in POMDPs often include information-gathering actions.
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function POMDP-VALUE-ITERATION(pomdp, ε) returns a utility function
inputs: pomdp, a POMDP with states S, actions A(s), transition model P(s′ |s,a),

sensor model P(e |s), rewards R(s,a,s′), discount γ
ε, the maximum error allowed in the utility of any state

local variables: U, U′, sets of plans p with associated utility vectors αp

U′←a set containing all one-step plans [a], with α[a](s)= ∑s′ P(s′ |s,a) R(s,a,s′)
repeat

U←U′

U′← the set of all plans consisting of an action and, for each possible next percept,
a plan in U with utility vectors computed according to Equation (16.18)

U′←REMOVE-DOMINATED-PLANS(U′)
until MAX-DIFFERENCE(U,U′) ≤ ε(1−γ)/γ
return U

Figure 16.16 A high-level sketch of the value iteration algorithm for POMDPs. The
REMOVE-DOMINATED-PLANS step and MAX-DIFFERENCE test are typically implemented
as linear programs.

Given such a utility function, an executable policy can be extracted by looking at which
hyperplane is optimal at any given belief state b and executing the first action of the corre-
sponding plan. In Figure 16.15(d), the corresponding optimal policy is still the same as for
depth-1 plans: Stay when b(B)> 0.5 and Go otherwise.

In practice, the value iteration algorithm in Figure 16.16 is hopelessly inefficient for larger
problems—even the 4×3 POMDP is too hard. The main reason is that given n undominated
conditional plans at level d, the algorithm constructs |A| ·n|E| conditional plans at level d +1
before eliminating the dominated ones. With the four-bit sensor, |E| is 16, and n can be in the
hundreds, so this is hopeless.

Since this algorithm was developed in the 1970s, there have been several advances, in-
cluding more efficient forms of value iteration and various kinds of policy iteration algo-
rithms. Some of these are discussed in the notes at the end of the chapter. For general
POMDPs, however, finding optimal policies is very difficult (PSPACE-hard, in fact—that is,
very hard indeed). The next section describes a different, approximate method for solving
POMDPs, one based on look-ahead search.

16.5.2 Online algorithms for POMDPs

The basic design for an online POMDP agent is straightforward: it starts with some prior
belief state; it chooses an action based on some deliberation process centered on its current
belief state; after acting, it receives an observation and updates its belief state using a filtering
algorithm; and the process repeats.

One obvious choice for the deliberation process is the expectimax algorithm from Sec-
tion 16.2.4, except with belief states rather than physical states as the decision nodes in the
tree. The chance nodes in the POMDP tree have branches labeled by possible observations
and leading to the next belief state, with transition probabilities given by Equation (16.17). A
fragment of the belief-state expectimax tree for the 4×3 POMDP is shown in Figure 16.17.
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Figure 16.17 Part of an expectimax tree for the 4×3 POMDP with a uniform initial belief
state. The belief states are depicted with shading proportional to the probability of being in
each location.

The time complexity of an exhaustive search to depth d is O(|A|d · |E|d), where |A| is
the number of available actions and |E| is the number of possible percepts. (Notice that
this is far less than the number of possible depth-d conditional plans generated by value
iteration.) As in the observable case, sampling at the chance nodes is a good way to cut
down the branching factor without losing too much accuracy in the final decision. Thus, the
complexity of approximate online decision making in POMDPs may not be drastically worse
than that in MDPs.

For very large state spaces, exact filtering is infeasible, so the agent will need to run
an approximate filtering algorithm such as particle filtering (see page 510). Then the belief
states in the expectimax tree become collections of particles rather than exact probability dis-
tributions. For problems with long horizons, we may also need to run the kind of long-range
playouts used in the UCT algorithm (Figure 6.11). The combination of particle filtering and
UCT applied to POMDPs goes under the name of partially observable Monte Carlo planning
or POMCP. With a DDN representation for the model, the POMCP algorithm is, at leastPOMCP

in principle, applicable to very large and realistic POMDPs. Details of the algorithm are
explored in Exercise 16.POMC. POMCP is capable of generating competent behavior in the
4×3 POMDP. A short (and somewhat fortunate) example is shown in Figure 16.18.

POMDP agents based on dynamic decision networks and online decision making have a
number of advantages compared with other, simpler agent designs presented in earlier chap-
ters. In particular, they handle partially observable, stochastic environments and can easily
revise their “plans” to handle unexpected evidence. With appropriate sensor models, they can
handle sensor failure and can plan to gather information. They exhibit “graceful degradation”
under time pressure and in complex environments, using various approximation techniques.

So what is missing? The principal obstacle to real-world deployment of such agents is
the inability to generate successful behavior over long time-scales. Random or near-random
playouts have no hope of gaining any positive reward on, say, the task of laying the table
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Figure 16.18 A sequence of percepts, belief states, and actions in the 4×3 POMDP with
a wall-sensing error of ε=0.2. Notice how the early Left moves are safe—they are very
unlikely to fall into (4,2)—and coerce the agent’s location into a small number of possible
locations. After moving Up, the agent thinks it is probably in (3,3), but possibly in (1,3).
Fortunately, moving Right is a good idea in both cases, so it moves Right, finds out that it had
been in (1,3) and is now in (2,3), and then continues moving Right and reaches the goal.

for dinner, which might take tens of millions of motor-control actions. It seems necessary
to borrow some of the hierarchical planning ideas described in Section 11.4. At the time of
writing, there are not yet satisfactory and efficient ways to apply these ideas in stochastic,
partially observable environments.

Summary

This chapter shows how to use knowledge about the world to make decisions even when the
outcomes of an action are uncertain and the rewards for acting might not be reaped until many
actions have passed. The main points are as follows:

• Sequential decision problems in stochastic environments, also called Markov decision
processes, or MDPs, are defined by a transition model specifying the probabilistic
outcomes of actions and a reward function specifying the reward in each state.

• The utility of a state sequence is the sum of all the rewards over the sequence, possibly
discounted over time. The solution of an MDP is a policy that associates a decision
with every state that the agent might reach. An optimal policy maximizes the utility of
the state sequences encountered when it is executed.

• The utility of a state is the expected sum of rewards when an optimal policy is executed
from that state. The value iteration algorithm iteratively solves a set of equations
relating the utility of each state to those of its neighbors.

• Policy iteration alternates between calculating the utilities of states under the current
policy and improving the current policy with respect to the current utilities.

• Partially observable MDPs, or POMDPs, are much more difficult to solve than are
MDPs. They can be solved by conversion to an MDP in the continuous space of belief
states; both value iteration and policy iteration algorithms have been devised. Optimal
behavior in POMDPs includes information gathering to reduce uncertainty and there-
fore make better decisions in the future.

• A decision-theoretic agent can be constructed for POMDP environments. The agent
uses a dynamic decision network to represent the transition and sensor models, to
update its belief state, and to project forward possible action sequences.

We shall return MDPs and POMDPs in Chapter 23, which covers reinforcement learning
methods that allow an agent to improve its behavior from experience.
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Bibliographical and Historical Notes

Richard Bellman developed the ideas underlying the modern approach to sequential deci-
sion problems while working at the RAND Corporation beginning in 1949. According to his
autobiography (Bellman, 1984), he coined the term “dynamic programming” to hide from
a research-phobic Secretary of Defense, Charles Wilson, the fact that his group was doing
mathematics. (This cannot be strictly true, because his first paper using the term (Bellman,
1952) appeared before Wilson became Secretary of Defense in 1953.) Bellman’s book, Dy-
namic Programming (1957), gave the new field a solid foundation and introduced the value
iteration algorithm.

Shapley (1953b) actually described the value iteration algorithm independently of Bell-
man, but his results were not widely appreciated in the operations research community, per-
haps because they were presented in the more general context of Markov games. Although
the original formulations included discounting, its analysis in terms of stationary preferences
was suggested by Koopmans (1972). The shaping theorem is due to Ng et al. (1999).

Ron Howard’s Ph.D. thesis (1960) introduced policy iteration and the idea of average
reward for solving infinite-horizon problems. Several additional results were introduced
by Bellman and Dreyfus (1962). The use of contraction mappings in analyzing dynamic
programming algorithms is due to Denardo (1967). Modified policy iteration is due to van
Nunen (1976) and Puterman and Shin (1978). Asynchronous policy iteration was analyzed
by Williams and Baird (1993), who also proved the policy loss bound in Equation (16.13).
The general family of prioritized sweeping algorithms aims to speed up convergence to op-
timal policies by heuristically ordering the value and policy update calculations (Moore and
Atkeson, 1993; Andre et al., 1998; Wingate and Seppi, 2005).

The formulation of MDP-solving as a linear program is due to de Ghellinck (1960),
Manne (1960), and D’Épenoux (1963). Although linear programming has traditionally been
considered inferior to dynamic programming as an exact solution method for MDPs, de Farias
and Roy (2003) show that it is possible to use linear programming and a linear representation
of the utility function to obtain provably good approximate solutions to very large MDPs.
Papadimitriou and Tsitsiklis (1987) and Littman et al. (1995) provide general results on the
computational complexity of MDPs. Yinyu Ye (2011) analyzes the relationship between
policy iteration and the simplex method for linear programming and proves that for fixed γ,
the runtime of policy iteration is polynomial in the number of states and actions.

Seminal work by Sutton (1988) and Watkins (1989) on reinforcement learning methods
for solving MDPs played a significant role in introducing MDPs into the AI community. (Ear-
lier work by Werbos (1977) contained many similar ideas, but was not taken up to the same
extent.) AI researchers have pushed MDPs in the direction of more expressive representa-
tions that can accommodate much larger problems than the traditional atomic representations
based on transition matrices.

The basic ideas for an agent architecture using dynamic decision networks were proposed
by Dean and Kanazawa (1989a). Tatman and Shachter (1990) showed how to apply dynamic
programming algorithms to DDN models. Several authors made the connection between
MDPs and AI planning problems, developing probabilistic forms of the compact STRIPS

representation for transition models (Wellman, 1990b; Koenig, 1991). The book Planning
and Control by Dean and Wellman (1991) explores the connection in great depth.
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Later work on factored MDPs (Boutilier et al., 2000; Koller and Parr, 2000; Guestrin Factored MDP

et al., 2003b) uses structured representations of the value function as well as the transition
model, with provable improvements in complexity. Relational MDPs (Boutilier et al., 2001; Relational MDP

Guestrin et al., 2003a) go one step further, using structured representations to handle domains
with many related objects. Open-universe MDPs and POMDPs (Srivastava et al., 2014b) also
allow for uncertainty over the existence and identity of objects and actions.

Many authors have developed approximate online algorithms for decision making in
MDPs, often borrowing explicitly from earlier AI approaches to real-time search and game-
playing (Werbos, 1992; Dean et al., 1993; Tash and Russell, 1994). The work of Barto et al.
(1995) on RTDP (real-time dynamic programming) provided a general framework for under-
standing such algorithms and their connection to reinforcement learning and heuristic search.
The analysis of depth-bounded expectimax with sampling at chance nodes is due to Kearns
et al. (2002). The UCT algorithm described in the chapter is due to Kocsis and Szepes-
vari (2006) and borrows from earlier work on random playouts for estimating the values of
states (Abramson, 1990; Brügmann, 1993; Chang et al., 2005).

Bandit problems were introduced by Thompson (1933) but came to prominence after
World War II through the work of Herbert Robbins (1952). Bradt et al. (1956) proved the
first results concerning stopping rules for one-armed bandits, which led eventually to the
breakthrough results of John Gittins (Gittins and Jones, 1974; Gittins, 1989). Katehakis and
Veinott (1987) suggested the restart MDP as a method of computing Gittins indices. The text
by Berry and Fristedt (1985) covers many variations on the basic problem, while the pellucid
online text by Ferguson (2001) connects bandit problems with stopping problems.

Lai and Robbins (1985) initiated the study of the asymptotic regret of optimal bandit
policies. The UCB heuristic was introduced and analyzed by Auer et al. (2002). Bandit su-
perprocesses (BSPs) were first studied by Nash (1973) but have remained largely unknown
in AI. Hadfield-Menell and Russell (2015) describe an efficient branch-and-bound algorithm
capable of solving relatively large BSPs. Selection problems were introduced by Bechhofer
(1954). Hay et al. (2012) developed a formal framework for metareasoning problems, show-
ing that simple instances mapped to selection rather than bandit problems. They also proved
the satisfying result that expected computation cost of the optimal computational strategy is
never higher than the expected gain in decision quality—although there are cases where the
optimal policy may, with some probability, keep computing long past the point where any
possible gain has been used up.

The observation that a partially observable MDP can be transformed into a regular MDP
over belief states is due to Astrom (1965) and Aoki (1965). The first complete algorithm
for the exact solution of POMDPs—essentially the value iteration algorithm presented in
this chapter—was proposed by Edward Sondik (1971) in his Ph.D. thesis. (A later jour-
nal paper by Smallwood and Sondik (1973) contains some errors, but is more accessible.)
Lovejoy (1991) surveyed the first twenty-five years of POMDP research, reaching somewhat
pessimistic conclusions about the feasibility of solving large problems.

The first significant contribution within AI was the Witness algorithm (Cassandra et al.,
1994; Kaelbling et al., 1998), an improved version of POMDP value iteration. Other algo-
rithms soon followed, including an approach due to Hansen (1998) that constructs a policy
incrementally in the form of a finite-state automaton whose states define the possible belief
states of the agent.
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More recent work in AI has focused on point-based value iteration methods that, at each
iteration, generate conditional plans and α-vectors for a finite set of belief states rather than
for the entire belief space. Lovejoy (1991) proposed such an algorithm for a fixed grid of
points, an approach taken also by Bonet (2002). An influential paper by Pineau et al. (2003)
suggested generating reachable points by simulating trajectories in a somewhat greedy fash-
ion; Spaan and Vlassis (2005) observe that one need generate plans for only a small, randomly
selected subset of points to improve on the plans from the previous iteration for all points in
the set. Shani et al. (2013) survey these and other developments in point-based algorithms,
which have led to good solutions for problems with thousands of states. Because POMDPs
are PSPACE-hard (Papadimitriou and Tsitsiklis, 1987), further progress on offline solution
methods may require taking advantage of various kinds of structure in value functions arising
from a factored representation of the model.

The online approach for POMDPs—using look-ahead search to select an action for the
current belief state—was first examined by Satia and Lave (1973). The use of sampling at
chance nodes was explored analytically by Kearns et al. (2000) and Ng and Jordan (2000).
The POMCP algorithm is due to Silver and Veness (2011).

With the development of reasonably effective approximation algorithms for POMDPs,
their use as models for real-world problems has increased, particularly in education (Rafferty
et al., 2016), dialog systems (Young et al., 2013), robotics (Hsiao et al., 2007; Huynh and
Roy, 2009), and self-driving cars (Forbes et al., 1995; Bai et al., 2015). An important large-
scale application is the Airborne Collision Avoidance System X (ACAS X), which keeps
airplanes and drones from colliding midair. The system uses POMDPs with neural networks
to do function approximation. ACAS X significantly improves safety compared to the legacy
TCAS system, which was built in the 1970s using expert system technology (Kochenderfer,
2015; Julian et al., 2018).

Complex decision making has also been studied by economists and psychologists. They
find that decision makers are not always rational, and may not be operating exactly as de-
scribed by the models in this chapter. For example, when given a choice, a majority of people
prefer $100 today over a guarantee of $200 in two years, but those same people prefer $200
in eight years over $100 in six years. One way to interpret this result is that people are not
using additive exponentially discounted rewards; perhaps they are using hyperbolic rewardsHyperbolic reward

(the hyperbolic function dips more steeply in the near term than does the exponential decay
function). This and other possible interpretations are discussed by Rubinstein (2003).

The texts by Bertsekas (1987) and Puterman (1994) provide rigorous introductions to
sequential decision problems and dynamic programming. Bertsekas and Tsitsiklis (1996)
include coverage of reinforcement learning. Sutton and Barto (2018) cover similar ground
but in a more accessible style. Sigaud and Buffet (2010), Mausam and Kolobov (2012) and
Kochenderfer (2015) cover sequential decision making from an AI perspective. Krishna-
murthy (2016) provides thorough coverage of POMDPs.



CHAPTER 17
MULTIAGENT DECISION MAKING
In which we examine what to do when more than one agent inhabits the environment.

17.1 Properties of Multiagent Environments

So far, we have largely assumed that only one agent has been doing the sensing, planning, and
acting. But this represents a huge simplifying assumption, which fails to capture many real-
world AI settings. In this chapter, therefore, we will consider the issues that arise when an
agent must make decisions in environments that contain multiple actors. Such environments
are called multiagent systems, and agents in such a system face a multiagent planning Multiagent systems

problem. However, as we will see, the precise nature of the multiagent planning problem— Multiagent planning
problem

and the techniques that are appropriate for solving it—will depend on the relationships among
the agents in the environment.

17.1.1 One decision maker

The first possibility is that while the environment contains multiple actors, it contains only
one decision maker. In such a case, the decision maker develops plans for the other agents,
and tells them what to do. The assumption that agents will simply do what they are told
is called the benevolent agent assumption. However, even in this setting, plans involving Benevolent agent

assumption

multiple actors will require actors to synchronize their actions. Actors A and B will have to
act at the same time for joint actions (such as singing a duet), at different times for mutually
exclusive actions (such as recharging batteries when there is only one plug), and sequentially
when one establishes a precondition for the other (such as A washing the dishes and then B
drying them).

One special case is where we have a single decision maker with multiple effectors that
can operate concurrently—for example, a human who can walk and talk at the same time.
Such an agent needs to do multieffector planning to manage each effector while handling Multieffector

planning

positive and negative interactions among the effectors. When the effectors are physically
decoupled into detached units—as in a fleet of delivery robots in a factory—multieffector
planning becomes multibody planning. Multibody planning

A multibody problem is still a “standard” single-agent problem as long as the relevant
sensor information collected by each body can be pooled—either centrally or within each
body—to form a common estimate of the world state that then informs the execution of
the overall plan; in this case, the multiple bodies can be thought of as acting as a single
body. When communication constraints make this impossible, we have what is sometimes
called a decentralized planning problem; this is perhaps a misnomer, because the planning Decentralized

planning

phase is centralized but the execution phase is at least partially decoupled. In this case, the
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subplan constructed for each body may need to include explicit communicative actions with
other bodies. For example, multiple reconnaissance robots covering a wide area may often
be out of radio contact with each other and should share their findings during times when
communication is feasible.

17.1.2 Multiple decision makers

The second possibility is that the other actors in the environment are also decision makers:
they each have preferences and choose and execute their own plan. We call them counter-
parts. In this case, we can distinguish two further possibilities.Counterparts

• The first is that, although there are multiple decision makers, they are all pursuing a
common goal. This is roughly the situation of workers in a company, in which differentCommon goal

decision makers are pursuing, one hopes, the same goals on behalf of the company. The
main problem faced by the decision makers in this setting is the coordination problem:Coordination

problem

they need to ensure that they are all pulling in the same direction, and not accidentally
fouling up each other’s plans.

• The second possibility is that the decision makers each have their own personal pref-
erences, which they each will pursue to the best of their abilities. It could be that the
preferences are diametrically opposed, as is the case in zero-sum games such as chess
(see Chapter 6). But most multiagent encounters are more complicated than that, with
more complex preferences.

When there are multiple decision makers, each pursuing their own preferences, an agent must
take into account the preferences of other agents, as well as the fact that these other agents
are also taking into account the preferences of other agents, and so on. This brings us into the
realm of game theory: the theory of strategic decision making. It is this strategic aspect ofGame theory

reasoning—players each taking into account how other players may act—that distinguishes
game theory from decision theory. In the same way that decision theory provides the theoret-
ical foundation for decision making in single-agent AI, game theory provides the theoretical
foundation for decision making in multiagent systems.

The use of the word “game” here is also not ideal: a natural inference is that game the-
ory is mainly concerned with recreational pursuits, or artificial scenarios. Nothing could be
further from the truth. Game theory is the theory of strategic decision making. It is usedStrategic decision

making

in decision making situations including the auctioning of oil drilling rights and wireless fre-
quency spectrum rights, bankruptcy proceedings, product development and pricing decisions,
and national defense—situations involving billions of dollars and many lives. Game theory
in AI can be used in two main ways:

1. Agent design: Game theory can be used by an agent to analyze its possible decisionsAgent design

and compute the expected utility for each of these (under the assumption that other
agents are acting rationally, according to game theory). In this way, game-theoretic
techniques can determine the best strategy against a rational player and the expected
return for each player.

2. Mechanism design: When an environment is inhabited by many agents, it might beMechanism design

possible to define the rules of the environment (i.e., the game that the agents must
play) so that the collective good of all agents is maximized when each agent adopts the
game-theoretic solution that maximizes its own utility. For example, game theory can
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help design the protocols for a collection of Internet traffic routers so that each router
has an incentive to act in such a way that global throughput is maximized. Mechanism
design can also be used to construct intelligent multiagent systems that solve complex
problems in a distributed fashion.

Game theory provides a range of different models, each with its own set of underlying as-
sumptions; it is important to choose the right model for each setting. The most important
distinction is whether we should consider it a cooperative game or not:

• In a cooperative game, it is possible to have a binding agreement between agents, Cooperative game

thereby enabling robust cooperation. In the human world, legal contracts and social
norms help establish such binding agreements. In the world of computer programs, it
may be possible to inspect source code to make sure it will follow an agreement. We
use cooperative game theory to analyze this situation.

• If binding agreements are not possible, we have a non-cooperative game. Although Non-cooperative
game

this term suggests that the game is inherently competitive, and that cooperation is not
possible, that need not be the case: non-cooperative simply means that there is no cen-
tral agreement that binds all agents and guarantees cooperation. But it could well be
that agents independently decide to cooperate, because it is in their own best interests.
We use non-cooperative game theory to analyze this situation.

Some environments will combine multiple different dimensions. For example, a package
delivery company may do centralized, offline planning for the routes of its trucks and planes
each day, but leave some aspects open for autonomous decisions by drivers and pilots who
can respond individually to traffic and weather situations. Also, the goals of the company
and its employees are brought into alignment, to some extent, by the payment of incentives Incentive

(salaries and bonuses)—a sure sign that this is a true multiagent system.

17.1.3 Multiagent planning

For the time being, we will treat the multieffector, multibody, and multiagent settings in the
same way, labeling them generically as multiactor settings, using the generic term actor to Multiactor

Actorcover effectors, bodies, and agents. The goal of this section is to work out how to define
transition models, correct plans, and efficient planning algorithms for the multiactor setting.
A correct plan is one that, if executed by the actors, achieves the goal. (In the true multiagent
setting, of course, the agents may not agree to execute any particular plan, but at least they
will know what plans would work if they did agree to execute them.)

A key difficulty in attempting to come up with a satisfactory model of multiagent action
is that we must somehow deal with the thorny issue of concurrency, by which we simply Concurrency

mean that the plans of each agent may be executed simultaneously. If we are to reason about
the execution of multiactor plans, then we will first need a model of multiactor plans that
embodies a satisfactory model of concurrent action.

In addition, multiactor action raises a whole set of issues that are not a concern in single-
agent planning. In particular, agents must take into account the way in which their own J
actions interact with the actions of other agents. For example, an agent will need to consider
whether the actions performed by other agents might clobber the preconditions of its own
actions, whether the resources it makes use of while executing its policy are sharable, or may
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be depleted by other agents; whether actions are mutually exclusive; and a helpfully inclined
agent could consider how its actions might facilitate the actions of others.

To answer these questions we need a model of concurrent action within which we can
properly formulate them. Models of concurrent action have been a major focus of research
in the mainstream computer science community for decades, but no definitive, universally
accepted model has prevailed. Nevertheless, the following three approaches have become
widely established.

The first approach is to consider the interleaved execution of the actions in respectiveInterleaved
execution

plans. For example, suppose we have two agents, A and B, with plans as follows:

A : [a1,a2]
B : [b1,b2] .

The key idea of the interleaved execution model is that the only thing we can be certain about
in the execution of the two agents’ plans is that the order of actions in the respective plans
will be preserved. If we further assume that actions are atomic, then there are six different
ways in which the two plans above might be executed concurrently:

[a1,a2,b1,b2]
[b1,b2,a1,a2]
[a1,b1,a2,b2]
[b1,a1,b2,a2]
[a1,b1,b2,a2]
[b1,a1,a2,b2]

For a plan to be correct in the interleaved execution model, it must be correct with respectI
to all possible interleavings of the plans. The interleaved execution model has been widely
adopted within the concurrency community, because it is a reasonable model of the way
multiple threads take turns running on a single CPU. However, it does not model the case
where two actions actually happen at the same time. Furthermore, the number of interleaved
sequences will grow exponentially with the number of agents and actions: as a consequence,
checking the correctness of a plan, which is computationally straightforward in single-agent
settings, is computationally difficult with the interleaved execution model.

The second approach is true concurrency, in which we do not attempt to create a fullTrue concurrency

serialized ordering of the actions, but leave them partially ordered: we know that a1 will
occur before a2, but with respect to the ordering of a1 and b1, for example, we can say nothing;
one may occur before the other, or they could occur concurrently. We can always “flatten”
a partial-order model of concurrent plans into an interleaved model, but in doing so, we lose
the partial-order information. While partial-order models are arguably more satisfying than
interleaved models as a theoretical account of concurrent action, they have not been as widely
adopted in practice.

The third approach is to assume perfect synchronization: there is a global clock that eachSynchronization

agent has access to, each action takes the same amount of time, and actions at each point in
the joint plan are simultaneous. Thus, the actions of each agent are executed synchronously,
in lockstep with each other (it may be that some agents execute a no-op action when they are
waiting for other actions to complete). Synchronous execution is not a very complete model
of concurrency in the real world, but it has a simple semantics, and for this reason, it is the
model we will work with here.
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Actors(A,B)
Init(At(A,LeftBaseline) ∧ At(B,RightNet) ∧

Approaching(Ball,RightBaseline) ∧ Partner(A,B) ∧ Partner(B,A)
Goal(Returned(Ball) ∧ (At(x,RightNet) ∨ At(x,LeftNet))
Action(Hit(actor,Ball),

PRECOND:Approaching(Ball, loc) ∧ At(actor, loc)
EFFECT:Returned(Ball))

Action(Go(actor, to),
PRECOND:At(actor, loc) ∧ to 6= loc,
EFFECT:At(actor, to) ∧ ¬ At(actor, loc))

Figure 17.1 The doubles tennis problem. Two actors, A and B, are playing together and can
be in one of four locations: LeftBaseline, RightBaseline, LeftNet, and RightNet. The ball can
be returned only if a player is in the right place. The NoOp action is a dummy, which has no
effect. Note that each action must include the actor as an argument.

We begin with the transition model; for the single-agent deterministic case, this is the
function RESULT(s,a), which gives the state that results from performing the action a when
the environment is in state s. In the single-agent setting, there might be b different choices for
the action; b can be quite large, especially for first-order representations with many objects
to act on, but action schemas provide a concise representation nonetheless.

In the multiactor setting with n actors, the single action a is replaced by a joint action Joint action

〈a1, . . . ,an〉, where ai is the action taken by the ith actor. Immediately, we see two problems:
first, we have to describe the transition model for bn different joint actions; second, we have
a joint planning problem with a branching factor of bn.

Having put the actors together into a multiactor system with a huge branching factor,
the principal focus of research on multiactor planning has been to decouple the actors to the
extent possible, so that (ideally) the complexity of the problem grows linearly with n rather
than exponentially with bn.

If the actors have no interaction with one another—for example, n actors each playing a
game of solitaire—then we can simply solve n separate problems. If the actors are loosely
coupled, can we attain something close to this exponential improvement? This is, of course, Loosely coupled

a central question in many areas of AI. We have seen successful solution methods for loosely
coupled systems in the context of CSPs, where “tree like” constraint graphs yielded efficient
solution methods (see page 186), as well as in the context of disjoint pattern databases (page
119) and additive heuristics for planning (page 374).

The standard approach to loosely coupled problems is to pretend the problems are com-
pletely decoupled and then fix up the interactions. For the transition model, this means writing
action schemas as if the actors acted independently.

Let’s see how this works for a game of doubles tennis. Here, we have two human tennis
players who form a doubles team with the common goal of winning the match against an
opponent team. Let’s suppose that at one point in the game, the team has the goal of returning
the ball that has been hit to them and ensuring that at least one of them is covering the net.
Figure 17.1 shows the initial conditions, goal, and action schemas for this problem. It is easy
to see that we can get from the initial conditions to the goal with a two-step joint plan that Joint plan
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specifies what each player has to do: A should move over to the right baseline and hit the ball,
while B should just stay put at the net:

PLAN 1: A : [Go(A,RightBaseline),Hit(A,Ball)]
B : [NoOp(B),NoOp(B)] .

Problems arise, however, when a plan dictates that both agents hit the ball at the same time.
In the real world, this won’t work, but the action schema for Hit says that the ball will be
returned successfully. The difficulty is that preconditions constrain the state in which an
action by itself can be executed successfully, but do not constrain other concurrent actions
that might mess it up.

We solve this problem by augmenting action schemas with one new feature: a concurrent
action constraint stating which actions must or must not be executed concurrently. ForConcurrent action

constraint
example, the Hit action could be described as follows:

Action(Hit(actor,Ball),
CONCURRENT:∀b b 6= actor ⇒ ¬Hit(b,Ball)
PRECOND:Approaching(Ball, loc)∧At(actor, loc)
EFFECT:Returned(Ball)) .

In other words, the Hit action has its stated effect only if no other Hit action by another agent
occurs at the same time. (In the SATPLAN approach, this would be handled by a partial
action exclusion axiom.) For some actions, the desired effect is achieved only when another
action occurs concurrently. For example, two agents are needed to carry a cooler full of
beverages to the tennis court:

Action(Carry(actor,cooler,here, there),
CONCURRENT:∃b b 6= actor∧Carry(b,cooler,here, there)
PRECOND:At(actor,here)∧At(cooler,here)∧Cooler(cooler)
EFFECT:At(actor, there)∧At(cooler, there)∧¬At(actor,here)∧¬At(cooler,here)).

With these kinds of action schemas, any of the planning algorithms described in Chapter 11
can be adapted with only minor modifications to generate multiactor plans. To the extent that
the coupling among subplans is loose—meaning that concurrency constraints come into play
only rarely during plan search—one would expect the various heuristics derived for single-
agent planning to also be effective in the multiactor context.

17.1.4 Planning with multiple agents: Cooperation and coordination

Now let us consider a true multiagent setting in which each agent makes its own plan. To start
with, let us assume that the goals and knowledge base are shared. One might think that this
reduces to the multibody case—each agent simply computes the joint solution and executes
its own part of that solution. Alas, the “the” in “the joint solution” is misleading. Here is a
second plan that also achieves the goal:

PLAN 2: A : [Go(A,LeftNet),NoOp(A)]
B : [Go(B,RightBaseline),Hit(B,Ball)] .

If both agents can agree on either plan 1 or plan 2, the goal will be achieved. But if A chooses
plan 2 and B chooses plan 1, then nobody will return the ball. Conversely, if A chooses 1 and
B chooses 2, then they will both try to hit the ball and that too will fail. The agents know this,
but how can they coordinate to make sure they agree on the plan?



Section 17.2 Non-Cooperative Game Theory 595

One option is to adopt a convention before engaging in joint activity. A convention is Convention

any constraint on the selection of joint plans. For example, the convention “stick to your
side of the court” would rule out plan 1, causing both partners to select plan 2. Drivers on a
road face the problem of not colliding with each other; this is (partially) solved by adopting
the convention “stay on the right-hand side of the road” in most countries; the alternative,
“stay on the left-hand side,” works equally well as long as all agents in an environment agree.
Similar considerations apply to the development of human language, where the important
thing is not which language each individual should speak, but the fact that a community all
speaks the same language. When conventions are widespread, they are called social laws. Social law

In the absence of a convention, agents can use communication to achieve common
knowledge of a feasible joint plan. For example, a tennis player could shout “Mine!” or
“Yours!” to indicate a preferred joint plan. Communication does not necessarily involve a
verbal exchange. For example, one player can communicate a preferred joint plan to the other
simply by executing the first part of it. If agent A heads for the net, then agent B is obliged to
go back to the baseline to hit the ball, because plan 2 is the only joint plan that begins with
A’s heading for the net. This approach to coordination, sometimes called plan recognition, Plan recognition

works when a single action (or short sequence of actions) by one agent is enough for the other
to determine a joint plan unambiguously.

17.2 Non-Cooperative Game Theory

We will now introduce the key concepts and analytical techniques of game theory—the theory
that underpins decision making in multiagent environments. Our tour will start with non-
cooperative game theory.

17.2.1 Games with a single move: Normal form games

The first game model we will look at is one in which all players take action simultaneously
and the result of the game is based on the profile of actions that are selected in this way.
(Actually, it is not crucial that the actions take place at the same time; what matters is that no
player has knowledge of the other players’ choices.) These games are called normal form
games. A normal form game is defined by three components: Normal form game

• Players or agents who will be making decisions. Two-player games have received the Player

most attention, although n-player games for n > 2 are also common. We give players
capitalized names, like Ali and Bo or O and E.

• Actions that the players can choose. We will give actions lowercase names, like one or
testify. The players may or may not have the same set of actions available.

• A payoff function that gives the utility to each player for each combination of actions Payoff function

by all the players. For two-player games, the payoff function for a player can be repre-
sented by a matrix in which there is a row for each possible action of one player, and a
column for each possible choice of the other player: a chosen row and a chosen column
define a matrix cell, which is labeled with the payoff for the relevant player. In the two-
player case, it is conventional to combine the two matrices into a single payoff matrix, Payoff matrix

in which each cell is labeled with payoffs for both players.
To illustrate these ideas, let’s look at an example game, called two-finger Morra. In this
game, two players, O and E, simultaneously display one or two fingers. Let the total number
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of fingers displayed be f . If f is odd, O collects f dollars from E; and if f is even, E collects
f dollars from O.1 The payoff matrix for two-finger Morra is as follows:

O: one O: two
E: one E =+2,O =−2 E =−3,O =+3
E: two E =−3,O =+3 E =+4,O =−4

We say that E is the row player and O is the column player. So, for example, the lower-rightRow player

Column player corner shows that when player O chooses action two and E also chooses two, the payoff is
+4 for E and −4 for O.

Before analyzing two-finger Morra, it is worth considering why game-theoretic ideas are
needed at all: why can’t we tackle the challenge facing (say) player E using the apparatus of
decision theory and utility maximization that we’ve been using elsewhere in the book? To
see why something else is needed, let’s suppose E is trying to find the best action to perform.
The alternatives are one or two. If E chooses one, then the payoff will be either +2 or −3.
Which payoff E will actually receive, however, will depend on the choice made by O: the
most that E can do, as the row player, is to force the outcome of the game to be in a particular
row. Similarly, O chooses only the column.

To choose optimally between these possibilities, E must take into account how O will
act as a rational decision maker. But O, in turn, should take into account the fact that E is
a rational decision maker. Thus, decision making in multiagent settings is quite different in
character to decision making in single-agent settings, because the players need to take each
other’s reasoning into account. The role of solution concepts in game theory is to try to makeSolution concept

this kind of reasoning precise.
The term strategy is used in game theory to denote what we have previously called aStrategy

policy. A pure strategy is a deterministic policy; for a single-move game, a pure strategyPure strategy

is just a single action. As we will see below, for many games an agent can do better with a
mixed strategy, which is a randomized policy that selects actions according to a probabilityMixed strategy

distribution. The mixed strategy that chooses action a with probability p and action b other-
wise is written [p:a;(1− p):b]. For example, a mixed strategy for two-finger Morra might
be [0.5:one;0.5: two]. A strategy profile is an assignment of a strategy to each player; givenStrategy profile

the strategy profile, the game’s outcome is a numeric value for each player—if players use
mixed strategies, then we must use expected utility.

So, how should agents decide act in games like Morra? Game theory provides a range
of solution concepts that attempt to define rational action with respect to an agent’s beliefs
about the other agent’s beliefs. Unfortunately, there is no one perfect solution concept: it
is problematic to define what “rational” means when each agent chooses only part of the
strategy profile that determines the outcome.

We introduce our first solution concept through what is probably the most famous game
in the game theory canon—the prisoner’s dilemma. This game is motivated by the followingPrisoner’s dilemma

story: Two alleged burglars, Ali and Bo, are caught red-handed near the scene of a burglary
and are interrogated separately. A prosecutor offers each a deal: if you testify against your
partner as the leader of a burglary ring, you’ll go free for being the cooperative one, while

1 Morra is a recreational version of an inspection game. In such games, an inspector chooses a day to inspect a
facility (such as a restaurant or a biological weapons plant), and the facility operator chooses a day to hide all the
nasty stuff. The inspector wins if the days are different, and the facility operator wins if they are the same.
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your partner will serve 10 years in prison. However, if you both testify against each other,
you’ll both get 5 years. Ali and Bo also know that if both refuse to testify they will serve
only 1 year each for the lesser charge of possessing stolen property. Now Ali and Bo face the
so-called prisoner’s dilemma: should they testify or refuse? Being rational agents, Ali and
Bo each want to maximize their own expected utility, which means minimizing the number
of years in prison—each is indifferent about the welfare of the other player. The prisoner’s
dilemma is captured in the following payoff matrix:

Ali:testify Ali:refuse
Bo:testify A =−5,B =−5 A =−10,B = 0
Bo:refuse A = 0,B =−10 A =−1,B =−1

Now, put yourself in Ali’s place. She can analyze the payoff matrix as follows:

• Suppose Bo plays testify. Then I get 5 years if I testify and 10 years if I don’t, so in that
case testifying is better.

• On the other hand, if Bo plays refuse, then I go free if I testify and I get 1 year if I
refuse, so testifying is also better in that case.

• So no matter what Bo chooses to do, it would be better for me to testify.

Ali has discovered that testify is a dominant strategy for the game. We say that a strategy Dominant strategy

s for player p strongly dominates strategy s′ if the outcome for s is better for p than the Strong domination

outcome for s′, for every choice of strategies by the other player(s). Strategy s weakly dom-
inates s′ if s is better than s′ on at least one strategy profile and no worse on any other. A Weak domination

dominant strategy is a strategy that dominates all others. A common assumption in game the-
ory is that a rational player will always choose a dominant strategy and avoid a dominated J
strategy. Being rational—or at least not wishing to be thought irrational—Ali chooses the
dominant strategy.

It is not hard to see that Bo’s reasoning will be identical: he will also conclude that testify
is a dominant strategy for him, and will choose to play it. The solution of the game, according
to dominant strategy analysis, will be that both players choose testify, and as a consequence
both will serve 5 years in prison.

In a situation like this, where all players choose a dominant strategy, then the outcome
that results is said to be a dominant strategy equilibrium. It is an “equilibrium” because Dominant strategy

equilibrium

no player has any incentive to deviate from their part of it: by definition, if they did so, they
could not do better, and may do worse. In this sense, dominant strategy equilibrium is a very
strong solution concept.

Going back to the prisoner’s dilemma, we can see that the dilemma is that the dominant
strategy equilibrium outcome in which both players testify is worse for both players than the
outcome they would get if they both refused to testify. The (refuse,refuse) outcome would
give both players just one year in prison, which would be better for both of them than the 5
years that each would serve if they chose the dominant strategy equilibrium.

Is there any way for Ali and Bo to arrive at the (refuse,refuse) outcome? It is certainly
an allowable option for both of them to refuse to testify, but it is hard to see how rational
agents could make this choice, given the way the game is set up. Remember, this is a non-
cooperative game: they aren’t allowed to talk to each other, so they cannot make a binding
agreement to refuse.
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It is, however, possible to get to the (refuse,refuse) solution if we change the game.
We could change it to a cooperative game where the agents are allowed to form a binding
agreement. Or we could change to a repeated game in which the players know that they will
meet again—we will see how this works below. Alternatively, the players might have moral
beliefs that encourage cooperation and fairness. But that would mean they have different
utility functions, and again, they would be playing a different game.

The presence of a dominant strategy for a particular player greatly simplifies the decision
making process for that player. Once Ali has realized that testifying is a dominant strategy,
she doesn’t need to invest any effort in trying to figure out what Bo will do, because she
knows that no matter what Bo does, testifying would be her best response. However, mostBest response

games have neither dominant strategies nor dominant strategy equilibria. It is rare that a
single strategy is the best response to all possible counterpart strategies.

The next solution concept we consider is weaker than dominant strategy equilibrium, but
it is much more widely applicable. It is called Nash equilibrium, and is named for JohnNash equilibrium

Forbes Nash, Jr. (1928–2015), who studied it in his 1950 Ph.D. thesis—work for which he
was awarded a Nobel Prize in 1994.

A strategy profile is a Nash equilibrium if no player could unilaterally change their strat-
egy and as a consequence receive a higher payoff, under the assumption that the other players
stayed with their strategy choices. Thus, in a Nash equilibrium, every player is simultaneously
playing a best response to the choices of their counterparts. A Nash equilibrium represents a
stable point in a game: stable in the sense that there is no rational incentive for any player to
deviate. However, Nash equilibria are local stable points: as we will see, a game may contain
multiple Nash equilibria.

Since a dominant strategy is a best response to all counterpart strategies, it follows that
any dominant strategy equilibrium must also be a Nash equilibrium (Exercise 17.EQIB). In
the prisoner’s dilemma, therefore, there is a unique dominant strategy equilibrium, which is
also the unique Nash equilibrium.

The following example game demonstrates, first, that sometimes games have no dominant
strategies, and second, that some games have multiple Nash equilibria.

Ali:l Ali:r
Bo:t A = 10,B = 10 A = 0,B = 0
Bo:b A = 0,B = 0 A = 1,B = 1

It is easy to verify that there are no dominant strategies in this game, for either player, and
hence no dominant strategy equilibrium. However, the strategy profiles (t, l) and (b,r) are
both Nash equilibria. Now, clearly it is in the interests of both agents to aim for the same
Nash equilibrium—either (t, l) or (b,r)—but since we are in the domain of non-cooperative
game theory, players must make their choices independently, without any knowledge of the
choices of the others, and without any way of making an agreement with them. This is an
example of a coordination problem: the players want to coordinate their actions globally,
so that they both choose actions leading to the same equilibrium, but must do so using only
local decision making.

A number of approaches to resolving coordination problems have been proposed. One
idea is that of focal points. A focal point in a game is an outcome that in some way standsFocal point

out to players as being an “obvious” outcome upon which to coordinate their choices. This
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is of course not a precise definition—what it means will depend on the game at hand. In
the example above, though, there is one obvious focal point: the outcome (t, l) would give
both players substantially higher utility than they would obtain if they coordinated on (b,r).
From the point of view of game theory, both outcomes are Nash equilibria—but it would be
a perverse player indeed who expected to coordinate on (b,r).

Some games have no Nash equilibria in pure strategies, as the following game, called
matching pennies, illustrates. In this game, Ali and Bo simultaneously choose one side of a Matching pennies

coin, either heads of tails: if they make the same choices, then Bo gives Ali $1, while if they
make different choices, then Ali gives Bo $1:

Ali:heads Ali:tails
Bo:heads A = 1,B =−1 A =−1,B = 1
Bo:tails A =−1,B = 1 A = 1,B =−1

We invite the reader to check that the game contains no dominant strategies, and that no
outcome is a Nash equilibrium in pure strategies: in every outcome, one player regrets their
choice, and would rather have chosen differently, given the choice of the other player.

To find a Nash equilibrium, the trick is to use mixed strategies—to allow players to ran-
domize over their choices. Nash proved that every game has at least one Nash equilibrium in J
mixed strategies. This explains why Nash equilibrium is such an important solution concept:
other solution concepts, such as dominant strategy equilibrium, are not guaranteed to exist for
every game, but we always get a solution if we look for Nash equilibria with mixed strategies.

In the case of matching pennies, we have a Nash equilibrium in mixed strategies if both
players choose heads and tails with equal probability. To see that this outcome is indeed a
Nash equilibrium, suppose one of the players chose an outcome with a probability other than
0.5. Then the other player would be able to exploit that, putting all their weight behind a
particular strategy. For example, suppose Bo played heads with probability 0.6 (and so tails
with probability 0.4). Then Ali would do best to play heads with certainty. It is then easy to
see that Bo playing heads with probability 0.6 could not form part of any Nash equilibrium.

17.2.2 Social welfare

The main perspective in game theory is that of players within the game, trying to obtain the
best outcomes for themselves that they can. However, it is sometimes instructive to adopt a
different perspective. Suppose you were a benevolent, omniscient entity looking down on the
game, and you were able to choose the outcome. Being benevolent, you want to choose the
best overall outcome—the outcome that would be best for society as a whole, so to speak.
How should you choose? What criteria might you apply? This is where the notion of social
welfare comes in. Social welfare

Probably the most important and least contentious social welfare criterion is that you
should avoid outcomes that waste utility. This requirement is captured in the concept of
Pareto optimality, which is named for the Italian economist Vilfredo Pareto (1848–1923). Pareto optimality

An outcome is Pareto optimal if there is no other outcome that would make one player better
off without making someone else worse off. If you choose an outcome that is not Pareto
optimal, then it wastes utility in the sense that you could have given more utility to at least
one agent, without taking any from other agents.

Utilitarian social welfare is a measure of how good an outcome is in the aggregate. The Utilitarian social
welfare

utilitarian social welfare of an outcome is simply the sum of utilities given to players by that
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outcome. There are two key difficulties with utilitarian social welfare. The first is that it
considers the sum but not the distribution of utilities among players, so it could lead to a
very unequal distribution if that happens to maximize the sum. The second difficulty is that
it assumes a common scale for utilities. Many economists argue that this is impossible to
establish because utility (unlikely money) is a subjective quantity. If we’re trying to decide
how to divide up a batch of cookies, should we give them all to the utility monster who says,
“I love cookies a thousand times more than anyone else?” That would maximize the total
self-reported utility, but doesn’t seem right.

The question of how utility is distributed among players is addressed by research in egal-
itarian social welfare. For example, one proposal suggests that we should maximize theEgalitarian social

welfare
expected utility of the worst-off member of society—a maximin approach. Other metrics
are possible, including the Gini coefficient, which summarizes how evenly utility is spreadGini coefficient

among the players. The main difficulties with such proposals is that they may sacrifice a great
deal of total welfare for small distributional gains, and, like plain utilitarianism, they are still
at the mercy of the utility monster.

Applying these concepts to the prisoner’s dilemma game, introduced above, explains
why it is called a dilemma. Recall that (testify, testify) is a dominant strategy equilibrium,
and the only Nash equilibrium. However, this is the only outcome that is not Pareto optimal.
The outcome (refuse,refuse) maximizes both utilitarian and egalitarian social welfare. The
dilemma in the prisoner’s dilemma thus arises because a very strong solution concept (domi-
nant strategy equilibrium) leads to an outcome that essentially fails every test of what counts
as a reasonable outcome from the point of view of the “society.” Yet there is no clear way for
the individual players to arrive at a better solution.

Computing equilibria

Let’s now consider the key computational questions associated with the concepts discussed
above. First we will consider pure strategies, where randomization is not permitted.

If players have only a finite number of possible choices, then exhaustive search can be
used to find equilibria: iterate through each possible strategy profile, and check whether any
player has a beneficial deviation from that profile; if not, then it is a Nash equilibrium in pure
strategies. Dominant strategies and dominant strategy equilibria can be computed by similar
algorithms. Unfortunately, the number of possible strategy profiles for n players each with m
possible actions, is mn, i.e., infeasibly large for an exhaustive search.

An alternative approach, which works well in some games, is myopic best responseMyopic best
response

(also known as iterated best response): start by choosing a strategy profile at random; then,
if some player is not playing their optimal choice given the choices of others, flip their choice
to an optimal one, and repeat the process. The process will converge if it leads to a strategy
profile in which every player is making an optimal choice, given the choices of the others—a
Nash equilibrium, in other words. For some games, myopic best response does not converge,
but for some important classes of games, it is guaranteed to converge.

Computing mixed-strategy equilibria is algorithmically much more intricate. To keep
things simple, we will focus on methods for zero-sum games and comment briefly on their
extension to other games at the end of this section.

In 1928, von Neumann developed a method for finding the optimal mixed strategy for
two-player, zero-sum games—games in which the payoffs always add up to zero (or a con-Zero-sum game
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stant, as explained on page 193). Clearly, Morra is such a game. For two-player, zero-sum
games, we know that the payoffs are equal and opposite, so we need consider the payoffs of
only one player, who will be the maximizer (just as in Chapter 6). For Morra, we pick the even
player E to be the maximizer, so we can define the payoff matrix by the values UE(e,o)—the
payoff to E if E does e and O does o. (For convenience we call player E “her” and O “him.”)
Von Neumann’s method is called the maximin technique, and it works as follows: Maximin

• Suppose we change the rules as follows: first E picks her strategy and reveals it to O.
Then O picks his strategy, with knowledge of E’s strategy. Finally, we evaluate the
expected payoff of the game based on the chosen strategies. This gives us a turn-taking
game to which we can apply the standard minimax algorithm from Chapter 6. Let’s
suppose this gives an outcome UE,O. Clearly, this game favors O, so the true utility U of
the original game (from E’s point of view) is at least UE,O. For example, if we just look
at pure strategies, the minimax game tree has a root value of −3 (see Figure 17.2(a)),
so we know that U ≥−3.

• Now suppose we change the rules to force O to reveal his strategy first, followed by E.
Then the minimax value of this game is UO,E , and because this game favors E we know
that U is at most UO,E . With pure strategies, the value is +2 (see Figure 17.2(b)), so we
know U ≤+2.

Combining these two arguments, we see that the true utility U of the solution to the original
game must satisfy

UE,O ≤U ≤UO,E or in this case, −3≤U ≤ 2 .

To pinpoint the value of U , we need to turn our analysis to mixed strategies. First, observe
the following: once the first player has revealed a strategy, the second player might as well J
choose a pure strategy. The reason is simple: if the second player plays a mixed strategy,
[p:one;(1− p): two], its expected utility is a linear combination (p ·Uone +(1− p) ·Utwo) of
the utilities of the pure strategies, Uone and Utwo. This linear combination can never be better
than the better of Uone and Utwo, so the second player can just choose the better one.

With this observation in mind, the minimax trees can be thought of as having infinitely
many branches at the root, corresponding to the infinitely many mixed strategies the first
player can choose. Each of these leads to a node with two branches corresponding to the
pure strategies for the second player. We can depict these infinite trees finitely by having one
“parameterized” choice at the root:

• If E chooses first, the situation is as shown in Figure 17.2(c). E chooses the strat-
egy [p:one;(1− p): two] at the root, and then O chooses a pure strategy (and hence a
move) given the value of p. If O chooses one, the expected payoff (to E) is 2p−3(1−
p)=5p−3; if O chooses two, the expected payoff is −3p+4(1− p)=4−7p. We can
draw these two payoffs as straight lines on a graph, where p ranges from 0 to 1 on the
x-axis, as shown in Figure 17.2(e). O, the minimizer, will always choose the lower of
the two lines, as shown by the heavy lines in the figure. Therefore, the best that E can
do at the root is to choose p to be at the intersection point, which is where

5p−3 = 4−7p ⇒ p = 7/12 .

The utility for E at this point is UE,O= −1/12.



602 Chapter 17 Multiagent Decision Making

one

oneone

two

twotwo

E

O

one

oneone

two

twotwo

O

E

one two

E

O

one two

O

E

+4

+3

+2

+1

 0

–1

–2

–3

1

two

one

U

p

+4

+3

+2

+1

 0

–1

–2

–3

1

two

one

U

q

(a) (b)

(c) (d)

(e) (f)

[p: one; (1 – p): two] [q: one; (1 – q): two]

2p – 3(1 – p 2) q – 3(1 – q)3p + 4(1 – p 3) q + 4(1 – q)

2 -3

-3

-3

-3

-3

4 2

2

2

-3 -3 4

4

Figure 17.2 (a) and (b): Minimax game trees for two-finger Morra if the players take turns
playing pure strategies. (c) and (d): Parameterized game trees where the first player plays
a mixed strategy. The payoffs depend on the probability parameter (p or q) in the mixed
strategy. (e) and (f): For any particular value of the probability parameter, the second player
will choose the “better” of the two actions, so the value of the first player’s mixed strategy is
given by the heavy lines. The first player will choose the probability parameter for the mixed
strategy at the intersection point.

• If O moves first, the situation is as shown in Figure 17.2(d). O chooses the strategy
[q:one;(1− q): two] at the root, and then E chooses a move given the value of q. The
payoffs are 2q−3(1−q)=5q−3 and −3q+4(1−q)=4−7q.2 Again, Figure 17.2(f)
shows that the best O can do at the root is to choose the intersection point:

5q−3 = 4−7q ⇒ q = 7/12 .

The utility for E at this point is UO,E = −1/12.

2 It is a coincidence that these equations are the same as those for p; the coincidence arises because
UE(one, two)=UE(two,one)= −3. This also explains why the optimal strategy is the same for both players.
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Now we know that the true utility of the original game lies between −1/12 and −1/12; that
is, it is exactly−1/12! (The conclusion is that it is better to be O than E if you are playing this
game.) Furthermore, the true utility is attained by the mixed strategy [7/12:one;5/12: two],
which should be played by both players. This strategy is called the maximin equilibrium of Maximin equilibrium

the game, and is a Nash equilibrium. Note that each component strategy in an equilibrium
mixed strategy has the same expected utility. In this case, both one and two have the same
expected utility, −1/12, as the mixed strategy itself.

Our result for two-finger Morra is an example of the general result by von Neumann:
every two-player zero-sum game has a maximin equilibrium when you allow mixed strategies. J
Furthermore, every Nash equilibrium in a zero-sum game is a maximin for both players. A
player who adopts the maximin strategy has two guarantees: First, no other strategy can do
better against an opponent who plays well (although some other strategies might be better at
exploiting an opponent who makes irrational mistakes). Second, the player continues to do
just as well even if the strategy is revealed to the opponent.

The general algorithm for finding maximin equilibria in zero-sum games is somewhat
more involved than Figures 17.2(e) and (f) might suggest. When there are n possible actions,
a mixed strategy is a point in n-dimensional space and the lines become hyperplanes. It’s also
possible for some pure strategies for the second player to be dominated by others, so that they
are not optimal against any strategy for the first player. After removing all such strategies
(which might have to be done repeatedly), the optimal choice at the root is the highest (or
lowest) intersection point of the remaining hyperplanes.

Finding this choice is an example of a linear programming problem: maximizing an
objective function subject to linear constraints. Such problems can be solved by standard
techniques in time polynomial in the number of actions (and in the number of bits used to
specify the reward function, if you want to get technical).

The question remains, what should a rational agent actually do in playing a single game
of Morra? The rational agent will have derived the fact that [7/12:one;5/12: two] is the
maximin equilibrium strategy, and will assume that this is mutual knowledge with a rational
opponent. The agent could use a 12-sided die or a random number generator to pick randomly
according to this mixed strategy, in which case the expected payoff would be -1/12 for E. Or
the agent could just decide to play one, or two. In either case, the expected payoff remains
-1/12 for E. Curiously, unilaterally choosing a particular action does not harm one’s expected
payoff, but allowing the other agent to know that one has made such a unilateral decision
does affect the expected payoff, because then the opponent can adjust strategy accordingly.

Finding equilibria in non-zero-sum games is somewhat more complicated. The general
approach has two steps: (1) Enumerate all possible subsets of actions that might form mixed
strategies. For example, first try all strategy profiles where each player uses a single action,
then those where each player uses either one or two actions, and so on. This is exponential
in the number of actions, and so only applies to relatively small games. (2) For each strategy
profile enumerated in (1), check to see if it is an equilibrium. This is done by solving a set of
equations and inequalities that are similar to the ones used in the zero-sum case. For two play-
ers these equations are linear and can be solved with basic linear programming techniques,
but for three or more players they are nonlinear and may be very difficult to solve.
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17.2.3 Repeated games

So far, we have looked only at games that last a single move. The simplest kind of multiple-
move game is the repeated game (also called an iterated game), in which players repeatedlyRepeated game

play rounds of a single-move game, called the stage game. A strategy in a repeated gameStage game

specifies an action choice for each player at each time step for every possible history of
previous choices of players.

First, let’s look at the case where the stage game is repeated a fixed, finite, and mutually
known number of rounds—all of these conditions are required for the following analysis to
work. Let’s suppose Ali and Bo are playing a repeated version of the prisoner’s dilemma, and
that both they know that they must play exactly 100 rounds of the game. On each round, they
will be asked whether to testify or refuse, and will receive a payoff for that round according
to the rules of the prisoner’s dilemma that we saw above.

At the end of 100 rounds, we find the overall payoff for each player by summing that
player’s payoffs in the 100 rounds. What strategies should Ali and Bo choose to play this
game? Consider the following argument. They both know that the 100th round will not be
a repeated game—that is, its outcome can have no effect on future rounds. So, on the 100th
round, they are in effect playing a single prisoner’s dilemma game.

As we saw above, the outcome of the 100th round will be (testify, testify), the dominant
equilibrium strategy for both players. But once the 100th round is determined, the 99th round
can have no effect on subsequent rounds, so it too will yield (testify, testify). By this inductive
argument, both players will choose testify on every round, earning a total jail sentence of 500
years each. This type of reasoning is known as backward induction, and plays a fundamentalBackward induction

role in game theory.
However, if we drop one of the three conditions—fixed, finite, or mutually known—then

the inductive argument doesn’t hold. Suppose that the game is repeated an infinite number of
times. Mathematically, a strategy for a player in an infinitely repeated game is a function that
maps every possible finite history of the game to a choice in the stage game for that player
in the corresponding round. Thus, a strategy looks at what happened previously in the game,
and decides what choice to make in the current round. But we can’t store an infinite table in a
finite computer. We need a finite model of strategies for games that will be played an infinite
number of rounds. For this reason, it is standard to represent strategies for infinitely repeated
games as finite state machines (FSMs) with output.

Figure 17.3 illustrates a number of FSM strategies for the iterated prisoner’s dilemma.
Consider the Tit-for-Tat strategy. Each oval is a state of the machine, and inside the ovalTit-for-Tat

is the choice that would be made by the strategy if the machine was in that state. From
each state, we have one outgoing edge for every possible choice of the counterpart agent:
we follow the outgoing edge corresponding to the choice made by the other to find the next
state of the machine. Finally, one state is labeled with an incoming arrow, indicating that
it is the initial state. Thus, with TIT-FOR-TAT, the machine starts in the refuse state; if the
counterpart agent plays refuse, then it stays in the refuse state, while if the counterpart plays
testify it transitions to the testify state. It will remain in the testify state as long its counterpart
plays testify, but if ever its counterpart plays refuse, it will transition back to the refuse state.
In sum, TIT-FOR-TAT will start by choosing refuse, and will then simply copy whatever its
counterpart did on the previous round.
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Figure 17.3 Some common, colorfully named finite-state machine strategies for the in-
finitely repeated prisoner’s dilemma.

The HAWK and DOVE strategies are simpler: HAWK simply plays testify on every round,
while DOVE simply plays refuse on every round. The GRIM strategy is somewhat similar to
TIT-FOR-TAT, but with one important difference: if ever its counterpart plays testify, then it
essentially turns into HAWK: it plays testify forever. While TIT-FOR-TAT is forgiving, in the
sense that it will respond to a subsequent refuse by reciprocating the same, with GRIM there
is no way back. Just playing testify once will result in punishment (playing testify) that goes
on forever. (Can you see what TAT-FOR-TIT does?)

The next issue with infinitely repeated games is how to measure the utility of an infinite
sequence of payoffs. Here, we will focus on the limit of means approach—essentially, this Limit of means

means taking the average of utilities received over the infinite sequence. With this approach,
given an infinite sequence of payoffs (U0,U1,U2, . . .), we define the utility of the sequence to
the corresponding player to be:

lim
T→∞

1
T

T

∑
t=0

Ut .

This value cannot be guaranteed to converge for arbitrary sequences of utilities, but it is
guaranteed to do so for the utility sequences that are generated if we use FSM strategies. To
see this, observe that if FSM strategies play against each other, then eventually, the FSMs will J
reenter a configuration that they were in previously, at which point they will start to repeat
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themselves. More precisely, any utility sequence generated by FSM strategies will consist
of a finite (possibly empty) non-repeating sequence, followed by a nonempty finite sequence
that repeats infinitely often. To compute the average utility received by a player over that
infinite sequence, we simply have to compute the average over the finite repeating sequence.

In what follows, we will assume that players in an infinitely repeated game simply choose
a finite state machine to play the game on their behalf. We don’t impose any constraints on
these machines: they can be as big and elaborate as players want. When all players have
chosen a finite state machine to play on their behalf, then we can compute the payoffs for
each player using the limit of means approach as described above. In this way, an infinitely
repeated game reduces to a normal form game, albeit one with infinitely many possible strate-
gies for each player.

Let’s see what happens when we play the infinitely repeated prisoner’s dilemma using
some strategies from Figure 17.3. First, suppose Ali and Bo both pick DOVE.

0 1 2 3 4 5 . . .
Ali: DOVE refuse refuse refuse refuse refuse refuse . . . utility = −1
Bo: DOVE refuse refuse refuse refuse refuse refuse . . . utility = −1

It is not hard to see that this strategy pair does not form a Nash equilibrium: either player
would have done better to alter their choice to HAWK. So, suppose Ali switches to HAWK:

0 1 2 3 4 5 . . .
Ali: HAWK testify testify testify testify testify testify . . . utility = 0
Bo: DOVE refuse refuse refuse refuse refuse refuse . . . utility = −10

This is the worst possible outcome for Bo; and this strategy pair is again not a Nash equilib-
rium. Bo would have done better by also choosing HAWK:

0 1 2 3 4 5 . . .
Ali: HAWK testify testify testify testify testify testify . . . utility = −5
Bo: HAWK testify testify testify testify testify testify . . . utility = −5

This strategy pair does form a Nash equilibrium, but not a very interesting one—it takes us
more or less back to where we started in the one-shot version of the game, with both players
testifying against each other. It illustrates a key property of infinitely repeated games: NashI
equilibria of the stage game will be sustained as equilibria in an infinitely repeated version
of the game.

However, our story is not over yet. Suppose that Bo switched to GRIM:
0 1 2 3 4 5 . . .

Ali: HAWK testify testify testify testify testify testify . . . utility = −5
Bo: GRIM refuse testify testify testify testify testify . . . utility = −5

Here, Bo does no worse than playing HAWK: on the first round, Ali plays testify while Bo
plays refuse, but this triggers Bo into testifying forever after: the loss of utility on the first
round disappears in the limit. Overall, the two players get the same utility as if they had both
played HAWK. But here is the thing: these strategies do not form a Nash equilibrium because
this time, Ali has a beneficial deviation—to GRIM. If both players choose GRIM, then this is
what happens:

0 1 2 3 4 5 . . .
Ali: GRIM refuse refuse refuse refuse refuse refuse . . . utility = −1
Bo: GRIM refuse refuse refuse refuse refuse refuse . . . utility = −1
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The outcomes and payoffs are the same as if both players had chosen DOVE, but unlike that
case, GRIM playing against GRIM forms a Nash equilibrium, and Ali and Bo are able to
rationally achieve an outcome that is impossible in the one-shot version of the game.

To see that these strategies form a Nash equilibrium, suppose for the sake of contradiction
that they do not. Then one player—assume without loss of generality that it is Ali—has a
beneficial deviation, in the form of an FSM strategy that would yield a higher payoff than
GRIM. Now, at some point this strategy would have to do something different from GRIM—
otherwise it would obtain the same utility. So, at some point it must play testify. But then
Bo’s GRIM strategy would flip to punishment mode, by permanently testifying in response.
At that point, Ali would be doomed to receive a payoff of no more than −5: worse than the
−1 she would have received by choosing GRIM. Thus, both players choosing GRIM forms a
Nash equilibrium in the infinitely repeated prisoner’s dilemma, giving a rationally sustained
outcome that is impossible in the one-shot version of the game.

This is an instance of a general class of results called the Nash folk theorems, which Nash folk theorems

characterize the outcomes that can be sustained by Nash equilibria in infinitely repeated
games. Let’s say a player’s security value is the best payoff that the player could guaran-
tee to obtain. Then the general form of the Nash folk theorems is roughly that every outcome J
in which every player receives at least their security value can be sustained as a Nash equi-
librium in an infinitely repeated game. GRIM strategies are the key to the folk theorems: the
mutual threat of punishment if any agent fails to play their part in the desired outcome keeps
players in line. But it works as a deterrent only if the other player believes you have adopted
this strategy—or at least that you might have adopted it.

We can also get different solutions by changing the agents, rather than changing the
rules of engagement. Suppose the agents are finite state machines with n states and they are
playing a game with m > n total steps. The agents are thus incapable of representing the
number of remaining steps, and must treat it as an unknown. Therefore, they cannot do the
backward induction, and are free to arrive at the more favorable (refuse, refuse) equilibrium
in the iterated Prisoner’s Dilemma. In this case, ignorance is bliss—or rather, having your
opponent believe that you are ignorant is bliss. Your success in these repeated games depends
to a significant extent on the other player’s perception of you as a bully or a simpleton, and
not on your actual characteristics.

17.2.4 Sequential games: The extensive form

In the general case, a game consists of a sequence of turns that need not be all the same. Such
games are best represented by a game tree, which game theorists call the extensive form. The Extensive form

tree includes all the same information we saw in Section 6.1: an initial state S0, a function
PLAYER(s) that tells which player has the move, a function ACTIONS(s) enumerating the
possible actions, a function RESULT(s,a) that defines the transition to a new state, and a
partial function UTILITY(s, p), which is defined only on terminal states, to give the payoff
for each player. Stochastic games can be captured by introducing a distinguished player,
Chance, that can take random actions. Chance’s “strategy” is part of the definition of the
game, specified as a probability distribution over actions (the other players get to choose
their own strategy). To represent games with nondeterministic actions, such as billiards, we
break the action into two pieces: the player’s action itself has a deterministic result, and then
Chance has a turn to react to the action in its own capricious way.
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For the moment, we will make one simplifying assumption: we assume players have
perfect information. Roughly, perfect information means that, when the game calls uponPerfect information

them to make a decision, they know precisely where they are in the game tree: they have no
uncertainty about what has happened previously in the game. This is, of course, the situation
in games like chess or Go, but not in games like poker or Kriegspiel. In the following section,
we will show how the extensive form can be used to capture imperfect information in games,
but for the moment, we will assume perfect information.

A strategy in an extensive-form game of perfect information is a function for a player that
for every one of its decision states s dictates which action in ACTIONS(s) the player should
choose to execute. When each player has selected a strategy, then the resulting strategy profile
will trace a path in the game tree from the initial state S0 to a terminal state, and the UTILITY

function defines the utilities that each player will then receive.
Given this setup, we can directly apply the apparatus of Nash equilibria that we intro-

duced above to analyze extensive-form games. To compute Nash equilibria, we can use a
straightforward generalization of the minimax search technique that we saw in Chapter 6.
In the literature on extensive-form games, the technique is called backward induction—we
already saw backward induction informally used to analyze the finitely repeated prisoner’s
dilemma. Backward induction uses dynamic programming, working backwards from termi-
nal states back to the initial state, progressively labeling each state with a payoff profile (an
assignment of payoffs to players) that would be obtained if the game was played optimally
from that point on.

In more detail, for each nonterminal state s, if all the children of s have been labeled with
a payoff profile, then label s with a payoff profile from the child state that maximizes the
payoff of the player making the decision at state s. (If there is a tie, then choose arbitrarily; if
we have chance nodes, then compute expected utility.) The backward induction algorithm is
guaranteed to terminate, and moreover runs in time polynomial in the size of the game tree.

As the algorithm does its work, it traces out strategies for each player. As it turns out,
these strategies are Nash equilibrium strategies, and the payoff profile labeling the initial state
is a payoff profile that would be obtained by playing Nash equilibrium strategies. Thus, Nash
equilibrium strategies for extensive-form games can be computed in polynomial time using
backward induction; and since the algorithm is guaranteed to label the initial state with a
payoff profile, it follows that every extensive-form game has at least one Nash equilibrium in
pure strategies.

These are attractive results, but there are several caveats. Game trees very quickly get
very large, so polynomial running time should be understood in that context. But more prob-
lematically, Nash equilibrium itself has some limitations when it is applied to extensive-form
games. Consider the game in Figure 17.4. Player 1 has two moves available: above or below.
If she moves below, then both players receive a payoff of 0 (regardless of the move selected
by player 2). If she moves above, then player 2 is presented with a choice of moving up or
down: if she moves down, then both players receive a payoff of 0, while if she moves up, then
they both receive 1.

Backward induction immediately tells us that (above,up) is a Nash equilibrium, resulting
in both players receiving a payoff of 1. However, (below,down) is also a Nash equilibrium,
which would result in both players receiving a payoff of 0. Player 2 is threatening player 1, by
indicating that if called upon to make a decision she will choose down, resulting in a payoff
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Figure 17.4 An extensive-form game with a counterintuitive Nash equilibrium.

of 0 for player 1; in this case, player 1 has no better alternative than choosing below. The
problem is that player 2’s threat (to play down) is not a credible threat, because if player 2 Credible threat

is actually called upon to make the choice, then she will choose up.
A refinement of Nash equilibrium called subgame perfect Nash equilibrium deals with Subgame perfect

Nash equilibrium

this problem. To define it, we need the idea of a subgame. Every decision state in a game tree Subgame

(including the initial state) defines a subgame—the game in Figure 17.4 therefore contains
two subgames, one rooted at player 1’s decision state, one rooted at player 2’s decision state.
A profile of strategies then forms a subgame perfect Nash equilibrium in a game G if it is a J
Nash equilibrium in every subgame of G. Applying this definition to the game of Figure 17.4,
we find that (above,up) is subgame perfect, but (below,down) is not, because choosing down
is not a Nash equilibrium of the subgame rooted at player 2’s decision state.

Although we needed some new terminology to define subgame perfect Nash equilibrium,
we don’t need any new algorithms. The strategies computed through backward induction
will be subgame perfect Nash equilibria, and it follows that every extensive-form game of
perfect information has a subgame perfect Nash equilibrium, which can be computed in time
polynomial in the size of the game tree.

Chance and simultaneous moves

To represent stochastic games, such as backgammon, in extensive form, we add a player
called Chance, whose choices are determined by a probability distribution.

To represent simultaneous moves, as in the prisoner’s dilemma or two-finger Morra, we
impose an arbitrary order on the players, but we have the option of asserting that the earlier
player’s actions are not observable to the subsequent players: e.g., Ali must choose refuse or
testify first, then Bo chooses, but Bo does not know what choice Ali made at that time (we
can also represent the fact that the move is revealed later). However, we assume the players
always remember all their own previous actions; this assumption is called perfect recall.

Capturing imperfect information

A key feature of extensive form that sets it apart from the game trees that we saw in Chapter 6
is that it can capture partial observability. Game theorists use the term imperfect informa-
tion to describe situations where players are uncertain about the actual state of the game. Imperfect

information
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Unfortunately, backward induction does not work with games of imperfect information, and
in general, they are considerably more complex to solve than games of perfect information.

We saw in Section 6.6 that a player in a partially observable game such as Kriegspiel
can create a game tree over the space of belief states. With that tree, we saw that in some
cases a player can find a sequence of moves (a strategy) that leads to a forced checkmate
regardless of what actual state we started in, and regardless of what strategy the opponent
uses. However, the techniques of Chapter 6 could not tell a player what to do when there is
no guaranteed checkmate. If the player’s best strategy depends on the opponent’s strategy and
vice versa, then minimax (or alpha–beta) by itself cannot find a solution. The extensive form
does allow us to find solutions because it represents the belief states (game theorists call them
information sets) of all players at once. From that representation we can find equilibriumInformation set

solutions, just as we did with normal-form games.
As a simple example of a sequential game, place two agents in the 4×3 world of Fig-

ure 16.1 and have them move simultaneously until one agent reaches an exit square and gets
the payoff for that square. If we specify that no movement occurs when the two agents try
to move into the same square simultaneously (a common problem at many traffic intersec-
tions), then certain pure strategies can get stuck forever. Thus, agents need a mixed strategy
to perform well in this game: randomly choose between moving ahead and staying put. This
is exactly what is done to resolve packet collisions in Ethernet networks.

Next we’ll consider a very simple variant of poker. The deck has only four cards, two
aces and two kings. One card is dealt to each player. The first player then has the option to
raise the stakes of the game from 1 point to 2, or to check. If player 1 checks, the game is
over. If player 1 raises, then player 2 has the option to call, accepting that the game is worth
2 points, or fold, conceding the 1 point. If the game does not end with a fold, then the payoff
depends on the cards: it is zero for both players if they have the same card; otherwise the
player with the king pays the stakes to the player with the ace.

The extensive-form tree for this game is shown in Figure 17.5. Player 0 is Chance;
players 1 and 2 are depicted by triangles. Each action is depicted as an arrow with a label,
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Figure 17.5 Extensive form of a simplified version of poker with two players and only four
cards. The moves are r (raise), f (fold), c (call), and k (check).
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corresponding to a raise, check, call, or fold, or, for Chance, the four possible deals (“AK”
means that player 1 gets an ace and player 2 a king). Terminal states are rectangles labeled
by their payoff to player 1 and player 2. Information sets are shown as labeled dashed boxes;
for example, I1,1 is the information set where it is player 1’s turn, and he knows he has an ace
(but does not know what player 2 has). In information set I2,1, it is player 2’s turn and she
knows that she has an ace and that player 1 has raised, but does not know what card player 1
has. (Due to the limits of two-dimensional paper, this information set is shown as two boxes
rather than one.)

One way to solve an extensive game is to convert it to a normal-form game. Recall that
the normal form is a matrix, each row of which is labeled with a pure strategy for player 1, and
each column by a pure strategy for player 2. In an extensive game a pure strategy for player i
corresponds to an action for each information set involving that player. So in Figure 17.5, one
pure strategy for player 1 is “raise when in I1,1 (that is, when I have an ace), and check when
in I1,2 (when I have a king).” In the payoff matrix below, this strategy is called rk. Similarly,
strategy cf for player 2 means “call when I have an ace and fold when I have a king.” Since
this is a zero-sum game, the matrix below gives only the payoff for player 1; player 2 always
has the opposite payoff:

2:cc 2:cf 2:ff 2:fc
1:rr 0 -1/6 1 7/6
1:kr -1/3 -1/6 5/6 2/3
1:rk 1/3 0 1/6 1/2
1:kk 0 0 0 0

This game is so simple that it has two pure-strategy equilibria, shown in bold: cf for player
2 and rk or kk for player 1. But in general we can solve extensive games by converting
to normal form and then finding a solution (usually a mixed strategy) using standard linear
programming methods. That works in theory. But if a player has I information sets and
a actions per set, then that player will have aI pure strategies. In other words, the size of
the normal-form matrix is exponential in the number of information sets, so in practice the
approach works only for tiny game trees—a dozen states or so. A game like two-player Texas
hold ’em poker has about 1018 states, making this approach completely infeasible.

What are the alternatives? In Chapter 6 we saw how alpha–beta search could handle
games of perfect information with huge game trees by generating the tree incrementally, by
pruning some branches, and by heuristically evaluating nonterminal nodes. But that approach
does not work well for games with imperfect information, for two reasons: first, it is harder
to prune, because we need to consider mixed strategies that combine multiple branches, not a
pure strategy that always chooses the best branch. Second, it is harder to heuristically evaluate
a nonterminal node, because we are dealing with information sets, not individual states.

Koller et al. (1996) came to the rescue with an alternative representation of extensive
games, called the sequence form, that is only linear in the size of the tree, rather than ex- Sequence form

ponential. Rather than represent strategies, it represents paths through the tree; the number
of paths is equal to the number of terminal nodes. Standard linear programming methods
can again be applied to this representation. The resulting system can solve poker variants
with 25,000 states in a minute or two. This is an exponential speedup over the normal-form
approach, but still falls far short of handling, say, two-player Texas hold ’em, with 1018 states.
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If we can’t handle 1018 states, perhaps we can simplify the problem by changing the
game to a simpler form. For example, if I hold an ace and am considering the possibility that
the next card will give me a pair of aces, then I don’t care about the suit of the next card;
under the rules of poker any suit will do equally well. This suggests forming an abstraction
of the game, one in which suits are ignored. The resulting game tree will be smaller by a
factor of 4!=24. Suppose I can solve this smaller game; how will the solution to that game
relate to the original game? If no player is considering going for a flush (the only hand where
the suits matter), then the solution for the abstraction will also be a solution for the original
game. However, if any player is contemplating a flush, then the abstraction will be only an
approximate solution (but it is possible to compute bounds on the error).

There are many opportunities for abstraction. For example, at the point in a game where
each player has two cards, if I hold a pair of queens, then the other players’ hands could be
abstracted into three classes: better (only a pair of kings or a pair of aces), same (pair of
queens) or worse (everything else). However, this abstraction might be too coarse. A better
abstraction would divide worse into, say, medium pair (nines through jacks), low pair, and
no pair. These examples are abstractions of states; it is also possible to abstract actions. For
example, instead of having a bet action for each integer from 1 to 1000, we could restrict the
bets to 100, 101, 102 and 103. Or we could cut out one of the rounds of betting altogether.
We can also abstract over chance nodes, by considering only a subset of the possible deals.
This is equivalent to the rollout technique used in Go programs. Putting all these abstractions
together, we can reduce the 1018 states of poker to 107 states, a size that can be solved with
current techniques.

We saw in Chapter 6 how poker programs such as Libratus and DeepStack were able
to defeat champion human players at heads up (two-player) Texas hold ’em poker. More
recently, the program Pluribus was able to defeat human champions at six-player poker in
two formats: five copies of the program at the table with one human, and one copy of the
program with five humans. There is a huge leap in complexity here. With one opponent,
there are

( 50
2=1225

)
possibilities for the opponent’s hidden cards. But with five opponents there

are 50choose10≈ 10 billion possibilities. Pluribus develops a baseline strategy entirely from
self-play, then modifies the strategy during actual game play to react to a specific situation.
Pluribus uses a combination of techniques, including Monte Carlo tree search, depth-limited
search, and abstraction.

The extensive form is a versatile representation: it can handle partially observable, mul-
tiagent, stochastic, sequential, real-time environments—most of the hard cases from the list
of environment properties on page 61. However, there are two limitations to the extensive
form in particular and game theory in general. First, it does not deal well with continuous
states and actions (although there have been some extensions to the continuous case; for ex-
ample, the theory of Cournot competition uses game theory to solve problems where twoCournot competition

companies choose prices for their products from a continuous space). Second, game theory
assumes the game is known. Parts of the game may be specified as unobservable to some of
the players, but it must be known what parts are unobservable. In cases in which the players
learn the unknown structure of the game over time, the model begins to break down. Let’s
examine each source of uncertainty, and whether each can be represented in game theory.

Actions: There is no easy way to represent a game where the players have to discover
what actions are available. Consider the game between computer virus writers and security
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experts. Part of the problem is anticipating what action the virus writers will try next.
Strategies: Game theory is very good at representing the idea that the other players’

strategies are initially unknown—as long as we assume all agents are rational. The theory
does not say what to do when the other players are less than fully rational. The notion of a
Bayes–Nash equilibrium partially addresses this point: it is an equilibrium with respect to Bayes–Nash

equilibrium

a player’s prior probability distribution over the other players’ strategies—in other words, it
expresses a player’s beliefs about the other players’ likely strategies.

Chance: If a game depends on the roll of a die, it is easy enough to model a chance node
with uniform distribution over the outcomes. But what if it is possible that the die is unfair?
We can represent that with another chance node, higher up in the tree, with two branches for
“die is fair” and “die is unfair,” such that the corresponding nodes in each branch are in the
same information set (that is, the players don’t know if the die is fair or not). And what if we
suspect the other opponent does know? Then we add another chance node, with one branch
representing the case where the opponent does know, and one where the opponent doesn’t.

Utilities: What if we don’t know our opponent’s utilities? Again, that can be modeled
with a chance node, such that the other agent knows its own utilities in each branch, but we
don’t. But what if we don’t know our own utilities? For example, how do I know if it is
rational to order the chef’s salad if I don’t know how much I will like it? We can model that
with yet another chance node specifying an unobservable “intrinsic quality” of the salad.

Thus, we see that game theory is good at representing most sources of uncertainty—but
at the cost of doubling the size of the tree every time we add another node; a habit that quickly
leads to intractably large trees. Because of these and other problems, game theory has been
used primarily to analyze environments that are at equilibrium, rather than to control agents
within an environment.

17.2.5 Uncertain payoffs and assistance games

In Chapter 1 (page 22), we noted the importance of designing AI systems that can operate
under uncertainty about the true human objective. Chapter 15 (page 543) introduced a simple
model for uncertainty about one’s own preferences, using the example of durian-flavored ice
cream. By the simple device of adding a new latent variable to the model to represent the
unknown preferences, together with an appropriate sensor model (e.g., observing the taste of
a small sample of the ice cream), uncertain preferences can be handled in a natural way.

Chapter 15 also studied the off-switch problem: we showed that a robot with uncertainty
about human preferences will defer to the human and allow itself to be switched off. In
that problem, Robbie the robot is uncertain about Harriet the human’s preferences, but we
model Harriet’s decision (whether or not to switch Robbie off) as a simple, deterministic
consequence of her own preferences for the action that Robbie proposes. Here, we generalize
this idea into a full two-person game called an assistance game, in which both Harriet and
Robbie are players. We assume that Harriet observes her own preferences θ and acts in
accordance with them, while Robbie has a prior probability P(θ) over Harriet’s preferences.
The payoff is defined by θ and is identical for both players: both Harriet and Robbie are
maximizing Harriet’s payoff. In this way, the assistance game provides a formal model of the
idea of provably beneficial AI introduced in Chapter 1.

In addition to the deferential behavior exhibited by Robbie in the off-switch problem—
which is a restricted kind of assistance game—other behaviors that emerge as equilibrium
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[2,0] [1,1] [0,2]

[90,0]

[50,50]

[0,90]

$0.90 $1.00 $1.10

Figure 17.6 The paperclip game. Each branch is labeled [p,s] denoting the number of pa-
perclips and staples manufactured on that branch. Harriet the human can choose to make two
paperclips, two staples, or one of each. (The values in green italics are the values for Harriet
if the game ended there, assuming θ=0.45.) Robbie the robot then has a choice to make 90
paperclips, 90 staples, or 50 of each.

strategies in general assistance games include actions on Harriet’s part that we would describe
as teaching, rewarding, commanding, correcting, demonstrating, or explaining, as well as ac-
tions on Robbie’s part that we would describe as asking permission, learning from demon-
strations, preference elicitation, and so on. The key point is that these behaviors need not be
scripted: by solving the game, Harriet and Robbie work out for themselves how to convey
preference information from Harriet to Robbie, so that Robbie can be more useful to Harriet.
We need not stipulate in advance that Harriet is to “give rewards” or that Robbie is to “follow
instructions,” although these may be reasonable interpretations of how they end up behaving.

To illustrate assistance games, we’ll use the paperclip game. It’s a very simple game inPaperclip game

which Harriet the human has an incentive to “signal” to Robbie the robot some information
about her preferences. Robbie is able to interpret that signal because he can solve the game
and therefore he can understand what would have to be true about Harriet’s preferences in
order for her to signal in that way.

The steps of the game are depicted in Figure 17.6. It involves making paperclips and
staples. Harriet’s preferences are expressed by a payoff function that depends on the number
of paperclips and the number of staples produced, with a certain “exchange rate” between the
two. Harriet’s preference parameter θ denotes the relative value (in dollars) of a paperclip;
for example, she might value paperclips at θ=0.45 dollars, which means staples are worth
1− θ=0.55 dollars. So, if p paperclips and s staples are produced, Harriet’s payoff will be
pθ+ s(1− θ) dollars in all. Robbie’s prior is P(θ) = Uniform(θ;0,1). In the game itself,
Harriet goes first, and can choose to make two paperclips, two staples, or one of each. Then
Robbie can choose to make 90 paperclips, 90 staples, or 50 of each.

Notice that if she were doing this by herself, Harriet would just make two staples, with a
value of $1.10. (See the annotations at the first level of the tree in Figure 17.6.) But Robbie
is watching, and he learns from her choice. What exactly does he learn? Well, that depends
on how Harriet makes her choice. How does Harriet make her choice? That depends on how
Robbie is going to interpret it. We can resolve this circularity by finding a Nash equilibrium.
In this case, it is unique and can be found by applying myopic best response: pick any strategy
for Harriet; pick the best strategy for Robbie, given Harriet’s strategy; pick the best strategy
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for Harriet, given Robbie’s strategy; and so on. The process unfolds as follows:

1. Start with the greedy strategy for Harriet: make two paperclips if she prefers paperclips;
make one of each if she is indifferent; make two staples if she prefers staples.

2. There are three possibilities Robbie has to consider, given this strategy for Harriet:

(a) If Robbie sees Harriet make two paperclips, he infers that she prefers paperclips,
so he now believes the value of a paperclip is uniformly distributed between 0.5
and 1.0, with an average of 0.75. In that case, his best plan is to make 90 paperclips
with an expected value of $67.50 for Harriet.

(b) If Robbie sees Harriet make one of each, he infers that she values paperclips and
staples at 0.50, so the best choice is to make 50 of each.

(c) If Robbie sees Harriet make two staples, then by the same argument as in (a), he
should make 90 staples.

3. Given this strategy for Robbie, Harriet’s best strategy is now somewhat different from
the greedy strategy in step 1. If Robbie is going to respond to her making one of each
by making 50 of each, then she is better off making one of each not just if she is exactly
indifferent, but if she is anywhere close to indifferent. In fact, the optimal policy is now
to make one of each if she values paperclips anywhere between about 0.446 and 0.554.

4. Given this new strategy for Harriet, Robbie’s strategy remains unchanged. For example,
if she chooses one of each, he infers that the value of a paperclip is uniformly distributed
between 0.446 and 0.554, with an average of 0.50, so the best choice is to make 50 of
each. Because Robbie’s strategy is the same as in step 2, Harriet’s best response will be
the same as in step 3, and we have found the equilibrium.

With her strategy, Harriet is, in effect, teaching Robbie about her preferences using a simple
code–—a language, if you like–—that emerges from the equilibrium analysis. Note also that
Robbie never learns Harriet’s preferences exactly, but he learns enough to act optimally on
her behalf–—i.e., he acts just as he would if he did know her preferences exactly. He is
provably beneficial to Harriet under the assumptions stated, and under the assumption that
Harriet is playing the game correctly.

Myopic best response works for this example and others like it, but not for more complex
cases. It is possible to prove that provided there are no ties that cause coordination problems,
finding an optimal strategy profile for an assistance game is reducible to solving a POMDP
whose state space is the underlying state space of the game plus the human preference pa-
rameters θ. POMDPs in general are very hard to solve (Section 16.5), but the POMDPs that
represent assistance games have additional structure that enables more efficient algorithms.

Assistance games can be generalized to allow for multiple human participants, multiple
robots, imperfectly rational humans, humans who don’t know their own preferences, and
so on. By providing a factored or structured action space, as opposed to the simple atomic
actions in the paperclip game, the opportunities for communication can be greatly enhanced.
Few of these variations have been explored so far, but we expect the key property of assistance
games to remain true: the more intelligent the robot, the better the outcome for the human.
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17.3 Cooperative Game Theory

Recall that cooperative games capture decision making scenarios in which agents can form
binding agreements with one another to cooperate. They can then benefit from receiving extra
value compared to what they would get by acting alone.

We start by introducing a model for a class of cooperative games. Formally, these games
are called “cooperative games with transferable utility in characteristic function form.” The
idea of the model is that when a group of agents cooperate, the group as a whole obtains
some utility value, which can then be split among the group members. The model does not
say what actions the agents will take, nor does the game structure itself specify how the value
obtained will be split up (that will come later).

Formally, we use the formula G = (N,ν) to say that a cooperative game, G, is defined by
a set of players N = {1, . . . ,n} and a characteristic function, ν , which for every subset ofCharacteristic

function
players C ⊆ N gives the value that the group of players could obtain, should they choose to
work together.

Typically, we assume that the empty set of players achieves nothing (ν({}) = 0), and
that the function is nonnegative (ν(C) ≥ 0 for all C). In some games we make the further
assumption that players achieve nothing by working alone: ν({i}) = 0 for all i ∈ N.

17.3.1 Coalition structures and outcomes

It is conventional to refer to a subset of players C as a coalition. In everyday use the termCoalition

“coalition” implies a collection of people with some common cause (such as the Coalition to
Stop Gun Violence), but we will refer to any subset of players as a coalition. The set of all
players N is known as the grand coalition.Grand coalition

In our model, every player must choose to join exactly one coalition (which could be a
coalition of just the single player alone). Thus, the coalitions form a partition of the set of
players. We call the partition a coalition structure. Formally, a coalition structure over a setCoalition structure

of players N is a set of coalitions {C1, . . . ,Ck} such that:

Ci 6= {}
Ci ⊆ N
Ci∩C j = {} for all i 6= j ∈ N
C1∪·· ·∪Ck = N .

For example, if we have N = {1,2,3}, then there are seven possible coalitions:

{1}, {2}, {3}, {1,2}, {2,3}, {3,1}, and {1,2,3}

and five possible coalition structures:

{{1},{2},{3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, and {{1,2,3}}.

We use the notation CS(N) to denote the set of all coalition structures over player set N, and
CS(i) to denote the coalition that player i belongs to.

The outcome of a game is defined by the choices the players make, in deciding which
coalitions to form, and in choosing how to divide up the ν(C) value that each coalition re-
ceives. Formally, given a cooperative game defined by (N,ν), the outcome is a pair (CS,x)
consisting of a coalition structure and a payoff vector x = (x1, . . . ,xn) where xi is the valuePayoff vector
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that goes to player i. The payoff must satisfy the constraint that each coalition C splits up all
of its value ν(C) among its members:

∑
i∈C

xi = ν(C) for all C ∈ CS

For example, given the game ({1,2,3},ν) where ν({1})=4 and ν({2,3})=10, a possible
outcome is:

({{1},{2,3}},(4,5,5)) .
That is, player 1 stays alone and accepts a value of 4, while players 2 and 3 team up to receive
a value of 10, which they choose to split evenly.

Some cooperative games have the feature that when two coalitions merge together, they
do no worse than if they had stayed apart. This property is called superadditivity. Formally, Superadditivity

a game is superadditive if its characteristic function satisfies the following condition:

ν(C∪D)≥ ν(C)+ν(D) for all C,D⊆ N

If a game is superadditive, then the grand coalition receives a value that is at least as high
as or higher than the total received by any other coalition structure. However, as we will see
shortly, superadditive games do not always end up with a grand coalition, for much the same
reason that the players do not always arrive at a collectively desirable Pareto-optimal outcome
in the prisoner’s dilemma.

17.3.2 Strategy in cooperative games

The basic assumption in cooperative game theory is that players will make strategic decisions
about who they will cooperate with. Intuitively, players will not desire to work with unpro-
ductive players—they will naturally seek out players that collectively yield a high coalitional
value. But these sought-after players will be doing their own strategic reasoning. Before we
can describe this reasoning, we need some further definitions.

An imputation for a cooperative game (N,ν) is a payoff vector that satisfies the follow- Imputation

ing two conditions:

∑
n
i=1 xi = ν(N)

xi ≥ ν({i}) for all i ∈ N .
The first condition says that an imputation must distribute the total value of the grand coali-
tion; the second condition, known as individual rationality, says that each player is at least Individual rationality

as well off as if it had worked alone.
Given an imputation x = (x1, . . . ,xn) and a coalition C⊆ N, we define x(C) to be the sum

∑i∈C xi—the total amount disbursed to C by the imputation x.
Next, we define the core of a game (N,ν) as the set of all imputations x that satisfy the Core

condition x(C) ≥ ν(C) for every possible coalition C ⊂ N. Thus, if an imputation x is not
in the core, then there exists some coalition C ⊂ N such that ν(C) > x(C). The players in C
would refuse to join the grand coalition because they would be better off sticking with C.

The core of a game therefore consists of all the possible payoff vectors that no coalition
could object to on the grounds that they could do better by not joining the grand coalition.
Thus, if the core is empty, then the grand coalition cannot form, because no matter how the
grand coalition divided its payoff, some smaller coalition would refuse to join. The main
computational questions around the core relate to whether or not it is empty, and whether a
particular payoff distribution is in the core.
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The definition of the core naturally leads to a system of linear inequalities, as follows (the
unknowns are variables x1, . . . ,xn, and the values ν(C) are constants):

xi ≥ ν({i}) for all i ∈ N
∑i∈N xi = ν(N)

∑i∈C xi ≥ ν(C) for all C ⊆ N

Any solution to these inequalities will define an imputation in the core. We can formulate the
inequalities as a linear program by using a dummy objective function (for example, maximiz-
ing ∑i∈N xi), which will allow us to compute imputations in time polynomial in the number
of inequalities. The difficulty is that this gives an exponential number of inequalities (one
for each of the 2n possible coalitions). Thus, this approach yields an algorithm for checking
non-emptiness of the core that runs in exponential time. Whether we can do better than this
depends on the game being studied: for many classes of cooperative game, the problem of
checking non-emptiness of the core is co-NP-complete. We give an example below.

Before proceeding, let’s see an example of a superadditive game with an empty core. The
game has three players N = {1,2,3}, and has a characteristic function defined as follows:

ν(C) =

{
1 if |C| ≥ 2
0 otherwise.

Now consider any imputation (x1,x2,x3) for this game. Since ν(N) = 1, it must be the case
that at least one player i has xi > 0, and the other two get a total payoff less than 1. Those
two could benefit by forming a coalition without player i and sharing the value 1 among
themselves. But since this holds for all imputations, the core must be empty.

The core formalizes the idea of the grand coalition being stable, in the sense that no
coalition can profitably defect from it. However, the core may contain imputations that are
unreasonable, in the sense that one or more players might feel they were unfair. Suppose
N = {1,2}, and we have a characteristic function ν defined as follows:

ν({1}) = ν({2}) = 5
ν({1,2}) = 20.

Here, cooperation yields a surplus of 10 over what players could obtain working in isolation,
and so intuitively, cooperation will make sense in this scenario. Now, it is easy to see that the
imputation (6,14) is in the core of this game: neither player can deviate to obtain a higher
utility. But from the point of view of player 1, this might appear unreasonable, because it
gives 9/10 of the surplus to player 2. Thus, the notion of the core tells us when a grand
coalition can form, but it does not tell us how to distribute the payoff.

The Shapley value is an elegant proposal for how to divide the ν(N) value among theShapley value

players, given that the grand coalition N formed. Formulated by Nobel laureate Lloyd Shap-
ley in the early 1950s, the Shapley value is intended to be a fair distribution scheme.

What does fair mean? It would be unfair to distribute ν(N) based on the eye color of
players, or their gender, or skin color. Students often suggest that the value ν(N) should be
divided equally, which seems like it might be fair, until we consider that this would give the
same reward to players that contribute a lot and players that contribute nothing. Shapley’s
insight was to suggest that the only fair way to divide the value ν(N) was to do so according
to how much each player contributed to creating the value ν(N).

First we need to define the notion of a player’s marginal contribution. The marginalMarginal
contribution
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contribution that a player i makes to a coalition C is the value that i would add (or remove),
should i join the coalition C. Formally, the marginal contribution that player i makes to C is
denoted by mci(C):

mci(C) = ν(C∪{i})−ν(C).

Now, a first attempt to define a payoff division scheme in line with Shapley’s suggestion
that players should be rewarded according to their contribution would be to pay each player i
the value that they would add to the coalition containing all other players:

mci(N−{i}) .

The problem is that this implicitly assumes that player i is the last player to enter the coalition.
So, Shapley suggested, we need to consider all possible ways that the grand coalition could
form, that is, all possible orderings of the players N, and consider the value that i adds to
the preceding players in the ordering. Then, a player should be rewarded by being paid the
average marginal contribution that player i makes, over all possible orderings of the players,
to the set of players preceding i in the ordering.

We let P denote all possible permutations (e.g., orderings) of the players N, and denote
members of P by p, p′, . . . etc. Where p ∈ P and i ∈ N, we denote by pi the set of players
that precede i in the ordering p. Then the Shapley value for a game G is the imputation
φ(G) = (φ1(G), . . . ,φn(G)) defined as follows:

φi(G) =
1
n! ∑

p∈P
mci(pi). (17.1)

This should convince you that the Shapley value is a reasonable proposal. But the remark-
able fact is that it is the unique solution to a set of axioms that characterizes a “fair” payoff
distribution scheme. We’ll need some more definitions before defining the axioms.

We define a dummy player as a player i that never adds any value to a coalition—that is, Dummy player

mci(C) = 0 for all C ⊆ N−{i}. We will say that two players i and j are symmetric players Symmetric players

if they always make identical contributions to coalitions—that is, mci(C) = mc j(C) for all
C ⊆ N−{i, j}. Finally, where G = (N,ν) and G′ = (N,ν ′) are games with the same set of
players, the game G+G′ is the game with the same player set, and a characteristic function
ν ′′ defined by ν ′′(C) = ν(C)+ν ′(C).

Given these definitions, we can define the fairness axioms satisfied by the Shapley value:

• Efficiency: ∑i∈N φi(G) = ν(N). (All the value should be distributed.)

• Dummy Player: If i is a dummy player in G then φi(G) = 0. (Players who never
contribute anything should never receive anything.)

• Symmetry: If i and j are symmetric in G then φi(G) = φ j(G). (Players who make
identical contributions should receive identical payoffs.)

• Additivity: The value is additive over games: For all games G= (N,ν) and G′= (N,ν ′),
and for all players i ∈ N, we have φi(G+G′) = φi(G)+φi(G′).

The additivity axiom is admittedly rather technical. If we accept it as a requirement, however,
we can establish the following key property: the Shapley value is the only way to distribute J
coalitional value so as to satisfy these fairness axioms.
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17.3.3 Computation in cooperative games

From a theoretical point of view, we now have a satisfactory solution. But from a computa-
tional point of view, we need to know how to compactly represent cooperative games, and
how to efficiently compute solution concepts such as the core and the Shapley value.

The obvious representation for a characteristic function would be a table listing the value
ν(C) for all 2n coalitions. This is infeasible for large n. A number of approaches to com-
pactly representing cooperative games have been developed, which can be distinguished by
whether or not they are complete. A complete representation scheme is one that is capable of
representing any cooperative game. The drawback with complete representation schemes is
that there will always be some games that cannot be represented compactly. An alternative is
to use a representation scheme that is guaranteed to be compact, but which is not complete.

Marginal contribution nets

We now describe one representation scheme, called marginal contribution nets (MC-nets).Marginal
contribution net

We will use a slightly simplified version to facilitate presentation, and the simplification
makes it incomplete—the full version of MC-nets is a complete representation.

The idea behind marginal contribution nets is to represent the characteristic function of a
game (N,v) as a set of coalition-value rules, of the form: (Ci,xi), where Ci ⊆ N is a coalition
and xi is a number. To compute the value of a coalition C, we simply sum the values of
all rules (Ci,xi) such that Ci ⊆C. Thus, given a set of rules R = {(C1,x1), . . . ,(Ck,xk)}, the
corresponding characteristic function is:

ν(C) = ∑{xi | (Ci,xi) ∈ R and Ci ⊆C}.
Suppose we have a rule set R containing the following three rules:

{({1,2},5), ({2},2), ({3},4)} .
Then, for example, we have:

• ν({1}) = 0 (because no rules apply),
• ν({3}) = 4 (third rule),
• ν({1,3}) = 4 (third rule),
• ν({2,3}) = 6 (second and third rules), and
• ν({1,2,3}) = 11 (first, second, and third rules).

With this representation we can compute the Shapley value in polynomial time. The key
insight is that each rule can be understood as defining a game on its own, in which the players
are symmetric. By appealing to Shapley’s axioms of additivity and symmetry, therefore, the
Shapley value φi(R) of player i in the game associated with the rule set R is then simply:

φi(R) = ∑
(C,x)∈R

{
x
|C| if i ∈C

0 otherwise.

The version of marginal contribution nets that we have presented here is not a complete repre-
sentation scheme: there are games whose characteristic function cannot be represented using
rule sets of the form described above. A richer type of marginal contribution networks al-
lows for rules of the form (φ,x), where φ is a propositional logic formula over the players
N: a coalition C satisfies the condition φ if it corresponds to a satisfying assignment for φ.
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{1}, {2}, {3}, {4}

{1}, {2}, {3, 4}

{1}, {2, 3, 4} {1, 2}, {3, 4} {2}, {1, 3, 4} {1, 3}, {2, 4}

{1, 2, 3, 4}

{3},{1, 2, 4} {1, 4},{ 2, 3} {4},{1, 2, 3}

{1, 2}, {3}, {4} {1}, {3}, {2, 4} {2}, {4}, {1, 3} {2}, {3}, {1, 4}

level 1

level 2

level 3

level 4

{1}, {4}, {2, 3}

Figure 17.7 The coalition structure graph for N = {1,2,3,4}. Level 1 has coalition struc-
tures containing a single coalition; level 2 has coalition structures containing two coalitions,
and so on.

This scheme is a complete representation—in the worst case, we need a rule for every pos-
sible coalition. Moreover, the Shapley value can be computed in polynomial time with this
scheme; the details are more involved than for the simple rules described above, although the
basic principle is the same; see the notes at the end of the chapter for references.

Coalition structures for maximum social welfare

We obtain a different perspective on cooperative games if we assume that the agents share
a common purpose. For example, if we think of the agents as being workers in a company,
then the strategic considerations relating to coalition formation that are addressed by the core,
for example, are not relevant. Instead, we might want to organize the workforce (the agents)
into teams so as to maximize their overall productivity. More generally, the task is to find a
coalition that maximizes the social welfare of the system, defined as the sum of the values of
the individual coalitions. We write the social welfare of a coalition structure CS as sw(CS),
with the following definition:

sw(CS) = ∑
C∈CS

ν(C) .

Then a socially optimal coalition structure CS∗ with respect to G maximizes this quantity.
Finding a socially optimal coalition structure is a very natural computational problem, which
has been studied beyond the multiagent systems community: it is sometimes called the set
partitioning problem. Unfortunately, the problem is NP-hard, because the number of possi- Set partitioning

problem

ble coalition structures grows exponentially in the number of players.
Finding the optimal coalition structure by naive exhaustive search is therefore infeasible

in general. An influential approach to optimal coalition structure formation is based on the
idea of searching a subspace of the coalition structure graph. The idea is best explained Coalition structure

graph

with reference to an example.
Suppose we have a game with four agents, N = {1,2,3,4}. There are fifteen possible

coalition structures for this set of agents. We can organize these into a coalition structure
graph as shown in Figure 17.7, where the nodes at level ` of the graph correspond to all
the coalition structures with exactly ` coalitions. An upward edge in the graph represents
the division of a coalition in the lower node into two separate coalitions in the upper node.
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For example, there is an edge from {{1},{2,3,4}} to {{1},{2},{3,4}} because this latter
coalition structure is obtained from the former by dividing the coalition {2,3,4} into the
coalitions {2} and {3,4}.

The optimal coalition structure CS∗ lies somewhere within the coalition structure graph,
and so to find this, it seems we would have to evaluate every node in the graph. But consider
the bottom two rows of the graph—levels 1 and 2. Every possible coalition (excluding the
empty coalition) appears in these two levels. (Of course, not every possible coalition structure
appears in these two levels.) Now, suppose we restrict our search for a possible coalition
structure to just these two levels—we go no higher in the graph. Let CS′ be the best coalition
structure that we find in these two levels, and let CS∗ be the best coalition structure overall.
Let C∗ be a coalition with the highest value of all possible coalitions:

C∗ ∈ argmax
C⊆N

ν(C).

The value of the best coalition structure we find in the first two levels of the coalition structure
graph must be at least as much as the value of the best possible coalition: sw(CS′)≥ ν(C∗).
This is because every possible coalition appears in at least one coalition structure in the first
two levels of the graph. So assume the worst case, that is, sw(CS′) = ν(C∗).

Compare the value of sw(CS′) to sw(CS∗). Since sw(CS′) is the highest possible value
of any coalition structure, and there are n agents (n = 4 in the case of Figure 17.7), then the
highest possible value of sw(CS∗) would be nν(C∗) = n · sw(CS′). In other words, in the
worst possible case, the value of the best coalition structure we find in the first two levels of
the graph would be 1

n the value of the best, where n is the number of agents. Thus, although
searching the first two levels of the graph does not guarantee to give us the optimal coalition
structure, it does guarantee to give us one that is no worse that 1

n of the optimal. In practice it
will often be much better than that.

17.4 Making Collective Decisions

We will now turn from agent design to mechanism design—the problem of designing the
right game for a collection of agents to play. Formally, a mechanism consists of

1. A language for describing the set of allowable strategies that agents may adopt.
2. A distinguished agent, called the center, that collects reports of strategy choices fromCenter

the agents in the game. (For example, the auctioneer is the center in an auction.)
3. An outcome rule, known to all agents, that the center uses to determine the payoffs to

each agent, given their strategy choices.

This section discusses some of the most important mechanisms.

17.4.1 Allocating tasks with the contract net

The contract net protocol is probably the oldest and most important multiagent problem-Contract net
protocol

solving technique studied in AI. It is a high-level protocol for task sharing. As the name
suggests, the contract net was inspired from the way that companies make use of contracts.

The overall contract net protocol has four main phases—see Figure 17.8. The process
starts with an agent identifying the need for cooperative action with respect to some task.
The need might arise because the agent does not have the capability to carry out the task



Section 17.4 Making Collective Decisions 623

I have a
problem... 

problem recognition
task 
announcement

biddingawarding

Figure 17.8 The contract net task allocation protocol.

in isolation, or because a cooperative solution might in some way be better (faster, more
efficient, more accurate).

The agent advertises the task to other agents in the net with a task announcement mes- Task announcement

sage, and then acts as the manager of that task for its duration. The task announcement Manager

message must include sufficient information for recipients to judge whether or not they are
willing and able to bid for the task. The precise information included in a task announcement
will depend on the application area. It might be some code that needs to be executed; or it
might be a logical specification of a goal to be achieved. The task announcement might also
include other information that might be required by recipients, such as deadlines, quality-of-
service requirements, and so on.

When an agent receives a task announcement, it must evaluate it with respect to its own
capabilities and preferences. In particular, each agent must determine, whether it has the
capability to carry out the task, and second, whether or not it desires to do so. On this basis, it
may then submit a bid for the task. A bid will typically indicate the capabilities of the bidder Bid

that are relevant to the advertised task, and any terms and conditions under which the task
will be carried out.

In general, a manager may receive multiple bids in response to a single task announce-
ment. Based on the information in the bids, the manager selects the most appropriate agent
(or agents) to execute the task. Successful agents are notified through an award message, and
become contractors for the task, taking responsibility for the task until it is completed.

The main computational tasks required to implement the contract net protocol can be
summarized as follows:
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• Task announcement processing. On receipt of a task announcement, an agent decides if
it wishes to bid for the advertised task.

• Bid processing. On receiving multiple bids, the manager must decide which agent to
award the task to, and then award the task.

• Award processing. Successful bidders (contractors) must attempt to carry out the task,
which may mean generating new subtasks, which are advertised via further task an-
nouncements.

Despite (or perhaps because of) its simplicity, the contract net is probably the most widely
implemented and best-studied framework for cooperative problem solving. It is naturally
applicable in many settings—a variation of it is enacted every time you request a car with
Uber, for example.

17.4.2 Allocating scarce resources with auctions

One of the most important problems in multiagent systems is that of allocating scarce re-
sources; but we may as well simply say “allocating resources,” since in practice most useful
resources are scarce in some sense. The auction is the most important mechanism for allo-Auction

cating resources. The simplest setting for an auction is where there is a single resource and
there are multiple possible bidders. Each bidder i has a utility value vi for the item.Bidder

In some cases, each bidder has a private value for the item. For example, a tacky sweater
might be attractive to one bidder and valueless to another.

In other cases, such as auctioning drilling rights for an oil tract, the item has a com-
mon value—the tract will produce some amount of money, X , and all bidders value a dollar
equally—but there is uncertainty as to what the actual value of X is. Different bidders have
different information, and hence different estimates of the item’s true value. In either case,
bidders end up with their own vi. Given vi, each bidder gets a chance, at the appropriate time
or times in the auction, to make a bid bi. The highest bid, bmax, wins the item, but the price
paid need not be bmax; that’s part of the mechanism design.

The best-known auction mechanism is the ascending-bid auction,3 or English auction,Ascending-bid
auction
English auction in which the center starts by asking for a minimum (or reserve) bid bmin. If some bidder

is willing to pay that amount, the center then asks for bmin + d, for some increment d, and
continues up from there. The auction ends when nobody is willing to bid anymore; then the
last bidder wins the item, paying the price bid.

How do we know if this is a good mechanism? One goal is to maximize expected revenue
for the seller. Another goal is to maximize a notion of global utility. These goals overlap to
some extent, because one aspect of maximizing global utility is to ensure that the winner of
the auction is the agent who values the item the most (and thus is willing to pay the most). We
say an auction is efficient if the goods go to the agent who values them most. The ascending-Efficient

bid auction is usually both efficient and revenue maximizing, but if the reserve price is set too
high, the bidder who values it most may not bid, and if the reserve is set too low, the seller
may get less revenue.

Probably the most important things that an auction mechanism can do is encourage a suf-
ficient number of bidders to enter the game and discourage them from engaging in collusion.Collusion

Collusion is an unfair or illegal agreement by two or more bidders to manipulate prices. It can

3 The word “auction” comes from the Latin augeo, to increase.
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happen in secret backroom deals or tacitly, within the rules of the mechanism. For example,
in 1999, Germany auctioned ten blocks of cellphone spectrum with a simultaneous auction
(bids were taken on all ten blocks at the same time), using the rule that any bid must be a min-
imum of a 10% raise over the previous bid on a block. There were only two credible bidders,
and the first, Mannesman, entered the bid of 20 million deutschmark on blocks 1-5 and 18.18
million on blocks 6-10. Why 18.18M? One of T-Mobile’s managers said they “interpreted
Mannesman’s first bid as an offer.” Both parties could compute that a 10% raise on 18.18M
is 19.99M; thus Mannesman’s bid was interpreted as saying “we can each get half the blocks
for 20M; let’s not spoil it by bidding the prices up higher.” And in fact T-Mobile bid 20M on
blocks 6-10 and that was the end of the bidding.

The German government got less than they expected, because the two competitors were
able to use the bidding mechanism to come to a tacit agreement on how not to compete.
From the government’s point of view, a better result could have been obtained by any of these
changes to the mechanism: a higher reserve price; a sealed-bid first-price auction, so that
the competitors could not communicate through their bids; or incentives to bring in a third
bidder. Perhaps the 10% rule was an error in mechanism design, because it facilitated the
precise signaling from Mannesman to T-Mobile.

In general, both the seller and the global utility function benefit if there are more bidders,
although global utility can suffer if you count the cost of wasted time of bidders that have no
chance of winning. One way to encourage more bidders is to make the mechanism easier for
them. After all, if it requires too much research or computation on the part of the bidders,
they may decide to take their money elsewhere.

So it is desirable that the bidders have a dominant strategy. Recall that “dominant”
means that the strategy works against all other strategies, which in turn means that an agent
can adopt it without regard for the other strategies. An agent with a dominant strategy can just
bid, without wasting time contemplating other agents’ possible strategies. A mechanism by
which agents have a dominant strategy is called a strategy-proof mechanism. If, as is usually Strategy-proof

the case, that strategy involves the bidders revealing their true value, vi, then it is called
a truth-revealing, or truthful, auction; the term incentive compatible is also used. The Truth-revealing

revelation principle states that any mechanism can be transformed into an equivalent truth- Revelation principle

revealing mechanism, so part of mechanism design is finding these equivalent mechanisms.
It turns out that the ascending-bid auction has most of the desirable properties. The bidder

with the highest value vi gets the goods at a price of bo+d, where bo is the highest bid among
all the other agents and d is the auctioneer’s increment.4 Bidders have a simple dominant
strategy: keep bidding as long as the current cost is below your vi. The mechanism is not
quite truth-revealing, because the winning bidder reveals only that his vi ≥ bo +d; we have a
lower bound on vi but not an exact amount.

A disadvantage (from the point of view of the seller) of the ascending-bid auction is that
it can discourage competition. Suppose that in a bid for cellphone spectrum there is one
advantaged company that everyone agrees would be able to leverage existing customers and
infrastructure, and thus can make a larger profit than anyone else. Potential competitors can
see that they have no chance in an ascending-bid auction, because the advantaged company

4 There is actually a small chance that the agent with highest vi fails to get the goods, in the case in which
bo < vi < bo +d. The chance of this can be made arbitrarily small by decreasing the increment d.
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can always bid higher. Thus, the competitors may not enter at all, and the advantaged com-
pany ends up winning at the reserve price.

Another negative property of the English auction is its high communication costs. Either
the auction takes place in one room or all bidders have to have high-speed, secure communi-
cation lines; in either case they have to have time to go through several rounds of bidding.

An alternative mechanism, which requires much less communication, is the sealed-bid
auction. Each bidder makes a single bid and communicates it to the auctioneer, without theSealed-bid auction

other bidders seeing it. With this mechanism, there is no longer a simple dominant strategy.
If your value is vi and you believe that the maximum of all the other agents’ bids will be bo,
then you should bid bo + ε, for some small ε, if that is less than vi. Thus, your bid depends on
your estimation of the other agents’ bids, requiring you to do more work. Also, note that the
agent with the highest vi might not win the auction. This is offset by the fact that the auction
is more competitive, reducing the bias toward an advantaged bidder.

A small change in the mechanism for sealed-bid auctions leads to the sealed-bid second-
price auction, also known as a Vickrey auction.5 In such auctions, the winner pays theSealed-bid

second-price auction
Vickrey auction price of the second-highest bid, bo, rather than paying his own bid. This simple modification

completely eliminates the complex deliberations required for standard (or first-price) sealed-
bid auctions, because the dominant strategy is now simply to bid vi; the mechanism is truth-
revealing. Note that the utility of agent i in terms of his bid bi, his value vi, and the best bid
among the other agents, bo, is

Ui =

{
(vi−bo) if bi > bo

0 otherwise.

To see that bi = vi is a dominant strategy, note that when (vi−bo) is positive, any bid that wins
the auction is optimal, and bidding vi in particular wins the auction. On the other hand, when
(vi−bo) is negative, any bid that loses the auction is optimal, and bidding vi in particular loses
the auction. So bidding vi is optimal for all possible values of bo, and in fact, vi is the only bid
that has this property. Because of its simplicity and the minimal computation requirements
for both seller and bidders, the Vickrey auction is widely used in distributed AI systems.

Internet search engines conduct several trillion auctions each year to sell advertisements
along with their search results, and online auction sites handle $100 billion a year in goods,
all using variants of the Vickrey auction. Note that the expected value to the seller is bo,
which is the same expected return as the limit of the English auction as the increment d goes
to zero. This is actually a very general result: the revenue equivalence theorem states that,Revenue equivalence

theorem
with a few minor caveats, any auction mechanism in which bidders have values vi known only
to themselves (but know the probability distribution from which those values are sampled),
will yield the same expected revenue. This principle means that the various mechanisms are
not competing on the basis of revenue generation, but rather on other qualities.

Although the second-price auction is truth-revealing, it turns out that auctioning n goods
with an n+1 price auction is not truth-revealing. Many Internet search engines use a mech-
anism where they auction n slots for ads on a page. The highest bidder wins the top spot,
the second highest gets the second spot, and so on. Each winner pays the price bid by the
next-lower bidder, with the understanding that payment is made only if the searcher actually

5 Named after William Vickrey (1914–1996), who won the 1996 Nobel Prize in economics for this work and
died of a heart attack three days later.
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clicks on the ad. The top slots are considered more valuable because they are more likely to
be noticed and clicked on.

Imagine that three bidders, b1,b2 and b3, have valuations for a click of v1=200,v2=180,
and v3=100, and that n = 2 slots are available; and it is known that the top spot is clicked on
5% of the time and the bottom spot 2%. If all bidders bid truthfully, then b1 wins the top slot
and pays 180, and has an expected return of (200−180)×0.05=1. The second slot goes to
b2. But b1 can see that if she were to bid anything in the range 101–179, she would concede
the top slot to b2, win the second slot, and yield an expected return of (200−100)× .02=2.
Thus, b1 can double her expected return by bidding less than her true value in this case.

In general, bidders in this n+ 1 price auction must spend a lot of energy analyzing the
bids of others to determine their best strategy; there is no simple dominant strategy.

Aggarwal et al. (2006) show that there is a unique truthful auction mechanism for this
multislot problem, in which the winner of slot j pays the price for slot j just for those addi-
tional clicks that are available at slot j and not at slot j+1. The winner pays the price for the
lower slot for the remaining clicks. In our example, b1 would bid 200 truthfully, and would
pay 180 for the additional .05− .02= .03 clicks in the top slot, but would pay only the cost
of the bottom slot, 100, for the remaining .02 clicks. Thus, the total return to b1 would be
(200−180)× .03+(200−100)× .02=2.6.

Another example of where auctions can come into play within AI is when a collection of
agents are deciding whether to cooperate on a joint plan. Hunsberger and Grosz (2000) show
that this can be accomplished efficiently with an auction in which the agents bid for roles in
the joint plan.

Common goods

Now let’s consider another type of game, in which countries set their policy for controlling
air pollution. Each country has a choice: they can reduce pollution at a cost of -10 points for
implementing the necessary changes, or they can continue to pollute, which gives them a net
utility of -5 (in added health costs, etc.) and also contributes -1 points to every other country
(because the air is shared across countries). Clearly, the dominant strategy for each country
is “continue to pollute,” but if there are 100 countries and each follows this policy, then each
country gets a total utility of -104, whereas if every country reduced pollution, they would
each have a utility of -10. This situation is called the tragedy of the commons: if nobody has Tragedy of the

commons
to pay for using a common resource, then it may be exploited in a way that leads to a lower
total utility for all agents. It is similar to the prisoner’s dilemma: there is another solution
to the game that is better for all parties, but there appears to be no way for rational agents to
arrive at that solution under the current game.

One approach for dealing with the tragedy of the commons is to change the mechanism to
one that charges each agent for using the commons. More generally, we need to ensure that
all externalities—effects on global utility that are not recognized in the individual agents’ Externalities

transactions—are made explicit.
Setting the prices correctly is the difficult part. In the limit, this approach amounts to

creating a mechanism in which each agent is effectively required to maximize global utility,
but can do so by making a local decision. For this example, a carbon tax would be an example
of a mechanism that charges for use of the commons in a way that, if implemented well,
maximizes global utility.
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It turns out there is a mechanism design, known as the Vickrey–Clarke–Groves or VCGVCG

mechanism, which has two favorable properties. First, it is utility maximizing—that is, it
maximizes the global utility, which is the sum of the utilities for all parties, ∑i vi. Second,
the mechanism is truth-revealing—the dominant strategy for all agents is to reveal their true
value. There is no need for them to engage in complicated strategic bidding calculations.

We will give an example using the problem of allocating some common goods. Suppose a
city decides it wants to install some free wireless Internet transceivers. However, the number
of transceivers available is less than the number of neighborhoods that want them. The city
wants to maximize global utility, but if it says to each neighborhood council “How much do
you value a free transceiver (and by the way we will give them to the parties that value them
the most)?” then each neighborhood will have an incentive to report a very high value. The
VCG mechanism discourages this ploy and gives them an incentive to report their true value.
It works as follows:

1. The center asks each agent to report its value for an item, vi.
2. The center allocates the goods to a set of winners, W , to maximize ∑i∈W vi.
3. The center calculates for each winning agent how much of a loss their individual pres-

ence in the game has caused to the losers (who each got 0 utility, but could have got v j

if they were a winner).
4. Each winning agent then pays to the center a tax equal to this loss.

For example, suppose there are 3 transceivers available and 5 bidders, who bid 100, 50,
40, 20, and 10. Thus the set of 3 winners, W , are the ones who bid 100, 50, and 40 and the
global utility from allocating these goods is 190. For each winner, it is the case that had they
not been in the game, the bid of 20 would have been a winner. Thus, each winner pays a tax
of 20 to the center.

All winners should be happy because they pay a tax that is less than their value, and
all losers are as happy as they can be, because they value the goods less than the required
tax. That’s why the mechanism is truth-revealing. In this example, the crucial value is 20; it
would be irrational to bid above 20 if your true value was actually below 20, and vice versa.
Since the crucial value could be anything (depending on the other bidders), that means that is
always irrational to bid anything other than your true value.

The VCG mechanism is very general, and can be applied to all sorts of games, not just
auctions, with a slight generalization of the mechanism described above. For example, in a
combinatorial auction there are multiple different items available and each bidder can place
multiple bids, each on a subset of the items. For example, in bidding on plots of land, one
bidder might want either plot X or plot Y but not both; another might want any three adjacent
plots, and so on. The VCG mechanism can be used to find the optimal outcome, although
with 2N subsets of N goods to contend with, the computation of the optimal outcome is NP-
complete. With a few caveats the VCG mechanism is unique: every other optimal mechanism
is essentially equivalent.

17.4.3 Voting

The next class of mechanisms that we look at are voting procedures, of the type that are used
for political decision making in democratic societies. The study of voting procedures derives
from the domain of social choice theory.Social choice theory
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The basic setting is as follows. As usual, we have a set N = {1, . . . ,n} of agents, who
in this section will be the voters. These voters want to make decisions with respect to a set
Ω = {ω1,ω2, . . .} of possible outcomes. In a political election, each element of Ω could stand
for a different candidate winning the election.

Each voter will have preferences over Ω. These are usually expressed not as quantitative
utilities but rather as qualitative comparisons: we write ω �i ω

′ to mean that outcome ω is
ranked above outcome ω′ by agent i. In an election with three candidates, agent i might have
ω2 �i ω3 �i ω1.

The fundamental problem of social choice theory is to combine these preferences, using
a social welfare function, to come up with a social preference order: a ranking of the Social welfare

function
candidates, from most preferred down to least preferred. In some cases, we are only interested
in a social outcome—the most preferred outcome by the group as a whole. We will write Social outcome

ω �∗ ω′ to mean that ω is ranked above ω′ in the social preference order.
A simpler setting is where we are not concerned with obtaining an entire ordering of

candidates, but simply want to choose a set of winners. A social choice function takes as Social choice
function

input a preference order for each voter, and produces as output a set of winners.
Democratic societies want a social outcome that reflects the preferences of the voters.

Unfortunately, this is not always straightforward. Consider Condorcet’s Paradox, a famous Condorcet’s Paradox

example posed by the Marquis de Condorcet (1743–1794). Suppose we have three outcomes,
Ω = {ωa,ωb,ωc}, and three voters, N = {1,2,3}, with preferences as follows.

ωa �1 ωb �1 ωc

ωc �2 ωa �2 ωb
ωb �3 ωc �3 ωa

(17.2)

Now, suppose we have to choose one of the three candidates on the basis of these preferences.
The paradox is that:

• 2/3 of the voters prefer ω3 over ω1.
• 2/3 of the voters prefer ω1 over ω2.
• 2/3 of the voters prefer ω2 over ω3.

So, for each possible winner, we can point to another candidate who would be preferred by
at least 2/3 of the electorate. It is obvious that in a democracy we cannot hope to make every
voter happy. This demonstrates that there are scenarios in which no matter which outcome we J
choose, a majority of voters will prefer a different outcome. A natural question is whether
there is any “good” social choice procedure that really reflects the preferences of voters. To
answer this, we need to be precise about what we mean when we say that a rule is “good.”
We will list some properties we would like a good social welfare function to satisfy:

• The Pareto Condition: The Pareto condition simply says that if every voter ranks ωi

above ω j, then ωi �∗ ω j.
• The Condorcet Winner Condition: An outcome is said to be a Condorcet winner if

a majority of candidates prefer it over all other outcomes. To put it another way, a
Condorcet winner is a candidate that would beat every other candidate in a pairwise
election. The Condorcet winner condition says that if ωi is a Condorcet winner, then ωi

should be ranked first.
• Independence of Irrelevant Alternatives (IIA): Suppose there are a number of candi-

dates, including ωi and ω j, and voter preferences are such that ωi �∗ ω j. Now, suppose



630 Chapter 17 Multiagent Decision Making

one voter changed their preferences in some way, but not about the relative ranking of
ωi and ω j. The IIA condition says that, ωi �∗ ω j should not change.

• No Dictatorships: It should not be the case that the social welfare function simply
outputs one voter’s preferences and ignores all other voters.

These four conditions seem reasonable, but a fundamental theorem of social choice theory
called Arrow’s theorem (due to Kenneth Arrow) tells us that it is impossible to satisfy allArrow’s theorem

four conditions (for cases where there are at least three outcomes). That means that for
any social choice mechanism we might care to pick, there will be some situations (perhaps
unusual or pathological) that lead to controversial outcomes. However, it does not mean that
democratic decision making is hopeless in most cases. We have not yet seen any actual voting
procedures, so let’s now look at some.

• With just two candidates, simple majority vote (the standard method in the US andSimple majority vote

UK) is the favored mechanism. We ask each voter which of the two candidates they
prefer, and the one with the most votes is the winner.

• With more than two outcomes, plurality voting is a common system. We ask eachPlurality voting

voter for their top choice, and select the candidate(s) (more than one in the case of ties)
who get the most votes, even if nobody gets a majority. While it is common, plurality
voting has been criticized for delivering unpopular outcomes. A key problem is that it
only takes into account the top-ranked candidate in each voter’s preferences.

• The Borda count (after Jean-Charles de Borda, a contemporary and rival of Condorcet)Borda count

is a voting procedure that takes into account all the information in a voter’s preference
ordering. Suppose we have k candidates. Then for each voter i, we take their preference
ordering �i, and give a score of k to the top ranked candidate, a score of k− 1 to the
second-ranked candidate, and so on down to the least-favored candidate in i’s ordering.
The total score for each candidate is their Borda count, and to obtain the social outcome
�∗, outcomes are ordered by their Borda count—highest to lowest. One practical prob-
lem with this system is that it asks voters to express preferences on all the candidates,
and some voters may only care about a subset of candidates.

• In approval voting, voters submit a subset of the candidates that they approve of. TheApproval voting

winner(s) are those who are approved by the most voters. This system is often used
when the task is to choose multiple winners.

• In instant runoff voting, voters rank all the candidates, and if a candidate has a major-Instant runoff voting

ity of first-place votes, they are declared the winner. If not, the candidate with the fewest
first-place votes is eliminated. That candidate is removed from all the preference rank-
ings (so those voters who had the eliminated candidate as their first choice now have
another candidate as their new first choice) and the process is repeated. Eventually,
some candidate will have a majority of first-place votes (unless there is a tie).

• In true majority rule voting, the winner is the candidate who beats every other can-True majority rule
voting

didate in pairwise comparisons. Voters are asked for a full preference ranking of all
candidates. We say that ω beats ω′, if more voters have ω � ω′ than have ω′ � ω. This
system has the nice property that the majority always agrees on the winner, but it has
the bad property that not every election will be decided: in the Condorcet paradox, for
example, no candidate wins a majority.
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Strategic manipulation

Besides Arrow’s Theorem, another important negative results in the area of social choice
theory is the Gibbard–Satterthwaite Theorem. This result relates to the circumstances

Gibbard–
Satterthwaite
Theoremunder which a voter can benefit from misrepresenting their preferences.

Recall that a social choice function takes as input a preference order for each voter, and
gives as output a set of winning candidates. Each voter has, of course, their own true prefer-
ences, but there is nothing in the definition of a social choice function that requires voters to
report their preferences truthfully; they can declare whatever preferences they like.

In some cases, it can make sense for a voter to misrepresent their preferences. For exam-
ple, in plurality voting, voters who think their preferred candidate has no chance of winning
may vote for their second choice instead. That means plurality voting is a game in which
voters have to think strategically (about the other voters) to maximize their expected utility.

This raises an interesting question: can we design a voting mechanism that is immune to
such manipulation—a mechanism that is truth-revealing? The Gibbard–Satterthwaite Theo-
rem tells us that we can not: Any social choice function that satisfies the Pareto condition for J
a domain with more than two outcomes is either manipulable or a dictatorship. That is, for
any “reasonable” social choice procedure, there will be some circumstances under which a
voter can in principle benefit by misrepresenting their preferences. However, it does not tell
us how such manipulation might be done; and it does not tell us that such manipulation is
likely in practice.

17.4.4 Bargaining

Bargaining, or negotiation, is another mechanism that is used frequently in everyday life. It
has been studied in game theory since the 1950s and more recently has become a task for
automated agents. Bargaining is used when agents need to reach agreement on a matter of
common interest. The agents make offers (also called proposals or deals) to each other under
specific protocols, and either accept or reject each offer.

Bargaining with the alternating offers protocol

One influential bargaining protocol is the alternating offers bargaining model. For simplic- Alternating offers
bargaining model

ity we’ll again assume just two agents. Bargaining takes place in a sequence of rounds. A1
begins, at round 0, by making an offer. If A2 accepts the offer, then the offer is implemented.
If A2 rejects the offer, then negotiation moves to the next round. This time A2 makes an offer
and A1 chooses to accept or reject it, and so on. If the negotiation never terminates (because
agents reject every offer) then we define the outcome to be the conflict deal. A convenient Conflict deal

simplifying assumption is that both agents prefer to reach an outcome—any outcome—in
finite time rather than being stuck in the infinitely time-consuming conflict deal.

We will use the scenario of dividing a pie to illustrate alternating offers. The idea is that
there is some resource (the “pie”) whose value is 1, which can be divided into two parts, one
part for each agent. Thus an offer in this scenario is a pair (x,1− x), where x is the amount
of the pie that A1 gets, and 1− x is the amount that A2 gets. The space of possible deals (the
negotiation set) is thus: Negotiation set

{(x,1− x) : 0≤ x≤ 1}.
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Now, how should agents negotiate in this setting? To understand the answer to this question,
we will first look at a few simpler cases.

First, suppose that we allow just one round to take place. Thus, A1 makes a proposal;
A2 can either accept it (in which case the deal is implemented), or reject it (in which case
the conflict deal is implemented). This is an ultimatum game. In this case, it turns out thatUltimatum game

A1—the first mover—has all the power. Suppose that A1 proposes to get all the pie, that is,
proposes the deal (1,0). If A2 rejects, then the conflict deal is implemented; since by defini-
tion A2 would prefer to get 0 rather than the conflict deal, A2 would be better off accepting.
Of course, A1 cannot do better than getting the whole pie. Thus, these two strategies—A1
proposes to get the whole pie, and A2 accepts—form a Nash equilibrium.

Now consider the case where we permit exactly two rounds of negotiation. Now the
power has shifted: A2 can simply reject the first offer, thereby turning the game into a one-
round game in which A2 is the first mover and thus will get the whole pie. In general, if the
number of rounds is a fixed number, then whoever moves last will get all the pie.

Now let’s move on to the general case, where there is no bound on the number of rounds.
Suppose that A1 uses the following strategy:

Always propose (1,0), and always reject any counteroffer.

What is A2’s best response to this? If A2 continually rejects the proposal, then the agents will
negotiate forever, which by definition is the worst outcome for A2 (as well as for A1). So
A2 can do no better than accepting the first proposal that A1 makes. Again, this is a Nash
equilibrium. But what if A1 uses the strategy:

Always propose (0.8,0.2), and always reject any offer.

By a similar argument we can see that for this offer or for any possible deal (x,1− x) inI
the negotiation set, there is a Nash equilibrium pair of negotiation strategies such that the
outcome will be agreement on the deal in the first time period.

Impatient agents

This analysis tells us that if no constraints are placed on the number of rounds then there will
be an infinite number of Nash equilibria. So let’s add an assumption:

For any outcome x and times t1 and t2, where t1 < t2, both agents would prefer
outcome x at time t1 over outcome x at time t2.

In other words, agents are impatient. A standard approach to impatience is to use a discount
factor γi (see page 555) for each agent (0 ≤ γi < 1). Suppose that at some point in the
negotiation agent i is offered a slice of the pie of size x. The value of the slice x at time t is
γt

i x. Thus on the first negotiation step (time 0), the value is γ0
i x = x, and at any subsequent

point in time the value of the same offer will be less. A larger value for γi (closer to 1) thus
implies more patience; a smaller value means less patience.

To analyze the general case, let’s first consider bargaining over fixed periods of time, as
above. The 1-round case has the same analysis as given above: we simply have an ultimatum
game. With two rounds the situation changes, because the value of the pie reduces in accor-
dance with discount factors γi. Suppose A2 rejects A1’s initial proposal. Then A2 will get the
whole pie with an ultimatum in the second round. But the value of that whole pie has reduced:
it is only worth γ2 to A2. Agent A1 can take this fact into account by offering (1−γ2,γ2), an
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offer that A2 may as well accept because A2 can do no better than γ2 at this point in time. (If
you are worried about what happens with ties, just make the offer be (1− (γ2 + ε),γ2 + ε) for
some small value of ε.)

So, the two strategies of A1 offering (1−γ2,γ2), and A2 accepting that offer are in Nash
equilibrium. Patient players (those with a larger γ2) will be able to obtain larger pieces of the
pie under this protocol: in this setting, patience truly is a virtue.

Now consider the general case, where there are no bounds on the number of rounds. As
in the 1-round case, A1 can craft a proposal that A2 should accept, because it gives A2 the
maximal achievable amount, given the discount factors. It turns out that A1 will get

1−γ2

1−γ1γ2

and A2 will get the remainder.

Negotiation in task-oriented domains

In this section, we consider negotiation for task-oriented domains. In such a domain, a set of Task-oriented
domain

tasks must be carried out, and each task is initially assigned to a set of agents. The agents may
be able to benefit by negotiating on who will carry out which tasks. For example, suppose
some tasks are done on a lathe machine and others on a milling machine, and that any agent
using a machine must incur a significant setup cost. Then it would make sense for one agent
to offer another “I have to set up on the milling machine anyway; how about if I do all your
milling tasks, and you do all my lathe tasks?”

Unlike the bargaining scenario, we start with an initial allocation, so if the agents fail to
agree on any offers, they perform the tasks T 0

i that they were originally allocated.
To keep things simple, we will again assume just two agents. Let T be the set of all tasks

and let (T 0
1 ,T

0
2 ) denote the initial allocation of tasks to the two agents at time 0. Each task

in T must be assigned to exactly one agent. We assume we have a cost function c, which
for every set of tasks T ′ gives a positive real number c(T ′) indicating the cost to any agent
of carrying out the tasks T ′. (Assume the cost depends only on the tasks, not on the agent
carrying out the task.) The cost function is monotonic—adding more tasks never reduces the
cost—and the cost of doing nothing is zero: c({}) = 0. As an example, suppose the cost of
setting up the milling machine is 10 and each milling task costs 1, then the cost of a set of
two milling tasks would be 12, and the cost of a set of five would be 15.

An offer of the form (T1,T2) means that agent i is committed to performing the set of
tasks Ti, at cost c(Ti). The utility to agent i is the amount they have to gain from accepting
the offer—the difference between the cost of doing this new set of tasks versus the originally
assigned set of tasks:

Ui((T1,T2)) = c(Ti)− c(T 0
i ).

An offer (T1,T2) is individually rational if Ui((T1,T2)) ≥ 0 for both agents. If a deal is not Individually rational

individually rational, then at least one agent can do better by simply performing the tasks it
was originally allocated.

The negotiation set for task-oriented domains (assuming rational agents) is the set of
offers that are both individually rational and Pareto optimal. There is no sense making an
individually irrational offer that will be refused, nor in making an offer when there is a better
offer that improves one agent’s utility without hurting anyone else.
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The monotonic concession protocol

The negotiation protocol we consider for task-oriented domains is known as the monotonic
concession protocol. The rules of this protocol are as follows.Monotonic

concession protocol

• Negotiation proceeds in a series of rounds.
• On the first round, both agents simultaneously propose a deal, Di = (T1,T2), from the

negotiation set. (This is different from the alternating offers we saw before.)
• An agreement is reached if the two agents propose deals D1 and D2, respectively, such

that either (i) U1(D2) ≥U1(D1) or (ii) U2(D1) ≥U2(D2), that is, if one of the agents
finds that the deal proposed by the other is at least as good or better than the proposal
it made. If agreement is reached, then the rule for determining the agreement deal is as
follows: If each agent’s offer matches or exceeds that of the other agent, then one of
the proposals is selected at random. If only one proposal exceeds or matches the other’s
proposal, then this is the agreement deal.

• If no agreement is reached, then negotiation proceeds to another round of simultaneous
proposals. In round t +1, each agent must either repeat the proposal from the previous
round or make a concession—a proposal that is more preferred by the other agent (i.e.,Concession

has higher utility).
• If neither agent makes a concession, then negotiation terminates, and both agents im-

plement the conflict deal, carrying out the tasks they were originally assigned.

Since the set of possible deals is finite, the agents cannot negotiate indefinitely: either the
agents will reach agreement, or a round will occur in which neither agent concedes. However,
the protocol does not guarantee that agreement will be reached quickly: since the number of
possible deals is O(2|T |), it is conceivable that negotiation will continue for a number of
rounds exponential in the number of tasks to be allocated.

The Zeuthen strategy

So far, we have said nothing about how negotiation participants might or should behave when
using the monotonic concession protocol for task-oriented domains. One possible strategy is
the Zeuthen strategy.Zeuthen strategy

The idea of the Zeuthen strategy is to measure an agent’s willingness to risk conflict.
Intuitively, an agent will be more willing to risk conflict if the difference in utility between
its current proposal and the conflict deal is low. In this case, the agent has little to lose if
negotiation fails and the conflict deal is implemented, and so is more willing to risk conflict,
and less willing to concede. In contrast, if the difference between the agent’s current proposal
and the conflict deal is high, then the agent has more to lose from conflict and is therefore
less willing to risk conflict—and thus more willing to concede.

Agent i’s willingness to risk conflict at round t, denoted riskt
i , is measured as follows:

riskt
i =

utility i loses by conceding and accepting j’s offer
utility i loses by not conceding and causing conflict

.

Until an agreement is reached, the value of riskt
i will be a value between 0 and 1. Higher

values of riskt
i (nearer to 1) indicate that i has less to lose from conflict, and so is more

willing to risk conflict.
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The Zeuthen strategy says that each agent’s first proposal should be a deal in the negoti-
ation set that maximizes its own utility (there may be more than one). After that, the agent
who should concede on round t of negotiation should be the one with the smaller value of
risk—the one with the most to lose from conflict if neither concedes.

The next question to answer is how much should be conceded? The answer provided by
the Zeuthen strategy is, “Just enough to change the balance of risk to the other agent.” That
is, an agent should make the smallest concession that will make the other agent concede on
the next round.

There is one final refinement to the Zeuthen strategy. Suppose that at some point both
agents have equal risk. Then, according to the strategy, both should concede. But, knowing
this, one agent could potentially “defect” by not conceding, and so benefit. To avoid the
possibility of both conceding at this point, we extend the strategy by having the agents “flip a
coin” to decide who should concede if ever an equal risk situation is reached.

With this strategy, agreement will be Pareto optimal and individually rational. However,
since the space of possible deals is exponential in the number of tasks, following this strategy
may require O(2|T |) computations of the cost function at each negotiation step. Finally, the
Zeuthen strategy (with the coin flipping rule) is in Nash equilibrium.

Summary

• Multiagent planning is necessary when there are other agents in the environment with
which to cooperate or compete. Joint plans can be constructed, but must be augmented
with some form of coordination if two agents are to agree on which joint plan to execute.

• Game theory describes rational behavior for agents in situations in which multiple
agents interact. Game theory is to multiagent decision making as decision theory is to
single-agent decision making.

• Solution concepts in game theory are intended to characterize rational outcomes of a
game—outcomes that might occur if every agent acted rationally.

• Non-cooperative game theory assumes that agents must make their decisions indepen-
dently. Nash equilibrium is the most important solution concept in non-cooperative
game theory. A Nash equilibrium is a strategy profile in which no agent has an incen-
tive to deviate from its specified strategy. We have techniques for dealing with repeated
games and sequential games.

• Cooperative game theory considers settings in which agents can make binding agree-
ments to form coalitions in order to cooperate. Solution concepts in cooperative game
attempt to formulate which coalitions are stable (the core) and how to fairly divide the
value that a coalition obtains (the Shapley value).

• Specialized techniques are available for certain important classes of multiagent deci-
sion: the contract net for task sharing; auctions are used to efficiently allocate scarce
resources; bargaining for reaching agreements on matters of common interest; and vot-
ing procedures for aggregating preferences.



636 Chapter 17 Multiagent Decision Making

Bibliographical and Historical Notes

It is a curiosity of the field that researchers in AI did not begin to seriously consider the issues
surrounding interacting agents until the 1980s—and the multiagent systems field did not re-
ally become established as a distinctive subdiscipline of AI until a decade later. Nevertheless,
ideas that hint at multiagent systems were present in the 1970s. For example, in his highly
influential Society of Mind theory, Marvin Minsky (1986, 2007) proposed that human minds
are constructed from an ensemble of agents. Doug Lenat had similar ideas in a framework
he called BEINGS (Lenat, 1975). In the 1970s, building on his PhD work on the PLANNER

system, Carl Hewitt proposed a model of computation as interacting agents called the ac-
tor model, which has become established as one of the fundamental models in concurrent
computation (Hewitt, 1977; Agha, 1986).

The prehistory of the multiagent systems field is thoroughly documented in a collection
of papers entitled Readings in Distributed Artificial Intelligence (Bond and Gasser, 1988).
The collection is prefaced with a detailed statement of the key research challenges in multi-
agent systems, which remains remarkably relevant today, more than thirty years after it was
written. Early research on multiagent systems tended to assume that all agents in a system
were acting with common interest, with a single designer. This is now recognized as a spe-
cial case of the more general multiagent setting—the special case is known as cooperative
distributed problem solving. A key system of this time was the Distributed Vehicle Moni-

Cooperative
distributed problem
solving toring Testbed (DVMT), developed under the supervision of Victor Lesser at the University

of Massachusetts (Lesser and Corkill, 1988). The DVMT modeled a scenario in which a col-
lection of geographically distributed acoustic sensor agents cooperate to track the movement
of vehicles.

The contemporary era of multiagent systems research began in the late 1980s, when it
was widely realized that agents with differing preferences are the norm in AI and society—
from this point on, game theory began to be established as the main methodology for studying
such agents.

Multiagent planning has leaped in popularity in recent years, although it does have a long
history. Konolige (1982) formalizes multiagent planning in first-order logic, while Pednault
(1986) gives a STRIPS-style description. The notion of joint intention, which is essential if
agents are to execute a joint plan, comes from work on communicative acts (Cohen and Per-
rault, 1979; Cohen and Levesque, 1990; Cohen et al., 1990). Boutilier and Brafman (2001)
show how to adapt partial-order planning to a multiactor setting. Brafman and Domshlak
(2008) devise a multiactor planning algorithm whose complexity grows only linearly with
the number of actors, provided that the degree of coupling (measured partly by the tree width
of the graph of interactions among agents) is bounded.

Multiagent planning is hardest when there are adversarial agents. As Jean-Paul Sartre
(1960) said, “In a football match, everything is complicated by the presence of the other
team.” General Dwight D. Eisenhower said, “In preparing for battle I have always found
that plans are useless, but planning is indispensable,” meaning that it is important to have a
conditional plan or policy, and not to expect an unconditional plan to succeed.

The topic of distributed and multiagent reinforcement learning (RL) was not covered in
this chapter but is of great current interest. In distributed RL, the aim is to devise methods by
which multiple, coordinated agents learn to optimize a common utility function. For example,
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can we devise methods whereby separate subagents for robot navigation and robot obstacle
avoidance could cooperatively achieve a combined control system that is globally optimal?
Some basic results in this direction have been obtained (Guestrin et al., 2002; Russell and
Zimdars, 2003). The basic idea is that each subagent learns its own Q-function (a kind of
utility function; see Section 23.3.3) from its own stream of rewards. For example, a robot-
navigation component can receive rewards for making progress towards the goal, while the
obstacle-avoidance component receives negative rewards for every collision. Each global
decision maximizes the sum of Q-functions and the whole process converges to globally
optimal solutions.

The roots of game theory can be traced back to proposals made in the 17th century by
Christiaan Huygens and Gottfried Leibniz to study competitive and cooperative human in-
teractions scientifically and mathematically. Throughout the 19th century, several leading
economists created simple mathematical examples to analyze particular examples of compet-
itive situations.

The first formal results in game theory are due to Zermelo (1913) (who had, the year
before, suggested a form of minimax search for games, albeit an incorrect one). Emile Borel
(1921) introduced the notion of a mixed strategy. John von Neumann (1928) proved that
every two-person, zero-sum game has a maximin equilibrium in mixed strategies and a well-
defined value. Von Neumann’s collaboration with the economist Oskar Morgenstern led to
the publication in 1944 of the Theory of Games and Economic Behavior, the defining book
for game theory. Publication of the book was delayed by the wartime paper shortage until a
member of the Rockefeller family personally subsidized its publication.

In 1950, at the age of 21, John Nash published his ideas concerning equilibria in general
(non-zero-sum) games. His definition of an equilibrium solution, although anticipated in the
work of Cournot (1838), became known as Nash equilibrium. After a long delay because
of the schizophrenia he suffered from 1959 onward, Nash was awarded the Nobel Memorial
Prize in Economics (along with Reinhart Selten and John Harsanyi) in 1994. The Bayes–Nash
equilibrium is described by Harsanyi (1967) and discussed by Kadane and Larkey (1982).
Some issues in the use of game theory for agent control are covered by Binmore (1982).
Aumann and Brandenburger (1995) show how different equilibria can be reached depending
on the knowleedge each player has.

The prisoner’s dilemma was invented as a classroom exercise by Albert W. Tucker in
1950 (based on an example by Merrill Flood and Melvin Dresher) and is covered extensively
by Axelrod (1985) and Poundstone (1993). Repeated games were introduced by Luce and
Raiffa (1957), and Abreu and Rubinstein (1988) discuss the use of finite state machines for
repeated games—technically, Moore machines. The text by Mailath and Samuelson (2006)
concentrates on repeated games.

Games of partial information in extensive form were introduced by Kuhn (1953). The
sequence form for partial-information games was invented by Romanovskii (1962) and inde-
pendently by Koller et al. (1996); the paper by Koller and Pfeffer (1997) provides a readable
introduction to the field and describes a system for representing and solving sequential games.

The use of abstraction to reduce a game tree to a size that can be solved with Koller’s
technique was introduced by Billings et al. (2003). Subsequently, improved methods for
equilibrium-finding enabled solution of abstractions with 1012 states (Gilpin et al., 2008;
Zinkevich et al., 2008). Bowling et al. (2008) show how to use importance sampling to
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get a better estimate of the value of a strategy. Waugh et al. (2009) found that the abstraction
approach is vulnerable to making systematic errors in approximating the equilibrium solution:
it works for some games but not others. Brown and Sandholm (2019) showed that, at least
in the case of multiplayer Texas hold ’em poker, these vulnerabilities can be overcome by
sufficient computing power. They used a 64-core server running for 8 days to compute a
baseline strategy for their Pluribus program. With that strategy they were able to defeat
human champion opponents.

Game theory and MDPs are combined in the theory of Markov games, also called stochas-
tic games (Littman, 1994; Hu and Wellman, 1998). Shapley (1953b) actually described the
value iteration algorithm independently of Bellman, but his results were not widely appre-
ciated, perhaps because they were presented in the context of Markov games. Evolutionary
game theory (Smith, 1982; Weibull, 1995) looks at strategy drift over time: if your opponent’s
strategy is changing, how should you react?

Textbooks on game theory from an economics point of view include those by Myerson
(1991), Fudenberg and Tirole (1991), Osborne (2004), and Osborne and Rubinstein (1994).
From an AI perspective we have Nisan et al. (2007) and Leyton-Brown and Shoham (2008).
See (Sandholm, 1999) for a useful survey of multiagent decision making.

Multiagent RL is distinguished from distributed RL by the presence of agents who cannot
coordinate their actions (except by explicit communicative acts) and who may not share the
same utility function. Thus, multiagent RL deals with sequential game-theoretic problems or
Markov games, as defined in Chapter 16. What causes problems is the fact that, while an
agent is learning to defeat its opponent’s policy, the opponent is changing its policy to defeat
the agent. Thus, the environment is nonstationary (see page 555).

Littman (1994) noted this difficulty when introducing the first RL algorithms for zero-
sum Markov games. Hu and Wellman (2003) present a Q-learning algorithm for general-
sum games that converges when the Nash equilibrium is unique; when there are multiple
equilibria, the notion of convergence is not so easy to define (Shoham et al., 2004).

Assistance games were introduced under the heading of cooperative inverse reinforce-
ment learning by Hadfield-Menell et al. (2017a). Malik et al. (2018) introduced an efficient
POMDP solver designed specifically for assistance games. They are related to principal–
agent games in economics, in which a principal (e.g., an employer) and an agent (e.g., anPrincipal–agent

game

employee) need to find a mutually beneficial arrangement despite having widely different
preferences. The primary differences are that (1) the robot has no preferences of its own, and
(2) the robot is uncertain about the human preferences it needs to optimize.

Cooperative games were first studied by von Neumann and Morgenstern (1944). The
notion of the core was introduced by Donald Gillies (1959), and the Shapley value by Lloyd
Shapley (1953a). A good introduction to the mathematics of cooperative games is Peleg and
Sudholter (2002). Simple games in general are discussed in detail by Taylor and Zwicker
(1999). For an introduction to the computational aspects of cooperative game theory, see
Chalkiadakis et al. (2011).

Many compact representation schemes for cooperative games have been developed over
the past three decades, starting with the work of Deng and Papadimitriou (1994). The most
influential of these schemes is the marginal contribution networks model, which was intro-
duced by Ieong and Shoham (2005). The approach to coalition formation that we describe
was developed by Sandholm et al. (1999); Rahwan et al. (2015) survey the state of the art.
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The contract net protocol was introduced by Reid Smith for his PhD work at Stanford
University in the late 1970s (Smith, 1980). The protocol seems to be so natural that it is reg-
ularly reinvented to the present day. The economic foundations of the protocol were studied
by Sandholm (1993).

Auctions and mechanism design have been mainstream topics in computer science and
AI for several decades: see Nisan (2007) for a mainstream computer science perspective,
Krishna (2002) for an introduction to the theory of auctions, and Cramton et al. (2006) for a
collection of articles on computational aspects of auctions.

The 2007 Nobel Memorial Prize in Economics went to Hurwicz, Maskin, and Myerson
“for having laid the foundations of mechanism design theory” (Hurwicz, 1973). The tragedy
of the commons, a motivating problem for the field, was analyzed by William Lloyd (1833)
but named and brought to public attention by Garrett Hardin (1968). Ronald Coase presented
a theorem that if resources are subject to private ownership and if transaction costs are low
enough, then the resources will be managed efficiently (Coase, 1960). He points out that,
in practice, transaction costs are high, so this theorem does not apply, and we should look
to other solutions beyond privatization and the marketplace. Elinor Ostrom’s Governing the
Commons (1990) described solutions for the problem based on placing management control
over the resources into the hands of the local people who have the most knowledge of the
situation. Both Coase and Ostrom won the Nobel Prize in economics for their work.

The revelation principle is due to Myerson (1986), and the revenue equivalence theorem
was developed independently by Myerson (1981) and Riley and Samuelson (1981). Two
economists, Milgrom (1997) and Klemperer (2002), write about the multibillion-dollar spec-
trum auctions they were involved in.

Mechanism design is used in multiagent planning (Hunsberger and Grosz, 2000; Stone
et al., 2009) and scheduling (Rassenti et al., 1982). Varian (1995) gives a brief overview
with connections to the computer science literature, and Rosenschein and Zlotkin (1994)
present a book-length treatment with applications to distributed AI. Related work on dis-
tributed AI goes under several names, including collective intelligence (Tumer and Wolpert,
2000; Segaran, 2007) and market-based control (Clearwater, 1996). Since 2001 there has
been an annual Trading Agents Competition (TAC), in which agents try to make the best
profit on a series of auctions (Wellman et al., 2001; Arunachalam and Sadeh, 2005).

The social choice literature is enormous, and spans the gulf from philosophical consid-
erations on the nature of democracy through to highly technical analyses of specific voting
procedures. Campbell and Kelly (2002) provide a good starting point for this literature. The
Handbook of Computational Social Choice provides a range of articles surveying research
topics and methods in this field (Brandt et al., 2016). Arrow’s theorem lists desired properties
of a voting system and proves that is impossible to achieve all of them (Arrow, 1951). Das-
gupta and Maskin (2008) show that majority rule (not plurality rule, and not ranked choice
voting) is the most robust voting system. The computational complexity of manipulating
elections was first studied by Bartholdi et al. (1989).

We have barely skimmed the surface of work on negotiation in multiagent planning.
Durfee and Lesser (1989) discuss how tasks can be shared out among agents by negotiation.
Kraus et al. (1991) describe a system for playing Diplomacy, a board game requiring negoti-
ation, coalition formation, and dishonesty. Stone (2000) shows how agents can cooperate as
teammates in the competitive, dynamic, partially observable environment of robotic soccer. In
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a later article, Stone (2003) analyzes two competitive multiagent environments—RoboCup,
a robotic soccer competition, and TAC, the auction-based Trading Agents Competition—
and finds that the computational intractability of our current theoretically well-founded ap-
proaches has led to many multiagent systems being designed by ad hoc methods. Sarit
Kraus has developed a number of agents that can negotiate with humans and other agents—
see Kraus (2001) for a survey. The monotonic concession protocol for automated negotiation
was proposed by Jeffrey S. Rosenschein and his students (Rosenschein and Zlotkin, 1994).
The alternating offers protocol was developed by Rubinstein (1982).

Books on multiagent systems include those by Weiss (2000a), Young (2004), Vlassis
(2008), Shoham and Leyton-Brown (2009), and Wooldridge (2009). The primary conference
for multiagent systems is the International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS); there is also a journal by the same name. The ACM Conference
on Electronic Commerce (EC) also publishes many relevant papers, particularly in the area of
auction algorithms. The principal journal for game theory is Games and Economic Behavior.



CHAPTER 18
PROBABILISTIC PROGRAMMING
In which we explain the idea of universal languages for probabilistic knowledge represen-
tation and inference in uncertain domains.

The spectrum of representations—atomic, factored, and structured—has been a persistent
theme in AI. For deterministic models, search algorithms assume only an atomic represen-
tation; CSPs and propositional logic provide factored representations; and first-order logic
and planning systems take advantage of structured representations. The expressive power
afforded by structured representations yields models that are vastly more concise than the
equivalent factored or atomic descriptions.

For probabilistic models, Bayesian networks as described in Chapters 13 and 14 are fac-
tored representations: the set of random variables is fixed and finite, and each has a fixed
range of possible values. This fact limits the applicability of Bayesian networks, because the
Bayesian network representation for a complex domain is simply too large. This makes it
infeasible to construct such representations by hand and infeasible to learn them from any
reasonable amount of data.

The problem of creating an expressive formal language for probabilistic information has
taxed some of the greatest minds in history, including Gottfried Leibniz (the co-inventor of
calculus), Jacob Bernoulli (discoverer of e, the calculus of variations, and the Law of Large
Numbers), Augustus De Morgan, George Boole, Charles Sanders Peirce (one of the principal
logicians of the 19th century), John Maynard Keynes (the leading economist of the 20th
century), and Rudolf Carnap (one of the greatest analytical philosophers of the 20th century).
The problem resisted these and many other efforts until the 1990s.

Thanks in part to the development of Bayesian networks, there are now mathematically
elegant and eminently practical formal languages that allow the creation of probabilistic mod-
els for very complex domains. These languages are universal in the same sense that Turing
machines are universal: they can represent any computable probability model, just as Turing
machines can represent any computable function. In addition, these languages come with
general-purpose inference algorithms, roughly analogous to sound and complete logical in-
ference algorithms such as resolution.

There are two routes to introducing expressive power into probability theory. The first
is via logic: to devise a language that defines probabilities over first-order possible worlds,
rather than the propositional possible worlds of Bayes nets. This route is covered in Sec-
tions 18.1 and 18.2, with Section 18.3 covering the specific case of temporal reasoning. The
second route is via traditional programming languages: we introduce stochastic elements—
random choices, for example—into such languages, and view programs as defining probabil-
ity distributions over their own execution traces. This approach is covered in Section 18.4.
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Figure 18.1 Top: Some members of the set of all possible worlds for a language with two
constant symbols, R and J, and one binary relation symbol, under the standard semantics for
first-order logic. Bottom: the possible worlds under database semantics. The interpretation
of the constant symbols is fixed, and there is a distinct object for each constant symbol.

Both routes lead to a probabilistic programming language (PPL). The first route leads
Probabilistic
programming
language (PPL)

to declarative PPLs, which bear roughly the same relationship to general PPLs as logic pro-
gramming (Chapter 9) does to general programming languages.

18.1 Relational Probability Models

Recall from Chapter 12 that a probability model defines a set Ω of possible worlds with
a probability P(ω) for each world ω. For Bayesian networks, the possible worlds are as-
signments of values to variables; for the Boolean case in particular, the possible worlds are
identical to those of propositional logic.

For a first-order probability model, then, it seems we need the possible worlds to be those
of first-order logic—that is, a set of objects with relations among them and an interpretation
that maps constant symbols to objects, predicate symbols to relations, and function symbols to
functions on those objects. (See Section 8.2.) The model also needs to define a probability for
each such possible world, just as a Bayesian network defines a probability for each assignment
of values to variables.

Let us suppose, for a moment, that we have figured out how to do this. Then, as usual
(see page 407), we can obtain the probability of any first-order logical sentence φ (phi) as a
sum over the possible worlds where it is true:

P(φ) = ∑
ω:φ is true in ω

P(ω) . (18.1)

Conditional probabilities P(φ |e) can be obtained similarly, so we can, in principle, ask any
question we want of our model—and get an answer. So far, so good.

There is, however, a problem: the set of first-order models is infinite. We saw this ex-
plicitly in Figure 8.4 on page 277, which we show again in Figure 18.1 (top). This means
that (1) the summation in Equation (18.1) could be infeasible, and (2) specifying a complete,
consistent distribution over an infinite set of worlds could be very difficult.
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Recommendation(C1, B1)

Honest(C1) Kindness(C1)

Quality(B1)

Recommendation(C1, B1)

Honest(C1) Kindness(C1)

Quality(B1)

Recommendation(C2, B1)

Honest(C2) Kindness(C2)

Quality(B2)

Recommendation(C1, B2) Recommendation(C2, B2)

(a) (b)

Figure 18.2 (a) Bayes net for a single customer C1 recommending a single book B1.
Honest(C1) is Boolean, while the other variables have integer values from 1 to 5. (b) Bayes
net with two customers and two books.

In this section, we avoid this issue by considering the database semantics defined in
Section 8.2.8 (page 282). The database semantics makes the unique names assumption—
here, we adopt it for the constant symbols. It also assumes domain closure—there are no
more objects beyond those that are named. We can then guarantee a finite set of possible
worlds by making the set of objects in each world be exactly the set of constant symbols that
are used; as shown in Figure 18.1 (bottom), there is no uncertainty about the mapping from
symbols to objects or about the objects that exist.

We will call models defined in this way relational probability models, or RPMs.1 The Relational
probability model

most significant difference between the semantics of RPMs and the database semantics intro-
duced in Section 8.2.8 is that RPMs do not make the closed-world assumption—in a proba-
bilistic reasoning system we can’t just assume that every unknown fact is false.

18.1.1 Syntax and semantics

Let us begin with a simple example: suppose that an online book retailer would like to pro-
vide overall evaluations of products based on recommendations received from its customers.
The evaluation will take the form of a posterior distribution over the quality of the book, given
the available evidence. The simplest solution is to base the evaluation on the average recom-
mendation, perhaps with a variance determined by the number of recommendations, but this
fails to take into account the fact that some customers are kinder than others and some are
less honest than others. Kind customers tend to give high recommendations even to fairly
mediocre books, while dishonest customers give very high or very low recommendations for
reasons other than quality—they might be paid to promote some publisher’s books.2

For a single customer C1 recommending a single book B1, the Bayes net might look like
the one shown in Figure 18.2(a). (Just as in Section 9.1, expressions with parentheses such
as Honest(C1) are just fancy symbols—in this case, fancy names for random variables.) With

1 The name relational probability model was given by Pfeffer (2000) to a slightly different representation, but
the underlying ideas are the same.
2 A game theorist would advise a dishonest customer to avoid detection by occasionally recommending a good
book from a competitor. See Chapter 17.
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two customers and two books, the Bayes net looks like the one in Figure 18.2(b). For larger
numbers of books and customers, it is quite impractical to specify a Bayes net by hand.

Fortunately, the network has a lot of repeated structure. Each Recommendation(c,b) vari-
able has as its parents the variables Honest(c), Kindness(c), and Quality(b). Moreover, the
conditional probability tables (CPTs) for all the Recommendation(c,b) variables are identi-
cal, as are those for all the Honest(c) variables, and so on. The situation seems tailor-made
for a first-order language. We would like to say something like

Recommendation(c,b)∼ RecCPT(Honest(c),Kindness(c),Quality(b))

which means that a customer’s recommendation for a book depends probabilistically on the
customer’s honesty and kindness and the book’s quality according to a fixed CPT.

Like first-order logic, RPMs have constant, function, and predicate symbols. We will also
assume a type signature for each function—that is, a specification of the type of each argu-Type signature

ment and the function’s value. (If the type of each object is known, many spurious possible
worlds are eliminated by this mechanism; for example, we need not worry about the kindness
of each book, books recommending customers, and so on.) For the book-recommendation
domain, the types are Customer and Book, and the type signatures for the functions and pred-
icates are as follows:

Honest : Customer→{true, false}
Kindness : Customer→{1,2,3,4,5}
Quality : Book→{1,2,3,4,5}
Recommendation : Customer×Book→{1,2,3,4,5}

The constant symbols will be whatever customer and book names appear in the retailer’s data
set. In the example given in Figure 18.2(b), these were C1, C2 and B1, B2.

Given the constants and their types, together with the functions and their type signatures,
the basic random variables of the RPM are obtained by instantiating each function withBasic random

variable
each possible combination of objects. For the book recommendation model, the basic random
variables include Honest(C1), Quality(B2), Recommendation(C1,B2), and so on. These are
exactly the variables appearing in Figure 18.2(b). Because each type has only finitely many
instances (thanks to the domain closure assumption), the number of basic random variables
is also finite.

To complete the RPM, we have to write the dependencies that govern these random vari-
ables. There is one dependency statement for each function, where each argument of the
function is a logical variable (i.e., a variable that ranges over objects, as in first-order logic).
For example, the following dependency states that, for every customer c, the prior probability
of honesty is 0.99 true and 0.01 false:

Honest(c)∼ 〈0.99,0.01〉
Similarly, we can state prior probabilities for the kindness value of each customer and the
quality of each book, each on the 1–5 scale:

Kindness(c)∼ 〈0.1,0.1,0.2,0.3,0.3〉
Quality(b)∼ 〈0.05,0.2,0.4,0.2,0.15〉

Finally, we need the dependency for recommendations: for any customer c and book b, the
score depends on the honesty and kindness of the customer and the quality of the book:

Recommendation(c,b)∼ RecCPT(Honest(c),Kindness(c),Quality(b))



Section 18.1 Relational Probability Models 645

where RecCPT is a separately defined conditional probability table with 2×5×5=50 rows,
each with 5 entries. For the purposes of illustration, we’ll assume that an honest recommen-
dation for a book of quality q from a person of kindness k is uniformly distributed in the range
[bq+k

2 c,d
q+k

2 e].
The semantics of the RPM can be obtained by instantiating these dependencies for all

known constants, giving a Bayesian network (as in Figure 18.2(b)) that defines a joint distri-
bution over the RPM’s random variables.3

The set of possible worlds is the Cartesian product of the ranges of all the basic ran-
dom variables, and, as with Bayesian networks, the probability for each possible world is
the product of the relevant conditional probabilities from the model. With C customers and
B books, there are C Honest variables, C Kindness variables, B Quality variables, and BC
Recommendation variables, leading to 2C5C+B+BC possible worlds. With ten million books
and a billion customers, that’s about 107×1015

worlds. Thanks to the expressive power of
RPMs, the complete probability model still has only fewer than 300 parameters—most of
them in the RecCPT table.

We can refine the model by asserting a context-specific independence (see page 438) to
reflect the fact that dishonest customers ignore quality when giving a recommendation; more-
over, kindness plays no role in their decisions. Thus, Recommendation(c,b) is independent
of Kindness(c) and Quality(b) when Honest(c)= false:

Recommendation(c,b)∼ if Honest(c) then
HonestRecCPT(Kindness(c),Quality(b))

else 〈0.4,0.1,0.0,0.1,0.4〉 .
This kind of dependency may look like an ordinary if–then–else statement in a programming
language, but there is a key difference: the inference engine doesn’t necessarily know the
value of the conditional test because Honest(c) is a random variable.

We can elaborate this model in endless ways to make it more realistic. For example,
suppose that an honest customer who is a fan of a book’s author always gives the book a 5,
regardless of quality:

Recommendation(c,b)∼ if Honest(c) then
if Fan(c,Author(b)) then Exactly(5)
else HonestRecCPT(Kindness(c),Quality(b))

else 〈0.4,0.1,0.0,0.1,0.4〉
Again, the conditional test Fan(c,Author(b)) is unknown, but if a customer gives only 5s to a
particular author’s books and is not otherwise especially kind, then the posterior probability
that the customer is a fan of that author will be high. Furthermore, the posterior distribution
will tend to discount the customer’s 5s in evaluating the quality of that author’s books.

In this example, we implicitly assumed that the value of Author(b) is known for every
b, but this may not be the case. How can the system reason about whether, say, C1 is a fan
of Author(B2) when Author(B2) is unknown? The answer is that the system may have to
reason about all possible authors. Suppose (to keep things simple) that there are just two

3 Some technical conditions are required for an RPM to define a proper distribution. First, the dependencies must
be acyclic; otherwise the resulting Bayesian network will have cycles. Second, the dependencies must (usually)
be well-founded: there can be no infinite ancestor chains, such as might arise from recursive dependencies. See
Exercise 18.HAMD for an exception to this rule.
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Recommendation(C1, B1)

Honest(C1) Kindness(C1)Quality(B1)

Recommendation(C1, B2)

Quality(B2)

Fan(C1, A1) Fan(C1, A2) Author(B2)

Figure 18.3 Fragment of the equivalent Bayes net for the book recommendation RPM when
Author(B2) is unknown.

authors, A1 and A2. Then Author(B2) is a random variable with two possible values, A1 and
A2, and it is a parent of Recommendation(C1,B2). The variables Fan(C1,A1) and Fan(C1,A2)
are parents too. The conditional distribution for Recommendation(C1,B2) is then essentially a
multiplexer in which the Author(B2) parent acts as a selector to choose which of Fan(C1,A1)Multiplexer

and Fan(C1,A2) actually gets to influence the recommendation. A fragment of the equivalent
Bayes net is shown in Figure 18.3. Uncertainty in the value of Author(B2), which affects the
dependency structure of the network, is an instance of relational uncertainty.Relational

uncertainty

In case you are wondering how the system can possibly work out who the author of B2 is:
consider the possibility that three other customers are fans of A1 (and have no other favorite
authors in common) and all three have given B2 a 5, even though most other customers find
it quite dismal. In that case, it is extremely likely that A1 is the author of B2. The emergence
of sophisticated reasoning like this from an RPM model of just a few lines is an intriguing
example of how probabilistic influences spread through the web of interconnections among
objects in the model. As more dependencies and more objects are added, the picture conveyed
by the posterior distribution often becomes clearer and clearer.

18.1.2 Example: Rating player skill levels

Many competitive games have a numerical measure of players’ skill levels, sometimes called
a rating. Perhaps the best-known is the Elo rating for chess players, which rates a typical be-Rating

ginner at around 800 and the world champion usually somewhere above 2800. Although Elo
ratings have a statistical basis, they have some ad hoc elements. We can develop a Bayesian
rating scheme as follows: each player i has an underlying skill level Skill(i); in each game g,
i’s actual performance is Performance(i,g), which may vary from the underlying skill level;
and the winner of g is the player whose performance in g is better. As an RPM, the model
looks like this:

Skill(i)∼N (µ,σ2)
Performance(i,g)∼N (Skill(i),β2)
Win(i, j,g) = if Game(g, i, j) then (Performance(i,g)> Performance( j,g))

where β2 is the variance of a player’s actual performance in any specific game relative to the
player’s underlying skill level. Given a set of players and games, as well as outcomes for
some of the games, an RPM inference engine can compute a posterior distribution over the
skill of each player and the probable outcome of any additional game that might be played.
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For team games, we’ll assume, as a first approximation, that the overall performance of
team t in game g is the sum of the individual performances of the players on t:

TeamPerformance(t,g) = ∑i∈t Performance(i,g) .

Even though the individual performances are not visible to the ratings engine, the players’
skill levels can still be estimated from the results of several games, as long as the team com-
positions vary across games. Microsoft’s TrueSkillTM ratings engine uses this model, along
with an efficient approximate inference algorithm, to serve hundreds of millions of users
every day.

This model can be elaborated in numerous ways. For example, we might assume that
weaker players have higher variance in their performance; we might include the player’s role
on the team; and we might consider specific kinds of performance and skill—e.g., defending
and attacking—in order to improve team composition and predictive accuracy.

18.1.3 Inference in relational probability models

The most straightforward approach to inference in RPMs is simply to construct the equivalent
Bayesian network, given the known constant symbols belonging to each type. With B books
and C customers, the basic model given previously could be constructed with simple loops:4

for b = 1 to B do
add node Qualityb with no parents, prior 〈 0.05,0.2,0.4,0.2,0.15 〉

for c = 1 to C do
add node Honestc with no parents, prior 〈 0.99,0.01 〉
add node Kindnessc with no parents, prior 〈 0.1,0.1,0.2,0.3,0.3 〉
for b = 1 to B do

add node Recommendationc,b with parents Honestc,Kindnessc,Qualityb
and conditional distribution RecCPT(Honestc,Kindnessc,Qualityb)

This technique is called grounding or unrolling; it is the exact analog of propositionaliza- Grounding

Unrollingtion for first-order logic (page 298). The obvious drawback is that the resulting Bayes net
may be very large. Furthermore, if there are many candidate objects for an unknown relation
or function—for example, the unknown author of B2—then some variables in the network
may have many parents.

Fortunately, it is often possible to avoid generating the entire implicit Bayes net. As we
saw in the discussion of the variable elimination algorithm on page 451, every variable that is
not an ancestor of a query variable or evidence variable is irrelevant to the query. Moreover, if
the query is conditionally independent of some variable given the evidence, then that variable
is also irrelevant. So, by chaining through the model starting from the query and evidence,
we can identify just the set of variables that are relevant to the query. These are the only ones
that need to be instantiated to create a potentially tiny fragment of the implicit Bayes net.
Inference in this fragment gives the same answer as inference in the entire implicit Bayes net.

Another avenue for improving the efficiency of inference comes from the presence of re-
peated substructure in the unrolled Bayes net. This means that many of the factors constructed
during variable elimination (and similar kinds of tables constructed by clustering algorithms)

4 Several statistical packages would view this code as defining the RPM, rather than just constructing a Bayes
net to perform inference in the RPM. This view, however, misses an important role for RPM syntax: without a
syntax with clear semantics, there is no way the model structure can be learned from data.
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will be identical; effective caching schemes have yielded speedups of three orders of magni-
tude for large networks.

Third, MCMC inference algorithms have some interesting properties when applied to
RPMs with relational uncertainty. MCMC works by sampling complete possible worlds,
so in each state the relational structure is completely known. In the example given earlier,
each MCMC state would specify the value of Author(B2), and so the other potential authors
are no longer parents of the recommendation nodes for B2. For MCMC, then, relational
uncertainty causes no increase in network complexity; instead, the MCMC process includes
transitions that change the relational structure, and hence the dependency structure, of the
unrolled network.

Finally, it may be possible in some cases to avoid grounding the model altogether. Reso-
lution theorem provers and logic programming systems avoid propositionalizing by instanti-
ating the logical variables only as needed to make the inference go through; that is, they lift
the inference process above the level of ground propositional sentences and make each lifted
step do the work of many ground steps.

The same idea can be applied in probabilistic inference. For example, in the variable
elimination algorithm, a lifted factor can represent an entire set of ground factors that assign
probabilities to random variables in the RPM, where those random variables differ only in the
constant symbols used to construct them. The details of this method are beyond the scope of
this book, but references are given at the end of the chapter.

18.2 Open-Universe Probability Models

We argued earlier that database semantics was appropriate for situations in which we know
exactly the set of relevant objects that exist and can identify them unambiguously. (In partic-
ular, all observations about an object are correctly associated with the constant symbol that
names it.) In many real-world settings, however, these assumptions are simply untenable.
For example, a book retailer might use an ISBN (International Standard Book Number) as a
constant symbol to name each book, even though a given “logical” book (e.g., “Gone With
the Wind”) may have several ISBNs corresponding to hardcover, paperback, large print, reis-
sues, and so on. It would make sense to aggregate recommendations across multiple ISBNs,
but the retailer may not know for sure which ISBNs are really the same book. (Note that we
are not reifying the individual copies of the book, which might be necessary for used-book
sales, car sales, and so on.) Worse still, each customer is identified by a login ID, but a dis-
honest customer may have thousands of IDs! In the computer security field, these multiple
IDs are called sybils and their use to confound a reputation system is called a sybil attack.5Sybil

Sybil attack Thus, even a simple application in a relatively well-defined, online domain involves both ex-
istence uncertainty (what are the real books and customers underlying the observed data)Existence

uncertainty

and identity uncertainty (which logical terms really refer to the same object).Identity uncertainty

The phenomena of existence and identity uncertainty extend far beyond online book-
sellers. In fact they are pervasive:

• A vision system doesn’t know what exists, if anything, around the next corner, and may
not know if the object it sees now is the same one it saw a few minutes ago.

5 The name “Sybil” comes from a famous case of multiple personality disorder.
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• A text-understanding system does not know in advance the entities that will be featured
in a text, and must reason about whether phrases such as “Mary,” “Dr. Smith,” “she,”
“his cardiologist,” “his mother,” and so on refer to the same object.

• An intelligence analyst hunting for spies never knows how many spies there really are
and can only guess whether various pseudonyms, phone numbers, and sightings belong
to the same individual.

Indeed, a major part of human cognition seems to require learning what objects exist and
being able to connect observations—which almost never come with unique IDs attached—to
hypothesized objects in the world.

Thus, we need to be able to define an open universe probability model (OUPM) based
Open universe
probability model
(OUPM)on the standard semantics of first-order logic, as illustrated at the top of Figure 18.1. A

language for OUPMs provides a way of easily writing such models while guaranteeing a
unique, consistent probability distribution over the infinite space of possible worlds.

18.2.1 Syntax and semantics

The basic idea is to understand how ordinary Bayesian networks and RPMs manage to define
a unique probability model and to transfer that insight to the first-order setting. In essence,
a Bayes net generates each possible world, event by event, in the topological order defined
by the network structure, where each event is an assignment of a value to a variable. An
RPM extends this to entire sets of events, defined by the possible instantiations of the logical
variables in a given predicate or function. OUPMs go further by allowing generative steps that
add objects to the possible world under construction, where the number and type of objects
may depend on the objects that are already in that world and their properties and relations.
That is, the event being generated is not the assignment of a value to a variable, but the very
existence of objects.

One way to do this in OUPMs is to provide number statements that specify condi- Number statement

tional distributions over the numbers of objects of various kinds. For example, in the book-
recommendation domain, we might want to distinguish between customers (real people) and
their login IDs. (It’s actually login IDs that make recommendations, not customers!) Suppose
(to keep things simple) the number of customers is uniform between 1 and 3 and the number
of books is uniform between 2 and 4:

#Customer ∼ UniformInt(1,3)

#Book ∼ UniformInt(2,4) . (18.2)

We expect honest customers to have just one ID, whereas dishonest customers might have
anywhere between 2 and 5 IDs:

#LoginID(Owner=c)∼ if Honest(c) then Exactly(1)

else UniformInt(2,5) . (18.3)

This number statement specifies the distribution over the number of login IDs for which
customer c is the Owner. The Owner function is called an origin function because it says Origin function

where each object generated by this number statement came from.
The example in the preceding paragraph uses a uniform distribution over the integers

between 2 and 5 to specify the number of logins for a dishonest customer. This particular
distribution is bounded, but in general there may not be an a priori bound on the number of
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objects. The most commonly used distribution over the nonnegative integers is the Poisson
distribution. The Poisson has one parameter, λ, which is the expected number of objects,Poisson distribution

and a variable X sampled from Poisson(λ) has the following distribution:

P(X =k) = λke−λ/k! .

The variance of the Poisson is also λ, so the standard deviation is
√
λ. This means that

for large values of λ, the distribution is narrow relative to the mean—for example, if the
number of ants in a nest is modeled by a Poisson with a mean of one million, the standard
deviation is only a thousand, or 0.1%. For large numbers, it often makes more sense to use
the discrete log-normal distribution, which is appropriate when the log of the number ofDiscrete log-normal

distribution
objects is normally distributed. A particularly intuitive form, which we call the order-of-
magnitude distribution, uses logs to base 10: thus, a distribution OM(3,1) has a mean ofOrder-of-magnitude

distribution
103 and a standard deviation of one order of magnitude, i.e., the bulk of the probability mass
falls between 102 and 104.

The formal semantics of OUPMs begins with a definition of the objects that populate
possible worlds. In the standard semantics of typed first-order logic, objects are just num-
bered tokens with types. In OUPMs, each object is a generation history; for example, an
object might be “the fourth login ID of the seventh customer.” (The reason for this slightly
baroque construction will become clear shortly.) For types with no origin functions—e.g.,
the Customer and Book types in Equation (18.2)—the objects have an empty origin; for ex-
ample, 〈Customer, ,2〉 refers to the second customer generated from that number statement.
For number statements with origin functions—e.g., Equation (18.3)—each object records its
origin; for example, the object 〈LoginID,〈Owner,〈Customer, ,2〉〉,3〉 is the third login be-
longing to the second customer.

The number variables of an OUPM specify how many objects there are of each type withNumber variable

each possible origin in each possible world; thus #LoginID〈Owner,〈Customer, ,2〉〉(ω)=4 means
that in world ω, customer 2 owns 4 login IDs. As in relational probability models, the basic
random variables determine the values of predicates and functions for all tuples of objects;
thus, Honest〈Customer, ,2〉(ω)= true means that in world ω, customer 2 is honest. A possible
world is defined by the values of all the number variables and basic random variables. A
world may be generated from the model by sampling in topological order; Figure 18.4 shows
an example. The probability of a world so constructed is the product of the probabilities
for all the sampled values; in this case, 1.2672×10−11. Now it becomes clear why each
object contains its origin: this property ensures that every world can be constructed by exactly
one generation sequence. If this were not the case, the probability of a world would be an
unwieldy combinatorial sum over all possible generation sequences that create it.

Open-universe models may have infinitely many random variables, so the full theory in-
volves nontrivial measure-theoretic considerations. For example, number statements with
Poisson or order-of-magnitude distributions allow for unbounded numbers of objects, lead-
ing to unbounded numbers of random variables for the properties and relations of those ob-
jects. Moreover, OUPMs can have recursive dependencies and infinite types (integers, strings,
etc.). Finally, well-formedness disallows cyclic dependencies and infinitely receding ancestor
chains; these conditions are undecidable in general, but certain syntactic sufficient conditions
can be checked easily.
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Variable Value Probability
#Customer 2 0.3333
#Book 3 0.3333
Honest〈Customer, ,1〉 true 0.99
Honest〈Customer, ,2〉 false 0.01
Kindness〈Customer, ,1〉 4 0.3
Kindness〈Customer, ,2〉 1 0.1
Quality〈Book, ,1〉 1 0.05
Quality〈Book, ,2〉 3 0.4
Quality〈Book, ,3〉 5 0.15
#LoginID〈Owner,〈Customer, ,1〉〉 1 1.0
#LoginID〈Owner,〈Customer, ,2〉〉 2 0.25
Recommendation〈LoginID,〈Owner,〈Customer, ,1〉〉,1〉,〈Book, ,1〉 2 0.5
Recommendation〈LoginID,〈Owner,〈Customer, ,1〉〉,1〉,〈Book, ,2〉 4 0.5
Recommendation〈LoginID,〈Owner,〈Customer, ,1〉〉,1〉,〈Book, ,3〉 5 0.5
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,1〉,〈Book, ,1〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,1〉,〈Book, ,2〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,1〉,〈Book, ,3〉 1 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,2〉,〈Book, ,1〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,2〉,〈Book, ,2〉 5 0.4
Recommendation〈LoginID,〈Owner,〈Customer, ,2〉〉,2〉,〈Book, ,3〉 1 0.4

Figure 18.4 One particular world for the book recommendation OUPM. The number vari-
ables and basic random variables are shown in topological order, along with their chosen
values and the probabilities for those values.

18.2.2 Inference in open-universe probability models

Because of the potentially huge and sometimes unbounded size of the implicit Bayes net that
corresponds to a typical OUPM, unrolling it fully and performing exact inference is quite
impractical. Instead, we must consider approximate inference algorithms such as MCMC
(see Section 13.4.2).

Roughly speaking, an MCMC algorithm for an OUPM is exploring the space of possible
worlds defined by sets of objects and relations among them, as illustrated in Figure 18.1(top).
A move between adjacent states in this space can not only alter relations and functions but
also add or subtract objects and change the interpretations of constant symbols. Even though
each possible world may be huge, the probability computations required for each step—
whether in Gibbs sampling or Metropolis–Hastings—are entirely local and in most cases
take constant time. This is because the probability ratio between neighboring worlds depends
on a subgraph of constant size around the variables whose values are changed. Moreover, a
logical query can be evaluated incrementally in each world visited, usually in constant time
per world, rather than being recomputing from scratch.

Some special consideration needs to be given to the fact that a typical OUPM may have
possible worlds of infinite size. As an example, consider the multitarget tracking model in
Figure 18.9: the function X(a, t), denoting the state of aircraft a at time t, corresponds to
an infinite sequence of variables for an unbounded number of aircraft at each step. For this
reason, MCMC for OUPMs samples not completely specified possible worlds but partial



652 Chapter 18 Probabilistic Programming

worlds, each corresponding to a disjoint set of complete worlds. A partial world is a minimal
self-supporting instantiation6 of a subset of the relevant variables—that is, ancestors of the
evidence and query variables. For example, variables X(a, t) for values of t greater than the
last observation time (or the query time, whichever is greater) are irrelevant, so the algorithm
can consider just a finite prefix of the infinite sequence.

18.2.3 Examples

The standard “use case” for an OUPM has three elements: the model, the evidence (the
known facts in a given scenario), and the query, which may be any expression, possibly
with free logical variables. The answer is a posterior joint probability for each possible set
of substitutions for the free variables, given the evidence, according to the model.7 Every
model includes type declarations, type signatures for the predicates and functions, one or
more number statements for each type, and one dependency statement for each predicate and
function. (In the examples below, declarations and signatures are omitted where the meaning
is clear.) As in RPMs, dependency statements use an if-then-else syntax to handle context-
specific dependencies.

Citation matching

Millions of academic research papers and technical reports are to be found online in the
form of pdf files. Such papers usually contain a section near the end called “References” or
“Bibliography,” in which citations—strings of characters—are provided to inform the reader
of related work. These strings can be located and “scraped” from the pdf files with the aim of
creating a database-like representation that relates papers and researchers by authorship and
citation links. Systems such as CiteSeer and Google Scholar present such a representation to
their users; behind the scenes, algorithms operate to find papers, scrape the citation strings,
and identify the actual papers to which the citation strings refer. This is a difficult task because
these strings contain no object identifiers and include errors of syntax, spelling, punctuation,
and content. To illustrate this, here are two relatively benign examples:

1. [Lashkari et al 94] Collaborative Interface Agents, Yezdi Lashkari, Max Metral, and
Pattie Maes, Proceedings of the Twelfth National Conference on Articial Intelligence,
MIT Press, Cambridge, MA, 1994.

2. Metral M. Lashkari, Y. and P. Maes. Collaborative interface agents. In Conference of
the American Association for Artificial Intelligence, Seattle, WA, August 1994.

The key question is one of identity: are these citations of the same paper or different pa-
pers? Asked this question, even experts disagree or are unwilling to decide, indicating that
reasoning under uncertainty is going to be an important part of solving this problem.8 Ad hoc
approaches—such as methods based on a textual similarity metric—often fail miserably. For
example, in 2002, CiteSeer reported over 120 distinct books written by Russell and Norvig.

6 A self-supporting instantiation of a set of variables is one in which the parents of every variable in the set are
also in the set.
7 As with Prolog, there may be infinitely many sets of substitutions of unbounded size; designing exploratory
interfaces for such answers is an interesting visualization challenge.
8 The answer is yes, they are the same paper. The “National Conference on Articial Intelligence” (notice how
the “fi” is missing, thanks to an error in scraping the ligature character) is another name for the AAAI conference;
the conference took place in Seattle whereas the proceedings publisher is in Cambridge.
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type Researcher, Paper, Citation
random String Name(Researcher)
random String Title(Paper)
random Paper PubCited(Citation)
random String Text(Citation)
random Boolean Professor(Researcher)
origin Researcher Author(Paper)

#Researcher ∼ OM(3,1)
Name(r) ∼ NamePrior()
Professor(r) ∼ Boolean(0.2)
#Paper(Author= r) ∼ if Professor(r) then OM(1.5,0.5) else OM(1,0.5)
Title(p) ∼ PaperTitlePrior()
CitedPaper(c) ∼ UniformChoice({Paper p})
Text(c) ∼ HMMGrammar(Name(Author(CitedPaper(c))),Title(CitedPaper(c)))

Figure 18.5 An OUPM for citation information extraction. For simplicity the model assumes
one author per paper and omits details of the grammar and error models.

In order to solve the problem using a probabilistic approach, we need a generative model
for the domain. That is, we ask how these citation strings come to be in the world. The
process begins with researchers, who have names. (We don’t need to worry about how the
researchers came into existence; we just need to express our uncertainty about how many
there are.) These researchers write some papers, which have titles; people cite the papers,
combining the authors’ names and the paper’s title (with errors) into the text of the citation
according to some grammar. The basic elements of this model are shown in Figure 18.5,
covering the case where papers have just one author.9

Given just citation strings as evidence, probabilistic inference on this model to pick
out the most likely explanation for the data produces an error rate 2 to 3 times lower than
CiteSeer’s (Pasula et al., 2003). The inference process also exhibits a form of collective,
knowledge-driven disambiguation: the more citations for a given paper, the more accurately
each of them is parsed, because the parses have to agree on the facts about the paper.

Nuclear treaty monitoring

Verifying the Comprehensive Nuclear-Test-Ban Treaty requires finding all seismic events on
Earth above a minimum magnitude. The UN CTBTO maintains a network of sensors, the
International Monitoring System (IMS); its automated processing software, based on 100
years of seismology research, has a detection failure rate of about 30%. The NET-VISA
system (Arora et al., 2013), based on an OUPM, significantly reduces detection failures.

The NET-VISA model (Figure 18.6) expresses the relevant geophysics directly. It de-
scribes distributions over the number of events in a given time interval (most of which are

9 The multi-author case has the same overall structure but is a bit more complicated. The parts of the model
not shown—the NamePrior, rTitlePrior, and HMMGrammar—are traditional probability models. For exam-
ple, the NamePrior is a mixture of a categorical distribution over actual names and a letter trigram model (see
Section 24.1) to cover names not previously seen, both trained from data in the U.S. Census database.
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#SeismicEvents ∼ Poisson(T ∗λe)
Time(e) ∼ UniformReal(0,T )
EarthQuake(e) ∼ Boolean(0.999)
Location(e) ∼ if Earthquake(e) then SpatialPrior() else UniformEarth()
Depth(e) ∼ if Earthquake(e) then UniformReal(0,700) else Exactly(0)
Magnitude(e) ∼ Exponential(log(10))
Detected(e, p,s) ∼ Logistic(weights(s, p),Magnitude(e), Depth(e), Dist(e,s))
#Detections(site = s) ∼ Poisson(T ∗λ f (s))
#Detections(event=e, phase=p, station=s) = if Detected(e, p,s) then 1 else 0
OnsetTime(a,s) if (event(a) = null) then ∼ UniformReal(0,T )

else = Time(event(a)) + GeoTT(Dist(event(a),s),Depth(event(a)),phase(a))
+ Laplace(µt(s),σt(s))

Amplitude(a,s) if (event(a) = null) then ∼ NoiseAmpModel(s)
else = AmpModel(Magnitude(event(a)),Dist(event(a),s),Depth(event(a)),phase(a))

Azimuth(a,s) if (event(a) = null) then ∼ UniformReal(0, 360)
else = GeoAzimuth(Location(event(a)),Depth(event(a)),phase(a),Site(s))

+ Laplace(0,σa(s))
Slowness(a,s) if (event(a) = null) then ∼ UniformReal(0,20)

else = GeoSlowness(Location(event(a)),Depth(event(a)),phase(a),Site(s))
+ Laplace(0,σs(s))

ObservedPhase(a,s) ∼ CategoricalPhaseModel(phase(a))

Figure 18.6 A simplified version of the NET-VISA model (see text).

naturally occurring) as well as over their time, magnitude, depth, and location. The locations
of natural events are distributed according to a spatial prior that is trained (like other parts
of the model) from historical data; man-made events are, by the treaty rules, assumed to oc-
cur uniformly over the surface of the Earth. At every station s, each phase (seismic wave
type) p from an event e produces either 0 or 1 detections (above-threshold signals); the detec-
tion probability depends on the event magnitude and depth and its distance from the station.
“False alarm” detections also occur according to a station-specific rate parameter. The mea-
sured arrival time, amplitude, and other properties of a detection d from a real event depend
on the properties of the originating event and its distance from the station.

Once trained, the model runs continuously. The evidence consists of detections (90% of
which are false alarms) extracted from raw IMS waveform data, and the query typically asks
for the most likely event history, or bulletin, given the data. Results so far are encouraging;
for example, in 2009 the UN’s SEL3 automated bulletin missed 27.4% of the 27294 events
in the magnitude range 3–4 while NET-VISA missed 11.1%. Moreover, comparisons with
dense regional networks show that NET-VISA finds up to 50% more real events than the
final bulletins produced by the UN’s expert seismic analysts. NET-VISA also tends to as-
sociate more detections with a given event, leading to more accurate location estimates (see
Figure 18.7). As of January 1, 2018, NET-VISA has been deployed as part of the CTBTO
monitoring pipeline.

Despite superficial differences, the two examples are structurally similar: there are un-
known objects (papers, earthquakes) that generate percepts according to some physical pro-
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Figure 18.7 (a) Top: Example of seismic waveform recorded at Alice Springs, Australia.
Bottom: the waveform after processing to detect the arrival times of seismic waves. Blue lines
are the automatically detected arrivals; red lines are the true arrivals. (b) Location estimates
for the DPRK nuclear test of February 12, 2013: UN CTBTO Late Event Bulletin (green
triangle at top left); NET-VISA (blue square in center). The entrance to the underground
test facility (small “x”) is 0.75km from NET-VISA’s estimate. Contours show NET-VISA’s
posterior location distribution. Courtesy of CTBTO Preparatory Commission.

cess (citation, seismic propagation). The percepts are ambiguous as to their origin, but when
multiple percepts are hypothesized to have originated with the same unknown object, that
object’s properties can be inferred more accurately.

The same structure and reasoning patterns hold for areas such as database deduplication
and natural language understanding. In some cases, inferring an object’s existence involves
grouping percepts together—a process that resembles the clustering task in machine learning.
In other cases, an object may generate no percepts at all and still have its existence inferred—
as happened, for example, when observations of Uranus led to the discovery of Neptune. The
existence of the unobserved object follows from its effects on the behavior and properties of
observed objects.

18.3 Keeping Track of a Complex World

Chapter 14 considered the problem of keeping track of the state of the world, but covered
only the case of atomic representations (HMMs) and factored representations (DBNs and
Kalman filters). This makes sense for worlds with a single object—perhaps a single patient
in the intensive care unit or a single bird flying through the forest. In this section, we see what
happens when two or more objects generate the observations. What makes this case different
from plain old state estimation is that there is now the possibility of uncertainty about which
object generated which observation. This is the identity uncertainty problem of Section 18.2
(page 648), now viewed in a temporal context. In the control theory literature, this is the data
association problem—that is, the problem of associating observation data with the objects Data association

that generated them. Although we could view this as yet another example of open-universe
probabilistic modeling, it is important enough in practice to deserve its own section.
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Figure 18.8 (a) Observations made of object locations in 2D space over five time steps. Each
observation blip is labeled with the time step but does not identify the object that produced it.
(b–c) Possible hypotheses about the underlying object tracks. (d) A hypothesis for the case
in which false alarms, detection failures, and track initiation/termination are possible.

18.3.1 Example: Multitarget tracking

The data association problem was studied originally in the context of radar tracking of mul-
tiple targets, where reflected pulses are detected at fixed time intervals by a rotating radar
antenna. At each time step, multiple blips may appear on the screen, but there is no direct
observation of which blips at time t correspond to which blips at time t− 1. Figure 18.8(a)
shows a simple example with two blips per time step for five steps. Each blip is labeled with
its time step but lacks any identifying information.

Let us assume, for the time being, that we know there are exactly two aircraft, A1 and
A2, generating the blips. In the terminology of OUPMs, A1 and A2 are guaranteed objects,Guaranteed object

meaning that they are guaranteed to exist and to be distinct; moreover, in this case, there
are no other objects. (In other words, as far as aircraft are concerned, this scenario matches
the database semantics that is assumed in RPMs.) Let their true positions be X(A1, t) and
X(A2, t), where t is a nonnegative integer that indexes the sensor update times. We assume
the first observation arrives at t=1, and at time 0 the prior distribution for every aircraft’s
location is InitX(). Just to keep things simple, we’ll also assume that each aircraft moves
independently according to a known transition model—e.g., a linear–Gaussian model as used
in the Kalman filter (Section 14.4).

The final piece is the sensor model: again, we assume a linear–Gaussian model where an
aircraft at position x produces a blip b whose observed blip position Z(b) is a linear function
of x with added Gaussian noise. Each aircraft generates exactly one blip at each time step, so
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#Aircraft(EntryTime =t) ∼ Poisson(λa)
Exits(a, t) ∼ if InFlight(a, t) then Boolean(αe)
InFlight(a, t) = (t=EntryTime(a)) ∨ (InFlight(a, t−1) ∧ ¬ Exits(a, t−1))
X(a, t) ∼ if t = EntryTime(a) then InitX()

else if InFlight(a, t) then N (FX(a, t−1),Σx)
#Blip(Source=a, Time=t) ∼ if InFlight(a, t) then Bernoulli(DetectionProb(X(a, t)))
#Blip(Time=t) ∼ Poisson(λ f )
Z(b) ∼ if Source(b)=null then UniformZ(R) else N (HX(Source(b),Time(b)),Σz)

Figure 18.9 An OUPM for radar tracking of multiple targets with false alarms, detection
failure, and entry and exit of aircraft. The rate at which new aircraft enter the scene is λa,
while the probability per time step that an aircraft exits the scene is αe. False alarm blips (i.e.,
ones not produced by an aircraft) appear uniformly in space at a rate of λ f per time step. The
probability that an aircraft is detected (i.e., produces a blip) depends on its current position.

the blip has as its origins an aircraft and a time step. So, omitting the prior for now, the model
looks like this:

guaranteed Aircraft A1, A2
X(a, t) ∼ if t = 0 then InitX() else N (F X(a, t−1), Σx)
#Blip(Source=a, Time=t) = 1
Z(b) ∼ N (H X(Source(b),Time(b)), Σz)

where F and Σx are matrices describing the linear transition model and transition noise co-
variance, and H and Σz are the corresponding matrices for the sensor model. (See page 501.)

The key difference between this model and a standard Kalman filter is that there are
two objects producing sensor readings (blips). This means there is uncertainty at any given
time step about which object produced which sensor reading. Each possible world in this
model includes an association—defined by values of all the Source(b) variables for all the
time steps—between aircraft and blips. Two possible association hypotheses are shown in
Figure 18.8(b–c). In general, for n objects and T time steps, there are (n!)T ways of assigning
blips to aircraft—an awfully large number.

The scenario described so far involved n known objects generating n observations at
each time step. Real applications of data association are typically much more complicated.
Often, the reported observations include false alarms (also known as clutter), which are not False alarm

Cluttercaused by real objects. Detection failures can occur, meaning that no observation is reported
Detection failurefor a real object. Finally, new objects arrive and old ones disappear. These phenomena,

which create even more possible worlds to worry about, are illustrated in Figure 18.8(d). The
corresponding OUPM is given in Figure 18.9.

Because of its practical importance for both civilian and military applications, tens of
thousands of papers have been written on the problem of multitarget tracking and data as-
sociation. Many of them simply try to work out the complex mathematical details of the
probability calculations for the model in Figure 18.9, or for simpler versions of it. In one
sense, this is unnecessary once the model is expressed in a probabilistic programming lan-
guage, because the general-purpose inference engine does all of the mathematics correctly for
any model—including this one. Furthermore, elaborations of the scenario (formation flying,



658 Chapter 18 Probabilistic Programming

objects heading for unknown destinations, objects taking off or landing, etc.) can be han-
dled by small changes to the model without resorting to new mathematical derivations and
complex programming.

From a practical point of view, the challenge with this kind of model is the complexity
of inference. As for all probability models, inference means summing out the variables other
than the query and the evidence. For filtering in HMMs and DBNs, we were able to sum out
the state variables from 1 to t−1 by a simple dynamic programming trick; for Kalman filters,
we also took advantage of special properties of Gaussians. For data association, we are less
fortunate. There is no (known) efficient exact algorithm, for the same reason that there is none
for the switching Kalman filter (page 502): the filtering distribution, which describes the joint
distribution over numbers and locations of aircraft at each time step, ends up as a mixture of
exponentially many distributions, one for each way of picking a sequence of observations to
assign to each aircraft.

As a response to the complexity of exact inference, several approximate methods have
been used. The simplest approach is to choose a single “best” assignment at each time step,
given the predicted positions of the objects at the current time. This assignment associates
observations with objects and enables the track of each object to be updated and a prediction
made for the next time step. For choosing the “best” assignment, it is common to use the
so-called nearest-neighbor filter, which repeatedly chooses the closest pairing of predictedNearest-neighbor

filter
position and observation and adds that pairing to the assignment. The nearest-neighbor filter
works well when the objects are well separated in state space and the prediction uncertainty
and observation error are small—in other words, when there is no possibility of confusion.

When there is more uncertainty as to the correct assignment, a better approach is to
choose the assignment that maximizes the joint probability of the current observations given
the predicted positions. This can be done efficiently using the Hungarian algorithm (Kuhn,Hungarian algorithm

1955), even though there are n! assignments to choose from as each new time step arrives.
Any method that commits to a single best assignment at each time step fails miserably

under more difficult conditions. In particular, if the algorithm commits to an incorrect assign-
ment, the prediction at the next time step may be significantly wrong, leading to more incor-
rect assignments, and so on. Sampling approaches can be much more effective. A particle
filtering algorithm (see page 510) for data association works by maintaining a large collec-
tion of possible current assignments. An MCMC algorithm explores the space of assignment
histories—for example, Figure 18.8(b–c) might be states in the MCMC state space—and can
change its mind about previous assignment decisions.

One obvious way to speed up sampling-based inference for multitarget tracking is to use
the Rao-Blackwellization trick from Chapter 14 (page 514): given a specific association
hypothesis for all the objects, the filtering calculation for each object can typically be done
exactly and efficiently, instead of sampling many possible state sequences for the objects.
For example, with the model in Figure 18.9, the filtering calculation just means running
a Kalman filter for the sequence of observations assigned to a given hypothesized object.
Furthermore, when changing from one association hypothesis to another, the calculations
have to be redone only for objects whose associated observations have changed. Current
MCMC data association methods can handle many hundreds of objects in real time while
giving a good approximation to the true posterior distributions.
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(a) (b)

Figure 18.10 Images from (a) upstream and (b) downstream surveillance cameras roughly
two miles apart on Highway 99 in Sacramento, California. The boxed vehicle has been
identified at both cameras.

18.3.2 Example: Traffic monitoring

Figure 18.10 shows two images from widely separated cameras on a California freeway. In
this application, we are interested in two goals: estimating the time it takes, under current
traffic conditions, to go from one place to another in the freeway system; and measuring
demand—that is, how many vehicles travel between any two points in the system at particular
times of the day and on particular days of the week. Both goals require solving the data
association problem over a wide area with many cameras and tens of thousands of vehicles
per hour.

With visual surveillance, false alarms are caused by moving shadows, articulated vehi-
cles, reflections in puddles, etc.; detection failures are caused by occlusion, fog, darkness, and
lack of visual contrast; and vehicles are constantly entering and leaving the freeway system
at points that may not be monitored. Furthermore, the appearance of any given vehicle can
change dramatically between cameras depending on lighting conditions and vehicle pose in
the image, and the transition model changes as traffic jams come and go. Finally, in dense
traffic with widely separated cameras, the prediction error in the transition model for a car
driving from one camera location to the next is far greater than the typical separation between
vehicles. Despite these problems, modern data association algorithms have been successful
in estimating traffic parameters in real-world settings.

Data association is an essential foundation for keeping track of a complex world, be-
cause without it there is no way to combine multiple observations of any given object. When
objects in the world interact with each other in complex activities, understanding the world
requires combining data association with the relational and open-universe probability models
of Section 18.2. This is currently an active area of research.
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function GENERATE-IMAGE() returns an image with some letters
letters←GENERATE-LETTERS(10)
return RENDER-NOISY-IMAGE(letters, 32, 128)

function GENERATE-LETTERS(λ) returns a vector of letters
n ∼ Poisson(λ)
letters← [ ]
for i = 1 to n do

letters[i] ∼ UniformChoice({a,b,c, · · ·})
return letters

function RENDER-NOISY-IMAGE(letters, width, height) returns a noisy image of the letters
clean image←RENDER(letters, width, height, text top = 10, text left = 10)
noisy image← [ ]
noise variance ∼ UniformReal(0.1, 1)
for row = 1 to width do

for col = 1 to height do
noisy image[row,col] ∼ N (clean image[row,col],noise variance)

return noisy image

Figure 18.11 Generative program for an open-universe probability model for optical charac-
ter recognition. The generative program produces degraded images containing sequences of
letters by generating each sequence, rendering it into a 2D image, and incorporating additive
noise at each pixel.

18.4 Programs as Probability Models

Many probabilistic programming languages have been built on the insight that probability
models can be defined using executable code in any programming language that incorporates
a source of randomness. For such models, the possible worlds are execution traces and the
probability of any such trace is the probability of the random choices required for that trace
to happen. PPLs created in this way inherit all of the expressive power of the underlying lan-
guage, including complex data structures, recursion, and, in some cases, higher-order func-
tions. Many PPLs are in fact computationally universal: they can represent any probability
distribution that can be sampled from by a probabilistic Turing machine that halts.

18.4.1 Example: Reading text

We illustrate this approach to probabilistic modeling and inference via the problem of writing
a program that reads degraded text. These kinds of models can be built for reading text that
has been smudged or blurred due to water damage, or spotted due to aging of the paper on
which it is printed. They can also be built for breaking some kinds of CAPTCHAs.

Figure 18.11 shows a generative program containing two components: (i) a way to gen-
erate a sequence of letters; and (ii) a way to generate a noisy, blurry rendering of these letters
using an off-the-shelf graphics library. Figure 18.12(top) shows example images generated
by invoking GENERATE-IMAGE nine times.
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Figure 18.12 The top panel shows twelve degraded images produced by executing the gen-
erative program from Figure 18.11. The number of letters, their identities, the amount of
additive noise, and the specific pixel-wise noise are all part of the domain of the probability
model. The bottom panel shows twelve degraded images produced by executing the genera-
tive program from Figure 18.15. The Markov model for letters typically yields sequences of
letters that are easier to pronounce.

18.4.2 Syntax and semantics

A generative program is an executable program in which every random choice defines a Generative program

random variable in an associated probability model. Let us imagine unrolling the execution
of a program that makes random choices, step by step. Let Xi be the random variable corre-
sponding to the ith random choice made by the program; as usual, xi denotes a possible value
of Xi. Let us call ω = {xi} an execution trace of the generative program—that is, a sequence Execution trace

of possible values for the random choices. Running the program once generates one such
trace, hence the term “generative program.”

The space of all possible execution traces Ω can be viewed as the sample space of a
probability model defined by the generative program. The probability distribution over traces
can be defined as the product of the probabilities of each individual random choice: P(ω) =
∏i P(xi|x1, . . .xi−1). This is analogous to the distribution over worlds in an OUPM.

It is conceptually straightforward to convert any OUPM into a corresponding generative
program. This generative program makes random choices for each number statement and for
the value of each basic random variable whose existence is implied by the number statements.
The main extra work that the generative program needs to do is to create data structures that
represent the objects, functions, and relations of the possible worlds in the OUPM. These
data structures are created automatically by the OUPM inference engine because the OUPM
assumes that every possible world is a first-order model structure, whereas a typical PPL
makes no such assumption.

The images in Figure 18.12 can be used to get an intuitive understanding of the probabil-
ity distribution P(Ω): we see varying levels of noise, and in the less noisy images, we also
see sequences of letters of varying lengths. Let ω1 be the trace corresponding to the image
in the top right corner of this figure, containing the letters ocflwe. If we unrolled this trace
ω1 into a Bayesian network, it would have 4,104 nodes: 1 node for the variable n; 6 nodes
for the variables letters[i]; 1 node for the noise variance; and 4,096 nodes for the pixels in
noisy image. We thus see that this generative program defines an open-universe probability
model: the number of random choices it makes is not bounded a priori, but instead depends
on the value of the random variable n.
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Figure 18.13 Noisy input image (top) and inference results (bottom) produced by three runs,
each of 25 MCMC iterations, with the model from Figure 18.11. Note that the inference
process correctly identifies the sequence of letters.

Figure 18.14 Top: extremely noisy input image. Bottom left: with three inference results
from 25 MCMC iterations with the independent-letter model from Figure 18.11. Bottom
right: three inference results with the letter bigram model from Figure 18.15. Both mod-
els exhibit ambiguity in the results, but the latter model’s results reflect prior knowledge of
plausible letter sequences.

function GENERATE-MARKOV-LETTERS(λ) returns a vector of letters
n ∼ Poisson(λ)
letters← [ ]
letter probs←MARKOV-INITIAL()
for i = 1 to n do

letters[i] ∼ Categorical(letter probs)
letter probs←MARKOV-TRANSITION(letters[i])

return letters

Figure 18.15 Generative program for an improved optical character recognition model that
generates letters according to a letter bigram model whose pairwise letter frequencies are
estimated from a list of English words.
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18.4.3 Inference results

Let’s apply this model to interpret images of letters that have been degraded with additive
noise. Figure 18.13 shows a degraded image, along with results from three independent
MCMC runs. For each run, we show a rendering of the letters contained in the trace after
stopping the Markov chain. In all three cases the result is the letter sequence uncertainty,
suggesting that the posterior distribution is highly concentrated on the correct interpretation.

Now let’s degrade the text further, blurring it enough that it is difficult for people to read.
Figure 18.14 shows the inference results on this more challenging input. This time, although
MCMC inference appears to have converged on (what we know to be) the correct number
of letters, the first letter is misidentified as a q and there is uncertainty about five of the ten
following letters.

At this point, there are many possible ways to interpret the results. It could be that MCMC
inference has mixed well and the results are a good reflection of the true posterior given the
model and the image; in that case, the uncertainty in some of the letters and the error in the
first letter are unavoidable. To get better results, we might need to improve the text model
or reduce the noise level. It could also be that MCMC inference has not mixed properly: if
we ran 300 chains for 25 thousand or 25 million iterations, we might find a quite different
distribution of results, perhaps indicating that the first letter is probably u rather than q.

Running more inference could be costly in terms of dollars and waiting time. Moreover,
there is no foolproof test for convergence of Monte Carlo inference methods. We could
try to improve the inference algorithm, perhaps by designing a better proposal distribution
for MCMC or using bottom-up clues from the image to suggest better initial hypotheses.
These improvements require additional thought, implementation, and debugging. The third
alternative is to improve the model. For example, we could incorporate knowledge about
English words, such as the probabilities of letter pairs. We now consider this option.

18.4.4 Improving the generative program to incorporate a Markov model

Probabilistic programming languages are modular in a way that makes it easy to explore
improvements to the underlying model. Figure 18.15 shows the generative program for an
improved model that generates letters sequentially rather than independently. This generative
program uses a Markov model that draws each letter given the previous letter, with transition
probabilities estimated from a reference list of English words.

Figure 18.12 shows twelve sampled images produced by this generative program. Notice
that the letter sequences are significantly more English-like than those generated from the
program in Figure 18.11. The right-hand panel in Figure 18.14 shows inference results from
this Markov model applied to the high-noise image. The interpretations more closely match
the generating trace, though there is still some uncertainty.

18.4.5 Inference in generative programs

As with OUPMs, exact inference in generative programs is usually prohibitively expensive
or impossible. On the other hand, it is easy to see how to perform rejection sampling: run the
program, keep just the traces that agree with the evidence, and count the different query an-
swers found in those traces. Likelihood weighting is also straightforward: for each generated
trace, keep track of the weight of the trace by multiplying all the probabilities of the values
observed along the way.
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Likelihood weighting works well only when the data are reasonably likely according
to the model. In more difficult cases, MCMC is usually the method of choice. MCMC
applied to probabilistic programs involves sampling and modifying execution traces. Many
of the considerations arising with OUPMs also apply here; in addition, the algorithm has to
be careful about modifications to an execution trace, such as changing the outcome of an
if-statement, that may invalidate the remainder of the trace.

Further improvements in inference come from several lines of work. Some improvements
can produce fundamental shifts in the class of problems that are tractable with a given PPL,
even in principle; lifted inference, described earlier for RPMs, can have this effect. In many
cases, generic MCMC is too slow, and special-purpose proposals are needed to enable the
inference process to mix quickly.

An important focus of recent work in PPLs has been to make it easy for users to define and
use such proposals so that the efficiency of PPL inference matches that of custom inference
algorithms devised for specific models.

Many promising approaches are aimed at reducing the overhead of probabilistic infer-
ence. The compilation idea described for Bayes nets in Section 13.4.3 can be applied to
inference in OUPMs and PPLs, and typically yields speedups of two to three orders of mag-
nitude. There have also been proposals for special-purpose hardware for algorithms such
as message-passing and MCMC. For example, Monte Carlo hardware exploits low-precision
probability representations and massive fine-grained parallelism to deliver 100–10,000x im-
provements in speed and energy efficiency.

Methods based on learning can also give substantial improvements in speed. For exam-
ple, adaptive proposal distributions can gradually learn how to generate MCMC proposalsAdaptive proposal

distribution
that are reasonably likely to be accepted and reasonably effective in exploring the probabil-
ity landscape of the model to ensure rapid mixing. It is also possible to train deep learning
models (see Chapter 22) to represent proposal distributions for importance sampling, using
synthetic data that was generated from the underlying model.

In general, one expects that any formalism built on top of general programming languages
will run up against the barrier of computability, and this is the case for PPLs. If we assume,
however, that the underlying program halts for all inputs and all random choices, does the
additional requirement of doing probabilistic inference still render the problem undecidable?
It turns out that the answer is yes, but only for a computational model with infinite-precision
continuous random variables. In that case, it becomes possible to write a computable proba-
bility model in which inference encodes the halting problem. On the other hand, with finite-
precision numbers and with the smooth probability distributions typically used in real appli-
cations, inference remains decidable.

Summary

This chapter has explored expressive representations for probability models based on both
logic and programs.

• Relational probability models (RPMs) define probability models on worlds derived
from the database semantics for first-order languages; they are appropriate when all
the objects and their identities are known with certainty.
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• Given an RPM, the objects in each possible world correspond to the constant symbols in
the RPM, and the basic random variables are all possible instantiations of the predicate
symbols with objects replacing each argument. Thus, the set of possible worlds is finite.

• RPMs provide very concise models for worlds with large numbers of objects and can
handle relational uncertainty.

• Open-universe probability models (OUPMs) build on the full semantics of first-order
logic, allowing for new kinds of uncertainty such as identity and existence uncertainty.

• Generative programs are representations of probability models—including OUPMs—
as executable programs in a probabilistic programming language or PPL. A gener-
ative program represents a distribution over execution traces of the program. PPLs
typically provide universal expressive power for probability models.

Bibliographical and Historical Notes

Hailperin (1984) and Howson (2003) recount the long history of attempts to connect proba-
bility and logic, going back to Leibniz’s Nouveaux Essais in 1704. These attempts usually
involved probabilities attached directly to logical sentences. The first rigorous treatment was
Gaifman’s propositional probability logic (Gaifman, 1964b). The idea is that a probability Probability logic

assertion P(φ)≥ p is a constraint on the distribution over possible worlds, just as an ordinary
logical sentence is a constraint on the possible worlds themselves. Any distribution P that
satisfies the constraint is a model, in the standard logical sense, of the probability assertion,
and one probability assertion entails another just when the models of the first are a subset of
the models of the second.

Within such a logic, one can prove, for example, that P(α∧β) ≤ P(α ⇒ β). Satisfia-
bility of sets of probability assertions can be determined in the propositional case by linear
programming (Hailperin, 1984; Nilsson, 1986). Thus, we have a “probability logic” in the
same sense as “temporal logic”—a logical system specialized for probabilistic reasoning.

To apply probability logic to tasks such as proving interesting theorems in probability the-
ory, a more expressive language was needed. Gaifman (1964a) proposed a first-order prob-
ability logic, with possible worlds being first-order model structures and with probabilities
attached to sentences of (function-free) first-order logic. Scott and Krauss (1966) extended
Gaifman’s results to allow infinite nesting of quantifiers and infinite sets of sentences.

Within AI, the most direct descendant of these ideas appears in probabilistic logic pro-
grams (Lukasiewicz, 1998), in which a probability range is attached to each first-order Horn
clause and inference is performed by solving linear programs, as suggested by Hailperin.
Halpern (1990) and Bacchus (1990) also built on Gaifman’s approach, exploring some of
the basic knowledge representation issues from the perspective of AI rather than probability
theory and mathematical logic.

The subfield of probabilistic databases also has logical sentences labeled with proba- Probabilistic
databases

bilities (Dalvi et al., 2009)—but in this case probabilities are attached directly to the tuples
of the database. (In AI and statistics, probability is attached to general relationships, whereas
observations are viewed as incontrovertible evidence.) Although probabilistic databases can
model complex dependencies, in practice one often finds such systems using global indepen-
dence assumptions across tuples.
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Attaching probabilities to sentences makes it very difficult to define complete and consis-
tent probability models. Each inequality constrains the underlying probability model to lie in
a half-space in the high-dimensional space of probability models. Conjoining assertions cor-
responds to intersecting the constraints. Ensuring that the intersection yields a single point is
not easy. In fact, the principal result in Gaifman (1964a) is the construction of a single prob-
ability model requiring 1) a probability for every possible ground sentence and 2) probability
constraints for infinitely many existentially quantified sentences.

One solution to this problem is to write a partial theory and then “complete” it by picking
out one canonical model in the allowed set. Nilsson (1986) proposed choosing the max-
imum entropy model consistent with the specified constraints. Paskin (2002) developed a
“maximum-entropy probabilistic logic” with constraints expressed as weights (relative prob-
abilities) attached to first-order clauses. Such models are often called Markov logic net-
works or MLNs (Richardson and Domingos, 2006) and have become a popular technique for
applications involving relational data. Maximum-entropy approaches, including MLNs, can
produce unintuitive results in some cases (Milch, 2006; Jain et al., 2007, 2010).

Beginning in the early 1990s, researchers working on complex applications noticed the
expressive limitations of Bayesian networks and developed various languages for writing
“templates” with logical variables, from which large networks could be constructed automat-
ically for each problem instance (Breese, 1992; Wellman et al., 1992). The most important
such language was BUGS (Bayesian inference Using Gibbs Sampling) (Gilks et al., 1994;
Lunn et al., 2013), which combined Bayesian networks with the indexed random variableIndexed random

variable
notation common in statistics. (In BUGS, an indexed random variable looks like X [i], where
i has a defined integer range.)

These closed-universe languages inherited the key property of Bayesian networks: every
well-formed knowledge base defines a unique, consistent probability model. Other closed-
universe languages drew on the representational and inferential capabilities of logic program-
ming (Poole, 1993; Sato and Kameya, 1997; Kersting et al., 2000) and semantic networks
(Koller and Pfeffer, 1998; Pfeffer, 2000).

Research on open-universe probability models has several origins. In statistics, the prob-
lem of record linkage arises when data records do not contain standard unique identifiers—Record linkage

for example, various citations of this book might name its first author “Stuart J. Russell” or
“S. Russell” or even “Stewart Russel.” Other authors share the name “S. Russell.”

Hundreds of companies exist solely to solve record linkage problems in financial, med-
ical, census, and other data. Probabilistic analysis goes back to work by Dunn (1946); the
Fellegi–Sunter model (1969), which is essentially naive Bayes applied to matching, still dom-
inates current practice. Identity uncertainty is also considered in multitarget tracking (Sittler,
1964), whose history is sketched in Chapter 14.

In AI, the working assumption until the 1990s was that sensors could supply logical sen-
tences with unique identifiers for objects, as was the case with Shakey. In the area of natural
language understanding, Charniak and Goldman (1992) proposed a probabilistic analysis of
coreference, where two linguistic expressions (say, “Obama” and “the president”) may refer
to the same entity. Huang and Russell (1998) and Pasula et al. (1999) developed a Bayesian
analysis of identity uncertainty for traffic surveillance. Pasula et al. (2003) developed a com-
plex generative model for authors, papers, and citation strings, involving both relational and
identity uncertainty, and demonstrated high accuracy for citation information extraction.
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The first formal language for open-universe probability models was BLOG (Milch et al.,
2005; Milch, 2006), which came with a (very slow) general-purpose MCMC inference en-
gine. Laskey (2008) describes another open-universe modeling language called multi-entity
Bayesian networks. The NET-VISA global seismic monitoring system described in the text
is due to Arora et al. (2013). The Elo rating system was developed in 1959 by Arpad Elo
(1978) but is essentially the same at Thurstone’s Case V model (Thurstone, 1927). Mi-
crosoft’s TrueSkill model (Herbrich et al., 2007; Minka et al., 2018) is based on Mark Glick-
man’s (1999) Bayesian version of Elo and now runs on the infer.NET PPL.

Data association for multitarget tracking was first described in a probabilistic setting by
Sittler (1964). The first practical algorithm for large-scale problems was the “multiple hy-
pothesis tracker” or MHT algorithm (Reid, 1979). Important papers are collected by Bar-
Shalom and Fortmann (1988) and Bar-Shalom (1992). The development of an MCMC algo-
rithm for data association is due to Pasula et al. (1999), who applied it to traffic surveillance
problems. Oh et al. (2009) provide a formal analysis and experimental comparisons to other
methods. Schulz et al. (2003) describe a data association method based on particle filtering.

Ingemar Cox analyzed the complexity of data association (Cox, 1993; Cox and Hingo-
rani, 1994) and brought the topic to the attention of the vision community. He also noted
the applicability of the polynomial-time Hungarian algorithm to the problem of finding most-
likely assignments, which had long been considered an intractable problem in the tracking
community. The algorithm itself was published by Kuhn (1955), based on translations of pa-
pers published in 1931 by two Hungarian mathematicians, Dénes König and Jenö Egerváry.
The basic theorem had been derived previously, however, in an unpublished Latin manuscript
by the famous mathematician Carl Gustav Jacobi (1804–1851).

The idea that probabilistic programs could also represent complex probability models is
due to Koller et al. (1997). The first working PPL was Avi Pfeffer’s IBAL (2001, 2007), based
on a simple functional language. BLOG can be thought of as a declarative PPL. The con-
nection between declarative and functional PPLs was explored by McAllester et al. (2008).
CHURCH (Goodman et al., 2008), a PPL built on the Scheme language, pioneered the idea
of piggybacking on an existing programming language. CHURCH also introduced the first
MCMC inference algorithm for models with random higher-order functions and generated
interest in the cognitive science community as a way to model complex forms of human
learning (Lake et al., 2015). PPLs also connect in interesting ways to computability the-
ory (Ackerman et al., 2013) and programming language research.

In the 2010s, dozens of PPLs emerged based on a wide range of underlying programming
languages. Figaro, based on the Scala language, has been used for a wide variety of applica-
tions (Pfeffer, 2016). Gen (Cusumano-Towner et al., 2019), based on Julia and TensorFlow,
has been used for real-time machine perception as well as Bayesian structure learning for time
series data analysis. PPLs built on top of deep learning frameworks include Pyro (Bingham
et al., 2019) (built on PyTorch) and Edward (Tran et al., 2017) (built on TensorFlow).

There have been efforts to make probabilistic programming accessible to more people,
such as database and spreadsheet users. Tabular (Gordon et al., 2014) provides a spreadsheet-
like relational schema language on top of infer.NET. BayesDB (Saad and Mansinghka, 2017)
lets users combine and query probabilistic programs using an SQL-like language.

Inference in probabilistic programs has generally relied on approximate methods because
exact algorithms do not scale to the kinds of models that PPLs can represent. Closed-universe
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languages such as BUGS, LIBBI (Murray, 2013), and STAN (Carpenter et al., 2017) generally
operate by constructing the full equivalent Bayesian network and then running inference on
it—Gibbs sampling in the case of BUGS, sequential Monte Carlo in the case of LIBBI, and
Hamiltonian Monte Carlo in the case of STAN. Programs in these languages can be read as
instructions for building the ground Bayes net. Breese (1992) showed how to generate only
the relevant fragment of the full network, given the query and the evidence.

Working with a grounded Bayes net means that the possible worlds visited by MCMC
are represented by a vector of values for variables in the Bayes net. The idea of directly
sampling first-order possible worlds is due to Russell (1999). In the FACTORIE language
(McCallum et al., 2009), possible worlds in the MCMC process are represented within a
standard relational database system. The same two papers propose incremental query re-
evaluation as a way to avoid full query evaluation on each possible world.

Inference methods based on grounding are analogous to the earliest propositionalization
methods for first-order logical inference (Davis and Putnam, 1960). For logical inference,
both resolution theorem provers and logic programming systems rely on lifting (Section 9.2)
to avoid instantiating logical variables unnecessarily.

Pfeffer et al. (1999) introduced a variable elimination algorithm that cached each com-
puted factor for reuse by later computations involving the same relations but different objects,
thereby realizing some of the computational gains of lifting. The first truly lifted probabilistic
inference algorithm was a form of variable elimination described by Poole (2003) and sub-
sequently improved by de Salvo Braz et al. (2007). Further advances, including cases where
certain aggregate probabilities can be computed in closed form, are described by Milch et al.
(2008) and Kisynski and Poole (2009). There is now a fairly good understanding of when
lifting is possible and of its complexity (Gribkoff et al., 2014; Kazemi et al., 2017).

Methods of speeding up inference come in several flavors, as noted in the chapter. Several
projects have explored more sophisticated algorithms, combined with compiler techniques
and/or learned proposals. LIBBI (Murray, 2013) introduced the first particle Gibbs inference
for probabilistic programs; one of the first inference compilers, with GPU support for mas-
sively parallel SMC; and use of the modeling language to define custom MCMC proposals.
Compilation of probabilistic inference is also studied by Wingate et al. (2011), Paige and
Wood (2014), Wu et al. (2016a). Claret et al. (2013), Hur et al. (2014), and Cusumano-
Towner et al. (2019) demonstrate static analysis methods for transforming probabilistic pro-
grams into more efficient forms. PICTURE (Kulkarni et al., 2015) is the first PPL that let users
apply learning from forward executions of the generative program to train fast bottom-up pro-
posals. Le et al. (2017) describe the use of deep learning techniques for efficient importance
sampling in a PPL. In practice, inference algorithms for complex probability models often
use a mixture of techniques for different subsets of variables in the model. Mansinghka et al.
(2013) emphasized the idea of inference programs that apply diverse inference tactics to sub-
sets of variables chosen during inference runtime.

The collection edited by Getoor and Taskar (2007) includes many important papers on
first-order probability models and their use in machine learning. Probabilistic programming
papers appear in all the major conferences on machine learning and probabilistic reasoning,
including NeurIPS, ICML, UAI, and AISTATS. Regular PPL workshops have been attached
to the NeurIPS and POPL (Principles of Programming Languages) conferences, and the first
International Conference on Probabilistic Programming was held in 2018.



CHAPTER 19
LEARNING FROM EXAMPLES
In which we describe agents that can improve their behavior through diligent study of past
experiences and predictions about the future.

An agent is learning if it improves its performance after making observations about the world.
Learning can range from the trivial, such as jotting down a shopping list, to the profound, as
when Albert Einstein inferred a new theory of the universe. When the agent is a computer,
we call it machine learning: a computer observes some data, builds a model based on the Machine learning

data, and uses the model as both a hypothesis about the world and a piece of software that
can solve problems.

Why would we want a machine to learn? Why not just program it the right way to begin
with? There are two main reasons. First, the designers cannot anticipate all possible future
situations. For example, a robot designed to navigate mazes must learn the layout of each new
maze it encounters; a program for predicting stock market prices must learn to adapt when
conditions change from boom to bust. Second, sometimes the designers have no idea how
to program a solution themselves. Most people are good at recognizing the faces of family
members, but they do it subconsciously, so even the best programmers don’t know how to
program a computer to accomplish that task, except by using machine learning algorithms.

In this chapter, we interleave a discussion of various model classes—decision trees (Sec-
tion 19.3), linear models (Section 19.6), nonparametric models such as nearest neighbors
(Section 19.7), ensemble models such as random forests (Section 19.8)—with practical ad-
vice on building machine learning systems (Section 19.9), and discussion of the theory of
machine learning (Sections 19.1 to 19.5).

19.1 Forms of Learning

Any component of an agent program can be improved by machine learning. The improve-
ments, and the techniques used to make them, depend on these factors:

• Which component is to be improved.
• What prior knowledge the agent has, which influences the model it builds.
• What data and feedback on that data is available.

Chapter 2 described several agent designs. The components of these agents include:

1. A direct mapping from conditions on the current state to actions.
2. A means to infer relevant properties of the world from the percept sequence.
3. Information about the way the world evolves and about the results of possible actions

the agent can take.
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4. Utility information indicating the desirability of world states.
5. Action-value information indicating the desirability of actions.
6. Goals that describe the most desirable states.
7. A problem generator, critic, and learning element that enable the system to improve.

Each of these components can be learned. Consider a self-driving car agent that learns by
observing a human driver. Every time the driver brakes, the agent might learn a condition–
action rule for when to brake (component 1). By seeing many camera images that it is told
contain buses, it can learn to recognize them (component 2). By trying actions and ob-
serving the results—for example, braking hard on a wet road—it can learn the effects of its
actions (component 3). Then, when it receives complaints from passengers who have been
thoroughly shaken up during the trip, it can learn a useful component of its overall utility
function (component 4).

The technology of machine learning has become a standard part of software engineering.
Any time you are building a software system, even if you don’t think of it as an AI agent,
components of the system can potentially be improved with machine learning. For example,
software to analyze images of galaxies under gravitational lensing was speeded up by a factor
of 10 million with a machine-learned model (Hezaveh et al., 2017), and energy use for cooling
data centers was reduced by 40% with another machine-learned model (Gao, 2014). Turing
Award winner David Patterson and Google AI head Jeff Dean declared the dawn of a “Golden
Age” for computer architecture due to machine learning (Dean et al., 2018).

We have seen several examples of models for agent components: atomic, factored, and
relational models based on logic or probability, and so on. Learning algorithms have been
devised for all of these.

This chapter assumes little prior knowledge on the part of the agent: it starts from scratchPrior knowledge

and learns from the data. In Section 22.7.2 we consider transfer learning, in which knowl-
edge from one domain is transferred to a new domain, so that learning can proceed faster
with less data. We do assume, however, that the designer of the system chooses a model
framework that can lead to effective learning.

Going from a specific set of observations to a general rule is called induction; from the
observations that the sun rose every day in the past, we induce that the sun will come up
tomorrow. This differs from the deduction we studied in Chapter 7 because the inductive
conclusions may be incorrect, whereas deductive conclusions are guaranteed to be correct if
the premises are correct.

This chapter concentrates on problems where the input is a factored representation—a
vector of attribute values. It is also possible for the input to be any kind of data structure,
including atomic and relational.

When the output is one of a finite set of values (such as sunny/cloudy/rainy or true/false),
the learning problem is called classification. When it is a number (such as tomorrow’s tem-Classification

perature, measured either as an integer or a real number), the learning problem has the (ad-
mittedly obscure1) name regression.Regression

1 A better name would have been function approximation or numeric prediction. But in 1886 Francis Galton
wrote an influential article on the concept of regression to the mean (e.g., the children of tall parents are likely to
be taller than average, but not as tall as the parents). Galton showed plots with what he called “regression lines,”
and readers came to associate the word “regression” with the statistical technique of function approximation
rather than with the topic of regression to the mean.
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There are three types of feedback that can accompany the inputs, and that determine the Feedback

three main types of learning:

• In supervised learning the agent observes input-output pairs and learns a function that Supervised learning

maps from input to output. For example, the inputs could be camera images, each
one accompanied by an output saying “bus” or “pedestrian,” etc. An output like this
is called a label. The agent learns a function that, when given a new image, predicts Label

the appropriate label. In the case of braking actions (component 1 above), an input is
the current state (speed and direction of the car, road condition), and an output is the
distance it took to stop. In this case a set of output values can be obtained by the agent
from its own percepts (after the fact); the environment is the teacher, and the agent
learns a function that maps states to stopping distance.

• In unsupervised learning the agent learns patterns in the input without any explicit Unsupervised
learning

feedback. The most common unsupervised learning task is clustering: detecting poten-
tially useful clusters of input examples. For example, when shown millions of images
taken from the Internet, a computer vision system can identify a large cluster of similar
images which an English speaker would call “cats.”

• In reinforcement learning the agent learns from a series of reinforcements: rewards Reinforcement
learning

and punishments. For example, at the end of a chess game the agent is told that it has
won (a reward) or lost (a punishment). It is up to the agent to decide which of the
actions prior to the reinforcement were most responsible for it, and to alter its actions
to aim towards more rewards in the future.

19.2 Supervised Learning

More formally, the task of supervised learning is this:

Given a training set of N example input–output pairs Training set

(x1,y1),(x2,y2), . . .(xN ,yN) ,

where each pair was generated by an unknown function y = f (x),
discover a function h that approximates the true function f .

The function h is called a hypothesis about the world. It is drawn from a hypothesis space Hypothesis space

H of possible functions. For example, the hypothesis space might be the set of polynomials
of degree 3; or the set of Javascript functions; or the set of 3-SAT Boolean logic formulas.

With alternative vocabulary, we can say that h is a model of the data, drawn from a model
class H, or we can say a function drawn from a function class. We call the output yi the Model class

ground truth—the true answer we are asking our model to predict. Ground truth

How do we choose a hypothesis space? We might have some prior knowledge about the
process that generated the data. If not, we can perform exploratory data analysis: examining Exploratory data

analysis

the data with statistical tests and visualizations—histograms, scatter plots, box plots—to get
a feel for the data, and some insight into what hypothesis space might be appropriate. Or we
can just try multiple hypothesis spaces and evaluate which one works best.

How do we choose a good hypothesis from within the hypothesis space? We could hope
for a consistent hypothesis: an h such that each xi in the training set has h(xi) = yi. With Consistent

hypothesis

continuous-valued outputs we can’t expect an exact match to the ground truth; instead we
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Figure 19.1 Finding hypotheses to fit data. Top row: four plots of best-fit functions from
four different hypothesis spaces trained on data set 1. Bottom row: the same four functions,
but trained on a slightly different data set (sampled from the same f (x) function).

look for a best-fit function for which each h(xi) is close to yi (in a way that we will formalize
in Section 19.4.2).

The true measure of a hypothesis is not how it does on the training set, but rather how
well it handles inputs it has not yet seen. We can evaluate that with a second sample of (xi,yi)
pairs called a test set. We say that h generalizes well if it accurately predicts the outputs ofTest set

Generalization the test set.
Figure 19.1 shows that the function h that a learning algorithm discovers depends on the

hypothesis space H it considers and on the training set it is given. Each of the four plots in
the top row have the same training set of 13 data points in the (x,y) plane. The four plots
in the bottom row have a second set of 13 data points; both sets are representative of the
same unknown function f (x). Each column shows the best-fit hypothesis h from a different
hypothesis space:

• Column 1: Straight lines; functions of the form h(x) = w1x+w0. There is no line that
would be a consistent hypothesis for the data points.
• Column 2: Sinusoidal functions of the form h(x) = w1x+ sin(w0x). This choice is not

quite consistent, but fits both data sets very well.
• Column 3: Piecewise-linear functions where each line segment connects the dots from

one data point to the next. These functions are always consistent.
• Column 4: Degree-12 polynomials, h(x) = ∑

12
i=0 wixi. These are consistent: we can

always get a degree-12 polynomial to perfectly fit 13 distinct points. But just because
the hypothesis is consistent does not mean it is a good guess.

One way to analyze hypothesis spaces is by the bias they impose (regardless of the train-
ing data set) and the variance they produce (from one training set to another).

By bias we mean (loosely) the tendency of a predictive hypothesis to deviate from theBias

expected value when averaged over different training sets. Bias often results from restrictions
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imposed by the hypothesis space. For example, the hypothesis space of linear functions
induces a strong bias: it only allows functions consisting of straight lines. If there are any
patterns in the data other than the overall slope of a line, a linear function will not be able
to represent those patterns. We say that a hypothesis is underfitting when it fails to find a Underfitting

pattern in the data. On the other hand, the piecewise linear function has low bias; the shape
of the function is driven by the data.

By variance we mean the amount of change in the hypothesis due to fluctuation in the Variance

training data. The two rows of Figure 19.1 represent data sets that were each sampled from
the same f (x) function. The data sets turned out to be slightly different. For the first three
columns, the small difference in the data set translates into a small difference in the hypothe-
sis. We call that low variance. But the degree-12 polynomials in the fourth column have high
variance: look how different the two functions are at both ends of the x-axis. Clearly, at least
one of these polynomials must be a poor approximation to the true f (x). We say a function
is overfitting the data when it pays too much attention to the particular data set it is trained Overfitting

on, causing it to perform poorly on unseen data.
Often there is a bias–variance tradeoff: a choice between more complex, low-bias hy- Bias–variance

tradeoff
potheses that fit the training data well and simpler, low-variance hypotheses that may gen-
eralize better. Albert Einstein said in 1933, “the supreme goal of all theory is to make the
irreducible basic elements as simple and as few as possible without having to surrender the
adequate representation of a single datum of experience.” In other words, Einstein recom-
mends choosing the simplest hypothesis that matches the data. This principle can be traced
further back to the 14th-century English philosopher William of Ockham.2 His principle that
“plurality [of entities] should not be posited without necessity” is called Ockham’s razor
because it is used to “shave off” dubious explanations.

Defining simplicity is not easy. It seems clear that a polynomial with only two parameters
is simpler than one with thirteen parameters. We will make this intuition more precise in
Section 19.3.4. However, in Chapter 22 we will see that deep neural network models can
often generalize quite well, even though they are very complex—some of them have billions
of parameters. So the number of parameters by itself is not a good measure of a model’s
fitness. Perhaps we should be aiming for “appropriateness,” not “simplicity” in a model
class. We will consider this issue in Section 19.4.1.

Which hypothesis is best in Figure 19.1? We can’t be certain. If we knew the data
represented, say, the number of hits to a Web site that grows from day to day, but also cycles
depending on the time of day, then we might favor the sinusoidal function. If we knew the
data was definitely not cyclic but had high noise, that would favor the linear function.

In some cases, an analyst is willing to say not just that a hypothesis is possible or im-
possible, but rather how probable it is. Supervised learning can be done by choosing the
hypothesis h∗ that is most probable given the data:

h∗ = argmax
h∈H

P(h|data) .

By Bayes’ rule this is equivalent to

h∗ = argmax
h∈H

P(data|h)P(h) .

2 The name is often misspelled as “Occam.”
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Then we can say that the prior probability P(h) is high for a smooth degree-1 or -2 polynomial
and lower for a degree-12 polynomial with large, sharp spikes. We allow unusual-looking
functions when the data say we really need them, but we discourage them by giving them a
low prior probability.

Why not let H be the class of all computer programs, or all Turing machines? The
problem is that there is a tradeoff between the expressiveness of a hypothesis space and theI
computational complexity of finding a good hypothesis within that space. For example, fitting
a straight line to data is an easy computation; fitting high-degree polynomials is somewhat
harder; and fitting Turing machines is undecidable. A second reason to prefer simple hypoth-
esis spaces is that presumably we will want to use h after we have learned it, and computing
h(x) when h is a linear function is guaranteed to be fast, while computing an arbitrary Turing
machine program is not even guaranteed to terminate.

For these reasons, most work on learning has focused on simple representations. In recent
years there has been great interest in deep learning (Chapter 22), where representations are
not simple but where the h(x) computation still takes only a bounded number of steps to
compute with appropriate hardware.

We will see that the expressiveness–complexity tradeoff is not simple: it is often the case,
as we saw with first-order logic in Chapter 8, that an expressive language makes it possible
for a simple hypothesis to fit the data, whereas restricting the expressiveness of the language
means that any consistent hypothesis must be complex.

19.2.1 Example problem: Restaurant waiting

We will describe a sample supervised learning problem in detail: the problem of deciding
whether to wait for a table at a restaurant. This problem will be used throughout the chapter
to demonstrate different model classes. For this problem the output, y, is a Boolean variable
that we will call WillWait; it is true for examples where we do wait for a table. The input, x,
is a vector of ten attribute values, each of which has discrete values:

1. Alternate: whether there is a suitable alternative restaurant nearby.
2. Bar: whether the restaurant has a comfortable bar area to wait in.
3. Fri/Sat: true on Fridays and Saturdays.
4. Hungry: whether we are hungry right now.
5. Patrons: how many people are in the restaurant (values are None, Some, and Full).
6. Price: the restaurant’s price range ($, $$, $$$).
7. Raining: whether it is raining outside.
8. Reservation: whether we made a reservation.
9. Type: the kind of restaurant (French, Italian, Thai, or burger).

10. WaitEstimate: host’s wait estimate: 0–10, 10–30, 30–60, or >60 minutes.

A set of 12 examples, taken from the experience of one of us (SR), is shown in Figure 19.2.
Note how skimpy these data are: there are 26× 32× 42 = 9,216 possible combinations of
values for the input attributes, but we are given the correct output for only 12 of them; each of
the other 9,204 could be either true or false; we don’t know. This is the essence of induction:
we need to make our best guess at these missing 9,204 output values, given only the evidence
of the 12 examples.
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Example Input Attributes Output

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait

x1 Yes No No Yes Some $$$ No Yes French 0–10 y1 = Yes
x2 Yes No No Yes Full $ No No Thai 30–60 y2 = No
x3 No Yes No No Some $ No No Burger 0–10 y3 = Yes
x4 Yes No Yes Yes Full $ Yes No Thai 10–30 y4 = Yes
x5 Yes No Yes No Full $$$ No Yes French >60 y5 = No
x6 No Yes No Yes Some $$ Yes Yes Italian 0–10 y6 = Yes
x7 No Yes No No None $ Yes No Burger 0–10 y7 = No
x8 No No No Yes Some $$ Yes Yes Thai 0–10 y8 = Yes
x9 No Yes Yes No Full $ Yes No Burger >60 y9 = No
x10 Yes Yes Yes Yes Full $$$ No Yes Italian 10–30 y10 = No
x11 No No No No None $ No No Thai 0–10 y11 = No
x12 Yes Yes Yes Yes Full $ No No Burger 30–60 y12 = Yes

Figure 19.2 Examples for the restaurant domain.

19.3 Learning Decision Trees

A decision tree is a representation of a function that maps a vector of attribute values to Decision tree

a single output value—a “decision.” A decision tree reaches its decision by performing a
sequence of tests, starting at the root and following the appropriate branch until a leaf is
reached. Each internal node in the tree corresponds to a test of the value of one of the input
attributes, the branches from the node are labeled with the possible values of the attribute,
and the leaf nodes specify what value is to be returned by the function.

In general, the input and output values can be discrete or continuous, but for now we will
consider only inputs consisting of discrete values and outputs that are either true (a positive Positive

example) or false (a negative example). We call this Boolean classification. We will use j Negative

to index the examples (x j is the input vector for the jth example and y j is the output), and x j,i

for the ith attribute of the jth example.
The tree representing the decision function that SR uses for the restaurant problem is

shown in Figure 19.3. Following the branches, we see that an example with Patrons=Full
and WaitEstimate=0–10 will be classified as positive (i.e., yes, we will wait for a table).

19.3.1 Expressiveness of decision trees

A Boolean decision tree is equivalent to a logical statement of the form:

Output ⇔ (Path1∨Path2∨·· ·) ,
where each Pathi is a conjunction of the form (Am = vx ∧An = vy ∧ ·· ·) of attribute-value
tests corresponding to a path from the root to a true leaf. Thus, the whole expression is
in disjunctive normal form, which means that any function in propositional logic can be
expressed as a decision tree.

For many problems, the decision tree format yields a nice, concise, understandable result.
Indeed, many “How To” manuals (e.g., for car repair) are written as decision trees. But some
functions cannot be represented concisely. For example, the majority function, which returns
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true if and only if more than half of the inputs are true, requires an exponentially large decision
tree, as does the parity function, which returns true if and only if an even number of input
attributes are true. With real-valued attributes, the function y > A1 +A2 is hard to represent
with a decision tree because the decision boundary is a diagonal line, and all decision tree
tests divide the space up into rectangular, axis-aligned boxes. We would have to stack a lot
of boxes to closely approximate the diagonal line. In other words, decision trees are good for
some kinds of functions and bad for others.

Is there any kind of representation that is efficient for all kinds of functions? Unfortu-
nately, the answer is no—there are just too many functions to be able to represent them all
with a small number of bits. Even just considering Boolean functions with n Boolean at-
tributes, the truth table will have 2n rows, and each row can output true or false, so there are
22n

different functions. With 20 attributes there are 21,048,576 ≈ 10300,000 functions, so if we
limit ourselves to a million-bit representation, we can’t represent all these functions.

19.3.2 Learning decision trees from examples

We want to find a tree that is consistent with the examples in Figure 19.2 and is as small as
possible. Unfortunately, it is intractable to find a guaranteed smallest consistent tree. But
with some simple heuristics, we can efficiently find one that is close to the smallest. The
LEARN-DECISION-TREE algorithm adopts a greedy divide-and-conquer strategy: always
test the most important attribute first, then recursively solve the smaller subproblems that are
defined by the possible results of the test. By “most important attribute,” we mean the one
that makes the most difference to the classification of an example. That way, we hope to get
to the correct classification with a small number of tests, meaning that all paths in the tree
will be short and the tree as a whole will be shallow.

Figure 19.4(a) shows that Type is a poor attribute, because it leaves us with four possible
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None Some Full
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Figure 19.3 A decision tree for deciding whether to wait for a table.
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Figure 19.4 Splitting the examples by testing on attributes. At each node we show the
positive (light boxes) and negative (dark boxes) examples remaining. (a) Splitting on Type
brings us no nearer to distinguishing between positive and negative examples. (b) Splitting
on Patrons does a good job of separating positive and negative examples. After splitting on
Patrons, Hungry is a fairly good second test.

outcomes, each of which has the same number of positive as negative examples. On the other
hand, in (b) we see that Patrons is a fairly important attribute, because if the value is None or
Some, then we are left with example sets for which we can answer definitively (No and Yes,
respectively). If the value is Full, we are left with a mixed set of examples. There are four
cases to consider for these recursive subproblems:

1. If the remaining examples are all positive (or all negative), then we are done: we can
answer Yes or No. Figure 19.4(b) shows examples of this happening in the None and
Some branches.

2. If there are some positive and some negative examples, then choose the best attribute to
split them. Figure 19.4(b) shows Hungry being used to split the remaining examples.

3. If there are no examples left, it means that no example has been observed for this com-
bination of attribute values, and we return the most common output value from the set
of examples that were used in constructing the node’s parent.

4. If there are no attributes left, but both positive and negative examples, it means that
these examples have exactly the same description, but different classifications. This can
happen because there is an error or noise in the data; because the domain is nondeter- Noise

ministic; or because we can’t observe an attribute that would distinguish the examples.
The best we can do is return the most common output value of the remaining examples.

The LEARN-DECISION-TREE algorithm is shown in Figure 19.5. Note that the set of exam-
ples is an input to the algorithm, but nowhere do the examples appear in the tree returned by
the algorithm. A tree consists of tests on attributes in the interior nodes, values of attributes
on the branches, and output values on the leaf nodes. The details of the IMPORTANCE func-
tion are given in Section 19.3.3. The output of the learning algorithm on our sample training
set is shown in Figure 19.6. The tree is clearly different from the original tree shown in Fig-
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function LEARN-DECISION-TREE(examples, attributes, parent examples) returns a tree

if examples is empty then return PLURALITY-VALUE(parent examples)
else if all examples have the same classification then return the classification
else if attributes is empty then return PLURALITY-VALUE(examples)
else

A←argmaxa∈attributes IMPORTANCE(a, examples)
tree←a new decision tree with root test A
for each value v of A do

exs←{e : e∈examples and e.A = v}
subtree←LEARN-DECISION-TREE(exs, attributes−A, examples)
add a branch to tree with label (A = v) and subtree subtree

return tree

Figure 19.5 The decision tree learning algorithm. The function IMPORTANCE is described
in Section 19.3.3. The function PLURALITY-VALUE selects the most common output value
among a set of examples, breaking ties randomly.

None Some Full

Patrons?

No Yes

No  Yes

Hungry?

No

No  Yes

Fri/Sat?

YesNo

Yes

Type?

French Italian Thai Burger

Yes No

Figure 19.6 The decision tree induced from the 12-example training set.

ure 19.3. One might conclude that the learning algorithm is not doing a very good job of
learning the correct function. This would be the wrong conclusion to draw, however. The
learning algorithm looks at the examples, not at the correct function, and in fact, its hypothe-
sis (see Figure 19.6) not only is consistent with all the examples, but is considerably simpler
than the original tree! With slightly different examples the tree might be very different, but
the function it represents would be similar.

The learning algorithm has no reason to include tests for Raining and Reservation, be-
cause it can classify all the examples without them. It has also detected an interesting and
previously unsuspected pattern: SR will wait for Thai food on weekends. It is also bound to
make some mistakes for cases where it has seen no examples. For example, it has never seen
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Figure 19.7 A learning curve for the decision tree learning algorithm on 100 randomly gen-
erated examples in the restaurant domain. Each data point is the average of 20 trials.

a case where the wait is 0–10 minutes but the restaurant is full. In that case it says not to wait
when Hungry is false, but SR would certainly wait. With more training examples the learning
program could correct this mistake.

We can evaluate the performance of a learning algorithm with a learning curve, as shown Learning curve

in Figure 19.7. For this figure we have 100 examples at our disposal, which we split randomly
into a training set and a test set. We learn a hypothesis h with the training set and measure its
accuracy with the test set. We can do this starting with a training set of size 1 and increasing
one at a time up to size 99. For each size, we actually repeat the process of randomly splitting
into training and test sets 20 times, and average the results of the 20 trials. The curve shows
that as the training set size grows, the accuracy increases. (For this reason, learning curves
are also called happy graphs.) In this graph we reach 95% accuracy, and it looks as if the Happy graphs

curve might continue to increase if we had more data.

19.3.3 Choosing attribute tests

The decision tree learning algorithm chooses the attribute with the highest IMPORTANCE. We
will now show how to measure importance, using the notion of information gain, which is de-
fined in terms of entropy, which is the fundamental quantity in information theory (Shannon Entropy

and Weaver, 1949).
Entropy is a measure of the uncertainty of a random variable; the more information, the

less entropy. A random variable with only one possible value—a coin that always comes
up heads—has no uncertainty and thus its entropy is defined as zero. A fair coin is equally
likely to come up heads or tails when flipped, and we will soon show that this counts as “1
bit” of entropy. The roll of a fair four-sided die has 2 bits of entropy, because there are 22

equally probable choices. Now consider an unfair coin that comes up heads 99% of the time.
Intuitively, this coin has less uncertainty than the fair coin—if we guess heads we’ll be wrong
only 1% of the time—so we would like it to have an entropy measure that is close to zero,
but positive. In general, the entropy of a random variable V with values vk having probability
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P(vk) is defined as

Entropy: H(V ) = ∑
k

P(vk) log2
1

P(vk)
=−∑

k
P(vk) log2 P(vk) .

We can check that the entropy of a fair coin flip is indeed 1 bit:

H(Fair) =−(0.5log2 0.5+0.5log2 0.5) = 1 .

And of a four-sided die is 2 bits:

H(Die4) =−(0.25log2 0.25+0.25log2 0.25+0.25log2 0.25+0.25log2 0.25) = 2

For the loaded coin with 99% heads, we get

H(Loaded) =−(0.99log2 0.99+0.01log2 0.01)≈ 0.08 bits.

It will help to define B(q) as the entropy of a Boolean random variable that is true with
probability q:

B(q)=−(q log2 q+(1−q) log2(1−q)) .

Thus, H(Loaded)=B(0.99)≈ 0.08. Now let’s get back to decision tree learning. If a training
set contains p positive examples and n negative examples, then the entropy of the output
variable on the whole set is

H(Output) = B
(

p
p+n

)
.

The restaurant training set in Figure 19.2 has p = n = 6, so the corresponding entropy is
B(0.5) or exactly 1 bit. The result of a test on an attribute A will give us some information,
thus reducing the overall entropy by some amount. We can measure this reduction by looking
at the entropy remaining after the attribute test.

An attribute A with d distinct values divides the training set E into subsets E1, . . . ,Ed .
Each subset Ek has pk positive examples and nk negative examples, so if we go along that
branch, we will need an additional B(pk/(pk +nk)) bits of information to answer the question.
A randomly chosen example from the training set has the kth value for the attribute (i.e., is
in Ek with probability (pk + nk)/(p+ n)), so the expected entropy remaining after testing
attribute A is

Remainder(A) =
d

∑
k=1

pk+nk
p+n B( pk

pk+nk
) .

The information gain from the attribute test on A is the expected reduction in entropy:Information gain

Gain(A) = B( p
p+n)−Remainder(A) .

In fact Gain(A) is just what we need to implement the IMPORTANCE function. Returning to
the attributes considered in Figure 19.4, we have

Gain(Patrons) = 1−
[ 2

12 B(0
2)+

4
12 B(4

4)+
6

12 B(2
6)
]
≈ 0.541 bits,

Gain(Type) = 1−
[ 2

12 B(1
2)+

2
12 B(1

2)+
4
12 B(2

4)+
4
12 B(2

4)
]
= 0 bits,

confirming our intuition that Patrons is a better attribute to split on first. In fact, Patrons
has the maximum information gain of any of the attributes and thus would be chosen by the
decision tree learning algorithm as the root.
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19.3.4 Generalization and overfitting

We want our learning algorithms to find a hypothesis that fits the training data, but more
importantly, we want it to generalize well for previously unseen data. In Figure 19.1 we saw
that a high-degree polynomial can fit all the data, but has wild swings that are not warranted
by the data: it fits but can overfit. Overfitting becomes more likely as the number of attributes
grows, and less likely as we increase the number of training examples. Larger hypothesis
spaces (e.g., decision trees with more nodes or polynomials with high degree) have more
capacity both to fit and to overfit; some model classes are more prone to overfitting than
others.

For decision trees, a technique called decision tree pruning combats overfitting. Pruning Decision tree
pruning

works by eliminating nodes that are not clearly relevant. We start with a full tree, as gener-
ated by LEARN-DECISION-TREE. We then look at a test node that has only leaf nodes as
descendants. If the test appears to be irrelevant—detecting only noise in the data—then we
eliminate the test, replacing it with a leaf node. We repeat this process, considering each test
with only leaf descendants, until each one has either been pruned or accepted as is.

The question is, how do we detect that a node is testing an irrelevant attribute? Suppose
we are at a node consisting of p positive and n negative examples. If the attribute is irrel-
evant, we would expect that it would split the examples into subsets such that each subset
has roughly the same proportion of positive examples as the whole set, p/(p+n), and so the
information gain will be close to zero.3 Thus, a low information gain is a good clue that the
attribute is irrelevant. Now the question is, how large a gain should we require in order to
split on a particular attribute?

We can answer this question by using a statistical significance test. Such a test begins Significance test

by assuming that there is no underlying pattern (the so-called null hypothesis). Then the ac- Null hypothesis

tual data are analyzed to calculate the extent to which they deviate from a perfect absence of
pattern. If the degree of deviation is statistically unlikely (usually taken to mean a 5% prob-
ability or less), then that is considered to be good evidence for the presence of a significant
pattern in the data. The probabilities are calculated from standard distributions of the amount
of deviation one would expect to see in random sampling.

In this case, the null hypothesis is that the attribute is irrelevant and, hence, that the infor-
mation gain for an infinitely large sample would be zero. We need to calculate the probability
that, under the null hypothesis, a sample of size v=n+ p would exhibit the observed devi-
ation from the expected distribution of positive and negative examples. We can measure the
deviation by comparing the actual numbers of positive and negative examples in each subset,
pk and nk, with the expected numbers, p̂k and n̂k, assuming true irrelevance:

p̂k = p× pk +nk

p+n
n̂k = n× pk +nk

p+n
.

A convenient measure of the total deviation is given by

∆ =
d

∑
k=1

(pk− p̂k)
2

p̂k
+

(nk− n̂k)
2

n̂k
.

Under the null hypothesis, the value of ∆ is distributed according to the χ2 (chi-squared)

3 The gain will be strictly positive except for the unlikely case where all the proportions are exactly the same.
(See Exercise 19.NNGA.)
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distribution with d− 1 degrees of freedom. We can use a χ2 statistics function to see if a
particular ∆ value confirms or rejects the null hypothesis. For example, consider the restaurant
Type attribute, with four values and thus three degrees of freedom. A value of ∆=7.82 or
more would reject the null hypothesis at the 5% level (and a value of ∆=11.35 or more
would reject at the 1% level). Values below that lead to accepting the hypothesis that the
attribute is irrelevant, and thus the associated branch of the tree should be pruned away. This
is known as χ2 pruning.χ2 pruning

With pruning, noise in the examples can be tolerated. Errors in the example’s label (e.g.,
an example (x,Yes) that should be (x,No)) give a linear increase in prediction error, whereas
errors in the descriptions of examples (e.g., Price=$ when it was actually Price=$$) have
an asymptotic effect that gets worse as the tree shrinks down to smaller sets. Pruned trees
perform significantly better than unpruned trees when the data contain a large amount of
noise. Also, the pruned trees are often much smaller and hence easier to understand and more
efficient to execute.

One final warning: You might think that χ2 pruning and information gain look similar,
so why not combine them using an approach called early stopping—have the decision treeEarly stopping

algorithm stop generating nodes when there is no good attribute to split on, rather than going
to all the trouble of generating nodes and then pruning them away. The problem with early
stopping is that it stops us from recognizing situations where there is no one good attribute,
but there are combinations of attributes that are informative. For example, consider the XOR
function of two binary attributes. If there are roughly equal numbers of examples for all
four combinations of input values, then neither attribute will be informative, yet the correct
thing to do is to split on one of the attributes (it doesn’t matter which one), and then at the
second level we will get splits that are very informative. Early stopping would miss this, but
generate-and-then-prune handles it correctly.

19.3.5 Broadening the applicability of decision trees

Decision trees can be made more widely useful by handling the following complications:

• Missing data: In many domains, not all the attribute values will be known for every
example. The values might have gone unrecorded, or they might be too expensive to
obtain. This gives rise to two problems: First, given a complete decision tree, how
should one classify an example that is missing one of the test attributes? Second, how
should one modify the information-gain formula when some examples have unknown
values for the attribute? These questions are addressed in Exercise 19.MISS.
• Continuous and multivalued input attributes: For continuous attributes like Height,

Weight, or Time, it may be that every example has a different attribute value. The
information gain measure would give its highest score to such an attribute, giving us a
shallow tree with this attribute at the root, and single-example subtrees for each possible
value below it. But that doesn’t help when we get a new example to classify with an
attribute value that we haven’t seen before.

A better way to deal with continuous values is a split point test—an inequality testSplit point

on the value of an attribute. For example, at a given node in the tree, it might be the
case that testing on Weight > 160 gives the most information. Efficient methods exist
for finding good split points: start by sorting the values of the attribute, and then con-
sider only split points that are between two examples in sorted order that have different
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classifications, while keeping track of the running totals of positive and negative exam-
ples on each side of the split point. Splitting is the most expensive part of real-world
decision tree learning applications.

For attributes that are not continuous and do not have a meaningful ordering, but
have a large number of possible values (e.g., Zipcode or CreditCardNumber), a measure
called the information gain ratio (see Exercise 19.GAIN) can be used to avoid splitting
into lots of single-example subtrees. Another useful approach is to allow an equality
test of the form A=vk. For example, the test Zipcode=10002 could be used to pick out
a large group of people in this zip code in New York City, and to lump everyone else
into the “other” subtree.
• Continuous-valued output attribute: If we are trying to predict a numerical output

value, such as the price of an apartment, then we need a regression tree rather than a Regression tree

classification tree. A regression tree has at each leaf a linear function of some subset of
numerical attributes, rather than a single output value. For example, the branch for two-
bedroom apartments might end with a linear function of square footage and number
of bathrooms. The learning algorithm must decide when to stop splitting and begin
applying linear regression (see Section 19.6) over the attributes. The name CART, CART

standing for Classification And Regression Trees, is used to cover both classes.

A decision tree learning system for real-world applications must be able to handle all of
these problems. Handling continuous-valued variables is especially important, because both
physical and financial processes provide numerical data. Several commercial packages have
been built that meet these criteria, and they have been used to develop thousands of fielded
systems. In many areas of industry and commerce, decision trees are the first method tried
when a classification method is to be extracted from a data set.

Decision trees have a lot going for them: ease of understanding, scalability to large data
sets, and versatility in handling discrete and continuous inputs as well as classification and
regression. However, they can have suboptimal accuracy (largely due to the greedy search),
and if trees are very deep, then getting a prediction for a new example can be expensive in run
time. Decision trees are also unstable in that adding just one new example can change the Unstable

test at the root, which changes the entire tree. In Section 19.8.2 we will see that the random
forest model can fix some of these issues.

19.4 Model Selection and Optimization

Our goal in machine learning is to select a hypothesis that will optimally fit future examples.
To make that precise we need to define “future example” and “optimal fit.”

First we will make the assumption that the future examples will be like the past. We call
this the stationarity assumption; without it, all bets are off. We assume that each example E j Stationarity

has the same prior probability distribution:

P(E j) = P(E j+1) = P(E j+2) = · · · ,

and is independent of the previous examples:

P(E j) = P(E j|E j−1,E j−2, . . .) .

Examples that satisfy these equations are independent and identically distributed or i.i.d.. I.i.d.
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The next step is to define “optimal fit.” For now, we will say that the optimal fit is the
hypothesis that minimizes the error rate: the proportion of times that h(x) 6= y for an (x,y)Error rate

example. (Later we will expand on this to allow different errors to have different costs, in
effect giving partial credit for answers that are “almost” correct.) We can estimate the error
rate of a hypothesis by giving it a test: measure its performance on a test set of examples. It
would be cheating for a hypothesis (or a student) to peek at the test answers before taking the
test. The simplest way to ensure this doesn’t happen is to split the examples you have into
two sets: a training set to create the hypothesis, and a test set to evaluate it.

If we are only going to create one hypothesis, then this approach is sufficient. But often
we will end up creating multiple hypotheses: we might want to compare two completely
different machine learning models, or we might want to adjust the various “knobs” within
one model. For example, we could try different thresholds for χ2 pruning of decision trees,
or different degrees for polynomials. We call these “knobs” hyperparameters—parametersHyperparameters

of the model class, not of the individual model.
Suppose a researcher generates a hypotheses for one setting of the χ2 pruning hyperpa-

rameter, measures the error rates on the test set, and then tries different hyperparameters. No
individual hypothesis has peeked at the test set data, but the overall process did, through the
researcher.

The way to avoid this is to really hold out the test set—lock it away until you are
completely done with training, experimenting, hyperparameter-tuning, re-training, etc. That
means you need three data sets:

1. A training set to train candidate models.
2. A validation set, also known as a development set or dev set, to evaluate the candidateValidation set

models and choose the best one.
3. A test set to do a final unbiased evaluation of the best model.

What if we don’t have enough data to make all three of these data sets? We can squeeze more
out of the data using a technique called k-fold cross-validation. The idea is that each exampleK-fold

cross-validation
serves double duty—as training data and validation data—but not at the same time. First we
split the data into k equal subsets. We then perform k rounds of learning; on each round 1/k
of the data are held out as a validation set and the remaining examples are used as the training
set. The average test set score of the k rounds should then be a better estimate than a single
score. Popular values for k are 5 and 10—enough to give an estimate that is statistically likely
to be accurate, at a cost of 5 to 10 times longer computation time. The extreme is k = n, also
known as leave-one-out cross-validation or LOOCV. Even with cross-validation, we stillLOOCV

need a separate test set.
In Figure 19.1 (page 672) we saw a linear function underfit the data set, and a high-

degree polynomial overfit the data. We can think of the task of finding a good hypothesis
as two subtasks: model selection4 chooses a good hypothesis space, and optimization (alsoModel selection

Optimization called training) finds the best hypothesis within that space.
Part of model selection is qualitative and subjective: we might select polynomials rather

4 Although the name “model selection” is in common use, a better name would have been “model class selec-
tion” or “hypothesis space selection.” The word “model” has been used in the literature to refer to three different
levels of specificity: a broad hypothesis space (like “polynomials”), a hypothesis space with hyperparameters
filled in (like “degree-2 polynomials”), and a specific hypothesis with all parameters filled in (like 5x2 +3x−2).
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function MODEL-SELECTION(Learner, examples, k) returns a (hypothesis, error rate) pair

err←an array, indexed by size, storing validation-set error rates
training set, test set←a partition of examples into two sets
for size = 1 to ∞ do

err[size]←CROSS-VALIDATION(Learner, size, training set, k)
if err is starting to increase significantly then

best size← the value of size with minimum err[size]
h←Learner(best size, training set)
return h, ERROR-RATE(h, test set)

function CROSS-VALIDATION(Learner, size, examples, k) returns error rate

N← the number of examples
errs←0
for i = 1 to k do

validation set←examples[(i − 1) × N/k:i × N/k]
training set←examples − validation set
h←Learner(size, training set)
errs←errs + ERROR-RATE(h, validation set)

return errs / k // average error rate on validation sets, across k-fold cross-validation

Figure 19.8 An algorithm to select the model that has the lowest validation error. It builds
models of increasing complexity, and choosing the one with best empirical error rate, err,
on the validation data set. Learner(size,examples) returns a hypothesis whose complexity
is set by the parameter size, and which is trained on examples. In CROSS-VALIDATION,
each iteration of the for loop selects a different slice of the examples as the validation set,
and keeps the other examples as the training set. It then returns the average validation set
error over all the folds. Once we have determined which value of the size parameter is best,
MODEL-SELECTION returns the model (i.e., learner/hypothesis) of that size, trained on all
the training examples, along with its error rate on the held-out test examples.

than decision trees based on something that we know about the problem. And part is quan-
titative and empirical: within the class of polynomials, we might select Degree = 2, because
that value performs best on the validation data set.

19.4.1 Model selection

Figure 19.8 describes a simple MODEL-SELECTION algorithm. It takes as argument a learn-
ing algorithm, Learner (for example, it could be LEARN-DECISION-TREE). Learner takes
one hyperparameter, which is named size in the figure. For decision trees it could be the
number of nodes in the tree; for polynomials size would be Degree. MODEL-SELECTION

starts with the smallest value of size, yielding a simple model (which will probably underfit
the data) and iterates through larger values of size, considering more complex models. In
the end MODEL-SELECTION selects the model that has the lowest average error rate on the
held-out validation data.

In Figure 19.9 we see two typical patterns that occur in model selection. In both (a)
and (b) the training set error decreases monotonically (with slight random fluctuation) as we
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Figure 19.9 Error rates on training data (lower, green line) and validation data (upper, orange
line) for models of different complexity on two different problems. MODEL-SELECTION
picks the hyperparameter value with the lowest validation-set error. In (a) the model class is
decision trees and the hyperparameter is the number of nodes. The data is from a version of
the restaurant problem. The optimal size is 7. In (b) the model class is convolutional neural
networks (see Section 22.3) and the hyperparameter is the number of regular parameters in
the network. The data is the MNIST data set of images of digits; the task is to identify each
digit. The optimal number of parameters is 1,000,000 (note the log scale).

increase the complexity of the model. Complexity is measured by the number of decision tree
nodes in (a) and by the number of neural network parameters (wi) in (b). For many model
classes, the training set error reaches zero as the complexity increases.

The two cases differ markedly in validation set error. In (a) we see a U-shaped validation-
error curve: error decreases for a while as model complexity increases, but then we reach a
point where the model begins to overfit, and validation error rises. MODEL-SELECTION

picks the value at the bottom of the U-shaped validation-error curve: in this case a tree with
size 7. This is the spot that best balances underfitting and overfitting. In (b) we see an initial
U-shaped curve just as in (a) but then the validation error starts to decrease again; the lowest
validation error rate is the final point in the plot, with 1,000,000 parameters.

Why are some validation-error curves like (a) and some like (b)? It comes down to how
the different model classes make use of excess capacity, and how well that matches up with
the problem at hand. As we add capacity to a model class, we often reach the point where
all the training examples can be represented perfectly within the model. For example, given
a training set with n distinct examples, there is always a decision tree with n leaf nodes that
can represent all the examples.

We say that a model that exactly fits all the training data has interpolated the data.5Interpolated

Model classes typically start to overfit as the capacity approaches the point of interpolation.
That seems to be because most of the model’s capacity is concentrated on the training ex-
amples, and the capacity that remains is allocated rather randomly in a way that is not rep-
resentative of the patterns in the validation data set. Some model classes never recover from

5 Some authors say the model has “memorized” the data.
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this overfitting, as with the decision trees in (a). But for other model classes, adding capacity
means that there are more candidate functions, and some of them are naturally well-suited to
the patterns of data that are in the true function f (x). The higher the capacity, the more of
these suitable representations there are, and the more likely that the optimization mechanism
will be able to land on one.

Deep neural networks (Chapter 22), kernel machines (Section 19.7.5), random forests
(Section 19.8.2), and boosted ensembles (Section 19.8.4) all have the property that their vali-
dation set error tends to decrease as capacity increases, as in Figure 19.9(b).

We could extend the model selection algorithm in various ways: we could compare dis-
parate model classes, by calling MODEL-SELECTION with DECISION-TREE-LEARNER as
an argument and then with POLYNOMIAL-LEARNER, and seeing which does better. We could
allow multiple hyperparameters, which means we would need a more complex optimization
algorithm, such as a grid search (see Section 19.9.3) rather than a linear search.

19.4.2 From error rates to loss

So far, we have been trying to minimize error rate. This is clearly better than maximizing error
rate, but it is not the full story. Consider the problem of classifying email messages as spam
or non-spam. It is worse to classify non-spam as spam (and thus potentially miss an important
message) than to classify spam as non-spam (and thus suffer a few seconds of annoyance).
So a classifier with a 1% error rate, where almost all the errors were classifying spam as non-
spam, would be better than a classifier with only a 0.5% error rate, if most of those errors were
classifying non-spam as spam. We saw in Chapter 15 that decision makers should maximize
expected utility, and utility is what learners should maximize as well. However, in machine
learning it is traditional to express this as a negative: to minimize a loss function rather than Loss function

maximize a utility function. The loss function L(x,y, ŷ) is defined as the amount of utility lost
by predicting h(x)= ŷ when the correct answer is f (x)=y:

L(x,y, ŷ) = Utility(result of using y given an input x)

− Utility(result of using ŷ given an input x)

This is the most general formulation of the loss function. Often a simplified version is used,
L(y, ŷ), that is independent of x. We will use the simplified version for the rest of this chapter,
which means we can’t say that it is worse to misclassify a letter from Mom than it is to
misclassify a letter from our annoying cousin, but we can say that it is 10 times worse to
classify non-spam as spam than vice versa:

L(spam,nospam) = 1, L(nospam,spam) = 10 .

Note that L(y,y) is always zero; by definition there is no loss when you guess exactly right.
For functions with discrete outputs, we can enumerate a loss value for each possible mis-
classification, but we can’t enumerate all the possibilities for real-valued data. If f (x) is
137.035999, we would be fairly happy with h(x) = 137.036, but just how happy should we
be? In general, small errors are better than large ones; two functions that implement that idea
are the absolute value of the difference (called the L1 loss), and the square of the difference
(called the L2 loss; think “2” for square). For discrete-valued outputs, if we are content with
the idea of minimizing error rate, we can use the L0/1 loss function, which has a loss of 1 for
an incorrect answer:
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Absolute-value loss: L1(y, ŷ) = |y− ŷ|
Squared-error loss: L2(y, ŷ) = (y− ŷ)2

0/1 loss: L0/1(y, ŷ) = 0 if y = ŷ, else 1

Theoretically, the learning agent maximizes its expected utility by choosing the hypothesis
that minimizes expected loss over all input–output pairs it will see. To compute this expec-
tation we need to define a prior probability distribution P(X ,Y ) over examples. Let E be
the set of all possible input–output examples. Then the expected generalization loss for aGeneralization loss

hypothesis h (with respect to loss function L) is

GenLossL(h) = ∑
(x,y)∈E

L(y,h(x))P(x,y) ,

and the best hypothesis, h∗, is the one with the minimum expected generalization loss:

h∗ = argmin
h∈H

GenLossL(h) .

Because P(x,y) is not known in most cases, the learning agent can only estimate generaliza-
tion loss with empirical loss on a set of examples E of size N:Empirical loss

EmpLossL,E(h) = ∑
(x,y)∈E

L(y,h(x))
1
N
.

The estimated best hypothesis ĥ∗ is then the one with minimum empirical loss:

ĥ∗ = argmin
h∈H

EmpLossL,E(h) .

There are four reasons why ĥ∗ may differ from the true function, f : unrealizability, variance,
noise, and computational complexity.

First, we say that a learning problem is realizable if the hypothesis space H actuallyRealizable

contains the true function f . If H is the set of linear functions, and the true function f
is a quadratic function, then no amount of data will recover the true f . Second, variance
means that a learning algorithm will in general return different hypotheses for different sets
of examples. If the problem is realizable, then variance decreases towards zero as the number
of training examples increases. Third, f may be nondeterministic or noisy—it may returnNoise

different values of f (x) for the same x. By definition, noise cannot be predicted (it can only
be characterized). And finally, whenH is a complicated function in a large hypothesis space,
it can be computationally intractable to systematically search all possibilities; in that case,
a search can explore part of the space and return a reasonably good hypothesis, but can’t
always guarantee the best one.

Traditional methods in statistics and the early years of machine learning concentrated on
small-scale learning, where the number of training examples ranged from dozens to the lowSmall-scale learning

thousands. Here the generalization loss mostly comes from the approximation error of not
having the true f in the hypothesis space, and from the estimation error of not having enough
training examples to limit variance.

In recent years there has been more emphasis on large-scale learning, with millions ofLarge-scale learning

examples. Here the generalization loss may be dominated by limits of computation: there are
enough data and a rich enough model that we could find an h that is very close to the true f ,
but the computation to find it is complex, so we settle for an approximation.
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19.4.3 Regularization

In Section 19.4.1, we saw how to do model selection with cross-validation. An alternative
approach is to search for a hypothesis that directly minimizes the weighted sum of empirical
loss and the complexity of the hypothesis, which we will call the total cost:

Cost(h) = EmpLoss(h)+λComplexity(h)

ĥ∗ = argmin
h∈H

Cost(h) .

Here λ is a hyperparameter, a positive number that serves as a conversion rate between loss
and hypothesis complexity. If λ is chosen well, it nicely balances the empirical loss of a
simple function against a complicated function’s tendency to overfit.

This process of explicitly penalizing complex hypotheses is called regularization: we’re Regularization

looking for functions that are more regular. Note that we are now making two choices: the
loss function (L1 or L2), and the complexity measure, which is called a regularization func-
tion. The choice of regularization function depends on the hypothesis space. For example, Regularization

function
for polynomials, a good regularization function is the sum of the squares of the coefficients—
keeping the sum small would guide us away from the wiggly degree-12 polynomial in Fig-
ure 19.1. We will show an example of this type of regularization in Section 19.6.3.

Another way to simplify models is to reduce the dimensions that the models work with. A
process of feature selection can be performed to discard attributes that appear to be irrelevant. Feature selection

χ2 pruning is a kind of feature selection.
It is in fact possible to have the empirical loss and the complexity measured on the same

scale, without the conversion factor λ: they can both be measured in bits. First encode
the hypothesis as a Turing machine program, and count the number of bits. Then count
the number of bits required to encode the data, where a correctly predicted example costs
zero bits and the cost of an incorrectly predicted example depends on how large the error is.
The minimum description length or MDL hypothesis minimizes the total number of bits Minimum

description length

required. This works well in the limit, but for smaller problems the choice of encoding for
the program—how best to encode a decision tree as a bit string—affects the outcome. In
Chapter 21 (page 775), we describe a probabilistic interpretation of the MDL approach.

19.4.4 Hyperparameter tuning

In Section 19.4.1 we showed how to select the best value of the hyperparameter size by
applying cross-validation to each possible value until the validation error rate increases. That
is a good approach when there is a single hyperparameter with a small number of possible
values. But when there are multiple hyperparameters, or when they have continuous values,
it is more difficult to choose good values.

The simplest approach to hyperparameter tuning is hand-tuning: guess some parameter Hand-tuning

values based on past experience, train a model, measure its performance on the validation
data, analyze the results, and use your intuition to suggest new parameter values. Repeat until
you have satisfactory performance (or you run out of time, computing budget, or patience).

If there are only a few hyperparameters, each with a small number of possible values,
then a more systematic approach called grid search is appropriate: try all combinations of Grid search

values and see which performs best on the validation data. Different combinations can be
run in parallel on different machines, so if you have sufficient computing resources, this need



690 Chapter 19 Learning from Examples

not be slow, although in some cases model selection has been known to suck up resources on
thousand-computer clusters for days at a time.

The search strategies from Chapters 3 and 4 can also come into play. For example, if two
hyperparameters are independent of each other, they can be optimized separately.

If there are too many combinations of possible values, then random search samplesRandom search

uniformly from the set of all possible hyperparameter settings, repeating for as long as you
are willing to spend the time and computational resources. Random sampling is also a good
way to handle continuous values.

When each training run takes a long time, it can be helpful to get useful information out of
each one. Bayesian optimization treats the task of choosing good hyperparameter values as aBayesian

optimization

machine learning problem in itself. That is, think of the vector of hyperparameter values x as
an input, and the total loss on the validation set for the model built with those hyperparameters
as an output, y; then we are trying to find the function y= f (x) that minimizes the loss y. Each
time we do a training run we get a new (y, f (x)) pair, which we can use to update our belief
about the shape of the function f .

The idea is to trade off exploitation (choosing parameter values that are near to a previous
good result) with exploration (trying novel parameter values). This is the same tradeoff we
saw in Monte Carlo tree search (Section 6.4), and in fact the idea of upper confidence bounds
is used here as well to minimize regret. If we make the assumption that f can be approximated
by a Gaussian process, then the math of updating our belief about f works out nicely. Snoek
et al. (2013) explain the math and give a practical guide to the approach, showing that it can
outperform hand-tuning of parameters, even by experts.

An alternative to Bayesian optimization is population-based training (PBT). PBT startsPopulation-based
training (PBT)

by using random search to train (in parallel) a population of models, each with different
hyperparameter values. Then a second generation of models are trained, but they can choose
hyperparameter values based on the successful values from the previous generation, as well
as by random mutation, as in genetic algorithms (Section 4.1.4). Thus, population-based
training shares the advantage of random search that many runs can be done in parallel, and it
shares the advantage of Bayesian optimization (or of hand-tuning by a clever human) that we
can gain information from earlier runs to inform later ones.

19.5 The Theory of Learning

How can we be sure that our learned hypothesis will predict well for previously unseen in-
puts? That is, how do we know that the hypothesis h is close to the target function f if
we don’t know what f is? These questions have been pondered for centuries, by Ockham,
Hume, and others. In recent decades, other questions have emerged: how many examples do
we need to get a good h? What hypothesis space should we use? If the hypothesis space is
very complex, can we even find the best h, or do we have to settle for a local maximum? How
complex should h be? How do we avoid overfitting? This section examines these questions.

We’ll start with the question of how many examples are needed for learning. We saw
from the learning curve for decision tree learning on the restaurant problem (Figure 19.7 on
page 679) that accuracy improves with more training data. Learning curves are useful, but
they are specific to a particular learning algorithm on a particular problem. Are there some
more general principles governing the number of examples needed?
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Questions like this are addressed by computational learning theory, which lies at the Computational
learning theory

intersection of AI, statistics, and theoretical computer science. The underlying principle is
that any hypothesis that is seriously wrong will almost certainly be “found out” with high
probability after a small number of examples, because it will make an incorrect prediction.
Thus, any hypothesis that is consistent with a sufficiently large set of training examples is
unlikely to be seriously wrong: that is, it must be probably approximately correct (PAC).

Probably
approximately
correct (PAC)Any learning algorithm that returns hypotheses that are probably approximately correct

is called a PAC learning algorithm; we can use this approach to provide bounds on the PAC learning

performance of various learning algorithms.
PAC-learning theorems, like all theorems, are logical consequences of axioms. When a

theorem (as opposed to, say, a political pundit) states something about the future based on
the past, the axioms have to provide the “juice” to make that connection. For PAC learn-
ing, the juice is provided by the stationarity assumption introduced on page 683, which says
that future examples are going to be drawn from the same fixed distribution P(E)=P(X ,Y )
as past examples. (Note that we do not have to know what distribution that is, just that it
doesn’t change.) In addition, to keep things simple, we will assume that the true function f
is deterministic and is a member of the hypothesis spaceH that is being considered.

The simplest PAC theorems deal with Boolean functions, for which the 0/1 loss is appro-
priate. The error rate of a hypothesis h, defined informally earlier, is defined formally here
as the expected generalization error for examples drawn from the stationary distribution:

error(h) = GenLossL0/1(h) = ∑
x,y

L0/1(y,h(x))P(x,y) .

In other words, error(h) is the probability that h misclassifies a new example. This is the same
quantity being measured experimentally by the learning curves shown earlier.

A hypothesis h is called approximately correct if error(h) ≤ ε, where ε is a small con-
stant. We will show that we can find an N such that, after training on N examples, with high
probability, all consistent hypotheses will be approximately correct. One can think of an ap-
proximately correct hypothesis as being “close” to the true function in hypothesis space: it
lies inside what is called the ε-ball around the true function f . The hypothesis space outside ε-ball

this ball is calledHbad.
We can derive a bound on the probability that a “seriously wrong” hypothesis hb ∈ Hbad

is consistent with the first N examples as follows. We know that error(hb) > ε. Thus, the
probability that it agrees with a given example is at most 1− ε. Since the examples are
independent, the bound for N examples is:

P(hb agrees with N examples)≤ (1− ε)N .

The probability that Hbad contains at least one consistent hypothesis is bounded by the sum
of the individual probabilities:

P(Hbad contains a consistent hypothesis)≤ |Hbad|(1− ε)N ≤ |H|(1− ε)N ,

where we have used the fact thatHbad is a subset ofH and thus |Hbad| ≤ |H|. We would like
to reduce the probability of this event below some small number δ:

P(Hbad contains a consistent hypothesis)≤ |H|(1− ε)N ≤ δ .
Given that 1− ε≤ e−ε, we can achieve this if we allow the algorithm to see

N ≥ 1
ε

(
ln

1
δ
+ ln |H|

)
(19.1)
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Figure 19.10 A decision list for the restaurant problem.

examples. Thus, with probability at least 1−δ, after seeing this many examples, the learning
algorithm will return a hypothesis that has error at most ε. In other words, it is probably
approximately correct. The number of required examples, as a function of ε and δ, is called
the sample complexity of the learning algorithm.Sample complexity

As we saw earlier, ifH is the set of all Boolean functions on n attributes, then |H|= 22n
.

Thus, the sample complexity of the space grows as 2n. Because the number of possible
examples is also 2n, this suggests that PAC-learning in the class of all Boolean functions
requires seeing all, or nearly all, of the possible examples. A moment’s thought reveals the
reason for this: H contains enough hypotheses to classify any given set of examples in all
possible ways. In particular, for any set of N examples, the set of hypotheses consistent with
those examples contains equal numbers of hypotheses that predict xN+1 to be positive and
hypotheses that predict xN+1 to be negative.

To obtain real generalization to unseen examples, then, it seems we need to restrict the
hypothesis spaceH in some way; but of course, if we do restrict the space, we might eliminate
the true function altogether. There are three ways to escape this dilemma.

The first is to bring prior knowledge to bear on the problem.
The second, which we introduced in Section 19.4.3, is to insist that the algorithm re-

turn not just any consistent hypothesis, but preferably a simple one (as is done in decision
tree learning). In cases where finding simple consistent hypotheses is tractable, the sample
complexity results are generally better than for analyses based only on consistency.

The third, which we pursue next, is to focus on learnable subsets of the entire hypoth-
esis space of Boolean functions. This approach relies on the assumption that the restricted
hypothesis space contains a hypothesis h that is close enough to the true function f ; the bene-
fits are that the restricted hypothesis space allows for effective generalization and is typically
easier to search. We now examine one such restricted hypothesis space in more detail.

19.5.1 PAC learning example: Learning decision lists

We now show how to apply PAC learning to a new hypothesis space: decision lists. ADecision lists

decision list consists of a series of tests, each of which is a conjunction of literals. If a
test succeeds when applied to an example description, the decision list specifies the value
to be returned. If the test fails, processing continues with the next test in the list. Decision
lists resemble decision trees, but their overall structure is simpler: they branch only in one
direction. In contrast, the individual tests are more complex. Figure 19.10 shows a decision
list that represents the following hypothesis:

WillWait ⇔ (Patrons = Some)∨ (Patrons = Full∧Fri/Sat) .

If we allow tests of arbitrary size, then decision lists can represent any Boolean function
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function DECISION-LIST-LEARNING(examples) returns a decision list, or failure

if examples is empty then return the trivial decision list No
t←a test that matches a nonempty subset examplest of examples

such that the members of examplest are all positive or all negative
if there is no such t then return failure
if the examples in examplest are positive then o←Yes else o←No
return a decision list with initial test t and outcome o and remaining tests given by

DECISION-LIST-LEARNING(examples − examplest )

Figure 19.11 An algorithm for learning decision lists.

(Exercise 19.DLEX). On the other hand, if we restrict the size of each test to at most k literals,
then it is possible for the learning algorithm to generalize successfully from a small number
of examples. We use the notation k-DL for a decision list with up to k conjunctions. The
example in Figure 19.10 is in 2-DL. It is easy to show (Exercise 19.DLEX) that k-DL includes
as a subset k-DT, the set of all decision trees of depth at most k. We will use the notation K-DT

k-DL(n) to denote a k-DL using n Boolean attributes.
The first task is to show that k-DL is learnable—that is, that any function in k-DL can be

approximated accurately after training on a reasonable number of examples. To do this, we
need to calculate the number of possible hypotheses. Let the set of conjunctions of at most k
literals using n attributes be Conj(n,k). Because a decision list is constructed from tests, and
because each test can be attached to either a Yes or a No outcome or can be absent from the
decision list, there are at most 3|Conj(n,k)| distinct sets of component tests. Each of these sets
of tests can be in any order, so

|k-DL(n)| ≤ 3cc! where c = |Conj(n,k)| .

The number of conjunctions of at most k literals from n attributes is given by

|Conj(n,k)|=
k

∑
i=0

(
2n
i

)
= O(nk) .

Hence, after some work, we obtain

|k-DL(n)|= 2O(nk log2(n
k)) .

We can plug this into Equation (19.1) to show that the number of examples needed for PAC-
learning a k-DL(n) function is polynomial in n:

N ≥ 1
ε

(
ln

1
δ
+O(nk log2(n

k))

)
.

Therefore, any algorithm that returns a consistent decision list will PAC-learn a k-DL function
in a reasonable number of examples, for small k.

The next task is to find an efficient algorithm that returns a consistent decision list. We
will use a greedy algorithm called DECISION-LIST-LEARNING that repeatedly finds a test
that agrees exactly with some subset of the training set. Once it finds such a test, it adds
it to the decision list under construction and removes the corresponding examples. It then
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Figure 19.12 Learning curve for DECISION-LIST-LEARNING algorithm on the restaurant
data. The curve for LEARN-DECISION-TREE is shown for comparison; decision trees do
slightly better on this particular problem.

constructs the remainder of the decision list, using just the remaining examples. This is
repeated until there are no examples left. The algorithm is shown in Figure 19.11.

This algorithm does not specify the method for selecting the next test to add to the de-
cision list. Although the formal results given earlier do not depend on the selection method,
it would seem reasonable to prefer small tests that match large sets of uniformly classified
examples, so that the overall decision list will be as compact as possible. The simplest strat-
egy is to find the smallest test t that matches any uniformly classified subset, regardless of
the size of the subset. Even this approach works quite well, as Figure 19.12 suggests. For
this problem, the decision tree learns a bit faster than the decision list, but has more variation.
Both methods are over 90% accurate after 100 trials.

19.6 Linear Regression and Classification

Now it is time to move on from decision trees and lists to a different hypothesis space, one
that has been used for hundreds of years: the class of linear functions of continuous-valuedLinear function

inputs. We’ll start with the simplest case: regression with a univariate linear function, oth-
erwise known as “fitting a straight line.” Section 19.6.3 covers the multivariable case. Sec-
tions 19.6.4 and 19.6.5 show how to turn linear functions into classifiers by applying hard and
soft thresholds.

19.6.1 Univariate linear regression

A univariate linear function (a straight line) with input x and output y has the form y=w1x+
w0, where w0 and w1 are real-valued coefficients to be learned. We use the letter w because
we think of the coefficients as weights; the value of y is changed by changing the relativeWeight

weight of one term or another. We’ll define w to be the vector 〈w0,w1〉, and define the linear
function with those weights as

hw(x)=w1x+w0 .
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Figure 19.13(a) shows an example of a training set of n points in the x,y plane, each point
representing the size in square feet and the price of a house offered for sale. The task of
finding the hw that best fits these data is called linear regression. To fit a line to the data, all Linear regression

we have to do is find the values of the weights 〈w0,w1〉 that minimize the empirical loss. It
is traditional (going back to Gauss6) to use the squared-error loss function, L2, summed over
all the training examples:

Loss(hw) =
N

∑
j=1

L2(y j,hw(x j)) =
N

∑
j=1

(y j−hw(x j))
2 =

N

∑
j=1

(y j− (w1x j +w0))
2 .

We would like to find w∗ = argminw Loss(hw). The sum ∑
N
j=1(y j− (w1x j +w0))

2 is mini-
mized when its partial derivatives with respect to w0 and w1 are zero:

∂

∂w0

N

∑
j=1

(y j− (w1x j +w0))
2 = 0 and

∂

∂w1

N

∑
j=1

(y j− (w1x j +w0))
2 = 0 . (19.2)

These equations have a unique solution:

w1 =
N(∑x jy j)− (∑x j)(∑y j)

N(∑x2
j)− (∑x j)2 ; w0=(∑y j−w1(∑x j))/N . (19.3)

For the example in Figure 19.13(a), the solution is w1=0.232, w0 = 246, and the line with
those weights is shown as a dashed line in the figure.

Many forms of learning involve adjusting weights to minimize a loss, so it helps to have a
mental picture of what’s going on in weight space—the space defined by all possible settings Weight space

of the weights. For univariate linear regression, the weight space defined by w0 and w1 is
two-dimensional, so we can graph the loss as a function of w0 and w1 in a 3D plot (see
Figure 19.13(b)). We see that the loss function is convex, as defined on page 140; this is true
for every linear regression problem with an L2 loss function, and implies that there are no
local minima. In some sense that’s the end of the story for linear models; if we need to fit
lines to data, we apply Equation (19.3).7

19.6.2 Gradient descent

The univariate linear model has the nice property that it is easy to find an optimal solution
where the partial derivatives are zero. But that won’t always be the case, so we introduce here
a method for minimizing loss that does not depend on solving to find zeroes of the derivatives,
and can be applied to any loss function, no matter how complex.

As discussed in Section 4.2 (page 137) we can search through a continuous weight space
by incrementally modifying the parameters. There we called the algorithm hill climbing, but
here we are minimizing loss, not maximizing gain, so we will use the term gradient descent. Gradient descent

We choose any starting point in weight space—here, a point in the (w0, w1) plane—and
then compute an estimate of the gradient and move a small amount in the steepest downhill
direction, repeating until we converge on a point in weight space with (local) minimum loss.

6 Gauss showed that if the y j values have normally distributed noise, then the most likely values of w1 and w0
are obtained by using L2 loss, minimizing the sum of the squares of the errors. (If the values have noise that
follows a Laplace (double exponential) distribution, then L1 loss is appropriate.)
7 With some caveats: the L2 loss function is appropriate when there is normally distributed noise that is inde-
pendent of x; all results rely on the stationarity assumption; etc.
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Figure 19.13 (a) Data points of price versus floor space of houses for sale in Berkeley, CA,
in July 2009, along with the linear function hypothesis that minimizes squared-error loss:
y = 0.232x+ 246. (b) Plot of the loss function ∑ j(y j −w1x j +w0)

2 for various values of
w0,w1. Note that the loss function is convex, with a single global minimum.

The algorithm is as follows:

w ← any point in the parameter space
while not converged do

for each wi in w do

wi ← wi−α
∂

∂wi
Loss(w) (19.4)

The parameter α, which we called the step size in Section 4.2, is usually called the learning
rate when we are trying to minimize loss in a learning problem. It can be a fixed constant, orLearning rate

it can decay over time as the learning process proceeds.
For univariate regression, the loss is quadratic, so the partial derivative will be linear.

(The only calculus you need to know is the chain rule: ∂g( f (x))/∂x=g′( f (x))∂ f (x)/∂x,Chain rule

plus the facts that ∂

∂x x2=2x and ∂

∂x x=1.) Let’s first work out the partial derivatives—the
slopes—in the simplified case of only one training example, (x,y):

∂

∂wi
Loss(w) =

∂

∂wi
(y−hw(x))2 = 2(y−hw(x))×

∂

∂wi
(y−hw(x))

= 2(y−hw(x))×
∂

∂wi
(y− (w1x+w0)) . (19.5)

Applying this to both w0 and w1 we get:
∂

∂w0
Loss(w) =−2(y−hw(x)) ;

∂

∂w1
Loss(w) =−2(y−hw(x))×x .

Plugging this into Equation (19.4), and folding the 2 into the unspecified learning rate α, we
get the following learning rule for the weights:

w0← w0 +α(y−hw(x)) ; w1← w1 +α(y−hw(x))×x .

These updates make intuitive sense: if hw(x) > y (i.e., the output is too large), reduce w0 a
bit, and reduce w1 if x was a positive input but increase w1 if x was a negative input.
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The preceding equations cover one training example. For N training examples, we want
to minimize the sum of the individual losses for each example. The derivative of a sum is the
sum of the derivatives, so we have:

w0← w0 +α∑
j
(y j−hw(x j)) ; w1← w1 +α∑

j
(y j−hw(x j))×x j .

These updates constitute the batch gradient descent learning rule for univariate linear re- Batch gradient
descent

gression (also called deterministic gradient descent). The loss surface is convex, which
means that there are no local minima to get stuck in, and convergence to the global minimum
is guaranteed (as long as we don’t pick an α that is so large that it overshoots), but may be
very slow: we have to sum over all N training examples for every step, and there may be
many steps. The problem is compounded if N is larger than the processor’s memory size. A
step that covers all the training examples is called an epoch. Epoch

A faster variant is called stochastic gradient descent or SGD: it randomly selects a small Stochastic gradient
descent
SGDnumber of training examples at each step, and updates according to Equation (19.5). The

original version of SGD selected only one training example for each step, but it is now more
common to select a minibatch of m out of the N examples. Suppose we have N = 10,000 Minibatch

examples and choose a minibatch of size m = 100. Then on each step we have reduced the
amount of computation by a factor of 100; but because the standard error of the estimated
mean gradient is proportional to the square root of the number of examples, the standard
error increases by only a factor of 10. So even if we have to take 10 times more steps before
convergence, minibatch SGD is still 10 times faster than full batch SGD in this case.

With some CPU or GPU architectures, we can choose m to take advantage of parallel
vector operations, making a step with m examples almost as fast as a step with only a single
example. Within these constraints, we would treat m as a hyperparameter that should be tuned
for each learning problem.

Convergence of minibatch SGD is not strictly guaranteed; it can oscillate around the
minimum without settling down. We will see on page 702 how a schedule of decreasing the
learning rate, α, (as in simulated annealing) does guarantee convergence.

SGD can be helpful in an online setting, where new data are coming in one at a time, and
the stationarity assumption may not hold. (In fact, SGD is also known as online gradient
descent.) With a good choice for α a model will slowly evolve, remembering some of what Online gradient

descent
it learned in the past, but also adapting to the changes represented by the new data.

SGD is widely applied to models other than linear regression, in particular neural net-
works. Even when the loss surface is not convex, the approach has proven effective in finding
good local minima that are close to the global minimum.

19.6.3 Multivariable linear regression

We can easily extend to multivariable linear regression problems, in which each example Multivariable linear
regression

x j is an n-element vector.8 Our hypothesis space is the set of functions of the form

hw(x j) = w0 +w1x j,1 + · · ·+wnx j,n = w0 +∑
i

wix j,i .

8 The reader may wish to consult Appendix A for a brief summary of linear algebra. Also, note that we use the
term “multivariable regression” to mean that the input is a vector of multiple values, but the output is a single
variable. We will use the term “multivariate regression” for the case where the output is also a vector of multiple
variables. However, other authors use the two terms interchangeably.
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The w0 term, the intercept, stands out as different from the others. We can fix that by inventing
a dummy input attribute, x j,0, which is defined as always equal to 1. Then h is simply the
dot product of the weights and the input vector (or equivalently, the matrix product of the
transpose of the weights and the input vector):

hw(x j) = w ·x j = w>x j = ∑
i

wix j,i .

The best vector of weights, w∗, minimizes squared-error loss over the examples:

w∗ = argmin
w

∑
j

L2(y j,w ·x j) .

Multivariable linear regression is actually not much more complicated than the univariate
case we just covered. Gradient descent will reach the (unique) minimum of the loss function;
the update equation for each weight wi is

wi ← wi +α∑
j
(y j−hw(x j))× x j,i . (19.6)

With the tools of linear algebra and vector calculus, it is also possible to solve analytically
for the w that minimizes loss. Let y be the vector of outputs for the training examples, and X
be the data matrix—that is, the matrix of inputs with one n-dimensional example per row.Data matrix

Then the vector of predicted outputs is ŷ=Xw and the squared-error loss over all the training
data is

L(w) = ‖ŷ−y‖2 = ‖Xw−y‖2 .

We set the gradient to zero:

∇wL(w) = 2X>(Xw−y) = 0 .

Rearranging, we find that the minimum-loss weight vector is given by

w∗ = (X>X)−1X>y . (19.7)

We call the expression (X>X)−1X> the pseudoinverse of the data matrix, and Equation (19.7)Pseudoinverse

is called the normal equation.Normal equation

With univariate linear regression we didn’t have to worry about overfitting. But with
multivariable linear regression in high-dimensional spaces it is possible that some dimension
that is actually irrelevant appears by chance to be useful, resulting in overfitting.

Thus, it is common to use regularization on multivariable linear functions to avoid over-
fitting. Recall that with regularization we minimize the total cost of a hypothesis, counting
both the empirical loss and the complexity of the hypothesis:

Cost(h) = EmpLoss(h)+λComplexity(h) .

For linear functions the complexity can be specified as a function of the weights. We can
consider a family of regularization functions:

Complexity(hw) = Lq(w) = ∑
i
|wi|q .

As with loss functions, with q=1 we have L1 regularization9, which minimizes the sum
of the absolute values; with q=2, L2 regularization minimizes the sum of squares. Which
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Figure 19.14 Why L1 regularization tends to produce a sparse model. Left: With L1 regu-
larization (box), the minimal achievable loss (concentric contours) often occurs on an axis,
meaning a weight of zero. Right: With L2 regularization (circle), the minimal loss is likely
to occur anywhere on the circle, giving no preference to zero weights.

regularization function should you pick? That depends on the specific problem, but L1 regu-
larization has an important advantage: it tends to produce a sparse model. That is, it often Sparse model

sets many weights to zero, effectively declaring the corresponding attributes to be completely
irrelevant—just as LEARN-DECISION-TREE does (although by a different mechanism). Hy-
potheses that discard attributes can be easier for a human to understand, and may be less
likely to overfit.

Figure 19.14 gives an intuitive explanation of why L1 regularization leads to weights of
zero, while L2 regularization does not. Note that minimizing Loss(w)+λComplexity(w) is
equivalent to minimizing Loss(w) subject to the constraint that Complexity(w)≤ c, for some
constant c that is related to λ. Now, in Figure 19.14(a) the diamond-shaped box represents
the set of points w in two-dimensional weight space that have L1 complexity less than c; our
solution will have to be somewhere inside this box. The concentric ovals represent contours
of the loss function, with the minimum loss at the center. We want to find the point in the box
that is closest to the minimum; you can see from the diagram that, for an arbitrary position
of the minimum and its contours, it will be common for the corner of the box to find its way
closest to the minimum, just because the corners are pointy. And of course the corners are
the points that have a value of zero in some dimension.

In Figure 19.14(b), we’ve done the same for the L2 complexity measure, which repre-
sents a circle rather than a diamond. Here you can see that, in general, there is no reason
for the intersection to appear on one of the axes; thus L2 regularization does not tend to pro-
duce zero weights. The result is that the number of examples required to find a good h is
linear in the number of irrelevant features for L2 regularization, but only logarithmic with L1
regularization. Empirical evidence on many problems supports this analysis.

Another way to look at it is that L1 regularization takes the dimensional axes seriously,
while L2 treats them as arbitrary. The L2 function is spherical, which makes it rotationally

9 It is perhaps confusing that the notation L1 and L2 is used for both loss functions and regularization functions.
They need not be used in pairs: you could use L2 loss with L1 regularization, or vice versa.
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Figure 19.15 (a) Plot of two seismic data parameters, body wave magnitude x1 and surface
wave magnitude x2, for earthquakes (open orange circles) and nuclear explosions (green cir-
cles) occurring between 1982 and 1990 in Asia and the Middle East (Kebeasy et al., 1998).
Also shown is a decision boundary between the classes. (b) The same domain with more data
points. The earthquakes and explosions are no longer linearly separable.

invariant: Imagine a set of points in a plane, measured by their x and y coordinates. Now
imagine rotating the axes by 45o. You’d get a different set of (x′,y′) values representing
the same points. If you apply L2 regularization before and after rotating, you get exactly
the same point as the answer (although the point would be described with the new (x′,y′)
coordinates). That is appropriate when the choice of axes really is arbitrary—when it doesn’t
matter whether your two dimensions are distances north and east; or distances northeast and
southeast. With L1 regularization you’d get a different answer, because the L1 function is not
rotationally invariant. That is appropriate when the axes are not interchangeable; it doesn’t
make sense to rotate “number of bathrooms” 45o towards “lot size.”

19.6.4 Linear classifiers with a hard threshold

Linear functions can be used to do classification as well as regression. For example, Fig-
ure 19.15(a) shows data points of two classes: earthquakes (which are of interest to seismolo-
gists) and underground explosions (which are of interest to arms control experts). Each point
is defined by two input values, x1 and x2, that refer to body and surface wave magnitudes
computed from the seismic signal. Given these training data, the task of classification is to
learn a hypothesis h that will take new (x1,x2) points and return either 0 for earthquakes or 1
for explosions.

A decision boundary is a line (or a surface, in higher dimensions) that separates theDecision boundary

two classes. In Figure 19.15(a), the decision boundary is a straight line. A linear decision
boundary is called a linear separator and data that admit such a separator are called linearlyLinear separator

separable. The linear separator in this case is defined byLinear separability

x2 = 1.7x1−4.9 or −4.9+1.7x1− x2 = 0 .

The explosions, which we want to classify with value 1, are below and to the right of this line;
they are points for which −4.9+1.7x1−x2 > 0, while earthquakes have−4.9+1.7x1−x2 <
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0. We can make the equation easier to deal with by changing it into the vector dot product
form—with x0=1 we have

−4.9x0 +1.7x1− x2 = 0 ,

and we can define the vector of weights,

w = 〈−4.9,1.7,−1〉 ,
and write the classification hypothesis

hw(x) = 1 if w ·x≥ 0 and 0 otherwise.

Alternatively, we can think of h as the result of passing the linear function w · x through a
threshold function: Threshold function

hw(x) = Threshold(w ·x) where Threshold(z)=1 if z≥ 0 and 0 otherwise.

The threshold function is shown in Figure 19.17(a).
Now that the hypothesis hw(x) has a well-defined mathematical form, we can think about

choosing the weights w to minimize the loss. In Sections 19.6.1 and 19.6.3, we did this both
in closed form (by setting the gradient to zero and solving for the weights) and by gradient
descent in weight space. Here we cannot do either of those things because the gradient is zero
almost everywhere in weight space except at those points where w ·x=0, and at those points
the gradient is undefined.

There is, however, a simple weight update rule that converges to a solution—that is, to
a linear separator that classifies the data perfectly—provided the data are linearly separable.
For a single example (x,y), we have

wi ← wi +α(y−hw(x))×xi (19.8)

which is essentially identical to Equation (19.6), the update rule for linear regression! This
rule is called the perceptron learning rule, for reasons that will become clear in Chapter 22. Perceptron learning

rule
Because we are considering a 0/1 classification problem, however, the behavior is somewhat
different. Both the true value y and the hypothesis output hw(x) are either 0 or 1, so there are
three possibilities:

• If the output is correct (i.e., y=hw(x)) then the weights are not changed.
• If y is 1 but hw(x) is 0, then wi is increased when the corresponding input xi is positive

and decreased when xi is negative. This makes sense, because we want to make w · x
bigger so that hw(x) outputs a 1.

• If y is 0 but hw(x) is 1, then wi is decreased when the corresponding input xi is positive
and increased when xi is negative. This makes sense, because we want to make w · x
smaller so that hw(x) outputs a 0.

Typically the learning rule is applied one example at a time, choosing examples at random (as
in stochastic gradient descent). Figure 19.16(a) shows a training curve for this learning rule Training curve

applied to the earthquake/explosion data shown in Figure 19.15(a). A training curve measures
the classifier performance on a fixed training set as the learning process proceeds one update
at a time on that training set. The curve shows the update rule converging to a zero-error
linear separator. The “convergence” process isn’t exactly pretty, but it always works. This
particular run takes 657 steps to converge, for a data set with 63 examples, so each example
is presented roughly 10 times on average. Typically, the variation across runs is large.
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Figure 19.16 (a) Plot of total training-set accuracy vs. number of iterations through the
training set for the perceptron learning rule, given the earthquake/explosion data in Fig-
ure 19.15(a). (b) The same plot for the noisy, nonseparable data in Figure 19.15(b); note
the change in scale of the x-axis. (c) The same plot as in (b), with a learning rate schedule
α(t)=1000/(1000+ t).

We have said that the perceptron learning rule converges to a perfect linear separator
when the data points are linearly separable; but what if they are not? This situation is all
too common in the real world. For example, Figure 19.15(b) adds back in the data points
left out by Kebeasy et al. (1998) when they plotted the data shown in Figure 19.15(a). In
Figure 19.16(b), we show the perceptron learning rule failing to converge even after 10,000
steps: even though it hits the minimum-error solution (three errors) many times, the algorithm
keeps changing the weights. In general, the perceptron rule may not converge to a stable
solution for fixed learning rate α, but if α decays as O(1/t) where t is the iteration number,
then the rule can be shown to converge to a minimum-error solution when examples are
presented in a random sequence.10 It can also be shown that finding the minimum-error
solution is NP-hard, so one expects that many presentations of the examples will be required
for convergence to be achieved. Figure 19.16(c) shows the training process with a learning
rate schedule α(t)=1000/(1000+ t): convergence is not perfect after 100,000 iterations, but
it is much better than the fixed-α case.

19.6.5 Linear classification with logistic regression

We have seen that passing the output of a linear function through the threshold function
creates a linear classifier; yet the hard nature of the threshold causes some problems: the hy-
pothesis hw(x) is not differentiable and is in fact a discontinuous function of its inputs and its
weights. This makes learning with the perceptron rule a very unpredictable adventure. Fur-
thermore, the linear classifier always announces a completely confident prediction of 1 or 0,
even for examples that are very close to the boundary; it would be better if it could classify
some examples as a clear 0 or 1, and others as unclear borderline cases.

All of these issues can be resolved to a large extent by softening the threshold function—
approximating the hard threshold with a continuous, differentiable function. In Chapter 13
(page 442), we saw two functions that look like soft thresholds: the integral of the standard
normal distribution (used for the probit model) and the logistic function (used for the logit

10 Technically, we require that ∑
∞
t=1α(t)=∞ and ∑

∞
t=1α

2(t)<∞. The learning rate α(t)=O(1/t) satisfies these
conditions. Often we use c/(c+ t) for some fairly large constant c.
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Figure 19.17 (a) The hard threshold function Threshold(z) with 0/1 output. Note
that the function is nondifferentiable at z=0. (b) The logistic function, Logistic(z) =

1
1+e−z , also known as the sigmoid function. (c) Plot of a logistic regression hypothesis
hw(x)=Logistic(w ·x) for the data shown in Figure 19.15(b).

model). Although the two functions are very similar in shape, the logistic function

Logistic(z) =
1

1+ e−z

has more convenient mathematical properties. The function is shown in Figure 19.17(b).
With the logistic function replacing the threshold function, we now have

hw(x) = Logistic(w ·x) = 1
1+ e−w·x .

An example of such a hypothesis for the two-input earthquake/explosion problem is shown in
Figure 19.17(c). Notice that the output, being a number between 0 and 1, can be interpreted
as a probability of belonging to the class labeled 1. The hypothesis forms a soft boundary
in the input space and gives a probability of 0.5 for any input at the center of the boundary
region, and approaches 0 or 1 as we move away from the boundary.

The process of fitting the weights of this model to minimize loss on a data set is called
logistic regression. There is no easy closed-form solution to find the optimal value of w with Logistic regression

this model, but the gradient descent computation is straightforward. Because our hypotheses
no longer output just 0 or 1, we will use the L2 loss function; also, to keep the formulas
readable, we’ll use g to stand for the logistic function, with g′ its derivative.

For a single example (x,y), the derivation of the gradient is the same as for linear re-
gression (Equation (19.5)) up to the point where the actual form of h is inserted. (For this
derivation, we again need the chain rule.) We have

∂

∂wi
Loss(w) =

∂

∂wi
(y−hw(x))2

= 2(y−hw(x))×
∂

∂wi
(y−hw(x))

= −2(y−hw(x))×g′(w ·x)× ∂

∂wi
w ·x

= −2(y−hw(x))×g′(w ·x)×xi .
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Figure 19.18 Repeat of the experiments in Figure 19.16 using logistic regression. The plot
in (a) covers 5000 iterations rather than 700, while the plots in (b) and (c) use the same scale
as before.

The derivative g′ of the logistic function satisfies g′(z)=g(z)(1−g(z)), so we have

g′(w ·x) = g(w ·x)(1−g(w ·x)) = hw(x)(1−hw(x))

so the weight update for minimizing the loss takes a step in the direction of the difference
between input and prediction, (y−hw(x)), and the length of that step depends on the constant
α and g′:

wi ← wi +α(y−hw(x))×hw(x)(1−hw(x))×xi . (19.9)

Repeating the experiments of Figure 19.16 with logistic regression instead of the linear
threshold classifier, we obtain the results shown in Figure 19.18. In (a), the linearly sep-
arable case, logistic regression is somewhat slower to converge, but behaves much more
predictably. In (b) and (c), where the data are noisy and nonseparable, logistic regression
converges far more quickly and reliably. These advantages tend to carry over into real-world
applications, and logistic regression has become one of the most popular classification tech-
niques for problems in medicine, marketing, survey analysis, credit scoring, public health,
and other applications.

19.7 Nonparametric Models

Linear regression uses the training data to estimate a fixed set of parameters w. That defines
our hypothesis hw(x), and at that point we can throw away the training data, because they
are all summarized by w. A learning model that summarizes data with a set of parameters of
fixed size (independent of the number of training examples) is called a parametric model.Parametric model

When data sets are small, it makes sense to have a strong restriction on the allowable
hypotheses, to avoid overfitting. But when there are millions or billions of examples to learn
from, it seems like a better idea to let the data speak for themselves rather than forcing them
to speak through a tiny vector of parameters. If the data say that the correct answer is a very
wiggly function, we shouldn’t restrict ourselves to linear or slightly wiggly functions.

A nonparametric model is one that cannot be characterized by a bounded set of parame-Nonparametric
model

ters. For example, the piecewise linear function from Figure 19.1 retains all the data points as
part of the model. Learning methods that do this have also been described as instance-based
learning or memory-based learning. The simplest instance-based learning method is tableInstance-based

learning
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Figure 19.19 (a) A k-nearest-neighbors model showing the extent of the explosion class for
the data in Figure 19.15, with k=1. Overfitting is apparent. (b) With k=5, the overfitting
problem goes away for this data set.

lookup: take all the training examples, put them in a lookup table, and then when asked for Table lookup

h(x), see if x is in the table; if it is, return the corresponding y.
The problem with this method is that it does not generalize well: when x is not in the

table we have no information about a plausible value.

19.7.1 Nearest-neighbor models

We can improve on table lookup with a slight variation: given a query xq, instead of finding
an example that is equal to xq, find the k examples that are nearest to xq. This is called k-
nearest-neighbors lookup. We’ll use the notation NN(k,xq) to denote the set of k neighbors Nearest neighbors

nearest to xq.
To do classification, find the set of neighbors NN(k,xq) and take the most common output

value—for example, if k=3 and the output values are 〈Yes,No,Yes〉, then the classification
will be Yes. To avoid ties on binary classification, k is usually chosen to be an odd number.

To do regression, we can take the mean or median of the k neighbors, or we can solve a
linear regression problem on the neighbors. The piecewise linear function from Figure 19.1
solves a (trivial) linear regression problem with the two data points to the right and left of xq.
(When the xi data points are equally spaced, these will be the two nearest neighbors.)

In Figure 19.19, we show the decision boundary of k-nearest-neighbors classification for
k= 1 and 5 on the earthquake data set from Figure 19.15. Nonparametric methods are still
subject to underfitting and overfitting, just like parametric methods. In this case 1-nearest-
neighbors is overfitting; it reacts too much to the black outlier in the upper right and the white
outlier at (5.4, 3.7). The 5-nearest-neighbors decision boundary is good; higher k would
underfit. As usual, cross-validation can be used to select the best value of k.

The very word “nearest” implies a distance metric. How do we measure the distance from
a query point xq to an example point x j? Typically, distances are measured with a Minkowski
distance or Lp norm, defined as Minkowski distance

Lp(x j,xq) = (∑
i
|x j,i− xq,i|p)1/p .

With p=2 this is Euclidean distance and with p=1 it is Manhattan distance. With Boolean
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attribute values, the number of attributes on which the two points differ is called the Ham-
ming distance. Often Euclidean distance is used if the dimensions are measuring similarHamming distance

properties, such as the width, height and depth of parts, and Manhattan distance is used if
they are dissimilar, such as age, weight, and gender of a patient. Note that if we use the raw
numbers from each dimension then the total distance will be affected by a change in units
in any dimension. That is, if we change the height dimension from meters to miles while
keeping the width and depth dimensions the same, we’ll get different nearest neighbors. And
how do we compare a difference in age to a difference in weight? A common approach is
to apply normalization to the measurements in each dimension. We can compute the meanNormalization

µi and standard deviation σi of the values in each dimension, and rescale them so that x j,i

becomes (x j,i−µi)/σi. A more complex metric known as the Mahalanobis distance takesMahalanobis
distance

into account the covariance between dimensions.
In low-dimensional spaces with plenty of data, nearest neighbors works very well: we

are likely to have enough nearby data points to get a good answer. But as the number of
dimensions rises we encounter a problem: the nearest neighbors in high-dimensional spaces
are usually not very near! Consider k-nearest-neighbors on a data set of N points uniformly
distributed throughout the interior of an n-dimensional unit hypercube. We’ll define the k-
neighborhood of a point as the smallest hypercube that contains the k nearest neighbors. Let
` be the average side length of a neighborhood. Then the volume of the neighborhood (which
contains k points) is `n and the volume of the full cube (which contains N points) is 1. So, on
average, `n=k/N. Taking nth roots of both sides we get `= (k/N)1/n.

To be concrete, let k=10 and N=1,000,000. In two dimensions (n=2; a unit square),
the average neighborhood has `=0.003, a small fraction of the unit square, and in 3 dimen-
sions ` is just 2% of the edge length of the unit cube. But by the time we get to 17 dimensions,
` is half the edge length of the unit hypercube, and in 200 dimensions it is 94%. This problem
has been called the curse of dimensionality.Curse of

dimensionality

Another way to look at it: consider the points that fall within a thin shell making up the
outer 1% of the unit hypercube. These are outliers; in general it will be hard to find a good
value for them because we will be extrapolating rather than interpolating. In one dimension,
these outliers are only 2% of the points on the unit line (those points where x< .01 or x> .99),
but in 200 dimensions, over 98% of the points fall within this thin shell—almost all the points
are outliers. You can see an example of a poor nearest-neighbors fit on outliers if you look
ahead to Figure 19.20(b).

The NN(k,xq) function is conceptually trivial: given a set of N examples and a query xq,
iterate through the examples, measure the distance to xq from each one, and keep the best k.
If we are satisfied with an implementation that takes O(N) execution time, then that is the
end of the story. But instance-based methods are designed for large data sets, so we would
like something faster. The next two subsections show how trees and hash tables can be used
to speed up the computation.

19.7.2 Finding nearest neighbors with k-d trees

A balanced binary tree over data with an arbitrary number of dimensions is called a k-d
tree, for k-dimensional tree. The construction of a k-d tree is similar to the construction of aK-d tree

balanced binary tree. We start with a set of examples and at the root node we split them along
the ith dimension by testing whether xi ≤ m, where m is the median of the examples along
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the ith dimension; thus half the examples will be in the left branch of the tree and half in the
right. We then recursively make a tree for the left and right sets of examples, stopping when
there are fewer than two examples left. To choose a dimension to split on at each node of the
tree, one can simply select dimension i mod n at level i of the tree. (Note that we may need
to split on any given dimension several times as we proceed down the tree.) Another strategy
is to split on the dimension that has the widest spread of values.

Exact lookup from a k-d tree is just like lookup from a binary tree (with the slight com-
plication that you need to pay attention to which dimension you are testing at each node). But
nearest-neighbor lookup is more complicated. As we go down the branches, splitting the ex-
amples in half, in some cases we can ignore half of the examples. But not always. Sometimes
the point we are querying for falls very close to the dividing boundary. The query point itself
might be on the left hand side of the boundary, but one or more of the k nearest neighbors
might actually be on the right-hand side.

We have to test for this possibility by computing the distance of the query point to the
dividing boundary, and then searching both sides if we can’t find k examples on the left that
are closer than this distance. Because of this problem, k-d trees are appropriate only when
there are many more examples than dimensions, preferably at least 2n examples. Thus, k-d
trees are a good choice for up to about 10 dimensions when there are thousands of examples
or up to 20 dimensions with millions of examples.

19.7.3 Locality-sensitive hashing

Hash tables have the potential to provide even faster lookup than binary trees. But how can
we find nearest neighbors using a hash table, when hash codes rely on an exact match? Hash
codes randomly distribute values among the bins, but we want to have near points grouped
together in the same bin; we want a locality-sensitive hash (LSH). Locality-sensitive

hash
We can’t use hashes to solve NN(k,xq) exactly, but with a clever use of randomized

algorithms, we can find an approximate solution. First we define the approximate near-
neighbors problem: given a data set of example points and a query point xq, find, with high Approximate

near-neighbors

probability, an example point (or points) that is near xq. To be more precise, we require that
if there is a point x j that is within a radius r of xq, then with high probability the algorithm
will find a point x j′ that is within distance cr of xq. If there is no point within radius r
then the algorithm is allowed to report failure. The values of c and “high probability” are
hyperparameters of the algorithm.

To solve approximate near neighbors, we will need a hash function g(x) that has the
property that, for any two points x j and x j′ , the probability that they have the same hash code
is small if their distance is more than cr, and is high if their distance is less than r. For
simplicity we will treat each point as a bit string. (Any features that are not Boolean can be
encoded into a set of Boolean features.)

We rely on the intuition that if two points are close together in an n-dimensional space,
then they will necessarily be close when projected down onto a one-dimensional space (a
line). In fact, we can discretize the line into bins—hash buckets—so that, with high prob-
ability, near points project down to the same bin. Points that are far away from each other
will tend to project down into different bins, but there will always be a few projections that
coincidentally project far-apart points into the same bin. Thus, the bin for point xq contains
many (but not all) points that are near xq, and it might contain some points that are far away.
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Figure 19.20 Nonparametric regression models: (a) connect the dots, (b) 3-nearest neigh-
bors average, (c) 3-nearest-neighbors linear regression, (d) locally weighted regression with
a quadratic kernel of width 10.

The trick of LSH is to create multiple random projections and combine them. A random
projection is just a random subset of the bit-string representation. We choose ` different
random projections and create ` hash tables, g1(x), . . . ,g`(x). We then enter all the examples
into each hash table. Then when given a query point xq, we fetch the set of points in bin
gi(xq) of each hash table, and union these ` sets together into a set of candidate points, C.
Then we compute the actual distance to xq for each of the points in C and return the k closest
points. With high probability, each of the points that are near to xq will show up in at least
one of the bins, and although some far-away points will show up as well, we can ignore
those. With large real-world problems, such as finding the near neighbors in a data set of 13
million Web images using 512 dimensions (Torralba et al., 2008), locality-sensitive hashing
needs to examine only a few thousand images out of 13 million to find nearest neighbors—a
thousand-fold speedup over exhaustive or k-d tree approaches.
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19.7.4 Nonparametric regression

Now we’ll look at nonparametric approaches to regression rather than classification. Fig-
ure 19.20 shows an example of some different models. In (a), we have perhaps the simplest
method of all, known informally as “connect-the-dots,” and superciliously as “piecewise-
linear nonparametric regression.” This model creates a function h(x) that, when given a query
xq, considers the training examples immediately to the left and right of xq, and interpolates
between them. When noise is low, this trivial method is actually not too bad, which is why
it is a standard feature of charting software in spreadsheets. But when the data are noisy, the
resulting function is spiky and does not generalize well.

k-nearest-neighbors regression improves on connect-the-dots. Instead of using just the Nearest-neighbors
regression

two examples to the left and right of a query point xq, we use the k nearest neighbors. (Here
we are using k=3.). A larger value of k tends to smooth out the magnitude of the spikes,
although the resulting function has discontinuities. Figure 19.20 shows two versions of k-
nearest-neighbors regression. In (b), we have the k-nearest-neighbors average: h(x) is the
mean value of the k points, ∑y j/k. Notice that at the outlying points, near x=0 and x=14,
the estimates are poor because all the evidence comes from one side (the interior), and ignores
the trend. In (c), we have k-nearest-neighbor linear regression, which finds the best line
through the k examples. This does a better job of capturing trends at the outliers, but is still
discontinuous. In both (b) and (c), we’re left with the question of how to choose a good value
for k. The answer, as usual, is cross-validation.

Locally weighted regression (Figure 19.20(d)) gives us the advantages of nearest neigh- Locally weighted
regression

bors, without the discontinuities. To avoid discontinuities in h(x), we need to avoid disconti-
nuities in the set of examples we use to estimate h(x). The idea of locally weighted regression
is that at each query point xq, the examples that are close to xq are weighted heavily, and the
examples that are farther away are weighted less heavily, and the farthest not at all. The
decrease in weight over distance is typically gradual, not sudden.

We decide how much to weight each example with a function known as a kernel, whose Kernel

input is a distance between the query point and the example. A kernel function K is a de-
creasing function of distance with a maximum at 0, so that K(Distance(x j,xq)) gives higher
weight to examples x j that are closer to the query point xq for which we are trying to predict
the function value. The integral of the kernel value over the entire input space for x must be
finite—and if we choose to make the integral 1, certain calculations are easier.

Figure 19.20(d) was generated with a quadratic kernel, K(d)= max(0,1− (2|d|/w)2),
with kernel width w=10. Other shapes, such as Gaussians, are also used. Typically, the
width matters more than the exact shape: this is a hyperparameter of the model that is best
chosen by cross-validation. If the kernels are too wide we’ll get underfitting and if they are
too narrow we’ll get overfitting. In Figure 19.20(d), a kernel width of 10 gives a smooth curve
that looks just about right.

Doing locally weighted regression with kernels is now straightforward. For a given query
point xq we solve the following weighted regression problem:

w∗ = argmin
w

∑
j
K(Distance(xq,x j))(y j−w ·x j)

2 ,

where Distance is any of the distance metrics discussed for nearest neighbors. Then the
answer is h(xq)=w∗ ·xq.
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Note that we need to solve a new regression problem for every query point—that’s what
it means to be local. (In ordinary linear regression, we solved the regression problem once,
globally, and then used the same hw for any query point.) Mitigating against this extra work
is the fact that each regression problem will be easier to solve, because it involves only the
examples with nonzero weight—the examples that are within the kernel width of the query.
When kernel widths are small, this may be just a few points.

Most nonparametric models have the advantage that it is easy to do leave-one-out cross-
validation without having to recompute everything. With a k-nearest-neighbors model, for
instance, when given a test example (x,y) we retrieve the k nearest neighbors once, compute
the per-example loss L(y,h(x)) from them, and record that as the leave-one-out result for
every example that is not one of the neighbors. Then we retrieve the k+1 nearest neighbors
and record distinct results for leaving out each of the k neighbors. With N examples the whole
process is O(k), not O(kN).

19.7.5 Support vector machines

In the early 2000s, the support vector machine (SVM) model class was the most popularSupport vector
machine (SVM)

approach for “off-the-shelf” supervised learning, for when you don’t have any specialized
prior knowledge about a domain. That position has now been taken over by deep learning
networks and random forests, but SVMs retain three attractive properties:

1. SVMs construct a maximum margin separator—a decision boundary with the largest
possible distance to example points. This helps them generalize well.

2. SVMs create a linear separating hyperplane, but they have the ability to embed the
data into a higher-dimensional space, using the so-called kernel trick. Often, data that
are not linearly separable in the original input space are easily separable in the higher-
dimensional space.

3. SVMs are nonparametric—the separating hyperplane is defined by a set of example
points, not by a collection of parameter values. But while nearest-neighbor models
need to retain all the examples, an SVM model keeps only the examples that are closest
to the separating plane—usually only a small constant times the number of dimensions.
Thus SVMs combine the advantages of nonparametric and parametric models: they
have the flexibility to represent complex functions, but they are resistant to overfitting.

We see in Figure 19.21(a) a binary classification problem with three candidate decision
boundaries, each a linear separator. Each of them is consistent with all the examples, so
from the point of view of 0/1 loss, each would be equally good. Logistic regression would
find some separating line; the exact location of the line depends on all the example points.
The key insight of SVMs is that some examples are more important than others, and that
paying attention to them can lead to better generalization.

Consider the lowest of the three separating lines in (a). It comes very close to five of the
black examples. Although it classifies all the examples correctly, and thus minimizes loss, it
should make you nervous that so many examples are close to the line; it may be that other
black examples will turn out to fall on the wrong side of the line.

SVMs address this issue: Instead of minimizing expected empirical loss on the training
data, SVMs attempt to minimize expected generalization loss. We don’t know where the
as-yet-unseen points may fall, but under the probabilistic assumption that they are drawn
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Figure 19.21 Support vector machine classification: (a) Two classes of points (orange open
and green filled circles) and three candidate linear separators. (b) The maximum margin
separator (heavy line), is at the midpoint of the margin (area between dashed lines). The
support vectors (points with large black circles) are the examples closest to the separator;
here there are three.

from the same distribution as the previously seen examples, there are some arguments from
computational learning theory (Section 19.5) suggesting that we minimize generalization loss
by choosing the separator that is farthest away from the examples we have seen so far. We
call this separator, shown in Figure 19.21(b) the maximum margin separator. The margin Maximum margin

separator
Marginis the width of the area bounded by dashed lines in the figure—twice the distance from the

separator to the nearest example point.
Now, how do we find this separator? Before showing the equations, some notation: Tra-

ditionally SVMs use the convention that class labels are +1 and -1, instead of the +1 and 0
we have been using so far. Also, whereas we previously put the intercept into the weight
vector w (and a corresponding dummy 1 value into x j,0), SVMs do not do that; they keep the
intercept as a separate parameter, b.

With that in mind, the separator is defined as the set of points {x : w · x+ b=0}. We
could search the space of w and b with gradient descent to find the parameters that maximize
the margin while correctly classifying all the examples.

However, it turns out there is another approach to solving this problem. We won’t show
the details, but will just say that there is an alternative representation called the dual repre-
sentation, in which the optimal solution is found by solving

argmax
α

∑
j
α j−

1
2 ∑

j,k
α jαky jyk(x j ·xk) (19.10)

subject to the constraints α j ≥ 0 and ∑ jα jy j =0. This is a quadratic programming op- Quadratic
programming

timization problem, for which there are good software packages. Once we have found the
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vector α we can get back to w with the equation w= ∑ jα jy jx j, or we can stay in the dual
representation. There are three important properties of Equation (19.10). First, the expres-
sion is convex; it has a single global maximum that can be found efficiently. Second, the dataI
enter the expression only in the form of dot products of pairs of points. This second property
is also true of the equation for the separator itself; once the optimal α j have been calculated,
the equation is11

h(x) = sign

(
∑

j
α jy j(x ·x j)−b

)
. (19.11)

A final important property is that the weights α j associated with each data point are zero ex-
cept for the support vectors—the points closest to the separator. (They are called “support”Support vector

vectors because they “hold up” the separating plane.) Because there are usually many fewer
support vectors than examples, SVMs gain some of the advantages of parametric models.

What if the examples are not linearly separable? Figure 19.22(a) shows an input space
defined by attributes x=(x1,x2), with positive examples (y=+1) inside a circular region and
negative examples (y= − 1) outside. Clearly, there is no linear separator for this problem.
Now, suppose we re-express the input data—that is, we map each input vector x to a new
vector of feature values, F(x). In particular, let us use the three features

f1=x2
1 , f2=x2

2 , f3=
√

2x1x2 . (19.12)

We will see shortly where these came from, but for now, just look at what happens. Fig-
ure 19.22(b) shows the data in the new, three-dimensional space defined by the three features;
the data are linearly separable in this space! This phenomenon is actually fairly general: if
data are mapped into a space of sufficiently high dimension, then they will almost always be
linearly separable—if you look at a set of points from enough directions, you’ll find a way to
make them line up. Here, we used only three dimensions;12 Exercise 19.SVME asks you to
show that four dimensions suffice for linearly separating a circle anywhere in the plane (not
just at the origin), and five dimensions suffice to linearly separate any ellipse. In general (with
some special cases excepted) if we have N data points then they will always be separable in
spaces of N−1 dimensions or more (Exercise 19.EMBE).

Now, we would not usually expect to find a linear separator in the input space x, but
we can find linear separators in the high-dimensional feature space F(x) simply by replacing
x j ·xk in Equation (19.10) with F(x j) ·F(xk). This by itself is not remarkable—replacing x by
F(x) in any learning algorithm has the required effect—but the dot product has some special
properties. It turns out that F(x j) ·F(xk) can often be computed without first computing F
for each point. In our three-dimensional feature space defined by Equation (19.12), a little bit
of algebra shows that

F(x j) ·F(xk) = (x j ·xk)
2 .

(That’s why the
√

2 is in f3.) The expression (x j · xk)
2 is called a kernel function,13 andKernel function

is usually written as K(x j,xk). The kernel function can be applied to pairs of input data to

11 The function sign(x) returns +1 for a positive x, −1 for a negative x.
12 The reader may notice that we could have used just f1 and f2, but the 3D mapping illustrates the idea better.
13 This usage of “kernel function” is slightly different from the kernels in locally weighted regression. Some
SVM kernels are distance metrics, but not all are.
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Figure 19.22 (a) A two-dimensional training set with positive examples as green filled cir-
cles and negative examples as orange open circles. The true decision boundary, x2

1 + x2
2 ≤ 1,

is also shown. (b) The same data after mapping into a three-dimensional input space
(x2

1,x
2
2,
√

2x1x2). The circular decision boundary in (a) becomes a linear decision boundary
in three dimensions. Figure 19.21(b) gives a closeup of the separator in (b).

evaluate dot products in some corresponding feature space. So, we can find linear separators
in the higher-dimensional feature space F(x) simply by replacing x j ·xk in Equation (19.10)
with a kernel function K(x j,xk). Thus, we can learn in the higher-dimensional space, but we
compute only kernel functions rather than the full list of features for each data point.

The next step is to see that there’s nothing special about the kernel K(x j,xk)=(x j ·xk)
2. It

corresponds to a particular higher-dimensional feature space, but other kernel functions corre-
spond to other feature spaces. A venerable result in mathematics, Mercer’s theorem (1909), Mercer’s theorem

tells us that any “reasonable”14 kernel function corresponds to some feature space. These
feature spaces can be very large, even for innocuous-looking kernels. For example, the poly-
nomial kernel, K(x j,xk)=(1+x j ·xk)

d , corresponds to a feature space whose dimension is Polynomial kernel

exponential in d. A common kernel is the Gaussian: K(x j,xk)=e−γ|x j−xk|2 .

19.7.6 The kernel trick

This then is the clever kernel trick: Plugging these kernels into Equation (19.10), optimal Kernel trick

linear separators can be found efficiently in feature spaces with billions of (or even infinitely
many) dimensions. The resulting linear separators, when mapped back to the original in-
put space, can correspond to arbitrarily wiggly, nonlinear decision boundaries between the
positive and negative examples.

In the case of inherently noisy data, we may not want a linear separator in some high-
dimensional space. Rather, we’d like a decision surface in a lower-dimensional space that

14 Here, “reasonable” means that the matrix K jk =K(x j,xk) is positive definite.
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Figure 19.23 Illustration of the increased expressive power obtained by ensemble learning.
We take three linear threshold hypotheses, each of which classifies positively on the unshaded
side, and classify as positive any example classified positively by all three. The resulting
triangular region is a hypothesis not expressible in the original hypothesis space.

does not cleanly separate the classes, but reflects the reality of the noisy data. That is pos-
sible with the soft margin classifier, which allows examples to fall on the wrong side of theSoft margin

decision boundary, but assigns them a penalty proportional to the distance required to move
them back to the correct side.

The kernel method can be applied not only with learning algorithms that find optimal
linear separators, but also with any other algorithm that can be reformulated to work only
with dot products of pairs of data points, as in Equations (19.10) and (19.11). Once this is
done, the dot product is replaced by a kernel function and we have a kernelized version ofKernelization

the algorithm.

19.8 Ensemble Learning

So far we have looked at learning methods in which a single hypothesis is used to make pre-
dictions. The idea of ensemble learning is to select a collection, or ensemble, of hypotheses,Ensemble learning

h1,h2, . . . ,hn, and combine their predictions by averaging, voting, or by another level of ma-
chine learning. We call the individual hypotheses base models and their combination anBase model

ensemble model.Ensemble model

There are two reasons to do this. The first is to reduce bias. The hypothesis space of
a base model may be too restrictive, imposing a strong bias (such as the bias of a linear
decision boundary in logistic regression). An ensemble can be more expressive, and thus
have less bias, than the base models. Figure 19.23 shows that an ensemble of three linear
classifiers can represent a triangular region that could not be represented by a single linear
classifier. An ensemble of n linear classifiers allows more functions to be realizable, at a cost
of only n times more computation; this is often better than allowing a completely general
hypothesis space that might require exponentially more computation.
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The second reason is to reduce variance. Consider an ensemble of K=5 binary classifiers
that we combine using majority voting. For the ensemble to misclassify a new example, at
least three of the five classifiers have to misclassify it. The hope is that this is less likely than
a single misclassification by a single classifier. To quantify that, suppose you have trained a
single classifier that is correct in 80% of cases. Now create an ensemble of 5 classifiers, each
trained on a different subset of the data so that they are independent. Let’s assume this leads
to some reduction in quality, and each individual classifier is correct in only 75% of cases.
But together, the majority vote of the ensemble will be correct in 89% of cases (and 99% with
17 classifiers), assuming true independence.

In practice the independence assumption is unreasonable—individual classifiers share
some of the same data and assumptions, and thus are not completely independent, and will
share some of the same errors. But if the component classifiers are at least somewhat un-
correlated then ensemble learning will make fewer misclassifications. We will now consider
four ways of creating ensembles: bagging, random forests, stacking, and boosting.

19.8.1 Bagging

In bagging,15 we generate K distinct training sets by sampling with replacement from the Bagging

original training set. That is, we randomly pick N examples from the training set, but each
of those picks might be an example we picked before. We then run our machine learning
algorithm on the N examples to get a hypothesis. We repeat this process K times, getting K
different hypotheses. Then, when asked to predict the value of a new input, we aggregate
the predictions from all K hypotheses. For classification problems, that means taking the
plurality vote (the majority vote for binary classification). For regression problems, the final
output is the average:

h(x) =
1
K

K

∑
i=1

hi(x)

Bagging tends to reduce variance and is a standard approach when there is limited data or
when the base model is seen to be overfitting. Bagging can be applied to any class of model,
but is most commonly used with decision trees. It is appropriate because decision trees are
unstable: a slightly different set of examples can lead to a wildly different tree. Bagging
smoothes out this variance. If you have access to multiple computers then bagging is efficient,
because the hypotheses can be computed in parallel.

19.8.2 Random forests

Unfortunately, bagging decision trees often ends up giving us K trees that are highly corre-
lated. If there is one attribute with a very high information gain, it is likely to be the root of
most of the trees. The random forest model is a form of decision tree bagging in which we Random forest

take extra steps to make the ensemble of K trees more diverse, to reduce variance. Random
forests can be used for classification or regression.

The key idea is to randomly vary the attribute choices (rather than the training examples).
At each split point in constructing the tree, we select a random sampling of attributes, and then
compute which of those gives the highest information gain. If there are n attributes, a common

15 Note on terminology: In statistics, a sample with replacement is called a bootstrap, and “bagging” is short for
“bootstrap aggregating.”
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default choice is that each split randomly picks
√

n attributes to consider for classification
problems, or n/3 for regression problems.

A further improvement is to use randomness in selecting the split point value: for each
selected attribute, we randomly sample several candidate values from a uniform distribution
over the attribute’s range. Then we select the value that has the highest information gain.
That makes it more likely that every tree in the forest will be different. Trees constructed in
this fashion are called extremely randomized trees (ExtraTrees).

Extremely
randomized trees
(ExtraTrees)

Random forests are efficient to create. You might think that it would take K times longer
to create an ensemble of K trees, but it is not that bad, for three reasons: (a) each split point
runs faster because we are considering fewer attributes, (b) we can skip the pruning step for
each individual tree, because the ensemble as a whole decreases overfitting, and (c) if we
happen to have K computers available, we can build all the trees in parallel. For example,
Adele Cutler reports that for a 100-attribute problem, if we have just three CPUs we can grow
a forest of K=100 trees in about the same time as it takes to create a single decision tree on
a single CPU.

All the hyperparameters of random forests can be trained by cross-validation: the number
of trees K, the number of examples used by each tree N (often expressed as a percentage of
the complete data set), the number of attributes used at each split point (often expressed as a
function of the total number of attributes, such as

√
n), and the number of random split points

tried if we are using ExtraTrees. In place of the regular cross-validation strategy, we could
measure the out-of-bag error: the mean error on each example, using only the trees whoseOut-of-bag error

example set didn’t include that particular example.
We have been warned that more complex models can be prone to overfitting, and ob-

served that to be true for decision trees, where we found that pruning was an answer to
prevent overfitting. Random forests are complex, unpruned models. Yet they are resistant to
overfitting. As you increase capacity by adding more trees to the forest they tend to improve
on validation-set error rate. The curve typically looks like Figure 19.9(b), not (a).

Breiman (2001) gives a mathematical proof that (in almost all cases) as you add more
trees to the forest, the error converges; it does not grow. One way to think of it is that the
random selection of attributes yields a variety of trees, thus reducing variance, but because we
don’t need to prune the trees, they can cover the full input space at higher resolution. Some
number of trees can cover unique cases that appear only a few times in the data, and their
votes can prove decisive, but they can be outvoted when they do not apply. That said, random
forests are not totally immune to overfitting. Although the error can’t increase in the limit,
that does not mean that the error will go to zero.

Random forests have been very successful across a wide variety of application prob-
lems. In Kaggle data science competitions they were the most popular approach of winning
teams from 2011 through 2014, and remain a common approach to this day (although deep
learning and gradient boosting have become even more common among recent winners).
The randomForest package in R has been a particular favorite. In finance, random forests
have been used for credit card default prediction, household income prediction, and option
pricing. Mechanical applications include machine fault diagnosis and remote sensing. Bioin-
formatic and medical applications include diabetic retinopathy, microarray gene expression,
mass spectrum protein expression analysis, biomarker discovery, and protein–protein inter-
action prediction.
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19.8.3 Stacking

Whereas bagging combines multiple base models of the same model class trained on different
data, the technique of stacked generalization (or stacking for short) combines multiple base Stacked

generalization

models from different model classes trained on the same data. For example, suppose we are
given the restaurant data set, the first row of which is shown here:

x1=Yes, No, No, Yes, Some, $$$, No, Yes, French, 0–10;y1=Yes

We separate the data into training, validation, and test sets and use the training set to train,
say, three separate base models—an SVM model, a logistic regression model, and a decision
tree model.

In the next step we take the validation data set and augment each row with the predictions
made from the three base models, giving us rows that look like this (where the predictions
are shown in bold):

x2=Yes, No, No, Yes, Full, $, No, No, Thai, 30–60, Yes, No, No;y2=No

We use this validation set to train a new ensemble model, let’s say a logistic regression model
(but it need not be one of the base model classes). The ensemble model can use the predictions
and the original data as it sees fit. It might learn a weighted average of the base models, for
example that the predictions should be weighted in a ratio of 50%:30%:20%. Or it might
learn nonlinear interactions between the data and the predictions, perhaps trusting the SVM
model more when the wait time is long, for example. We used the same training data to train
each of the base models, and then used the held-out validation data (plus predictions) to train
the ensemble model. It is also possible to use cross-validation if desired.

The method is called “stacking” because it can be thought of as a layer of base models
with an ensemble model stacked above it, operating on the output of the base models. In fact,
it is possible to stack multiple layers, each one operating on the output of the previous layer.
Stacking reduces bias, and usually leads to performance that is better than any of the individ-
ual base models. Stacking is frequently used by winning teams in data science competitions
(such as Kaggle and the KDD Cup), because individuals can work independently, each refin-
ing their own base model, and then come together to build the final stacked ensemble model.

19.8.4 Boosting

The most popular ensemble method is called boosting. To understand how it works, we Boosting

need first to introduce the idea of a weighted training set, in which each example has an Weighted training
set

associated weight w j ≥ 0 that describes how much the example should count during training.
For example, if one example had a weight of 3 and the other examples all had a weight of 1,
that would be equivalent to having 3 copies of the one example in the training set.

Boosting starts with equal weights w j =1 for all the examples. From this training set, it
generates the first hypothesis, h1. In general, h1 will classify some of the training examples
correctly and some incorrectly. We would like the next hypothesis to do better on the misclas-
sified examples, so we increase their weights while decreasing the weights of the correctly
classified examples.

From this new weighted training set, we generate hypothesis h2. The process continues in
this way until we have generated K hypotheses, where K is an input to the boosting algorithm.
Examples that are difficult to classify will get increasingly larger weights until the algorithm
is forced to create a hypothesis that classifies them correctly. Note that this is a greedy
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algorithm in the sense that it does not backtrack; once it has chosen a hypothesis hi it will
never undo that choice; rather it will add new hypotheses. It is also a sequential algorithm, so
we can’t compute all the hypotheses in parallel as we could with bagging.

The final ensemble lets each hypothesis vote, as in bagging, except that each hypothesis
gets a weighted number of votes—the hypotheses that did better on their respective weighted
training sets are given more voting weight. For regression or binary classification we have

h(x) =
K

∑
i=1

zihi(x)

where zi is the weight of the ith hypothesis. (This weighting of hypotheses is distinct from
the weighting of examples.)

Figure 19.24 shows how the algorithm works conceptually. There are many variants of
the basic boosting idea, with different ways of adjusting the example weights and combining
the hypotheses. The variants all share the general idea that difficult examples get more weight
as we move from one hypothesis to the next. Like the Bayesian learning methods we will see
in Chapter 21, they also give more weight to more accurate hypotheses.

One specific algorithm, called ADABOOST, is shown in Figure 19.25. It is usually ap-
plied with decision trees as the component hypotheses; often the trees are limited in size.
ADABOOST has a very important property: if the input learning algorithm L is a weak learn-
ing algorithm—which means that L always returns a hypothesis with accuracy on the trainingWeak learning

set that is slightly better than random guessing (that is, 50%+ε for Boolean classification)—
then ADABOOST will return a hypothesis that classifies the training data perfectly for large
enough K. Thus, the algorithm boosts the accuracy of the original learning algorithm on the
training data.

In other words, boosting can overcome any amount of bias in the base model, as long
as the base model is ε better than random guessing. (In our pseudocode we stop generat-
ing hypotheses if we get one that is worse than random.) This result holds no matter how
inexpressive the original hypothesis space and no matter how complex the function being
learned. The exact formulas for weights in Figure 19.25 (with error/(1− error, etc.) are
chosen to make the proof of this property easy (see Freund and Schapire, 1996). Of course,
this property does not guarantee accuracy on previously unseen examples.

Let us see how well boosting does on the restaurant data. We will choose as our original
hypothesis space the class of decision stumps, which are decision trees with just one test, atDecision stump

the root. The lower curve in Figure 19.26(a) shows that unboosted decision stumps are not
very effective for this data set, reaching a prediction performance of only 81% on 100 training
examples. When boosting is applied (with K=5), the performance is better, reaching 93%
after 100 examples.

An interesting thing happens as the ensemble size K increases. Figure 19.26(b) shows the
training set performance (on 100 examples) as a function of K. Notice that the error reaches
zero when K is 20; that is, a weighted-majority combination of 20 decision stumps suffices
to fit the 100 examples exactly—this is the interpolation pont. As more stumps are added to
the ensemble, the error remains at zero. The graph also shows that the test set performanceI
continues to increase long after the training set error has reached zero. At K = 20, the test
performance is 0.95 (or 0.05 error), and the performance increases to 0.98 as late as K = 137,
before gradually dropping to 0.95.
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h

h1 = h2 = h3 = h4 =

Figure 19.24 How the boosting algorithm works. Each shaded rectangle corresponds to
an example; the height of the rectangle corresponds to the weight. The checks and crosses
indicate whether the example was classified correctly by the current hypothesis. The size of
the decision tree indicates the weight of that hypothesis in the final ensemble.

This finding, which is quite robust across data sets and hypothesis spaces, came as quite
a surprise when it was first noticed. Ockham’s razor tells us not to make hypotheses more
complex than necessary, but the graph tells us that the predictions improve as the ensemble
hypothesis gets more complex! Various explanations have been proposed for this. One view
is that boosting approximates Bayesian learning (see Chapter 21), which can be shown to
be an optimal learning algorithm, and the approximation improves as more hypotheses are
added. Another possible explanation is that the addition of further hypotheses enables the
ensemble to be more confident in its distinction between positive and negative examples,
which helps it when it comes to classifying new examples.

19.8.5 Gradient boosting

For regression and classification of factored tabular data, gradient boosting, sometimes Gradient boosting

called gradient boosting machines (GBM) or gradient boosted regression trees (GBRT), has
become a very popular method. As the name implies, gradient boosting is a form of boosting
using gradient descent. Recall that in ADABOOST, we start with one hypothesis h1, and boost
it with a sequence of hypotheses that pay special attention to the examples that the previous
ones got wrong. In gradient boosting we also add new boosting hypotheses, which pay atten-
tion not to specific examples, but to the gradient between the right answers and the answers
given by the previous hypotheses.

As in the other algorithms that used gradient descent, we start with a differentiable loss
function; we might use squared error for regression, or logarithmic loss for classification. As
in ADABOOST, we then build a decision tree. In Section 19.6.2, we used gradient descent to
minimize the parameters of a model—we calculate the loss, and update the parameters in the
direction of less loss. With gradient boosting, we are not updating parameters of the existing
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function ADABOOST(examples, L, K) returns a hypothesis
inputs: examples, set of N labeled examples (x1,y1), . . . ,(xN ,yN)

L, a learning algorithm
K, the number of hypotheses in the ensemble

local variables: w, a vector of N example weights, initially all 1/N
h, a vector of K hypotheses
z, a vector of K hypothesis weights

ε←a small positive number, used to avoid division by zero
for k = 1 to K do

h[k]←L(examples, w)
error←0
for j = 1 to N do // Compute the total error for h[k]

if h[k](x j) 6= y j then error←error + w[ j]
if error > 1/2 then break from loop
error←min(error, 1 − ε)
for j = 1 to N do // Give more weight to the examples h[k] got wrong

if h[k](x j) = y j then w[ j]←w[ j] · error/(1− error)
w←NORMALIZE(w)
z[k]← 1

2 log((1− error)/error) // Give more weight to accurate h[k]
return Function(x) : ∑ zi hi(x)

Figure 19.25 The ADABOOST variant of the boosting method for ensemble learning. The
algorithm generates hypotheses by successively reweighting the training examples. The func-
tion WEIGHTED-MAJORITY generates a hypothesis that returns the output value with the
highest vote from the hypotheses in h, with votes weighted by z. For regression problems, or
for binary classification with two classes -1 and 1, this is ∑k h[k]z[k].

model, we are updating the parameters of the next tree—but we must do that in a way that
reduces the loss by moving in the right direction along the gradient.

As in the models we saw in Section 19.4.3, regularization can help prevent overfitting.
That can come in the form of limiting the number of trees or their size (in terms of their depth
or number of nodes). It can come from the learning rate, α, which says how far to move along
the direction of the gradient; values in the range 0.1 to 0.3 are common, and the smaller the
learning rate, the more trees we will need in the ensemble.

Gradient boosting is implemented in the popular XGBOOST (eXtreme Gradient Boost-
ing) package, which is routinely used for both large-scale applications in industry (for prob-
lems with billions of examples), and by the winners of data science competitions (in 2015, it
was used by every team in the top 10 of the KDDCup). XGBOOST does gradient boosting
with pruning and regularization, and takes care to be efficient, carefully organizing memory
to avoid cache misses, and allowing for parallel computation on multiple machines.

19.8.6 Online learning

So far, everything we have done in this chapter has relied on the assumption that the data are
i.i.d. (independent and identically distributed). On the one hand, that is a sensible assumption:
if the future bears no resemblance to the past, then how can we predict anything? On the other
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Figure 19.26 (a) Graph showing the performance of boosted decision stumps with K=5
versus unboosted decision stumps on the restaurant data. (b) The proportion correct on the
training set and the test set as a function of K, the number of hypotheses in the ensemble.
Notice that the test set accuracy improves slightly even after the training accuracy reaches 1,
i.e., after the ensemble fits the data exactly.

hand, it is too strong an assumption: we know that there are correlations between the past and
the future, and in complex scenarios it is unlikely that we will capture all the data that would
make the future independent of the past given the data.

In this section we examine what to do when the data are not i.i.d.—when they can change
over time. In this case, it matters when we make a prediction, so we will adopt the perspective
called online learning: an agent receives an input x j from nature, predicts the corresponding Online learning

y j, and then is told the correct answer. Then the process repeats with x j+1, and so on. One
might think this task is hopeless—if nature is adversarial, all the predictions may be wrong.
It turns out that there are some guarantees we can make.

Let us consider the situation where our input consists of predictions from a panel of
experts. For example, each day K pundits predict whether the stock market will go up or
down, and our task is to pool those predictions and make our own. One way to do this is
to keep track of how well each expert performs, and choose to believe them in proportion to
their past performance. This is called the randomized weighted majority algorithm. We

Randomized
weighted majority
algorithm

can describe it more formally:
Initialize a set of weights {w1, . . . ,wK} all to 1.
for each problem to be solved do

1. Receive the predictions {ŷ1, . . . , ŷK} from the experts.
2. Randomly choose an expert k∗ in proportion to its weight: P(k)=wk.
3. yield ŷk∗ as the answer to this problem.
4. Receive the correct answer y.
5. For each expert k such that ŷk 6= y, update wk←βwk

6. Normalize the weights so that ∑k wk=1.

Here β is a number, 0< β < 1, that tells how much to penalize an expert for each mistake.
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We measure the success of this algorithm in terms of regret, which is defined as theRegret

number of additional mistakes we make compared to the expert who, in hindsight, had the
best prediction record. Let M∗ be the number of mistakes made by the best expert. Then the
number of mistakes, M, made by the random weighted majority algorithm, is bounded by16

M <
M∗ ln(1/β)+ lnK

1−β
.

This bound holds for any sequence of examples, even ones chosen by adversaries trying to
do their worst. To be specific, when there are K=10 experts, if we choose β=1/2 then our
number of mistakes is bounded by 1.39M∗+4.6, and if β=3/4 by 1.15M∗+9.2. In general,
if β is close to 1 then we are responsive to change over the long run; if the best expert changes,
we will pick up on it before too long. However, we pay a penalty at the beginning, when we
start with all experts trusted equally; we may accept the advice of the bad experts for too
long. When β is closer to 0, these two factors are reversed. Note that we can choose β so that
M gets asymptotically close to M∗ in the long run; this is called no-regret learning (becauseNo-regret learning

the average amount of regret per trial tends to 0 as the number of trials increases).
Online learning is helpful when the data may be changing rapidly over time. It is also

useful for applications that involve a large collection of data that is constantly growing, even
if changes are gradual. For example, with a data set of millions of Web images, you wouldn’t
want to retrain from scratch every time a single new image is added. It would be more
practical to have an online algorithm that allows images to be added incrementally. For most
learning algorithms based on minimizing loss, there is an online version based on minimizing
regret. Many of these online algorithms come with guaranteed bounds on regret.

It may seem surprising that there are such tight bounds on how well we can do compared
to a panel of experts. What is even more surprising is that when such panels convene to
prognosticate about political contests or sporting events, the viewing public is so willing to
listen to their predictions and so uninterested in knowing their error rates.

19.9 Developing Machine Learning Systems

In this chapter we have concentrated on explaining the theory of machine learning. The
practice of using machine learning to solve practical problems is a separate discipline. Over
the last 50 years, the software industry has evolved a software development methodology that
makes it more likely that a (traditional) software project will be a success. But we are still
in the early stages of defining a methodology for machine learning projects; the tools and
techniques are not as well-developed. Here is a breakdown of typical steps in the process.

19.9.1 Problem formulation

The first step is to figure out what problem you want to solve. There are two parts to this.
First ask, “what problem do I want to solve for my users?” An answer such as “make it easier
for users to organize and access their photos” is too vague; “help a user find all photos that
match a specific term, such as Paris” is better. Then ask, “what part(s) of the problem can be
solved by machine learning?” perhaps settling on “learn a function that maps a photo to a set
of labels; then, when given a label as a query, retrieve all photos with that label.”

16 Blum (1996) gives an elegant proof.
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To make this concrete, you need to specify a loss function for your machine learning
component, perhaps measuring the system’s accuracy at predicting a correct label. This ob-
jective should be correlated with your true goals, but usually will be distinct—the true goal
might be to maximize the number of users you gain and keep on your system, and the revenue
that they produce. Those are metrics you should track, but not necessarily ones that you can
directly build a machine learning model for.

When you have decomposed your problem into parts, you may find that there are multiple
components that can be handled by old-fashioned software engineering, not machine learning.
For example, for a user who asks for “best photos,” you could implement a simple procedure
that sorts photos by the number of likes and views. Once you have developed your overall
system to the point where it is viable, you can then go back and optimize, replacing the simple
components with more sophisticated machine learning models.

Part of problem formulation is deciding whether you are dealing with supervised, unsu-
pervised, or reinforcement learning. The distinctions are not always so crisp. In semisuper-
vised learning we are given a few labeled examples and use them to mine more information Semisupervised

learning

from a large collection of unlabeled examples. This has become a common approach, with
companies emerging whose missions are to quickly label some examples, in order to help
machine learning systems make better use of the remaining unlabeled examples.

Sometimes you have a choice of which approach to use. Consider a system to recommend
songs or movies to customers. We could approach this as a supervised learning problem,
where the inputs include a representation of the customer and the labeled output is whether
or not they liked the recommendation, or we could approach it as a reinforcement learning
problem, where the system makes a series of recommendation actions, and occasionally gets
a reward from the customer for making a good suggestion.

The labels themselves may not be the oracular truths that we hope for. Imagine that you
are trying to build a system to guess a person’s age from a photo. You gather some labeled
examples by having people upload photos and state their age. That’s supervised learning. But
in reality some of the people lied about their age. It’s not just that there is random noise in the
data; rather the inaccuracies are systematic, and to uncover them is an unsupervised learning
problem involving images, self-reported ages, and true (unknown) ages. Thus, both noise and
lack of labels create a continuum between supervised and unsupervised learning. The field
of weakly supervised learning focuses on using labels that are noisy, imprecise, or supplied Weakly supervised

learning

by non-experts.

19.9.2 Data collection, assessment, and management

Every machine learning project needs data; in the case of our photo identification project there
are freely available image data sets, such as ImageNet, which has over 14 million photos with ImageNet

about 20,000 different labels. Sometimes we may have to manufacture our own data, which
can be done by our own labor, or by crowdsourcing to paid workers or unpaid volunteers
operating over an Internet service. Sometimes data come from your users. For example, the
Waze navigation service encourages users to upload data about traffic jams, and uses that to
provide up-to-date navigation directions for all users. Transfer learning (see Section 22.7.2)
can be used when you don’t have enough of your own data: start with a publicly available
general-purpose data set (or a model that has been pretrained on this data), and then add
specific data from your users and retrain.
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If you deploy a system to users, your users will provide feedback—perhaps by clicking
on one item and ignoring the others. You will need a strategy for dealing with this data.
That involves a review with privacy experts (see Section 28.3.2) to make sure that you get
the proper permission for the data you collect, and that you have processes for insuring the
integrity of the user’s data, and that they understand what you will do with it. You also need
to ensure that your processes are fair and unbiased (see Section 28.3.3). If there is data that
you feel is too sensitive to collect but that would be useful for a machine learning model,
consider a federated learning approach where the data stays on the user’s device, but model
parameters are shared in a way that does not reveal private data.

It is good practice to maintain data provenance for all your data. For each column inData provenance

your data set, you should know the exact definition, where the data come from, what the
possible values are, and who has worked on it. Were there periods of time in which a data
feed was interrupted? Did the definition of some data source evolve over time? You’ll need
to know this if you want to compare results across time periods.

This is particularly true if you are relying on data that are produced by someone else—
their needs and yours might diverge, and they might end up changing the way the data are
produced, or might stop updating it all together. You need to monitor your data feeds to catch
this. Having a reliable, flexible, secure, data-handling pipeline is more critical to success than
the exact details of the machine learning algorithm. Provenance is also important for legal
reasons, such as compliance with privacy law.

For any task there will be questions about the data: Is this the right data for my task?
Does it capture enough of the right inputs to give us a chance of learning a model? Does it
contain the outputs I want to predict? If not, can I build an unsupervised model? Or can I
label a portion of the data and then do semisupervised learning? Is it relevant data? It is great
to have 14 million photos, but if all your users are specialists interested in a specific topic,
then a general database won’t help—you’ll need to collect photos on the specific topic. How
much training data is enough? (Do I need to collect more data? Can I discard some data to
make computation faster?) The best way to answer this is to reason by analogy to a similar
project with known training set size.

Once you get started you can draw a learning curve (see Figure 19.7) to see if more data
will help, or if learning has already plateaued. There are endless ad hoc, unjustified rules of
thumb for the number of training examples you’ll need: millions for hard problems; thou-
sands for average problems; hundreds or thousands for each class in a classification problem;
10 times more examples than parameters of the model; 10 times more examples than input
features; O(d logd) examples for d input features; more examples for nonlinear models than
for linear models; more examples if greater accuracy is required; fewer examples if you use
regularization; enough examples to achieve the statistical power necessary to reject the null
hypothesis in classification. All these rules come with caveats—as does the sensible rule that
suggests trying what has worked in the past for similar problems.

You should think defensively about your data. Could there be data entry errors? What can
be done with missing data fields? If you collect data from your customers (or other people)
could some of the people be adversaries out to game the system? Are there spelling errors
or inconsistent terminology in text data? (For example, do “Apple,” “AAPL,” and “Apple
Inc.” all refer to the same company?) You will need a process to catch and correct all these
potential sources of data error.
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When data are limited, data augmentation can help. For example, with a data set of Data augmentation

images, you can create multiple versions of each image by rotating, translating, cropping, or
scaling each image, or by changing the brightness or color balance or adding noise. As long
as these are small changes, the image label should remain the same, and a model trained on
such augmented data will be more robust.

Sometimes data are plentiful but are classified into unbalanced classes. For example, Unbalanced classes

a training set of credit card transactions might consist of 10,000,000 valid transactions and
1,000 fraudulent ones. A classifier that says “valid” regardless of the input will achieve
99.99% accuracy on this data set. To go beyond that, a classifier will have to pay more
attention to the fraudulent examples. To help it do that, you can undersample the majority Undersampling

class (i.e., ignore some of the “valid” class examples) or over-sample the minority class (i.e., Over-sample

duplicate some of the “fraudulent” class examples). You can use a weighted loss function
that gives a larger penalty to missing a fraudulent case.

Boosting can also help you focus on the minority class. If you are using an ensemble
method, you can change the rules by which the ensemble votes and give “fraudulent” as the
response even if only a minority of the ensemble votes for “fraudulent.” You can help balance
unbalanced classes by generating synthetic data with techniques such as SMOTE (Chawla
et al., 2002) or ADASYN (He et al., 2008).

You should carefully consider outliers in your data. An outlier is a data point that is Outlier

far from other points. For example, in the restaurant problem, if price were a numeric value
rather than a categorical one, and if one example had a price of $316 while all the others
were $30 or less, that example would be an outlier. Methods such as linear regression are
susceptible to outliers because they must form a single global linear model that takes all
inputs into account—they can’t treat the outlier differently from other example points, and
thus a single outlier can have a large effect on all the parameters of the model.

With attributes like price that are positive numbers, we can diminish the effect of outliers
by transforming the data, taking the logarithm of each value, so $20, $25, and $316 become
1.3, 1.4, and 2.5. This makes sense from a practical point of view because the high value now
has less influence on the model, and from a theoretical point of view because, as we saw in
Section 15.3.2, the utility of money is logarithmic.

Methods such as decision trees that are built from multiple local models can treat outliers
individually: it doesn’t matter if the biggest value is $300 or $31; either way it can be treated
in its own local node after a test of the form cost ≤ 30. That makes decision trees (and thus
random forests and gradient boosting) more robust to outliers.

Feature engineering

After correcting overt errors, you may also want to preprocess your data to make it easier to
digest. We have already seen the process of quantization: forcing a continuous valued input,
such as the wait time, into fixed bins (0–10 minutes, 10–30, 30–60, or >60). Domain knowl-
edge can tell you what thresholds are important, such as comparing age≥ 18 when studying
voting patterns. We also saw (page 706) that nearest-neighbor algorithms perform better
when data are normalized to have a standard deviation of 1. With categorical attributes such
as sunny/cloudy/rainy, it is often helpful to transform the data into three separate Boolean
attributes, exactly one of which is true (we call this a one-hot encoding). This is particularly One-hot encoding

useful when the machine learning model is a neural network.
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You can also introduce new attributes based on your domain knowledge. For example,
given a data set of customer purchases where each entry has a date attribute, you might want
to augment the data with new attributes saying whether the date is a weekend or holiday.

As another example, consider the task of estimating the true value of houses that are for
sale. In Figure 19.13 we showed a toy version of this problem, doing linear regression of
house size to asking price. But we really want to estimate the selling price of a house, not
the asking price. To solve this task we’ll need data on actual sales. But that doesn’t mean we
should throw away the data about asking price—we can use it as one of the input features.
Besides the size of the house, we’ll need more information: the number of rooms, bedrooms,
and bathrooms; whether the kitchen and bathrooms have been recently remodeled; the age of
the house and perhaps its state of repair; whether it has central heating and air conditioning;
the size of the yard and the state of the landscaping.

We’ll also need information about the lot and the neighborhood. But how do we define
neighborhood? By zip code? What if a zip code straddles a desirable and an undesirable
neighborhood? What about the school district? Should the name of the school district be
a feature, or the average test scores? The ability to do a good job of feature engineering
is critical to success. As Pedro Domingos (2012) says, “At the end of the day, some ma-
chine learning projects succeed and some fail. What makes the difference? Easily the most
important factor is the features used.”

Exploratory data analysis and visualization

John Tukey (1977) coined the term exploratory data analysis (EDA) for the process of
exploring data in order to gain an understanding of it, not to make predictions or test hy-
potheses. This is done mostly with visualizations, but also with summary statistics. Looking
at a few histograms or scatter plots can often help determine if data are missing or erroneous;
whether your data are normally distributed or heavy-tailed; and what learning model might
be appropriate.

It can be helpful to cluster your data and then visualize a prototype data point at the
center of each cluster. For example, in the data set of images, I can identify that here is a
cluster of cat faces; nearby is a cluster of sleeping cats; other clusters depict other objects.
Expect to iterate several times between visualizing and modeling—to create clusters you need
a distance function to tell you which items are near each other, but to choose a good distance
function you need some feel for the data.

It is also helpful to detect outliers that are far from the prototypes; these can be considered
critics of the prototype model, and can give you a feel for what type of errors your system
might make. An example would be a cat wearing a lion costume.

Our computer display devices (screens or paper) are two-dimensional, which means that
it is easy to visualize two-dimensional data. And our eyes are experienced at understanding
three-dimensional data that has been projected down to two dimensions. But many data sets
have dozens or even millions of dimensions. In order to visualize them we can do dimension-
ality reduction, projecting the data down to a map in two dimensions (or sometimes to three
dimensions, which can then be explored interactively).17

17 Geoffrey Hinton provides the helpful advice “To deal with a 14-dimensional space, visualize a 3D space and
say ‘fourteen’ to yourself very loudly.”
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Figure 19.27 A two-dimensional t-SNE map of the MNIST data set, a collection of 60,000
images of handwritten digits, each 28×28 pixels and thus 784 dimensions. You can clearly
see clusters for the ten digits, with a few confusions in each cluster; for example the top
cluster is for the digit 0, but within the bounds of the cluster are a few data points representing
the digits 3 and 6. The t-SNE algorithm finds a representation that accentuates the differences
between clusters.

The map can’t maintain all relationships between data points, but should have the prop-
erty that similar points in the original data set are close together in the map. A technique
called t-distributed stochastic neighbor embedding (t-SNE) does just that. Figure 19.27

T-distributed
stochastic neighbor
embedding (t-SNE)

shows a t-SNE map of the MNIST digit recognition data set. Data analysis and visualization
packages such as Pandas, Bokeh, and Tableau can make it easier to work with your data.

19.9.3 Model selection and training

With cleaned data in hand and an intuitive feel for it, it is time to build a model. That means
choosing a model class (random forests? deep neural networks? an ensemble?), training
your model with the training data, tuning any hyperparameters of the class (number of trees?
number of layers?) with the validation data, debugging the process, and finally evaluating the
model on the test data.

There is no guaranteed way to pick the best model class, but there are some rough guide-
lines. Random forests are good when there are a lot of categorical features and you believe
that many of them may be irrelevant. Nonparametric methods are good when you have a lot
of data and no prior knowledge, and when you don’t want to worry too much about choosing
just the right features (as long as there are fewer than 20 or so). However, nonparametric
methods usually give you a function h that is more expensive to run.
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Logistic regression does well when the data are linearly separable, or can be converted
to be so with clever feature engineering. Support vector machines are a good method to try
when the data set is not too large; they perform similarly to logistic regression on separable
data and can be better for high-dimensional data. Problems dealing with pattern recognition,
such as image or speech processing, are most often approached with deep neural networks
(see Chapter 22).

Choosing hyperparameters can be done with a combination of experience—do what
worked well in similar past problems—and search: run experiments with multiple possi-
ble values for hyperparameters. As you run more experiments you will get ideas for different
models to try. However, if you measure performance on the validation data, get a new idea,
and run more experiments, then you run the risk of overfitting on the validation data. If you
have enough data, you may want to have several separate validation data sets to avoid this
problem. This is especially true if you inspect the validation data by eye, rather than just run
evaluations on it.

Suppose you are building a classifier—for example a system to classify spam email. La-
beling a legitimate piece of mail as spam is called a false positive. There will be a tradeoffFalse positive

between false positives and false negatives (labeling a piece of spam as legitimate); if you
want to keep more legitimate mail out of the spam folder, you will necessarily end up sending
more spam to the inbox. But what is the best way to make the tradeoff? You can try different
values of hyperparameters and get different rates for the two types of errors—different points
on this tradeoff. A chart called the receiver operating characteristic (ROC) curve plots

Receiver operating
characteristic (ROC)
curve false positives versus true positives for each value of the hyperparameter, helping you visu-

alize values that would be good choices for the tradeoff. A metric called the “area under the
ROC curve” or AUC provides a single-number summary of the ROC curve, which is usefulAUC

if you want to deploy a system and let each user choose their tradeoff point.
Another helpful visualization tool for classification problems is a confusion matrix: aConfusion matrix

two-dimensional table of counts of how often each category is classified or misclassified as
each other category.

There can be tradeoffs in factors other than the loss function. If you can train a stock
market prediction model that makes you $10 on every trade, that’s great—but not if it costs
you $20 in computation cost for each prediction. A machine translation program that runs
on your phone and allows you to read signs in a foreign city is helpful—but not if it runs
down the battery after an hour of use. Keep track of all the factors that lead to acceptance or
rejection of your system, and design a process where you can quickly iterate the process of
getting a new idea, running an experiment, and evaluating the results of the experiment to see
if you have made progress. Making this iteration process fast is one of the most important
factors for success in machine learning.

19.9.4 Trust, interpretability, and explainability

We have described a machine learning methodology where you develop your model with
training data, choose hyperparameters with validation data, and get a final metric with test
data. Doing well on that metric is a necessary but not sufficient condition for you to trust
your model. And it is not just you—other stakeholders including regulators, lawmakers, the
press, and your users are also interested in the trustworthiness of your system (as well as in
related attributes such as reliability, accountability, and safety).
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A machine learning system is still a piece of software, and you can build trust with all the
typical tools for verifying and validating any software system:

• Source control: Systems for version control, build, and bug/issue tracking.
• Testing: Unit tests for all the components covering simple canonical cases as well

as tricky adversarial cases, fuzz tests (where random inputs are generated), regression
tests, load tests, and system integration tests: these are all important for any software
system. For machine learning, we also have tests on the training, validation, and test
data sets.
• Review: Code walk-throughs and reviews, privacy reviews, fairness reviews (see Sec-

tion 28.3.3), and other legal compliance reviews.
• Monitoring: Dashboards and alerts to make sure that the system is up and running and

is continuing to performing at a high level of accuracy.
• Accountability: What happens when the system is wrong? What is the process for

complaining about or appealing the system’s decision? How can we track who was
responsible for the error? Society expects (but doesn’t always get) accountability for
important decisions made by banks, politicians, and the law, and they should expect
accountability from software systems including machine learning systems.

In addition, there are some factors that are especially important for machine learning systems,
as we shall detail below.

Interpretability: We say that a machine learning model is interpretable if you can in- Interpretability

spect the actual model and understand why it got a particular answer for a given input, and
how the answer would change when the input changes.18 Decision tree models are consid-
ered to be highly interpretable; we can understand that following the path Patrons=Full and
WaitEstimate=0–10 in a decision tree leads to a decision to wait. A decision tree is inter-
pretable for two reasons. First, we humans have experience in understanding IF/THEN rules.
(In contrast, it is very difficult for humans to get an intuitive understanding of the result of a
matrix multiply followed by an activation function, as is done in some neural network mod-
els.) Second, the decision tree was in a sense constructed to be interpretable—the root of the
tree was chosen to be the attribute with the highest information gain.

Linear regression models are also considered to be interpretable; we can examine a model
for predicting the rent on an apartment and see that for each bedroom added, the rent increases
by $500, according to the model. This idea of “If I change x, how will the output change?” is
at the core of interpretability. Of course, correlation is not causation, so interpretable models
are answering what is the case, but not necessarily why it is the case.

Explainability: An explainable model is one that can help you understand “why was this Explainability

output produced for this input?” In our terminology, interpretability derives from inspecting
the actual model, whereas explainability can be provided by a separate process. That is, the
model itself can be a hard-to-understand black box, but an explanation module can summarize
what the model does. For a neural network image-recognition system that classifies a picture
as dog, if we tried to interpret the model directly, the best we could come away with would be
something like “after processing the convolutional layers, the activation for the dog output in
the softmax layer was higher than any other class.” That’s not a very compelling argument.

18 This terminology is not universally accepted; some authors use “interpretable” and “explainable” as synonyms,
both referring to reaching some kind of understanding of a model.
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But a separate explanation module might be able to examine the neural network model and
come up with the explanation “it has four legs, fur, a tail, floppy ears, and a long snout; it
is smaller than a wolf, and it is lying on a dog bed, so I think it is a dog.” Explanations
are one way to build trust, and some regulations such as the European GDPR (General Data
Protection Regulation) require systems to provide explanations.

As an example of a separate explanation module, the local interpretable model-agnostic
explanations (LIME) system works like this: no matter what model class you use, LIME
builds an interpretable model—often a decision tree or linear model—that is an approxima-
tion of your model, and then interprets the linear model to create explanations that say how
important each feature is. LIME accomplishes this by treating the machine-learned model as
a black box, and probing it with different random input values to create a data set from which
the interpretable model can be built. This approach is appropriate for structured data, but not
for things like images, where each pixel is a feature, and no one pixel is “important” by itself.

Sometimes we choose a model class because of its explainability—we might choose
decision trees over neural networks not because they have higher accuracy but because the
explainability gives us more trust in them.

However, a simple explanation can lead to a false sense of security. After all, we typically
choose to use a machine learning model (rather than a hand-written traditional program)
because the problem we are trying to solve is inherently complex, and we don’t know how to
write a traditional program. In that case, we shouldn’t expect that there will necessarily be a
simple explanation for every prediction.

If you are building a machine learning model primarily for the purpose of understanding
the domain, then interpretability and explainability will help you arrive at that understanding.
But if you just want the best-performing piece of software then testing may give you more
confidence and trust than explanations. Which would you trust: an experimental aircraft that
has never flown before but has a detailed explanation of why it is safe, or an aircraft that
safely completed 100 previous flights and has been carefully maintained, but comes with no
guaranted explanation?

19.9.5 Operation, monitoring, and maintenance

Once you are happy with your model’s performance, you can deploy it to your users. You’ll
face additional challenges. First, there is the problem of the long tail of user inputs. YouLong tail

may have tested your system on a large test set, but if your system is popular, you will soon
see inputs that were never tested before. You need to know whether your model generalizes
well for them, which means you need to monitor your performance on live data—trackingMonitoring

statistics, displaying a dashboard, and sending alerts when key metrics fall below a threshold.
In addition to automatically updating statistics on user interactions, you may need to hire and
train human raters to look at your system and grade how well it is doing.

Second, there is the problem of nonstationarity—the world changes over time. SupposeNonstationarity

your system classifies email as spam or non-spam. As soon as you successfully classify a
batch of spam messages, the spammers will see what you have done and change their tactics,
sending a new type of message you haven’t seen before. Non-spam also evolves, as users
change the mix of email versus messaging or desktop versus mobile services that they use.

You will continually face the question of what is better: a model that has been well tested
but was built from older data, versus a model that is built from the latest data but has not
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Tests for Features and Data
(1) Feature expectations are captured in a schema. (2) All features are beneficial. (3) No fea-
ture’s cost is too much. (4) Features adhere to meta-level requirements. (5) The data pipeline
has appropriate privacy controls. (6) New features can be added quickly. (7) All input feature
code is tested.

Tests for Model Development
(1) Every model specification undergoes a code review. (2) Every model is checked in to a
repository. (3) Offline proxy metrics correlate with actual metrics (4) All hyperparameters
have been tuned. (5) The impact of model staleness is known. (6) A simpler model is not
better. (7) Model quality is sufficient on all important data slices. The model has been tested
for considerations of inclusion.

Tests for Machine Learning Infrastructure
(1) Training is reproducible. (2) Model specification code is unit tested. (3) The full ML
pipeline is integration tested. (4) Model quality is validated before attempting to serve it.
(5) The model allows debugging by observing the step-by-step computation of training or
inference on a single example. (6) Models are tested via a canary process before they enter
production serving environments. (7) Models can be quickly and safely rolled back to a pre-
vious serving version.

Monitoring Tests for Machine Learning
(1) Dependency changes result in notification. (2) Data invariants hold in training and serv-
ing inputs. (3) Training and serving features compute the same values. (4) Models are not
too stale. (5) The model is numerically stable. (6) The model has not experienced regres-
sions in training speed, serving latency, throughput, or RAM usage. (7) The model has not
experienced a regression in prediction quality on served data.

Figure 19.28 A set of criteria to see how well you are doing at deploying your machine
learning model with sufficient tests. Abridged from Breck et al. (2016), who also provide a
scoring metric.

been tested in actual use. Different systems have different requirements for freshness: some
problems benefit from a new model every day, or even every hour, while other problems can
keep the same model for months. If you are deploying a new model every hour, it will be
impractical to run a heavy test suite and a manual review process for each update. You will
need to automate the testing and release process so that small changes can be automatically
approved, but larger changes trigger appropriate review. You can consider the tradeoff be-
tween an online model where new data incrementally modifies the existing model, versus an
offline model where each new release requires building a new model from scratch.

It it is not just that the data will be changing—for example, new words will be used in
spam email messages. It is also that the entire data schema may change—you might start
out classifying spam email, and need to adapt to classify spam text messages, spam voice
messages, spam videos, etc. Figure 19.28 gives a general rubric to guide the practitioner in
choosing the appropriate level of testing and monitoring.
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Summary

This chapter introduced machine learning, and focused on supervised learning from exam-
ples. The main points were:

• Learning takes many forms, depending on the nature of the agent, the component to be
improved, and the available feedback.

• If the available feedback provides the correct answer for example inputs, then the learn-
ing problem is called supervised learning. The task is to learn a function y = h(x).
Learning a function whose output is a continuous or ordered value (like weight) is
called regression; learning a function with a small number of possible output categories
is called classification;

• We want to learn a function that not only agrees with the data but also is likely to agree
with future data. We need to balance agreement with the data against simplicity of the
hypothesis.

• Decision trees can represent all Boolean functions. The information-gain heuristic
provides an efficient method for finding a simple, consistent decision tree.

• The performance of a learning algorithm can be visualized by a learning curve, which
shows the prediction accuracy on the test set as a function of the training set size.

• When there are multiple models to choose from, model selection can pick good values
of hyperparameters, as confirmed by cross-validation on validation data. Once the
hyperparameter values are chosen, we build our best model using all the training data.

• Sometimes not all errors are equal. A loss function tells us how bad each error is; the
goal is then to minimize loss over a validation set.

• Computational learning theory analyzes the sample complexity and computational
complexity of inductive learning. There is a tradeoff between the expressiveness of the
hypothesis space and the ease of learning.

• Linear regression is a widely used model. The optimal parameters of a linear regres-
sion model can be calculated exactly, or can be found by gradient descent search, which
is a technique that can be applied to models that do not have a closed-form solution.

• A linear classifier with a hard threshold—also known as a perceptron—can be trained
by a simple weight update rule to fit data that are linearly separable. In other cases,
the rule fails to converge.

• Logistic regression replaces the perceptron’s hard threshold with a soft threshold de-
fined by a logistic function. Gradient descent works well even for noisy data that are
not linearly separable.

• Nonparametric models use all the data to make each prediction, rather than trying to
summarize the data with a few parameters. Examples include nearest neighbors and
locally weighted regression.

• Support vector machines find linear separators with maximum margin to improve
the generalization performance of the classifier. Kernel methods implicitly transform
the input data into a high-dimensional space where a linear separator may exist, even if
the original data are nonseparable.
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• Ensemble methods such as bagging and boosting often perform better than individual
methods. In online learning we can aggregate the opinions of experts to come arbi-
trarily close to the best expert’s performance, even when the distribution of the data are
constantly shifting.

• Building a good machine learning model requires experience in the complete develop-
ment process, from managing data to model selection and optimization, to continued
maintenance.

Bibliographical and Historical Notes

Chapter 1 covered the history of philosophical investigations into the topic of inductive learn-
ing. William of Ockham (1280–1349), the most influential philosopher of his century and a
major contributor to medieval epistemology, logic, and metaphysics, is credited with a state-
ment called “Ockham’s Razor”—in Latin, Entia non sunt multiplicanda praeter necessitatem,
and in English, “Entities are not to be multiplied beyond necessity.” Unfortunately, this laud-
able piece of advice is nowhere to be found in his writings in precisely these words (although
he did say “Pluralitas non est ponenda sine necessitate,” or “Plurality shouldn’t be posited
without necessity”). A similar sentiment was expressed by Aristotle in 350 BCE in Physics
book I, chapter VI: “For the more limited, if adequate, is always preferable.”

David Hume (1711–1776) formulated the problem of induction, recognizing that gener-
alizing from examples admits the possibility of errors, in a way that logical deduction does
not. He saw that there was no way to have a guaranteed correct solution to the problem,
but proposed the principle of uniformity of nature, which we have called stationarity. What
Ockham and Hume were getting at is that when we do induction, we are choosing from the
multitude of consistent models one that is more likely—because it is simpler and matches
our expectations. In modern day, the no free lunch theorem (Wolpert and Macready, 1997;
Wolpert, 2013) says that if a learning algorithm performs well on a certain set of problems, it
is only because it will perform poorly on a different set: if our decision tree correctly predicts
SR’s restaurant waiting behavior, it must perform poorly for some other hypothetical person
who has the opposite waiting behavior on the unobserved inputs.

Machine learning was one of the key ideas at the birth of computer science. Alan Turing
(1947) anticipated it, saying “Let us suppose we have set up a machine with certain initial
instruction tables, so constructed that these tables might on occasion, if good reason arose,
modify those tables.” Arthur Samuel (1959) defined machine learning as the “field of study
that gives computers the ability to learn without being explicitly programmed” while creating
his learning checkers program.

The first notable use of decision trees was in EPAM, the “Elementary Perceiver And
Memorizer” (Feigenbaum, 1961), which was a simulation of human concept learning. ID3
(Quinlan, 1979) added the crucial idea of choosing the attribute with maximum entropy. The
concepts of entropy and information theory were developed by Claude Shannon to aid in the
study of communication (Shannon and Weaver, 1949). (Shannon also contributed one of the
earliest examples of machine learning, a mechanical mouse named Theseus that learned to
navigate through a maze by trial and error.) The χ2 method of tree pruning was described
by Quinlan (1986). A description of C4.5, an industrial-strength decision tree package, can
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be found in Quinlan (1993). An alternative industrial-strength software package, CART (for
Classification and Regression Trees) was developed by the statistician Leo Breiman and his
colleagues (Breiman et al., 1984).

Hyafil and Rivest (1976) proved that finding an optimal decision tree (rather than finding
a good tree through locally greedy selections) is NP-complete. But Bertsimas and Dunn
(2017) point out that in the last 25 years, advances in hardware design and in algorithms for
mixed-integer programming have resulted in an 800 billion-fold speedup, which means that
it is now feasible to solve this NP-hard problem at least for problems with not more than a
few thousand examples and a few dozen features.

Cross-validation was first introduced by Larson (1931), and in a form close to what
we show by Stone (1974) and Golub et al. (1979). The regularization procedure is due to
Tikhonov (1963).

On the question of overfitting, John von Neumann was quoted (Dyson, 2004) as boast-
ing, “With four parameters I can fit an elephant, and with five I can make him wiggle his
trunk,” meaning that a high-degree polynomial can be made to fit almost any data, but at
the cost of potentially overfitting. Mayer et al. (2010) proved him right by demonstrating
a four-parameter elephant and five-parameter wiggle, and Boué (2019) went even further,
demonstrating an elephant and other animals with a one-parameter chaotic function.

Zhang et al. (2016) analyze under what conditions a model can memorize the training
data. They perform experiments using random data—surely an algorithm that gets zero error
on a training set with random labels must be memorizing the data set. However, they conclude
that the field has yet to discover a precise measure of what it means for a model to be “simple”
in the sense of Ockham’s razor. Arpit et al. (2017) show that the conditions under which
memorization can occur depend on details of both the model and the data set.

Belkin et al. (2019) discuss the bias–variance tradeoff in machine learning and why some
model classes continue to improve after reaching the interpolation point, while other model
classes exhibit the U-shaped curve. Berrada et al. (2019) develop a new learning algorithm
based on gradient descent that exploits the ability of models to memorize to set good values
for the learning rate hyperparameter.

Theoretical analysis of learning algorithms began with the work of Gold (1967) on iden-
tification in the limit. This approach was motivated in part by models of scientific discovery
from the philosophy of science (Popper, 1962), but has been applied mainly to the problem
of learning grammars from example sentences (Osherson et al., 1986).

Whereas the identification-in-the-limit approach concentrates on eventual convergence,
the study of Kolmogorov complexity or algorithmic complexity, developed independentlyKolmogorov

complexity

by Solomonoff (1964, 2009) and Kolmogorov (1965), attempts to provide a formal definition
for the notion of simplicity used in Ockham’s razor. To escape the problem that simplicity
depends on the way in which information is represented, it is proposed that simplicity be
measured by the length of the shortest program for a universal Turing machine that correctly
reproduces the observed data. Although there are many possible universal Turing machines,
and hence many possible “shortest” programs, these programs differ in length by at most a
constant that is independent of the amount of data. This beautiful insight, which essentially
shows that any initial representation bias will eventually be overcome by the data, is marred
only by the undecidability of computing the length of the shortest program. Approximate
measures such as the minimum description length, or MDL (Rissanen, 1984, 2007) can be
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used instead and have produced excellent results in practice. The text by Li and Vitanyi (2008)
is the best source for Kolmogorov complexity.

The theory of PAC learning was inaugurated by Leslie Valiant (1984), stressing the
importance of computational and sample complexity. With Michael Kearns (1990), Valiant
showed that several concept classes cannot be PAC-learned tractably, even though sufficient
information is available in the examples. Some positive results were obtained for classes such
as decision lists (Rivest, 1987).

An independent tradition of sample-complexity analysis has existed in statistics, begin-
ning with the work on uniform convergence theory (Vapnik and Chervonenkis, 1971). The
so-called VC dimension provides a measure roughly analogous to, but more general than, the VC dimension

ln |H| measure obtained from PAC analysis. The VC dimension can be applied to continuous
function classes, to which standard PAC analysis does not apply. PAC-learning theory and
VC theory were first connected by the “four Germans” (none of whom actually is German):
Blumer, Ehrenfeucht, Haussler, and Warmuth (1989).

Linear regression with squared error loss goes back to Legendre (1805) and Gauss
(1809), who were both working on predicting orbits around the sun. (Gauss claimed to be us-
ing the technique since 1795, but delayed in publishing it.) The modern use of multivariable
regression for machine learning is covered in texts such as Bishop (2007). The differences
between L1 and L2 regularization are analyzed by Ng (2004) and Moore and DeNero (2011).

The term logistic function comes from Pierre-François Verhulst (1804–1849), a statisti-
cian who used the curve to model population growth with limited resources, a more realis-
tic model than the unconstrained geometric growth proposed by Thomas Malthus. Verhulst
called it the courbe logistique, because of its relation to the logarithmic curve. The term curse
of dimensionality comes from Richard Bellman (1961).

Logistic regression can be solved with gradient descent or with the Newton–Raphson
method (Newton, 1671; Raphson, 1690). A variant of the Newton method called L-BFGS
is often used for large-dimensional problems; the L stands for “limited memory,” meaning
that it avoids creating the full matrices all at once, and instead creates parts of them on the
fly. BFGS are the authors’ initials (Byrd et al., 1995). The idea of gradient descent goes
back to Cauchy (1847); stochastic gradient descent (SGD) was introduced in the statistical
optimization community by Robbins and Monro (1951), rediscovered for neural networks by
Rosenblatt (1960), and popularized for large-scale machine learning by Bottou and Bousquet
(2008). Bottou et al. (2018) reconsider the topic of large-scale learning with a decade of
additional experience.

Nearest-neighbors models date back at least to Fix and Hodges (1951) and have been a
standard tool in statistics and pattern recognition ever since. Within AI, they were popularized
by Stanfill and Waltz (1986), who investigated methods for adapting the distance metric to the
data. Hastie and Tibshirani (1996) developed a way to localize the metric to each point in the
space, depending on the distribution of data around that point. Gionis et al. (1999) introduced
locality-sensitive hashing (LSH), which revolutionized the retrieval of similar objects in high-
dimensional spaces. Andoni and Indyk (2006) provide a survey of LSH and related methods,
and Samet (2006) covers properties of high-dimensional spaces. The technique is particularly
useful for genomic data, where each record has millions of attributes (Berlin et al., 2015).

The ideas behind kernel machines come from Aizerman et al. (1964) (who also in-
troduced the kernel trick), but the full development of the theory is due to Vapnik and his
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colleagues (Boser et al., 1992). SVMs were made practical with the introduction of the soft-
margin classifier for handling noisy data in a paper that won the 2008 ACM Theory and Prac-
tice Award (Cortes and Vapnik, 1995), and of the Sequential Minimal Optimization (SMO)
algorithm for efficiently solving SVM problems using quadratic programming (Platt, 1999).
SVMs have proven to be very effective for tasks such as text categorization (Joachims, 2001),
computational genomics (Cristianini and Hahn, 2007), and handwritten digit recognition of
DeCoste and Schölkopf (2002).

As part of this process, many new kernels have been designed that work with strings,
trees, and other nonnumerical data types. A related technique that also uses the kernel
trick to implicitly represent an exponential feature space is the voted perceptron (Freund
and Schapire, 1999; Collins and Duffy, 2002). Textbooks on SVMs include Cristianini and
Shawe-Taylor (2000) and Schölkopf and Smola (2002). A friendlier exposition appears in
the AI Magazine article by Cristianini and Schölkopf (2002). Bengio and LeCun (2007)
show some of the limitations of SVMs and other local, nonparametric methods for learning
functions that have a global structure but do not have local smoothness.

The first mathematical proof of the value of an ensemble was Condorcet’s jury theorem
(1785), which proved that if jurors are independent and an individual juror has at least a 50%
chance of deciding a case correctly, then the more jurors you add, the better the chance of
deciding the case correctly. More recently, ensemble learning has become an increasingly
popular technique for improving the performance of learning algorithms.

The first random forest algorithm, using random attribution selection, is by Ho (1995);
an independent version was introduced by Amit and Geman (1997). Breiman (2001) added
the ideas of bagging and “out-of-bag error.” Friedman (2001) introduced the terminology
Gradient Boosting Machine (GBM), expanding the approach to allow for multiclass classifi-
cation, regression, and ranking problems.

Michel Kearns (1988) defined the Hypothesis Boosting Problem: given a learner that
predicts only slightly better than random guessing, is it possible to derive a learner that per-
forms arbitrarily well? The problem was answered in the affirmative in a theoretical paper
by Schapire (1990) that led to the ADABOOST algorithm Freund and Schapire (1996) and
to further theoretical work Schapire (2003). Friedman et al. (2000) explain boosting from
a statistician’s viewpoint. Chen and Guestrin (2016) describe the XGBOOST system, which
has been used with great success in many large-scale applications.

Online learning is covered in a survey by Blum (1996) and a book by Cesa-Bianchi and
Lugosi (2006). Dredze et al. (2008) introduce the idea of confidence-weighted online learning
for classification: in addition to keeping a weight for each parameter, they also maintain a
measure of confidence, so that a new example can have a large effect on features that were
rarely seen before (and thus had low confidence) and a small effect on common features that
have already been well estimated. Yu et al. (2011) describe how a team of students work
together to build an ensemble classifier in the KDD competition. One exciting possibility
is to create an “outrageously large” mixture-of-experts ensemble that uses a sparse subset
of experts for each incoming example (Shazeer et al., 2017). Seni and Elder (2010) survey
ensemble methods.

In terms of practical advice for building machine learning systems, Pedro Domingos
describes a few things to know (2012). Andrew Ng gives hints for developing and debugging
a product using machine learning (Ng, 2019). O’Neil and Schutt (2013) describe the process
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of doing data science. Tukey (1977) introduced exploratory data analysis, and Gelman
(2004) gives an updated view of the process. Bien et al. (2011) describe the process of
choosing prototypes for interpretability, and Kim et al. (2017) show how to find critics that
are maximally distant from the prototypes using a metric called maximum mean discrepancy.
Wattenberg et al. (2016) describe how to use t-SNE. To get a comprehensive view of how
well your deployed machine learning system is doing, Breck et al. (2016) offer a checklist
of 28 tests that you can apply to get an overall ML test score. Riley (2019) describes three
common pitfalls of ML development.

Banko and Brill (2001), Halevy et al. (2009), and Gandomi and Haider (2015) discuss
the advantages of using the large amounts of data that are now available. Lyman and Varian
(2003) estimated that about 5 exabytes (5× 1018 bytes) of data was produced in 2002, and
that the rate of production is doubling every 3 years; Hilbert and Lopez (2011) estimated
2× 1021 bytes for 2007, indicating an acceleration. Guyon and Elisseeff (2003) discuss the
problem of feature selection with large data sets.

Doshi-Velez and Kim (2017) propose a framework for interpretable machine learning
or explainable AI (XAI). Miller et al. (2017) point out that there are two kinds of expla-
nations, one for the designers of an AI system and one for the users, and we need to be
clear what we are aiming for. The LIME system (Ribeiro et al., 2016) builds interpretable
linear models that approximate whatever machine learning system you have. A similar sys-
tem, SHAP (Lundberg and Lee, 2018) (Shapley Additive exPlanations), uses the notion of a
Shapley value (page 618) to determine the contribution of each feature.

The idea that we could apply machine learning to the task of solving machine learning
problems is a tantalizing one. Thrun and Pratt (2012) give an early overview of the field
in an edited collection titled Learning to Learn. Recently the field has adopted the name
automated machine learning (AutoML); Hutter et al. (2019) give an overview. Automated machine

learning (AutoML)

Kanter and Veeramachaneni (2015) describe a system for doing automated feature selec-
tion. Bergstra and Bengio (2012) describe a system for searching the space of hyperparam-
eters, as do Thornton et al. (2013) and Bermúdez-Chacón et al. (2015). Wong et al. (2019)
show how transfer learning can speed up AutoML for deep learning models. Competitions
have been organized to see which systems are best at AutoML tasks (Guyon et al., 2015).
(Steinruecken et al., 2019) describe a system called the Automatic Statistician: you give it
some data and it writes a report, mixing text, charts, and calculations. The major cloud com-
puting providers have included AutoML as part of their offerings. Some researchers prefer
the term metalearning: for example, the MAML (Model-Agnostic Meta-Learning) system
(Finn et al., 2017) works with any model that can be trained by gradient descent; it trains a
core model so that it will be easy to fine-tune the model with new data on new tasks.

Despite all this work, we still don’t have a complete system for automatically solving
machine learning problems. To do that with supervised machine learning we would need to
start with a data set of (x j,y j) examples. Here the input x j is a specification of the problem,
in the form that a problem is initially encountered: a vague description of the goals, and
some data to work with, perhaps with a vague plan for how to acquire more data. The output
yi would be a complete running machine learning program, along with a methodology for
maintaining the program: gathering more data, cleaning it, testing and monitoring the system,
etc. One would expect we would need a data set of thousands of such examples. But no such
data set exists, so existing AutoML systems are limited in what they can accomplish.
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There is a dizzying array of books that introduce data science and machine learning in
conjunction with software packages such as Python (Segaran, 2007; Raschka, 2015; Nielsen,
2015), Scikit-Learn (Pedregosa et al., 2011), R (Conway and White, 2012), Pandas (McK-
inney, 2012), NumPy (Marsland, 2014), PyTorch (Howard and Gugger, 2020), TensorFlow
(Ramsundar and Zadeh, 2018), and Keras (Chollet, 2017; Géron, 2019).

There are a number of valuable textbooks in machine learning (Bishop, 2007; Murphy,
2012) and in the closely allied and overlapping fields of pattern recognition (Ripley, 1996;
Duda et al., 2001), statistics (Wasserman, 2004; Hastie et al., 2009; James et al., 2013),
data science (Blum et al., 2020), data mining (Han et al., 2011; Witten and Frank, 2016;
Tan et al., 2019), computational learning theory (Kearns and Vazirani, 1994; Vapnik, 1998),
and information theory (Shannon and Weaver, 1949; MacKay, 2002; Cover and Thomas,
2006). Burkov (2019) attempts the shortest possible introduction to machine learning, and
Domingos (2015) offers a nontechnical overview of the field. Current research in machine
learning is published in the annual proceedings of the International Conference on Machine
Learning (ICML), the International Conference on Learning Representations (ICLR), and the
conference on Neural Information Processing Systems (NeurIPS); and in Machine Learning
and the Journal of Machine Learning Research.



CHAPTER 20
KNOWLEDGE IN LEARNING
In which we examine the problem of learning when you know something already.

In all of the approaches to learning described in the previous chapter, the idea is to construct
a function that has the input–output behavior observed in the data. In each case, the learning
methods can be understood as searching a hypothesis space to find a suitable function, starting
from only a very basic assumption about the form of the function, such as “second-degree
polynomial” or “decision tree” and perhaps a preference for simpler hypotheses. Doing this
amounts to saying that before you can learn something new, you must first forget (almost)
everything you know. In this chapter, we study learning methods that can take advantage
of prior knowledge about the world. In most cases, the prior knowledge is represented Prior knowledge

as general first-order logical theories; thus for the first time we bring together the work on
knowledge representation and learning.

20.1 A Logical Formulation of Learning

Chapter 19 defined pure inductive learning as a process of finding a hypothesis that agrees
with the observed examples. Here, we specialize this definition to the case where the hypoth-
esis is represented by a set of logical sentences. Example descriptions and classifications will
also be logical sentences, and a new example can be classified by inferring a classification
sentence from the hypothesis and the example description. This approach allows for incre-
mental construction of hypotheses, one sentence at a time. It also allows for prior knowledge,
because sentences that are already known can assist in the classification of new examples.
The logical formulation of learning may seem like a lot of extra work at first, but it turns
out to clarify many of the issues in learning. It enables us to go well beyond the simple
learning methods of Chapter 19 by using the full power of logical inference in the service of
learning.

20.1.1 Examples and hypotheses

Recall from Chapter 19 the restaurant learning problem: learning a rule for deciding whether
to wait for a table. Examples were described by attributes such as Alternate, Bar, Fri/Sat,
and so on. In a logical setting, an example is described by a logical sentence; the attributes
become unary predicates. Let us generically call the ith example Xi. For instance, the first
example from Figure 19.3 (page 676) is described by the sentences

Alternate(X1)∧¬Bar(X1)∧¬Fri/Sat(X1)∧Hungry(X1)∧ . . .
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We will use the notation Di(Xi) to refer to the description of Xi, where Di can be any logical
expression taking a single argument. The classification of the example is given by a literal
using the goal predicate, in this case

WillWait(X1) or ¬WillWait(X1) .

The complete training set can thus be expressed as the conjunction of all the example descrip-
tions and goal literals.

The aim of inductive learning in general is to find a hypothesis that classifies the examples
well and generalizes well to new examples. Here we are concerned with hypotheses expressed
in logic; each hypothesis h j will have the form

∀x Goal(x) ⇔ C j(x) ,

where C j(x) is a candidate definition—some expression involving the attribute predicates.
For example, a decision tree can be interpreted as a logical expression of this form. Thus, the
tree in Figure 19.6 (page 678) expresses the following logical definition (which we will call
hr for future reference):

∀r WillWait(r) ⇔ Patrons(r,Some)
∨ Patrons(r,Full)∧Hungry(r)∧Type(r,French)
∨ Patrons(r,Full)∧Hungry(r)∧Type(r,Thai)

∧Fri/Sat(r)
∨ Patrons(r,Full)∧Hungry(r)∧Type(r,Burger) .

(20.1)

Each hypothesis predicts that a certain set of examples—namely, those that satisfy its candi-
date definition—will be examples of the goal predicate. This set is called the extension ofExtension

the predicate. Two hypotheses with different extensions are therefore logically inconsistent
with each other, because they disagree on their predictions for at least one example. If they
have the same extension, they are logically equivalent.

The hypothesis space H is the set of all hypotheses {h1, . . . ,hn} that the learning algo-
rithm is designed to entertain. For example, the DECISION-TREE-LEARNING algorithm can
entertain any decision tree hypothesis defined in terms of the attributes provided; its hypoth-
esis space therefore consists of all these decision trees. Presumably, the learning algorithm
believes that one of the hypotheses is correct; that is, it believes the sentence

h1∨h2∨h3∨ . . .∨hn . (20.2)

As the examples arrive, hypotheses that are not consistent with the examples can be ruled
out. Let us examine this notion of consistency more carefully. Obviously, if hypothesis h j is
consistent with the entire training set, it has to be consistent with each example in the training
set. What would it mean for it to be inconsistent with an example? There are two possible
ways that this can happen:

• An example can be a false negative for the hypothesis, if the hypothesis says it shouldFalse negative

be negative but in fact it is positive. For instance, the new example X13 described by
Patrons(X13,Full)∧¬Hungry(X13)∧ . . .∧WillWait(X13)
would be a false negative for the hypothesis hr given earlier. From hr and the example
description, we can deduce both WillWait(X13), which is what the example says, and
¬WillWait(X13), which is what the hypothesis predicts. The hypothesis and the example
are therefore logically inconsistent.
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• An example can be a false positive for the hypothesis, if the hypothesis says it should False positive

be positive but in fact it is negative.1

If an example is a false positive or false negative for a hypothesis, then the example and the
hypothesis are logically inconsistent with each other. Assuming that the example is a correct
observation of fact, then the hypothesis can be ruled out. Logically, this is exactly analogous
to the resolution rule of inference (see Chapter 9), where the disjunction of hypotheses cor-
responds to a clause and the example corresponds to a literal that resolves against one of the
literals in the clause. An ordinary logical inference system therefore could, in principle, learn
from the example by eliminating one or more hypotheses. Suppose, for example, that the
example is denoted by the sentence I1, and the hypothesis space is h1∨h2∨h3∨h4. Then if
I1 is inconsistent with h2 and h3, the logical inference system can deduce the new hypothesis
space h1∨h4.

We therefore can characterize inductive learning in a logical setting as a process of grad-
ually eliminating hypotheses that are inconsistent with the examples, narrowing down the
possibilities. Because the hypothesis space is usually vast (or even infinite in the case of
first-order logic), we do not recommend trying to build a learning system using resolution-
based theorem proving and a complete enumeration of the hypothesis space. Instead, we will
describe two approaches that find logically consistent hypotheses with much less effort.

20.1.2 Current-best-hypothesis search

The idea behind current-best-hypothesis search is to maintain a single hypothesis, and to Current-best-
hypothesis

adjust it as new examples arrive in order to maintain consistency. The basic algorithm was
described by John Stuart Mill (1843), and may well have appeared even earlier.

Suppose we have some hypothesis such as hr, of which we have grown quite fond. As
long as each new example is consistent, we need do nothing. Then along comes a false neg-
ative example, X13. What do we do? Figure 20.1(a) shows hr schematically as a region:
everything inside the rectangle is part of the extension of hr. The examples that have actu-
ally been seen so far are shown as “+” or “–”, and we see that hr correctly categorizes all
the examples as positive or negative examples of WillWait. In Figure 20.1(b), a new exam-
ple (circled) is a false negative: the hypothesis says it should be negative but it is actually
positive. The extension of the hypothesis must be increased to include it. This is called gen-
eralization; one possible generalization is shown in Figure 20.1(c). Then in Figure 20.1(d), Generalization

we see a false positive: the hypothesis says the new example (circled) should be positive,
but it actually is negative. The extension of the hypothesis must be decreased to exclude
the example. This is called specialization; in Figure 20.1(e) we see one possible specializa- Specialization

tion of the hypothesis. The “more general than” and “more specific than” relations between
hypotheses provide the logical structure on the hypothesis space that makes efficient search
possible.

We can now specify the CURRENT-BEST-LEARNING algorithm, shown in Figure 20.2.
Notice that each time we consider generalizing or specializing the hypothesis, we must check
for consistency with the other examples, because an arbitrary increase/decrease in the exten-
sion might include/exclude previously seen negative/positive examples.

1 The terms “false positive” and “false negative” are used in medicine to describe erroneous results from lab
tests. A result is a false positive if it indicates that the patient has the disease when in fact no disease is present.
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Figure 20.1 (a) A consistent hypothesis. (b) A false negative. (c) The hypothesis is general-
ized. (d) A false positive. (e) The hypothesis is specialized.

function CURRENT-BEST-LEARNING(examples, h) returns a hypothesis or fail

if examples is empty then
return h

e←FIRST(examples)
if e is consistent with h then

return CURRENT-BEST-LEARNING(REST(examples), h)
else if e is a false positive for h then

for each h′ in specializations of h consistent with examples seen so far do
h′′←CURRENT-BEST-LEARNING(REST(examples), h′)
if h′′ 6= fail then return h′′

else if e is a false negative for h then
for each h′ in generalizations of h consistent with examples seen so far do

h′′←CURRENT-BEST-LEARNING(REST(examples), h′)
if h′′ 6= fail then return h′′

return fail

Figure 20.2 The current-best-hypothesis learning algorithm. It searches for a consis-
tent hypothesis that fits all the examples and backtracks when no consistent specializa-
tion/generalization can be found. To start the algorithm, any hypothesis can be passed in;
it will be specialized or gneralized as needed.

We have defined generalization and specialization as operations that change the extension
of a hypothesis. Now we need to determine exactly how they can be implemented as syntactic
operations that change the candidate definition associated with the hypothesis, so that a pro-
gram can carry them out. This is done by first noting that generalization and specialization
are also logical relationships between hypotheses. If hypothesis h1, with definition C1, is a
generalization of hypothesis h2 with definition C2, then we must have

∀x C2(x) ⇒ C1(x) .

Therefore in order to construct a generalization of h2, we simply need to find a definition C1
that is logically implied by C2. This is easily done. For example, if C2(x) is Alternate(x)∧
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Patrons(x,Some), then one possible generalization is given by C1(x) ≡ Patrons(x,Some).
This is called dropping conditions. Intuitively, it generates a weaker definition and there- Dropping conditions

fore allows a larger set of positive examples. There are a number of other generalization
operations, depending on the language being operated on. Similarly, we can specialize a hy-
pothesis by adding extra conditions to its candidate definition or by removing disjuncts from
a disjunctive definition. Let us see how this works on the restaurant example, using the data
in Figure 19.3.

• The first example, X1, is positive. The attribute Alternate(X1) is true, so let the initial
hypothesis be

h1 : ∀x WillWait(x) ⇔ Alternate(x) .

• The second example, X2, is negative. h1 predicts it to be positive, so it is a false positive.
Therefore, we need to specialize h1. This can be done by adding an extra condition that
will rule out X2, while continuing to classify X1 as positive. One possibility is

h2 : ∀x WillWait(x) ⇔ Alternate(x)∧Patrons(x,Some) .

• The third example, X3, is positive. h2 predicts it to be negative, so it is a false negative.
Therefore, we need to generalize h2. We drop the Alternate condition, yielding

h3 : ∀x WillWait(x) ⇔ Patrons(x,Some) .

• The fourth example, X4, is positive. h3 predicts it to be negative, so it is a false negative.
We therefore need to generalize h3. We cannot drop the Patrons condition, because
that would yield an all-inclusive hypothesis that would be inconsistent with X2. One
possibility is to add a disjunct:

h4 : ∀x WillWait(x) ⇔ Patrons(x,Some)
∨ (Patrons(x,Full)∧Fri/Sat(x)) .

Already, the hypothesis is starting to look reasonable. Obviously, there are other possibilities
consistent with the first four examples; here are two of them:

h′4 : ∀x WillWait(x) ⇔ ¬WaitEstimate(x,30-60) .

h′′4 : ∀x WillWait(x) ⇔ Patrons(x,Some)
∨ (Patrons(x,Full)∧WaitEstimate(x,10-30)) .

The CURRENT-BEST-LEARNING algorithm is described nondeterministically, because at any
point, there may be several possible specializations or generalizations that can be applied. The
choices that are made will not necessarily lead to the simplest hypothesis, and may lead to an
unrecoverable situation where no simple modification of the hypothesis is consistent with all
of the data. In such cases, the program must backtrack to a previous choice point.

The CURRENT-BEST-LEARNING algorithm and its variants have been used in many ma-
chine learning systems, starting with Patrick Winston’s (1970) “arch-learning” program. With
a large number of examples and a large space, however, some difficulties arise:

1. Checking all the previous examples over again for each modification is very expensive.
2. The search process may involve a great deal of backtracking. As we saw in Chapter 19,

hypothesis space can be a doubly exponentially large place.
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20.1.3 Least-commitment search

Backtracking arises because the current-best-hypothesis approach has to choose a particular
hypothesis as its best guess even though it does not have enough data yet to be sure of the
choice. What we can do instead is to keep around all and only those hypotheses that are
consistent with all the data so far. Each new example will either have no effect or will get
rid of some of the hypotheses. Recall that the original hypothesis space can be viewed as a
disjunctive sentence

h1∨h2∨h3 . . .∨hn .

As various hypotheses are found to be inconsistent with the examples, this disjunction shrinks,
retaining only those hypotheses not ruled out. Assuming that the original hypothesis space
does in fact contain the right answer, the reduced disjunction must still contain the right an-
swer because only incorrect hypotheses have been removed. The set of hypotheses remaining
is called the version space, and the learning algorithm (sketched in Figure 20.3) is called theVersion space

version space learning algorithm (also the candidate elimination algorithm).Candidate
elimination

One important property of this approach is that it is incremental: one never has to go back
and reexamine the old examples. All remaining hypotheses are guaranteed to be consistent
with them already. But there is an obvious problem. We already said that the hypothesis
space is enormous, so how can we possibly write down this enormous disjunction?

The following simple analogy is very helpful. How do you represent all the real numbers
between 1 and 2? After all, there are an infinite number of them! The answer is to use an
interval representation that just specifies the boundaries of the set: [1,2]. It works because we
have an ordering on the real numbers.

We also have an ordering on the hypothesis space, namely, generalization/specialization.
This is a partial ordering, which means that each boundary will not be a point but rather a
set of hypotheses called a boundary set. The great thing is that we can represent the entireBoundary set

version space using just two boundary sets: a most general boundary (the G-set) and a mostG-set

specific boundary (the S-set). Everything in between is guaranteed to be consistent with theS-set

examples. Before we prove this, let us recap:

function VERSION-SPACE-LEARNING(examples) returns a version space
local variables: V , the version space: the set of all hypotheses

V← the set of all hypotheses
for each example e in examples do

if V is not empty then V←VERSION-SPACE-UPDATE(V , e)
return V

function VERSION-SPACE-UPDATE(V , e) returns an updated version space

V←{h∈V : h is consistent with e}

Figure 20.3 The version space learning algorithm. It finds a subset of V that is consistent
with all the examples.
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Figure 20.4 The version space contains all hypotheses consistent with the examples.

• The current version space is the set of hypotheses consistent with all the examples so
far. It is represented by the S-set and G-set, each of which is a set of hypotheses.

• Every member of the S-set is consistent with all observations so far, and there are no
consistent hypotheses that are more specific.

• Every member of the G-set is consistent with all observations so far, and there are no
consistent hypotheses that are more general.

We want the initial version space (before any examples have been seen) to represent all pos-
sible hypotheses. We do this by setting the G-set to contain True (the hypothesis that contains
everything), and the S-set to contain False (the hypothesis whose extension is empty).

Figure 20.4 shows the general structure of the boundary-set representation of the version
space. To show that the representation is sufficient, we need the following two properties:

1. Every consistent hypothesis (other than those in the boundary sets) is more specific than
some member of the G-set, and more general than some member of the S-set. (That is,
there are no “stragglers” left outside.) This follows directly from the definitions of S
and G. If there were a straggler h, then it would have to be no more specific than any
member of G, in which case it belongs in G; or no more general than any member of S,
in which case it belongs in S.

2. Every hypothesis more specific than some member of the G-set and more general than
some member of the S-set is a consistent hypothesis. (That is, there are no “holes”
between the boundaries.) Any h between S and G must reject all the negative examples
rejected by each member of G (because it is more specific), and must accept all the pos-
itive examples accepted by any member of S (because it is more general). Thus, h must
agree with all the examples, and therefore cannot be inconsistent. Figure 20.5 shows
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Figure 20.5 The extensions of the members of G and S. No known examples lie in between
the two sets of boundaries.

the situation: there are no known examples outside S but inside G, so any hypothesis in
the gap must be consistent.

We have therefore shown that if S and G are maintained according to their definitions, then
they provide a satisfactory representation of the version space. The only remaining problem
is how to update S and G for a new example (the job of the VERSION-SPACE-UPDATE func-
tion). This may appear rather complicated at first, but from the definitions and with the help
of Figure 20.4, it is not too hard to reconstruct the algorithm.

We need to worry about the members Si and Gi of the S- and G-sets. For each one, the
new example may be a false positive or a false negative.

1. False positive for Si: This means Si is too general, but there are no consistent special-
izations of Si (by definition), so we throw it out of the S-set.

2. False negative for Si: This means Si is too specific, so we replace it by all its immediate
generalizations, provided they are more specific than some member of G.

3. False positive for Gi: This means Gi is too general, so we replace it by all its immediate
specializations, provided they are more general than some member of S.

4. False negative for Gi: This means Gi is too specific, but there are no consistent gener-
alizations of Gi (by definition) so we throw it out of the G-set.

We continue these operations for each new example until one of three things happens:

1. We have exactly one hypothesis left in the version space, in which case we return it as
the unique hypothesis.

2. The version space collapses—either S or G becomes empty, indicating that there are
no consistent hypotheses for the training set. This is the same case as the failure of the
simple version of the decision tree algorithm.

3. We run out of examples and have several hypotheses remaining in the version space.
This means the version space represents a disjunction of hypotheses. For any new
example, if all the disjuncts agree, then we can return their classification of the example.
If they disagree, one possibility is to take the majority vote.

We leave as an exercise the application of the VERSION-SPACE-LEARNING algorithm to the
restaurant data.
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There are two principal drawbacks to the version-space approach:

• If the domain contains noise or insufficient attributes for exact classification, the version
space will always collapse.

• If we allow unlimited disjunction in the hypothesis space, the S-set will always contain
a single most-specific hypothesis, namely, the disjunction of the descriptions of the
positive examples seen to date. Similarly, the G-set will contain just the negation of the
disjunction of the descriptions of the negative examples.

• For some hypothesis spaces, the number of elements in the S-set or G-set may grow
exponentially in the number of attributes, even though efficient learning algorithms exist
for those hypothesis spaces.

To date, no completely successful solution has been found for the problem of noise. The
problem of disjunction can be addressed by allowing only limited forms of disjunction or
by including a generalization hierarchy of more general predicates. For example, instead Generalization

hierarchy

of using the disjunction WaitEstimate(x,30-60)∨WaitEstimate(x,>60), we might use the
single literal LongWait(x). The set of generalization and specialization operations can be
easily extended to handle this.

The pure version space algorithm was first applied in the Meta-DENDRAL system, which
was designed to learn rules for predicting how molecules would break into pieces in a mass
spectrometer (Buchanan and Mitchell, 1978). Meta-DENDRAL was able to generate rules that
were sufficiently novel to warrant publication in a journal of analytical chemistry—the first
real scientific knowledge generated by a computer program. It was also used in the elegant
LEX system (Mitchell et al., 1983), which was able to learn to solve symbolic integration
problems by studying its own successes and failures. Although version space methods are
probably not practical in most real-world learning problems, mainly because of noise, they
provide a good deal of insight into the logical structure of hypothesis space.

20.2 Knowledge in Learning

The preceding section described the simplest setting for inductive learning. To understand the
role of prior knowledge, we need to talk about the logical relationships among hypotheses,
example descriptions, and classifications. Let Descriptions denote the conjunction of all the
example descriptions in the training set, and let Classifications denote the conjunction of all
the example classifications. Then a Hypothesis that “explains the observations” must satisfy
the following property (recall that |= means “logically entails”):

Hypothesis∧Descriptions |= Classifications . (20.3)

We call this kind of relationship an entailment constraint, in which Hypothesis is the “un- Entailment
constraint

known.” Pure inductive learning means solving this constraint, where Hypothesis is drawn
from some predefined hypothesis space. For example, if we consider a decision tree as a
logical formula (see Equation (20.1) on page 740), then a decision tree that is consistent with
all the examples will satisfy Equation (20.3). If we place no restrictions on the logical form
of the hypothesis, of course, then Hypothesis = Classifications also satisfies the constraint.
Ockham’s razor tells us to prefer small, consistent hypotheses, so we try to do better than
simply memorizing the examples.
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Figure 20.6 A cumulative learning process uses, and adds to, its stock of background
knowledge over time.

This simple knowledge-free picture of inductive learning persisted until the early 1980s.
The modern approach is to design agents that already know something and are trying to learnI
some more. This may not sound like a terrifically deep insight, but it makes quite a difference
to the way we design agents. It might also have some relevance to our theories about how
science itself works. The general idea is shown schematically in Figure 20.6.

An autonomous learning agent that uses background knowledge must somehow obtain
the background knowledge in the first place, in order for it to be used in the new learning
episodes. This method must itself be a learning process. The agent’s life history will there-
fore be characterized by cumulative, or incremental, development. Presumably, the agent
could start out with nothing, performing inductions in vacuo like a good little pure induc-
tion program. But once it has eaten from the Tree of Knowledge, it can no longer pursue
such naive speculations and should use its background knowledge to learn more and more
effectively. The question is then how to actually do this.

20.2.1 Some simple examples

Let us consider some commonsense examples of learning with background knowledge. Many
apparently rational cases of inferential behavior in the face of observations clearly do not
follow the simple principles of pure induction.

• Sometimes one leaps to general conclusions after only one observation. Gary Larson
once drew a cartoon in which a bespectacled caveman, Zog, is roasting his lizard on
the end of a pointed stick. He is watched by an amazed crowd of his less intellectual
contemporaries, who have been using their bare hands to hold their victuals over the fire.
This enlightening experience is enough to convince the watchers of a general principle
of painless cooking.

• Or consider the case of the traveler to Brazil meeting her first Brazilian. On hearing him
speak Portuguese, she immediately concludes that Brazilians speak Portuguese, yet on
discovering that his name is Fernando, she does not conclude that all Brazilians are
called Fernando. Similar examples appear in science. For example, when a freshman
physics student measures the density and conductance of a sample of copper at a par-
ticular temperature, she is quite confident in generalizing those values to all pieces of
copper. Yet when she measures its mass, she does not even consider the hypothesis that
all pieces of copper have that mass. On the other hand, it would be quite reasonable to
make such a generalization over all pennies.
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• Finally, consider the case of a pharmacologically ignorant but diagnostically sophisti-
cated medical student observing a consulting session between a patient and an expert
internist. After a series of questions and answers, the expert tells the patient to take a
course of a particular antibiotic. The medical student infers the general rule that that
particular antibiotic is effective for a particular type of infection.

These are all cases in which the use of background knowledge allows much faster learning J
than one might expect from a pure induction program.

20.2.2 Some general schemes

In each of the preceding examples, one can appeal to prior knowledge to try to justify the
generalizations chosen. We will now look at what kinds of entailment constraints are operat-
ing in each case. The constraints will involve the Background knowledge, in addition to the
Hypothesis and the observed Descriptions and Classifications.

In the case of lizard toasting, the cavemen generalize by explaining the success of the
pointed stick: it supports the lizard while keeping the hand away from the fire. From this
explanation, they can infer a general rule: that any long, rigid, sharp object can be used to toast
small, soft-bodied edibles. This kind of generalization process has been called explanation-
based learning, or EBL. Notice that the general rule follows logically from the background Explanation-based

learning

knowledge possessed by the cavemen. Hence, the entailment constraints satisfied by EBL are
the following:

Hypothesis∧Descriptions |= Classifications
Background |= Hypothesis .

Because EBL uses Equation (20.3), it was initially thought to be a way to learn from ex-
amples. But because it requires that the background knowledge be sufficient to explain the
Hypothesis, which in turn explains the observations, the agent does not actually learn any- J
thing factually new from the example. The agent could have derived the example from what
it already knew, although that might have required an unreasonable amount of computation.
EBL is now viewed as a method for converting first-principles theories into useful, special-
purpose knowledge. We describe algorithms for EBL in Section 20.3.

The situation of our traveler in Brazil is quite different, for she cannot necessarily explain
why Fernando speaks the way he does, unless she knows her papal bulls. Moreover, the same
generalization would be forthcoming from a traveler entirely ignorant of colonial history. The
relevant prior knowledge in this case is that, within any given country, most people tend to
speak the same language; on the other hand, Fernando is not assumed to be the name of all
Brazilians because this kind of regularity does not hold for names. Similarly, the freshman
physics student also would be hard put to explain the particular values that she discovers for
the conductance and density of copper. She does know, however, that the material of which an
object is composed and its temperature together determine its conductance. In each case, the
prior knowledge Background concerns the relevance of a set of features to the goal predicate. Relevance

This knowledge, together with the observations, allows the agent to infer a new, general rule
that explains the observations:

Hypothesis∧Descriptions |= Classifications ,

Background∧Descriptions∧Classifications |= Hypothesis . (20.4)
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We call this kind of generalization relevance-based learning, or RBL (although the name isRelevance-based
learning

not standard). Notice that whereas RBL does make use of the content of the observations, it
does not produce hypotheses that go beyond the logical content of the background knowledge
and the observations. It is a deductive form of learning and cannot by itself account for the
creation of new knowledge starting from scratch.

In the case of the medical student watching the expert, we assume that the student’s
prior knowledge is sufficient to infer the patient’s disease D from the symptoms. This is
not, however, enough to explain the fact that the doctor prescribes a particular medicine M.
The student needs to propose another rule, namely, that M generally is effective against D.
Given this rule and the student’s prior knowledge, the student can now explain why the expert
prescribes M in this particular case. We can generalize this example to come up with the
entailment constraint

Background∧Hypothesis∧Descriptions |= Classifications . (20.5)

That is, the background knowledge and the new hypothesis combine to explain the examples.I
As with pure inductive learning, the learning algorithm should propose hypotheses that are as
simple as possible, consistent with this constraint. Algorithms that satisfy constraint (20.5)
are called knowledge-based inductive learning, or KBIL, algorithms.Knowledge-based

inductive learning

KBIL algorithms, which are described in detail in Section 20.5, have been studied mainly
in the field of inductive logic programming, or ILP. In ILP systems, prior knowledge playsInductive logic

programming

two key roles in reducing the complexity of learning:

1. Because any hypothesis generated must be consistent with the prior knowledge as well
as with the new observations, the effective hypothesis space size is reduced to include
only those theories that are consistent with what is already known.

2. For any given set of observations, the size of the hypothesis required to construct an
explanation for the observations can be much reduced, because the prior knowledge
will be available to help out the new rules in explaining the observations. The smaller
the hypothesis, the easier it is to find.

In addition to allowing the use of prior knowledge in induction, ILP systems can formulate
hypotheses in general first-order logic, rather than in the restricted attribute-based language
of Chapter 19. This means that they can learn in environments that cannot be understood by
simpler systems.

20.3 Explanation-Based Learning

Explanation-based learning is a method for extracting general rules from individual obser-
vations. As an example, consider the problem of differentiating and simplifying algebraic
expressions (Exercise 9.17). If we differentiate an expression such as X2 with respect to
X , we obtain 2X . (We use a capital letter for the arithmetic unknown X , to distinguish it
from the logical variable x.) In a logical reasoning system, the goal might be expressed as
ASK(Derivative(X2,X)=d, KB), with solution d = 2X .

Anyone who knows differential calculus can see this solution “by inspection” as a result
of practice in solving such problems. A student encountering such problems for the first
time, or a program with no experience, will have a much more difficult job. Application
of the standard rules of differentiation eventually yields the expression 1× (2× (X (2−1))),



Section 20.3 Explanation-Based Learning 751

and eventually this simplifies to 2X . In the authors’ logic programming implementation, this
takes 136 proof steps, of which 99 are on dead-end branches in the proof. After such an
experience, we would like the program to solve the same problem much more quickly the
next time it arises.

The technique of memoization has long been used in computer science to speed up pro- Memoization

grams by saving the results of computation. The basic idea of memo functions is to accumu-
late a database of input–output pairs; when the function is called, it first checks the database
to see whether it can avoid solving the problem from scratch. Explanation-based learning
takes this a good deal further, by creating general rules that cover an entire class of cases.
In the case of differentiation, memoization would remember that the derivative of X2 with
respect to X is 2X , but would leave the agent to calculate the derivative of Z2 with respect to
Z from scratch. We would like to be able to extract the general rule that for any arithmetic
unknown u, the derivative of u2 with respect to u is 2u. (An even more general rule for un can
also be produced, but the current example suffices to make the point.) In logical terms, this is
expressed by the rule

ArithmeticUnknown(u) ⇒ Derivative(u2,u)=2u .

If the knowledge base contains such a rule, then any new case that is an instance of this rule
can be solved immediately.

This is, of course, merely a trivial example of a very general phenomenon. Once some-
thing is understood, it can be generalized and reused in other circumstances. It becomes an
“obvious” step and can then be used as a building block in solving problems still more com-
plex. Alfred North Whitehead (1911), co-author with Bertrand Russell of Principia Mathe-
matica, wrote “Civilization advances by extending the number of important operations that J
we can do without thinking about them,” perhaps himself applying EBL to his understanding
of events such as Zog’s discovery. If you have understood the basic idea of the differenti-
ation example, then your brain is already busily trying to extract the general principles of
explanation-based learning from it. Notice that you hadn’t already invented EBL before you
saw the example. Like the cavemen watching Zog, you (and we) needed an example before
we could generate the basic principles. This is because explaining why something is a good
idea is much easier than coming up with the idea in the first place.

20.3.1 Extracting general rules from examples

The basic idea behind EBL is first to construct an explanation of the observation using prior
knowledge, and then to establish a definition of the class of cases for which the same expla-
nation structure can be used. This definition provides the basis for a rule covering all of the
cases in the class. The “explanation” can be a logical proof, but more generally it can be any
reasoning or problem-solving process whose steps are well defined. The key is to be able to
identify the necessary conditions for those same steps to apply to another case.

We will use for our reasoning system the simple backward-chaining theorem prover de-
scribed in Chapter 9. The proof tree for Derivative(X2,X)=2X is too large to use as an
example, so we will use a simpler problem to illustrate the generalization method. Suppose
our problem is to simplify 1× (0+X). The knowledge base includes the following rules:
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Rewrite(u,v)∧Simplify(v,w) ⇒ Simplify(u,w) .
Primitive(u) ⇒ Simplify(u,u) .
ArithmeticUnknown(u) ⇒ Primitive(u) .
Number(u) ⇒ Primitive(u) .
Rewrite(1×u,u) .
Rewrite(0+u,u) .

...
The proof that the answer is X is shown in the top half of Figure 20.7. The EBL method
actually constructs two proof trees simultaneously. The second proof tree uses a variabilized
goal in which the constants from the original goal are replaced by variables. As the original
proof proceeds, the variabilized proof proceeds in step, using exactly the same rule applica-
tions. This could cause some of the variables to become instantiated. For example, in order
to use the rule Rewrite(1×u,u), the variable x in the subgoal Rewrite(x× (y+ z),v) must be
bound to 1. Similarly, y must be bound to 0 in the subgoal Rewrite(y+ z,v′) in order to use
the rule Rewrite(0+u,u). Once we have the generalized proof tree, we take the leaves (with
the necessary bindings) and form a general rule for the goal predicate:

Rewrite(1× (0+ z),0+ z)∧Rewrite(0+ z,z)∧ArithmeticUnknown(z)
⇒ Simplify(1× (0+ z),z) .

Notice that the first two conditions on the left-hand side are true regardless of the value of z.
We can therefore drop them from the rule, yielding

ArithmeticUnknown(z) ⇒ Simplify(1× (0+ z),z) .

In general, conditions can be dropped from the final rule if they impose no constraints on the
variables on the right-hand side of the rule, because the resulting rule will still be true and will
be more efficient. Notice that we cannot drop the condition ArithmeticUnknown(z), because
not all possible values of z are arithmetic unknowns. Values other than arithmetic unknowns
might require different forms of simplification: for example, if z were 2×3, then the correct
simplification of 1× (0+(2×3)) would be 6 and not 2×3.

To recap, the basic EBL process works as follows:

1. Given an example, construct a proof that the goal predicate applies to the example using
the available background knowledge.

2. In parallel, construct a generalized proof tree for the variabilized goal using the same
inference steps as in the original proof.

3. Construct a new rule whose left-hand side consists of the leaves of the proof tree and
whose right-hand side is the variabilized goal (after applying the necessary bindings
from the generalized proof).

4. Drop any conditions from the left-hand side that are true regardless of the values of the
variables in the goal.

20.3.2 Improving efficiency

The generalized proof tree in Figure 20.7 actually yields more than one generalized rule. For
example, if we terminate, or prune, the growth of the right-hand branch in the proof tree
when it reaches the Primitive step, we get the rule

Primitive(z) ⇒ Simplify(1× (0+ z),z) .
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Figure 20.7 Proof trees for the simplification problem. The first tree shows the proof for the
original problem instance, from which we can derive

ArithmeticUnknown(z) ⇒ Simplify(1× (0+ z),z) .

The second tree shows the proof for a problem instance with all constants replaced by vari-
ables, from which we can derive a variety of other rules.

This rule is as valid as, but more general than, the rule using ArithmeticUnknown, because it
covers cases where z is a number. We can extract a still more general rule by pruning after
the step Simplify(y+ z,w), yielding the rule

Simplify(y+ z,w) ⇒ Simplify(1× (y+ z),w) .

In general, a rule can be extracted from any partial subtree of the generalized proof tree. Now
we have a problem: which of these rules do we choose?

The choice of which rule to generate comes down to the question of efficiency. There are
three factors involved in the analysis of efficiency gains from EBL:

1. Adding large numbers of rules can slow down the reasoning process, because the in-
ference mechanism must still check those rules even in cases where they do not yield a
solution. In other words, it increases the branching factor in the search space.

2. To compensate for the slowdown in reasoning, the derived rules must offer significant
increases in speed for the cases that they do cover. These increases come about mainly
because the derived rules avoid dead ends that would otherwise be taken, but also be-
cause they shorten the proof itself.

3. Derived rules should be as general as possible, so that they apply to the largest possible
set of cases.
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A common approach to ensuring that derived rules are efficient is to insist on the opera-
tionality of each subgoal in the rule. A subgoal is operational if it is “easy” to solve. ForOperationality

example, the subgoal Primitive(z) is easy to solve, requiring at most two steps, whereas the
subgoal Simplify(y+ z,w) could lead to an arbitrary amount of inference, depending on the
values of y and z. If a test for operationality is carried out at each step in the construction
of the generalized proof, then we can prune the rest of a branch as soon as an operational
subgoal is found, keeping just the operational subgoal as a conjunct of the new rule.

Unfortunately, there is usually a tradeoff between operationality and generality. More
specific subgoals are generally easier to solve but cover fewer cases. Also, operationality
is a matter of degree: one or two steps is definitely operational, but what about 10 or 100?
Finally, the cost of solving a given subgoal depends on what other rules are available in the
knowledge base. It can go up or down as more rules are added. Thus, EBL systems really
face a very complex optimization problem in trying to maximize the efficiency of a given
initial knowledge base. It is sometimes possible to derive a mathematical model of the effect
on overall efficiency of adding a given rule and to use this model to select the best rule to
add. The analysis can become very complicated, however, especially when recursive rules
are involved. One promising approach is to address the problem of efficiency empirically,
simply by adding several rules and seeing which ones are useful and actually speed things up.

Empirical analysis of efficiency is actually at the heart of EBL. What we have been call-
ing loosely the “efficiency of a given knowledge base” is actually the average-case com-
plexity on a distribution of problems. By generalizing from past example problems, EBLI
makes the knowledge base more efficient for the kind of problems that it is reasonable to
expect. This works as long as the distribution of past examples is roughly the same as for
future examples—the same assumption used for PAC-learning in Section 19.5. If the EBL
system is carefully engineered, it is possible to obtain significant speedups. For example, a
very large Prolog-based natural language system designed for speech-to-speech translation
between Swedish and English was able to achieve real-time performance only by the appli-
cation of EBL to the parsing process (Samuelsson and Rayner, 1991).

20.4 Learning Using Relevance Information

Our traveler in Brazil seems to be able to make a confident generalization concerning the lan-
guage spoken by other Brazilians. The inference is sanctioned by her background knowledge,
namely, that people in a given country (usually) speak the same language. We can express
this in first-order logic as follows:2

Nationality(x,n)∧Nationality(y,n)∧Language(x, l) ⇒ Language(y, l) . (20.6)

(Literal translation: “If x and y have the same nationality n and x speaks language l, then y
also speaks it.”) It is not difficult to show that, from this sentence and the observation that

Nationality(Fernando,Brazil)∧Language(Fernando,Portuguese) ,

the following conclusion is entailed (see Exercise 20.1):

Nationality(x,Brazil) ⇒ Language(x,Portuguese) .

2 We assume for the sake of simplicity that a person speaks only one language. Clearly, the rule would have to
be amended for countries such as Switzerland and India.
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Sentences such as (20.6) express a strict form of relevance: given nationality, language is
fully determined. (Put another way: language is a function of nationality.) These sentences
are called functional dependencies or determinations. They occur so commonly in certain Functional

dependency

Determinationkinds of applications (e.g., defining database designs) that a special syntax is used to write
them. We adopt the notation of Davies (1985):

Nationality(x,n)� Language(x, l) .

As usual, this is simply a syntactic sugaring, but it makes it clear that the determination is
really a relationship between the predicates: nationality determines language. The relevant
properties determining conductance and density can be expressed similarly:

Material(x,m)∧Temperature(x, t)� Conductance(x,ρ) ;
Material(x,m)∧Temperature(x, t)� Density(x,d) .

The corresponding generalizations follow logically from the determinations and observations.

20.4.1 Determining the hypothesis space

Although the determinations sanction general conclusions concerning all Brazilians, or all
pieces of copper at a given temperature, they cannot, of course, yield a general predictive
theory for all nationalities, or for all temperatures and materials, from a single example.
Their main effect can be seen as limiting the space of hypotheses that the learning agent need
consider. In predicting conductance, for example, one need consider only material and tem-
perature and can ignore mass, ownership, day of the week, the current president, and so on.
Hypotheses can certainly include terms that are in turn determined by material and temper-
ature, such as molecular structure, thermal energy, or free-electron density. Determinations J
specify a sufficient basis vocabulary from which to construct hypotheses concerning the target
predicate. This statement can be proven by showing that a given determination is logically
equivalent to a statement that the correct definition of the target predicate is one of the set of
all definitions expressible using the predicates on the left-hand side of the determination.

Intuitively, it is clear that a reduction in the hypothesis space size should make it eas-
ier to learn the target predicate. Using the basic results of computational learning theory
(Section 19.5), we can quantify the possible gains. First, recall that for Boolean functions,
log(|H|) examples are required to converge to a reasonable hypothesis, where |H| is the size
of the hypothesis space. If the learner has n Boolean features with which to construct hypothe-
ses, then, in the absence of further restrictions, |H| = O(22n

), so the number of examples is
O(2n). If the determination contains d predicates in the left-hand side, the learner will require
only O(2d) examples, a reduction of O(2n−d).

20.4.2 Learning and using relevance information

As we stated in the introduction to this chapter, prior knowledge is useful in learning; but it too
has to be learned. In order to provide a complete story of relevance-based learning, we must
therefore provide a learning algorithm for determinations. The learning algorithm we now
present is based on a straightforward attempt to find the simplest determination consistent
with the observations. A determination P�Q says that if any examples match on P, then they
must also match on Q. A determination is therefore consistent with a set of examples if every
pair that matches on the predicates on the left-hand side also matches on the goal predicate.
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function MINIMAL-CONSISTENT-DET(E, A) returns a set of attributes
inputs: E, a set of examples

A, a set of attributes, of size n

for i = 0 to n do
for each subset Ai of A of size i do

if CONSISTENT-DET?(Ai, E) then return Ai

function CONSISTENT-DET?(A, E) returns a truth value
inputs: A, a set of attributes

E, a set of examples
local variables: H, a hash table

for each example e in E do
if some example in H has the same values as e for the attributes A

but a different classification then return false
store the class of e in H, indexed by the values for attributes A of the example e

return true

Figure 20.8 An algorithm for finding a minimal consistent determination.

For example, suppose we have the following examples of conductance measurements on
material samples:

Sample Mass Temperature Material Size Conductance

S1 12 26 Copper 3 0.59
S1 12 100 Copper 3 0.57
S2 24 26 Copper 6 0.59
S3 12 26 Lead 2 0.05
S3 12 100 Lead 2 0.04
S4 24 26 Lead 4 0.05

The minimal consistent determination is Material∧Temperature� Conductance. There is a
nonminimal but consistent determination, namely, Mass∧Size∧Temperature�Conductance.
This is consistent with the examples because mass and size determine density and, in our data
set, we do not have two different materials with the same density. As usual, we would need a
larger sample set in order to eliminate a nearly correct hypothesis.

There are several possible algorithms for finding minimal consistent determinations. The
most obvious approach is to conduct a search through the space of determinations, checking
all determinations with one predicate, two predicates, and so on, until a consistent determi-
nation is found. We will assume a simple attribute-based representation, like that used for
decision tree learning in Chapter 19. A determination d will be represented by the set of
attributes on the left-hand side, because the target predicate is assumed to be fixed. The basic
algorithm is outlined in Figure 20.8.

The time complexity of this algorithm depends on the size of the smallest consistent
determination. Suppose this determination has p attributes out of the n total attributes. Then
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Figure 20.9 A performance comparison between DECISION-TREE-LEARNING and
RBDTL on randomly generated data for a target function that depends on only 5 of 16
attributes.

the algorithm will not find it until searching the subsets of A of size p. There are
(n

p

)
= O(np)

such subsets; hence the algorithm is exponential in the size of the minimal determination. It
turns out that the problem is NP-complete, so we cannot expect to do better in the general
case. In most domains, however, there will be sufficient local structure (see chapter 13 for a
definition of locally structured domains) that p will be small.

Given an algorithm for learning determinations, a learning agent has a way to construct a
minimal hypothesis within which to learn the target predicate. For example, we can combine
MINIMAL-CONSISTENT-DET with the DECISION-TREE-LEARNING algorithm. This yields
a relevance-based decision-tree learning algorithm RBDTL that first identifies a minimal
set of relevant attributes and then passes this set to the decision tree algorithm for learning.
Unlike DECISION-TREE-LEARNING, RBDTL simultaneously learns and uses relevance in-
formation in order to minimize its hypothesis space. We expect that RBDTL will learn faster
than DECISION-TREE-LEARNING, and this is in fact the case. Figure 20.9 shows the learning
performance for the two algorithms on randomly generated data for a function that depends
on only 5 of 16 attributes. Obviously, in cases where all the available attributes are relevant,
RBDTL will show no advantage.

This section has only scratched the surface of the field of declarative bias, which aims Declarative bias

to understand how prior knowledge can be used to identify the appropriate hypothesis space
within which to search for the correct target definition. There are many unanswered questions:

• How can the algorithms be extended to handle noise?

• Can we handle continuous-valued variables?

• How can other kinds of prior knowledge be used, besides determinations?

• How can the algorithms be generalized to cover any first-order theory, rather than just
an attribute-based representation?

Some of these questions are addressed in the next section.
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20.5 Inductive Logic Programming

Inductive logic programming (ILP) combines inductive methods with the power of first-order
representations, concentrating in particular on the representation of hypotheses as logic pro-
grams.3 It has gained popularity for three reasons. First, ILP offers a rigorous approach to
the general knowledge-based inductive learning problem. Second, it offers complete algo-
rithms for inducing general, first-order theories from examples, which can therefore learn
successfully in domains where attribute-based algorithms are hard to apply. An example is
in learning how protein structures fold (Figure 20.10). The three-dimensional configuration
of a protein molecule cannot be represented reasonably by a set of attributes, because the
configuration inherently refers to relationships between objects, not to attributes of a single
object. First-order logic is an appropriate language for describing the relationships. Third,
inductive logic programming produces hypotheses that are (relatively) easy for humans to
read. For example, the English translation in Figure 20.10 can be scrutinized and criticized
by working biologists. This means that inductive logic programming systems can participate
in the scientific cycle of experimentation, hypothesis generation, debate, and refutation. Such
participation would not be possible for systems that generate “black-box” classifiers, such as
neural networks.

20.5.1 An example

Recall from Equation (20.5) that the general knowledge-based induction problem is to “solve”
the entailment constraint

Background∧Hypothesis∧Descriptions |= Classifications

for the unknown Hypothesis, given the Background knowledge and examples described by
Descriptions and Classifications. To illustrate this, we will use the problem of learning fam-
ily relationships from examples. The descriptions will consist of an extended family tree,
described in terms of Mother, Father, and Married relations and Male and Female proper-
ties. As an example, we will use the family tree from Exercise 8.15, shown here in Figure
20.11. The corresponding descriptions are as follows:

Father(Philip,Charles) Father(Philip,Anne) . . .
Mother(Mum,Margaret) Mother(Mum,Elizabeth) . . .
Married(Diana,Charles) Married(Elizabeth,Philip) . . .
Male(Philip) Male(Charles) . . .
Female(Beatrice) Female(Margaret) . . .

The sentences in Classifications depend on the target concept being learned. We might want
to learn Grandparent, BrotherInLaw, or Ancestor, for example. For Grandparent, the com-
plete set of Classifications contains 20×20=400 conjuncts of the form

Grandparent(Mum,Charles) Grandparent(Elizabeth,Beatrice) . . .
¬Grandparent(Mum,Harry) ¬Grandparent(Spencer,Peter) . . .

We could of course learn from a subset of this complete set.
The object of an inductive learning program is to come up with a set of sentences for the

Hypothesis such that the entailment constraint is satisfied. Suppose, for the moment, that the

3 It might be appropriate at this point for the reader to refer to Chapter 7 for some of the underlying concepts,
including Horn clauses, conjunctive normal form, unification, and resolution.
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Figure 20.10 (a) and (b) show positive and negative examples, respectively, of the
“four-helical up-and-down bundle” concept in the domain of protein folding. Each
example structure is coded into a logical expression of about 100 conjuncts such as
TotalLength(D2mhr,118)∧NumberHelices(D2mhr,6)∧ . . .. From these descriptions and
from classifications such as Fold(FOUR-HELICAL-UP-AND-DOWN-BUNDLE,D2mhr), the
ILP system PROGOL (Muggleton, 1995) learned the following rule:

Fold(FOUR-HELICAL-UP-AND-DOWN-BUNDLE, p)⇐
Helix(p,h1)∧Length(h1,HIGH)∧Position(p,h1,n)
∧ (1≤ n≤ 3)∧Adjacent(p,h1,h2)∧Helix(p,h2) .

This kind of rule could not be learned, or even represented, by an attribute-based mechanism
such as we saw in previous chapters. The rule can be translated into English as “ Protein p
has fold class “Four-helical up-and-down-bundle” if it contains a long helix h1 at a secondary
structure position between 1 and 3 and h1 is next to a second helix.”

agent has no background knowledge: Background is empty. Then one possible solution for
Hypothesis is the following:

Grandparent(x,y) ⇔ [∃z Mother(x,z)∧Mother(z,y)]
∨ [∃z Mother(x,z)∧Father(z,y)]
∨ [∃z Father(x,z)∧Mother(z,y)]
∨ [∃z Father(x,z)∧Father(z,y)] .

Notice that an attribute-based learning algorithm, such as DECISION-TREE-LEARNING, will
get nowhere in solving this problem. In order to express Grandparent as an attribute (i.e., a
unary predicate), we would need to make pairs of people into objects:
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Grandparent(〈Mum,Charles〉) . . .

Then we get stuck in trying to represent the example descriptions. The only possible attributes
are horrible things such as

FirstElementIsMotherOfElizabeth(〈Mum,Charles〉) .

The definition of Grandparent in terms of these attributes simply becomes a large disjunction
of specific cases that does not generalize to new examples at all. Attribute-based learningI
algorithms are incapable of learning relational predicates. Thus, one of the principal advan-
tages of ILP algorithms is their applicability to a much wider range of problems, including
relational problems.

The reader will certainly have noticed that a little bit of background knowledge would
help in the representation of the Grandparent definition. For example, if Background included
the sentence

Parent(x,y) ⇔ [Mother(x,y)∨Father(x,y)] ,

then the definition of Grandparent would be reduced to

Grandparent(x,y) ⇔ [∃z Parent(x,z)∧Parent(z,y)] .

This shows how background knowledge can dramatically reduce the size of hypotheses re-
quired to explain the observations.

It is also possible for ILP algorithms to create new predicates in order to facilitate the
expression of explanatory hypotheses. Given the example data shown earlier, it is entirely
reasonable for the ILP program to propose an additional predicate, which we would call
“Parent,” in order to simplify the definitions of the target predicates. Algorithms that can
generate new predicates are called constructive induction algorithms. Clearly, constructiveConstructive

induction
induction is a necessary part of the picture of cumulative learning. It has been one of the
hardest problems in machine learning, but some ILP techniques provide effective mechanisms
for achieving it.

In the rest of this chapter, we will study the two principal approaches to ILP. The first uses
a generalization of decision tree methods, and the second uses techniques based on inverting
a resolution proof.

Beatrice

Andrew

EugenieWilliam Harry

CharlesDiana

MumGeorge

PhilipElizabeth MargaretKyddSpencer

Peter

Mark

Zara

Anne Sarah Edward Sophie

Louise James

Figure 20.11 A typical family tree.
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20.5.2 Top-down inductive learning methods

The first approach to ILP works by starting with a very general rule and gradually specializing
it so that it fits the data. This is essentially what happens in decision-tree learning, where a
decision tree is gradually grown until it is consistent with the observations. To do ILP we
use first-order literals instead of attributes, and the hypothesis is a set of clauses instead of a
decision tree. This section describes FOIL (Quinlan, 1990), one of the first ILP programs.

Suppose we are trying to learn a definition of the Grandfather(x,y) predicate, using the
same family data as before. As with decision-tree learning, we can divide the examples into
positive and negative examples. Positive examples are

〈George,Anne〉, 〈Philip,Peter〉, 〈Spencer,Harry〉, . . .
and negative examples are

〈George,Elizabeth〉, 〈Harry,Zara〉, 〈Charles,Philip〉, . . .
Notice that each example is a pair of objects, because Grandfather is a binary predicate. In
all, there are 12 positive examples in the family tree and 388 negative examples (all the other
pairs of people).

FOIL constructs a set of clauses, each with Grandfather(x,y) as the head. The clauses
must classify the 12 positive examples as instances of the Grandfather(x,y) relationship,
while ruling out the 388 negative examples. The clauses are Horn clauses, with the extension
that negated literals are allowed in the body of a clause and are interpreted using negation as
failure, as in Prolog. The initial clause has an empty body:

⇒ Grandfather(x,y) .

This clause classifies every example as positive, so it needs to be specialized. We do this by
adding literals one at a time to the left-hand side. Here are three potential additions:

Father(x,y) ⇒ Grandfather(x,y) .
Parent(x,z) ⇒ Grandfather(x,y) .
Father(x,z) ⇒ Grandfather(x,y) .

(Notice that we are assuming that a clause defining Parent is already part of the background
knowledge.) The first of these three clauses incorrectly classifies all of the 12 positive exam-
ples as negative and can thus be ignored. The second and third agree with all of the positive
examples, but the second is incorrect on a larger fraction of the negative examples—twice as
many, because it allows mothers as well as fathers. Hence, we prefer the third clause.

Now we need to specialize this clause further, to rule out the cases in which x is the father
of some z, but z is not a parent of y. Adding the single literal Parent(z,y) gives

Father(x,z)∧Parent(z,y) ⇒ Grandfather(x,y) ,

which correctly classifies all the examples. FOIL will find and choose this literal, thereby
solving the learning task. In general, the solution is a set of Horn clauses, each of which
implies the target predicate. For example, if we didn’t have the Parent predicate in our vo-
cabulary, then the solution might be

Father(x,z)∧Father(z,y) ⇒ Grandfather(x,y)
Father(x,z)∧Mother(z,y) ⇒ Grandfather(x,y) .

Note that each of these clauses covers some of the positive examples, that together they cover
all the positive examples, and that NEW-CLAUSE is designed in such a way that no clause
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function FOIL(examples, target) returns a set of Horn clauses
inputs: examples, set of examples

target, a literal for the goal predicate
local variables: clauses, set of clauses, initially empty

while examples contains positive examples do
clause←NEW-CLAUSE(examples, target)
remove positive examples covered by clause from examples
add clause to clauses

return clauses

function NEW-CLAUSE(examples, target) returns a Horn clause
local variables: clause, a clause with target as head and an empty body

l, a literal to be added to the clause
extended examples, a set of examples with values for new variables

extended examples←examples
while extended examples contains negative examples do

l←CHOOSE-LITERAL(NEW-LITERALS(clause), extended examples)
append l to the body of clause
extended examples←set of examples created by applying EXTEND-EXAMPLE

to each example in extended examples
return clause

function EXTEND-EXAMPLE(example, literal) returns a set of examples
if example satisfies literal

then return the set of examples created by extending example with
each possible constant value for each new variable in literal

else return the empty set

Figure 20.12 Sketch of the FOIL algorithm for learning sets of first-order Horn clauses from
examples. NEW-LITERALS and CHOOSE-LITERAL are explained in the text.

will incorrectly cover a negative example. In general FOIL will have to search through many
unsuccessful clauses before finding a correct solution.

This example is a very simple illustration of how FOIL operates. A sketch of the complete
algorithm is shown in Figure 20.12. Essentially, the algorithm repeatedly constructs a clause,
literal by literal, until it agrees with some subset of the positive examples and none of the
negative examples. Then the positive examples covered by the clause are removed from the
training set, and the process continues until no positive examples remain. The two main
subroutines to be explained are NEW-LITERALS, which constructs all possible new literals to
add to the clause, and CHOOSE-LITERAL, which selects a literal to add.

NEW-LITERALS takes a clause and constructs all possible “useful” literals that could be
added to the clause. Let us use as an example the clause

Father(x,z) ⇒ Grandfather(x,y) .
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There are three kinds of literals that can be added:

1. Literals using predicates: the literal can be negated or unnegated, any existing predicate
(including the goal predicate) can be used, and the arguments must all be variables.
Any variable can be used for any argument of the predicate, with one restriction: each
literal must include at least one variable from an earlier literal or from the head of the
clause. Literals such as Mother(z,u), Married(z,z), ¬Male(y), and Grandfather(v,x)
are allowed, whereas Married(u,v) is not. Notice that the use of the predicate from the
head of the clause allows FOIL to learn recursive definitions.

2. Equality and inequality literals: these relate variables already appearing in the clause.
For example, we might add z 6= x. These literals can also include user-specified con-
stants. For learning arithmetic we might use 0 and 1, and for learning list functions we
might use the empty list [ ].

3. Arithmetic comparisons: when dealing with functions of continuous variables, literals
such as x> y and y≤ z can be added. As in decision-tree learning, a constant threshold
value can be chosen to maximize the discriminatory power of the test.

The resulting branching factor in this search space is very large (see Exercise 20.6), but FOIL

can also use type information to reduce it. For example, if the domain included numbers as
well as people, type restrictions would prevent NEW-LITERALS from generating literals such
as Parent(x,n), where x is a person and n is a number.

CHOOSE-LITERAL uses a heuristic somewhat similar to information gain (see page 680)
to decide which literal to add. The exact details are not important here, and a number of
different variations have been tried. One interesting additional feature of FOIL is the use of
Ockham’s razor to eliminate some hypotheses. If a clause becomes longer (according to some
metric) than the total length of the positive examples that the clause explains, that clause is
not considered as a potential hypothesis. This technique provides a way to avoid overcomplex
clauses that fit noise in the data.

FOIL and its relatives have been used to learn a wide variety of definitions. One of the
most impressive demonstrations (Quinlan and Cameron-Jones, 1993) involved solving a long
sequence of exercises on list-processing functions from Bratko’s (1986) Prolog textbook. In
each case, the program was able to learn a correct definition of the function from a small set
of examples, using the previously learned functions as background knowledge.

20.5.3 Inductive learning with inverse deduction

The second major approach to ILP involves inverting the normal deductive proof process.
Inverse resolution is based on the observation that if the example Classifications follow Inverse resolution

from Background∧Hypothesis∧Descriptions, then one must be able to prove this fact by
resolution (because resolution is complete). If we can “run the proof backward,” then we can
find a Hypothesis such that the proof goes through. The key, then, is to find a way to invert
the resolution process.

We will show a backward proof process for inverse resolution that consists of individual
backward steps. Recall that an ordinary resolution step takes two clauses C1 and C2 and
resolves them to produce the resolvent C. An inverse resolution step takes a resolvent C and
produces two clauses C1 and C2, such that C is the result of resolving C1 and C2. Alternatively,
it may take a resolvent C and clause C1 and produce a clause C2 such that C is the result of
resolving C1 and C2.
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The early steps in an inverse resolution process are shown in Figure 20.13, where we
focus on the positive example Grandparent(George,Anne). The process begins at the end
of the proof (shown at the bottom of the figure). We take the resolvent C to be empty
clause (i.e. a contradiction) and C2 to be ¬Grandparent(George,Anne), which is the nega-
tion of the goal example. The first inverse step takes C and C2 and generates the clause
Grandparent(George,Anne) for C1. The next step takes this clause as C and the clause
Parent(Elizabeth,Anne) as C2, and generates the clause

¬Parent(Elizabeth,y)∨Grandparent(George,y)

as C1. The final step treats this clause as the resolvent. With Parent(George,Elizabeth) as C2,
one possible clause C1 is the hypothesis

Parent(x,z)∧Parent(z,y) ⇒ Grandparent(x,y) .

Now we have a resolution proof that the hypothesis, descriptions, and background knowledge
entail the classification Grandparent(George,Anne).

Clearly, inverse resolution involves a search. Each inverse resolution step is nonde-
terministic, because for any C, there can be many or even an infinite number of clauses
C1 and C2 that resolve to C. For example, instead of choosing ¬Parent(Elizabeth,y) ∨
Grandparent(George,y) for C1 in the last step of Figure 20.13, the inverse resolution step
might have chosen any of the following sentences:

¬Parent(Elizabeth,Anne)∨Grandparent(George,Anne) .
¬Parent(z,Anne)∨Grandparent(George,Anne) .
¬Parent(z,y)∨Grandparent(George,y) .

...

(See Exercises 20.4 and 20.5.) Furthermore, the clauses that participate in each step can be
chosen from the Background knowledge, from the example Descriptions, from the negated
Classifications, or from hypothesized clauses that have already been generated in the inverse
resolution tree. The large number of possibilities means a large branching factor (and therefore

{y/Anne}

Parent(Elizabeth,Anne)

Grandparent(George,Anne)Grandparent(George,Anne)

Grandparent(George,y)Parent(Elizabeth,y)

>

{x/George, z/Elizabeth}

Parent(George,Elizabeth)

>

Parent(z,y) Grandparent(x,y)

>

Parent(x,z)¬ ¬

¬

¬

Figure 20.13 Early steps in an inverse resolution process. The shaded clauses are generated
by inverse resolution steps from the clause to the right and the clause below. The unshaded
clauses are from the Descriptions and Classifications (including negated Classifications).
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an inefficient search) without additional controls. A number of approaches to taming the
search have been tried in implemented ILP systems:

1. Redundant choices can be eliminated—for example, by generating only the most spe-
cific hypotheses possible and by requiring that all the hypothesized clauses be consistent
with each other, and with the observations. This last criterion would rule out the clause
¬Parent(z,y)∨Grandparent(George,y), listed before.

2. The proof strategy can be restricted. For example, we saw in Chapter 9 that linear
resolution is a complete, restricted strategy. Linear resolution produces proof trees that
have a linear branching structure—the whole tree follows one line, with only single
clauses branching off that line (as in Figure 20.13).

3. The representation language can be restricted, for example by eliminating function sym-
bols or by allowing only Horn clauses. For instance, PROGOL operates with Horn
clauses using inverse entailment. The idea is to change the entailment constraint Inverse entailment

Background∧Hypothesis∧Descriptions |= Classifications

to the logically equivalent form

Background∧Descriptions∧¬Classifications |= ¬Hypothesis.

From this, one can use a process similar to the normal Prolog Horn-clause deduction,
with negation-as-failure to derive Hypothesis. Because it is restricted to Horn clauses,
this is an incomplete method, but it can be more efficient than full resolution. It is also
possible to apply complete inference with inverse entailment (Inoue, 2001).

4. Inference can be done with model checking rather than theorem proving. The PROGOL

system (Muggleton, 1995) uses a form of model checking to limit the search. That
is, like answer set programming, it generates possible values for logical variables, and
checks for consistency.

5. Inference can be done with ground propositional clauses rather than in first-order logic.
The LINUS system (Lavrauc and Duzeroski, 1994) works by translating first-order the-
ories into propositional logic, solving them with a propositional learning system, and
then translating back. Working with propositional formulas can be more efficient on
some problems, as we saw with SATPLAN in Chapter 10.

20.5.4 Making discoveries with inductive logic programming

An inverse resolution procedure that inverts a complete resolution strategy is, in principle,
a complete algorithm for learning first-order theories. That is, if some unknown Hypothesis
generates a set of examples, then an inverse resolution procedure can generate Hypothesis
from the examples. This observation suggests an interesting possibility: Suppose that the
available examples include a variety of trajectories of falling bodies. Would an inverse reso-
lution program be theoretically capable of inferring the law of gravity? The answer is clearly
yes, because the law of gravity allows one to explain the examples, given suitable background
mathematics. Similarly, one can imagine that electromagnetism, quantum mechanics, and the
theory of relativity are also within the scope of ILP programs. Of course, they are also within
the scope of a monkey with a typewriter; we still need better heuristics and new ways to
structure the search space.
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{x/George}

Father(x,y) P(x,y)

>

Father(George,y) Ancestor(George,y)

>

P(George,y) Ancestor(George,y)

>

¬ ¬

Figure 20.14 An inverse resolution step that generates a new predicate P.

One thing that inverse resolution systems will do for you is invent new predicates. This
ability is often seen as somewhat magical, because computers are often thought of as “merely
working with what they are given.” In fact, new predicates fall directly out of the inverse
resolution step. The simplest case arises in hypothesizing two new clauses C1 and C2, given
a clause C. The resolution of C1 and C2 eliminates a literal that the two clauses share; hence,
it is quite possible that the eliminated literal contained a predicate that does not appear in C.
Thus, when working backward, one possibility is to generate a new predicate from which to
reconstruct the missing literal.

Figure 20.14 shows an example in which the new predicate P is generated in the process
of learning a definition for Ancestor. Once generated, P can be used in later inverse resolution
steps. For example, a later step might hypothesize that Mother(x,y) ⇒ P(x,y). Thus, the
new predicate P has its meaning constrained by the generation of hypotheses that involve it.
Another example might lead to the constraint Father(x,y) ⇒ P(x,y). In other words, the
predicate P is what we usually think of as the Parent relationship. As we mentioned earlier,
the invention of new predicates can significantly reduce the size of the definition of the goal
predicate. Hence, by including the ability to invent new predicates, inverse resolution systems
can often solve learning problems that are infeasible with other techniques.

Some of the deepest revolutions in science come from the invention of new predicates and
functions—for example, Galileo’s invention of acceleration or Joule’s invention of thermal
energy. Once these terms are available, the discovery of new laws becomes (relatively) easy.
The difficult part lies in realizing that some new entity, with a specific relationship to existing
entities, will allow an entire body of observations to be explained with a much simpler and
more elegant theory than previously existed.

As yet, ILP systems have not made discoveries on the level of Galileo or Joule, but their
discoveries have been deemed publishable in the scientific literature. For example, in the
Journal of Molecular Biology, Turcotte et al. (2001) describe the automated discovery of rules
for protein folding by the ILP program PROGOL. Many of the rules discovered by PROGOL

could have been derived from known principles, but most had not been previously published
as part of a standard biological database. (See Figure 20.10 for an example.). In related
work, Srinivasan et al. (1994) dealt with the problem of discovering molecular-structure-
based rules for the mutagenicity of nitroaromatic compounds. These compounds are found in
automobile exhaust fumes. For 80% of the compounds in a standard database, it is possible to
identify four important features, and linear regression on these features outperforms ILP. For
the remaining 20%, the features alone are not predictive, and ILP identifies relationships that
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allow it to outperform linear regression, neural nets, and decision trees. Most impressively,
King et al. (2009) endowed a robot with the ability to perform molecular biology experiments
and extended ILP techniques to include experiment design, thereby creating an autonomous
scientist that actually discovered new knowledge about the functional genomics of yeast. For
all these examples it appears that the ability both to represent relations and to use background
knowledge contribute to ILP’s high performance. The fact that the rules found by ILP can be
interpreted by humans contributes to the acceptance of these techniques in biology journals
rather than just computer science journals.

ILP has made contributions to other sciences besides biology. One of the most impor-
tant is natural language processing, where ILP has been used to extract complex relational
information from text.

Summary

This chapter has investigated various ways in which prior knowledge can help an agent to
learn from new experiences. Because much prior knowledge is expressed in terms of rela-
tional models rather than attribute-based models, we have also covered systems that allow
learning of relational models. The important points are:

• The use of prior knowledge in learning leads to a picture of cumulative learning, in
which learning agents improve their learning ability as they acquire more knowledge.

• Prior knowledge helps learning by eliminating otherwise consistent hypotheses and by
“filling in” the explanation of examples, thereby allowing for shorter hypotheses. These
contributions often result in faster learning from fewer examples.

• Understanding the different logical roles played by prior knowledge, as expressed by
entailment constraints, helps to define a variety of learning techniques.

• Explanation-based learning (EBL) extracts general rules from single examples by ex-
plaining the examples and generalizing the explanation. It provides a deductive method
for turning first-principles knowledge into useful, efficient, special-purpose expertise.

• Relevance-based learning (RBL) uses prior knowledge in the form of determinations
to identify the relevant attributes, thereby generating a reduced hypothesis space and
speeding up learning. RBL also allows deductive generalizations from single examples.

• Knowledge-based inductive learning (KBIL) finds inductive hypotheses that explain
sets of observations with the help of background knowledge.

• Inductive logic programming (ILP) techniques perform KBIL on knowledge that is
expressed in first-order logic. ILP methods can learn relational knowledge that is not
expressible in attribute-based systems.

• ILP can be done with a top-down approach of refining a very general rule or through a
bottom-up approach of inverting the deductive process.

• ILP methods naturally generate new predicates with which concise new theories can be
expressed and show promise as general-purpose scientific theory formation systems.
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Bibliographical and Historical Notes

Although the use of prior knowledge in learning would seem to be a natural topic for philoso-
phers of science, little formal work was done until quite recently. Fact, Fiction, and Forecast,
by the philosopher Nelson Goodman (1954), refuted the earlier supposition that induction
was simply a matter of seeing enough examples of some universally quantified proposition
and then adopting it as a hypothesis. Consider, for example, the hypothesis “All emeralds are
grue,” where grue means “green if observed before time t, but blue if observed thereafter.”
At any time up to t, we might have observed millions of instances confirming the rule that
emeralds are grue, and no disconfirming instances, and yet we are unwilling to adopt the rule.
This can be explained only by appeal to the role of relevant prior knowledge in the induction
process. Goodman proposes a variety of different kinds of prior knowledge that might be use-
ful, including a version of determinations called overhypotheses. Unfortunately, Goodman’s
ideas were never pursued in machine learning.

The current-best-hypothesis approach is an old idea in philosophy (Mill, 1843). Early
work in cognitive psychology also suggested that it is a natural form of concept learning in
humans (Bruner et al., 1957). In AI, the approach is most closely associated with the work
of Patrick Winston, whose Ph.D. thesis (Winston, 1970) addressed the problem of learning
descriptions of complex objects. The version space method (Mitchell, 1977, 1982) takes
a different approach, maintaining the set of all consistent hypotheses and eliminating those
found to be inconsistent with new examples. The approach was used in the Meta-DENDRAL

expert system for chemistry (Buchanan and Mitchell, 1978), and later in Mitchell’s (1983)
LEX system, which learns to solve calculus problems. A third influential thread was formed
by the work of Michalski and colleagues on the AQ series of algorithms, which learned sets
of logical rules (Michalski, 1969; Michalski et al., 1986).

EBL had its roots in the techniques used by the STRIPS planner (Fikes et al., 1972).
When a plan was constructed, a generalized version of it was saved in a plan library and
used in later planning as a macro-operator. Similar ideas appeared in Anderson’s ACT*
architecture, under the heading of knowledge compilation (Anderson, 1983), and in the
SOAR architecture, as chunking (Laird et al., 1986). Schema acquisition (DeJong, 1981),
analytical generalization (Mitchell, 1982), and constraint-based generalization (Minton,
1984) were immediate precursors of the rapid growth of interest in EBL stimulated by the
papers of Mitchell et al. (1986) and DeJong and Mooney (1986). Hirsh (1987) introduced
the EBL algorithm described in the text, showing how it could be incorporated directly into a
logic programming system. Van Harmelen and Bundy (1988) explain EBL as a variant of the
partial evaluation method used in program analysis systems (Jones et al., 1993).

Initial enthusiasm for EBL was tempered by Minton’s finding (1988) that, without exten-
sive extra work, EBL could easily slow down a program significantly. Formal probabilistic
analysis of the expected payoff of EBL can be found in Greiner (1989) and Subramanian and
Feldman (1990). An excellent survey of early work on EBL appears in Dietterich (1990).

Instead of using examples as foci for generalization, one can use them directly to solve
new problems, in a process known as analogical reasoning. This form of reasoning rangesAnalogical reasoning

from a form of plausible reasoning based on degree of similarity (Gentner, 1983), through
a form of deductive inference based on determinations but requiring the participation of the
example (Davies and Russell, 1987), to a form of “lazy” EBL that tailors the direction of
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generalization of the old example to fit the needs of the new problem. This latter form of
analogical reasoning is found most commonly in case-based reasoning (Kolodner, 1993)
and derivational analogy (Veloso and Carbonell, 1993).

Relevance information in the form of functional dependencies was first developed in the
database community, where it is used to structure large sets of attributes into manageable sub-
sets. Functional dependencies were used for analogical reasoning by Carbonell and Collins
(1973) and rediscovered and given a full logical analysis by Davies and Russell (Davies,
1985; Davies and Russell, 1987). Their role as prior knowledge in inductive learning was
explored by Russell and Grosof (1987). The equivalence of determinations to a restricted-
vocabulary hypothesis space was proved in Russell (1988). Learning algorithms for determi-
nations and the improved performance obtained by RBDTL were first shown in the FOCUS

algorithm, due to Almuallim and Dietterich (1991). Tadepalli (1993) describes a very inge-
nious algorithm for learning with determinations that shows large improvements in learning
speed.

The idea that inductive learning can be performed by inverse deduction can be traced
to W. S. Jevons (1874), who wrote, “The study both of Formal Logic and of the Theory of
Probabilities has led me to adopt the opinion that there is no such thing as a distinct method
of induction as contrasted with deduction, but that induction is simply an inverse employ-
ment of deduction.” Computational investigations began with the remarkable Ph.D. thesis by
Gordon Plotkin (1971) at Edinburgh. Although Plotkin developed many of the theorems and
methods that are in current use in ILP, he was discouraged by some undecidability results for
certain subproblems in induction. MIS (Shapiro, 1981) reintroduced the problem of learning
logic programs, but was seen mainly as a contribution to the theory of automated debug-
ging. Work on rule induction, such as the ID3 (Quinlan, 1986) and CN2 (Clark and Niblett,
1989) systems, led to FOIL (Quinlan, 1990), which for the first time allowed practical induc-
tion of relational rules. The field of relational learning was reinvigorated by Muggleton and
Buntine (1988), whose CIGOL program incorporated a slightly incomplete version of inverse
resolution and was capable of generating new predicates. The inverse resolution method also
appears in (Russell, 1986), with a simple algorithm given in a footnote. The next major sys-
tem was GOLEM (Muggleton and Feng, 1990), which uses a covering algorithm based on
Plotkin’s concept of relative least general generalization. ITOU (Rouveirol and Puget, 1989)
and CLINT (De Raedt, 1992) were other systems of that era. More recently, PROGOL (Mug-
gleton, 1995) has taken a hybrid (top-down and bottom-up) approach to inverse entailment
and has been applied to a number of practical problems, particularly in biology and natural
language processing. Muggleton (2000) describes an extension of PROGOL to handle uncer-
tainty in the form of stochastic logic programs.

A formal analysis of ILP methods appears in Muggleton (1991), a large collection of
papers in Muggleton (1992), and a collection of techniques and applications in the book
by Lavrauc and Duzeroski (1994). Page and Srinivasan (2002) give a more recent overview of
the field’s history and challenges for the future. Early complexity results by Haussler (1989)
suggested that learning first-order sentences was intractible. However, with better understand-
ing of the importance of syntactic restrictions on clauses, positive results have been obtained
even for clauses with recursion (Duzeroski et al., 1992). Learnability results for ILP are
surveyed by Kietz and Duzeroski (1994) and Cohen and Page (1995).

Although ILP now seems to be the dominant approach to constructive induction, it has
not been the only approach taken. So-called discovery systems aim to model the process Discovery system
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of scientific discovery of new concepts, usually by a direct search in the space of concept
definitions. Doug Lenat’s Automated Mathematician, or AM (Davis and Lenat, 1982), used
discovery heuristics expressed as expert system rules to guide its search for concepts and
conjectures in elementary number theory. Unlike most systems designed for mathematical
reasoning, AM lacked a concept of proof and could only make conjectures. It rediscovered
Goldbach’s conjecture and the Unique Prime Factorization theorem. AM’s architecture was
generalized in the EURISKO system (Lenat, 1983) by adding a mechanism capable of rewrit-
ing the system’s own discovery heuristics. EURISKO was applied in a number of areas other
than mathematical discovery, although with less success than AM. The methodology of AM
and EURISKO has been controversial (Ritchie and Hanna, 1984; Lenat and Brown, 1984).

Another class of discovery systems aims to operate with real scientific data to find new
laws. The systems DALTON, GLAUBER, and STAHL (Langley et al., 1987) are rule-based
systems that look for quantitative relationships in experimental data from physical systems;
in each case, the system has been able to recapitulate a well-known discovery from the his-
tory of science. Discovery systems based on probabilistic techniques—especially clustering
algorithms that discover new categories—are discussed in Chapter 21.
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CHAPTER 21
LEARNING PROBABILISTIC MODELS
In which we view learning as a form of uncertain reasoning from observations, and devise
models to represent the uncertain world.

Chapter 12 pointed out the prevalence of uncertainty in real environments. Agents can handle
uncertainty by using the methods of probability and decision theory, but first they must learn
their probabilistic theories of the world from experience. This chapter explains how they
can do that, by formulating the learning task itself as a process of probabilistic inference
(Section 21.1). We will see that a Bayesian view of learning is extremely powerful, providing
general solutions to the problems of noise, overfitting, and optimal prediction. It also takes
into account the fact that a less-than-omniscient agent can never be certain about which theory
of the world is correct, yet must still make decisions by using some theory of the world.

We describe methods for learning probability models—primarily Bayesian networks—in
Sections 21.2 and 21.3. Some of the material in this chapter is fairly mathematical, although
the general lessons can be understood without plunging into the details. It may benefit the
reader to review Chapters 12 and 13 and peek at Appendix A.

21.1 Statistical Learning

The key concepts in this chapter, just as in Chapter 19, are data and hypotheses. Here, the
data are evidence—that is, instantiations of some or all of the random variables describing the
domain. The hypotheses in this chapter are probabilistic theories of how the domain works,
including logical theories as a special case.

Consider a simple example. Our favorite surprise candy comes in two flavors: cherry
(yum) and lime (ugh). The manufacturer has a peculiar sense of humor and wraps each piece
of candy in the same opaque wrapper, regardless of flavor. The candy is sold in very large
bags, of which there are known to be five kinds—again, indistinguishable from the outside:

h1: 100% cherry,
h2: 75% cherry + 25% lime,
h3: 50% cherry + 50% lime,
h4: 25% cherry + 75% lime,
h5: 100% lime.

Given a new bag of candy, the random variable H (for hypothesis) denotes the type of the
bag, with possible values h1 through h5. H is not directly observable, of course. As the
pieces of candy are opened and inspected, data are revealed—D1, D2, . . ., DN , where each Di

is a random variable with possible values cherry and lime. The basic task faced by the agent
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is to predict the flavor of the next piece of candy.1 Despite its apparent triviality, this scenario
serves to introduce many of the major issues. The agent really does need to infer a theory of
its world, albeit a very simple one.

Bayesian learning simply calculates the probability of each hypothesis, given the data, Bayesian learning

and makes predictions on that basis. That is, the predictions are made by using all the hy-
potheses, weighted by their probabilities, rather than by using just a single “best” hypothesis.
In this way, learning is reduced to probabilistic inference.

Let D represent all the data, with observed value d. The key quantities in the Bayesian ap-
proach are the hypothesis prior, P(hi), and the likelihood of the data under each hypothesis, Hypothesis prior

LikelihoodP(d |hi). The probability of each hypothesis is obtained by Bayes’ rule:

P(hi |d) = αP(d |hi)P(hi) . (21.1)

Now, suppose we want to make a prediction about an unknown quantity X . Then we have

P(X |d) = ∑
i

P(X |hi)P(hi |d) , (21.2)

where each hypothesis determines a probability distribution over X . This equation shows that
predictions are weighted averages over the predictions of the individual hypotheses, where the
weight P(hi |d) is proportional to the prior probability of hi and its degree of fit, according
to Equation (21.1). The hypotheses themselves are essentially “intermediaries” between the
raw data and the predictions.

For our candy example, we will assume for the time being that the prior distribution
over h1, . . . ,h5 is given by 〈0.1,0.2,0.4,0.2,0.1〉, as advertised by the manufacturer. The
likelihood of the data is calculated under the assumption that the observations are i.i.d. (see
page 683), so that

P(d |hi) = ∏
j

P(d j |hi) . (21.3)

For example, suppose the bag is really an all-lime bag (h5) and the first 10 candies are all
lime; then P(d |h3) is 0.510, because half the candies in an h3 bag are lime.2 Figure 21.1(a)
shows how the posterior probabilities of the five hypotheses change as the sequence of 10
lime candies is observed. Notice that the probabilities start out at their prior values, so h3
is initially the most likely choice and remains so after 1 lime candy is unwrapped. After 2
lime candies are unwrapped, h4 is most likely; after 3 or more, h5 (the dreaded all-lime bag)
is the most likely. After 10 in a row, we are fairly certain of our fate. Figure 21.1(b) shows
the predicted probability that the next candy is lime, based on Equation (21.2). As we would
expect, it increases monotonically toward 1.

The example shows that the Bayesian prediction eventually agrees with the true hypoth- J
esis. This is characteristic of Bayesian learning. For any fixed prior that does not rule out the
true hypothesis, the posterior probability of any false hypothesis will, under certain techni-
cal conditions, eventually vanish. This happens simply because the probability of generating
“uncharacteristic” data indefinitely is vanishingly small. (This point is analogous to one made
in the discussion of PAC learning in Chapter 19.) More important, the Bayesian prediction is

1 Statistically sophisticated readers will recognize this scenario as a variant of the urn-and-ball setup. We find
urns and balls less compelling than candy.
2 We stated earlier that the bags of candy are very large; otherwise, the i.i.d. assumption fails to hold. Technically,
it is more correct (but less hygienic) to rewrap each candy after inspection and return it to the bag.
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Figure 21.1 (a) Posterior probabilities P(hi |d1, . . . ,dN) from Equation (21.1). The number
of observations N ranges from 1 to 10, and each observation is of a lime candy. (b) Bayesian
prediction P(DN+1= lime |d1, . . . ,dN) from Equation (21.2).

optimal, whether the data set is small or large. Given the hypothesis prior, any other predic-
tion is expected to be correct less often.

The optimality of Bayesian learning comes at a price, of course. For real learning prob-
lems, the hypothesis space is usually very large or infinite, as we saw in Chapter 19. In some
cases, the summation in Equation (21.2) (or integration, in the continuous case) can be carried
out tractably, but in most cases we must resort to approximate or simplified methods.

A very common approximation—one that is usually adopted in science—is to make pre-
dictions based on a single most probable hypothesis—that is, an hi that maximizes P(hi |d).
This is often called a maximum a posteriori or MAP (pronounced “em-ay-pee”) hypothesis.Maximum a

posteriori

Predictions made according to an MAP hypothesis hMAP are approximately Bayesian to the
extent that P(X |d) ≈ P(X |hMAP). In our candy example, hMAP=h5 after three lime can-
dies in a row, so the MAP learner then predicts that the fourth candy is lime with probability
1.0—a much more dangerous prediction than the Bayesian prediction of 0.8 shown in Fig-
ure 21.1(b). As more data arrive, the MAP and Bayesian predictions become closer, because
the competitors to the MAP hypothesis become less and less probable.

Although this example doesn’t show it, finding MAP hypotheses is often much easier
than Bayesian learning, because it requires solving an optimization problem instead of a
large summation (or integration) problem.

In both Bayesian learning and MAP learning, the hypothesis prior P(hi) plays an im-
portant role. We saw in Chapter 19 that overfitting can occur when the hypothesis space is
too expressive, that is, when it contains many hypotheses that fit the data set well. Bayesian
and MAP learning methods use the prior to penalize complexity. Typically, more complex
hypotheses have a lower prior probability—in part because there so many of them. On the
other hand, more complex hypotheses have a greater capacity to fit the data. (In the extreme
case, a lookup table can reproduce the data exactly.) Hence, the hypothesis prior embodies a
tradeoff between the complexity of a hypothesis and its degree of fit to the data.
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We can see the effect of this tradeoff most clearly in the logical case, where H contains
only deterministic hypotheses (such as h1, which says that every candy is cherry). In that
case, P(d |hi) is 1 if hi is consistent and 0 otherwise. Looking at Equation (21.1), we see
that hMAP will then be the simplest logical theory that is consistent with the data. Therefore, J
maximum a posteriori learning provides a natural embodiment of Ockham’s razor.

Another insight into the tradeoff between complexity and degree of fit is obtained by tak-
ing the logarithm of Equation (21.1). Choosing hMAP to maximize P(d |hi)P(hi) is equivalent
to minimizing

− log2 P(d |hi)− log2 P(hi) .

Using the connection between information encoding and probability that we introduced in
Section 19.3.3, we see that the − log2 P(hi) term equals the number of bits required to spec-
ify the hypothesis hi. Furthermore, − log2 P(d |hi) is the additional number of bits required
to specify the data, given the hypothesis. (To see this, consider that no bits are required
if the hypothesis predicts the data exactly—as with h5 and the string of lime candies—and
log2 1=0.) Hence, MAP learning is choosing the hypothesis that provides maximum com-
pression of the data. The same task is addressed more directly by the minimum description
length, or MDL, learning method. Whereas MAP learning expresses simplicity by assigning
higher probabilities to simpler hypotheses, MDL expresses it directly by counting the bits in
a binary encoding of the hypotheses and data.

A final simplification is provided by assuming a uniform prior over the space of hypothe-
ses. In that case, MAP learning reduces to choosing an hi that maximizes P(d |hi). This is
called a maximum-likelihood hypothesis, hML. Maximum-likelihood learning is very com- Maximum-likelihood

mon in statistics, a discipline in which many researchers distrust the subjective nature of hy-
pothesis priors. It is a reasonable approach when there is no reason to prefer one hypothesis
over another a priori—for example, when all hypotheses are equally complex.

When the data set is large, the prior distribution over hypotheses is less important—the
evidence from the data is strong enough to swamp the prior distribution over hypotheses. That
means maximum likelihood learning is a good approximation to Bayesian and MAP learning
with large data sets, but it has problems (as we shall see) with small data sets.

21.2 Learning with Complete Data

The general task of learning a probability model, given data that are assumed to be generated
from that model, is called density estimation. (The term applied originally to probability Density estimation

density functions for continuous variables, but it is used now for discrete distributions too.)
Density estimation is a form of unsupervised learning. This section covers the simplest case,
where we have complete data. Data are complete when each data point contains values Complete data

for every variable in the probability model being learned. We focus on parameter learn-
ing—finding the numerical parameters for a probability model whose structure is fixed. For Parameter learning

example, we might be interested in learning the conditional probabilities in a Bayesian net-
work with a given structure. We will also look briefly at the problem of learning structure and
at nonparametric density estimation.
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21.2.1 Maximum-likelihood parameter learning: Discrete models

Suppose we buy a bag of lime and cherry candy from a new manufacturer whose flavor pro-
portions are completely unknown; the fraction of cherry could be anywhere between 0 and 1.
In that case, we have a continuum of hypotheses. The parameter in this case, which we
call θ, is the proportion of cherry candies, and the hypothesis is hθ. (The proportion of lime
candies is just 1− θ.) If we assume that all proportions are equally likely a priori, then
a maximum-likelihood approach is reasonable. If we model the situation with a Bayesian
network, we need just one random variable, Flavor (the flavor of a randomly chosen candy
from the bag). It has values cherry and lime, where the probability of cherry is θ (see Fig-
ure 21.2(a)). Now suppose we unwrap N candies, of which c are cherry and `=N− c are
lime. According to Equation (21.3), the likelihood of this particular data set is

P(d |hθ) =
N

∏
j=1

P(d j |hθ) = θc · (1−θ)` .

The maximum-likelihood hypothesis is given by the value of θ that maximizes this expres-
sion. Because the log function is monotonic, the same value is obtained by maximizing the
log likelihood instead:Log likelihood

L(d |hθ) = logP(d |hθ) =
N

∑
j=1

logP(d j |hθ) = c logθ+ ` log(1−θ) .

(By taking logarithms, we reduce the product to a sum over the data, which is usually easier
to maximize.) To find the maximum-likelihood value of θ, we differentiate L with respect to
θ and set the resulting expression to zero:

dL(d |hθ)
dθ

=
c
θ
− `

1−θ
= 0 ⇒ θ =

c
c+ `

=
c
N
.

In English, then, the maximum-likelihood hypothesis hML asserts that the actual proportion
of cherry candies in the bag is equal to the observed proportion in the candies unwrapped so
far!

It appears that we have done a lot of work to discover the obvious. In fact, though, we
have laid out one standard method for maximum-likelihood parameter learning, a method
with broad applicability:

1. Write down an expression for the likelihood of the data as a function of the parameter(s).
2. Write down the derivative of the log likelihood with respect to each parameter.
3. Find the parameter values such that the derivatives are zero.

The trickiest step is usually the last. In our example, it was trivial, but we will see that in
many cases we need to resort to iterative solution algorithms or other numerical optimiza-
tion techniques, as described in Section 4.2. (We will need to verify that the Hessian ma-
trix is negative-definite.) The example also illustrates a significant problem with maximum-
likelihood learning in general: when the data set is small enough that some events have notI
yet been observed—for instance, no cherry candies—the maximum-likelihood hypothesis as-
signs zero probability to those events. Various tricks are used to avoid this problem, such as
initializing the counts for each event to 1 instead of 0.

Let us look at another example. Suppose this new candy manufacturer wants to give a
little hint to the consumer and uses candy wrappers colored red and green. The Wrapper for
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Figure 21.2 (a) Bayesian network model for the case of candies with an unknown proportion
of cherry and lime. (b) Model for the case where the wrapper color depends (probabilisti-
cally) on the candy flavor.

each candy is selected probabilistically, according to some unknown conditional distribution,
depending on the flavor. The corresponding probability model is shown in Figure 21.2(b).
Notice that it has three parameters: θ, θ1, and θ2. With these parameters, the likelihood of
seeing, say, a cherry candy in a green wrapper can be obtained from the standard semantics
for Bayesian networks (page 433):

P(Flavor=cherry,Wrapper=green |hθ,θ1,θ2)

= P(Flavor=cherry |hθ,θ1,θ2)P(Wrapper=green |Flavor=cherry,hθ,θ1,θ2)

= θ · (1−θ1) .

Now we unwrap N candies, of which c are cherry and ` are lime. The wrapper counts are as
follows: rc of the cherry candies have red wrappers and gc have green, while r` of the lime
candies have red and g` have green. The likelihood of the data is given by

P(d |hθ,θ1,θ2) = θc(1−θ)` ·θrc
1 (1−θ1)

gc ·θr`
2 (1−θ2)

g` .

This looks pretty horrible, but taking logarithms helps:
L = [c logθ+ ` log(1−θ)]+ [rc logθ1 +gc log(1−θ1)]+ [r` logθ2 +g` log(1−θ2)] .

The benefit of taking logs is clear: the log likelihood is the sum of three terms, each of which
contains a single parameter. When we take derivatives with respect to each parameter and set
them to zero, we get three independent equations, each containing just one parameter:

∂L
∂θ = c

θ −
`

1−θ = 0 ⇒ θ = c
c+`

∂L
∂θ1

= rc
θ1
− gc

1−θ1
= 0 ⇒ θ1 =

rc
rc+gc

∂L
∂θ2

= r`
θ2
− g`

1−θ2
= 0 ⇒ θ2 =

r`
r`+g`

.

The solution for θ is the same as before. The solution for θ1, the probability that a cherry
candy has a red wrapper, is the observed fraction of cherry candies with red wrappers, and
similarly for θ2.

These results are very comforting, and it is easy to see that they can be extended to any
Bayesian network whose conditional probabilities are represented as tables. The most impor-
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tant point is that with complete data, the maximum-likelihood parameter learning problemI
for a Bayesian network decomposes into separate learning problems, one for each parame-
ter. (See Exercise 21.NORX for the nontabulated case, where each parameter affects several
conditional probabilities.) The second point is that the parameter values for a variable, given
its parents, are just the observed frequencies of the variable values for each setting of the
parent values. As before, we must be careful to avoid zeroes when the data set is small.

21.2.2 Naive Bayes models

Probably the most common Bayesian network model used in machine learning is the naive
Bayes model first introduced on page 420. In this model, the “class” variable C (which is to
be predicted) is the root and the “attribute” variables Xi are the leaves. The model is “naive”
because it assumes that the attributes are conditionally independent of each other, given the
class. (The model in Figure 21.2(b) is a naive Bayes model with class Flavor and just one
attribute, Wrapper.) In the case of Boolean variables, the parameters are

θ=P(C= true),θi1=P(Xi= true |C= true),θi2=P(Xi= true |C= false).

The maximum-likelihood parameter values are found in exactly the same way as in Fig-
ure 21.2(b). Once the model has been trained in this way, it can be used to classify new ex-
amples for which the class variable C is unobserved. With observed attribute values x1, . . . ,xn,
the probability of each class is given by

P(C |x1, . . . ,xn) = α P(C)∏
i

P(xi |C) .

A deterministic prediction can be obtained by choosing the most likely class. Figure 21.3
shows the learning curve for this method when it is applied to the restaurant problem from
Chapter 19. The method learns fairly well but not as well as decision tree learning; this is pre-
sumably because the true hypothesis—which is a decision tree—is not representable exactly
using a naive Bayes model. Naive Bayes learning turns out to do surprisingly well in a wide
range of applications; the boosted version (Exercise 21.BNBX) is one of the most effective
general-purpose learning algorithms. Naive Bayes learning scales well to very large prob-
lems: with n Boolean attributes, there are just 2n+ 1 parameters, and no search is requiredI
to find hML, the maximum-likelihood naive Bayes hypothesis. Finally, naive Bayes learning
systems deal well with noisy or missing data and can give probabilistic predictions when ap-
propriate. Their primary drawback is the fact that the conditional independence assumption
is seldom accurate; as noted on page 421, the assumption leads to overconfident probabilities
that are often very close to 0 or 1, especially with large numbers of attributes.

21.2.3 Generative and discriminative models

We can distinguish two kinds of machine learning models used for classifiers: generative and
discriminative. A generative model models the probability distribution of each class. ForGenerative model

example, the naive Bayes text classifier from Section 12.6.1 creates a separate model for each
possible category of text—one for sports, one for weather, and so on. Each model includes
the prior probability of the category—for example P(Category=weather)—as well as the
conditional probability P(Inputs |Category=weather). From these we can compute the joint
probability P(Inputs,Category=weather)) and we can generate a random selection of words
that is representative of texts in the weather category.
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Figure 21.3 The learning curve for naive Bayes learning applied to the restaurant problem
from Chapter 19; the learning curve for decision tree learning is shown for comparison.

A discriminative model directly learns the decision boundary between classes. That is, Discriminative model

it learns P(Category | Inputs). Given example inputs, a discriminative model will come up
with an output category, but you cannot use a discriminative model to, say, generate random
words that are representative of a category. Logistic regression, decision trees, and support
vector machines are all discriminative models.

Since discriminative models put all their emphasis on defining the decision boundary—
that is, actually doing the classification task they were asked to do—they tend to perform
better in the limit, with an arbitrary amount of training data. However, with limited data, in
some cases a generative model performs better. (Ng and Jordan, 2002) compare the generative
naive Bayes classifier to the discriminative logistic regression classifier on 15 (small) data
sets, and find that with the maximum amount of data, the discriminative model does better on
9 out of 15 data sets, but with only a small amount of data, the generative model does better
on 14 out of 15 data sets.

21.2.4 Maximum-likelihood parameter learning: Continuous models

Continuous probability models such as the linear–Gaussian model were shown on page 440.
Because continuous variables are ubiquitous in real-world applications, it is important to
know how to learn the parameters of continuous models from data. The principles for
maximum-likelihood learning are identical in the continuous and discrete cases.

Let us begin with a very simple case: learning the parameters of a Gaussian density
function on a single variable. That is, we assume the data are generated as follows:

P(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

The parameters of this model are the mean µ and the standard deviation σ. (Notice that the
normalizing “constant” depends on σ, so we cannot ignore it.) Let the observed values be
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Figure 21.4 (a) A linear–Gaussian model described as y=θ1x+θ2 plus Gaussian noise with
fixed variance. (b) A set of 50 data points generated from this model and the best-fit line.

x1, . . . ,xN . Then the log likelihood is

L =
N

∑
j=1

log
1

σ
√

2π
e−

(x j−µ)2

2σ2 = N(− log
√

2π− logσ)−
N

∑
j=1

(x j−µ)2

2σ2 .

Setting the derivatives to zero as usual, we obtain
∂L
∂µ = − 1

σ2 ∑
N
j=1(x j−µ) = 0 ⇒ µ=

∑ j x j
N

∂L
∂σ = −N

σ + 1
σ3 ∑

N
j=1(x j−µ)2 = 0 ⇒ σ =

√
∑ j(x j−µ)2

N .
(21.4)

That is, the maximum-likelihood value of the mean is the sample average and the maximum-
likelihood value of the standard deviation is the square root of the sample variance. Again,
these are comforting results that confirm “commonsense” practice.

Now consider a linear–Gaussian model with one continuous parent X and a continuous
child Y . As explained on page 440, Y has a Gaussian distribution whose mean depends
linearly on the value of X and whose standard deviation is fixed. To learn the conditional
distribution P(Y |X), we can maximize the conditional likelihood

P(y |x) = 1
σ
√

2π
e−

(y−(θ1x+θ2))
2

2σ2 . (21.5)

Here, the parameters are θ1, θ2, and σ. The data are a collection of (x j,y j) pairs, as illustrated
in Figure 21.4. Using the usual methods (Exercise 21.LINR), we can find the maximum-
likelihood values of the parameters. The point here is different. If we consider just the
parameters θ1 and θ2 that define the linear relationship between x and y, it becomes clear
that maximizing the log likelihood with respect to these parameters is the same as minimizing
the numerator (y− (θ1x+ θ2))

2 in the exponent of Equation (21.5). This is the L2 loss, the
squared error between the actual value y and the prediction θ1x+θ2.

This is the quantity minimized by the standard linear regression procedure described in
Section 19.6. Now we can understand why: minimizing the sum of squared errors gives the
maximum-likelihood straight-line model, provided that the data are generated with Gaussian
noise of fixed variance.
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Figure 21.5 Examples of the Beta(a,b) distribution for different values of (a,b).

21.2.5 Bayesian parameter learning

Maximum-likelihood learning gives rise to simple procedures, but it has serious deficiencies
with small data sets. For example, after seeing one cherry candy, the maximum-likelihood
hypothesis is that the bag is 100% cherry (i.e., θ=1.0). Unless one’s hypothesis prior is that
bags must be either all cherry or all lime, this is not a reasonable conclusion. It is more likely
that the bag is a mixture of lime and cherry. The Bayesian approach to parameter learning
starts with a hypothesis prior and updates the distribution as data arrive.

The candy example in Figure 21.2(a) has one parameter, θ: the probability that a ran-
domly selected piece of candy is cherry-flavored. In the Bayesian view, θ is the (unknown)
value of a random variable Θ that defines the hypothesis space; the hypothesis prior is the
prior distribution over P(Θ). Thus, P(Θ=θ) is the prior probability that the bag has a frac-
tion θ of cherry candies.

If the parameter θ can be any value between 0 and 1, then P(Θ) is a continuous probability
density function (see Section A.3). If we don’t know anything about the possible values of θ
we can use the uniform density function P(θ) = Uniform(θ;0,1), which says all values are
equally likely.

A more flexible family of probability density functions is known as the beta distribu-
tions. Each beta distribution is defined by two hyperparameters3 a and b such that Beta distribution

Hyperparameter
Beta(θ;a,b) = α θa−1(1−θ)b−1 , (21.6)

for θ in the range [0,1]. The normalization constant α, which makes the distribution integrate
to 1, depends on a and b. Figure 21.5 shows what the distribution looks like for various
values of a and b. The mean value of the beta distribution is a/(a+b), so larger values of a
suggest a belief that Θ is closer to 1 than to 0. Larger values of a+ b make the distribution
more peaked, suggesting greater certainty about the value of Θ. It turns out that the uniform
density function is the same as Beta(1,1): the mean is 1/2, and the distribution is flat.

3 They are called hyperparameters because they parameterize a distribution over θ, which is itself a parameter.
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Θ

Θ1 Θ2

Flavor1 Flavor2 Flavor3

Wrapper1 Wrapper2 Wrapper3

Figure 21.6 A Bayesian network that corresponds to a Bayesian learning process. Poste-
rior distributions for the parameter variables Θ, Θ1, and Θ2 can be inferred from their prior
distributions and the evidence in Flavori and Wrapperi.

Besides its flexibility, the beta family has another wonderful property: if Θ has a prior
Beta(a,b), then, after a data point is observed, the posterior distribution for Θ is also a beta
distribution. In other words, Beta is closed under update. The beta family is called the
conjugate prior for the family of distributions for a Boolean variable.4 Let’s see how thisConjugate prior

works. Suppose we observe a cherry candy; then we have

P(θ |D1=cherry) = α P(D1=cherry |θ)P(θ)
= α′ θ ·Beta(θ;a,b) = α′ θ ·θa−1(1−θ)b−1

= α′ θa(1−θ)b−1 = α′ Beta(θ;a+1,b) .

Thus, after seeing a cherry candy, we simply increment the a parameter to get the posterior;
similarly, after seeing a lime candy, we increment the b parameter. Thus, we can view the a
and b hyperparameters as virtual counts, in the sense that a prior Beta(a,b) behaves exactlyVirtual count

as if we had started out with a uniform prior Beta(1,1) and seen a−1 actual cherry candies
and b−1 actual lime candies.

By examining a sequence of beta distributions for increasing values of a and b, keeping
the proportions fixed, we can see vividly how the posterior distribution over the parameter
Θ changes as data arrive. For example, suppose the actual bag of candy is 75% cherry. Fig-
ure 21.5(b) shows the sequence Beta(3,1), Beta(6,2), Beta(30,10). Clearly, the distribution
is converging to a narrow peak around the true value of Θ. For large data sets, then, Bayesian
learning (at least in this case) converges to the same answer as maximum-likelihood learning.

Now let us consider a more complicated case. The network in Figure 21.2(b) has three
parameters, θ, θ1, and θ2, where θ1 is the probability of a red wrapper on a cherry candy and

4 Other conjugate priors include the Dirichlet family for the parameters of a discrete multivalued distribution
and the Normal–Wishart family for the parameters of a Gaussian distribution. See Bernardo and Smith (1994).
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θ2 is the probability of a red wrapper on a lime candy. The Bayesian hypothesis prior must
cover all three parameters—that is, we need to specify P(Θ,Θ1,Θ2). Usually, we assume
parameter independence: Parameter

independence

P(Θ,Θ1,Θ2) = P(Θ)P(Θ1)P(Θ2) .

With this assumption, each parameter can have its own beta distribution that is updated sepa-
rately as data arrive. Figure 21.6 shows how we can incorporate the hypothesis prior and any
data into a Bayesian network, in which we have a node for each parameter variable.

The nodes Θ,Θ1,Θ2 have no parents. For the ith observation of a wrapper and corre-
sponding flavor of a piece of candy, we add nodes Wrapperi and Flavori. Flavori is dependent
on the flavor parameter Θ:

P(Flavori=cherry |Θ=θ) = θ .

Wrapperi is dependent on Θ1 and Θ2:

P(Wrapperi=red |Flavori=cherry,Θ1=θ1) = θ1
P(Wrapperi=red |Flavori= lime,Θ2=θ2) = θ2 .

Now, the entire Bayesian learning process for the original Bayes net in Figure 21.2(b) can be
formulated as an inference problem in the derived Bayes net shown in Figure 21.6, where the
data and parameters become nodes. Once we have added all the new evidence nodes, we can
then query the parameter variables (in this case, Θ,Θ1,Θ2). Under this formulation there is J
just one learning algorithm—the inference algorithm for Bayesian networks.

Of course, the nature of these networks is somewhat different from those of Chapter 13
because of the potentially huge number of evidence variables representing the training set
and the prevalence of continuous-valued parameter variables. Exact inference may be impos-
sible except in very simple cases such as the naive Bayes model. Practitioners typically use
approximate inference methods such as MCMC (Section 13.4.2); many statistical software
packages incorporate efficient implementations of MCMC for this purpose.

21.2.6 Bayesian linear regression

Here we illustrate how to apply a Bayesian approach to a standard statistical task: linear
regression. The conventional approach was described in Section 19.6 as minimizing the sum
of squared errors and reinterpreted in Section 21.2.4 as maximizing likelihood assuming a
Gaussian error model. These produce a single best hypothesis: a straight line with specific
values for the slope and intercept and a fixed variance for the prediction error at any given
point. There is no measure of how confident one should be in the slope and intercept values.

Furthermore, if one is predicting a value for an unseen data point far from the observed
data points, it seems to make no sense to assume a prediction error that is the same as the
prediction error for a data point right next to an observed data point. It would seem more
sensible for the prediction error to be larger, the farther the data point is from the observed
data, because a small change in the slope will cause a large change in the predicted value for
a distant point.

The Bayesian approach fixes both of these problems. The general idea, as in the preceding
section, is to place a prior on the model parameters—here, the coefficients of the linear model
and the noise variance—and then to compute the parameter posterior given the data. For
multivariate data and unknown noise model, this leads to rather a lot of linear algebra, so we
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focus on a simple case: univariable data, a model that is constrained to go through the origin,
and known noise: a normal distribution with variance σ2. Then we have just one parameter θ
and the model is

P(y |x,θ) =N (y;θx,σ2
y ) =

1
σ
√

2π
e
− 1

2

(
(y−θx)2

σ2

)
. (21.7)

As the log likelihood is quadratic in θ, the appropriate form for a conjugate prior on θ is also
a Gaussian. This ensures that the posterior for θ will also be Gaussian. We’ll assume a mean
θ0 and variance σ2

0 for the prior, so that

P(θ) =N (θ;θ0,σ
2
0) =

1
σ0
√

2π
e
− 1

2

(
(θ−θ0)

2

σ2
0

)
. (21.8)

Depending on the data being modeled, one might have some idea of what sort of slope θ
to expect, or one might be completely agnostic. In the latter case, it makes sense to choose
θ0 to be 0 and σ2

0 to be large—a so-called uninformative prior. Finally, we can assume aUninformative prior

prior P(x) for the x-value of each data point, but this is completely immaterial to the analysis
because it doesn’t depend on θ.

Now the setup is complete, so we can compute the posterior for θ using Equation (21.1):
P(θ |d) ∝ P(d |θ)P(θ). The observed data points are d=(x1,y1), . . . ,(xN ,yN), so the likeli-
hood for the data is obtained from Equation (21.7) as follows:

P(d |θ) =

(
∏

i
P(xi)

)
∏

i
P(yi |xi,θ)) = α∏

i
e
− 1

2

(
(yi−θxi)

2

σ2

)

= αe
− 1

2 ∑i

(
(yi−θxi)

2

σ2

)
,

where we have absorbed the x-value priors and the normalizing constants for the N Gaussians
into a constant α that is independent of θ. Now we combine this and the parameter prior from
Equation (21.8) to obtain the posterior:

P(θ |d) = α′′e
− 1

2

(
(θ−θ0)

2

σ2
0

)
e
− 1

2 ∑i

(
(yi−θxi)

2

σ2

)
.

Although this looks complicated, each exponent is a quadratic function of θ, so the sum of
the two exponents is as well. Hence, the whole expression represents a Gaussian distribution
for θ. Using algebraic manipulations very similar to those in Section 14.4, we find

P(θ |d) = α′′′e
− 1

2

(
(θ−θN )2

σ2
N

)

with “updated” mean and variance given by

θN =
σ2θ0 +σ

2
0 ∑i xiyi

σ2 +σ2
0 ∑i x2

i
and σ2

N =
σ2σ2

0

σ2 +σ2
0 ∑i x2

i
.

Let’s look at these formulas to see what they mean. When the data are narrowly concentrated
on a small region of the x-axis near the origin, ∑i x2

i will be small and the posterior variance
σ2

N will be large, roughly equal to the prior variance σ2
0 . This is as one would expect: the data

do little to constrain the rotation of the line around the origin. Conversely, when the data are
widely spread along the axis, ∑i x2

i will be large and the posterior variance σ2
N will be small,

roughly equal to σ2/(∑i x2
i ), so the slope will be very tightly constrained.
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Figure 21.7 Bayesian linear regression with a model constrained to pass through the origin
and fixed noise variance σ2=0.2. Contours at ±1, ±2, and ±3 standard deviations are
shown for the predictive density. (a) With three data points near the origin, the slope is quite
uncertain, with σ2

N ≈ 0.3861. Notice how the uncertainty increases with distance from the
observed data points. (b) With two additional data points further away, the slope θ is very
tightly constrained, with σ2

N ≈ 0.0286. The remaining variance in the predictive density is
almost entirely due to the fixed noise σ2.

To make a prediction at a specific data point, we have to integrate over the possible values
of θ, as suggested by Equation (21.2):

P(y |x,d) =
∫

∞

−∞

P(y |x,d,θ)P(θ |x,d)dθ =
∫

∞

−∞

P(y |x,θ)P(θ |d)dθ

= α
∫

∞

−∞

e
− 1

2

(
(y−θx)2

σ2

)
e
− 1

2

(
(θ−θN )2

σ2
N

)
dθ

Again, the sum of the two exponents is a quadratic function of θ, so we have a Gaussian over
θ whose integral is 1. The remaining terms in y form another Gaussian:

P(y |x,d) ∝ e
− 1

2

(
(y−θN x)2

σ2+σ2
N x2

)
.

Looking at this expression, we see that the mean prediction for y is θNx, that is, it is based
on the posterior mean for θ. The variance of the prediction is given by the model noise σ2

plus a term proportional to x2, which means that the standard deviation of the prediction
increases asymptotically linearly with the distance from the origin. Figure 21.7 illustrates
this phenomenon. As noted at the beginning of this section, having greater uncertainty for
predictions that are further from the observed data points makes perfect sense.

21.2.7 Learning Bayes net structures

So far, we have assumed that the structure of the Bayes net is given and we are just trying to
learn the parameters. The structure of the network represents basic causal knowledge about
the domain that is often easy for an expert, or even a naive user, to supply. In some cases,
however, the causal model may be unavailable or subject to dispute—for example, certain
corporations have long claimed that smoking does not cause cancer and other corporations
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assert that CO2 concentrations have no effect on climate—so it is important to understand
how the structure of a Bayes net can be learned from data. This section gives a brief sketch
of the main ideas.

The most obvious approach is to search for a good model. We can start with a model
containing no links and begin adding parents for each node, fitting the parameters with the
methods we have just covered and measuring the accuracy of the resulting model. Alterna-
tively, we can start with an initial guess at the structure and use hill climbing or simulated
annealing search to make modifications, retuning the parameters after each change in the
structure. Modifications can include reversing, adding, or deleting links. We must not in-
troduce cycles in the process, so many algorithms assume that an ordering is given for the
variables, and that a node can have parents only among those nodes that come earlier in the
ordering (just as in the construction process in Chapter 13). For full generality, we also need
to search over possible orderings.

There are two alternative methods for deciding when a good structure has been found.
The first is to test whether the conditional independence assertions implicit in the structure are
actually satisfied in the data. For example, the use of a naive Bayes model for the restaurant
problem assumes that

P(Hungry,Bar |WillWait) = P(Hungry |WillWait)P(Bar |WillWait)

and we can check in the data whether the same equation holds between the corresponding
conditional frequencies. But even if the structure describes the true causal nature of the
domain, statistical fluctuations in the data set mean that the equation will never be satisfied
exactly, so we need to perform a suitable statistical test to see if there is sufficient evidence
that the independence hypothesis is violated. The complexity of the resulting network will
depend on the threshold used for this test—the stricter the independence test, the more links
will be added and the greater the danger of overfitting.

An approach more consistent with the ideas in this chapter is to assess the degree to
which the proposed model explains the data (in a probabilistic sense). We must be careful
how we measure this, however. If we just try to find the maximum-likelihood hypothesis, we
will end up with a fully connected network, because adding more parents to a node cannot
decrease the likelihood (Exercise 21.MLPA). We are forced to penalize model complexity in
some way. The MAP (or MDL) approach simply subtracts a penalty from the likelihood of
each structure (after parameter tuning) before comparing different structures. The Bayesian
approach places a joint prior over structures and parameters. There are usually far too many
structures to sum over (superexponential in the number of variables), so most practitioners
use MCMC to sample over structures.

Penalizing complexity (whether by MAP or Bayesian methods) introduces an important
connection between the optimal structure and the nature of the representation for the con-
ditional distributions in the network. With tabular distributions, the complexity penalty for
a node’s distribution grows exponentially with the number of parents, but with, say, noisy-
OR distributions, it grows only linearly. This means that learning with noisy-OR (or other
compactly parameterized) models tends to produce learned structures with more parents than
does learning with tabular distributions.
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Figure 21.8 (a) A 3D plot of the mixture of Gaussians from Figure 21.12(a). (b) A 128-point
sample of points from the mixture, together with two query points (small orange squares) and
their 10-nearest-neighborhoods (large circle and smaller circle to the right).

21.2.8 Density estimation with nonparametric models

It is possible to learn a probability model without making any assumptions about its structure
and parameterization by adopting the nonparametric methods of Section 19.7. The task of
nonparametric density estimation is typically done in continuous domains, such as that Nonparametric

density estimation

shown in Figure 21.8(a). The figure shows a probability density function on a space defined
by two continuous variables. In Figure 21.8(b) we see a sample of data points from this
density function. The question is, can we recover the model from the samples?

First we will consider k-nearest-neighbors models. (In Chapter 19 we saw nearest-
neighbor models for classification and regression; here we see them for density estimation.)
Given a sample of data points, to estimate the unknown probability density at a query point x
we can simply measure the density of the data points in the neighborhood of x. Figure 21.8(b)
shows two query points (small squares). For each query point we have drawn the smallest
circle that encloses 10 neighbors—the 10-nearest-neighborhood. We can see that the central
circle is large, meaning there is a low density there, and the circle on the right is small,
meaning there is a high density there. In Figure 21.9 we show three plots of density estimation
using k-nearest-neighbors, for different values of k. It seems clear that (b) is about right, while
(a) is too spiky (k is too small) and (c) is too smooth (k is too big).

Another possibility is to use kernel functions, as we did for locally weighted regression.
To apply a kernel model to density estimation, assume that each data point generates its
own little density function. For example, we might use spherical Gaussians with standard
deviation w along each axis. Then estimated density at a query point x is the average of the
data kernels:

P(x) =
1
N

N

∑
j=1
K(x,x j) where K(x,x j) =

1
(w2
√

2π)d
e−

D(x,x j)
2

2w2 ,

where d is the number of dimensions in x and D is the Euclidean distance function. We
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Figure 21.9 Density estimation using k-nearest-neighbors, applied to the data in Fig-
ure 21.8(b), for k=3, 10, and 40 respectively. k = 3 is too spiky, 40 is too smooth, and
10 is just about right. The best value for k can be chosen by cross-validation.

Figure 21.10 Density estimation using kernels for the data in Figure 21.8(b), using Gaussian
kernels with w=0.02, 0.07, and 0.20 respectively. w=0.07 is about right.

still have the problem of choosing a suitable value for kernel width w; Figure 21.10 shows
values that are too small, just right, and too large. A good value of w can be chosen by using
cross-validation.

21.3 Learning with Hidden Variables: The EM Algorithm

The preceding section dealt with the fully observable case. Many real-world problems have
hidden variables (sometimes called latent variables), which are not observable in the data.Latent variable

For example, medical records often include the observed symptoms, the physician’s diagno-
sis, the treatment applied, and perhaps the outcome of the treatment, but they seldom contain
a direct observation of the disease itself! (Note that the diagnosis is not the disease; it is
a causal consequence of the observed symptoms, which are in turn caused by the disease.)
One might ask, “If the disease is not observed, could we construct a model based only on
the observed variables?” The answer appears in Figure 21.11, which shows a small, fictitious
diagnostic model for heart disease. There are three observable predisposing factors and three
observable symptoms (which are too depressing to name). Assume that each variable has
three possible values (e.g., none, moderate, and severe). Removing the hidden variable from
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Symptom1 Symptom2 Symptom3

(a) (b)

HeartDisease

Symptom1 Symptom2 Symptom3

54

6 6 6 54 162 486

Smoking Diet Exercise
2 2 2

Smoking Diet Exercise
2 2 2

Figure 21.11 (a) A simple diagnostic network for heart disease, which is assumed to be
a hidden variable. Each variable has three possible values and is labeled with the number
of independent parameters in its conditional distribution; the total number is 78. (b) The
equivalent network with HeartDisease removed. Note that the symptom variables are no
longer conditionally independent given their parents. This network requires 708 parameters.

the network in (a) yields the network in (b); the total number of parameters increases from 78
to 708. Thus, latent variables can dramatically reduce the number of parameters required to J
specify a Bayesian network. This, in turn, can dramatically reduce the amount of data needed
to learn the parameters.

Hidden variables are important, but they do complicate the learning problem. In Fig-
ure 21.11(a), for example, it is not obvious how to learn the conditional distribution for
HeartDisease, given its parents, because we do not know the value of HeartDisease in each
case; the same problem arises in learning the distributions for the symptoms. This section
describes an algorithm called expectation–maximization, or EM, that solves this problem Expectation–

maximization
in a very general way. We will show three examples and then provide a general description.
The algorithm seems like magic at first, but once the intuition has been developed, one can
find applications for EM in a huge range of learning problems.

21.3.1 Unsupervised clustering: Learning mixtures of Gaussians

Unsupervised clustering is the problem of discerning multiple categories in a collection of Unsupervised
clustering

objects. The problem is unsupervised because the category labels are not given. For example,
suppose we record the spectra of a hundred thousand stars; are there different types of stars
revealed by the spectra, and, if so, how many types and what are their characteristics? We are
all familiar with terms such as “red giant” and “white dwarf,” but the stars do not carry these
labels on their hats—astronomers had to perform unsupervised clustering to identify these
categories. Other examples include the identification of species, genera, orders, phylum, and
so on in the Linnaean taxonomy and the creation of natural kinds for ordinary objects (see
Chapter 10).

Unsupervised clustering begins with data. Figure 21.12(b) shows 500 data points, each of
which specifies the values of two continuous attributes. The data points might correspond to
stars, and the attributes might correspond to spectral intensities at two particular frequencies.
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Figure 21.12 (a) A Gaussian mixture model with three components; the weights (left-to-
right) are 0.2, 0.3, and 0.5. (b) 500 data points sampled from the model in (a). (c) The model
reconstructed by EM from the data in (b).

Next, we need to understand what kind of probability distribution might have generated the
data. Clustering presumes that the data are generated from a mixture distribution, P. SuchMixture distribution

a distribution has k components, each of which is a distribution in its own right. A dataComponent

point is generated by first choosing a component and then generating a sample from that
component. Let the random variable C denote the component, with values 1, . . . ,k; then the
mixture distribution is given by

P(x) =
k

∑
i=1

P(C= i) P(x |C= i) ,

where x refers to the values of the attributes for a data point. For continuous data, a natural
choice for the component distributions is the multivariate Gaussian, which gives the so-called
mixture of Gaussians family of distributions. The parameters of a mixture of GaussiansMixture of Gaussians

are wi=P(C= i) (the weight of each component), µi (the mean of each component), and Σi

(the covariance of each component). Figure 21.12(a) shows a mixture of three Gaussians;
this mixture is in fact the source of the data in (b) as well as being the model shown in
Figure 21.8(a) on page 787.

The unsupervised clustering problem, then, is to recover a Gaussian mixture model like
the one in Figure 21.12(a) from raw data like that in Figure 21.12(b). Clearly, if we knew
which component generated each data point, then it would be easy to recover the component
Gaussians: we could just select all the data points from a given component and then apply (a
multivariate version of) Equation (21.4) (page 780) for fitting the parameters of a Gaussian
to a set of data. On the other hand, if we knew the parameters of each component, then we
could, at least in a probabilistic sense, assign each data point to a component.

The problem is that we know neither the assignments nor the parameters. The basic idea
of EM in this context is to pretend that we know the parameters of the model and then to
infer the probability that each data point belongs to each component. After that, we refit
the components to the data, where each component is fitted to the entire data set with each
point weighted by the probability that it belongs to that component. The process iterates
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until convergence. Essentially, we are “completing” the data by inferring probability distri-
butions over the hidden variables—which component each data point belongs to—based on
the current model. For the mixture of Gaussians, we initialize the mixture-model parameters
arbitrarily and then iterate the following two steps:

1. E-step: Compute the probabilities pi j =P(C= i |x j), the probability that datum x j was
generated by component i. By Bayes’ rule, we have pi j =αP(x j |C= i)P(C= i). The
term P(x j |C= i) is just the probability at x j of the ith Gaussian, and the term P(C= i) is
just the weight parameter for the ith Gaussian. Define ni= ∑ j pi j, the effective number
of data points currently assigned to component i.

2. M-step: Compute the new mean, covariance, and component weights using the follow-
ing steps in sequence:

µi ← ∑
j

pi jx j/ni

Σi ← ∑
j

pi j(x j−µi)(x j−µi)
>/ni

wi ← ni/N

where N is the total number of data points. The E-step, or expectation step, can be viewed
as computing the expected values pi j of the hidden indicator variables Zi j, where Zi j is 1 if Indicator variable

datum x j was generated by the ith component and 0 otherwise. The M-step, or maximization
step, finds the new values of the parameters that maximize the log likelihood of the data,
given the expected values of the hidden indicator variables.

The final model that EM learns when it is applied to the data in Figure 21.12(a) is shown
in Figure 21.12(c); it is virtually indistinguishable from the original model from which the
data were generated (horizontal line). Figure 21.13(a) plots the log likelihood of the data
according to the current model as EM progresses.

There are two points to notice. First, the log likelihood for the final learned model slightly
exceeds that of the original model, from which the data were generated. This might seem sur-
prising, but it simply reflects the fact that the data were generated randomly and might not
provide an exact reflection of the underlying model. The second point is that EM increases J
the log likelihood of the data at every iteration. This fact can be proved in general. Further-
more, under certain conditions (that hold in most cases), EM can be proven to reach a local
maximum in likelihood. (In rare cases, it could reach a saddle point or even a local mini-
mum.) In this sense, EM resembles a gradient-based hill-climbing algorithm, but notice that
it has no “step size” parameter.

Things do not always go as well as Figure 21.13(a) might suggest. It can happen, for
example, that one Gaussian component shrinks so that it covers just a single data point. Then
its variance will go to zero and its likelihood will go to infinity! If we don’t know how many
components are in the mixture we have to try different values of k and see which is best; that
can be a source of error. Another problem is that two components can “merge,” acquiring
identical means and variances and sharing their data points. These kinds of degenerate local
maxima are serious problems, especially in high dimensions. One solution is to place priors
on the model parameters and to apply the MAP version of EM. Another is to restart a com-
ponent with new random parameters if it gets too small or too close to another component.
Sensible initialization also helps.
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Figure 21.13 Graphs showing the log likelihood of the data, L, as a function of the EM
iteration. The horizontal line shows the log likelihood according to the true model. (a) Graph
for the Gaussian mixture model in Figure 21.12. (b) Graph for the Bayesian network in
Figure 21.14(a).
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P(F=cherry | B)

θF1

θ

θF1

Figure 21.14 (a) A mixture model for candy. The proportions of different flavors, wrappers,
and presence of holes depend on the bag, which is not observed. (b) Bayesian network for
a Gaussian mixture. The mean and covariance of the observable variables X depend on the
component C.

21.3.2 Learning Bayes net parameter values for hidden variables

To learn a Bayesian network with hidden variables, we apply the same insights that worked
for mixtures of Gaussians. Figure 21.14(a) represents a situation in which there are two bags
of candy that have been mixed together. Candies are described by three features: in addition
to the Flavor and the Wrapper, some candies have a Hole in the middle and some do not.
The distribution of candies in each bag is described by a naive Bayes model: the features
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are independent, given the bag, but the conditional probability distribution for each feature
depends on the bag. The parameters are as follows: θ is the prior probability that a candy
comes from Bag 1; θF1 and θF2 are the probabilities that the flavor is cherry, given that the
candy comes from Bag 1 or Bag 2 respectively; θW1 and θW2 give the probabilities that the
wrapper is red; and θH1 and θH2 give the probabilities that the candy has a hole.

The overall model is a mixture model: a weighted sum of two different distributions, each
of which is a product of independent, univariate distributions. (In fact, we can also model the
mixture of Gaussians as a Bayesian network, as shown in Figure 21.14(b).) In the figure, the
bag is a hidden variable because, once the candies have been mixed together, we no longer
know which bag each candy came from. In such a case, can we recover the descriptions of
the two bags by observing candies from the mixture? Let us work through an iteration of
EM for this problem. First, let’s look at the data. We generated 1000 samples from a model
whose true parameters are as follows:

θ=0.5, θF1=θW1=θH1=0.8, θF2=θW2=θH2=0.3 . (21.9)

That is, the candies are equally likely to come from either bag; the first is mostly cherry with
red wrappers and holes; the second is mostly lime with green wrappers and no holes. The
counts for the eight possible kinds of candy are as follows:

W =red W =green

H=1 H=0 H=1 H=0

F =cherry 273 93 104 90
F = lime 79 100 94 167

We start by initializing the parameters. For numerical simplicity, we arbitrarily choose5

θ(0)=0.6, θ(0)F1 =θ
(0)
W1=θ

(0)
H1 =0.6, θ(0)F2 =θ

(0)
W2=θ

(0)
H2 =0.4 . (21.10)

First, let us work on the θ parameter. In the fully observable case, we would estimate this
directly from the observed counts of candies from bags 1 and 2. Because the bag is a hidden
variable, we calculate the expected counts instead. The expected count N̂(Bag=1) is the
sum, over all candies, of the probability that the candy came from bag 1:

θ(1) = N̂(Bag=1)/N =
N

∑
j=1

P(Bag=1 |flavor j,wrapper j,holes j)/N .

These probabilities can be computed by any inference algorithm for Bayesian networks. For
a naive Bayes model such as the one in our example, we can do the inference “by hand,”
using Bayes’ rule and applying conditional independence:

θ(1) =
1
N

N

∑
j=1

P(flavor j |Bag=1)P(wrapper j |Bag=1)P(holes j |Bag=1)P(Bag=1)

∑i P(flavor j |Bag= i)P(wrapper j |Bag= i)P(holes j |Bag= i)P(Bag= i)
.

Applying this formula to, say, the 273 red-wrapped cherry candies with holes, we get a con-
tribution of

273
1000

·
θ
(0)
F1θ

(0)
W1θ

(0)
H1θ

(0)

θ
(0)
F1θ

(0)
W1θ

(0)
H1θ

(0)+θ
(0)
F2θ

(0)
W2θ

(0)
H2(1−θ(0))

≈ 0.22797 .

5 It is better in practice to choose them randomly, to avoid local maxima due to symmetry.
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Continuing with the other seven kinds of candy in the table of counts, we obtain θ(1)=0.6124.
Now let us consider the other parameters, such as θF1. In the fully observable case, we

would estimate this directly from the observed counts of cherry and lime candies from bag 1.
The expected count of cherry candies from bag 1 is given by

∑
j:Flavor j =cherry

P(Bag=1 |Flavor j =cherry,wrapper j,holes j) .

Again, these probabilities can be calculated by any Bayes net algorithm. Completing this
process, we obtain the new values of all the parameters:

θ(1)=0.6124, θ(1)F1 =0.6684, θ
(1)
W1=0.6483, θ(1)H1 =0.6558,

θ
(1)
F2 =0.3887, θ(1)W2=0.3817, θ(1)H2 =0.3827 .

(21.11)

The log likelihood of the data increases from about −2044 initially to about −2021 after
the first iteration, as shown in Figure 21.13(b). That is, the update improves the likelihood
itself by a factor of about e23 ≈ 1010. By the tenth iteration, the learned model is a better
fit than the original model (L= − 1982.214). Thereafter, progress becomes very slow. This
is not uncommon with EM, and many practical systems combine EM with a gradient-based
algorithm such as Newton–Raphson (see Chapter 4) for the last phase of learning.

The general lesson from this example is that the parameter updates for Bayesian net-I
work learning with hidden variables are directly available from the results of inference on
each example. Moreover, only local posterior probabilities are needed for each parameter.
Here, “local” means that the conditional probability table (CPT) for each variable Xi can be
learned from posterior probabilities involving just Xi and its parents Ui. Defining θi jk to be the
CPT parameter P(Xi=xi j |Ui=uik), the update is given by the normalized expected counts
as follows:

θi jk← N̂(Xi=xi j,Ui=uik)/N̂(Ui=uik) .

The expected counts are obtained by summing over the examples, computing the probabili-
ties P(Xi=xi j,Ui=uik) for each by using any Bayes net inference algorithm. For the exact
algorithms—including variable elimination—all these probabilities are obtainable directly as
a by-product of standard inference, with no need for extra computations specific to learning.
Moreover, the information needed for learning is available locally for each parameter.

Standing back a little, we can think about what the EM algorithm is doing in this exam-
ple as recovering seven parameters (θ, θF1, θW1, θH1, θF2, θW2, θH2) from seven (23− 1)
observed counts in the data. (The eighth count is fixed by the fact that the counts sum to
1000.) If each candy were described by two attributes rather than three (say, omitting the
holes), we would have had five parameters (θ, θF1, θW1, θF2, θW2) but only three (22− 1)
observed counts. In such a case it is not possible to recover the mixture weight θ or the char-
acteristics of the two bags that were mixed together. We say that the two-attribute model is
not identifiable.Identifiability

Identifiability in Bayesian networks is a tricky issue. Note that even with three attributes
and seven counts, we cannot uniquely recover the model, because there are two observation-
ally equivalent models with the Bag variable flipped. Depending on how the parameters are
initialized, EM will converge either to a model where bag 1 has mostly cherry and bag 2
mostly lime, or vice versa. This kind if non-identifiability is unavoidable with variables that
are never observed.
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Figure 21.15 An unrolled dynamic Bayesian network that represents a hidden Markov
model (repeat of Figure 14.16).

21.3.3 Learning hidden Markov models

Our final application of EM involves learning the transition probabilities in hidden Markov
models (HMMs). Recall from Section 14.3 that a hidden Markov model can be represented
by a dynamic Bayes net with a single discrete state variable, as illustrated in Figure 21.15.
Each data point consists of an observation sequence of finite length, so the problem is to
learn the transition probabilities from a set of observation sequences (or from just one long
sequence).

We have already seen how to learn Bayes nets, but there is a complication: in Bayes
nets, each parameter is distinct; in a hidden Markov model, on the other hand, the individual
transition probabilities from state i to state j at time t, θi jt =P(Xt+1= j |Xt = i), are repeated
across time—that is, θi jt =θi j for all t. To estimate the transition probability from state i to
state j, we simply calculate the expected proportion of times that the system undergoes a
transition to state j when in state i:

θi j←∑
t

N̂(Xt+1= j,Xt = i)/∑
t

N̂(Xt = i) .

The expected counts are computed by an HMM inference algorithm. The forward–backward
algorithm shown in Figure 14.4 can be modified very easily to compute the necessary prob-
abilities. One important point is that the probabilities required are obtained by smoothing
rather than filtering. Filtering gives the probability distribution of the current state given the
past, but smoothing gives the distribution given all evidence, including what happens after
a particular transition occurred. The evidence in a murder case is usually obtained after the
crime (i.e., the transition from state i to state j) has taken place.

21.3.4 The general form of the EM algorithm

We have seen several instances of the EM algorithm. Each involves computing expected
values of hidden variables for each example and then recomputing the parameters, using the
expected values as if they were observed values. Let x be all the observed values in all the
examples, let Z denote all the hidden variables for all the examples, and let θ be all the
parameters for the probability model. Then the EM algorithm is

θ(i+1) = argmax
θ

∑
z

P(Z=z |x,θ(i))L(x,Z=z |θ) .
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This equation is the EM algorithm in a nutshell. The E-step is the computation of the summa-
tion, which is the expectation of the log likelihood of the “completed” data with respect to the
distribution P(Z=z |x,θ(i)), which is the posterior over the hidden variables, given the data.
The M-step is the maximization of this expected log likelihood with respect to the parame-
ters. For mixtures of Gaussians, the hidden variables are the Zi js, where Zi j is 1 if example j
was generated by component i. For Bayes nets, Zi j is the value of unobserved variable Xi in
example j. For HMMs, Z jt is the state of the sequence in example j at time t. Starting from
the general form, it is possible to derive an EM algorithm for a specific application once the
appropriate hidden variables have been identified.

As soon as we understand the general idea of EM, it becomes easy to derive all sorts
of variants and improvements. For example, in many cases the E-step—the computation of
posteriors over the hidden variables—is intractable, as in large Bayes nets. It turns out that
one can use an approximate E-step and still obtain an effective learning algorithm. With a
sampling algorithm such as MCMC (see Section 13.4), the learning process is very intuitive:
each state (configuration of hidden and observed variables) visited by MCMC is treated ex-
actly as if it were a complete observation. Thus, the parameters can be updated directly after
each MCMC transition. Other forms of approximate inference, such as variational methods
and loopy belief propagation, have also proved effective for learning very large networks.

21.3.5 Learning Bayes net structures with hidden variables

In Section 21.2.7, we discussed the problem of learning Bayes net structures with complete
data. When unobserved variables influence observed data, things get more difficult. In the
simplest case, a human expert might tell the learning algorithm that certain hidden variables
exist, leaving it to the algorithm to find a place for them in the network structure. For example,
an algorithm might try to learn the structure shown in Figure 21.11(a) on page 789, given the
information that HeartDisease (a three-valued variable) should be included in the model. As
in the complete-data case, the overall algorithm has an outer loop that searches over structures
and an inner loop that fits the network parameters given the structure.

If the learning algorithm is not told which hidden variables exist, then there are two
choices: either pretend that the data are really complete—which may force the algorithm to
learn a parameter-intensive model such as the one in Figure 21.11(b)—or invent new hidden
variables in order to simplify the model. The latter approach can be implemented by including
new modification choices in the structure search: in addition to modifying links, the algorithm
can add or delete a hidden variable or change its arity. Of course, the algorithm will not know
that the new variable it has invented is called HeartDisease; nor will it have meaningful
names for the values. Fortunately, newly invented hidden variables will usually be connected
to preexisting variables, so a human expert can often inspect the local conditional distributions
involving the new variable and ascertain its meaning.

As in the complete-data case, pure maximum-likelihood structure learning will result in
a completely connected network (moreover, one with no hidden variables), so some form of
complexity penalty is required. We can also apply MCMC to sample many possible network
structures, thereby approximating Bayesian learning. For example, we can learn mixtures of
Gaussians with an unknown number of components by sampling over the number; the approx-
imate posterior distribution for the number of Gaussians is given by the sampling frequencies
of the MCMC process.
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For the complete-data case, the inner loop to learn the parameters is very fast—just a
matter of extracting conditional frequencies from the data set. When there are hidden vari-
ables, the inner loop may involve many iterations of EM or a gradient-based algorithm, and
each iteration involves the calculation of posteriors in a Bayes net, which is itself an NP-hard
problem. To date, this approach has proved impractical for learning complex models.

One possible improvement is the so-called structural EM algorithm, which operates in Structural EM

much the same way as ordinary (parametric) EM except that the algorithm can update the
structure as well as the parameters. Just as ordinary EM uses the current parameters to com-
pute the expected counts in the E-step and then applies those counts in the M-step to choose
new parameters, structural EM uses the current structure to compute expected counts and
then applies those counts in the M-step to evaluate the likelihood for potential new struc-
tures. (This contrasts with the outer-loop/inner-loop method, which computes new expected
counts for each potential structure.) In this way, structural EM may make several structural
alterations to the network without once recomputing the expected counts, and is capable of
learning nontrivial Bayes net structures. Structural EM has a search space over the space
of structures rather than the space of structures and parameters. Nonetheless, much work
remains to be done before we can say that the structure-learning problem is solved.

Summary

Statistical learning methods range from simple calculation of averages to the construction of
complex models such as Bayesian networks. They have applications throughout computer
science, engineering, computational biology, neuroscience, psychology, and physics. This
chapter has presented some of the basic ideas and given a flavor of the mathematical under-
pinnings. The main points are as follows:

• Bayesian learning methods formulate learning as a form of probabilistic inference,
using the observations to update a prior distribution over hypotheses. This approach
provides a good way to implement Ockham’s razor, but quickly becomes intractable for
complex hypothesis spaces.

• Maximum a posteriori (MAP) learning selects a single most likely hypothesis given
the data. The hypothesis prior is still used and the method is often more tractable than
full Bayesian learning.

• Maximum-likelihood learning simply selects the hypothesis that maximizes the likeli-
hood of the data; it is equivalent to MAP learning with a uniform prior. In simple cases
such as linear regression and fully observable Bayesian networks, maximum-likelihood
solutions can be found easily in closed form. Naive Bayes learning is a particularly
effective technique that scales well.

• When some variables are hidden, local maximum likelihood solutions can be found
using the expectation maximization (EM) algorithm. Applications include unsuper-
vised clustering using mixtures of Gaussians, learning Bayesian networks, and learning
hidden Markov models.

• Learning the structure of Bayesian networks is an example of model selection. This
usually involves a discrete search in the space of structures. Some method is required
for trading off model complexity against degree of fit.
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• Nonparametric models represent a distribution using the collection of data points.
Thus, the number of parameters grows with the training set. Nearest-neighbors methods
look at the examples nearest to the point in question, whereas kernel methods form a
distance-weighted combination of all the examples.

Statistical learning continues to be a very active area of research. Enormous strides have been
made in both theory and practice, to the point where it is possible to learn almost any model
for which exact or approximate inference is feasible.

Bibliographical and Historical Notes

The application of statistical learning techniques in AI was an active area of research in the
early years (see Duda and Hart, 1973) but became separated from mainstream AI as the
latter field concentrated on symbolic methods. A resurgence of interest occurred shortly after
the introduction of Bayesian network models in the late 1980s; at roughly the same time,
a statistical view of neural network learning began to emerge. In the late 1990s, there was
a noticeable convergence of interests in machine learning, statistics, and neural networks,
centered on methods for creating large probabilistic models from data.

The naive Bayes model is one of the oldest and simplest forms of Bayesian network,
dating back to the 1950s. Its origins were mentioned in Chapter 12. Its surprising success is
partially explained by Domingos and Pazzani (1997). A boosted form of naive Bayes learning
won the first KDD Cup data mining competition (Elkan, 1997). Heckerman (1998) gives an
excellent introduction to the general problem of Bayes net learning. Bayesian parameter
learning with Dirichlet priors for Bayesian networks was discussed by Spiegelhalter et al.
(1993). The beta distribution as a conjugate prior for a Bernoulli variable was first derived
by Thomas (Bayes, 1763) and later reintroduced by Karl Pearson (1895) as a model for
skewed data; for many years it was known as a “Pearson Type I distribution.” Bayesian linear
regression is discussed in the text by Box and Tiao (1973); Minka (2010) provides a concise
summary of the derivations for the general multivariate case.

Several software packages incorporate mechanisms for statistical learning with Bayes
net models. These include BUGS (Bayesian inference Using Gibbs Sampling) (Gilks et al.,
1994; Lunn et al., 2000, 2013), JAGS (Just Another Gibbs Sampler) (Plummer, 2003), and
STAN (Carpenter et al., 2017).

The first algorithms for learning Bayes net structures used conditional independence
tests (Pearl, 1988; Pearl and Verma, 1991). Spirtes et al. (1993) implemented a compre-
hensive approach in the TETRAD package for Bayes net learning. Algorithmic improvements
since then led to a clear victory in the 2001 KDD Cup data mining competition for a Bayes
net learning method (Cheng et al., 2002). (The specific task here was a bioinformatics prob-
lem with 139,351 features!) A structure-learning approach based on maximizing likelihood
was developed by Cooper and Herskovits (1992) and improved by Heckerman et al. (1994).

More recent algorithms have achieved quite respectable performance in the complete-
data case (Moore and Wong, 2003; Teyssier and Koller, 2005). One important component is
an efficient data structure, the AD-tree, for caching counts over all possible combinations of
variables and values (Moore and Lee, 1997). Friedman and Goldszmidt (1996) pointed out
the influence of the representation of local conditional distributions on the learned structure.
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The general problem of learning probability models with hidden variables and missing
data was addressed by Hartley (1958), who described the general idea of what was later
called EM and gave several examples. Further impetus came from the Baum–Welch algo-
rithm for HMM learning (Baum and Petrie, 1966), which is a special case of EM. The paper
by Dempster, Laird, and Rubin (1977), which presented the EM algorithm in general form
and analyzed its convergence, is one of the most cited papers in both computer science and
statistics. (Dempster himself views EM as a schema rather than an algorithm, since a good
deal of mathematical work may be required before it can be applied to a new family of dis-
tributions.) McLachlan and Krishnan (1997) devote an entire book to the algorithm and its
properties. The specific problem of learning mixture models, including mixtures of Gaus-
sians, is covered by Titterington et al. (1985).

Within AI, AUTOCLASS (Cheeseman et al., 1988; Cheeseman and Stutz, 1996) was the
first successful system that used EM for mixture modeling. AUTOCLASS was applied to
a number of real-world scientific classification tasks, including the discovery of new types
of stars from spectral data (Goebel et al., 1989) and new classes of proteins and introns in
DNA/protein sequence databases (Hunter and States, 1992).

For maximum-likelihood parameter learning in Bayes nets with hidden variables, EM
and gradient-based methods were introduced around the same time by Lauritzen (1995) and
Russell et al. (1995). The structural EM algorithm was developed by Friedman (1998) and
applied to maximum-likelihood learning of Bayes net structures with latent variables. Fried-
man and Koller (2003) describe Bayesian structure learning. Daly et al. (2011) review the
field of Bayes net learning, providing extensive citations to the literature.

The ability to learn the structure of Bayesian networks is closely connected to the issue
of recovering causal information from data. That is, is it possible to learn Bayes nets in
such a way that the recovered network structure indicates real causal influences? For many
years, statisticians avoided this question, believing that observational data (as opposed to data
generated from experimental trials) could yield only correlational information—after all, any
two variables that appear related might in fact be influenced by a third, unknown causal
factor rather than influencing each other directly. Pearl (2000) has presented convincing
arguments to the contrary, showing that there are in fact many cases where causality can be
ascertained and developing the causal network formalism to express causes and the effects
of intervention as well as ordinary conditional probabilities.

Nonparametric density estimation, also called Parzen window density estimation, was
investigated initially by Rosenblatt (1956) and Parzen (1962). Since that time, a huge litera-
ture has developed investigating the properties of various estimators. Devroye (1987) gives a
thorough introduction. There is also a rapidly growing literature on nonparametric Bayesian
methods, originating with the seminal work of Ferguson (1973) on the Dirichlet process, Dirichlet process

which can be thought of as a distribution over Dirichlet distributions. These methods are par-
ticularly useful for mixtures with unknown numbers of components. Ghahramani (2005) and
Jordan (2005) provide useful tutorials on the many applications of these ideas to statistical
learning. The text by Rasmussen and Williams (2006) covers the Gaussian process, which Gaussian process

gives a way of defining prior distributions over the space of continuous functions.
The material in this chapter brings together work from the fields of statistics and pattern

recognition, so the story has been told many times in many ways. Good texts on Bayesian
statistics include those by DeGroot (1970), Berger (1985), and Gelman et al. (1995). Bishop
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(2007), Hastie et al. (2009), Barber (2012), and Murphy (2012) provide excellent introduc-
tions to statistical machine learning. For pattern classification, the classic text for many years
has been Duda and Hart (1973), now updated (Duda et al., 2001). The annual NeurIPS
(Neural Information Processing Systems, formerly NIPS) conference, whose proceedings are
published as the series Advances in Neural Information Processing Systems, includes many
Bayesian learning papers, as does the annual conference on Artificial Intelligence and Statis-
tics. Specifically Bayesian venues include the Valencia International Meetings on Bayesian
Statistics and the journal Bayesian Analysis.



CHAPTER 22
DEEP LEARNING
In which gradient descent learns multistep programs, with significant implications for the
major subfields of artificial intelligence.

Deep learning is a broad family of techniques for machine learning in which hypotheses Deep learning

take the form of complex algebraic circuits with tunable connection strengths. The word
“deep” refers to the fact that the circuits are typically organized into many layers, which Layer

means that computation paths from inputs to outputs have many steps. Deep learning is
currently the most widely used approach for applications such as visual object recognition,
machine translation, speech recognition, speech synthesis, and image synthesis; it also plays
a significant role in reinforcement learning applications (see Chapter 23).

Deep learning has its origins in early work that tried to model networks of neurons in
the brain (McCulloch and Pitts, 1943) with computational circuits. For this reason, the net-
works trained by deep learning methods are often called neural networks, even though the Neural network

resemblance to real neural cells and structures is superficial.
While the true reasons for the success of deep learning have yet to be fully elucidated,

it has self-evident advantages over some of the methods covered in Chapter 19—particularly
for high-dimensional data such as images. For example, although methods such as linear
and logistic regression can handle a large number of input variables, the computation path
from each input to the output is very short: multiplication by a single weight, then adding
into the aggregate output. Moreover, the different input variables contribute independently to
the output, without interacting with each other (Figure 22.1(a)). This significantly limits the
expressive power of such models. They can represent only linear functions and boundaries in
the input space, whereas most real-world concepts are far more complex.

Decision lists and decision trees, on the other hand, allow for long computation paths that
can depend on many input variables—but only for a relatively small fraction of the possible
input vectors (Figure 22.1(b)). If a decision tree has long computation paths for a significant
fraction of the possible inputs, it must be exponentially large in the number of input variables.
The basic idea of deep learning is to train circuits such that the computation paths are long,
allowing all the input variables to interact in complex ways (Figure 22.1(c)). These circuit
models turn out to be sufficiently expressive to capture the complexity of real-world data for
many important kinds of learning problems.

Section 22.1 describes simple feedforward networks, their components, and the essentials
of learning in such networks. Section 22.2 goes into more detail on how deep networks
are put together, and Section 22.3 covers a class of networks called convolutional neural
networks that are especially important in vision applications. Sections 22.4 and 22.5 go
into more detail on algorithms for training networks from data and methods for improving
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(a) (b) (c)

Figure 22.1 (a) A shallow model, such as linear regression, has short computation paths
between inputs and output. (b) A decision list network (page 692) has some long paths for
some possible input values, but most paths are short. (c) A deep learning network has longer
computation paths, allowing each variable to interact with all the others.

generalization. Section 22.6 covers networks with recurrent structure, which are well suited
for sequential data. Section 22.7 describes ways to use deep learning for tasks other than
supervised learning. Finally, Section 22.8 surveys the range of applications of deep learning.

22.1 Simple Feedforward Networks

A feedforward network, as the name suggests, has connections only in one direction—thatFeedforward network

is, it forms a directed acyclic graph with designated input and output nodes. Each node com-
putes a function of its inputs and passes the result to its successors in the network. Information
flows through the network from the input nodes to the output nodes, and there are no loops.
A recurrent network, on the other hand, feeds its intermediate or final outputs back into itsRecurrent network

own inputs. This means that the signal values within the network form a dynamical system
that has internal state or memory. We will consider recurrent networks in Section 22.6.

Boolean circuits, which implement Boolean functions, are an example of feedforward
networks. In a Boolean circuit, the inputs are limited to 0 and 1, and each node implements a
simple Boolean function of its inputs, producing a 0 or a 1. In neural networks, input values
are typically continuous, and nodes take continuous inputs and produce continuous outputs.
Some of the inputs to nodes are parameters of the network; the network learns by adjusting
the values of these parameters so that the network as a whole fits the training data.

22.1.1 Networks as complex functions

Each node within a network is called a unit. Traditionally, following the design proposed byUnit

McCulloch and Pitts, a unit calculates the weighted sum of the inputs from predecessor nodes
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Figure 22.2 Activation functions commonly used in deep learning systems: (a) the logistic
or sigmoid function; (b) the ReLU function and the softplus function; (c) the tanh function.

and then applies a nonlinear function to produce its output. Let a j denote the output of unit j
and let wi, j be the weight attached to the link from unit i to unit j; then we have

a j = g j
(
∑i wi, jai

)
≡ g j(in j) ,

where g j is a nonlinear activation function associated with unit j and in j is the weighted Activation function

sum of the inputs to unit j.
As in Section 19.6.3 (page 697), we stipulate that each unit has an extra input from a

dummy unit 0 that is fixed to +1 and a weight w0, j for that input. This allows the total
weighted input in j to unit j to be nonzero even when the outputs of the preceding layer are
all zero. With this convention, we can write the preceding equation in vector form:

a j = g j(w>x) (22.1)

where w is the vector of weights leading into unit j (including w0, j) and x is the vector of
inputs to unit j (including the +1).

The fact that the activation function is nonlinear is important because if it were not,
any composition of units would still represent a linear function. The nonlinearity is what
allows sufficiently large networks of units to represent arbitrary functions. The universal
approximation theorem states that a network with just two layers of computational units, the
first nonlinear and the second linear, can approximate any continuous function to an arbitrary
degree of accuracy. The proof works by showing that an exponentially large network can
represent exponentially many “bumps” of different heights at different locations in the input
space, thereby approximating the desired function. In other words, sufficiently large networks
can implement a lookup table for continuous functions, just as sufficiently large decision trees
implement a lookup table for Boolean functions.

A variety of different activation functions are used. The most common are the following:

• The logistic or sigmoid function, which is also used in logistic regression (see page 703): Sigmoid

σ(x) = 1/(1+ e−x) .

• The ReLU function, whose name is an abbreviation for rectified linear unit: ReLU

ReLU(x) = max(0,x) .

• The softplus function, a smooth version of the ReLU function: Softplus

softplus(x) = log(1+ ex) .
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Figure 22.3 (a) A neural network with two inputs, one hidden layer of two units, and one
output unit. Not shown are the dummy inputs and their associated weights. (b) The network
in (a) unpacked into its full computation graph.

The derivative of the softplus function is the sigmoid function.
• The tanh function:Tanh

tanh(x) = e2x−1
e2x+1 .

Note that the range of tanh is (−1,+1). Tanh is a scaled and shifted version of the
sigmoid, as tanh(x)=2σ(2x)−1.

These functions are shown in Figure 22.2. Notice that all of them are monotonically nonde-
creasing, which means that their derivatives g′ are nonnegative. We will have more to say
about the choice of activation function in later sections.

Coupling multiple units together into a network creates a complex function that is a com-
position of the algebraic expressions represented by the individual units. For example, the
network shown in Figure 22.3(a) represents a function hw(x), parameterized by weights w,
that maps a two-element input vector x to a scalar output value ŷ. The internal structure of
the function mirrors the structure of the network. For example, we can write an expression
for the output ŷ as follows:

ŷ = g5(in5) = g5(w0,5 +w3,5 a3 +w4,5 a4)

= g5(w0,5 +w3,5 g3(in3)+w4,5 g4(in4))

= g5(w0,5 +w3,5 g3(w0,3 +w1,3 x1 +w2,3 x2)

+w4,5 g4(w0,4 +w1,4 x1 +w2,4 x2)) . (22.2)

Thus, we have the output ŷ expressed as a function hw(x) of the inputs and the weights.
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Figure 22.3(a) shows the traditional way a network might be depicted in a book on neu-
ral networks. A more general way to think about the network is as a computation graph Computation graph

or dataflow graph—essentially a circuit in which each node represents an elementary com- Dataflow graph

putation. Figure 22.3(b) shows the computation graph corresponding to the network in Fig-
ure 22.3(a); the graph makes each element of the overall computation explicit. It also dis-
tinguishes between the inputs (in blue) and the weights (in light mauve): the weights can be
adjusted to make the output ŷ agree more closely with the true value y in the training data.
Each weight is like a volume control knob that determines how much the next node in the
graph hears from that particular predecessor in the graph.

Just as Equation (22.1) described the operation of a unit in vector form, we can do some-
thing similar for the network as a whole. We will generally use W to denote a weight matrix;
for this network, W(1) denotes the weights in the first layer (w1,3, w1,4, etc.) and W(2) denotes
the weights in the second layer (w3,5 etc.). Finally, let g(1) and g(2) denote the activation
functions in the first and second layers. Then the entire network can be written as follows:

hw(x) = g(2)(W(2)g(1)(W(1)x)) . (22.3)

Like Equation (22.2), this expression corresponds to a computation graph, albeit a much
simpler one than the graph in Figure 22.3(b): here, the graph is simply a chain with weight
matrices feeding into each layer.

The computation graph in Figure 22.3(b) is relatively small and shallow, but the same
idea applies to all forms of deep learning: we construct computation graphs and adjust their
weights to fit the data. The graph in Figure 22.3(b) is also fully connected, meaning that Fully connected

every node in each layer is connected to every node in the next layer. This is in some sense
the default, but we will see in Section 22.3 that choosing the connectivity of the network is
also important in achieving effective learning.

22.1.2 Gradients and learning

In Section 19.6, we introduced an approach to supervised learning based on gradient de-
scent: calculate the gradient of the loss function with respect to the weights, and adjust the
weights along the gradient direction to reduce the loss. (If you have not already read Sec-
tion 19.6, we recommend strongly that you do so before continuing.) We can apply exactly
the same approach to learning the weights in computation graphs. For the weights leading
into units in the output layer—the ones that produce the output of the network, the gradient Output layer

calculation is essentially identical to the process in Section 19.6. For weights leading into
units in the hidden layers, which are not directly connected to the outputs, the process is Hidden layer

only slightly more complicated.
For now, we will use the squared loss function, L2, and we will calculate the gradient

for the network in Figure 22.3 with respect to a single training example (x,y). (For multiple
examples, the gradient is just the sum of the gradients for the individual examples.) The
network outputs a prediction ŷ=hw(x) and the true value is y, so we have

Loss(hw) = L2(y,hw(x)) = ‖y−hw(x)‖2 = (y− ŷ)2 .

To compute the gradient of the loss with respect to the weights, we need the same tools of cal-
culus we used in Chapter 19—principally the chain rule, ∂g( f (x))/∂x=g′( f (x))∂ f (x)/∂x.
We’ll start with the easy case: a weight such as w3,5 that is connected to the output unit. We
operate directly on the network-defining expressions from Equation (22.2):
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∂

∂w3,5
Loss(hw) =

∂

∂w3,5
(y− ŷ)2 =−2(y− ŷ)

∂ ŷ
∂w3,5

= −2(y− ŷ)
∂

∂w3,5
g5(in5) =−2(y− ŷ)g′5(in5)

∂

∂w3,5
in5

= −2(y− ŷ)g′5(in5)
∂

∂w3,5

(
w0,5 +w3,5 a3 +w4,5 a4

)
= −2(y− ŷ)g′5(in5)a3 . (22.4)

The simplification in the last line follows because w0,5 and w4,5 a4 do not depend on w3,5, nor
does the coefficient of w3,5, a3.

The slightly more difficult case involves a weight such as w1,3 that is not directly con-
nected to the output unit. Here, we have to apply the chain rule one more time. The first few
steps are identical, so we omit them:

∂

∂w1,3
Loss(hw) = −2(y− ŷ)g′5(in5)

∂

∂w1,3

(
w0,5 +w3,5 a3 +w4,5 a4

)
= −2(y− ŷ)g′5(in5)w3,5

∂

∂w1,3
a3

= −2(y− ŷ)g′5(in5)w3,5
∂

∂w1,3
g3(in3)

= −2(y− ŷ)g′5(in5)w3,5 g′3(in3)
∂

∂w1,3
in3

= −2(y− ŷ)g′5(in5)w3,5 g′3(in3)
∂

∂w1,3

(
w0,3 +w1,3 x1 +w2,3 x2

)
= −2(y− ŷ)g′5(in5)w3,5 g′3(in3)x1 . (22.5)

So, we have fairly simple expressions for the gradient of the loss with respect to the weights
w3,5 and w1,3.

If we define ∆5=2(ŷ− y)g′5(in5) as a sort of “perceived error” at the point where unit 5
receives its input, then the gradient with respect to w3,5 is just ∆5a3. This makes perfect sense:
if ∆5 is positive, that means ŷ is too big (recall that g′ is always nonnegative); if a3 is also
positive, then increasing w3,5 will only make things worse, whereas if a3 is negative, then
increasing w3,5 will reduce the error. The magnitude of a3 also matters: if a3 is small for this
training example, then w3,5 didn’t play a major role in producing the error and doesn’t need
to be changed much.

If we also define ∆3=∆5 w3,5 g′3(in3), then the gradient for w1,3 becomes just ∆3 x1. Thus,
the perceived error at the input to unit 3 is the perceived error at the input to unit 5, multiplied
by information along the path from 5 back to 3. This phenomenon is completely general, and
gives rise to the term back-propagation for the way that the error at the output is passed backBack-propagation

through the network.
Another important characteristic of these gradient expressions is that they have as factors

the local derivatives g′j(in j). As noted earlier, these derivatives are always nonnegative, but
they can be very close to zero (in the case of the sigmoid, softplus, and tanh functions)
or exactly zero (in the case of ReLUs), if the inputs from the training example in question
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happen to put unit j in the flat operating region. If the derivative g′j is small or zero, that
means that changing the weights leading into unit j will have a negligible effect on its output.
As a result, deep networks with many layers may suffer from a vanishing gradient—the Vanishing gradient

error signals are extinguished altogether as they are propagated back through the network.
Section 22.3.3 provides one solution to this problem.

We have shown that gradients in our tiny example network are simple expressions that
can be computed by passing information back through the network from the output units.
It turns out that this property holds more generally. In fact, as we show in Section 22.4.1,
the gradient computations for any feedforward computation graph have the same structure as
the underlying computation graph. This property follows straightforwardly from the rules of
differentiation.

We have shown the gory details of a gradient calculation, but worry not: there is no need
to redo the derivations in Equations (22.4) and (22.5) for each new network structure! All such
gradients can be computed by the method of automatic differentiation, which applies the Automatic

differentiation
rules of calculus in a systematic way to calculate gradients for any numeric program.1 In fact,
the method of back-propagation in deep learning is simply an application of reverse mode Reverse mode

differentiation, which applies the chain rule “from the outside in” and gains the efficiency
advantages of dynamic programming when the network in question has many inputs and
relatively few outputs.

All of the major packages for deep learning provide automatic differentiation, so that
users can experiment freely with different network structures, activation functions, loss func-
tions, and forms of composition without having to do lots of calculus to derive a new learning
algorithm for each experiment. This has encouraged an approach called end-to-end learn-
ing, in which a complex computational system for a task such as machine translation can be End-to-end learning

composed from several trainable subsystems; the entire system is then trained in an end-to-
end fashion from input/output pairs. With this approach, the designer need have only a vague
idea about how the overall system should be structured; there is no need to know in advance
exactly what each subsystem should do or how to label its inputs and outputs.

22.2 Computation Graphs for Deep Learning

We have established the basic ideas of deep learning: represent hypotheses as computation
graphs with tunable weights and compute the gradient of the loss function with respect to
those weights in order to fit the training data. Now we look at how to put together computation
graphs. We begin with the input layer, which is where the training or test example x is
encoded as values of the input nodes. Then we consider the output layer, where the outputs ŷ
are compared with the true values y to derive a learning signal for tuning the weights. Finally,
we look at the hidden layers of the network.

22.2.1 Input encoding

The input and output nodes of a computational graph are the ones that connect directly to the
input data x and the output data y. The encoding of input data is usually straightforward, at
least for the case of factored data where each training example contains values for n input

1 Automatic differentiation methods were originally developed in the 1960s and 1970s for optimizing the pa-
rameters of systems defined by large, complex Fortran programs.
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attributes. If the attributes are Boolean, we have n input nodes; usually false is mapped to
an input of 0 and true is mapped to 1, although sometimes −1 and +1 are used. Numeric
attributes, whether integer or real-valued, are typically used as is, although they may be scaled
to fit within a fixed range; if the magnitudes for different examples vary enormously, the
values can be mapped onto a log scale.

Images do not quite fit into the category of factored data; although an RGB image of size
X×Y pixels can be thought of as 3XY integer-valued attributes (typically with values in the
range {0, . . . ,255}), this would ignore the fact that the RGB triplets belong to the same pixel
in the image and the fact that pixel adjacency really matters. Of course, we can map adjacent
pixels onto adjacent input nodes in the network, but the meaning of adjacency is completely
lost if the internal layers of the network are fully connected. In practice, networks used with
image data have array-like internal structures that aim to reflect the semantics of adjacency.
We will see this in more detail in Section 22.3.

Categorical attributes with more than two values—like the Type attribute in the restaurant
problem from Chapter 19, which has values French, Italian, Thai, or burger)—are usually
encoded using the so-called one-hot encoding. An attribute with d possible values is repre-
sented by d separate input bits. For any given value, the corresponding input bit is set to 1 and
all the others are set to 0. This generally works better than mapping the values to integers.
If we used integers for the Type attribute, Thai would be 3 and burger would be 4. Because
the network is a composition of continuous functions, it would have no choice but to pay
attention to numerical adjacency, but in this case the numerical adjacency between Thai and
burger is semantically meaningless.

22.2.2 Output layers and loss functions

On the output side of the network, the problem of encoding the raw data values into actual
values y for the output nodes of the graph is much the same as the input encoding problem.
For example, if the network is trying to predict the Weather variable from Chapter 12, which
has values {sun,rain,cloud,snow}, we would use a one-hot encoding with four bits.

So much for the data values y. What about the prediction ŷ? Ideally, it would exactly
match the desired value y, and the loss would be zero, and we’d be done. In practice, this
seldom happens—especially before we have started the process of adjusting the weights!
Thus, we need to think about what an incorrect output value means, and how to measure the
loss. In deriving the gradients in Equations (22.4) and (22.5), we began with the squared-
error loss function. This keeps the algebra simple, but it is not the only possibility. In fact,
for most deep learning applications, it is more common to interpret the output values ŷ as
probabilities and to use the negative log likelihood as the loss function—exactly as we did
with maximum likelihood learning in Chapter 21.

Maximum likelihood learning finds the value of w that maximizes the probability of the
observed data. And because the log function is monotonic, this is equivalent to maximizing
the log likelihood of the data, which is equivalent in turn to minimizing a loss function defined
as the negative log likelihood. (Recall from page 776 that taking logs turns products of
probabilities into sums, which are more amenable for taking derivatives.) In other words, we
are looking for w∗ that minimizes the sum of negative log probabilities of the N examples:

w∗ = argmin
w
−

N

∑
j=1

logPw(y j |x j) . (22.6)
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In the deep learning literature, it is common to talk about minimizing the cross-entropy Cross-entropy

loss. Cross-entropy, written as H(P,Q), is a kind of measure of dissimilarity between two
distributions P and Q.2 The general definition is

H(P,Q) = Ez∼P(z)[logQ(z)] =
∫

P(z) logQ(z)dz . (22.7)

In machine learning, we typically use this definition with P being the true distribution over
training examples, P∗(x,y), and Q being the predictive hypothesis Pw(y |x). Minimizing the
cross-entropy H(P∗(x,y),Pw(y |x)) by adjusting w makes the hypothesis agree as closely as
possible with the true distribution. In reality, we cannot minimize this cross-entropy because
we do not have access to the true data distribution P∗(x,y); but we do have access to samples
from P∗(x,y), so the sum over the actual data in Equation (22.6) approximates the expectation
in Equation (22.7).

To minimize the negative log likelihood (or the cross-entropy), we need to be able to
interpret the output of the network as a probability. For example, if the network has one
output unit with a sigmoid activation function and is learning a Boolean classification, we can
interpret the output value directly as the probability that the example belongs to the positive
class. (Indeed, this is exactly how logistic regression is used; see page 702.) Thus, for
Boolean classification problems, we commonly use a sigmoid output layer.

Multiclass classification problems are very common in machine learning. For example,
classifiers used for object recognition often need to recognize thousands of distinct categories
of objects. Natural language models that try to predict the next word in a sentence may have
to choose among tens of thousands of possible words. For this kind of prediction, we need
the network to output a categorical distribution—that is, if there are d possible answers, we
need d output nodes that represent probabilities summing to 1.

To achieve this, we use a softmax layer, which outputs a vector of d values given a vector Softmax

of input values in=〈in1, . . . , ind〉. The kth element of that output vector is given by

softmax(in)k =
eink

∑
d
k′=1 eink′

.

By construction, the softmax function outputs a vector of nonnegative numbers that sum to 1.
As usual, the input ink to each of the output nodes will be a weighted linear combination of
the outputs of the preceding layer. Because of the exponentials, the softmax layer accentuates
differences in the inputs: for example, if the vector of inputs is given by in=〈5,2,0,−2〉, then
the outputs are 〈0.946,0.047,0.006,0.001〉. The softmax, is, nonetheless, smooth and differ-
entiable (Exercise 22.SOFG), unlike the max function. It is easy to show (Exercise 22.SMSG)
that the sigmoid is a softmax with d=2. In other words, just as sigmoid units propagate
binary class information through a network, softmax units propagate multiclass information.

For a regression problem, where the target value y is continuous, it is common to use a
linear output layer—in other words, ŷ j = in j, without any activation function g—and to inter-
pret this as the mean of a Gaussian prediction with fixed variance. As we noted on page 780,
maximizing likelihood (i.e., minimizing negative log likelihood) with a fixed-variance Gaus-
sian is the same as minimizing squared error. Thus, a linear output layer interpreted in this

2 Cross-entropy is not a distance in the usual sense because H(P,P) is not zero; rather, it equals the entropy
H(P). It is easy to show that H(P,Q) = H(P)+DKL(P‖Q), where DKL is the Kullback–Leibler divergence,
which does satisfy DKL(P‖P)=0. Thus, for fixed P, varying Q to minimize the cross-entropy also minimizes the
KL divergence.
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way does classical linear regression. The input features to this linear regression are the out-
puts from the preceding layer, which typically result from multiple nonlinear transformations
of the original inputs to the network.

Many other output layers are possible. For example, a mixture density layer representsMixture density

the outputs using a mixture of Gaussian distributions. (See Section 21.3.1 for more details on
Gaussian mixtures.) Such layers predict the relative frequency of each mixture component,
the mean of each component, and the variance of each component. As long as these output
values are interpreted appropriately by the loss function as defining the probability for the
true output value y, the network will, after training, fit a Gaussian mixture model in the space
of features defined by the preceding layers.

22.2.3 Hidden layers

During the training process, a neural network is shown many input values x and many corre-
sponding output values y. While processing an input vector x, the neural network performs
several intermediate computations before producing the output y. We can think of the values
computed at each layer of the network as a different representation for the input x. Each
layer transforms the representation produced by the preceding layer to produce a new rep-
resentation. The composition of all these transformations succeeds—if all goes well—in
transforming the input into the desired output. Indeed, one hypothesis for why deep learning
works well is that the complex end-to-end transformation that maps from input to output—
say, from an input image to the output category “giraffe”—is decomposed by the many layers
into the composition of many relatively simple transformations, each of which is fairly easy
to learn by a local updating process.

In the process of forming all these internal transformations, deep networks often discover
meaningful intermediate representations of the data. For example, a network learning to
recognize complex objects in images may form internal layers that detect useful subunits:
edges, corners, ellipses, eyes, faces—cats. Or it may not—deep networks may form internal
layers whose meaning is opaque to humans, even though the output is still correct.

The hidden layers of neural networks are typically less diverse than the output layers.
For the first 25 years of research with multilayer networks (roughly 1985–2010), internal
nodes used sigmoid and tanh activation functions almost exclusively. From around 2010
onwards, the ReLU and softplus become more popular, partly because they are believed to
avoid the problem of vanishing gradients mentioned in Section 22.1.2. Experimentation with
increasingly deep networks suggested that, in many cases, better learning was obtained with
deep and relatively narrow networks rather than shallow, wide networks, given a fixed total
number of weights. A typical example of this is shown in Figure 22.7 on page 820.

There are, of course, many other structures to consider for computation graphs, besides
just playing with width and depth. At the time of writing, there is little understanding as
to why some structures seem to work better than others for some particular problem. With
experience, practitioners gain some intuition as to how to design networks and how to fix
them when they don’t work, just as chefs gain intuition for how to design recipes and how
to fix them when they taste unpleasant. For this reason, tools that facilitate rapid exploration
and evaluation of different structures are essential for success in real-world problems.
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22.3 Convolutional Networks

We mentioned in Section 22.2.1 that an image cannot be thought of as a simple vector of in-
put pixel values, primarily because adjacency of pixels really matters. If we were to construct
a network with fully connected layers and an image as input, we would get the same result
whether we trained with unperturbed images or with images all of whose pixels had been ran-
domly permuted. Furthermore, suppose there are n pixels and n units in the first hidden layer,
to which the pixels provide input. If the input and the first hidden layer are fully connected,
that means n2 weights; for a typical megapixel RGB image, that’s 9 trillion weights. Such a
vast parameter space would require correspondingly vast numbers of training images and a
huge computational budget to run the training algorithm.

These considerations suggest that we should construct the first hidden layer so that each J
hidden unit receives input from only a small, local region of the image. This kills two birds
with one stone. First, it respects adjacency, at least locally. (And we will see later that if
subsequent layers have the same locality property, then the network will respect adjacency in
a global sense.) Second, it cuts down the number of weights: if each local region has l� n
pixels, then there will be ln� n2 weights in all.

So far, so good. But we are missing another important property of images: roughly
speaking, anything that is detectable in one small, local region of the image—perhaps an eye
or a blade of grass—would look the same if it appeared in another small, local region of the
image. In other words, we expect image data to exhibit approximate spatial invariance, at Spatial invariance

least at small to moderate scales.3 We don’t necessarily expect the top halves of photos to
look like bottom halves, so there is a scale beyond which spatial invariance no longer holds.

Local spatial invariance can be achieved by constraining the l weights connecting a local
region to a unit in the hidden layer to be the same for each hidden unit. (That is, for hidden
units i and j, the weights w1,i, . . . ,wl,i are the same as w1, j, . . . ,wl, j.) This makes the hidden
units into feature detectors that detect the same feature wherever it appear in the image.
Typically, we want the first hidden layer to detect many kinds of features, not just one; so
for each local image region we might have d hidden units with d distinct sets of weights.
This means that there are dl weights in all—a number that is not only far smaller than n2,
but is actually independent of n, the image size. Thus, by injecting some prior knowledge—
namely, knowledge of adjacency and spatial invariance—we can develop models that have
far fewer parameters and can learn much more quickly.

A convolutional neural network (CNN) is one that contains spatially local connections, Convolutional neural
network (CNN)

at least in the early layers, and has patterns of weights that are replicated across the units
in each layer. A pattern of weights that is replicated across multiple local regions is called
a kernel and the process of applying the kernel to the pixels of the image (or to spatially Kernel

organized units in a subsequent layer) is called convolution.4 Convolution

Kernels and convolutions are easiest to illustrate in one dimension rather than two or
more, so we will assume an input vector x of size n, corresponding to n pixels in a one-

3 Similar ideas can be applied to process time-series data sources such as audio waveforms. These typically
exhibit temporal invariance—a word sounds the same no matter what time of day it is uttered. Recurrent neural
networks (Section 22.6) automatically exhibit temporal invariance.
4 In the terminology of signal processing, we would call this operation a cross-correlation, not a convolution.
But “convolution” is used within the field of neural networks.



812 Chapter 22 Deep Learning

5 6 6 2 5 6 5

5 9 4

+1
–1

+1 +1
–1

+1 +1
–1

+1

Figure 22.4 An example of a one-dimensional convolution operation with a kernel of size
l=3 and a stride s=2. The peak response is centered on the darker (lower intensity) input
pixel. The results would usually be fed through a nonlinear activation function (not shown)
before going to the next hidden layer.

dimensional image, and a vector kernel k of size l. (For simplicity we will assume that l is an
odd number.) All the ideas carry over straightforwardly to higher-dimensional cases.

We write the convolution operation using the ∗ symbol, for example: z = x ∗ k. The
operation is defined as follows:

zi =
l

∑
j=1

k jx j+i−(l+1)/2 . (22.8)

In other words, for each output position i, we take the dot product between the kernel k and a
snippet of x centered on xi with width l.

The process is illustrated in Figure 22.4 for a kernel vector [+1,−1,+1], which detects
a darker point in the 1D image. (The 2D version might detect a darker line.) Notice that in
this example the pixels on which the kernels are centered are separated by a distance of 2
pixels; we say the kernel is applied with a stride s=2. Notice that the output layer has fewerStride

pixels: because of the stride, the number of pixels is reduced from n to roughly n/s. (In two
dimensions, the number of pixels would be roughly n/sxsy, where sx and sy are the strides in
the x and y directions in the image.) We say “roughly” because of what happens at the edge
of the image: in Figure 22.4 the convolution stops at the edges of the image, but one can also
pad the input with extra pixels (either zeroes or copies of the outer pixels) so that the kernel
can be applied exactly bn/sc times. For small kernels, we typically use s=1, so the output
has the same dimensions as the image (see Figure 22.5).

The operation of applying a kernel across an image can be implemented in the obvious
way by a program with suitable nested loops; but it can also be formulated as a single matrix
operation, just like the application of the weight matrix in Equation (22.1). For example, the
convolution illustrated in Figure 22.4 can be viewed as the following matrix multiplication:(

+1 −1 +1 0 0 0 0
0 0 +1 −1 +1 0 0
0 0 0 0 +1 −1 +1

)

5
6
6
2
5
6
5


=

(
5
9
4

)
. (22.9)

In this weight matrix, the kernel appears in each row, shifted according to the stride relative
to the previous row, One wouldn’t necessarily construct the weight matrix explicitly—it is
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Figure 22.5 The first two layers of a CNN for a 1D image with a kernel size l=3 and a
stride s=1. Padding is added at the left and right ends in order to keep the hidden layers the
same size as the input. Shown in red is the receptive field of a unit in the second hidden layer.
Generally speaking, the deeper the unit, the larger the receptive field.

mostly zeroes, after all—but the fact that convolution is a linear matrix operation serves as a
reminder that gradient descent can be applied easily and effectively to CNNs, just as it can to
plain vanilla neural networks.

As mentioned earlier, there will be d kernels, not just one; so, with a stride of 1, the
output will be d times larger. This means that a two-dimensional input array becomes a
three-dimensional array of hidden units, where the third dimension is of size d. It is im-
portant to organize the hidden layer this way, so that all the kernel outputs from a particular
image location stay associated with that location. Unlike the spatial dimensions of the image,
however, this additional “kernel dimension” does not have any adjacency properties, so it
does not make sense to run convolutions along it.

CNNs were inspired originally by models of the visual cortex proposed in neuroscience.
In those models, the receptive field of a neuron is the portion of the sensory input that can Receptive field

affect that neuron’s activation. In a CNN, the receptive field of a unit in the first hidden layer
is small—just the size of the kernel, i.e., l pixels. In the deeper layers of the network, it
can be much larger. Figure 22.5 illustrates this for a unit in the second hidden layer, whose
receptive field contains five pixels. When the stride is 1, as in the figure, a node in the mth
hidden layer will have a receptive field of size (l−1)m+1; so the growth is linear in m. (In
a 2D image, each dimension of the receptive field grows linearly with m, so the area grows
quadratically.) When the stride is larger than 1, each pixel in layer m represents s pixels in
layer m−1; therefore, the receptive field grows as O(lsm)—that is, exponentially with depth.
The same effect occurs with pooling layers, which we discuss next.

22.3.1 Pooling and downsampling

A pooling layer in a neural network summarizes a set of adjacent units from the preceding Pooling

layer with a single value. Pooling works just like a convolution layer, with a kernel size l and
stride s, but the operation that is applied is fixed rather than learned. Typically, no activation
function is associated with the pooling layer. There are two common forms of pooling:

• Average-pooling computes the average value of its l inputs. This is identical to con-
volution with a uniform kernel vector k=[1/l, . . . ,1/l]. If we set l=s, the effect is to
coarsen the resolution of the image—to downsample it—by a factor of s. An object Downsampling

that occupied, say, 10s pixels would now occupy only 10 pixels after pooling. The same
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learned classifier that would be able to recognize the object at a size of 10 pixels in the
original image would now be able to recognize that object in the pooled image, even
if it was too big to recognize in the original image. In other words, average-pooling
facilitates multiscale recognition. It also reduces the number of weights required in
subsequent layers, leading to lower computational cost and possibly faster learning.

• Max-pooling computes the maximum value of its l inputs. It can also be used purely
for downsampling, but it has a somewhat different semantics. Suppose we applied max-
pooling to the hidden layer [5,9,4] in Figure 22.4: the result would be a 9, indicating
that somewhere in the input image there is a darker dot that is detected by the kernel.
In other words, max-pooling acts as a kind of logical disjunction, saying that a feature
exists somewhere in the unit’s receptive field.

If the goal is to classify the image into one of c categories, then the final layer of the network
will be a softmax with c output units. The early layers of the CNN are image-sized, so
somewhere in between there must be significant reductions in layer size. Convolution layers
and pooling layers with stride larger than 1 all serve to reduce the layer size. It’s also possible
to reduce the layer size simply by having a fully connected layer with fewer units than the
preceding layer. CNNs often have one or two such layers preceding the final softmax layer.

22.3.2 Tensor operations in CNNs

We saw in Equations (22.1) and (22.3) that the use of vector and matrix notation can be helpful
in keeping mathematical derivations simple and elegant and providing concise descriptions of
computation graphs. Vectors and matrices are one-dimensional and two-dimensional special
cases of tensors, which (in deep learning terminology) are simply multidimensional arraysTensor

of any dimension.5

For CNNs, tensors are a way of keeping track of the “shape” of the data as it progresses
through the layers of the network. This is important because the whole notion of convolution
depends on the idea of adjacency: adjacent data elements are assumed to be semantically
related, so it makes sense to apply operators to local regions of the data. Moreover, with
suitable language primitives for constructing tensors and applying operators, the layers them-
selves can be described concisely as maps from tensor inputs to tensor outputs.

A final reason for describing CNNs in terms of tensor operations is computational effi-
ciency: given a description of a network as a sequence of tensor operations, a deep learning
software package can generate compiled code that is highly optimized for the underlying
computational substrate. Deep learning workloads are often run on GPUs (graphics process-
ing units) or TPUs (tensor processing units), which make available a high degree of paral-
lelism. For example, one of Google’s third-generation TPU pods has throughput equivalent
to about ten million laptops. Taking advantage of these capabilities is essential if one is train-
ing a large CNN on a large database of images. Thus, it is common to process not one image
at a time but many images in parallel; as we will see in Section 22.4, this also aligns nicely
with the way that the stochastic gradient descent algorithm calculates gradients with respect
to a minibatch of training examples.

Let us put all this together in the form of an example. Suppose we are training on
256×256 RGB images with a minibatch size of 64. The input in this case will be a four-

5 The proper mathematical definition of tensors requires that certain invariances hold under a change of basis.
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dimensional tensor of size 256×256×3×64. Then we apply 96 kernels of size 5×5×3
with a stride of 2 in both x and y directions in the image. This gives an output tensor of size
128×128×96×64. Such a tensor is often called a feature map, since it shows how each Feature map

feature extracted by a kernel appears across the entire image; in this case it is composed of
96 channels, where each channel carries information from one feature. Notice that unlike the Channel

input tensor, this feature map no longer has dedicated color channels; nonetheless, the color
information may still be present in the various feature channels if the learning algorithm finds
color to be useful for the final predictions of the network.

22.3.3 Residual networks

Residual networks are a popular and successful approach to building very deep networks Residual network

that avoid the problem of vanishing gradients.
Typical deep models use layers that learn a new representation at layer i by completely re-

placing the representation at layer i−1. Using the matrix–vector notation that we introduced
in Equation (22.3), with z(i) being the values of the units in layer i, we have

z(i) = f (z(i−1)) = g(i)(W(i)z(i−1)) .

Because each layer completely replaces the representation from the preceding layer, all of
the layers must learn to do something useful. Each layer must, at the very least, preserve the
task-relevant information contained in the preceding layer. If we set W(i) = 0 for any layer i,
the entire network ceases to function. If we also set W(i−1) = 0, the network would not even
be able to learn: layer i would not learn because it would observe no variation in its input
from layer i−1, and layer i−1 would not learn because the back-propagated gradient from
layer i would always be zero. Of course, these are extreme examples, but they illustrate the
need for layers to serve as conduits for the signals passing through the network.

The key idea of residual networks is that a layer should perturb the representation from
the previous layer rather than replace it entirely. If the learned perturbation is small, the next
layer is close to being a copy of the previous layer. This is achieved by the following equation
for layer i in terms of layer i−1:

z(i) = g(i)r (z(i−1)+ f (z(i−1))) , (22.10)

where gr denotes the activation functions for the residual layer. Here we think of f as the
residual, perturbing the default behavior of passing layer i−1 through to layer i. The function Residual

used to compute the residual is typically a neural network with one nonlinear layer combined
with one linear layer:

f (z) = Vg(Wz) ,

where W and V are learned weight matrices with the usual bias weights added.
Residual networks make it possible to learn significantly deeper networks reliably. Con-

sider what happens if we set V=0 for a particular layer in order to disable that layer. Then
the residual f disappears and Equation (22.10) simplifies to

z(i) = gr(z
(i−1)) .

Now suppose that gr consists of ReLU activation functions and that z(i−1) also applies a ReLU
function to its inputs: z(i−1)=ReLU(in(i−1)). In that case we have

z(i) = gr(z
(i−1)) = ReLU(z(i−1)) = ReLU(ReLU(in(i−1))) = ReLU(in(i−1)) = z(i−1) ,
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where the penultimate step follows because ReLU(ReLU(x))=ReLU(x). In other words,
in residual nets with ReLU activations, a layer with zero weights simply passes its inputs
through with no change. The rest of the network functions just as if the layer had never
existed. Whereas traditional networks must learn to propagate information and are subject
to catastrophic failure of information propagation for bad choices of the parameters, residual
networks propagate information by default.

Residual networks are often used with convolutional layers in vision applications, but
they are in fact a general-purpose tool that makes deep networks more robust and allows
researchers to experiment more freely with complex and heterogeneous network designs. At
the time of writing, it is not uncommon to see residual networks with hundreds of layers.
The design of such networks is evolving rapidly, so any additional specifics we might provide
would probably be outdated before reaching printed form. Readers desiring to know the best
architectures for specific applications should consult recent research publications.

22.4 Learning Algorithms

Training a neural network consists of modifying the network’s parameters so as to minimize
the loss function on the training set. In principle, any kind of optimization algorithm could
be used. In practice, modern neural networks are almost always trained with some variant of
stochastic gradient descent (SGD).

We covered standard gradient descent and its stochastic version in Section 19.6.2. Here,
the goal is to minimize the loss L(w), where w represents all of the parameters of the network.
Each update step in the gradient descent process looks like this:

w← w−α∇wL(w) ,

where α is the learning rate. For standard gradient descent, the loss L is defined with respect
to the entire training set. For SGD, it is defined with respect to a minibatch of m examples
chosen randomly at each step.

As noted in Section 4.2, the literature on optimization methods for high-dimensional
continuous spaces includes innumerable enhancements to basic gradient descent. We will
not cover all of them here, but it is worth mentioning a few important considerations that are
particularly relevant to training neural networks:

• For most networks that solve real-world problems, both the dimensionality of w and the
size of the training set are very large. These considerations militate strongly in favor
of using SGD with a relatively small minibatch size m: stochasticity helps the algo-
rithm escape small local minima in the high-dimensional weight space (as in simulated
annealing—see page 132); and the small minibatch size ensures that the computational
cost of each weight update step is a small constant, independent of the training set size.

• Because the gradient contribution of each training example in the SGD minibatch can
be computed independently, the minibatch size is often chosen so as to take maximum
advantage of hardware parallelism in GPUs or TPUs.

• To improve convergence, it is usually a good idea to use a learning rate that decreases
over time. Choosing the right schedule is usually a matter of trial and error.

• Near a local or global minimum of the loss function with respect to the entire training
set, the gradients estimated from small minibatches will often have high variance and
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Figure 22.6 Illustration of the back-propagation of gradient information in an arbitrary com-
putation graph. The forward computation of the output of the network proceeds from left to
right, while the back-propagation of gradients proceeds from right to left.

may point in entirely the wrong direction, making convergence difficult. One solution
is to increase the minibatch size as training proceeds; another is to incorporate the idea
of momentum, which keeps a running average of the gradients of past minibatches in Momentum

order to compensate for small minibatch sizes.
• Care must be taken to mitigate numerical instabilities that may arise due to overflow,

underflow, and rounding error. These are particularly problematic with the use of ex-
ponentials in softmax, sigmoid, and tanh activation functions, and with the iterated
computations in very deep networks and recurrent networks (Section 22.6) that lead to
vanishing and exploding activations and gradients.

Overall, the process of learning the weights of the network is usually one that exhibits di-
minishing returns. We run until it is no longer practical to decrease the test error by running
longer. Usually this does not mean we have reached a global or even a local minimum of
the loss function. Instead, it means we would have to make an impractically large number
of very small steps to continue reducing the cost, or that additional steps would only cause
overfitting, or that estimates of the gradient are too inaccurate to make further progress.

22.4.1 Computing gradients in computation graphs

On page 806, we derived the gradient of the loss function with respect to the weights in a
specific (and very simple) network. We observed that the gradient could be computed by
back-propagating error information from the output layer of the network to the hidden layers.
We also said that this result holds in general for any feedforward computation graph. Here,
we explain how this works.

Figure 22.6 shows a generic node in a computation graph. (The node h has in-degree and
out-degree 2, but nothing in the analysis depends on this.) During the forward pass, the node
computes some arbitrary function h from its inputs, which come from nodes f and g. In turn,
h feeds its value to nodes j and k.

The back-propagation process passes messages back along each link in the network. At
each node, the incoming messages are collected and new messages are calculated to pass
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back to the next layer. As the figure shows, the messages are all partial derivatives of the loss
L. For example, the backward message ∂L/∂h j is the partial derivative of L with respect to
j’s first input, which is the forward message from h to j. Now, h affects L through both j and
k, so we have

∂L/∂h = ∂L/∂h j +∂L/∂hk . (22.11)

With this equation, the node h can compute the derivative of L with respect to h by summing
the incoming messages from j and k. Now, to compute the outgoing messages ∂L/∂ fh and
∂L/∂gh, we use the following equations:

∂L
∂ fh

=
∂L
∂h

∂h
∂ fh

and
∂L
∂gh

=
∂L
∂h

∂h
∂gh

. (22.12)

In Equation (22.12), ∂L/∂h was already computed by Equation (22.11), and ∂h/∂ fh and
∂h/∂gh are just the derivatives of h with respect to its first and second arguments, respec-
tively. For example, if h is a multiplication node—that is, h( f ,g)= f · g—then ∂h/∂ fh=g
and ∂h/∂gh= f . Software packages for deep learning typically come with a library of node
types (addition, multiplication, sigmoid, and so on), each of which knows how to compute its
own derivatives as needed for Equation (22.12).

The back-propagation process begins with the output nodes, where each initial message
∂L/∂ ŷ j is calculated directly from the expression for L in terms of the predicted value ŷ
and the true value y from the training data. At each internal node, the incoming backward
messages are summed according to Equation (22.11) and the outgoing messages are generated
from Equation (22.12). The process terminates at each node in the computation graph that
represents a weight w (e.g., the light mauve ovals in Figure 22.3(b)). At that point, the
sum of the incoming messages to w is ∂L/∂w—precisely the gradient we need to update w.
Exercise 22.BPRE asks you to apply this process to the simple network in Figure 22.3 in order
to rederive the gradient expressions in Equations (22.4) and (22.5).

Weight-sharing, as used in convolutional networks (Section 22.3) and recurrent networks
(Section 22.6), is handled simply by treating each shared weight as a single node with multiple
outgoing arcs in the computation graph. During back-propagation, this results in multiple
incoming gradient messages. By Equation (22.11), this means that the gradient for the shared
weight is the sum of the gradient contributions from each place it is used in the network.

It is clear from this description of the back-propagation process that its computational
cost is linear in the number of nodes in the computation graph, just like the cost of the for-
ward computation. Furthermore, because the node types are typically fixed when the network
is designed, all of the gradient computations can be prepared in symbolic form in advance
and compiled into very efficient code for each node in the graph. Note also that the mes-
sages in Figure 22.6 need not be scalars: they could equally be vectors, matrices, or higher-
dimensional tensors, so that the gradient computations can be mapped onto GPUs or TPUs to
benefit from parallelism.

One drawback of back-propagation is that it requires storing most of the intermediate
values that were computed during forward propagation in order to calculate gradients in the
backward pass. This means that the total memory cost of training the network is proportional
to the number of units in the entire network. Thus, even if the network itself is represented
only implicitly by propagation code with lots of loops, rather than explicitly by a data struc-
ture, all of the intermediate results of that propagation code have to be stored explicitly.
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22.4.2 Batch normalization

Batch normalization is a commonly used technique that improves the rate of convergence of Batch normalization

SGD by rescaling the values generated at the internal layers of the network from the examples
within each minibatch. Although the reasons for its effectiveness are not well understood at
the time of writing, we include it because it confers significant benefits in practice. To some
extent, batch normalization seems to have effects similar to those of the residual network.

Consider a node z somewhere in the network: the values of z for the m examples in a
minibatch are z1, . . . ,zm. Batch normalization replaces each zi with a new quantity ẑi:

ẑi = γ
zi−µ√
ε+σ2

+β ,

where µ is the mean value of z across the minibatch, σ is the standard deviation of z1, . . . ,zm,
ε is a small constant added to prevent division by zero, and γ and β are learned parameters.

Batch normalization standardizes the mean and variance of the values, as determined by
the values of β and γ. This makes it much simpler to train a deep network. Without batch
normalization, information can get lost if a layer’s weights are too small, and the standard
deviation at that layer decays to near zero. Batch normalization prevents this from happening.
It also reduces the need for careful initialization of all the weights in the network to make sure
that the nodes in each layer are in the right operating region to allow information to propagate.

With batch normalization, we usually include β and γ, which may be node-specific or
layer-specific, among the parameters of the network, so that they are included in the learning
process. After training, β and γ are fixed at their learned values.

22.5 Generalization

So far we have described how to fit a neural network to its training set, but in machine learn-
ing the goal is to generalize to new data that has not been seen previously, as measured by
performance on a test set. In this section, we focus on three approaches to improving gener-
alization performance: choosing the right network architecture, penalizing large weights, and
randomly perturbing the values passing through the network during training.

22.5.1 Choosing a network architecture

A great deal of effort in deep learning research has gone into finding network architectures
that generalize well. Indeed, for each particular kind of data—images, speech, text, video,
and so on—a good deal of the progress in performance has come from exploring different
kinds of network architectures and varying the number of layers, their connectivity, and the
types of node in each layer.6

Some neural network architectures are explicitly designed to generalize well on particular
types of data: convolutional networks encode the idea that the same feature extractor is useful
at all locations across a spatial grid, and recurrent networks encode the idea that the same
update rule is useful at all points in a stream of sequential data. To the extent that these
assumptions are valid, we expect convolutional architectures to generalize well on images
and recurrent networks to generalize well on text and audio signals.

6 Noting that much of this incremental, exploratory work is carried out by graduate students, some have called
the process graduate student descent (GSD).
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Figure 22.7 Test-set error as a function of layer width (as measured by total number of
weights) for three-layer and eleven-layer convolutional networks. The data come from early
versions of Google’s system for transcribing addresses in photos taken by Street View cars
(Goodfellow et al., 2014).

One of the most important empirical findings in the field of deep learning is that when
comparing two networks with similar numbers of weights, the deeper network usually gives
better generalization performance. Figure 22.7 shows this effect for at least one real-world
application—recognizing house numbers. The results show that for any fixed number of pa-
rameters, an eleven-layer network gives much lower test-set error than a three-layer network.

Deep learning systems perform well on some but not all tasks. For tasks with high-
dimensional inputs—images, video, speech signals, etc.—they perform better than any other
pure machine learning approaches. Most of the algorithms described in Chapter 19 can handle
high-dimensional input only if it is preprocessed using manually designed features to reduce
the dimensionality. This preprocessing approach, which prevailed prior to 2010, has not
yielded performance comparable to that achieved by deep learning systems.

Clearly, deep learning models are capturing some important aspects of these tasks. In par-
ticular, their success implies that the tasks can be solved by parallel programs with a relatively
small number of steps (10 to 103 rather than, say, 107). This is perhaps not surprising, be-
cause these tasks are typically solved by the brain in less than a second, which is time enough
for only a few tens of sequential neuron firings. Moreover, by examining the internal-layer
representations learned by deep convolutional networks for vision tasks, we find evidence
that the processing steps seem to involve extracting a sequence of increasingly abstract repre-
sentations of the scene, beginning with tiny edges, dots, and corner features and ending with
entire objects and arrangements of multiple objects.

On the other hand, because they are simple circuits, deep learning models lack the com-
positional and quantificational expressive power that we see in first-order logic (Chapter 8)
and context-free grammars (Chapter 24).

Although deep learning models generalize well in many cases, they may also produce
unintuitive errors. They tend to produce input–output mappings that are discontinuous, so
that a small change to an input can cause a large change in the output. For example, it may
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be possible to alter just a few pixels in an image of a dog and cause the network to classify
the dog as an ostrich or a school bus—even though the altered image still looks exactly like a
dog. An altered image of this kind is called an adversarial example. Adversarial example

In low-dimensional spaces it is hard to find adversarial examples. But for an image with
a million pixel values, it is often the case that even though most of the pixels contribute to
the image being classified in the middle of the “dog” region of the space, there are a few
dimensions where the pixel value is near the boundary to another category. An adversary
with the ability to reverse engineer the network can find the smallest vector difference that
would move the image over the border.

When adversarial examples were first discovered, they set off two worldwide scrambles:
one to find learning algorithms and network architectures that would not be susceptible to
adversarial attack, and another to create ever-more-effective adversarial attacks against all
kinds of learning systems. So far the attackers seem to be ahead. In fact, whereas it was
assumed initially that one would need access to the internals of the trained network in order
to construct an adversarial example specifically for that network, it has turned out that one
can construct robust adversarial examples that fool multiple networks with different architec-
tures, hyperparameters, and training sets. These findings suggest that deep learning models
recognize objects in ways that are quite different from the human visual system.

22.5.2 Neural architecture search

Unfortunately, we don’t yet have a clear set of guidelines to help you choose the best network
architecture for a particular problem. Success in deploying a deep learning solution requires
experience and good judgment.

From the earliest days of neural network research, attempts have been made to automate
the process of architecture selection. We can think of this as a case of hyperparameter tuning
(Section 19.4.4), where the hyperparameters determine the depth, width, connectivity, and
other attributes of the network. However, there are so many choices to be made that simple
approaches like grid search can’t cover all possibilities in a reasonable amount of time.

Therefore, it is common to use neural architecture search to explore the state space of Neural architecture
search

possible network architectures. Many of the search techniques and learning techniques we
covered earlier in the book have been applied to neural architecture search.

Evolutionary algorithms have been popular because it is sensible to do both recombina-
tion (joining parts of two networks together) and mutation (adding or removing a layer or
changing a parameter value). Hill climbing can also be used with these same mutation op-
erations. Some researchers have framed the problem as reinforcement learning, and some
as Bayesian optimization. Another possibility is to treat the architectural possibilities as a
continuous differentiable space and use gradient descent to find a locally optimal solution.

For all these search techniques, a major challenge is estimating the value of a candidate
network. The straightforward way to evaluate an architecture is to train it on a test set for
multiple batches and then evaluate its accuracy on a validation set. But with large networks
that could take many GPU-days.

Therefore, there have been many attempts to speed up this estimation process by elim-
inating or at least reducing the expensive training process. We can train on a smaller data
set. We can train for a small number of batches and predict how the network would improve
with more batches. We can use a reduced version of the network architecture that we hope
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retains the properties of the full version. We can train one big network and then search for
subgraphs of the network that perform better; this search can be fast because the subgraphs
share parameters and don’t have to be retrained.

Another approach is to learn a heuristic evaluation function (as was done for A∗ search).
That is, start by choosing a few hundred network architectures and train and evaluate them.
That gives us a data set of (network, score) pairs. Then learn a mapping from the features of a
network to a predicted score. From that point on we can generate a large number of candidate
networks and quickly estimate their value. After a search through the space of networks, the
best one(s) can be fully evaluated with a complete training procedure.

22.5.3 Weight decay

In Section 19.4.3 we saw that regularization—limiting the complexity of a model—can aid
generalization. This is true for deep learning models as well. In the context of neural networks
we usually call this approach weight decay.Weight decay

Weight decay consists of adding a penalty λ∑i, j W 2
i, j to the loss function used to train the

neural network, where λ is a hyperparameter controlling the strength of the penalty and the
sum is usually taken over all of the weights in the network. Using λ=0 is equivalent to not
using weight decay, while using larger values of λ encourages the weights to become small.
It is common to use weight decay with λ near 10−4.

Choosing a specific network architecture can be seen as an absolute constraint on the
hypothesis space: a function is either representable within that architecture or it is not. Loss
function penalty terms such as weight decay offer a softer constraint: functions represented
with large weights are in the function family, but the training set must provide more evidence
in favor of these functions than is required to choose a function with small weights.

It is not straightforward to interpret the effect of weight decay in a neural network. In
networks with sigmoid activation functions, it is hypothesized that weight decay helps to
keep the activations near the linear part of the sigmoid, avoiding the flat operating region
that leads to vanishing gradients. With ReLU activation functions, weight decay seems to be
beneficial, but the explanation that makes sense for sigmoids no longer applies because the
ReLU’s output is either linear or zero. Moreover, with residual connections, weight decay
encourages the network to have small differences between consecutive layers rather than
small absolute weight values. Despite these differences in the behavior of weight decay
across many architectures, weight decay is still widely useful.

One explanation for the beneficial effect of weight decay is that it implements a form of
maximum a posteriori (MAP) learning (see page 774). Letting X and y stand for the inputs
and outputs across the entire training set, the maximum a posteriori hypothesis hMAP satisfies

hMAP = argmax
w

P(y |X,W)P(W)

= argmin
w

[− logP(y |X,W)− logP(W)] .

The first term is the usual cross-entropy loss; the second term prefers weights that are likely
under a prior distribution. This aligns exactly with a regularized loss function if we set

logP(W) =−λ∑
i, j

W 2
i, j ,

which means that P(W) is a zero-mean Gaussian prior.
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22.5.4 Dropout

Another way that we can intervene to reduce the test-set error of a network—at the cost of
making it harder to fit the training set—is to use dropout. At each step of training, dropout Dropout

applies one step of back-propagation learning to a new version of the network that is created
by deactivating a randomly chosen subset of the units. This is a rough and very low-cost
approximation to training a large ensemble of different networks (see Section 19.8).

More specifically, let us suppose we are using stochastic gradient descent with minibatch
size m. For each minibatch, the dropout algorithm applies the following process to every
node in the network: with probability p, the unit output is multiplied by a factor of 1/p;
otherwise, the unit output is fixed at zero. Dropout is typically applied to units in the hidden
layers with p=0.5; for input units, a value of p=0.8 turns out to be most effective. This
process produces a thinned network with about half as many units as the original, to which
back-propagation is applied with the minibatch of m training examples. The process repeats
in the usual way until training is complete. At test time, the model is run with no dropout.

We can think of dropout from several perspectives:

• By introducing noise at training time, the model is forced to become robust to noise.
• As noted above, dropout approximates the creation of a large ensemble of thinned net-

works. This claim can be verified analytically for linear models, and appears to hold
experimentally for deep learning models.

• Hidden units trained with dropout must learn not only to be useful hidden units; they
must also learn to be compatible with many other possible sets of other hidden units
that may or may not be included in the full model. This is similar to the selection
processes that guide the evolution of genes: each gene must not only be effective in its
own function, but must work well with other genes, whose identity in future organisms
may vary considerably.

• Dropout applied to later layers in a deep network forces the final decision to be made
robustly by paying attention to all of the abstract features of the example rather than
focusing on just one and ignoring the others. For example, a classifier for animal images
might be able to achieve high performance on the training set just by looking at the
animal’s nose, but would presumably fail on a test case where the nose was obscured or
damaged. With dropout, there will be training cases where the internal “nose unit” is
zeroed out, causing the learning process to find additional identifying features. Notice
that trying to achieve the same degree of robustness by adding noise to the input data
would be difficult: there is no easy way to know in advance that the network is going to
focus on noses, and no easy way to delete noses automatically from each image.

Altogether, dropout forces the model to learn multiple, robust explanations for each input.
This causes the model to generalize well, but also makes it more difficult to fit the training
set—it is usually necessary to use a larger model and to train it for more iterations.

22.6 Recurrent Neural Networks

Recurrent neural networks (RNNs) are distinct from feedforward networks in that they allow
cycles in the computation graph. In all the cases we will consider, each cycle has a delay,
so that units may take as input a value computed from their own output at an earlier step in
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Δ

Figure 22.8 (a) Schematic diagram of a basic RNN where the hidden layer z has recurrent
connections; the ∆ symbol indicates a delay. (b) The same network unrolled over three time
steps to create a feedforward network. Note that the weights are shared across all time steps.

the computation. (Without the delay, a cyclic circuit may reach an inconsistent state.) This
allows the RNN to have internal state, or memory: inputs received at earlier time steps affectMemory

the RNN’s response to the current input.
RNNs can also be used to perform more general computations—after all, ordinary com-

puters are just Boolean circuits with memory—and to model real neural systems, many of
which contain cyclic connections. Here we focus on the use of RNNs to analyze sequential
data, where we assume that a new input vector xt arrives at each time step.

As tools for analyzing sequential data, RNNs can be compared to the hidden Markov
models, dynamic Bayesian networks, and Kalman filters described in Chapter 14. (The reader
may find it helpful to refer back to that chapter before proceeding.) Like those models, RNNs
make a Markov assumption (see page 481): the hidden state zt of the network suffices
to capture the information from all previous inputs. Furthermore, suppose we describe the
RNN’s update process for the hidden state by the equation zt = fw(zt−1,xt) for some param-
eterized function fw. Once trained, this function represents a time-homogeneous process
(page 481)—effectively a universally quantified assertion that the dynamics represented by
fw hold for all time steps. Thus, RNNs add expressive power compared to feedforward net-
works, just as convolutional networks do, and just as dynamic Bayes nets add expressive
power compared to regular Bayes nets. Indeed, if you tried to use a feedforward network
to analyze sequential data, the fixed size of the input layer would force the network to ex-
amine only a finite-length window of data, in which case the network would fail to detect
long-distance dependencies.

22.6.1 Training a basic RNN

The basic model we will consider has an input layer x, a hidden layer z with recurrent con-
nections, and an output layer y, as shown in Figure 22.8(a). We assume that both x and y are
observed in the training data at each time step. The equations defining the model refer to the
values of the variables indexed by time step t:

zt = fw(zt−1,xt) = gz(Wz,zzt−1 +Wx,zxt)≡ gz(inz,t)

ŷt = gy(Wz,yzt)≡ gy(iny,t) , (22.13)
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where gz and gy denote the activation functions for the hidden and output layers, respectively.
As usual, we assume an extra dummy input fixed at +1 for each unit as well as bias weights
associated with those inputs.

Given a sequence of input vectors x1, . . . ,xT and observed outputs y1, . . . ,yT , we can
turn this model into a feedforward network by “unrolling” it for T steps, as shown in Fig-
ure 22.8(b). Notice that the weight matrices Wx,z, Wz,z, and Wz,y are shared across all time
steps. In the unrolled network, it is easy to see that we can calculate gradients to train the
weights in the usual way; the only difference is that the sharing of weights across layers
makes the gradient computation a little more complicated.

To keep the equations simple, we will show the gradient calculation for an RNN with
just one input unit, one hidden unit, and one output unit. For this case, making the bias
weights explicit, we have zt =gz(wz,zzt−1 +wx,zxt +w0,z) and ŷt =gy(wz,yzt +w0,y). As in
Equations (22.4) and (22.5), we will assume a squared-error loss L—in this case, summed
over the time steps. The derivations for the input-layer and output-layer weights wx,z and
wz,y are essentially identical to Equation (22.4), so we leave them as an exercise. For the
hidden-layer weight wz,z, the first few steps also follow the same pattern as Equation (22.4):

∂L
∂wz,z

=
∂

∂wz,z

T

∑
t=1

(yt − ŷt)
2 =

T

∑
t=1
−2(yt − ŷt)

∂ ŷt

∂wz,z

=
T

∑
t=1
−2(yt − ŷt)

∂

∂wz,z
gy(iny,t) =

T

∑
t=1
−2(yt − ŷt)g′y(iny,t)

∂

∂wz,z
iny,t

=
T

∑
t=1
−2(yt − ŷt)g′y(iny,t)

∂

∂wz,z

(
wz,yzt +w0,y

)
=

T

∑
t=1
−2(yt − ŷt)g′y(iny,t)wz,y

∂ zt

∂wz,z
. (22.14)

Now the gradient for the hidden unit zt can be obtained from the previous time step as follows:

∂ zt

∂wz,z
=

∂

∂wz,z
gz(inz,t) = g′z(inz,t)

∂

∂wz,z
inz,t = g′z(inz,t)

∂

∂wz,z

(
wz,zzt−1 +wx,zxt +w0,z

)
= g′z(inz,t)

(
zt−1 +wz,z

∂ zt−1

∂wz,z

)
, (22.15)

where the last line uses the rule for derivatives of products: ∂ (uv)/∂x=v∂u/∂x+u∂v/∂x.
Looking at Equation (22.15), we notice two things. First, the gradient expression is re-

cursive: the contribution to the gradient from time step t is calculated using the contribution
from time step t−1. If we order the calculations in the right way, the total run time for com-
puting the gradient will be linear in the size of the network. This algorithm is called back-
propagation through time, and is usually handled automatically by deep learning software Back-propagation

through time

systems. Second, if we iterate the recursive calculation, we see that gradients at T will include
terms proportional to wz,z ∏

T
t=1 g′z(inz,t). For sigmoids, tanhs, and ReLUs, g′ ≤ 1, so our sim-

ple RNN will certainly suffer from the vanishing gradient problem (see page 807) if wz,z < 1.
On the other hand, if wz,z > 1, we may experience the exploding gradient problem. (For the Exploding gradient

general case, these outcomes depend on the first eigenvalue of the weight matrix Wz,z.) The
next section describes a more elaborate RNN design intended to mitigate this issue.



826 Chapter 22 Deep Learning

22.6.2 Long short-term memory RNNs

Several specialized RNN architectures have been designed with the goal of enabling informa-
tion to be preserved over many time steps. One of the most popular is the long short-term
memory or LSTM. The long-term memory component of an LSTM, called the memory cellLong short-term

memory
Memory cell and denoted by c, is essentially copied from time step to time step. (In contrast, the basic RNN

multiplies its memory by a weight matrix at every time step, as shown in Equation (22.13).)
New information enters the memory by adding updates; in this way, the gradient expressions
do not accumulate multiplicatively over time. LSTMs also include gating units, which areGating unit

vectors that control the flow of information in the LSTM via elementwise multiplication of
the corresponding information vector:

• The forget gate f determines if each element of the memory cell is remembered (copiedForget gate

to the next time step) or forgotten (reset to zero).
• The input gate i determines if each element of the memory cell is updated additivelyInput gate

by new information from the input vector at the current time step.
• The output gate o determines if each element of the memory cell is transferred to theOutput gate

short-term memory z, which plays a similar role to the hidden state in basic RNNs.

Whereas the word “gate” in circuit design usually connotes a Boolean function, gates in
LSTMs are soft—for example, elements of the memory cell vector will be partially forgotten
if the corresponding elements of the forget-gate vector are small but not zero. The values for
the gating units are always in the range [0,1] and are obtained as the outputs of a sigmoid
function applied to the current input and the previous hidden state. In detail, the update
equations for the LSTM are as follows:

ft = σ(Wx, f xt +Wz, f zt−1)

it = σ(Wx,ixt +Wz,izt−1)

ot = σ(Wx,oxt +Wz,ozt−1)

ct = ct−1� ft + it � tanh(Wx,cxt +Wz,czt−1)

zt = tanh(ct)�ot ,

where the subscripts on the various weight matrices W indicate the origin and destination of
the corresponding links. The � symbol denotes elementwise multiplication.

LSTMs were among the first practically usable forms of RNN. They have demonstrated
excellent performance on a wide range of tasks including speech recognition and handwriting
recognition. Their use in natural language processing is discussed in Chapter 25.

22.7 Unsupervised Learning and Transfer Learning

The deep learning systems we have discussed so far are based on supervised learning, which
requires each training example to be labeled with a value for the target function. Although
such systems can reach a high level of test-set accuracy—as shown by the ImageNet com-
petition results, for example—they often require far more labeled data than a human would
for the same task. For example, a child needs to see only one picture of a giraffe, rather
than thousands, in order to be able to recognize giraffes reliably in a wide range of settings
and views. Clearly, something is missing in our deep learning story; indeed, it may be the
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case that our current approach to supervised deep learning renders some tasks completely
unattainable because the requirements for labeled data would exceed what the human race
(or the universe) can supply. Moreover, even in cases where the task is feasible, labeling
large data sets usually requires scarce and expensive human labor.

For these reasons, there is intense interest in several learning paradigms that reduce the
dependence on labeled data. As we saw in Chapter 19, these paradigms include unsuper-
vised learning, transfer learning, and semisupervised learning. Unsupervised learning
algorithms learn solely from unlabeled inputs x, which are often more abundantly available
than labeled examples. Unsupervised learning algorithms typically produce generative mod-
els, which can produce realistic text, images, audio, and video, rather than simply predicting
labels for such data. Transfer learning algorithms require some labeled examples but are able
to improve their performance further by studying labeled examples for different tasks, thus
making it possible to draw on more existing sources of data. Semisupervised learning algo-
rithms require some labeled examples but are able to improve their performance further by
also studying unlabeled examples. This section covers deep learning approaches to unsuper-
vised and transfer learning; while semisupervised learning is also an active area of research
in the deep learning community, the techniques developed so far have not proven broadly
effective in practice, so we do not cover them.

22.7.1 Unsupervised learning

Supervised learning algorithms all have essentially the same goal: given a training set of
inputs x and corresponding outputs y= f (x), learn a function h that approximates f well.
Unsupervised learning algorithms, on the other hand, take a training set of unlabeled exam-
ples x. Here we describe two things that such an algorithm might try to do. The first is to
learn new representations—for example, new features of images that make it easier to iden-
tify the objects in an image. The second is to learn a generative model—typically in the form
of a probability distribution from which new samples can be generated. (The algorithms for
learning Bayes nets in Chapter 21 fall in this category.) Many algorithms are capable of both
representation learning and generative modeling.

Suppose we learn a joint model PW (x,z), where z is a set of latent, unobserved variables
that represent the content of the data x in some way. In keeping with the spirit of the chapter,
we do not predefine the meanings of the z variables; the model is free to learn to associate
z with x however it chooses. For example, a model trained on images of handwritten digits
might choose to use one direction in z space to represent the thickness of pen strokes, another
to represent ink color, another to represent background color, and so on. With images of
faces, the learning algorithm might choose one direction to represent gender and another to
capture the presence or absence of glasses, as illustrated in Figure 22.9.

A learned probability model PW (x,z) achieves both representation learning (it has con-
structed meaningful z vectors from the raw x vectors) and generative modeling: if we inte-
grate z out of PW (x,z) we obtain PW (x).

Probabilistic PCA: A simple generative model

There have been many proposals for the form that PW (x,z) might take. One of the simplest
is the probabilistic principal components analysis (PPCA) model.7 In a PPCA model, z PPCA
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Figure 22.9 A demonstration of how a generative model has learned to use different direc-
tions in z space to represent different aspects of faces. We can actually perform arithmetic in
z space. The images here are all generated from the learned model and show what happens
when we decode different points in z space. We start with the coordinates for the concept of
“man with glasses,” subtract off the coordinates for “man,” add the coordinates for “woman,”
and obtain the coordinates for “woman with glasses.” Images reproduced with permission
from (Radford et al., 2015).

is chosen from a zero-mean, spherical Gaussian, then x is generated from z by applying a
weight matrix W and adding spherical Gaussian noise:

P(z) = N (z;0,I)
PW (x |z) = N (x;Wz,σ2I) .

The weights W (and optionally the noise parameter σ2) can be learned by maximizing the
likelihood of the data, given by

PW (x) =
∫

PW (x,z)dz =N (x;0,WW>+σ2I) . (22.16)

The maximization with respect to W can be done by gradient methods or by an efficient
iterative EM algorithm (see Section 21.3). Once W has been learned, new data samples
can be generated directly from PW (x) using Equation (22.16). Moreover, new observations
x that have very low probability according to Equation (22.16) can be flagged as potential
anomalies.

With PPCA, we usually assume that the dimensionality of z is much less than the dimen-
sionality of x, so that the model learns to explain the data as well as possible in terms of a
small number of features. These features can be extracted for use in standard classifiers by
computing ẑ, the expectation of PW (z |x).

Generating data from a probabilistic PCA model is straightforward: first sample z from
its fixed Gaussian prior, then sample x from a Gaussian with mean Wz. As we will see
shortly, many other generative models resemble this process, but use complicated mappings
defined by deep models rather than linear mappings from z-space to x-space.

7 Standard PCA involves fitting a multivariate Gaussian to the raw input data and then selecting out the longest
axes—the principal components—of that ellipsoidal distribution.
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Autoencoders

Many unsupervised deep learning algorithms are based on the idea of an autoencoder. An Autoencoder

autoencoder is a model containing two parts: an encoder that maps from x to a representation
ẑ and a decoder that maps from a representation ẑ to observed data x. In general, the encoder
is just a parameterized function f and the decoder is just a parameterized function g. The
model is trained so that x ≈ g( f (x)), so that the encoding process is roughly inverted by the
decoding process. The functions f and g can be simple linear models parameterized by a
single matrix or they can be represented by a deep neural network.

A very simple autoencoder is the linear autoencoder, where both f and g are linear with
a shared weight matrix W:

ẑ = f (x) = Wx
x = g(ẑ) = W>ẑ .

One way to train this model is to minimize the squared error ∑ j ‖x j − g( f (x j))‖2 so that
x ≈ g( f (x)). The idea is to train W so that a low-dimensional ẑ will retain as much in-
formation as possible to reconstruct the high-dimensional data x. This linear autoencoder
turns out to be closely connected to classical principal components analysis (PCA). When
z is m-dimensional, the matrix W should learn to span the m principal components of the
data—in other words, the set of m orthogonal directions in which the data has highest vari-
ance, or equivalently the m eigenvectors of the data covariance matrix that have the largest
eigenvalues—exactly as in PCA.

The PCA model is a simple generative model that corresponds to a simple linear autoen-
coder. The correspondence suggests that there may be a way to capture more complex kinds
of generative models using more complex kinds of autoencoders. The variational autoen-
coder (VAE) provides one way to do this. Variational

autoencoder
Variational methods were introduced briefly on page 476 as a way to approximate the

posterior distribution in complex probability models, where summing or integrating out a
large number of hidden variables is intractable. The idea is to use a variational posterior Variational posterior

Q(z), drawn from a computationally tractable family of distributions, as an approximation to
the true posterior. For example, we might choose Q from the family of Gaussian distributions
with a diagonal covariance matrix. Within the chosen family of tractable distributions, Q is
optimized to be as close as possible to the true posterior distribution P(z |x).

For our purposes, the notion of “as close as possible” is defined by the KL divergence,
which we mentioned on page 809. This is given by

DKL(Q(z)‖P(z |x)) =
∫

Q(z) log
Q(z)

P(z |x)
dz ,

which is an average (with respect to Q) of the log ratio between Q and P. It is easy to see
that DKL(Q(z)‖P(z |x)) ≥ 0, with equality when Q and P coincide. We can then define the
variational lower bound L (sometimes called the evidence lower bound, or ELBO) on the Variational lower

bound
ELBOlog likelihood of the data:

L(x,Q) = logP(x)−DKL(Q(z)‖P(z |x)) . (22.17)

We can see that L is a lower bound for logP because the KL divergence is nonnegative. Vari-
ational learning maximizes L with respect to parameters w rather than maximizing logP(x),
in the hope that the solution found, w∗, is close to maximizing logP(x) as well.
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As written, L does not yet seem to be any easier to maximize than logP. Fortunately, we
can rewrite Equation (22.17) to reveal improved computational tractability:

L = logP(x)−
∫

Q(z) log
Q(z)

P(z |x)
dz

= −
∫

Q(z) logQ(z)dz+
∫

Q(z) logP(x)P(z |x)dz

= H(Q)+Ez∼Q logP(z,x)

where H(Q) is the entropy of the Q distribution. For some variational families Q (such
as Gaussian distributions), H(Q) can be evaluated analytically. Moreover, the expectation,
Ez∼Q logP(z,x), admits an efficient unbiased estimate via samples of z from Q. For each
sample, P(z,x) can usually be evaluated efficiently—for example, if P is a Bayes net, P(z,x)
is just a product of conditional probabilities because z and x comprise all the variables.

Variational autoencoders provide a means of performing variational learning in the deep
learning setting. Variational learning involves maximizing L with respect to the parameters
of both P and Q. For a variational autoencoder, the decoder g(z) is interpreted as defining
logP(x |z). For example, the output of the decoder might define the mean of a conditional
Gaussian. Similarly, the output of the encoder f (x) is interpreted as defining the parameters of
Q—for example, Q might be a Gaussian with mean f (x). Training the variational autoencoder
then consists of maximizing L with respect to the parameters of both the encoder f and the
decoder g, which can themselves be arbitrarily complicated deep networks.

Deep autoregressive models

An autoregressive model (or AR model) is one in which each element xi of the data vector xAutoregressive
model

is predicted based on other elements of the vector. Such a model has no latent variables. If x
is of fixed size, an AR model can be thought of as a fully observable and possibly fully con-
nected Bayes net. This means that calculating the likelihood of a given data vector according
to an AR model is trivial; the same holds for predicting the value of a single missing variable
given all the others, and for sampling a data vector from the model.

The most common application of autoregressive models is in the analysis of time series
data, where an AR model of order k predicts xt given xt−k, . . . ,xt−1. In the terminology of
Chapter 14, an AR model is a non-hidden Markov model. In the terminology of Chapter 24,
an n-gram model of letter or word sequences is an AR model of order n−1.

In classical AR models, where the variables are real-valued, the conditional distribution
P(xt |xt−k, . . . ,xt−1) is a linear–Gaussian model with fixed variance whose mean is a weighted
linear combination of xt−k, . . . ,xt−1—in other words, a standard linear regression model. The
maximum likelihood solution is given by the Yule–Walker equations, which are closelyYule–Walker

equations

related to the normal equations on page 698.
A deep autoregressive model is one in which the linear–Gaussian model is replacedDeep autoregressive

model
by an arbitrary deep network with a suitable output layer depending on whether xt is dis-
crete or continuous. Recent applications of this autoregressive approach include DeepMind’s
WaveNet model for speech generation (van den Oord et al., 2016a). WaveNet is trained
on raw acoustic signals, sampled 16,000 times per second, and implements a nonlinear AR
model of order 4800 with a multilayer convolutional structure. In tests it proves to be sub-
stantially more realistic than previous state-of-the-art speech generation systems.
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Generative adversarial networks

A generative adversarial network (GAN) is actually a pair of networks that combine to
Generative
adversarial network
(GAN)

form a generative system. One of the networks, the generator, maps values from z to x in Generator

order to produce samples from the distribution Pw(x). A typical scheme samples z from a unit
Gaussian of moderate dimension and then passes it through a deep network hw to obtain x.
The other network, the discriminator, is a classifier trained to classify inputs x as real (drawn Discriminator

from the training set) or fake (created by the generator). GANs are a kind of implicit model Implicit model

in the sense that samples can be generated but their probabilities are not readily available; in a
Bayes net, on the other hand, the probability of a sample is just the product of the conditional
probabilities along the sample generation path.

The generator is closely related to the decoder from the variational autoencoder frame-
work. The challenge in implicit modeling is to design a loss function that makes it possible
to train the model using samples from the distribution, rather than maximizing the likelihood
assigned to training examples from the data set.

Both the generator and the discriminator are trained simultaneously, with the generator
learning to fool the discriminator and the discriminator learning to accurately separate real
from fake data. The competition between generator and discriminator can be described in
the language of game theory (see Chapter 17). The idea is that in the equilibrium state of the
game, the generator should reproduce the training distribution perfectly, such that the discrim-
inator cannot perform better than random guessing. GANs have worked particularly well for
image generation tasks. For example, GANs can create photorealistic, high-resolution images
of people who have never existed (Karras et al., 2017).

Unsupervised translation

Translation tasks, broadly construed, consist of transforming an input x that has rich structure
into an output y that also has rich structure. In this context, “rich structure” means that the
data are multidimensional and have interesting statistical dependencies among the various
dimensions. Images and natural language sentences have a rich structure, but a single number,
such as a class ID, does not. Transforming a sentence from English to French or converting
a photo of a night scene into an equivalent photo taken during the daytime are both examples
of translation tasks.

Supervised translation consists of gathering many (x,y) pairs and training the model to
map each x to the corresponding y. For example, machine translation systems are often
trained on pairs of sentences that have been translated by professional human translators. For
other kinds of translation, supervised training data may not be available. For example, con-
sider a photo of a night scene containing many moving cars and pedestrians. It is presumably
not feasible to find all of the cars and pedestrians and return them to their original positions in
the night-time photo in order to retake the same photo in the daytime. To overcome this dif-
ficulty, it is possible to use unsupervised translation techniques that are capable of training Unsupervised

translation
on many examples of x and many separate examples of y but no corresponding (x,y) pairs.

These approaches are generally based on GANs; for example, one can train a GAN gen-
erator to produce a realistic example of y when conditioned on x, and another GAN generator
to perform the reverse mapping. The GAN training framework makes it possible to train a
generator to generate any one of many possible samples that the discriminator accepts as a
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realistic example of y given x, without any need for a specific paired y as is traditionally
needed in supervised learning. More detail on unsupervised translation for images is given in
Section 27.7.5.

22.7.2 Transfer learning and multitask learning

In transfer learning, experience with one learning task helps an agent learn better on anotherTransfer learning

task. For example, a person who has already learned to play tennis will typically find it easier
to learn related sports such as racquetball and squash; a pilot who has learned to fly one type
of commercial passenger airplane will very quickly learn to fly another type; a student who
has already learned algebra finds it easier to learn calculus.

We do not yet know the mechanisms of human transfer learning. For neural networks,
learning consists of adjusting weights, so the most plausible approach for transfer learning is
to copy over the weights learned for task A to a network that will be trained for task B. The
weights are then updated by gradient descent in the usual way using data for task B. It may
be a good idea to use a smaller learning rate in task B, depending on how similar the tasks are
and how much data was used in task A.

Notice that this approach requires human expertise in selecting the tasks: for example,
weights learned during algebra training may not be very useful in a network intended for
racquetball. Also, the notion of copying weights requires a simple mapping between the
input spaces for the two tasks and essentially identical network architectures.

One reason for the popularity of transfer learning is the availability of high-quality pre-
trained models. For example, you could download a pretrained visual object recognition
model such as the ResNet-50 model trained on the COCO data set, thereby saving yourself
weeks of work. From there you can modify the model parameters by supplying additional
images and object labels for your specific task.

Suppose you want to classify types of unicycles. You have only a few hundred pictures
of different unicycles, but the COCO data set has over 3,000 images in each of the categories
of bicycles, motorcycles, and skateboards. This means that a model pretrained on COCO
already has experience with wheels and roads and other relevant features that will be helpful
in interpreting the unicycle images.

Often you will want to freeze the first few layers of the pretrained model—these layers
serve as feature detectors that will be useful for your new model. Your new data set will be
allowed to modify the parameters of the higher levels only; these are the layers that identify
problem-specific features and do classification. However, sometimes the difference between
sensors means that even the lowest-level layers need to be retrained.

As another example, for those building a natural language system, it is now common
to start with a pretrained model such as the ROBERTA model (see Section 25.6), which
already “knows” a great deal about the vocabulary and syntax of everyday language. The
next step is to fine-tune the model in two ways. First, by giving it examples of the specialized
vocabulary used in the desired domain; perhaps a medical domain (where it will learn about
“myocardial infarction”) or perhaps a financial domain (where it will learn about “fiduciary
responsibility”). Second, by training the model on the task it is to perform. If it is to do
question answering, train it on question/answer pairs.

One very important kind of transfer learning involves transfer between simulations and
the real world. For example, the controller for a self-driving car can be trained on billions
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of miles of simulated driving, which would be impossible in the real world. Then, when the
controller is transitioned to the real vehicle, it adapts quickly to the new environment.

Multitask learning is a form of transfer learning in which we simultaneously train a Multitask learning

model on multiple objectives. For example, rather than training a natural language system on
part-of-speech tagging and then transferring the learned weights to a new task such as docu-
ment classification, we train one system simultaneously on part-of-speech tagging, document
classification, language detection, word prediction, sentence difficulty modeling, plagiarism
detection, sentence entailment, and question answering. The idea is that to solve any one of
these tasks, a model might be able to take advantage of superficial features of the data. But to
solve all eight at once with a common representation layer, the model is more likely to create
a common representation that reflects real natural language usage and content.

22.8 Applications

Deep learning has been applied successfully to many important problem areas in AI. For in-
depth explanations, we refer the reader to the relevant chapters: Chapter 23 for the use of
deep learning in reinforcement learning systems, Chapter 25 for natural language processing,
Chapter 27 (particularly Section 27.4) for computer vision, and Chapter 26 for robotics.

22.8.1 Vision

We begin with computer vision, which is the application area that has arguably had the biggest
impact on deep learning, and vice versa. Although deep convolutional networks had been in
use since the 1990s for tasks such as handwriting recognition, and neural networks had begun
to surpass generative probability models for speech recognition by around 2010, it was the
success of the AlexNet deep learning system in the 2012 ImageNet competition that propelled
deep learning into the limelight.

The ImageNet competition was a supervised learning task with 1,200,000 images in 1,000
different categories, and systems were evaluated on the “top-5” score—how often the correct
category appears in the top five predictions. AlexNet achieved an error rate of 15.3%, whereas
the next best system had an error rate of more than 25%. AlexNet had five convolutional
layers interspersed with max-pooling layers, followed by three fully connected layers. It used
ReLU activation functions and took advantage of GPUs to speed up the process of training
60 million weights.

Since 2012, with improvements in network design, training methods, and computing
resources, the top-5 error rate has been reduced to less than 2%—well below the error rate of
a trained human (around 5%). CNNs have been applied to a wide range of vision tasks, from
self-driving cars to grading cucumbers.8 Driving, which is covered in Section 27.7.6 and in
several sections of Chapter 26, is among the most demanding of vision tasks: not only must
the algorithm detect, localize, track, and recognize pigeons, paper bags, and pedestrians, but
it has to do it in real time with near-perfect accuracy.

8 The widely known tale of the Japanese cucumber farmer who built his own cucumber-sorting robot using
TensorFlow is, it turns out, mostly mythical. The algorithm was developed by the farmer’s son, who worked
previously as a software engineer at Toyota, and its low accuracy—about 70%—meant that the cucumbers still
had to be sorted by hand (Zeeberg, 2017).
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22.8.2 Natural language processing

Deep learning has also had a huge impact on natural language processing (NLP) applications
such as machine translation and speech recognition. Some advantages of deep learning for
these applications include the possibility of end-to-end learning, the automatic generation
of internal representations for the meanings of words, and the interchangeability of learned
encoders and decoders.

End-to-end learning refers to the construction of entire systems as a single, learned func-
tion f . For example, an f for machine translation might take as input an English sentence
SE and produce an equivalent Japanese sentence SJ = f (SE). Such an f can be learned from
training data in the form of human-translated pairs of sentences (or even pairs of texts, where
the alignment of corresponding sentences or phrases is part of the problem to be solved). A
more classical pipeline approach might first parse SE , then extract its meaning, then re-express
the meaning in Japanese as SJ , then post-edit SJ using a language model for Japanese. This
pipeline approach has two major drawbacks: first, errors are compounded at each stage; and
second, humans have to determine what constitutes a “parse tree” and a “meaning represen-
tation,” but there is no easily accessible ground truth for these notions, and our theoretical
ideas about them are almost certainly incomplete.

At our present stage of understanding, then, the classical pipeline approach—which, at
least naively, seems to correspond to how a human translator works—is outperformed by the
end-to-end method made possible by deep learning. For example, Wu et al. (2016b) showed
that end-to-end translation using deep learning reduced translation errors by 60% relative to
a previous pipeline-based system. As of 2020, machine translation systems are approaching
human performance for language pairs such as French and English for which very large paired
data sets are available, and they are usable for other language pairs covering the majority of
Earth’s population. There is even some evidence that networks trained on multiple languages
do in fact learn an internal meaning representation: for example, after learning to translate
Portuguese to English and English to Spanish, it is possible to translate Portuguese directly
into Spanish without any Portuguese/Spanish sentence pairs in the training set.

One of the most significant findings to emerge from the application of deep learning
to language tasks is that a great deal deal of mileage comes from re-representing individ-
ual words as vectors in a high-dimensional space—so-called word embeddings (see Sec-
tion 25.1). The vectors are usually extracted from the weights of the first hidden layer of
a network trained on large quantities of text, and they capture the statistics of the lexical
contexts in which words are used. Because words with similar meanings are used in similar
contexts, they end up close to each other in the vector space. This allows the network to gen-
eralize effectively across categories of words, without the need for humans to predefine those
categories. For example, a sentence beginning “John bought a watermelon and two pounds
of . . . ” is likely to continue with “apples” or “bananas” but not with “thorium” or “geog-
raphy.” Such a prediction is much easier to make if “apples” and “bananas” have similar
representations in the internal layer.

22.8.3 Reinforcement learning

In reinforcement learning (RL), a decision-making agent learns from a sequence of reward
signals that provide some indication of the quality of its behavior. The goal is to optimize the
sum of future rewards. This can be done in several ways: in the terminology of Chapter 16,
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the agent can learn a value function, a Q-function, a policy, and so on. From the point of
view of deep learning, all these are functions that can be represented by computation graphs.
For example, a value function in Go takes a board position as input and returns an estimate
of how advantageous the position is for the agent. While the methods of training in RL differ
from those of supervised learning, the ability of multilayer computation graphs to represent
complex functions over large input spaces has proved to be very useful. The resulting field of
research is called deep reinforcement learning. Deep reinforcement

learning

In the 1950s, Arthur Samuel experimented with multilayer representations of value func-
tions in his work on reinforcement learning for checkers, but he found that in practice a linear
function approximator worked best. (This may have been a consequence of working with a
computer roughly 100 billion times less powerful than a modern tensor processing unit.) The
first major successful demonstration of deep RL was DeepMind’s Atari-playing agent, DQN
(Mnih et al., 2013). Different copies of this agent were trained to play each of several differ-
ent Atari video games, and demonstrated skills such as shooting alien spaceships, bouncing
balls with paddles, and driving simulated racing cars. In each case, the agent learned a Q-
function from raw image data with the reward signal being the game score. Subsequent work
has produced deep RL systems that play at a superhuman level on the majority of the 57
different Atari games. DeepMind’s ALPHAGO system also used deep RL to defeat the best
human players at the game of Go (see Chapter 6).

Despite its impressive successes, deep RL still faces significant obstacles: it is often
difficult to get good performance, and the trained system may behave very unpredictably
if the environment differs even a little from the training data (Irpan, 2018). Compared to
other applications of deep learning, deep RL is rarely applied in commercial settings. It is,
nonetheless, a very active area of research.

Summary

This chapter described methods for learning functions represented by deep computational
graphs. The main points were:

• Neural networks represent complex nonlinear functions with a network of parameter-
ized linear-threshold units.

• The back-propagation algorithm implements a gradient descent in parameter space to
minimize the loss function.

• Deep learning works well for visual object recognition, speech recognition, natural lan-
guage processing, and reinforcement learning in complex environments.

• Convolutional networks are particularly well suited for image processing and other tasks
where the data have a grid topology.

• Recurrent networks are effective for sequence-processing tasks including language mod-
eling and machine translation.
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Bibliographical and Historical Notes

The literature on neural networks is vast. Cowan and Sharp (1988b, 1988a) survey the early
history, beginning with the work of McCulloch and Pitts (1943). (As mentioned in Chap-
ter 1, John McCarthy has pointed to the work of Nicolas Rashevsky (1936, 1938) as the
earliest mathematical model of neural learning.) Norbert Wiener, a pioneer of cybernetics
and control theory (Wiener, 1948), worked with McCulloch and Pitts and influenced a num-
ber of young researchers, including Marvin Minsky, who may have been the first to develop
a working neural network in hardware, in 1951 (see Minsky and Papert, 1988, pp. ix–x).
Alan Turing (1948) wrote a research report titled Intelligent Machinery that begins with the
sentence “I propose to investigate the question as to whether it is possible for machinery to
show intelligent behaviour” and goes on to describe a recurrent neural network architecture
he called “B-type unorganized machines” and an approach to training them. Unfortunately,
the report went unpublished until 1969, and was all but ignored until recently.

The perceptron, a one-layer neural network with a hard-threshold activation function, was
popularized by Frank Rosenblatt (1957). After a demonstration in July 1958, the New York
Times described it as “the embryo of an electronic computer that [the Navy] expects will be
able to walk, talk, see, write, reproduce itself and be conscious of its existence.” Rosenblatt
(1960) later proved the perceptron convergence theorem, although it had been foreshadowed
by purely mathematical work outside the context of neural networks (Agmon, 1954; Motzkin
and Schoenberg, 1954). Some early work was also done on multilayer networks, including
Gamba perceptrons (Gamba et al., 1961) and madalines (Widrow, 1962). Learning Ma-
chines (Nilsson, 1965) covers much of this early work and more. The subsequent demise
of early perceptron research efforts was hastened (or, the authors later claimed, merely ex-
plained) by the book Perceptrons (Minsky and Papert, 1969), which lamented the field’s lack
of mathematical rigor. The book pointed out that single-layer perceptrons could represent
only linearly separable concepts and noted the lack of effective learning algorithms for mul-
tilayer networks. These limitations were already well known (Hawkins, 1961) and had been
acknowledged by Rosenblatt himself (Rosenblatt, 1962).

The papers collected by Hinton and Anderson (1981), based on a conference in San
Diego in 1979, can be regarded as marking a renaissance of connectionism. The two-volume
“PDP” (Parallel Distributed Processing) anthology (Rumelhart and McClelland, 1986) helped
to spread the gospel, so to speak, particularly in the psychology and cognitive science com-
munities. The most important development of this period was the back-propagation algorithm
for training multilayer networks.

The back-propagation algorithm was discovered independently several times in different
contexts (Kelley, 1960; Bryson, 1962; Dreyfus, 1962; Bryson and Ho, 1969; Werbos, 1974;
Parker, 1985) and Stuart Dreyfus (1990) calls it the “Kelley–Bryson gradient procedure.”
Although Werbos had applied it to neural networks, this idea did not become widely known
until a paper by David Rumelhart, Geoff Hinton, and Ron Williams (1986) appeared in Nature
giving a nonmathematical presentation of the algorithm. Mathematical respectability was
enhanced by papers showing that multilayer feedforward networks are (subject to technical
conditions) universal function approximators (Cybenko, 1988, 1989). The late 1980s and
early 1990s saw a huge growth in neural network research: the number of papers mushroomed
by a factor of 200 between 1980–84 and 1990–94.
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In the late 1990s and early 2000s, interest in neural networks waned as other techniques
such as Bayes nets, ensemble methods, and kernel machines came to the fore. Interest in deep
models was sparked when Geoff Hinton’s research on deep Bayesian networks—generative
models with category variables at the root and evidence variables at the leaves—began to bear
fruit, outperforming kernel machines on small benchmark data sets (Hinton et al., 2006).
Interest in deep learning exploded when Krizhevsky et al. (2013) used deep convolutional
networks to win the ImageNet competition (Russakovsky et al., 2015).

Commentators often cite the availability of “big data” and the processing power of GPUs
as the main contributing factors in the emergence of deep learning. Architectural improve-
ments were also important, including the adoption of the ReLU activation function instead of
the logistic sigmoid (Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al., 2011) and later
the development of residual networks (He et al., 2016).

On the algorithmic side, the use of stochastic gradient descent (SGD) with small batches
was essential in allowing neural networks to scale to large data sets (Bottou and Bousquet,
2008). Batch normalization (Ioffe and Szegedy, 2015) also helped in making the training pro-
cess faster and more reliable and has spawned several additional normalization techniques (Ba
et al., 2016; Wu and He, 2018; Miyato et al., 2018). Several papers have studied the empirical
behavior of SGD on large networks and large data sets (Dauphin et al., 2015; Choromanska
et al., 2014; Goodfellow et al., 2015b). On the theoretical side, some progress has been made
on explaining the observation that SGD applied to overparameterized networks often reaches
a global minimum with a training error of zero, although so far the theorems to this effect
assume a network with layers far wider than would ever occur in practice (Allen-Zhu et al.,
2018; Du et al., 2018). Such networks have more than enough capacity to function as lookup
tables for the training data.

The last piece of the puzzle, at least for vision applications, was the use of convolutional
networks. These had their origins in the descriptions of the mammalian visual system by
neurophysiologists David Hubel and Torsten Wiesel (Hubel and Wiesel, 1959, 1962, 1968).
They described “simple cells” in the visual system of a cat that resemble edge detectors,
as well as “complex cells” that are invariant to some transformations such as small spatial
translations. In modern convolutional networks, the output of a convolution is analogous to a
simple cell while the output of a pooling layer is analogous to a complex cell.

The work of Hubel and Wiesel inspired many of the early connectionist models of vision
(Marr and Poggio, 1976). The neocognitron (Fukushima, 1980; Fukushima and Miyake,
1982), designed as a model of the visual cortex, was essentially a convolutional network in
terms of model architecture, although an effective training algorithm for such networks had
to wait until Yann LeCun and collaborators showed how to apply back-propagation (LeCun
et al., 1995). One of the early commercial successes of neural networks was handwritten digit
recognition using convolutional networks (LeCun et al., 1995).

Recurrent neural networks (RNNs) were commonly proposed as models of brain function
in the 1970s, but no effective learning algorithms were associated with these proposals. The
method of back-propagation through time appears in the PhD thesis of Paul Werbos (1974),
and his later review paper (Werbos, 1990) gives several additional references to rediscoveries
of the method in the 1980s. One of the most influential early works on RNNs was due to
Jeff Elman (1990), building on an RNN architecture suggested by Michael Jordan (1986).
Williams and Zipser (1989) present an algorithm for online learning in RNNs. Bengio et al.
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(1994) analyzed the problem of vanishing gradients in recurrent networks. The long short-
term memory (LSTM) architecture (Hochreiter, 1991; Hochreiter and Schmidhuber, 1997;
Gers et al., 2000) was proposed as a way of avoiding this problem. More recently, effective
RNN designs have been derived automatically (Jozefowicz et al., 2015; Zoph and Le, 2016).

Many methods have been tried for improving generalization in neural networks. Weight
decay was suggested by Hinton (1987) and analyzed mathematically by Krogh and Hertz
(1992). The dropout method is due to Srivastava et al. (2014a). Szegedy et al. (2013) intro-
duced the idea of adversarial examples, spawning a huge literature.

Poole et al. (2017) showed that deep networks (but not shallow ones) can disentangle
complex functions into flat manifolds in the space of hidden units. Rolnick and Tegmark
(2018) showed that the number of units required to approximate a certain class of polynomials
of n variables grows exponentially for shallow networks but only linearly for deep networks.

White et al. (2019) showed that their BANANAS system could do neural architecture
search (NAS) by predicting the accuracy of a network to within 1% after training on just
200 random sample architectures. Zoph and Le (2016) use reinforcement learning to search
the space of neural network architectures. Real et al. (2018) use an evolutionary algorithm
to do model selection, Liu et al. (2017) use evolutionary algorithms on hierarchical repre-
sentations, and Jaderberg et al. (2017) describe population-based training. Liu et al. (2019)
relax the space of architectures to a continuous differentiable space and use gradient descent
to find a locally optimal solution. Pham et al. (2018) describe the ENAS (Efficient Neural
Architecture Search) system, which searches for optimal subgraphs of a larger graph. It is
fast because it does not need to retrain parameters. The idea of searching for a subgraph goes
back to the “optimal brain damage” algorithm of LeCun et al. (1990).

Despite this impressive array of approaches, there are critics who feel the field has not yet
matured. Yu et al. (2019) show that in some cases these NAS algorithms are no more efficient
than random architecture selection. For a survey of recent results in neural architecture search,
see Elsken et al. (2018).

Unsupervised learning constitutes a large subfield within statistics, mostly under the
heading of density estimation. Silverman (1986) and Murphy (2012) are good sources for
classical and modern techniques in this area. Principal components analysis (PCA) dates
back to Pearson (1901); the name comes from independent work by Hotelling (1933). The
probabilistic PCA model (Tipping and Bishop, 1999) adds a generative model for the prin-
cipal components themselves. The variational autoencoder is due to Kingma and Welling
(2013) and Rezende et al. (2014); Jordan et al. (1999) provide an introduction to variational
methods for inference in graphical models.

For autoregressive models, the classic text is by Box et al. (2016). The Yule–Walker equa-
tions for fitting AR models were developed independently by Yule (1927) and Walker (1931).
Autoregressive models with nonlinear dependencies were developed by several authors (Frey,
1998; Bengio and Bengio, 2001; Larochelle and Murray, 2011). The autoregressive WaveNet
model (van den Oord et al., 2016a) was based on earlier work on autoregressive image gen-
eration (van den Oord et al., 2016b). Generative adversarial networks, or GANs, were first
proposed by Goodfellow et al. (2015a), and have found many applications in AI. Some the-
oretical understanding of their properties is emerging, leading to improved GAN models and
algorithms (Li and Malik, 2018b, 2018a; Zhu et al., 2019). Part of that understanding involves
protecting against adversarial attacks (Carlini et al., 2019).
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Several branches of research into neural networks have been popular in the past but are
not actively explored today. Hopfield networks (Hopfield, 1982) have symmetric connec- Hopfield network

tions between each pair of nodes and can learn to store patterns in an associative memory,
so that an entire pattern can be retrieved by indexing into the memory using a fragment of
the pattern. Hopfield networks are deterministic; they were later generalized to stochastic
Boltzmann machines (Hinton and Sejnowski, 1983, 1986). Boltzmann machines are possi- Boltzmann machine

bly the earliest example of a deep generative model. The difficulty of inference in Boltzmann
machines led to advances in both Monte Carlo techniques and variational techniques (see
Section 13.4).

Research on neural networks for AI has also been intertwined to some extent with re-
search into biological neural networks. The two topics coincided in the 1940s, and ideas for
convolutional networks and reinforcement learning can be traced to studies of biological sys-
tems; but at present, new ideas in deep learning tend to be based on purely computational or
statistical concerns. The field of computational neuroscience aims to build computational Computational

neuroscience
models that capture important and specific properties of actual biological systems. Overviews
are given by Dayan and Abbott (2001) and Trappenberg (2010).

For modern neural nets and deep learning, the leading textbooks are those by Goodfellow
et al. (2016) and Charniak (2018). There are also many hands-on guides associated with
the various open-source software packages for deep learning. Three of the leaders of the
field—Yann LeCun, Yoshua Bengio, and Geoff Hinton—introduced the key ideas to non-AI
researchers in an influential Nature article (2015). The three were recipients of the 2018
Turing Award. Schmidhuber (2015) provides a general overview, and Deng et al. (2014)
focus on signal processing tasks.

The primary publication venues for deep learning research are the conference on Neural
Information Processing Systems (NeurIPS), the International Conference on Machine Learn-
ing (ICML), and the International Conference on Learning Representations (ICLR). The main
journals are Machine Learning, the Journal of Machine Learning Research, and Neural Com-
putation. Increasingly, because of the fast pace of research, papers appear first on arXiv.org
and are often described in the research blogs of the major research centers.

http://arXiv.org


CHAPTER 23
REINFORCEMENT LEARNING
In which we see how experiencing rewards and punishments can teach an agent how to
maximize rewards in the future.

With supervised learning, an agent learns by passively observing example input/output
pairs provided by a “teacher.” In this chapter, we will see how agents can actively learn from
their own experience, without a teacher, by considering their own ultimate success or failure.

23.1 Learning from Rewards

Consider the problem of learning to play chess. Let’s imagine treating this as a supervised
learning problem using the methods of Chapters 19, 21, and 22. The chess-playing agent
function takes as input a board position and returns a move, so we train this function by sup-
plying examples of chess positions, each labeled with the correct move. Now, it so happens
that we have available databases of several million grandmaster games, each a sequence of
positions and moves. The moves made by the winner are, with few exceptions, assumed to be
good, if not always perfect. Thus, we have a promising training set. The problem is that there
are relatively few examples (about 108) compared to the space of all possible chess positions
(about 1040). In a new game, one soon encounters positions that are significantly different
from those in the database, and the trained agent function is likely to fail miserably—not least
because it has no idea of what its moves are supposed to achieve (checkmate) or even what
effect the moves have on the positions of the pieces. And of course chess is a tiny part of the
real world. For more realistic problems, we would need much vaster grandmaster databases,
and they simply don’t exist.1

An alternative is reinforcement learning (RL), in which an agent interacts with the worldReinforcement
learning

and periodically receives rewards (or, in the terminology of psychology, reinforcements)
that reflect how well it is doing. For example, in chess the reward is 1 for winning, 0 for
losing, and 1

2 for a draw. We have already seen the concept of rewards in Chapter 16 for
Markov decision processes (MDPs). Indeed, the goal is the same in reinforcement learning:
maximize the expected sum of rewards. Reinforcement learning differs from “just solving
an MDP” because the agent is not given the MDP as a problem to solve; the agent is in the
MDP. It may not know the transition model or the reward function, and it has to act in order
to learn more. Imagine playing a new game whose rules you don’t know; after a hundred or
so moves, the referee tells you “You lose.” That is reinforcement learning in a nutshell.

From our point of view as designers of AI systems, providing a reward signal to the agent
is usually much easier than providing labeled examples of how to behave. First, the reward

1 As Yann LeCun and Alyosha Efros have pointed out, “the AI revolution will not be supervised.”
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function is often (as we saw for chess) very concise and easy to specify: it requires only a
few lines of code to tell the chess agent if it has won or lost the game or to tell the car-racing
agent that it has won or lost the race or has crashed. Second, we don’t have to be experts,
capable of supplying the correct action in any situation, as would be the case if we tried to
apply supervised learning.

It turns out, however, that a little bit of expertise can go a long way in reinforcement
learning. The two examples in the preceding paragraph—the win/loss rewards for chess and
racing—are what we call sparse rewards, because in the vast majority of states the agent is Sparse

given no informative reward signal at all. In games such as tennis and cricket, we can easily
supply additional rewards for each point won or for each run scored. In car racing, we could
reward the agent for making progress around the track in the right direction. When learning
to crawl, any forward motion is an achievement. These intermediate rewards make learning
much easier.

As long as we can provide the correct reward signal to the agent, reinforcement learning
provides a very general way to build AI systems. This is particularly true for simulated
environments, where there is no shortage of opportunities to gain experience. The addition of
deep learning as a tool within RL systems has also made new applications possible, including
learning to play Atari video games from raw visual input (Mnih et al., 2013), controlling
robots (Levine et al., 2016), and playing poker (Brown and Sandholm, 2017).

Literally hundreds of different reinforcement learning algorithms have been devised, and
many of them can employ as tools a wide range of learning methods from Chapters 19, 21, and
22. In this chapter, we cover the basic ideas and give some sense of the variety of approaches
through a few examples. We categorize the approaches as follows:

• Model-based reinforcement learning: In these approaches the agent uses a transition
Model-based
reinforcement
learning

model of the environment to help interpret the reward signals and to make decisions
about how to act. The model may be initially unknown, in which case the agent learns
the model from observing the effects of its actions, or it may already be known—for
example, a chess program may know the rules of chess even if it does not know how
to choose good moves. In partially observable environments, the transition model is
also useful for state estimation (see Chapter 14). Model-based reinforcement learning
systems often learn a utility function U(s), defined (as in Chapter 16) in terms of the
sum of rewards from state s onward.2

• Model-free reinforcement learning: In these approaches the agent neither knows nor
Model-free
reinforcement
learning

learns a transition model for the environment. Instead, it learns a more direct represen-
tation of how to behave. This comes in one of two varieties:

• Action-utility learning: We introduced action-utility functions in Chapter 16. The Action-utility
learning

most common form of action-utility learning is Q-learning, where the agent learns Q-learning

a Q-function, or quality-function, Q(s,a), denoting the sum of rewards from state Q-function

s onward if action a is taken. Given a Q-function, the agent can choose what to do
in s by finding the action with the highest Q-value.
• Policy search: The agent learns a policy π(s) that maps directly from states to Policy search

actions. In the terminology of Chapter 2, this a reflex agent.
2 In the RL literature, which draws more on operations research than economics, utility functions are often called
value functions and denoted V (s).
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0.7453 0.6953 0.6514 0.4279

(a) (b)

Figure 23.1 (a) The optimal policies for the stochastic environment with R(s,a,s′)= −0.04
for transitions between nonterminal states. There are two policies because in state (3,1) both
Left and Up are optimal. We saw this before in Figure 16.2. (b) The utilities of the states in
the 4×3 world, given policy π.

We begin in Section 23.2 with passive reinforcement learning, where the agent’s policy
Passive
reinforcement
learning

is fixed and the task is to learn the utilities of states (or of state–action pairs); this could
also involve learning a model of the environment. (An understanding of Markov decision
processes, as described in Chapter 16, is essential for this section.) Section 23.3 covers active
reinforcement learning, where the agent must also figure out what to do. The principalActive reinforcement

learning

issue is exploration: an agent must experience as much as possible of its environment in
order to learn how to behave in it. Section 23.4 discusses how an agent can use inductive
learning (including deep learning methods) to learn much faster from its experiences. We
also discuss other approaches that can help scale up RL to solve real problems, including
providing intermediate pseudorewards to guide the learner and organizing behavior into a
hierarchy of actions. Section 23.5 covers methods for policy search. In Section 23.6, we
explore apprenticeship learning: training a learning agent using demonstrations rather than
reward signals. Finally, Section 23.7 reports on applications of reinforcement learning.

23.2 Passive Reinforcement Learning

We start with the simple case of a fully observable environment with a small number of
actions and states, in which an agent already has a fixed policy π(s) that determines its actions.
The agent is trying to learn the utility function Uπ(s)—the expected total discounted reward
if policy π is executed beginning in state s. We call this a passive learning agent.Passive learning

agent

The passive learning task is similar to the policy evaluation task, part of the policy iter-
ation algorithm described in Section 16.2.2. The difference is that the passive learning agent
does not know the transition model P(s′ |s,a), which specifies the probability of reaching
state s′ from state s after doing action a; nor does it know the reward function R(s,a,s′),
which specifies the reward for each transition.

We will use as our example the 4×3 world introduced in Chapter 16. Figure 23.1 shows
the optimal policies for that world and the corresponding utilities. The agent executes a set
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of trials in the environment using its policy π. In each trial, the agent starts in state (1,1) and Trial

experiences a sequence of state transitions until it reaches one of the terminal states, (4,2) or
(4,3). Its percepts supply both the current state and the reward received for the transition that
just occurred to reach that state. Typical trials might look like this:

(1,1) -.04→
Up

(1,2) -.04→
Up

(1,3) -.04→
Right

(1,2) -.04→
Up

(1,3) -.04→
Right

(2,3) -.04→
Right

(3,3) +1→
Right

(4,3)

(1,1) -.04→
Up

(1,2) -.04→
Up

(1,3) -.04→
Right

(2,3) -.04→
Right

(3,3) -.04→
Right

(3,2) -.04→
Up

(3,3) +1→
Right

(4,3)

(1,1) -.04→
Up

(1,2) -.04→
Up

(1,3) -.04→
Right

(2,3) -.04→
Right

(3,3) -.04→
Right

(3,2) -1→
Up

(4,2)

Note that each transition is annotated with both the action taken and the reward received at
the next state. The object is to use the information about rewards to learn the expected utility
Uπ(s) associated with each nonterminal state s. The utility is defined to be the expected sum
of (discounted) rewards obtained if policy π is followed. As in Equation (16.2) on page 557,
we write

Uπ(s) = E

[
∞

∑
t=0

γtR(St ,π(St),St+1)

]
, (23.1)

where R(St ,π(St),St+1) is the reward received when action π(St) is taken in state St and
reaches state St+1. Note that St is a random variable denoting the state reached at time t when
executing policy π, starting from state S0=s. We will include a discount factor γ in all of
our equations, but for the 4×3 world we will set γ=1, which means no discounting.

23.2.1 Direct utility estimation

The idea of direct utility estimation is that the utility of a state is defined as the expected Direct utility
estimation

total reward from that state onward (called the expected reward-to-go), and that each trial Reward-to-go

provides a sample of this quantity for each state visited. For example, the first of the three
trials shown earlier provides a sample total reward of 0.76 for state (1,1), two samples of 0.80
and 0.88 for (1,2), two samples of 0.84 and 0.92 for (1,3), and so on. Thus, at the end of each
sequence, the algorithm calculates the observed reward-to-go for each state and updates the
estimated utility for that state accordingly, just by keeping a running average for each state
in a table. In the limit of infinitely many trials, the sample average will converge to the true
expectation in Equation (23.1).

This means that we have reduced reinforcement learning to a standard supervised learn-
ing problem in which each example is a (state, reward-to-go) pair. We have a lot of powerful
algorithms for supervised learning, so this approach seems promising, but it ignores an im-
portant constraint: The utility of a state is determined by the reward and the expected utility J
of the successor states. More specifically, the utility values obey the Bellman equations for a
fixed policy (see also Equation (16.14)):

Ui(s) = ∑
s′

P(s′ |s,πi(s))[R(s,πi(s),s′)+γUi(s′)] . (23.2)

By ignoring the connections between states, direct utility estimation misses opportunities for
learning. For example, the second of the three trials given earlier reaches the state (3,2),
which has not previously been visited. The next transition reaches (3,3), which is known
from the first trial to have a high utility. The Bellman equation suggests immediately that
(3,2) is also likely to have a high utility, because it leads to (3,3), but direct utility estimation
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learns nothing until the end of the trial. More broadly, we can view direct utility estimation
as searching for U in a hypothesis space that is much larger than it needs to be, in that it
includes many functions that violate the Bellman equations. For this reason, the algorithm
often converges very slowly.

23.2.2 Adaptive dynamic programming

An adaptive dynamic programming (or ADP) agent takes advantage of the constraintsAdaptive dynamic
programming

among the utilities of states by learning the transition model that connects them and solv-
ing the corresponding Markov decision process using dynamic programming. For a passive
learning agent, this means plugging the learned transition model P(s′ |s,π(s)) and the ob-
served rewards R(s,π(s),s′) into Equation (23.2) to calculate the utilities of the states. As
we remarked in our discussion of policy iteration in Chapter 16, these Bellman equations are
linear when the policy π is fixed, so they can be solved using any linear algebra package.

Alternatively, we can adopt the approach of modified policy iteration (see page 568),
using a simplified value iteration process to update the utility estimates after each change to
the learned model. Because the model usually changes only slightly with each observation,
the value iteration process can use the previous utility estimates as initial values and typically
converge very quickly.

Learning the transition model is easy, because the environment is fully observable. This
means that we have a supervised learning task where the input for each training example is a
state–action pair, (s,a), and the output is the resulting state, s′. The transition model P(s′ |s,a)
is represented as a table and it is estimated directly from the counts that are accumulated in
Ns′ |sa. The counts record how often state s′ is reached when executing a in s. For example, in
the three trials given on page 843, Right is executed four times in (3,3) and the resulting state
is (3,2) twice and (4,3) twice, so P((3,2) |(3,3),Right) and P((4,3) |(3,3),Right) are both
estimated to be 1

2 .
The full agent program for a passive ADP agent is shown in Figure 23.2. Its perfor-

mance on the 4×3 world is shown in Figure 23.3. In terms of how quickly its value estimates
improve, the ADP agent is limited only by its ability to learn the transition model. In this
sense, it provides a standard against which to measure any other reinforcement learning al-
gorithms. It is, however, intractable for large state spaces. In backgammon, for example, it
would involve solving roughly 1020 equations in 1020 unknowns.

23.2.3 Temporal-difference learning

Solving the underlying MDP as in the preceding section is not the only way to bring the
Bellman equations to bear on the learning problem. Another way is to use the observed
transitions to adjust the utilities of the observed states so that they agree with the constraint
equations. Consider, for example, the transition from (1,3) to (2,3) in the second trial on
page 843. Suppose that as a result of the first trial, the utility estimates are Uπ(1,3)=0.88
and Uπ(2,3)=0.96. Now, if this transition from (1,3) to (2,3) occurred all the time, we would
expect the utilities to obey the equation

Uπ(1,3) =−0.04+Uπ(2,3) ,

so Uπ(1,3) would be 0.92. Thus, its current estimate of 0.88 might be a little low and should
be increased. More generally, when a transition occurs from state s to state s′ via action π(s),
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function PASSIVE-ADP-LEARNER(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: π, a fixed policy

mdp, an MDP with model P, rewards R, actions A, discount γ
U, a table of utilities for states, initially empty
Ns′|s,a, a table of outcome count vectors indexed by state and action, initially zero
s, a, the previous state and action, initially null

if s′ is new then U[s′]←0
if s is not null then

increment Ns′|s,a[s, a][s’]
R[s, a, s′]←r
add a to A[s]
P(· | s,a)←NORMALIZE(Ns′|s,a[s, a])
U←POLICYEVALUATION(π, U, mdp)
s, a←s′,π[s′]
return a

Figure 23.2 A passive reinforcement learning agent based on adaptive dynamic program-
ming. The agent chooses a value for γ and then incrementally computes the P and R values
of the MDP. The POLICY-EVALUATION function solves the fixed-policy Bellman equations,
as described on page 567.
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Figure 23.3 The passive ADP learning curves for the 4×3 world, given the optimal policy
shown in Figure 23.1. (a) The utility estimates for a selected subset of states, as a function
of the number of trials. Notice that it takes 14 and 23 trials respectively before the rarely
visited states (2,1) and (3,2) “discover” that they connect to the +1 exit state at (4,3). (b) The
root-mean-square error (see Appendix A) in the estimate for U(1,1), averaged over 50 runs
of 100 trials each.
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function PASSIVE-TD-LEARNER(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: π, a fixed policy

s, the previous state, initially null
U, a table of utilities for states, initially empty
Ns, a table of frequencies for states, initially zero

if s′ is new then U[s′]←0
if s is not null then

increment Ns[s]
U[s]←U[s] + α(Ns[s]) × (r + γU[s′] - U[s])

s←s′

return π[s′]

Figure 23.4 A passive reinforcement learning agent that learns utility estimates using tem-
poral differences. The step-size function α(n) is chosen to ensure convergence.

we apply the following update to Uπ(s):

Uπ(s)←Uπ(s)+α[R(s,π(s),s′)+γUπ(s′)−Uπ(s)] . (23.3)

Here, α is the learning rate parameter. Because this update rule uses the difference in util-
ities between successive states (and thus successive times), it is often called the temporal-
difference (TD) equation. Just as in the weight update rules from Chapter 19 (e.g., Equa-Temporal-difference

tion (19.6) on page 698), the TD term R(s,π(s),s′)+γUπ(s′)−Uπ(s) is effectively an error
signal, and the update is intended to reduce the error.

All temporal-difference methods work by adjusting the utility estimates toward the ideal
equilibrium that holds locally when the utility estimates are correct. In the case of passive
learning, the equilibrium is given by Equation (23.2). Now Equation (23.3) does in fact
cause the agent to reach the equilibrium given by Equation (23.2), but there is some subtlety
involved. First, notice that the update involves only the observed successor s′, whereas the
actual equilibrium conditions involve all possible next states. One might think that this causes
an improperly large change in Uπ(s) when a very rare transition occurs; but, in fact, because
rare transitions occur only rarely, the average value of Uπ(s) will converge to the correct
quantity in the limit, even if the value itself continues to fluctuate.

Furthermore, if we turn the parameter α into a function that decreases as the number
of times a state has been visited increases, as shown in Figure 23.4, then Uπ(s) itself will
converge to the correct value.3 Figure 23.5 illustrates the performance of the passive TD
agent on the 4×3 world. It does not learn quite as fast as the ADP agent and shows much
higher variability, but it is much simpler and requires much less computation per observation.
Notice that TD does not need a transition model to perform its updates. The environmentI
itself supplies the connection between neighboring states in the form of observed transitions.

The ADP and TD approaches are closely related. Both try to make local adjustments to
the utility estimates in order to make each state “agree” with its successors. One difference is

3 The technical conditions are given on page 702. In Figure 23.5 we have used α(n)=60/(59+ n), which
satisfies the conditions.
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Figure 23.5 The TD learning curves for the 4× 3 world. (a) The utility estimates for a
selected subset of states, as a function of the number of trials, for a single run of 500 trials.
Compare with the run of 100 trials in Figure 23.3(a). (b) The root-mean-square error in the
estimate for U(1,1), averaged over 50 runs of 100 trials each.

that TD adjusts a state to agree with its observed successor (Equation (23.3)), whereas ADP
adjusts the state to agree with all of the successors that might occur, weighted by their prob-
abilities (Equation (23.2)). This difference disappears when the effects of TD adjustments
are averaged over a large number of transitions, because the frequency of each successor in
the set of transitions is approximately proportional to its probability. A more important dif-
ference is that whereas TD makes a single adjustment per observed transition, ADP makes
as many as it needs to restore consistency between the utility estimates U and the transition
model P. Although the observed transition makes only a local change in P, its effects might
need to be propagated throughout U. Thus, TD can be viewed as a crude but efficient first
approximation to ADP.

Each adjustment made by ADP could be seen, from the TD point of view, as a result of
a pseudoexperience generated by simulating the current transition model. It is possible to Pseudoexperience

extend the TD approach to use a transition model to generate several pseudoexperiences—
transitions that the TD agent can imagine might happen, given its current model. For each
observed transition, the TD agent can generate a large number of imaginary transitions. In
this way, the resulting utility estimates will approximate more and more closely those of
ADP—of course, at the expense of increased computation time.

In a similar vein, we can generate more efficient versions of ADP by directly approxi-
mating the algorithms for value iteration or policy iteration. Even though the value iteration
algorithm is efficient, it is intractable if we have, say, 10100 states. However, many of the nec-
essary adjustments to the state values on each iteration will be extremely tiny. One possible
approach to generating reasonably good answers quickly is to bound the number of adjust-
ments made after each observed transition. One can also use a heuristic to rank the possible
adjustments so as to carry out only the most significant ones. The prioritized sweeping Prioritized sweeping

heuristic prefers to make adjustments to states whose likely successors have just undergone a
large adjustment in their own utility estimates.
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Using heuristics like this, approximate ADP algorithms can learn roughly as fast as full
ADP, in terms of the number of training sequences, but can be orders of magnitude more
efficient in terms of total computation (see Exercise 23.PRSW). This enables them to handle
state spaces that are far too large for full ADP. Approximate ADP algorithms have an addi-
tional advantage: in the early stages of learning a new environment, the transition model P
often will be far from correct, so there is little point in calculating an exact utility function
to match it. An approximation algorithm can use a minimum adjustment size that decreases
as the transition model becomes more accurate. This eliminates the very long runs of value
iteration that can occur early in learning due to large changes in the model.

23.3 Active Reinforcement Learning

A passive learning agent has a fixed policy that determines its behavior. An active learning
agent gets to decide what actions to take. Let us begin with the adaptive dynamic program-
ming (ADP) agent and consider how it can be modified to take advantage of this new freedom.

First, the agent will need to learn a complete transition model with outcome probabilities
for all actions, rather than just the model for the fixed policy. The learning mechanism used
by PASSIVE-ADP-AGENT will do just fine for this. Next, we need to take into account the
fact that the agent has a choice of actions. The utilities it needs to learn are those defined by
the optimal policy; they obey the Bellman equations (which we repeat here):

U(s) = max
a∈A(s)

∑
s′

P(s′ |s,a)[R(s,a,s′)+γU(s′)] . (23.4)

These equations can be solved to obtain the utility function U using the value iteration or
policy iteration algorithms from Chapter 16.

The final issue is what to do at each step. Having obtained a utility function U that is
optimal for the learned model, the agent can extract an optimal action by one-step look-ahead
to maximize the expected utility; alternatively, if it uses policy iteration, the optimal policy is
already available, so it could simply execute the action the optimal policy recommends. But
should it?

23.3.1 Exploration

Figure 23.6 shows the results of one sequence of trials for an ADP agent that follows the
recommendation of the optimal policy for the learned model at each step. The agent does not
learn the true utilities or the true optimal policy! What happens instead is that in the third trial,
it finds a policy that reaches the +1 reward along the lower route via (2,1), (3,1), (3,2), and
(3,3). (See Figure 23.6(b).) After experimenting with minor variations, from the eighth trial
onward it sticks to that policy, never learning the utilities of the other states and never finding
the optimal route via (1,2), (1,3), and (2,3). We will call this agent a greedy agent, becauseGreedy agent

it greedily takes the action that it currently believes to be optimal at each step. Sometimes
greed pays off and the agent converges to the optimal policy, but often it does not.

How can it be that choosing the optimal action leads to suboptimal results? The answer is
that the learned model is not the same as the true environment; what is optimal in the learned
model can therefore be suboptimal in the true environment. Unfortunately, the agent does
not know what the true environment is, so it cannot compute the optimal action for the true
environment. What, then, should it do?
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Figure 23.6 Performance of a greedy ADP agent that executes the action recommended by
the optimal policy for the learned model. (a) The root mean square (RMS) error averaged
across all nine nonterminal squares and the policy loss in (1,1). We see that the policy con-
verges quickly, after just eight trials, to a suboptimal policy with a loss of 0.235. (b) The
suboptimal policy to which the greedy agent converges in this particular sequence of trials.
Notice the Down action in (1,2).

The greedy agent has overlooked the fact that actions do more than provide rewards;
they also provide information in the form of percepts in the resulting states. As we saw with
bandit problems in Section 16.3, an agent must make a tradeoff between exploitation of the
current best action to maximize its short-term reward and exploration of previously unknown
states to gain information that can lead to a change in policy (and to greater rewards in the
future). In the real world, one constantly has to decide between continuing in a comfortable
existence, versus striking out into the unknown in the hopes of a better life.

Although bandit problems are difficult to solve exactly to obtain an optimal exploration
scheme, it is nonetheless possible to come up with a scheme that will eventually discover an
optimal policy, even if it might take longer to do so than is optimal. Any such scheme should
not be greedy in terms of the immediate next move, but should be what is called “greedy in
the limit of infinite exploration,” or GLIE. A GLIE scheme must try each action in each state GLIE

an unbounded number of times to avoid having a finite probability that an optimal action is
missed. An ADP agent using such a scheme will eventually learn the true transition model,
and can then operate under exploitation.

There are several GLIE schemes; one of the simplest is to have the agent choose a random
action at time step t with probability 1/t and to follow the greedy policy otherwise. While this
does eventually converge to an optimal policy, it can be slow. A better approach would give
some weight to actions that the agent has not tried very often, while tending to avoid actions
that are believed to be of low utility (as we did with Monte Carlo tree search in Section 6.4).
This can be implemented by altering the constraint equation (23.4) so that it assigns a higher
utility estimate to relatively unexplored state–action pairs.

This amounts to an optimistic prior over the possible environments and causes the agent
to behave initially as if there were wonderful rewards scattered all over the place. Let us use
U+(s) to denote the optimistic estimate of the utility (i.e., the expected reward-to-go) of the
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state s, and let N(s,a) be the number of times action a has been tried in state s. Suppose
we are using value iteration in an ADP learning agent; then we need to rewrite the update
equation (Equation (16.10) on page 563) to incorporate the optimistic estimate:

U+(s)←max
a

f
(

∑
s′

P(s′ |s,a)[R(s,a,s′)+γU+(s′)], N(s,a)
)
. (23.5)

Here, f is the exploration function. The function f (u,n) determines how greed (preferenceExploration function

for high values of the utility u) is traded off against curiosity (preference for actions that have
not been tried often and have a low count n). The function should be increasing in u and
decreasing in n. Obviously, there are many possible functions that fit these conditions. One
particularly simple definition is

f (u,n) =
{

R+ if n< Ne

u otherwise,

where R+ is an optimistic estimate of the best possible reward obtainable in any state and
Ne is a fixed parameter. This will have the effect of making the agent try each state–action
pair at least Ne times. The fact that U+ rather than U appears on the right-hand side of
Equation (23.5) is very important. As exploration proceeds, the states and actions near the
start state might well be tried a large number of times. If we used U , the more pessimistic
utility estimate, then the agent would soon become disinclined to explore further afield. The
use of U+ means that the benefits of exploration are propagated back from the edges of
unexplored regions, so that actions that lead toward unexplored regions are weighted more
highly, rather than just actions that are themselves unfamiliar.

The effect of this exploration policy can be seen clearly in Figure 23.7(b), which shows
a rapid convergence toward zero policy loss, unlike with the greedy approach. A very nearly
optimal policy is found after just 18 trials. Notice that the RMS error in the utility estimates
does not converge as quickly. This is because the agent stops exploring the unrewarding
parts of the state space fairly soon, visiting them only “by accident” thereafter. However, it
makes perfect sense for the agent not to care about the exact utilities of states that it knows
are undesirable and can be avoided. There is not much point in learning about the best radio
station to listen to while falling off a cliff.

23.3.2 Safe exploration

So far we have assumed that an agent is free to explore as it wishes—that any negative rewards
serve only to improve its model of the world. That is, if we play a game of chess and lose,
we suffer no damage (except perhaps to our pride), and whatever we learned will make us
a better player in the next game. Similarly, in a simulation environment for a self-driving
car, we could explore the limits of the car’s performance, and any accidents give us more
information. If the car crashes, we just hit the reset button.

Unfortunately, the real world is less forgiving. If you are a baby sunfish, your probability
of surviving to adulthood is about 0.00000001. Many actions are irreversible, in the sense
defined for online search agents in Section 4.5: no subsequent sequence of actions can restore
the state to what it was before the irreversible action was taken. In the worst case, the agent
enters an absorbing state where no actions have any effect and no rewards are received.Absorbing state

In many practical settings, we cannot afford to have our agents taking irreversible actions
or entering absorbing states. For example, an agent learning to drive in a real car should avoid
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Figure 23.7 Performance of the exploratory ADP agent using R+ = 2 and Ne = 5. (a) Utility
estimates for selected states over time. (b) The RMS error in utility values and the associated
policy loss.

taking actions that might lead to any of the following:

• states with large negative rewards, such as serious car crashes;
• states from which there is no escape, such as driving the car into a deep ditch;
• states that permanently limit future rewards, such as damaging the car’s engine so that

its maximum speed is reduced.

We can end up in a bad state either because our model is unknown, and we actively choose
to explore in a direction that turns out to be bad, or because our model is incorrect and
we don’t know that a given action can have a disastrous result. Note that the algorithm in
Figure 23.2 is using maximum-likelihood estimation (see Chapter 21) to learn the transition
model; moreover, by choosing a policy based solely on the estimated model, it is acting as if
the model were correct. This is not necessarily a good idea! For example, a taxi agent that
didn’t know how traffic lights work might ignore a red light once or twice with no ill effects
and then formulate a policy to ignore all red lights from then on.

A better idea would be to choose a policy that works reasonably well for the whole range
of models that have a reasonable chance of being the true model, even if the policy happens to
be suboptimal for the maximum-likelihood model. There are three mathematical approaches
that have this flavor.

The first approach, Bayesian reinforcement learning, assumes a prior probability P(h)
Bayesian
reinforcement
learning

over hypotheses h about what the true model is; the posterior probability P(h |e) is obtained
in the usual way by Bayes’ rule given the observations to date. Then, if the agent has decided
to stop learning, the optimal policy is the one that gives the highest expected utility. Let Uπ

h
be the expected utility, averaged over all possible start states, obtained by executing policy π
in model h. Then we have

π∗ = argmax
π

∑
h

P(h |e)Uπ
h .

In some special cases, this policy can even be computed! If the agent will continue learning
in the future, however, then finding an optimal policy becomes considerably more difficult,
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because the agent must consider the effects of future observations on its beliefs about the
transition model. The problem becomes an exploration POMDP whose belief states are dis-Exploration POMDP

tributions over models. In principle, this exploration POMDP can be formulated and solved
before the agent ever sets foot in the world. (Exercise 23.EPOM asks you to do this for
the Minesweeper game to find the best first move.) The result is a complete strategy that
tells the agent what to do next given any possible percept sequence. Solving the exploration
POMDP is usually wildly intractable, but the concept provides an analytical foundation for
understanding the exploration problem described in Section 23.3.

It is worth noting that being perfectly Bayesian will not protect the agent from an un-
timely death. Unless the prior gives some indication of percepts that suggest danger, there
is nothing to prevent the agent from taking an exploratory action that leads to an absorbing
state. For example, it used to be thought that human infants had an innate fear of heights and
would not crawl off a cliff, but this turns out not to be true (Adolph et al., 2014).

The second approach, derived from robust control theory, allows for a set of possibleRobust control
theory

models H without assigning probabilities to them, and defines an optimal robust policy as
one that gives the best outcome in the worst case overH:

π∗ = argmax
π

min
h

Uπ
h .

Often, the set H will be the set of models that exceed some likelihood threshold on P(h |e),
so the robust and Bayesian approaches are related.

The robust control approach can be considered as a game between the agent and an adver-
sary, where the adversary gets to pick the worst possible result for any action, and the policy
we get is the minimax solution for the game. Our logical wumpus agent (see Section 7.7) is a
robust control agent in this way: it considers all models that are logically possible, and does
not explore any locations that could possibly contain a pit or a wumpus, so it is finding the
action with maximum utility in the worst case over all possible hypotheses.

The problem with the worst-case assumption is that it results in overly conservative be-
havior. A self-driving car that assumes that every other driver will try to collide with it has no
choice but to stay in the garage. Real life is full of such risk–reward tradeoffs.

Although one reason for venturing into reinforcement learning was to escape the need for
a human teacher (as in supervised learning), it turns out that human knowledge can help keep
a system safe. One way is to record a series of actions by an experienced teacher, so that the
system will act reasonably from the start, and can learn to improve from there. A second way
is for a human to write down constraints on what a system can do, and have a program outside
of the reinforcement learning system enforce those constraints. For example, when training
an autonomous helicopter, a partial policy can be provided that takes over control when the
helicopter enters a state from which any further unsafe actions would lead to an irrecoverable
state—one in which the safety controller cannot guarantee that the absorbing state will be
avoided. In all other states, the learning agent is free to do as it pleases.

23.3.3 Temporal-difference Q-learning

Now that we have an active ADP agent, let us consider how to construct an active temporal-
difference (TD) learning agent. The most obvious change is that the agent will have to learn
a transition model so that it can choose an action based on U(s) via one-step look-ahead. The
model acquisition problem for the TD agent is identical to that for the ADP agent, and the
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TD update rule remains unchanged. Once again, it can be shown that the TD algorithm will
converge to the same values as ADP, as the number of training sequences tends to infinity.

The Q-learning method avoids the need for a model by learning an action-utility function
Q(s,a) instead of a utility function U(s). Q(s,a) denotes the expected total discounted reward
if the agent takes action a in s and acts optimally thereafter. Knowing the Q-function enables
the agent to act optimally simply by choosing argmaxa Q(s,a), with no need for look-ahead
based on a transition model.

We can also derive a model-free TD update for the Q-values. We begin with the Bellman
equation for Q(s,a), repeated here from Equation (16.8):

Q(s,a) = ∑
s′

P(s′ |s,a)[R(s,a,s′)+γ max
a′

Q(s′,a′)] (23.6)

From this, we can write down the Q-learning TD update, by analogy to the TD update for
utilities in Equation (23.3):

Q(s,a)← Q(s,a)+α[R(s,a,s′)+γ max
a′

Q(s′,a′)−Q(s,a)] . (23.7)

This update is calculated whenever action a is executed in state s leading to state s′. As in
Equation (23.3), the term R(s,a,s′)+ γ maxa′ Q(s′,a′)−Q(s,a) represents an error that the
update is trying to minimize.

The important part of this equation is what it does not contain: a TD Q-learning agent J
does not need a transition model, P(s′ |s,a), either for learning or for action selection. As
noted at the beginning of the chapter, model-free methods can be applied even in very com-
plex domains because no model need be provided or learned. On the other hand, the Q-
learning agent has no means of looking into the future, so it may have difficulty when rewards
are sparse and long action sequences must be constructed to reach them.

The complete agent design for an exploratory TD Q-learning agent is shown in Fig-
ure 23.8. Notice that it uses exactly the same exploration function f as that used by the
exploratory ADP agent—hence the need to keep statistics on actions taken (the table N). If
a simpler exploration policy is used—say, acting randomly on some fraction of steps, where
the fraction decreases over time—then we can dispense with the statistics.

Q-learning has a close relative called SARSA (for state, action, reward, state, action). SARSA

The update rule for SARSA is very similar to the Q-learning update rule (Equation (23.7)),
except that SARSA updates with the Q-value of the action a′ that is actually taken:

Q(s,a)← Q(s,a)+α[R(s,a,s′)+γ Q(s′,a′)−Q(s,a)] , (23.8)

The rule is applied at the end of each s, a, r, s′, a′ quintuplet—hence the name. The differ-
ence from Q-learning is quite subtle: whereas Q-learning backs up the Q-value from the best
action in s′, SARSA waits until an action is taken and backs up the Q-value for that action.
If the agent is greedy and always takes the action with the best Q-value, the two algorithms
are identical. When exploration is happening, however, they differ: if the exploration yields
a negative reward, SARSA penalizes the action, while Q-learning does not.

Q-learning is an off-policy learning algorithm, because it learns Q-values that answer the Off-policy

question “What would this action be worth in this state, assuming that I stop using whatever
policy I am using now, and start acting according to a policy that chooses the best action
(according to my estimates)?” SARSA is an on-policy algorithm: it learns Q-values that On-policy

answer the question “What would this action be worth in this state, assuming I stick with my
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function Q-LEARNING-AGENT(percept) returns an action
inputs: percept, a percept indicating the current state s′ and reward signal r
persistent: Q, a table of action values indexed by state and action, initially zero

Nsa, a table of frequencies for state–action pairs, initially zero
s, a, the previous state and action, initially null

if s is not null then
increment Nsa[s, a]
Q[s,a]←Q[s,a] + α(Nsa[s,a])(r + γ maxa′ Q[s′,a′] − Q[s,a])

s, a←s′, argmaxa′ f (Q[s′,a′],Nsa[s′,a′])
return a

Figure 23.8 An exploratory Q-learning agent. It is an active learner that learns the value
Q(s,a) of each action in each situation. It uses the same exploration function f as the ex-
ploratory ADP agent, but avoids having to learn the transition model.

policy?” Q-learning is more flexible than SARSA, in the sense that a Q-learning agent can
learn how to behave well when under the control of a wide variety of exploration policies. On
the other hand, SARSA is appropriate if the overall policy is even partly controlled by other
agents or programs, in which case it is better to learn a Q-function for what will actually
happen rather than what would happen if the agent got to pick estimated best actions. Both
Q-learning and SARSA learn the optimal policy for the 4×3 world, but they do so at a much
slower rate than the ADP agent. This is because the local updates do not enforce consistency
among all the Q-values via the model.

23.4 Generalization in Reinforcement Learning

So far, we have assumed that utility functions and Q-functions are represented in tabular form
with one output value for each state. This works for state spaces with up to about 106 states,
which is more than enough for our toy two-dimensional grid environments. But in real-world
environments with many more states, convergence will be too slow. Backgammon is simpler
than most real-world applications, yet it has about 1020 states. We cannot easily visit them all
in order to learn how to play the game.

Chapter 6 introduced the idea of an evaluation function as a compact measure of de-
sirability for potentially vast state spaces. In the terminology of this chapter, the evaluation
function is an approximate utility function; we use the term function approximation for theFunction

approximation

process of constructing a compact approximation of the true utility function or Q-function.
For example, we might approximate the utility function using a weighted linear combination
of features f1, . . . , fn:

Ûθ(s) = θ1 f1(s)+θ2 f2(s)+ · · ·+θn fn(s) .

Instead of learning 1020 state values in a table, a reinforcement learning algorithm can learn,
say, 20 values for the parameters θ=θ1, . . . ,θ20 that make Ûθ a good approximation to the true
utility function. Sometimes this approximate utility function is combined with look-ahead
search to produce more accurate decisions. Adding look-ahead search means that effective
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behavior can be generated from a much simpler utility function approximator that is learnable
from far fewer experiences.

Function approximation makes it practical to represent utility (or Q) functions for very
large state spaces, but more importantly, it allows for inductive generalization: the agent can
generalize from states it has visited to states it has not yet visited. Tesauro (1992) used this
technique to build a backgammon-playing program that played at human champion level,
even though it explored only a trillionth of the complete state space of backgammon.

23.4.1 Approximating direct utility estimation

The method of direct utility estimation (Section 23.2) generates trajectories in the state space
and extracts, for each state, the sum of rewards received from that state onward until termina-
tion. The state and the sum of rewards received constitute a training example for a supervised
learning algorithm. For example, suppose we represent the utilities for the 4×3 world using
a simple linear function, where the features of the squares are just their x and y coordinates.
In that case, we have

Ûθ(x,y) = θ0 +θ1x+θ2y . (23.9)

Thus, if (θ0,θ1,θ2)=(0.5,0.2,0.1), then Ûθ(1,1)=0.8. Given a collection of trials, we obtain
a set of sample values of Ûθ(x,y), and we can find the best fit, in the sense of minimizing the
squared error, using standard linear regression (see Chapter 19).

For reinforcement learning, it makes more sense to use an online learning algorithm
that updates the parameters after each trial. Suppose we run a trial and the total reward
obtained starting at (1,1) is 0.4. This suggests that Ûθ(1,1), currently 0.8, is too large and
must be reduced. How should the parameters be adjusted to achieve this? As with neural-
network learning, we write an error function and compute its gradient with respect to the
parameters. If u j(s) is the observed total reward from state s onward in the jth trial, then
the error is defined as (half) the squared difference of the predicted total and the actual total:
E j(s) = (Ûθ(s)−u j(s))2/2. The rate of change of the error with respect to each parameter θi

is ∂E j/∂θi, so to move the parameter in the direction of decreasing the error, we want

θi← θi−α
∂E j(s)

∂θi
= θi +α [u j(s)−Ûθ(s)]

∂Ûθ(s)
∂θi

. (23.10)

This is called the Widrow–Hoff rule, or the delta rule, for online least-squares. For the Widrow–Hoff rule

Delta rulelinear function approximator Ûθ(s) in Equation (23.9), we get three simple update rules:

θ0 ← θ0 +α [u j(s)−Ûθ(s)] ,

θ1 ← θ1 +α [u j(s)−Ûθ(s)]x ,

θ2 ← θ2 +α [u j(s)−Ûθ(s)]y .

We can apply these rules to the example where Ûθ(1,1) is 0.8 and u j(1,1) is 0.4. Parame-
ters θ0, θ1, and θ2 are all decreased by 0.4α, which reduces the error for (1,1). Notice that
changing the parameters θi in response to an observed transition between two states also J
changes the values of Ûθ for every other state! This is what we mean by saying that function
approximation allows a reinforcement learner to generalize from its experiences.

The agent will learn faster if it uses a function approximator, provided that the hypothesis
space is not too large and includes some functions that are a reasonably good fit to the true
utility function. Exercise 23.APLM asks you to evaluate the performance of direct utility



856 Chapter 23 Reinforcement Learning

estimation, both with and without function approximation. The improvement in the 4×3
world is noticeable but not dramatic, because this is a very small state space to begin with.
The improvement is much greater in a 10×10 world with a +1 reward at (10,10).

The 10×10 world is well suited for a linear utility function because the true utility func-
tion is smooth and nearly linear: it is basically a diagonal slope with its lower corner at (1,1)
and its upper corner at (10,10). (See Exercise 23.TENX.) On the other hand, if we put the
+1 reward at (5,5), the true utility is more like a pyramid and the function approximator in
Equation (23.9) will fail miserably.

All is not lost, however! Remember that what matters for linear function approximation
is that the function be linear in the features. But we can choose the features to be arbitrary
nonlinear functions of the state variables. Hence, we can include a feature such as f3(x,y) =√
(x− xg)2 +(y− yg)2 that measures the distance to the goal. With this new feature, the

linear function approximator does well.

23.4.2 Approximating temporal-difference learning

We can apply these ideas equally well to temporal-difference learners. All we need do is
adjust the parameters to try to reduce the temporal difference between successive states. The
new versions of the TD and Q-learning equations (23.3 on page 846 and 23.7 on page 853)
are given by

θi← θi +α [R(s,a,s′)+γ Ûθ(s′)−Ûθ(s)]
∂Ûθ(s)

∂θi
(23.11)

for utilities and

θi← θi +α [R(s,a,s′)+γ max
a′

Q̂θ(s′,a′)− Q̂θ(s,a)]
∂ Q̂θ(s,a)

∂θi
(23.12)

for Q-values. For passive TD learning, the update rule can be shown to converge to the closest
possible approximation to the true function when the function approximator is linear in the
features.4 With active learning and nonlinear functions such as neural networks, nearly all
bets are off: there are some very simple cases in which the parameters can go off to infinity
with these update rules, even though there are good solutions in the hypothesis space. There
are more sophisticated algorithms that can avoid these problems, but at present reinforcement
learning with general function approximators remains a delicate art.

In addition to parameters diverging to infinity, there is a more surprising problem called
catastrophic forgetting. Suppose you are training an autonomous vehicle to drive alongCatastrophic

forgetting

(simulated) roads safely without crashing. You assign a high negative reward for crossing
the edge of the road, and you use quadratic features of the road position so that the car can
learn that the utility of being in the middle of the road is higher than being close to the edge.
All goes well, and the car learns to drive perfectly down the middle of the road. After a few
minutes of this, you are starting to get bored and are about to halt the simulation and write
up the excellent results. All of a sudden, the vehicle swerves off the road and crashes. Why?
What has happened is that the car has learned too well: because it has learned to steer away
from the edge, it has learned that the entire central region of the road is a safe place to be, and
it has forgotten that the region closer to the edge is dangerous. The central region therefore

4 The definition of distance between utility functions is rather technical; see Tsitsiklis and Van Roy (1997).
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has a flat value function, so the quadratic features get zero weight; then, any nonzero weight
on the linear features causes the car to slide off the road to one side or the other.

One solution to this problem, called experience replay, ensures that the car keeps re- Experience replay

living its youthful crashing behavior at regular intervals. The learning algorithm can retain
trajectories from the entire learning process and replay those trajectories to ensure that its
value function is still accurate for parts of the state space it no longer visits.

For model-based reinforcement learning systems, function approximation can also be
very helpful for learning a model of the environment. Remember that learning a model for
an observable environment is a supervised learning problem, because the next percept gives
the outcome state. Any of the supervised learning methods in Chapters 19, 21, and 22 can be
used, with suitable adjustments for the fact that we need to predict a complete state description
rather than just a Boolean classification or a single real value. With a learned model, the agent
can do a look-ahead search to improve its decisions and can carry out internal simulations to
improve its approximate representations of U or Q rather than requiring slow and potentially
expensive real-world experiences.

For a partially observable environment, the learning problem is much more difficult be-
cause the next percept is no longer a label for the state prediction problem. If we know what
the hidden variables are and how they are causally related to each other and to the observable
variables, then we can fix the structure of a dynamic Bayesian network and use the EM algo-
rithm to learn the parameters, as was described in Chapter 21. Learning the internal structure
of dynamic Bayesian networks and creating new state variables is still considered a difficult
problem. Deep recurrent neural networks (Section 22.6) have in some cases been successful
at inventing the hidden structure.

23.4.3 Deep reinforcement learning

There are two reasons why we need to go beyond linear function approximators: first, there
may be no good linear function that comes close to approximating the utility function or
the Q-function; second, we may not be able to invent the necessary features, particularly in
new domains. If you think about it, these are really the same reason: it is always possible
to represent U or Q as linear combinations of features, especially if we have features such
as f1(s)=U(s) or f2(s,a)=Q(s,a), but unless we can come up with such features (in an
efficiently computable form) the linear function approximator may be insufficient.

For these reasons (or reason), researchers have explored more complex, nonlinear func-
tion approximators since the earliest days of reinforcement learning. Currently, deep neural
networks (Chapter 22) are very popular in this role and have proved to be effective even when
the input is a raw image with no human-designed feature extraction at all. If all goes well,
the deep neural network in effect discovers the useful features for itself. And if the final layer
of the network is linear, then we can see what features the network is using to build its own
linear function approximator. A reinforcement learning system that uses a deep network as a
function approximator is called a deep reinforcement learning system.

Just as in Equation (23.9), the deep network is a function parameterized by θ, except that
now the function is much more complicated. The parameters are all the weights in all the
layers of the network. Nonetheless, the gradients required for Equations (23.11) and (23.12)
are just the same as the gradients required for supervised learning, and they can be computed
by the same back-propagation process described in Section 22.4.
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As we explain in Section 23.7, deep RL has achieved very significant results, including
learning to play a wide range of video games at an expert level, defeating the human world
champion at Go, and training robots to perform complex tasks.

Despite its impressive successes, deep RL still faces significant obstacles: it is often
difficult to get good performance and the trained system may behave very unpredictably if
the environment differs even a little from the training data. Compared to other applications
of deep learning, deep RL is rarely applied in commercial settings. It is, nonetheless, a very
active area of research.

23.4.4 Reward shaping

As noted in the introduction to this chapter, real-world environments may have very sparse
rewards: many primitive actions are required to achieve any nonzero reward. For example, a
soccer-playing robot might send a hundred thousand motor control commands to its various
joints before conceding a goal. Now it has to work out what it did wrong. The technical term
for this is the credit assignment problem. Other than playing trillions of soccer games soCredit assignment

that the negative reward eventually propagates back to the actions responsible for it, is there
a good solution?

One common method, originally used in animal training, is called reward shaping. ThisReward shaping

involves supplying the agent with additional rewards, called pseudorewards, for “makingPseudoreward

progress.” For example, we might give pseudorewards to the robot for making contact with
the ball or for advancing it toward the goal. Such rewards can speed up learning enormously
and are simple to provide, but there is a risk that the agent will learn to maximize the pseu-
dorewards rather than the true rewards; for example, standing next to the ball and “vibrating”
causes many contacts with the ball.

In Chapter 16 (page 559), we saw a way to modify the reward function without changing
the optimal policy. For any potential function Φ(s) and any reward function R, we can create
a new reward function R′ as follows:

R′(s,a,s′) = R(s,a,s′)+γΦ(s′)−Φ(s) .

The potential fuction Φ can be constructed to reflect any desirable aspects of the state, such as
achievement of subgoals or distance to a desired terminal state. For example, Φ for the soccer-
playing robot could add a constant bonus for states where the robot’s team has possession and
another bonus for reducing the distance of the ball from the opponents’ goal. This will result
in faster learning overall, but will not prevent the robot from, say, learning to pass back to the
goalkeeper when danger threatens.

23.4.5 Hierarchical reinforcement learning

Another way to cope with very long action sequences is to break them up into a few smaller
pieces, and then break those into smaller pieces still, and so on until the action sequences
are short enough to make learning easy. This approach is called hierarchical reinforcement
learning (HRL), and it has much in common with the HTN planning methods described

Hierarchical
reinforcement
learning

in Chapter 11. For example, scoring a goal in soccer can be broken down into obtaining
possession, passing to a teammate, receiving the ball from a team-mate, dribbling toward
the goal, and shooting; each of these can be broken down further into lower-level motor
behaviors. Obviously, there are multiple ways of obtaining possession and shooting, multiple
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teammates one could pass to, and so on, so each higher-level action may have many different
lower-level implementations.

To illustrate these ideas, we’ll use a simplified soccer game called keepaway, in which Keepaway

one team of three players tries to keep possession of the ball for as long as possible by drib-
bling and passing amongst themselves while the other team of two players tries to take pos-
session by intercepting a pass or tackling a player in possession.5 The game is implemented
within the RoboCup 2D simulator, which provides detailed continuous-state motion models
with 100ms time steps and has proved to be a good testbed for RL systems.

A hierarchical reinforcement learning agent begins with a partial program that outlines Partial program

a hierarchical structure for the agent’s behavior. The partial-programming language for agent
programs extends any ordinary programming language by adding primitives for unspecified
choices that must be filled in by learning. (Here, we use pseudocode for the programming
language.) The partial program can be arbitrarily complicated, as long as it terminates.

It is easy to see that HRL includes ordinary RL as a special case. We simply provide the
trivial partial program that allows the agent to keep choosing any action from A(s), the set of
actions that can be executed in the current state s:

while true do
choose(A(s)).

The choose operator allows the agent to choose any element of the specified set. The learning
process converts the partial agent program into a complete program by learning how each
choice should be made. For example, the learning process might associate a Q-function with
each choice; once the Q-functions are learned, the program produces behavior by choosing
the option with the highest Q-value each time it encounters a choice.

The agent programs for keepaway are more interesting. We’ll look at the partial program
for a single player on the “keeper” team. The choice of what to do at the top level depends
mainly on whether the player has the ball or not:

while not IS-TERMINAL(s) do
if BALL-IN-MY-POSSESSION(s) then choose({PASS,HOLD,DRIBBLE})
else choose({STAY,MOVE, INTERCEPT-BALL}).

Each of these choices invokes a subroutine that may itself make further choices, all the way
down to primitive actions that can be executed directly. For example, the high-level action
PASS chooses a teammate to pass to, but also has the choice to do nothing and return control
to the higher level if appropriate (e.g., if there is no one to pass to):

choose({PASS-TO(choose(TEAMMATES(s))), return}).

The PASS-TO routine then has to choose a speed and direction for the pass. While it is
relatively easy for a human—even one with little expertise in soccer—to provide this kind of
high-level advice to the learning agent, it would be difficult, if not impossible, to write down
the rules for determining the speed and direction of the kick to maximize the probability of
maintaining possession. Similarly, it is far from obvious how to choose the right teammate to
receive the ball or where to move in order to make oneself available to receive the ball. The
partial program provides general know-how—overall scaffolding and structural organization
for complex behaviors—and the learning process works out all the details.

5 Rumors that keepaway was inspired by the real-world tactics of Barcelona FC are probably unfounded.
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The theoretical foundations of HRL are based on the concept of the joint state space, inJoint state space

which each state (s,m) is composed of a physical state s and a machine state m. The machine
state is defined by the current internal state of the agent program: the program counter for
each subroutine on the current call stack, the values of the arguments, and the values of all
local and global variables. For example, if the agent program has chosen to pass to teammate
Ali and is in the middle of calculating the speed of the pass, then the fact that Ali is the
argument of PASS-TO is part of the current machine state. A choice state σ=(s,m) is oneChoice state

in which the program counter for m is at a choice point in the agent program. Between two
choice states, any number of computational transitions and physical actions may occur, but
they are all preordained, so to speak: by definition, the agent isn’t making any choices in
between choice states. Essentially, the hierarchical RL agent is solving a Markovian decision
problem with the following elements:

• The states are the choice states σ of the joint state space.
• The actions at σ are the choices c available in σ according to the partial program.
• The reward function ρ(σ,c,σ′) is the expected sum of rewards for all physical transi-

tions occurring between the choice states σ and σ′.
• The transition model τ(σ,c,σ′) is defined in the obvious way: if c invokes a physical ac-

tion a, then τ borrows from the physical model P(s′ |s,a); if c invokes a computational
transition, such as calling a subroutine, then the transition deterministically modifies
the computational state m according to the rules of the programming language.6

By solving this decision problem, the agent finds the optimal policy that is consistent with
original partial program.

Hierarchical RL can be a very effective method for learning complex behaviors. In keep-
away, an HRL agent based on the partial program sketched above learns a policy that keeps
possession forever against the standard taker policy—a significant improvement on the pre-
vious record of about 10 seconds. One important characteristic is that the lower-level skills
are not fixed subroutines in the usual sense; their choices are sensitive to the entire internal
state of the agent program, so they behave differently depending on where they are invoked
within that program and what is going on at the time. If necessary, the Q-functions for the
lower-level choices can be initialized by a separate training process with its own reward func-
tion, and then integrated into the overall system so they can be adapted to function well in the
context of the whole agent.

In the preceding section we saw that shaping rewards can be helpful for learning com-
plex behaviors. In HRL, the fact that learning takes place in the joint state space provides
additional opportunities for shaping. For example, to help with learning the Q-function for
accurate passing within the PASS-TO routine, we can provide a shaping reward that depends
on the location of the intended recipient and the proximity of opponents to that player: the
ball should be close to the recipient and far from the opponents. That seems entirely obvious;
but the identity of the intended recipient for a pass is not part of the physical state of theI
6 Because more than one physical action may be executed before the next choice state is reached, the problem is
technically a semi-Markov decision process, which allows actions to have different durations, including stochastic
durations. If the discount factor γ < 1, then the action duration affects the discounting applied to the reward
obtained during the action, which means that some extra discount bookkeeping has to be done and the transition
model includes the duration distribution.
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world. The physical state consists only of the positions, orientations, and velocities of the
players and the ball. There is no “passing” and no “recipient” in the physical world; these are
entirely internal constructs. This means that there is no way to provide such sensible advice
to a standard RL system.

The hierarchical structure of behavior also provides a natural additive decomposition Additive
decomposition

of the overall utility function. Remember that utility is the sum of rewards over time, and
consider a sequence of, say, ten time steps with rewards [r1,r2, . . . ,r10]. Suppose that for the
first five time steps the agent is doing PASS-TO(Ali) and for the remaining five steps it is
doing MOVE-INTO-SPACE. Then the utility for the initial state is the sum of the total reward
during PASS-TO and the total reward during MOVE-INTO-SPACE. The former depends only
on whether the ball gets to Ali with enough time and space for Ali to retain possession, and
the latter depends only on whether the agent reaches a good location to receive the ball. In
other words, the overall utility decomposes into several terms, each of which depends on only
a few variables. This, in turns, means that learning occurs much more quickly than if we try
to learn a single utility function that depends on all the variables. This is somewhat analogous
to the representation theorems underlying the conciseness of Bayes nets (Chapter 13).

23.5 Policy Search

The final approach we will consider for reinforcement learning problems is called policy
search. In some ways, policy search is the simplest of all the methods in this chapter: the Policy search

idea is to keep twiddling the policy as long as its performance improves, then stop.
Let us begin with the policies themselves. Remember that a policy π is a function that

maps states to actions. We are interested primarily in parameterized representations of π that
have far fewer parameters than there are states in the state space (just as in the preceding
section). For example, we could represent π by a collection of parameterized Q-functions,
one for each action, and take the action with the highest predicted value:

π(s) = argmax
a

Q̂θ(s,a) . (23.13)

Each Q-function could be a linear function, as in Equation (23.9), or it could be a nonlinear
function such as a deep neural network. Policy search will then adjust the parameters θ to
improve the policy. Notice that if the policy is represented by Q-functions, then policy search
results in a process that learns Q-functions. This process is not the same as Q-learning! J

In Q-learning with function approximation, the algorithm finds a value of θ such that Q̂θ

is “close” to Q∗, the optimal Q-function. Policy search, on the other hand, finds a value of
θ that results in good performance; the values found by the two methods may differ very
substantially. (For example, the approximate Q-function defined by Q̂θ(s,a)=Q∗(s,a)/100
gives optimal performance, even though it is not at all close to Q∗.) Another clear instance
of the difference is the case where π(s) is calculated using, say, depth-10 look-ahead search
with an approximate utility function Ûθ. A value of θ that gives good results may be a long
way from making Ûθ resemble the true utility function.

One problem with policy representations of the kind given in Equation (23.13) is that the
policy is a discontinuous function of the parameters when the actions are discrete. That is,
there will be values of θ such that an infinitesimal change in θ causes the policy to switch
from one action to another. This means that the value of the policy may also change dis-
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continuously, which makes gradient-based search difficult. For this reason, policy search
methods often use a stochastic policy representation πθ(s,a), which specifies the probabilityStochastic policy

of selecting action a in state s. One popular representation is the softmax function:

πθ(s,a) =
eβQ̂θ(s,a)

∑a′ eβQ̂θ(s,a′)
. (23.14)

The parameter β > 0 modulates the softness of the softmax: for values of β that are large
compared to the separations between Q-values, the softmax approaches a hard max, whereas
for values of β close to zero the softmax approaches a uniform random choice among the
actions. For all finite values of β, the softmax provides a differentiable function of θ; hence,
the value of the policy (which depends continuously on the action-selection probabilities) is
a differentiable function of θ.

Now let us look at methods for improving the policy. We start with the simplest case: a
deterministic policy and a deterministic environment. Let ρ(θ) be the policy value, that is, thePolicy value

expected reward-to-go when πθ is executed. If we can derive an expression for ρ(θ) in closed
form, then we have a standard optimization problem, as described in Chapter 4. We can
follow the policy gradient vector ∇θρ(θ), provided ρ(θ) is differentiable. Alternatively, ifPolicy gradient

ρ(θ) is not available in closed form, we can evaluate πθ simply by executing it and observing
the accumulated reward. We can follow the empirical gradient by hill climbing—that is,
evaluating the change in policy value for small increments in each parameter. With the usual
caveats, this process will converge to a local optimum in policy space.

When the environment (or the policy) is nondeterministic, things get more difficult. Sup-
pose we are trying to do hill climbing, which requires comparing ρ(θ) and ρ(θ+∆θ) for some
small ∆θ. The problem is that the total reward for each trial may vary widely, so estimates
of the policy value from a small number of trials will be quite unreliable; trying to compare
two such estimates will be even more unreliable. One solution is simply to run lots of trials,
measuring the sample variance and using it to determine that enough trials have been run
to get a reliable indication of the direction of improvement for ρ(θ). Unfortunately, this is
impractical for many real problems in which trials may be expensive, time-consuming, and
perhaps even dangerous.

For the case of a nondeterministic policy πθ(s,a), it is possible to obtain an unbiased
estimate of the gradient at θ, ∇θρ(θ), directly from the results of trials executed at θ. For
simplicity, we will derive this estimate for the simple case of an episodic environment in
which each action a obtains reward R(s0,a,s0) and the environment restarts in s0. In this
case, the policy value is just the expected value of the reward, and we have

∇θρ(θ) = ∇θ∑
a

R(s0,a,s0)πθ(s0,a) = ∑
a

R(s0,a,s0)∇θπθ(s0,a) .

Now we perform a simple trick so that this summation can be approximated by samples
generated from the probability distribution defined by πθ(s0,a). Suppose that we have N
trials in all, and the action taken on the jth trial is a j. Then

∇θρ(θ) = ∑
a
πθ(s0,a) ·

R(s0,a,s0)∇θπθ(s0,a)
πθ(s0,a)

= ≈ 1
N

N

∑
j=1

R(s0,a j,s0)∇θπθ(s0,a j)

πθ(s0,a j)
.
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Thus, the true gradient of the policy value is approximated by a sum of terms involving
the gradient of the action-selection probability in each trial. For the sequential case, this
generalizes to

∇θρ(θ)≈
1
N

N

∑
j=1

u j(s)∇θπθ(s,a j)

πθ(s,a j)

for each state s visited, where a j is executed in s on the jth trial and u j(s) is the total reward
received from state s onward in the jth trial. The resulting algorithm, called REINFORCE, is
due to Ron Williams (1992); it is usually much more effective than hill climbing using lots of
trials at each value of θ. However, it is still much slower than necessary.

Consider the following task: given two blackjack policies, determine which is best. The
policies might have true net returns per hand of, say, −0.21% and +0.06%, so finding out
which is better is very important. One way to do this is to have each policy play against a
standard “dealer” for a certain number of hands and then to measure their respective winnings.
The problem with this, as we have seen, is that the winnings of each policy fluctuate wildly
depending on whether it receives good or bad cards. One would need several million hands to
have a reliable indication of which policy is better. The same issue arises when using random
sampling to compare two adjacent policies in a hill-climbing algorithm.

A better solution for blackjack is to generate a certain number of hands in advance and
have each program play the same set of hands. In this way, we eliminate the measurement J
error due to differences in the cards received. Only a few thousand hands are needed to
determine which of the two blackjack policies is better.

This idea, called correlated sampling, can be applied to policy search in general, given Correlated sampling

an environment simulator in which the random-number sequences can be repeated. It was
implemented in a policy-search algorithm called PEGASUS (Ng and Jordan, 2000), which
was one of the first algorithms to achieve completely stable autonomous helicopter flight (see
Figure 23.9(b)). It can be shown that the number of random sequences required to ensure
that the value of every policy is well estimated depends only on the complexity of the policy
space, and not at all on the complexity of the underlying domain.

23.6 Apprenticeship and Inverse Reinforcement Learning

Some domains are so complex that it is difficult to define a reward function for use in rein-
forcement learning. Exactly what do we want our self-driving car to do? Certainly it should
not take too long to get to the destination, but it should not drive so fast as to incur undue
risk or to get speeding tickets. It should conserve fuel/energy. It should avoid jostling or
accelerating the passengers too much, but it can slam on the brakes in an emergency. And
so on. Deciding how much weight to give to each of these factors is a difficult task. Worse
still, there are almost certainly important factors we have forgotten, such as the obligation
to behave with consideration for other drivers. Omitting a factor usually leads to behavior
that assigns an extreme value to the omitted factor—in this case, extremely inconsiderate
driving—in order to maximize the remaining factors.

One approach is to do extensive testing in simulation, notice problematic behaviors, and
try to modify the reward function to eliminate those behaviors. Another approach is to seek
additional sources of information about the appropriate reward function. One such source



864 Chapter 23 Reinforcement Learning

is the behavior of agents who are already optimizing (or, let’s say, nearly optimizing) that
reward function—in this case, expert human drivers.

The general field of apprenticeship learning studies the process of learning how to be-Apprenticeship
learning

have well given observations of expert behavior. We show the algorithm examples of expert
driving and tell it to “do it like that.” There are (at least) two ways to approach the appren-
ticeship learning problem. The first is the one we discussed briefly at the beginning of the
chapter: assuming the environment is observable, we apply supervised learning to the ob-
served state–action pairs to learn a policy π(s). This is called imitation learning. It hasImitation learning

had some success in robotics (see page 973) but suffers from the the problem of brittleness:
even small deviations from the training set lead to errors that grow over time and eventually
to failure. Moreover, imitation learning will at best duplicate the teacher’s performance, not
exceed it. When humans learn by imitation, we sometimes use the pejorative term “aping” to
describe what they are doing. (It’s quite possible that apes use the term “humaning” amongst
themselves, perhaps in an even more pejorative sense.) The implication is that the imitation
learner doesn’t understand why it should perform any given action.

The second approach to apprenticeship learning is to understand why: to observe the
expert’s actions (and resulting states) and try to work out what reward function the expert is
maximizing. Then we could derive an optimal policy with respect to that reward function.
One expects that this approach will produce robust policies from relatively few examples of
expert behavior; after all, the field of reinforcement learning is predicated on the idea that the
reward function, rather than the policy or the value function, is the most succinct, robust, and
transferable definition of the task. Furthermore, if the learner makes appropriate allowances
for possible suboptimality on the part of the expert, then it may be able to do better than
the expert by optimizing an accurate approximation to the true reward function. We call this
approach inverse reinforcement learning (IRL): learning rewards by observing a policy,

Inverse
reinforcement
learning

rather than learning a policy by observing rewards.
How do we find the expert’s reward function, given the expert’s actions? Let us begin by

assuming that the expert was acting rationally. In that case, it seems we should be looking for
a reward function R∗ such that the total expected discounted reward under the expert’s policy
is higher than (or at least the same as) under any other possible policy.

Unfortunately, there will be many reward functions that satisfy this constraint; one of
them is R∗(s,a,s′) = 0, because any policy is rational when there are no rewards at all.7

Another problem with this approach is that the assumption of a rational expert is unrealistic.
It means, for example, that a robot observing Lee Sedol making what eventually turns out to
be a losing move against ALPHAGO would have to assume that Lee Sedol was trying to lose
the game.

To avoid the problem that R∗(s,a,s′)=0 explains any observed behavior, it helps to think
in a Bayesian way. (See Section 21.1 for a reminder of what this means.) Suppose we
observe data d and let hR be the hypothesis that R is the true reward function. Then according
to Bayes’ rule, we have

P(hR |d) = αP(d |hR)P(hR) .

7 According to Equation (16.9) on page 559, a reward function R′(s,a,s′)=R(s,a,s′)+γΦ(s′)−Φ(s) has ex-
actly the same optimal policies as R(s,a,s′), so we can recover the reward function only up to the possible addition
of any shaping function Φ(s). This is not such a serious problem, because a robot using R′ will behave just like a
robot using the “correct” R.
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Now, if the prior P(hR) is based on simplicity, then the hypothesis that R=0 scores fairly
well, because 0 is certainly simple. On the other hand, the term P(d |hR) is infinitesimal
for the hypothesis that R=0, because it doesn’t explain why the expert chose that particular
behavior out of the vast space of behaviors that would be optimal if the hypothesis were true.
On the other hand, for a reward function R that has a unique optimal policy or a relatively
small equivalence class of optimal policies, P(d |hR) will be far higher.

To allow for the occasional mistake by the expert, we simply allow P(d |hR) to be nonzero
even when d comes from behavior that is a little bit suboptimal according to R. A typical
assumption—made, it must be said, more for mathematical convenience than faithfulness to
actual human data—is that an agent whose true Q-function is Q(s,a) chooses not accord-
ing to the deterministic policy π(s)= argmaxa Q(s,a) but instead according to a stochastic
policy defined by the softmax distribution from Equation (23.14). This is sometimes called
Boltzmann rationality because, in statistical mechanics, the state occupation probabilities Boltzmann

rationality

in a Boltzmann distribution depend exponentially on their energy levels.
There are dozens of inverse RL algorithms in the literature. One of the simplest is called

feature matching. It assumes that the reward function can be written as a weighted linear Feature matching

combination of features:

Rθ(s,a,s′) =
n

∑
i=1
θi fi(s,a,s′) = θ · f .

For example, the features in the driving domain might include speed, speed in excess of the
speed limit, acceleration, proximity to nearest obstacle, etc.

Recall from Equation (16.2) on page 557 that the utility of executing a policy π, starting
in state s0, is defined to be

Uπ(s) = E

[
∞

∑
t=0

γtR(St ,π(St),St+1)

]
,

where the expectation E is with respect to the probability distribution over state sequences
determined by s and π. Because R is assumed to be a linear combination of feature values,
we can rewrite this as follows:

Uπ(s) = E

[
∞

∑
t=0

γt
n

∑
i=1
θi fi(St ,π(St),St+1)

]

=
n

∑
i=1
θiE

[
∞

∑
t=0

γt fi(St ,π(St),St+1)

]

=
n

∑
i=1
θiµi(π) = θ ·µ(π)

where we have defined the feature expectation µi(π) as the expected discounted value of Feature expectation

the feature fi when policy π is executed. For example, if fi is the excess speed of the vehicle
(above the speed limit), then µi(π) is the (time-discounted) average excess speed over the
entire trajectory. The key point about feature expectations is the following: if a policy π J
produces feature expectations µi(π) that match those of the expert’s policy πE , then π is
as good as the expert’s policy according to the expert’s own reward function. Now, we
cannot measure the exact values for the feature expectations of the expert’s policy, but we
can approximate them using the average values on the observed trajectories. Thus, we need
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to find values for the parameters θi such that the feature expectations of the policy induced
by the parameter values match those of the expert policy on the observed trajectories. The
following algorithm achieves this with any desired error bound.

• Pick an initial default policy π(0).
• For j=1,2, . . . until convergence:

– Find parameters θ( j) such that the expert’s policy maximally outperforms the poli-
cies π(0), . . . ,π( j−1) according to the expected utility θ( j) ·µ(π).

– Let π( j) be the optimal policy for the reward function R( j)=θ( j) · f.
This algorithm converges to a policy that is close in value to the expert’s, according to the
expert’s own reward function. It requires only O(n logn) iterations and O(n logn) expert
demonstrations, where n is the number of features.

A robot can use inverse reinforcement learning to learn a good policy for itself, by under-
standing the actions of an expert. In addition, the robot can learn the policies used by other
agents in a multiagent domain, whether they be adversarial or cooperative. And finally, in-
verse reinforcement learning can be used for scientific inquiry (without any thought of agent
design), to better understand the behavior of humans and other animals.

A key assumption in inverse RL is that the “expert” is behaving optimally, or nearly
optimally, with respect to some reward function in a single-agent MDP. This is a reasonable
assumption if the learner is watching the expert through a one-way mirror while the expert
goes about his or her business unawares. It is not a reasonable assumption if the expert is
aware of the learner. For example, suppose a robot is in medical school, learning to be a
surgeon by watching a human expert. An inverse RL algorithm would assume that the human
performs the surgery in the usual optimal way, as if the robot were not there. But that’s not
what would happen: the human surgeon is motivated to have the robot (like any other medical
student) learn quickly and well, and so she will modify her behavior considerably. She might
explain what she is doing as she goes along; she might point out mistakes to avoid, such as
making the incision too deep or the stitches too tight; she might describe the contingency
plans in case something goes wrong during surgery. None of these behaviors make sense
when performing surgery in isolation, so inverse RL algorithms will not be able to interpret
the underlying reward function. Instead, we need to understand this kind of situation as a
two-person assistance game, as described in Section 17.2.5.

23.7 Applications of Reinforcement Learning

We now turn to applications of reinforcement learning. These include game playing, where
the transition model is known and the goal is to learn the utility function, and robotics, where
the model is initially unknown.

23.7.1 Applications in game playing

In Chapter 1 we described Arthur Samuel’s early work on reinforcement learning for check-
ers, which began in 1952. A few decades passed before the challenge was taken up again, this
time by Gerry Tesauro in his work on backgammon. Tesauro’s first attempt (1990) was a sys-
tem called NEUROGAMMON. The approach was an interesting variant on imitation learning.
The input was a set of 400 games played by Tesauro against himself. Rather than learn a pol-
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icy, NEUROGAMMON converted each move (s,a,s′) into a set of training examples, each of
which labeled s′ as a better position than some other position s′′ reachable from s by a differ-
ent move. The network had two separate halves, one for s′ and one for s′′, and was constrained
to choose which was better by comparing the outputs of the two halves. In this way, each half
was forced to learn an evaluation function Ûθ. NEUROGAMMON won the 1989 Computer
Olympiad—the first learning program ever to win a computer game tournament—but never
progressed past Tesauro’s own intermediate level of play.

Tesauro’s next system, TD-GAMMON (1992), adopted Sutton’s recently published TD
learning method—essentially returning to the approach explored by Samuel, but with much
greater technical understanding of how to do it right. The evaluation function Ûθ was repre-
sented by a fully connected neural network with a single hidden layer containing 80 nodes.
(It also used some manually designed input features borrowed from NEUROGAMMON.) Af-
ter 300,000 training games, it reached a standard of play comparable to the top three human
players in the world. Kit Woolsey, a top-ten player, said, “There is no question in my mind
that its positional judgment is far better than mine.”

The next challenge was to learn from raw perceptual inputs—something closer to the real
world—rather than discrete game board representations. Beginning in 2012, a team at Deep-
Mind developed the deep Q-network (DQN) system, the first modern deep RL system. DQN Deep Q-network

(DQN)

uses a deep neural network to represent the Q-function; otherwise it is a typical reinforcement
learning system. DQN was trained separately on each of 49 different Atari video games. It
learned to drive simulated race cars, shoot alien spaceships, and bounce balls with paddles.
In each case, the agent learned a Q-function from raw image data with the reward signal be-
ing the game score. Overall, the system performed at roughly human expert level, although
a few games gave it trouble. One game in particular, Montezuma’s Revenge, proved far too
difficult, because it required extended planning strategies, and the rewards were too sparse.
Subsequent work produced deep RL systems that generated more extensive exploratory be-
haviors and were able to conquer Montezuma’s Revenge and other difficult games.

DeepMind’s ALPHAGO system also used deep reinforcement learning to beat the best
human players at the game of Go (see Chapter 6). Whereas a Q-function with no look-ahead
suffices for Atari games, which are primarily reactive in nature, Go requires substantial look-
ahead. For this reason, ALPHAGO learned both a value function and a Q-function that guided
its search by predicting which moves are worth exploring. The Q-function, implemented as
a convolutional neural network, is accurate enough by itself to beat most amateur human
players without any search at all.

23.7.2 Application to robot control

The setup for the famous cart–pole balancing problem, also known as the inverted pendu- Cart–pole

lum, is shown in Figure 23.9(a). The problem is to keep the pole roughly upright (θ ≈ 90◦) Inverted pendulum

by applying forces to move the cart right or left, while keeping the position x within the limits
of the track. Several thousand papers in reinforcement learning and control theory have been
published on this seemingly simple problem. One difficulty is that the state variables x, θ, ẋ,
and θ̇ are continuous. The actions, however, are defined to be discrete: jerk left or jerk right,
the so-called bang-bang control regime. Bang-bang control

The earliest work on learning for this problem was carried out by Michie and Cham-
bers (1968), using a real cart and pole, not a simulation. Their BOXES algorithm was able
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(a) (b)

Figure 23.9 (a) Setup for the problem of balancing a long pole on top of a moving cart.
The cart can be jerked left or right by a controller that observes the cart’s position x and
velocity ẋ, as well as the pole’s angle θ and rate of change of angle θ̇. (b) Six superimposed
time-lapse images of a single autonomous helicopter performing a very difficult “nose-in
circle” maneuver. The helicopter is under the control of a policy developed by the PEGASUS
policy-search algorithm (Ng et al., 2003). A simulator model was developed by observing
the effects of various control manipulations on the real helicopter; then the algorithm was
run on the simulator model overnight. A variety of controllers were developed for different
maneuvers. In all cases, performance far exceeded that of an expert human pilot using remote
control. (Image courtesy of Andrew Ng.)

to balance the pole for over an hour after 30 trials. The algorithm first discretized the four-
dimensional state space into boxes—hence the name. It then ran trials until the pole fell over.
Negative reinforcement was associated with the final action in the final box and then propa-
gated back through the sequence. Improved generalization and faster learning can be obtained
using an algorithm that adaptively partitions the state space according to the observed varia-
tion in the reward, or by using a continuous-state, nonlinear function approximator such as a
neural network. Nowadays, balancing a triple inverted pendulum (three poles joined together
end to end) is a common exercise—a feat far beyond the capabilities of most humans, but
achievable using reinforcement learning.

Still more impressive is the application of reinforcement learning to radio-controlled
helicopter flight (Figure 23.9(b)). This work has generally used policy search over large
MDPs (Bagnell and Schneider, 2001; Ng et al., 2003), often combined with imitation learn-
ing and inverse RL given observations of a human expert pilot (Coates et al., 2009).

Inverse RL has also been applied successfully to interpret human behavior, including
destination prediction and route selection by taxi drivers based on 100,000 miles of GPS
data (Ziebart et al., 2008) and detailed physical movements by pedestrians in complex envi-
ronments based on hours of video observation (Kitani et al., 2012). In the area of robotics,
a single expert demonstration was enough for the LittleDog quadruped to learn a 25-feature
reward function and nimbly traverse a previously unseen area of rocky terrain (Kolter et al.,
2008). For more on how RL and inverse RL are used in robotics, see Sections 26.7 and 26.8.



Summary 869

Summary

This chapter has examined the reinforcement learning problem: how an agent can become
proficient in an unknown environment, given only its percepts and occasional rewards. Re-
inforcement learning is a very broadly applicable paradigm for creating intelligent systems.
The major points of the chapter are as follows.

• The overall agent design dictates the kind of information that must be learned:

– A model-based reinforcement learning agent acquires (or is equipped with) a
transition model P(s′ |s,a) for the environment and learns a utility function U(s).

– A model-free reinforcement learning agent may learn an action-utility function
Q(s,a) or a policy π(s).

• Utilities can be learned using several different approaches:

– Direct utility estimation uses the total observed reward-to-go for a given state as
direct evidence for learning its utility.

– Adaptive dynamic programming (ADP) learns a model and a reward function
from observations and then uses value or policy iteration to obtain the utilities or
an optimal policy. ADP makes optimal use of the local constraints on utilities of
states imposed through the neighborhood structure of the environment.

– Temporal-difference (TD) methods adjust utility estimates to be more consistent
with those of successor states. They can be viewed as simple approximations of the
ADP approach that can learn without requiring a transition model. Using a learned
model to generate pseudoexperiences can, however, result in faster learning.

• Action-utility functions, or Q-functions, can be learned by an ADP approach or a TD
approach. With TD, Q-learning requires no model in either the learning or action-
selection phase. This simplifies the learning problem but potentially restricts the ability
to learn in complex environments, because the agent cannot simulate the results of
possible courses of action.

• When the learning agent is responsible for selecting actions while it learns, it must
trade off the estimated value of those actions against the potential for learning useful
new information. An exact solution for the exploration problem is infeasible, but some
simple heuristics do a reasonable job. An exploring agent must also take care to avoid
premature death.

• In large state spaces, reinforcement learning algorithms must use an approximate func-
tional representation of U(s) or Q(s,a) in order to generalize over states. Deep re-
inforcement learning—using deep neural networks as function approximators—has
achieved considerable success on hard problems.

• Reward shaping and hierarchical reinforcement learning are helpful for learning
complex behaviors, particularly when rewards are sparse and long action sequences are
required to obtain them.

• Policy-search methods operate directly on a representation of the policy, attempting
to improve it based on observed performance. The variation in the performance in a
stochastic domain is a serious problem; for simulated domains this can be overcome by
fixing the randomness in advance.
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• Apprenticeship learning through observation of expert behavior can be an effective
solution when a correct reward function is hard to specify. Imitation learning formu-
lates the problem as supervised learning of a policy from the expert’s state–action pairs.
Inverse reinforcement learning infers reward information from the expert’s behavior.

Reinforcement learning continues to be one of the most active areas of machine learning re-
search. It frees us from manual construction of behaviors and from labeling the vast data sets
required for supervised learning, or having to hand-code control strategies. Applications in
robotics promise to be particularly valuable; these will require methods for handling continu-
ous, high-dimensional, partially observable environments in which successful behaviors may
consist of thousands or even millions of primitive actions.

We have presented a variety of approaches to reinforcement learning because there is
(at least so far) no single best approach. The question of model-based versus model-free
methods is, at its heart, a question about the best way to represent the agent function. This
is an issue at the foundations of artificial intelligence. As we stated in Chapter 1, one of
the key historical characteristics of much AI research is its (often unstated) adherence to the
knowledge-based approach. This amounts to an assumption that the best way to represent
the agent function is to build a representation of some aspects of the environment in which
the agent is situated. Some argue that with access to sufficient data, model-free methods
can succeed in any domain. Perhaps this is true in theory, but of course, the universe may
not contain enough data to make it true in practice. (For example, it is not easy to imagine
how a model-free approach would enable one to design and build, say, the LIGO gravity-
wave detector.) Our intuition, for what it’s worth, is that as the environment becomes more
complex, the advantages of a model-based approach become more apparent.

Bibliographical and Historical Notes

It seems likely that the key idea of reinforcement learning—that animals do more of what
they are rewarded for and less of what they are punished for—played a significant role in
the domestication of dogs at least 15,000 years ago. The early foundations of our scientific
understanding of reinforcement learning include the work of the Russian physiologist Ivan
Pavlov, who won the Nobel Prize in 1904, and that of the American psychologist Edward
Thorndike—particularly his book Animal Intelligence (1911). Hilgard and Bower (1975)
provide a good survey.

Alan Turing (1948, 1950) proposed reinforcement learning as an approach for teaching
computers; he considered it a partial solution, writing, “The use of punishments and rewards
can at best be a part of the teaching process.” Arthur Samuel’s checkers program (1959,
1967) was the first successful use of machine learning of any kind. Samuel suggested most
of the modern ideas in reinforcement learning, including temporal-difference learning and
function approximation. He experimented with multilayer representations of value functions,
similar to today’s deep RL. In the end, he found that a simple linear evaluation function over
handcrafted features worked best. This may have been a consequence of working with a
computer roughly 100 billion times less powerful than a modern tensor processing unit.

Around the same time, researchers in adaptive control theory (Widrow and Hoff, 1960),
building on work by Hebb (1949), were training simple networks using the delta rule. Thus,
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reinforcement learning combines influences from animal psychology, neuroscience, opera-
tions research, and optimal control theory.

The connection between reinforcement learning and Markov decision processes was first
made by Werbos (1977). (Work by Ian Witten (1977) described a TD-like process in the
language of control theory.) The development of reinforcement learning in AI stems primarily
from work at the University of Massachusetts in the early 1980s (Barto et al., 1981). An
influential paper by Rich Sutton (1988) provided a mathematical understanding of temporal-
difference methods. The combination of temporal-difference learning with the model-based
generation of simulated experiences was proposed in Sutton’s DYNA architecture (Sutton,
1990). Q-learning was developed in Chris Watkins’s Ph.D. thesis (1989), while SARSA
appeared in a technical report by Rummery and Niranjan (1994). Prioritized sweeping was
introduced independently by Moore and Atkeson (1993) and Peng and Williams (1993).

Function approximation in reinforcement learning goes back to Arthur Samuel’s checkers
program (1959). The use of neural networks to represent value functions was common in the
1980s and came to the fore in Gerry Tesauro’s TD-Gammon program (Tesauro, 1992, 1995).
Deep neural networks are currently the most popular choice for function approximators in
reinforcement learning. Arulkumaran et al. (2017) and Francois-Lavet et al. (2018) give
overviews of deep RL. The DQN system (Mnih et al., 2015) uses a deep network to learn
a Q-function, while ALPHAZERO (Silver et al., 2018) learns both a value function for use
with a known model and a Q-function for use in metalevel decisions that guide search. Irpan
(2018) warns that deep RL systems can perform poorly if the actual environment is even
slightly different from the training environment.

Weighted linear combinations of features and neural networks are factored represen-
tations for function approximation. It is also possible to apply reinforcement learning to
structured representations; this is called relational reinforcement learning (Tadepalli et al.,
2004). The use of relational descriptions allows for generalization across complex behaviors
involving different objects.

Analysis of the convergence properties of reinforcement learning algorithms using func-
tion approximation is an extremely technical subject. Results for TD learning have been pro-
gressively strengthened for the case of linear function approximators (Sutton, 1988; Dayan,
1992; Tsitsiklis and Van Roy, 1997), but several examples of divergence have been presented
for nonlinear functions (see Tsitsiklis and Van Roy, 1997, for a discussion). Papavassiliou
and Russell (1999) describe a type of reinforcement learning that converges with any form of
function approximator, provided that the problem of fitting the hypothesis to the data is solv-
able. Liu et al. (2018) describe the family of gradient TD algorithms and provide extensive
theoretical analysis of convergence and sample complexity.

A variety of exploration methods for sequential decision problems are discussed by Barto
et al. (1995). Kearns and Singh (1998) and Brafman and Tennenholtz (2000) describe algo-
rithms that explore unknown environments and are guaranteed to converge on near-optimal
policies with a sample complexity that is polynomial in the number of states. Bayesian re-
inforcement learning (Dearden et al., 1998, 1999) provides another angle on both model
uncertainty and exploration.

The basic idea underlying imitation learning is to apply supervised learning to a training
set of expert actions. This is an old idea in adaptive control, but first came to prominence
in AI with the work of Sammut et al. (1992) on “Learning to Fly” in a flight simulator.
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They called their method behavioral cloning. A few years later, the same research group
reported that the method was much more fragile than had been reported initially (Camacho
and Michie, 1995): even very small perturbations caused the learned policy to deviate from
the desired trajectory, leading to compounding errors as the agent strayed further and further
from the training set. (See also the discussion on page 973.) Work on apprenticeship learning
aims to make the approach more robust, in part by including information about the desired
outcomes rather than just the expert policy. Ng et al. (2003) and Coates et al. (2009) show
how apprenticeship learning works for learning to fly an actual helicopter, as illustrated in
Figure 23.9(b) on page 868.

Inverse reinforcement learning (IRL) was introduced by Russell (1998), and the first al-
gorithms were developed by Ng and Russell (2000). (A similar problem has been studied in
economics for much longer, under the heading of structural estimation of MDPs (Sargent,
1978).) The algorithm given in the chapter is due to Abbeel and Ng (2004). Baker et al.
(2009) describe how the understanding of another agent’s actions can be seen as inverse plan-
ning. Ho et al. (2017) show that agents can learn better from behaviors that are instructive
rather than optimal. Hadfield-Menell et al. (2017a) extend IRL into a game-theoretic formu-
lation that encompasses both observer and demonstrator, showing how teaching and learning
behaviors emerge as solutions of the game.

Garcı́a and Fernández (2015) give a comprehensive survey on safe reinforcement learn-
ing. Munos et al. (2017) describe an algorithm for safe off-policy (e.g., Q-learning) explo-
ration. Hans et al. (2008) break the problem of safe exploration into two parts: defining a
safety function to indicate which states to avoid, and defining a backup policy to lead the
agent back to safety when it might otherwise enter an unsafe state. You et al. (2017) show
how to train a deep reinforcement learning model to drive a car in simulation, and then use
transfer learning to drive safely in the real world.

Thomas et al. (2017) offer an approach to learning that is guaranteed, with high proba-
bility, to do no worse than the current policy. Akametalu et al. (2014) describe a reachability-
based approach, in which the learning process operates under the guidance of a control policy
that ensures the agent never reaches an unsafe state. Saunders et al. (2018) demonstrate that
a system can use human intervention to stop it from wandering out of the safe region, and can
learn over time to need less intervention.

Policy search methods were brought to the fore by Williams (1992), who developed the
REINFORCE family of algorithms, which stands for “REward Increment = Nonnegative Fac-
tor×Offset Reinforcement× Characteristic Eligibility.” Later work by Marbach and Tsitsik-
lis (1998), Sutton et al. (2000), and Baxter and Bartlett (2000) strengthened and generalized
the convergence results for policy search. Schulman et al. (2015b) describe trust region pol-
icy optimization, a theoretically well-founded and also practical policy search algorithm that
has spawned many variants. The method of correlated sampling to reduce variance in Monte
Carlo comparisons is due to Kahn and Marshall (1953); it is also one of a number of variance
reduction methods explored by Hammersley and Handscomb (1964).

Early approaches to hierarchical reinforcement learning (HRL) attempted to construct
hierarchies using state abstraction—that is, grouping states together into abstract states and
then doing RL in the abstract state space (Dayan and Hinton, 1993). Unfortunately, the tran-
sition model for abstract states is typically non-Markovian, leading to divergent behavior of
standard RL algorithms. The temporal abstraction approach in this chapter was developed in
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the late 1990s (Parr and Russell, 1998; Andre and Russell, 2002; Sutton et al., 2000) and ex-
tended to handle concurrent behaviors by Marthi et al. (2005). Dietterich (2000) introduced
the notion of an additive decomposition of Q-functions induced by the subroutine hierarchy.
Temporal abstraction is based on a much earlier result due to Forestier and Varaiya (1978),
who showed that a large MDP can be decomposed into a two-layer system in which a su-
pervisory layer chooses among low-level controllers, each of which returns control to the
supervisor on completion. The problem of learning the abstraction hierarchy itself has been
studied at least since the work of Peter Andreae (1985); for a recent exploration into learn-
ing robot motion primitives, see Frans et al. (2018). The keepaway game was introduced by
Stone et al. (2005); the HRL solution given here is due to Bai and Russell (2017).

Neuroscience has often inspired reinforcement learning and confirmed the value of the
approach. Research using single-cell recording suggests that the dopamine system in primate
brains implements something resembling value-function learning (Schultz et al., 1997). The
neuroscience text by Dayan and Abbott (2001) describes possible neural implementations of
temporal-difference learning; related research describes other neuroscientific and behavioral
experiments (Dayan and Niv, 2008; Niv, 2009; Lee et al., 2012).

Work in reinforcement learning has been accelerated by the availability of open-source
simulation environments for developing and testing learning agents. The University of Al-
berta’s Arcade Learning Environment (ALE) (Bellemare et al., 2013) provided such a frame-
work for 55 classic Atari video games. The pixels on the screen are provided to the agent as
percepts, along with a hardwired score of the game so far. ALE was used by the DeepMind
team to implement DQN learning and verify the generality of their system on a wide variety
of games (Mnih et al., 2015).

DeepMind in turn open-sourced several agent platforms, including the DeepMind Lab
(Beattie et al., 2016), the AI Safety Gridworlds (Leike et al., 2017), the Unity game platform
(Juliani et al., 2018), and the DM Control Suite (Tassa et al., 2018). Blizzard released the
StarCraft II Learning Environment (SC2LE), to which DeepMind added the PySC2 compo-
nent for machine learning in Python (Vinyals et al., 2017a).

Facebook’s AI Habitat simulation (Savva et al., 2019) provides a photo-realistic virtual
environment for indoor robotic tasks, and their HORIZON platform (Gauci et al., 2018) en-
ables reinforcement learning in large-scale production systems. The SYNTHIA system (Ros
et al., 2016) is a simulation environment designed for improving the computer vision ca-
pabilities of self-driving cars. The OpenAI Gym (Brockman et al., 2016) provides several
environments for reinforcement learning agents, and is compatible with other simulations
such as the Google Football simulator.

Littman (2015) surveys reinforcement learning for a general scientific audience. The
canonical text by Sutton and Barto (2018), two of the field’s pioneers, shows how reinforce-
ment learning weaves together the ideas of learning, planning, and acting. Kochenderfer
(2015) takes a slightly less mathematical approach, with plenty of real-world examples. A
short book by Szepesvari (2010) gives an overview of reinforcement learning algorithms.
Bertsekas and Tsitsiklis (1996) provide a rigorous grounding in the theory of dynamic pro-
gramming and stochastic convergence. Reinforcement learning papers are published fre-
quently in the journals Machine Learning and Journal of Machine Learning Research, and
in the the proceedings of the International Conference on Machine Learning (ICML) and the
Neural Information Processing Systems (NeurIPS) conferences.



CHAPTER 24
NATURAL LANGUAGE PROCESSING
In which we see how a computer can use natural language to communicate with humans
and learn from what they have written.

About 100,000 years ago, humans learned how to speak, and about 5,000 years ago they
learned to write. The complexity and diversity of human language sets Homo sapiens apart
from all other species. Of course there are other attributes that are uniquely human: no other
species wears clothes, creates art, or spends two hours a day on social media in the way that
humans do. But when Alan Turing proposed his test for intelligence, he based it on language,
not art or haberdashery, perhaps because of its universal scope and because language captures
so much of intelligent behavior: a speaker (or writer) has the goal of communicating some
knowledge, then plans some language that represents the knowledge, and acts to achieve
the goal. The listener (or reader) perceives the language, and infers the intended meaning.
This type of communication via language has allowed civilization to grow; it is our main
means of passing along cultural, legal, scientific, and technological knowledge. There are
three primary reasons for computers to do natural language processing (NLP):Natural language

processing (NLP)

• To communicate with humans. In many situations it is convenient for humans to use
speech to interact with computers, and in most situations it is more convenient to use
natural language rather than a formal language such as first-order predicate calculus.

• To learn. Humans have written down a lot of knowledge using natural language.
Wikipedia alone has 30 million pages of facts such as “Bush babies are small nocturnal
primates,” whereas there are hardly any sources of facts like this written in formal logic.
If we want our system to know a lot, it had better understand natural language.

• To advance the scientific understanding of languages and language use, using the tools
of AI in conjunction with linguistics, cognitive psychology, and neuroscience.

In this chapter we examine various mathematical models for language, and discuss the tasks
that can be achieved using them.

24.1 Language Models

Formal languages, such as first-order logic, are precisely defined, as we saw in Chapter 8. A
grammar defines the syntax of legal sentences and semantic rules define the meaning.

Natural languages, such as English or Chinese, cannot be so neatly characterized:

• Language judgments vary from person to person and time to time. Everyone agrees that
“Not to be invited is sad” is a grammatical sentence of English, but people disagree on
the grammaticality of “To be not invited is sad.”
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• Natural language is ambiguous (“He saw her duck” can mean either that she owns a
waterfowl, or that she made a downwards evasive move) and vague (“That’s great!”
does not specify precisely how great it is, nor what it is).

• The mapping from symbols to objects is not formally defined. In first-order logic, two
uses of the symbol “Richard” must refer to the same person, but in natural language two
occurrences of the same word or phrase may refer to different things in the world.

If we can’t make a definitive Boolean distinction between grammatical and ungrammati-
cal strings, we can at least say how likely or unlikely each one is.

We define a language model as a probability distribution describing the likelihood of Language model

any string. Such a model should say that “Do I dare disturb the universe?” has a reasonable
probability as a string of English, but “Universe dare the I disturb do?” is extremely unlikely.

With a language model, we can predict what words are likely to come next in a text, and
thereby suggest completions for an email or text message. We can compute which alterations
to a text would make it more probable, and thereby suggest spelling or grammar corrections.
With a pair of models, we can compute the most probable translation of a sentence. With
some example question/answer pairs as training data, we can compute the most likely answer
to a question. So language models are at the heart of a broad range of natural language tasks.
The language modeling task itself also serves as a common benchmark to measure progress
in language understanding.

Natural languages are complex, so any language model will be, at best, an approximation.
The linguist Edward Sapir said “No language is tyrannically consistent. All grammars leak”
(Sapir, 1921). The philosopher Donald Davidson said “there is no such thing as language, not
if a language is . . . a clearly defined shared structure” (Davidson, 1986), by which he meant
there is no one definitive language model for English in the way that there is for Python 3.8;
we all have different models, but we still somehow manage to muddle through and commu-
nicate. In this section we cover simplistic language models that are clearly wrong, but still
manage to be useful for certain tasks.

24.1.1 The bag-of-words model

Section 12.6.1 explained how a naive Bayes model based on the presence of specific words
could reliably classify sentences into categories; for example sentence (1) below is catego-
rized as business, and (2) as weather.

1. Stocks rallied on Monday, with major indexes gaining 1% as optimism persisted over
the first quarter earnings season.

2. Heavy rain continued to pound much of the east coast on Monday, with flood warnings
issued in New York City and other locations.

This section revisits the naive Bayes model, casting it as a full language model. That means
we don’t just want to know what category is most likely for each sentence; we want a joint
probability distribution over all sentences and categories. That suggests we should consider
all the words in the sentence. Given a sentence consisting of the words w1,w2, . . .wN (which
we will write as w1:N , as in Chapter 14), the naive Bayes formula (Equation (12.21)) gives us

P(Class |w1:N) = α P(Class)∏
j

P(w j |Class) .

The application of naive Bayes to strings of words is called the bag-of-words model. It is Bag-of-words model
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a generative model that describes a process for generating a sentence: Imagine that for each
category (business, weather, etc.) we have a bag full of words (you can imagine each word
written on a slip of paper inside the bag; the more common the word, the more slips it is
duplicated on). To generate text, first select one of the bags and discard the others. Reach
into that bag and pull out a word at random; this will be the first word of the sentence. Then
put the word back and draw a second word. Repeat until an end-of-sentence indicator (e.g., a
period) is drawn.

This model is clearly wrong: it falsely assumes that each word is independent of the
others, and therefore it does not generate coherent English sentences. But it does allow us to
do classification with good accuracy using the naive Bayes formula: the words “stocks” and
“earnings” are clear evidence for the business section, while “rain” and “cloudy” suggest the
weather section.

We can learn the prior probabilities needed for this model via supervised training on a
body or corpus of text, where each segment of text is labeled with a class. A corpus typicallyCorpus

consists of at least a million words of text, and at least tens of thousands of distinct vocabulary
words. Recently we are seeing even larger corpuses being used, such as the 2.5 billion words
in Wikipedia or the 14 billion word iWeb corpus scraped from 22 million web pages.

From a corpus we can estimate the prior probability of each category, P(Class), by count-
ing how common each category is. We can also use counts to estimate the conditional prob-
ability of each word given the category, P(w j |Class). For example, if we’ve seen 3000 texts
and 300 of them were classified as business, then we can estimate P(Class = business) ≈
300/3000 = 0.1. And if within the business category we have seen 100,000 words and
the word “stocks” appeared 700 times, then we can estimate P(stocks |Class=business) ≈
700/100,000=0.007. Estimation by counting works well when we have high counts (and
low variance), but we will see in Section 24.1.4 a better way to estimate probabilities when
the counts are low.

Sometimes a different machine learning approach, such as logistic regression, neural
networks, or support vector machines, can work even better than naive Bayes. The features of
the machine learning model are the words in the vocabulary: “a,” “aardvark,” . . ., “zyzzyva,”
and the values are the number of times each word appears in the text (or sometimes just a
Boolean value indicating whether the word appears or not). That makes the feature vector
large and sparse—we might have 100,000 words in the language model, and thus a feature
vector of length 100,000, but for a short text almost all the features will be zero.

As we have seen, some machine learning models work better when we do feature selec-
tion, limiting ourselves to a subset of the words as features. We could drop words that are
very rare (and thus have high variance in their predictive powers), as well as words that are
common to all classes (such as “the”) but don’t discriminate between classes. We can also
mix other features in with our word-based features; for example if we are classifying email
messages we could add features for the sender, the time the message was sent, the words
in the subject header, the presence of nonstandard punctuation, the percentage of uppercase
letters, whether there is an attachment, and so on.

Note it is not trivial to decide what a word is. Is “aren’t” one word, or should it be broken
up as “aren/’/t” or “are/n’t,” or something else? The process of dividing a text into a sequence
of words is called tokenization.Tokenization
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24.1.2 N-gram word models

The bag-of-words model has limitations. For example, the word “quarter” is common in
both the business and sports categories. But the four-word sequence “first quarter earnings
report” is common only in business and “fourth quarter touchdown passes” is common only
in sports. We’d like our model to make that distinction. We could tweak the bag-of-words
model by treating special phrases like “first-quarter earnings report” as if they were single
words, but a more principled approach is to introduce a new model, where each word is
dependent on previous words. We can start by making a word dependent on all previous
words in a sentence:

P(w1:N) =
N

∏
j=1

P(w j |w1: j−1) .

This model is in a sense perfectly “correct” in that it captures all possible interactions between
words, but it is not practical: with a vocabulary of 100,000 words and a sentence length of
40, this model would have 10200 parameters to estimate. We can compromise with a Markov
chain model that considers only the dependence between n adjacent words. This is known
as an n-gram model (from the Greek root gramma meaning “written thing”): a sequence of N-gram model

written symbols of length n is called an n-gram, with special cases “unigram” for 1-gram,
“bigram” for 2-gram, and “trigram” for 3-gram. In an n-gram model, the probability of each
word is dependent only on the n−1 previous words; that is:

P(w j |w1: j−1) = P(w j |w j−n+1: j−1)

P(w1:N) =
N

∏
j=1

P(w j |w j−n+1: j−1) .

N-gram models work well for classifying newspaper sections, as well as for other classifi-
cation tasks such as spam detection (distinguishing spam email from non-spam), sentiment Spam detection

analysis (classifying a movie or product review as positive or negative) and author attribu- Sentiment analysis

tion (Hemingway has a different style and vocabulary than Faulkner or Shakespeare). Author attribution

24.1.3 Other n-gram models

An alternative to an n-gram word model is a character-level model in which the probability Character-level
model

of each character is determined by the n− 1 previous characters. This approach is helpful
for dealing with unknown words, and for languages that tend to run words together, as in the
Danish word “Speciallægepraksisplanlægningsstabiliseringsperiode.”

Character-level models are well suited for the task of language identification: given a Language
identification

text, determine what language it is written in. Even with very short texts such as “Hello,
world” or “Wie geht’s dir,” n-gram letter models can identify the first as English and the sec-
ond as German, generally achieving accuracy greater than 99%. (Closely related languages
such as Swedish and Norwegian are more difficult to distinguish and require longer samples;
there, accuracy is in the 95% range.) Character models are good at certain classification tasks,
such as deciding that “dextroamphetamine” is a drug name, “Kallenberger” is a person name,
and “Plattsburg” is a city name, even if we have never seen these words before.

Another possibility is the skip-gram model, in which we count words that are near each Skip-gram

other, but skip a word (or more) between them. For example, given the French text “je
ne comprends pas” the 1-skip-bigrams are “je comprends,” and “ne pas.” Gathering these
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helps create a better model of French, because it tells us about conjugation (“je” goes with
“comprends,” not “comprend”) and negation (“ne” goes with “pas”); we wouldn’t get that
from regular bigrams alone.

24.1.4 Smoothing n-gram models

High-frequency n-grams like “of the” have high counts in the training corpus, so their proba-
bility estimate is likely to be accurate: with a different training corpus we would get a similar
estimate. Low-frequency n-grams have low counts that are subject to random noise—they
have high variance. Our models will perform better if we can smooth out that variance.

Furthermore, there is always a chance that we will be asked to evaluate a text containing
an unknown or out-of-vocabulary word: one that never appeared in the training corpus. ButOut-of-vocabulary

it would be a mistake to assign such a word a probability of zero, because then the probability
of the whole sentence, P(w1:N), would be zero.

One way to model unknown words is to modify the training corpus by replacing infre-
quent words with a special symbol, traditionally <UNK>. We could decide in advance to
keep only, say, the 50,000 most common words, or all words with frequency greater than
0.0001%, and replace the others with <UNK>. Then compute n-gram counts for the corpus
as usual, treating <UNK> just like any other word. When an unknown word appears in a test
set, we look up its probability under <UNK>. Sometimes different unknown-word symbols
are used for different types. For example, a string of digits might be replaced with <NUM>, or
an email address with <EMAIL>. (We note that it is also advisable to have a special symbol,
such as <S>, to mark the start (and stop) of a text. That way, when the formula for bigram
probabilities asks for the word before the first word, the answer is <S>, not an error.)

Even after we’ve handled unknown words, we have the problem of unseen n-grams. For
example, a test text might contain the phrase “colorless aquamarine ideas,” three words that
we may have seen individually in the training corpus, but never in that exact order. The prob-
lem is that some low-probability n-grams appear in the training corpus, while other equally
low-probability n-grams happen to not appear at all. We don’t want some of them to have a
zero probability while others have a small positive probability; we want to apply smoothingSmoothing

to all the similar n-grams—reserving some of the probability mass of the model for never-
seen n-grams, to reduce the variance of the model.

The simplest type of smoothing was suggested by Pierre-Simon Laplace in the 18th
century to estimate the probability of rare events, such as the sun failing to rise tomorrow.
Laplace’s (incorrect) theory of the solar system suggested it was about N = 2 million days
old. Going by the data, there were zero out of two million days when the sun failed to rise, yet
we don’t want to say that the probability is exactly zero. Laplace showed that if we adopt a
uniform prior, and combine that with the evidence so far, we get a best estimate of 1/(N +2)
for the probability of the sun’s failure to rise tomorrow—either it will or it won’t (that’s the 2
in the denominator) and a uniform prior says it is as likely as not (that’s the 1 in the numera-
tor). Laplace smoothing (also called add-one smoothing) is a step in the right direction, but
for many natural language applications it performs poorly.

Another choice is a backoff model, in which we start by estimating n-gram counts, butBackoff model

for any particular sequence that has a low (or zero) count, we back off to (n− 1)-grams.
Linear interpolation smoothing is a backoff model that combines trigram, bigram, andLinear interpolation

smoothing
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unigram models by linear interpolation. It defines the probability estimate as

P̂(ci|ci−2:i−1) = λ3P(ci|ci−2:i−1)+λ2P(ci|ci−1)+λ1P(ci) ,

where λ3 +λ2 +λ1=1. The parameter values λi can be fixed, or they can be trained with an
expectation–maximization algorithm. It is also possible to have the values of λi depend on
the counts: if we have a high count of trigrams, then we weigh them relatively more; if only
a low count, then we put more weight on the bigram and unigram models.

One camp of researchers has developed ever more sophisticated smoothing techniques
(such as Witten-Bell and Kneser-Ney), while another camp suggests gathering a larger corpus
so that even simple smoothing techniques work well (one such approach is called “stupid
backoff”). Both are getting at the same goal: reducing the variance in the language model.

24.1.5 Word representations

N-grams can give us a model that accurately predicts the probability of word sequences,
telling us that, for example, “a black cat” is a more likely English phrase than “cat black a”
because “a black cat” appears in about 0.000014% of the trigrams in a training corpus, while
“cat black a” does not appear at all. Everything that the n-gram word model knows, it learned
from counts of specific word sequences.

But a native speaker of English would tell a different story: “a black cat” is valid because
it follows a familiar pattern (article-adjective-noun), while “cat black a” does not.

Now consider the phrase “the fulvous kitten.” An English speaker could recognize this
as also following the article-adjective-noun pattern (even a speaker who does not know that
“fulvous” means “brownish yellow” could recognize that almost all words that end in “-ous”
are adjectives). Furthermore, the speaker would recognize the close syntactic connection
between “a” and “the,” as well as the close semantic relation between “cat” and “kitten.”
Thus, the appearance of “a black cat” in the data is evidence, through generalization, that
“the fulvous kitten” is also valid English.

The n-gram model misses this generalization because it is an atomic model: each word is
an atom, distinct from every other word, with no internal structure. We have seen throughout
this book that factored or structured models allow for more expressive power and better gen-
eralization. We will see in Section 25.1 that a factored model called word embeddings gives
a better ability to generalize.

One type of structured word model is a dictionary, usually constructed through man- Dictionary

ual labor. For example, WordNet is an open-source, hand-curated dictionary in machine- WordNet

readable format that has proven useful for many natural language applications1 Below is the
WordNet entry for “kitten:”

"kitten" <noun.animal> ("young domestic cat") IS A: young_mammal

"kitten" <verb.body> ("give birth to kittens")

EXAMPLE: "our cat kittened again this year"

WordNet will help you separate the nouns from the verbs, and get the basic categories (a
kitten is a young mammal, which is a mammal, which is an animal), but it won’t tell you the
details of what a kitten looks like or acts like. WordNet will tell you that two subclasses of
cat are Siamese cat and Manx cat, but won’t tell you any more about the breeds.

1 And even computer vision applications: WordNet provides the set of categories used by ImageNet.
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Tag Word Description Tag Word Description

CC and Coordinating conjunction PRP$ your Possessive pronoun
CD three Cardinal number RB quickly Adverb
DT the Determiner RBR quicker Adverb, comparative
EX there Existential there RBS quickest Adverb, superlative
FW per se Foreign word RP off Particle
IN of Preposition SYM + Symbol
JJ purple Adjective TO to to
JJR better Adjective, comparative UH eureka Interjection
JJS best Adjective, superlative VB talk Verb, base form
LS 1 List item marker VBD talked Verb, past tense
MD should Modal VBG talking Verb, gerund
NN kitten Noun, singular or mass VBN talked Verb, past participle
NNS kittens Noun, plural VBP talk Verb, non-3rd-sing
NNP Ali Proper noun, singular VBZ talks Verb, 3rd-sing
NNPS Fords Proper noun, plural WDT which Wh-determiner
PDT all Predeterminer WP who Wh-pronoun
POS ’s Possessive ending WP$ whose Possessive wh-pronoun
PRP you Personal pronoun WRB where Wh-adverb
$ $ Dollar sign # # Pound sign
“ ‘ Left quote ” ’ Right quote
( [ Left parenthesis ) ] Right parenthesis
, , Comma . ! Sentence end
: ; Mid-sentence punctuation

Figure 24.1 Part-of-speech tags (with an example word for each tag) for the Penn Treebank
corpus (Marcus et al., 1993). Here “3rd-sing” is an abbreviation for “third person singular
present tense.”

24.1.6 Part-of-speech (POS) tagging

One basic way to categorize words is by their part of speech (POS), also called lexicalPart of speech
(POS)

category or tag: noun, verb, adjective, and so on. Parts of speech allow language models
to capture generalizations such as “adjectives generally come before nouns in English.” (In
other languages, such as French, it is the other way around (generally)).

Everyone agrees that “noun” and “verb” are parts of speech, but when we get into the
details there is no one definitive list. Figure 24.1 shows the 45 tags used in the Penn Tree-
bank, a corpus of over three million words of text annotated with part-of-speech tags. As wePenn Treebank

will see later, the Penn Treebank also annotates many sentences with syntactic parse trees,
from which the corpus gets its name. Here is an excerpt saying that “from” is tagged as a
preposition (IN), “the” as a determiner (DT), and so on:

From the start , it took a person with great qualities to succeed
IN DT NN , PRP VBD DT NN IN JJ NNS TO VB

The task of assigning a part of speech to each word in a sentence is called part-of-speech
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tagging. Although not very interesting in its own right, it is a useful first step in many other Part-of-speech
tagging

NLP tasks, such as question answering or translation. Even for a simple task like text-to-
speech synthesis, it is important to know that the noun “record” is pronounced differently
from the verb “record.” In this section we will see how two familiar models can be applied to
the tagging task, and in Chapter 25 we will consider a third model.

One common model for POS tagging is the hidden Markov model (HMM). Recall from
Section 14.3 that a hidden Markov model takes in a temporal sequence of evidence observa-
tions and predicts the most likely hidden states that could have produced that sequence. In
the HMM example on page 491, the evidence consisted of observations of a person carrying
an umbrella (or not), and the hidden state was rain (or not) in the outside world. For POS
tagging, the evidence is the sequence of words, W1:N , and the hidden states are the lexical
categories, C1:N .

The HMM is a generative model that says that the way to produce language is to start in
one state, such as IN, the state for prepositions, and then make two choices: what word (such
as from) should be emitted, and what state (such as DT) should come next. The model does
not consider any context other than the current part-of-speech state, nor does it have any idea
of what the sentence is actually trying to convey. And yet it is a useful model—if we apply
the Viterbi algorithm (Section 14.2.3) to find the most probable sequence of hidden states Viterbi algorithm

(tags), we find that the tagging achieves very high accuracy; usually around 97%.
To create a HMM for POS tagging, we need the transition model, which gives the prob-

ability of one part of speech following another, P(Ct |Ct−1), and the sensor model, P(Wt |Ct).
For example, P(Ct =VB |Ct−1=MD)=0.8 means that given a modal verb (such as would),
we can expect the following word to be a verb (such as think) with probability 0.8. Where
does the 0.8 number come from? Just as with n-gram models, from counts in the corpus,
with appropriate smoothing. It turns out that there are 13124 instances of MD in the Penn
Treebank, and 10471 of them are followed by a VB.

For the sensor model, P(Wt =would |Ct =MD)=0.1 means that when we are choosing a
modal verb, we will choose would 10% of the time. These numbers also come from corpus
counts, with smoothing.

A weakness of HMM models is that everything we know about language has to be ex-
pressed in terms of the transition and sensor models. The part of speech for the current word
is determined solely by the probabilities in these two models and by the part of speech of
the previous word. There is no easy way for a system developer to say, for example, that
any word that ends in “ous” is likely an adjective, nor that in the phrase “attorney general,”
attorney is a noun, not an adjective.

Fortunately, logistic regression does have the ability to represent information like this.
Recall from Section 19.6.5 that in a logistic regression model, the input is a vector, x, of
feature values. We then take the dot product, w ·x, of those features with a pretrained vector
of weights w, and transform that sum into a number between 0 and 1 that can be interpreted
as the probability that the input is a positive example of a category.

The weights in the logistic regression model correspond to how predictive each feature
is for each category; the weight values are learned by gradient descent. For POS tagging
we would build 45 different logistic regression models, one for each part of speech, and ask
each model how probable it is that the example word is a member of that category, given the
feature values for that word in its particular context.
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The question then is what should the features be? POS taggers typically use binary-
valued features that encode information about the word being tagged, wi (and perhaps other
nearby words), as well as the category that was assigned to the previous word, ci−1 (and
perhaps the category of earlier words). Features can depend on the exact identity of a word,
some aspects of the way it is spelled, or some attribute from a dictionary entry. A set of POS
tagging features might include:

wi−1=“I” wi+1=“for”
wi−1=“you” ci−1= IN
wi ends with “ous” wi contains a hyphen
wi ends with “ly” wi contains a digit
wi starts with “un” wi is all uppercase
wi−2= “to” and ci−1=VB wi−2 has attribute PRESENT
wi−1= “I” and wi+1=“to” wi−2 has attribute PAST

For example, the word “walk” can be a noun or a verb, but in “I walk to school,” the feature
in the last row, left column could be used to classify “walk” as a verb (VBP). As another
example, the word “cut” can be either a noun (NN), past tense verb (VBD), or present tense
verb (VBP). Given the sentence “Yesterday I cut the rope,” the feature in the last row, right
column could help tag “cut” as VBD, while in the sentence “Now I cut the rope,” the feature
above that one could help tag “cut” as VBP.

All together, there might be a million features, but for any given word, only a few dozen
will be nonzero. The features are usually hand-crafted by a human system designer who
thinks up interesting feature templates.

Logistic regression does not have the notion of a sequence of inputs—you give it a single
feature vector (information about a single word) and it produces an output (a tag). But we
can force logistic regression to handle a sequence with a greedy search: start by choosing
the most likely category for the first word, and proceed to the rest of the words in left-to-right
order. At each step the category ci is assigned according to

ci = argmax
c′∈Categories

P(c′ |w1:N ,c1:i−1) .

That is, the classifier is allowed to look at any of the non-category features for any of the
words anywhere in the sentence (because these features are all fixed), as well as any previ-
ously assigned categories.

Note that the greedy search makes a definitive category choice for each word, and then
moves on to the next word; if that choice is contradicted by evidence later in the sentence,
there is no possibility to go back and reverse the choice. That makes the algorithm fast. The
Viterbi algorithm, in contrast, keeps a table of all possible category choices at each step, and
always has the option of changing. That makes the algorithm more accurate, but slower.
For both algorithms, a compromise is a beam search, in which we consider every possible
category at each time step, but then only keep the b most likely tags, dropping the other
less-likely tags. Changing b trades off speed versus accuracy.

Naive Bayes and Hidden Markov models are generative models (see Section 21.2.3).
That is, they learn a joint probability distribution, P(W,C), and we can generate a random
sentence by sampling from that probability distribution to get a first word (with category) of
the sentence, and then adding words one at a time.
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Logistic regression on the other hand is a discriminative model. It learns a conditional
probability distribution P(C |W ), meaning that it can assign categories given a sequence of
words, but it can’t generate random sentences. Generally, researchers have found that dis-
criminative models have a lower error rate, perhaps because they model the intended output
directly, and perhaps because they make it easier for an analyst to create additional features.
However, generative models tend to converge more quickly, and so may be preferred when
the available training time is short, or when there is limited training data.

24.1.7 Comparing language models

To get a feeling for what different n-gram models are like, we built unigram (i.e., bag-of-
words), bigram, trigram, and 4-gram models over the words in this book and then randomly
sampled word sequences from each of the four models:

• n = 1: logical are as are confusion a may right tries agent goal the was
• n = 2: systems are very similar computational approach would be represented
• n = 3: planning and scheduling are integrated the success of naive Bayes model is
• n = 4: taking advantage of the structure of Bayesian networks and developed various languages

for writing “templates” with logical variables, from which large networks could be constructed
automatically for each problem instance

From this small sample it should be clear that the unigram model is a very poor approximation
of either English in general or an AI textbook in particular, and that the 4-gram model is
imperfect but much better. Next, to demonstrate how samples switch between training sources
(and definitely not just for fun) we added the text of the King James Bible to the 4-gram model
yielding these random samples:

• Prove that any 3-SAT problem can be reduced to simpler ones using the laws of thy God.
• Masters, give unto your servants that which is true iff both P and Q in any model m by a simple

experiment: put your hand unto, ye and your households for it is pleasant.
• Many will intreat the LORD your God, Saying, No; but we will ignore this issue for now;

Chapters 7 and 8 suggest methods for compactly representing very large belief states.
• And it came to pass, as if it had no successors.
• The direct utility estimation is just an instance of the general or algorithm in which new function

symbols are constructed “on the fly.” For example, the first child of the Holy Ghost.

There is a limit to n-gram models—as n increases, they will produce language that is more
fluent, but they tend to reproduce long passages from their training data verbatim, rather
than generate novel text. Language models with more complex representations of words and
context can do better. The rest of this chapter demonstrates how grammar can improve a
language model, and Chapter 25 shows how deep learning methods have recently produced
impressive language models. One such deep learning model, GPT-2, can produce fluent En-
glish samples when given a prompt. We gave GPT-2 the first two sentences of this paragraph
as a prompt; it produced the following two samples:

• Numerous studies have shown that the best language models that can generate language are
those that use neural networks, and in particular that use deep learning to model speech. I have
used one of these models to generate hundreds of sentences in multiple languages, and it has
the ability to generate almost perfect translations of my training sentences. It’s a great model
to have, and will save you a lot of time in the future when you need to translate between many
languages.
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• These models can also do better if their samples are chosen at random, rather than by an
expert in the domain. However, as a general rule, n-gram and language models that include a
large number of features tend to produce text better, since these features contribute the most to
language learning. To measure the performance of a model, I’ve made some sample sentences
that I’d like to train to better understand speech and language models. You can read them to get
a grasp of how the model predicts.

We see that these passages are diverse and grammatically fluent; moreover, they stick to top-
ics that are relevant to the prompt sentences. But the sentences do not build on each other to
advance a coherent thesis. The GPT-2 language model is known as a transformer model,
which will be covered in Section 25.4; further examples from GPT-2 are in Figure 25.14.
Another transformer model is the Conditional Transformer Language, CTRL. It can be con-
trolled more flexibly; in the following samples CTRL was asked to generate text in the cate-
gory product reviews, with a rating of 1 and of 4 (out of 5): specified rating (out of 5):

• 1.0: I bought this for my son who is a huge fan of the show. He was so excited to get it and when
he opened it, we were all very disappointed. The quality of the product is terrible. It looks like
something you would buy at a dollar store.

• 4.0: I bought this for my husband and he loves it. He has a small wrist so it is hard to find
watches that fit him well. This one fits perfectly.

24.2 Grammar

In Chapter 7 we used Backus–Naur Form (BNF) to write down a grammar for the language
of first-order logic. A grammar is a set of rules that defines the tree structure of allowable
phrases, and a language is the set of sentences that follow those rules.

Natural languages do not work exactly like the formal language of first-order logic—they
do not have a hard boundary between allowable and unallowable sentences, nor do they have a
single definitive tree structure for each sentence. However, hierarchical structure is important
in natural language. The word “Stocks” in “Stocks rallied on Monday” is not just a word,
nor is it just a noun; in this sentence it also comprises a noun phrase, which is the subject
of the following verb phrase. Syntactic categories such as noun phrase or verb phrase helpSyntactic category

to constrain the probable words at each point within a sentence, and the phrase structurePhrase structure

provides a framework for the meaning or semantics of the sentence.
There are many competing language models based on the idea of hierarchical syntactic

structure; in this section we will describe a popular model called the probabilistic context-
free grammar, or PCFG. A probabilistic grammar assigns a probability to each string, and

Probabilistic
context-free
grammar

“context-free” means that any rule can be used in any context: the rules for a noun phrase at
the beginning of a sentence are the same as for another noun phrase later in the sentence, and
if the same phrase occurs in two locations, it must have the same probability each time. We
will define a PCFG grammar for a tiny fragment of English that is suitable for communication
between agents exploring the wumpus world. We call this language E0 (see Figure 24.2). A
grammar rule such as

Adjs → Adjective [0.80]
| Adjective Adjs [0.20]

means that the syntactic category Adjs can consist of either a single Adjective, with probability
0.80, or of an Adjective followed by a string that constitutes an Adjs, with probability 0.20.
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S → NP VP [0.90] I + feel a breeze
| S Conj S [0.10] I feel a breeze + and + It stinks

NP → Pronoun [0.25] I
| Name [0.10] Ali
| Noun [0.10] pits
| Article Noun [0.25] the + wumpus
| Article Adjs Noun [0.05] the + smelly dead + wumpus
| Digit Digit [0.05] 3 4
| NP PP [0.10] the wumpus + in 1 3
| NP RelClause [0.05] the wumpus + that is smelly
| NP Conj NP [0.05] the wumpus + and + I

VP → Verb [0.40] stinks
| VP NP [0.35] feel + a breeze
| VP Adjective [0.05] smells + dead
| VP PP [0.10] is + in 1 3
| VP Adverb [0.10] go + ahead

Adjs → Adjective [0.80] smelly
| Adjective Adjs [0.20] smelly + dead

PP → Prep NP [1.00] to + the east
RelClause → RelPro VP [1.00] that + is smelly

Figure 24.2 The grammar for E0, with example phrases for each rule. The syntactic cate-
gories are sentence (S), noun phrase (NP), verb phrase (VP), list of adjectives (Adjs), prepo-
sitional phrase (PP), and relative clause (RelClause).

Noun → stench [0.05] | breeze [0.10] | wumpus [0.15] | pits [0.05] | . . .
Verb → is [0.10] | feel [0.10] | smells [0.10] | stinks [0.05] | . . .
Adjective → right [0.10] | dead [0.05] | smelly [0.02] | breezy [0.02] . . .
Adverb → here [0.05] | ahead [0.05] | nearby [0.02] | . . .
Pronoun → me [0.10] | you [0.03] | I [0.10] | it [0.10] | . . .
RelPro → that [0.40] | which [0.15] | who [0.20] | whom [0.02] | . . .
Name → Ali [0.01] | Bo [0.01] | Boston [0.01] | . . .
Article → the [0.40] | a [0.30] | an [0.10] | every [0.05] | . . .
Prep → to [0.20] | in [0.10] | on [0.05] | near [0.10] | . . .
Conj → and [0.50] | or [0.10] | but [0.20] | yet [0.02] | . . .
Digit → 0 [0.20] | 1 [0.20] | 2 [0.20] | 3 [0.20] | 4 [0.20] | . . .

Figure 24.3 The lexicon for E0. RelPro is short for relative pronoun, Prep for preposition,
and Conj for conjunction. The sum of the probabilities for each category is 1.
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Unfortunately, the grammar overgenerates: that is, it generates sentences that are not gram-Overgeneration

matical, such as “Me go I.” It also undergenerates: there are many sentences of English thatUndergeneration

it rejects, such as “I think the wumpus is smelly.” We will see how to learn a better grammar
later; for now we concentrate on what we can do with this very simple grammar.

24.2.1 The lexicon of E0

The lexicon, or list of allowable words, is defined in Figure 24.3. Each of the lexical cate-Lexicon

gories ends in . . . to indicate that there are other words in the category. For nouns, names,
verbs, adjectives, and adverbs, it is infeasible even in principle to list all the words. Not only
are there tens of thousands of members in each class, but new ones—like humblebrag or
microbiome—are being added constantly. These five categories are called open classes. Pro-Open class

nouns, relative pronouns, articles, prepositions, and conjunctions are called closed classes;Closed class

they have a small number of words (a dozen or so), and change over the course of centuries,
not months. For example, “thee” and “thou” were commonly used pronouns in the 17th cen-
tury, were on the decline in the 19th century, and are seen today only in poetry and some
regional dialects.

24.3 Parsing

Parsing is the process of analyzing a string of words to uncover its phrase structure, accordingParsing

to the rules of a grammar. We can think of it as a search for a valid parse tree whose leaves
are the words of the string. Figure 24.4 shows that we can start with the S symbol and search
top down, or we can start with the words and search bottom up. Pure top-down or bottom-up
parsing strategies can be inefficient, however, because they can end up repeating effort in
areas of the search space that lead to dead ends. Consider the following two sentences:

Have the students in section 2 of Computer Science 101 take the exam.
Have the students in section 2 of Computer Science 101 taken the exam?

Even though they share the first 10 words, these sentences have very different parses, because
the first is a command and the second is a question. A left-to-right parsing algorithm would
have to guess whether the first word is part of a command or a question and will not be able
to tell if the guess is correct until at least the eleventh word, take or taken. If the algorithm
guesses wrong, it will have to backtrack all the way to the first word and reanalyze the whole
sentence under the other interpretation.

To avoid this source of inefficiency we can use dynamic programming: every time we
analyze a substring, store the results so we won’t have to reanalyze it later. For example, once
we discover that “the students in section 2 of Computer Science 101” is an NP, we can record
that result in a data structure known as a chart. An algorithm that does this is called a chart
parser. Because we are dealing with context-free grammars, any phrase that was found inChart parser

the context of one branch of the search tree can work just as well in any other branch of the
search tree. There are many types of chart parsers; we describe a probabilistic version of a
bottom-up chart parsing algorithm called the CYK algorithm, after its inventors, Ali Cocke,CYK algorithm

Daniel Younger, and Tadeo Kasami.2

2 Sometimes the authors are credited in the order CKY.
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List of items Rule

S
NP VP S → NP VP
NP VP Adjective VP → VP Adjective
NP Verb Adjective VP → Verb
NP Verb dead Adjective → dead
NP is dead Verb → is
Article Noun is dead NP → Article Noun
Article wumpus is dead Noun → wumpus
the wumpus is dead Article → the

Figure 24.4 Parsing the string “The wumpus is dead” as a sentence, according to the gram-
mar E0. Viewed as a top-down parse, we start with S, and on each step match one nontermi-
nal X with a rule of the form (X → Y . . . ) and replace X in the list of items with Y . . . ; for
example replacing S with the sequence NP VP. Viewed as a bottom-up parse, we start with
the words “the wumpus is dead”, and on each step match a string of tokens such as (Y . . . )
against a rule of the form (X → Y . . . ) and replace the tokens with X; for example replacing
“the” with Article or Article Noun with NP.

The CYK algorithm is shown in Figure 24.5. It requires a grammar with all rules in one
of two very specific formats: lexical rules of the form X → word [p], and syntactic rules of
the form X → Y Z [p], with exactly two categories on the right-hand side. This grammar
format, called Chomsky Normal Form, may seem restrictive, but it is not: any context-free Chomsky Normal

Form
grammar can be automatically transformed into Chomsky Normal Form. Exercise 24.CNFX

leads you through the process.
The CYK algorithm uses space of O(n2m) for the P and T tables, where n is the number of

words in the sentence, and m is the number of nonterminal symbols in the grammar, and takes
time O(n3m). If we want an algorithm that is guaranteed to work for all possible context-
free grammars, then we can’t do any better than that. But actually we only want to parse
natural languages, not all possible grammars. Natural languages have evolved to be easy
to understand in real time, not to be as tricky as possible, so it seems that they should be
amenable to a faster parsing algorithm.

To try to get to O(n), we can apply A∗ search in a fairly straightforward way: each state is
a list of items (words or categories), as shown in Figure 24.4. The start state is a list of words,
and a goal state is the single item S. The cost of a state is the inverse of its probability as
defined by the rules applied so far, and there are various heuristics to estimate the remaining
distance to the goal; the best heuristics in current use come from machine learning applied to
a corpus of sentences.

With the A∗ algorithm we don’t have to search the entire state space, and we are guaran-
teed that the first parse found will be the most probable (assuming an admissible heuristic).
This will usually be faster than CYK, but (depending on the details of the grammar) still
slower than O(n). An example result of a parse is shown in Figure 24.6.

Just as with part-of-speech tagging, we can use a beam search for parsing, where at
any time we consider only the b most probable alternative parses. This means we are not
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function CYK-PARSE(words, grammar) returns a table of parse trees
inputs: words, a list of words

grammar, a structure with LEXICALRULES and GRAMMARRULES
T←a table // T[X, i, k] is most probable X tree spanning wordsi:k
P←a table, initially all 0 // P[X, i, k] is probability of tree T[X, i, k]
// Insert lexical categories for each word.
for i = 1 to LEN(words) do

for each (X, p) in grammar.LEXICALRULES(wordsi) do
P[X, i, i]←p
T[X, i, i]←TREE(X, wordsi)

// Construct Xi:k from Yi: j + Z j+1:k, shortest spans first.
for each (i, j, k) in SUBSPANS(LEN(words)) do

for each (X, Y, Z, p) in grammar.GRAMMARRULES do
PYZ←P[Y, i, j] × P[Z, j+1, k] × p
if PYZ > P[X, i, k] do

P[X, i, k]←PYZ
T[X, i, k]←TREE(X, T[Y , i, j], T[Z, j + 1, k])

return T

function SUBSPANS(N) yields (i, j, k) tuples
for length = 2 to N do

for i = 1 to N + 1 − length do
k← i + length − 1
for j = i to k − 1 do

yield (i, j, k)

Figure 24.5 The CYK algorithm for parsing. Given a sequence of words, it finds the most
probable parse tree for the sequence and its subsequences. The table P[X, i,k] gives the prob-
ability of the most probable tree of category X spanning wordsi:k. The output table T[X, i, k]
contains the most probable tree of category X spanning positions i to k inclusive. The func-
tion SUBSPANS returns all tuples (i, j,k) covering a span of wordsi:k, with i≤ j< k, listing the
tuples by increasing length of the i : k span, so that when we go to combine two shorter spans
into a longer one, the shorter spans are already in the table. LEXICALRULES(word) returns a
collection of (X, p) pairs, one for each rule of the form X →word [p], and GRAMMARRULES
gives (X,Y,Z,p) tuples, one for each grammar rule of the form X → Y Z [p].

Article Noun

wumpus

Verb

NP VP

S

Every smells

0.25

0.90

 0.05  0.15  0.10

 0.40

Figure 24.6 Parse tree for the sentence “Every wumpus smells” according to the grammar
E0. Each interior node of the tree is labeled with its probability. The probability of the tree as
a whole is 0.9×0.25×0.05×0.15×0.40×0.10=0.0000675. The tree can also be written
in linear form as [S [NP [Article every] [Noun wumpus]][VP [Verb smells]]].
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I detect

the Adjective wumpus near Pronoun

I

detect

the smelly

wumpus

near

me

Pronoun

NP

S

VP

Verb

NP

Article PrepNoun

NP

PP

NPAdjs

mesmelly

Figure 24.7 A dependency-style parse (top) and the corresponding phrase structure parse
(bottom) for the sentence I detect the smelly wumpus near me.

guaranteed to find the parse with highest probability, but (with a careful implementation) the
parser can operate in O(n) time and still finds the best parse most of the time.

A beam search parser with b= 1 is called a deterministic parser. One popular determin- Deterministic parser

istic approach is shift-reduce parsing, in which we go through the sentence word by word, Shift-reduce parsing

choosing at each point whether to shift the word onto a stack of constituents, or to reduce
the top constituent(s) on the stack according to a grammar rule. Each style of parsing has its
adherents within the NLP community. Even though it is possible to transform a shift-reduce
system into a PCFG (and vice versa), when you apply machine learning to the problem of
inducing a grammar, the inductive bias and hence the generalizations that each system will
make will be different (Abney et al., 1999).

24.3.1 Dependency parsing

There is a widely used alternative syntactic approach called dependency grammar, which Dependency
grammar

assumes that syntactic structure is formed by binary relations between lexical items, without
a need for syntactic constituents. Figure 24.7 shows a sentence with a dependency parse and
a phrase structure parse.

In one sense, dependency grammar and phrase structure grammar are just notational vari-
ants. If the phrase structure tree is annotated with the head of each phrase, you can recover
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[ [S [NP-2 Her eyes]
[VP were

[VP glazed
[NP *-2]
[SBAR-ADV as if

[S [NP she]
[VP did n’t

[VP [VP hear [NP *-1]]
or
[VP [ADVP even] see [NP *-1]]
[NP-1 him]]]]]]]]

.]

Figure 24.8 Annotated tree for the sentence “Her eyes were glazed as if she didn’t hear
or even see him.” from the Penn Treebank. Note a grammatical phenomenon we have not
covered yet: the movement of a phrase from one part of the tree to another. This tree analyzes
the phrase “hear or even see him” as consisting of two constituent VPs, [VP hear [NP *-1]]
and [VP [ADVP even] see [NP *-1]], both of which have a missing object, denoted *-1, which
refers to the NP labeled elsewhere in the tree as [NP-1 him]. Similarly, the [NP *-2] refers to
the [NP-2 Her eyes].

the dependency tree from it. In the other direction, we can convert a dependency tree into a
phrase structure tree by introducing arbitrary categories (although we might not always get a
natural-looking tree this way).

Therefore we wouldn’t prefer one notation over the other because one is more powerful;
rather we would prefer one because it is more natural—either more familiar for the human
developers of a system, or more natural for a machine learning system which will have to
learn the structures. In general, phrase structure trees are natural for languages (like English)
with mostly fixed word order; dependency trees are natural for languages (such as Latin) with
mostly free word order, where the order of words is determined more by pragmatics than by
syntactic categories.

The popularity of dependency grammar today stems in large part from the
Universal Dependencies project (Nivre et al., 2016), an open-source treebank project that
defines a set of relations and provides millions of parsed sentences in over 70 languages.

24.3.2 Learning a parser from examples

Building a grammar for a significant portion of English is laborious and error prone. This
suggests that it would be better to learn the grammar rules (and probabilities) rather than
writing them down by hand. To apply supervised learning, we need input/output pairs of
sentences and their parse trees. The Penn Treebank is the best known source of such data,
with over 100 thousand sentences annotated with parse-tree structure. Figure 24.8 shows an
annotated tree from the Penn Treebank.

Given a treebank, we can create a PCFG just by counting the number of times each node-
type appears in a tree (with the usual caveats about smoothing low counts). In Figure 24.8,
there are two nodes of the form [S[NP . . .][VP . . .]]. We would count these, and all the other
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subtrees with root S in the corpus. If there are 1000 S nodes of which 600 are of this form,
then we create the rule:

S → NP VP [0.6] .

All together, the Penn Treebank has over 10,000 different node types. This reflects the fact
that English is a complex language, but it also indicates that the annotators who created the
treebank favored flat trees, perhaps flatter than we would like. For example, the phrase “the
good and the bad” is parsed as a single noun phrase rather than as two conjoined noun phrases,
giving us the rule:

NP → Article Noun Conjunction Article Noun .

There are hundreds of similar rules that define a noun phrase as a string of categories with
a conjunction somewhere in the middle; a more concise grammar could capture all the con-
joined noun phrase rules with the single rule

NP → NP Conjunction NP .

Bod et al. (2003) and Bod (2008) show how to automatically recover generalized rules like
this, greatly reducing the number of rules that come out of the treebank, and creating a gram-
mar that ends up generalizing better for previously unseen sentences. They call their approach
data-oriented parsing.

We have seen that treebanks are not perfect—they contain errors, and have idiosyncratic
parses. It is also clear that creating a treebank requires a lot of hard work; that means that
treebanks will remain relatively small in size, compared to all the text that has not been
annotated with trees. An alternative approach is unsupervised parsing, in which we learn a Unsupervised parsing

new grammar (or improve an existing grammar) using a corpus of sentences without trees.
The inside–outside algorithm (Dodd, 1988), which we will not cover here, learns to

estimate the probabilities in a PCFG from example sentences without trees, similar to the
way the forward-backward algorithm (Figure 14.4) estimates probabilities. Spitkovsky et al.
(2010a) describe an unsupervised learning approach that uses curriculum learning: start Curriculum learning

with the easy part of the curriculum—short unambiguous 2-word sentences like “He left” can
be easily parsed based on prior knowledge or annotations. Each new parse of a short sentence
extends the system’s knowledge so that it can eventually tackle 3-word, then 4-word, and
eventually 40-word sentences.

We can also use semisupervised parsing, in which we start with a small number of trees Semisupervised
parsing

as data to build an initial grammar, then add a large number of unparsed sentences to improve
the grammar. The semisupervised approach can make use of partial bracketing: we can Partial bracketing

use widely available text that has been marked up by the authors, not by linguistic experts,
with a partial tree-like structure, in the form of HTML or similar annotations. In HTML text
most brackets correspond to a syntactic component, so partial bracketing can help learn a
grammar (Pereira and Schabes, 1992; Spitkovsky et al., 2010b). Consider this HTML text
from a newspaper article:

In 1998, however, as I <a>established in

<i>The New Republic</i></a> and Bill Clinton just

<a>confirmed in his memoirs</a>, Netanyahu changed his mind

The words surrounded by <i></i> tags form a noun phrase, and the two strings of words
surrounded by <a></a> tags each form verb phrases.
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24.4 Augmented Grammars

So far we have dealt with context-free grammars. But not every NP can appear in every
context with equal probability. The sentence “I ate a banana” is fine, but “Me ate a banana”
is ungrammatical, and “I ate a bandanna” is unlikely.

The issue is that our grammar is focused on lexical categories, like Pronoun, but while “I”
and “me” are both pronouns, only “I” can be the subject of a sentence. Similarly, “banana”
and “bandanna” are both nouns, but the former is much more likely to be object of “ate”.
Linguists say that the pronoun “I” is in the subjective case (i.e., is the subject of a verb) and
“me” is in the objective case3 (i.e., is the object of a verb). They also say that “I” is in the first
person (“you” is second person, and “she” is third person) and is singular (“we” is plural).
A category like Pronoun that has been augmented with features like “subjective case, first
person singular” is called a subcategory.Subcategory

In this section we show how a grammar can represent this kind of knowledge to make
finer-grained distinctions about which sentences are more likely. We will also show how to
construct a representation of the semantics of a phrase, in a compositional way. All of this
will be accomplished with an augmented grammar in which the nonterminals are not justAugmented

grammar

atomic symbols like Pronoun or NP, but are structured representations. For example, the
noun phrase “I” could be represented as NP(Sbj,1S,Speaker), which means “a noun phrase
that is in the subjective case, first person singular, and whose meaning is the speaker of the
sentence.” In contrast, “me” would be represented as NP(Obj,1S,Speaker), marking the fact
that it is in the objective case.

Consider the sequence “Noun and Noun or Noun,” which can be parsed either as “[Noun
and Noun] or Noun,” or as “Noun and [Noun or Noun].” Our context-free grammar has no
way to express a preference for one parse over the other, because the rule for conjoined NPs,
NP → NP Conjunction NP[0.05], will give the same probability to each parse. We would
like a grammar that prefers the parses “[[spaghetti and meatballs] or lasagna]” and “[spaghetti
and [pie or cake]]” over the alternative bracketing for each of these phrases.

A lexicalized PCFG is a type of augmented grammar that allows us to assign probabili-Lexicalized PCFG

ties based on properties of the words in a phrase other than just the syntactic categories. The
data would be very sparse indeed if the probability of, say, a 40-word sentence depended on
all 40 words—this is the same problem we noted with n-grams. To simplify, we introduce the
notion of the head of a phrase—the most important word. Thus, “banana” is the head of theHead

NP “a banana” and “ate” is the head of the VP “ate a banana.” The notation VP(v) denotes a
phrase with category VP whose head word is v. Here is a lexicalized PCFG:

VP(v) → Verb(v) NP(n) [P1(v,n)]
VP(v) → Verb(v) [P2(v)]
NP(n) → Article(a) Adjs( j) Noun(n) [P3(n,a)]
NP(n) → NP(n) Conjunction(c) NP(m) [P4(n,c,m)]
Verb(ate) → ate [0.002]
Noun(banana) → banana [0.0007]

3 The subjective case is also sometimes called the nominative case and the objective case is sometimes called
the accusative case. Many languages also make another distinction with a dative case for words in the indirect
object position.
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S(v) → NP(Sbj,pn,n) VP(pn,v) | . . .
NP(c,pn,n) → Pronoun(c,pn,n) | Noun(c,pn,n) | . . .

VP(pn,v) → Verb(pn,v) NP(Obj,pn,n) | . . .
PP(head) → Prep(head) NP(Obj,pn,h)

Pronoun(Sbj,1S,I) → I
Pronoun(Sbj,1P,we) → we
Pronoun(Obj,1S,me) → me

Pronoun(Obj,3P, them) → them

Verb(3S,see) → see

Figure 24.9 Part of an augmented grammar that handles case agreement, subject–verb agree-
ment, and head words. Capitalized names are constants: Sbj, and Obj for subjective and ob-
jective case; 1S for first person singular; 1P and 3P for first and third person plural. As usual,
lowercase names are variables. For simplicity, the probabilities have been omitted.

Here P1(v,n) means the probability of a VP headed by v joining with an NP headed by n to
form a VP. We can specify that “ate a banana” is more probable than “ate a bandanna” by
ensuring that P1(ate,banana) > P1(ate,bandanna). Note that since we are considering only
phrase heads, the distinction between “ate a banana” and “ate a rancid banana” will not be
caught by P1. Conceptually, P1 is a huge table of probabilities: if there are 5,000 verbs and
10,000 nouns in the vocabulary, then P1 requires 50 million entries, but most of them will not
be stored explicitly; rather they will be derived from smoothing and backoff. For example,
we can back off from P1(v,n) to a model that depends only on v. Such a model would require
10,000 times fewer parameters, but can still capture important regularities, such as the fact
that a transitive verb like “ate” is more likely to be followed by an NP (regardless of the head)
than an intransitive verb like “sleep.”

We saw in Section 24.2 that the simple grammar for E0 overgenerates, producing non-
sentences such as “I saw she” or “I sees her.” To avoid this problem, our grammar would have
to know that “her,” not “she,” is a valid object of “saw” (or of any other verb) and that “see,”
not “sees,” is the form of the verb that accompanies the subject “I.”

We could encode these facts completely in the probability entries, for example making
P1(v,she) be a very small number, for all verbs v. But it is more concise and modular to
augment the category NP with additional variables: NP(c,pn,n) is used to represent a noun
phrase with case c (subjective or objective), person and number pn (e.g., third person singu-
lar), and head noun n. Figure 24.9 shows an augmented lexicalized grammar that handles
these additional variables. Let’s consider one grammar rule in detail:

S(v) → NP(Sbj,pn,n) VP(pn,v) [P5(n,v)] .

This rule says that when an NP is followed by a VP they can form an S, but only if the NP
has the subjective (Sbj) case and the person and number (pn) of the NP and VP are identical.
(We say that they are in agreement.) If that holds, then we have an S whose head is the verb
from the VP. Here is an example lexical rule,

Pronoun(Sbj,1S, I) → I [0.005]

which says that “I” is a Pronoun in the subjective case, first-person singular, with head “I.”
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Exp(op(x1,x2)) → Exp(x1) Operator(op) Exp(x2)
Exp(x) → ( Exp(x) )
Exp(x) → Number(x)
Number(x) → Digit(x)
Number(10× x1 + x2) → Number(x1) Digit(x2)
Operator(+) → +
Operator(−) → -
Operator(×) → ×
Operator(÷) → ÷
Digit(0) → 0
Digit(1) → 1
. . .

Figure 24.10 A grammar for arithmetic expressions, augmented with semantics. Each vari-
able xi represents the semantics of a constituent.

24.4.1 Semantic interpretation

To show how to add semantics to a grammar, we start with an example that is simpler than En-
glish: the semantics of arithmetic expressions. Figure 24.10 shows a grammar for arithmetic
expressions, where each rule is augmented with a single argument indicating the semantic
interpretation of the phrase. The semantics of a digit such as “3” is the digit itself. The se-
mantics of the expression “3 + 4” is the operator “+” applied to the semantics of the phrases
“3” and “4.” The grammar rules obey the principle of compositional semantics—the se-Compositional

semantics
mantics of a phrase is a function of the semantics of the subphrases. Figure 24.11 shows the
parse tree for 3+(4÷2) according to this grammar. The root of the parse tree is Exp(5), an
expression whose semantic interpretation is 5.

Now let’s move on to the semantics of English, or at least a tiny portion of it. We will use
first-order logic for our semantic representation. So the simple sentence “Ali loves Bo” should
get the semantic representation Loves(Ali,Bo). But what about the constituent phrases? We
can represent the NP “Ali” with the logical term Ali. But the VP “loves Bo” is neither a logical
term nor a complete logical sentence. Intuitively, “loves Bo” is a description that might or
might not apply to a particular person. (In this case, it applies to Ali.) This means that
“loves Bo” is a predicate that, when combined with a term that represents a person, yields a
complete logical sentence.

Using the λ-notation (see page 277), we can represent “loves Bo” as the predicate

λx Loves(x,Bo) .

Now we need a rule that says “an NP with semantics n followed by a VP with semantics pred
yields a sentence whose semantics is the result of applying pred to n:”

S(pred(n)) → NP(n) VP(pred) .

The rule tells us that the semantic interpretation of “Ali loves Bo” is

(λx Loves(x,Bo))(Ali) ,
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Operator(÷)

3 ( )4 2+

Number(2)

Digit(2)

Number(4)

Digit(4)Operator(+)Digit(3)

Number(3)

Exp(5)

Exp(2)

Exp(2)

Exp(4) Exp(2)Exp(3)

÷

Figure 24.11 Parse tree with semantic interpretations for the string “3+(4÷2)”.

S(pred(n)) → NP(n) VP(pred)
VP(pred(n)) → Verb(pred) NP(n)
NP(n) → Name(n)

Name(Ali) → Ali
Name(Bo) → Bo
Verb(λy λx Loves(x,y)) → loves

Ali loves Bo

Name(Ali) Name(Bo)

NP(Bo)NP(Ali)

S(Loves(Ali, Bo))

Verb(λy λ x Loves(x, y))

VP(λx Loves(x, Bo))

(a) (b)

Figure 24.12 (a) A grammar that can derive a parse tree and semantic interpretation for “Ali
loves Bo” (and three other sentences). Each category is augmented with a single argument
representing the semantics. (b) A parse tree with semantic interpretations for the string “Ali
loves Bo.”

which is equivalent to Loves(Ali,Bo). Technically, we say that this is a β-reduction of the
lambda function application.

The rest of the semantics follows in a straightforward way from the choices we have made
so far. Because VPs are represented as predicates, verbs should be predicates as well. The
verb “loves” is represented as λy λx Loves(x,y), the predicate that, when given the argument
Bo, returns the predicate λx Loves(x,Bo). We end up with the grammar and parse tree shown
in Figure 24.12. In a more complete grammar, we would put all the augmentations (seman-
tics, case, person-number, and head) together into one set of rules. Here we show only the
semantic augmentation to make it clearer how the rules work.
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24.4.2 Learning semantic grammars

Unfortunately, the Penn Treebank does not include semantic representations of its sentences,
just syntactic trees. So if we are going to learn a semantic grammar, we will need a different
source of examples. Zettlemoyer and Collins (2005) describe a system that learns a grammar
for a question-answering system from examples that consist of a sentence paired with the
semantic form for the sentence:

• Sentence: What states border Texas?
• Logical Form: λx.state(x)∧λx.borders(x,Texas)

Given a large collection of pairs like this and a little bit of hand-coded knowledge for each
new domain, the system generates plausible lexical entries (for example, that “Texas” and
“state” are nouns such that state(Texas) is true), and simultaneously learns parameters for a
grammar that allows the system to parse sentences into semantic representations. Zettlemoyer
and Collins’s system achieved 79% accuracy on two different test sets of unseen sentences.
Zhao and Huang (2015) demonstrate a shift-reduce parser that runs faster, and achieves 85%
to 89% accuracy.

A limitation of these systems is that the training data includes logical forms. These are
expensive to create, requiring human annotators with specialized expertise—not everyone
understands the subtleties of lambda calculus and predicate logic. It is much easier to gather
examples of question/answer pairs:

• Question: What states border Texas?
• Answer: Louisiana, Arkansas, Oklahoma, New Mexico.

• Question: How many times would Rhode Island fit into California?
• Answer: 135

Such question/answer pairs are quite common on the Web, so a large database can be put
together without human experts. Using this large source of data it is possible to build parsers
that outperform those that use a small database of annotated logical forms (Liang et al., 2011;
Liang and Potts, 2015). The key approach described in these papers is to invent an internal
logical form that is compositional but does not allow an exponentially large search space.

24.5 Complications of Real Natural Language

The grammar of real English is endlessly complex (and other languages are equally complex).
We will briefly mention some of the topics that contribute to this complexity.

Quantification: Consider the sentence “Every agent feels a breeze.” The sentence hasQuantification

only one syntactic parse under E0, but it is semantically ambiguous: is there one breeze
that is felt by all the agents, or does each agent feel a separate personal breeze? The two
interpretations can be represented as

∀a a∈Agents ⇒
∃b b∈Breezes∧Feel(a,b) ;

∃b b∈Breezes∧∀a a∈Agents ⇒
Feel(a,b) .
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One standard approach to quantification is for the grammar to define not an actual logical
semantic sentence, but rather a quasi-logical form that is then turned into a logical sentence Quasi-logical form

by algorithms outside of the parsing process. Those algorithms can have preference rules for
choosing one quantifier scope over another—preferences that need not be reflected directly
in the grammar.

Pragmatics: We have shown how an agent can perceive a string of words and use a Pragmatics

grammar to derive a set of possible semantic interpretations. Now we address the problem
of completing the interpretation by adding context-dependent information about the current
situation. The most obvious need for pragmatic information is in resolving the meaning of
indexicals, which are phrases that refer directly to the current situation. For example, in the Indexical

sentence “I am in Boston today,” both “I” and “today” are indexicals. The word “I” would
be represented by Speaker, a fluent that refers to different objects at different times, and it
would be up to the hearer to resolve the referent of the fluent—that is not considered part of
the grammar but rather an issue of pragmatics.

Another part of pragmatics is interpreting the speaker’s intent. The speaker’s utterance
is considered a speech act, and it is up to the hearer to decipher what type of action it is—a Speech act

question, a statement, a promise, a warning, a command, and so on. A command such as
“go to 2 2” implicitly refers to the hearer. So far, our grammar for S covers only declarative
sentences. We can extend it to cover commands—a command is a verb phrase where the
subject is implicitly the hearer of the command:

S(Command(pred(Hearer))) → VP(pred) .

Long-distance dependencies: In Figure 24.8 we saw that “she didn’t hear or even see Long-distance
dependencies

him” was parsed with two gaps where an NP is missing, but refers to the NP “him.” We can
use the symbol to represent the gaps: “she didn’t [hear or even see ] him.” In general,
the distance between the gap and the NP it refers to can be arbitrarily long: in “Who did the
agent tell you to give the gold to ?” the gap refers to “Who,” which is 11 words away.

A complex system of augmented rules can be used to make sure that the missing NPs
match up properly. The rules are complex; for example, you can’t have a gap in one branch
of an NP conjunction: “What did she play [NP Dungeons and ]?” is ungrammatical. But
you can have the same gap in both branches of a VP conjunction, as in the sentence “What
did you [VP [VP smell ] and [VP shoot an arrow at ]]?”

Time and tense: Suppose we want to represent the difference between “Ali loves Bo” Time and tense

and “Ali loved Bo.” English uses verb tenses (past, present, and future) to indicate the relative
time of an event. One good choice to represent the time of events is the event calculus notation
of Section 10.3. In event calculus we have

Ali loves Bo: E1∈Loves(Ali,Bo)∧During(Now,Extent(E1))
Ali loved Bo: E2∈Loves(Ali,Bo)∧After(Now,Extent(E2)) .

This suggests that our two lexical rules for the words “loves” and “loved” should be these:

Verb(λy λx e∈Loves(x,y)∧During(Now,e)) → loves
Verb(λy λx e∈Loves(x,y)∧After(Now,e)) → loved .

Other than this change, everything else about the grammar remains the same, which is en-
couraging news; it suggests we are on the right track if we can so easily add a complication
like the tense of verbs (although we have just scratched the surface of a complete grammar
for time and tense).
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Ambiguity: We tend to think of ambiguity as a failure in communication; when a listenerAmbiguity

is consciously aware of an ambiguity in an utterance, it means that the utterance is unclear or
confusing. Here are some examples taken from newspaper headlines:

Squad helps dog bite victim.
Police begin campaign to run down jaywalkers.
Helicopter powered by human flies.
Once-sagging cloth diaper industry saved by full dumps.
Include your children when baking cookies.
Portable toilet bombed; police have nothing to go on.
Milk drinkers are turning to powder.
Two sisters reunited after 18 years in checkout counter.

Such confusions are the exception; most of the time the language we hear seems unambigu-
ous. Thus, when researchers first began to use computers to analyze language in the 1960s,
they were quite surprised to learn that almost every sentence is ambiguous, with multiple
possible parses (sometimes hundreds), even when the single preferred parse is the only one
that native speakers notice. For example, we understand the phrase “brown rice and black
beans” as “[brown rice] and [black beans],” and never consider the low-probability interpre-
tation “brown [rice and black beans],” where the adjective “brown” is modifying the whole
phrase, not just the “rice.” When we hear “Outside of a dog, a book is a person’s best friend,”
we interpret “outside of” as meaning “except for,” and find it funny when the next sentence
of the Groucho Marx joke is “Inside of a dog it’s too dark to read.”

Lexical ambiguity is when a word has more than one meaning: “back” can be an adverbLexical ambiguity

(go back), an adjective (back door), a noun (the back of the room), a verb (back a candidate),
or a proper noun (a river in Nunavut, Canada). “Jack” can be a proper name, a noun (a playing
card, a six-pointed metal game piece, a nautical flag, a fish, a bird, a cheese, a socket, etc.), or
a verb (to jack up a car, to hunt with a light, or to hit a baseball hard). Syntactic ambiguitySyntactic ambiguity

refers to a phrase that has multiple parses: “I smelled a wumpus in 2,2” has two parses: one
where the prepositional phrase “in 2,2” modifies the noun and one where it modifies the verb.
The syntactic ambiguity leads to a semantic ambiguity, because one parse means that theSemantic ambiguity

wumpus is in 2,2 and the other means that a stench is in 2,2. In this case, getting the wrong
interpretation could be a deadly mistake.

There can also be ambiguity between literal and figurative meanings. Figures of speech
are important in poetry, and are common in everyday speech as well. A metonymy is aMetonymy

figure of speech in which one object is used to stand for another. When we hear “Chrysler
announced a new model,” we do not interpret it as saying that companies can talk; rather
we understand that a spokesperson for the company made the announcement. Metonymy is
common and is often interpreted unconsciously by human hearers.

Unfortunately, our grammar as it is written is not so facile. To handle the semantics of
metonymy properly, we need to introduce a whole new level of ambiguity. We could do
this by providing two objects for the semantic interpretation of every phrase in the sentence:
one for the object that the phrase literally refers to (Chrysler) and one for the metonymic
reference (the spokesperson). We then have to say that there is a relation between the two. In



Section 24.5 Complications of Real Natural Language 899

our current grammar, “Chrysler announced” gets interpreted as

x = Chrysler∧ e ∈ Announce(x)∧After(Now,Extent(e)) .

We need to change that to

x = Chrysler∧ e ∈ Announce(m)∧After(Now,Extent(e))
∧Metonymy(m,x) .

This says that there is one entity x that is equal to Chrysler, and another entity m that did the
announcing, and that the two are in a metonymy relation. The next step is to define what
kinds of metonymy relations can occur. The simplest case is when there is no metonymy at
all—the literal object x and the metonymic object m are identical:

∀m,x (m = x) ⇒ Metonymy(m,x) .

For the Chrysler example, a reasonable generalization is that an organization can be used to
stand for a spokesperson of that organization:

∀m,x x∈Organizations∧Spokesperson(m,x) ⇒ Metonymy(m,x) .

Other metonymies include the author for the works (I read Shakespeare) or more generally
the producer for the product (I drive a Honda) and the part for the whole (The Red Sox need
a strong arm). Some examples of metonymy, such as “The ham sandwich on Table 4 wants
another beer,” are more novel and are interpreted with respect to a situation (such as waiting
on tables and not knowing a customer’s name).

A metaphor is another figure of speech, in which a phrase with one literal meaning is Metaphor

used to suggest a different meaning by way of an analogy. Thus, metaphor can be seen as a
kind of metonymy where the relation is one of similarity.

Disambiguation is the process of recovering the most probable intended meaning of an Disambiguation

utterance. In one sense we already have a framework for solving this problem: each rule
has a probability associated with it, so the probability of an interpretation is the product of
the probabilities of the rules that led to the interpretation. Unfortunately, the probabilities
reflect how common the phrases are in the corpus from which the grammar was learned,
and thus reflect general knowledge, not specific knowledge of the current situation. To do
disambiguation properly, we need to combine four models:

1. The world model: the likelihood that a proposition occurs in the world. Given what we
know about the world, it is more likely that a speaker who says “I’m dead” means “I
am in big trouble” or “I lost this video game” rather than “My life ended, and yet I can
still talk.”

2. The mental model: the likelihood that the speaker forms the intention of communicat-
ing a certain fact to the hearer. This approach combines models of what the speaker
believes, what the speaker believes the hearer believes, and so on. For example, when
a politician says, “I am not a crook,” the world model might assign a probability of
only 50% to the proposition that the politician is not a criminal, and 99.999% to the
proposition that he is not a hooked shepherd’s staff. Nevertheless, we select the former
interpretation because it is a more likely thing to say.

3. The language model: the likelihood that a certain string of words will be chosen, given
that the speaker has the intention of communicating a certain fact.
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4. The acoustic model: for spoken communication, the likelihood that a particular se-
quence of sounds will be generated, given that the speaker has chosen a given string
of words. (For handwritten or typed communication, we have the problem of optical
character recognition.)

24.6 Natural Language Tasks

Natural language processing is a big field, deserving an entire textbook or two of its own
(Goldberg, 2017; Jurafsky and Martin, 2020). In this section we briefly describe some of the
main tasks; you can use the references to get more details.

Speech recognition is the task of transforming spoken sound into text. We can thenSpeech recognition

perform further tasks (such as question answering) on the resulting text. Current systems
have a word error rate of about 3% to 5% (depending on details of the test set), similar
to human transcribers. The challenge for a system using speech recognition is to respond
appropriately even when there are errors on individual words.

Top systems today use a combination of recurrent neural networks and hidden Markov
models (Hinton et al., 2012; Yu and Deng, 2016; Deng, 2016; Chiu et al., 2017; Zhang et al.,
2017). The introduction of deep neural nets for speech in 2011 led to an immediate and
dramatic improvement of about 30% in error rate—this from a field that seemed to be mature
and was previously progressing at only a few percent per year. Deep neural networks are a
good fit because the problem of speech recognition has a natural compositional breakdown:
waveforms to phonemes to words to sentences. They will be covered in the next chapter.

Text-to-speech synthesis is the inverse process—going from text to sound. Taylor (2009)Text-to-speech

gives a book-length overview. The challenge is to pronounce each word correctly, and to make
the flow of each sentence seem natural, with the right pauses and emphasis.

Another area of development is in synthesizing different voices—starting with a choice
between a generic male or female voice, then allowing for regional dialects, and even imi-
tating celebrity voices. As with speech recognition, the introduction of deep recurrent neu-
ral networks led to a large improvement, with about 2/3 of listeners saying that the neural
WaveNet system (van den Oord et al., 2016a) sounded more natural than the previous non-
neural system.

Machine translation transforms text in one language to another. Systems are usually
trained using a bilingual corpus: a set of paired documents, where one member of the pair is
in, say, English, and the other is in, say, French. The documents do not need to be annotated
in any way; the machine translation system learns to align sentences and phrases and then
when presented with a novel sentence in one language, can generate a translation to the other.

Systems in the early 2000s used n-gram models, and achieved results that were usually
good enough to get across the meaning of a text, but contained syntactic errors in most sen-
tences. One problem was the limit on the length of the n-grams: even with a large limit of
7, it was difficult for information to flow from one end of the sentence to the other. Another
problem was that all the information in an n-gram model is at the level of individual words.
Such a system could learn that “black cat” translates to “chat noir,” but it could not learn the
rule that adjectives generally come before the noun in English and after the noun in French.

Recurrent neural sequence-to-sequence models (Sutskever et al., 2015) got around the
problem. They could generalize better (because they could use word embeddings rather than
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n-gram counts of specific words) and could form compositional models throughout the vari-
ous levels of the deep network to effectively pass information along. Subsequent work using
the attention-focusing mechanism of the transformer model (Vaswani et al., 2018) increased
performance further, and a hybrid model incorporating aspects of both these models does
better still, approaching human-level performance on some language pairs (Wu et al., 2016b;
Chen et al., 2018).

Information extraction is the process of acquiring knowledge by skimming a text and Information
extraction

looking for occurrences of particular classes of objects and for relationships among them.
A typical task is to extract instances of addresses from Web pages, with database fields for
street, city, state, and zip code; or instances of storms from weather reports, with fields for
temperature, wind speed, and precipitation. If the source text is well structured (for ex-
ample, in the form of a table), then simple techniques such as regular expressions can ex-
tract the information (Cafarella et al., 2008). It gets harder if we are trying to extract all
facts, rather than a specific type (such as weather reports); Banko et al. (2007) describe the
TEXTRUNNER system that performs extraction over an open, expanding set of relations. For
free-form text, techniques include hidden Markov models and rule-based learning systems
(as used in TEXTRUNNER and NELL (Never-Ending Language Learning) (Mitchell et al.,
2018)). More recent systems use recurrent neural networks, taking advantage of the flexibility
of word embeddings. You can find an overview in Kumar (2017).

Information retrieval is the task of finding documents that are relevant and important Information retrieval

for a given query. Internet search engines such as Google and Baidu perform this task billions
of times a day. Three good textbooks on the subject are Manning et al. (2008), Croft et al.
(2010), and Baeza-Yates and Ribeiro-Neto (2011).

Question Answering is a different task, in which the query really is a question, such as Question Answering

“Who founded the U.S. Coast Guard?” and the response is not a ranked list of documents but
rather an actual answer: “Alexander Hamilton.” There have been question-answering systems
since the 1960s that rely on syntactic parsing as discussed in this chapter, but only since
2001 have such systems used Web information retrieval to radically increase their breadth of
coverage. Katz (1997) describes the START parser and question answerer. Banko et al. (2002)
describe ASKMSR, which was less sophisticated in terms of its syntactic parsing ability, but
more aggressive in using Web search and sorting through the results. For example, to answer
“Who founded the U.S. Coast Guard?” it would search for queries such as [* founded the
U.S. Coast Guard] and [the U.S. Coast Guard was founded by *], and then examine the
multiple resulting Web pages to pick out a likely response, knowing that the query word
“who” suggests that the answer should be a person. The Text REtrieval Conference (TREC)
gathers research on this topic and has hosted competitions on an annual basis since 1991
(Allan et al., 2017). Recently we have seen other test sets, such as the AI2 ARC test set of
basic science questions (Clark et al., 2018).

Summary

The main points of this chapter are as follows:

• Probabilistic language models based on n-grams recover a surprising amount of infor-
mation about a language. They can perform well on such diverse tasks as language
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identification, spelling correction, sentiment analysis, genre classification, and named-
entity recognition.

• These language models can have millions of features, so preprocessing and smoothing
the data to reduce noise is important.

• In building a statistical language system, it is best to devise a model that can make good
use of available data, even if the model seems overly simplistic.

• Word embeddings can give a richer representation of words and their similarities.

• To capture the hierarchical structure of language, phrase structure grammars (and in
particular, context-free grammars) are useful. The probabilistic context-free grammar
(PCFG) formalism is widely used, as is the dependency grammar formalism.

• Sentences in a context-free language can be parsed in O(n3) time by a chart parser
such as the CYK algorithm, which requires grammar rules to be in Chomsky Normal
Form. With a small loss in accuracy, natural languages can be parsed in O(n) time,
using a beam search or a shift-reduce parser.

• A treebank can be a resource for learning a PCFG grammar with parameters.

• It is convenient to augment a grammar to handle issues such as subject–verb agreement
and pronoun case, and to represent information at the level of words rather than just at
the level of categories.

• Semantic interpretation can also be handled by an augmented grammar. We can learn
a semantic grammar from a corpus of questions paired either with the logical form of
the question, or with the answer.

• Natural language is complex and difficult to capture in a formal grammar.

Bibliographical and Historical Notes

N-gram letter models for language modeling were proposed by Markov (1913). Claude Shan-
non (Shannon and Weaver, 1949) was the first to generate n-gram word models of English.
The bag-of-words model gets its name from a passage from linguist Zellig Harris (1954),
“language is not merely a bag of words but a tool with particular properties.” Norvig (2009)
gives some examples of tasks that can be accomplished with n-gram models.

Chomsky (1956, 1957) pointed out the limitations of finite-state models compared with
context-free models, concluding, “Probabilistic models give no particular insight into some
of the basic problems of syntactic structure.” This is true, but probabilistic models do provide
insight into some other basic problems—problems that context-free models ignore. Chom-
sky’s remarks had the unfortunate effect of scaring many people away from statistical models
for two decades, until these models reemerged for use in the field of speech recognition
(Jelinek, 1976), and in cognitive science, where optimality theory (Smolensky and Prince,
1993; Kager, 1999) posited that language works by finding the most probable candidate that
optimally satisfies competing constraints.

Add-one smoothing, first suggested by Pierre-Simon Laplace (1816), was formalized by
Jeffreys (1948). Other smoothing techniques include interpolation smoothing (Jelinek and
Mercer, 1980), Witten–Bell smoothing (1991), Good–Turing smoothing (Church and Gale,
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1991), Kneser–Ney smoothing (1995, 2004), and stupid backoff (Brants et al., 2007). Chen
and Goodman (1996) and Goodman (2001) survey smoothing techniques.

Simple n-gram letter and word models are not the only possible probabilistic models. The
latent Dirichlet allocation model (Blei et al., 2002; Hoffman et al., 2011) is a probabilistic
text model that views a document as a mixture of topics, each with its own distribution of
words. This model can be seen as an extension and rationalization of the latent semantic
indexing model of Deerwester et al. (1990) and is also related to the multiple-cause mixture
model of (Sahami et al., 1996). And of course there is great interest in non-probabilistic
language models, such as the deep learning models covered in Chapter 25.

Joulin et al. (2016) give a bag of tricks for efficient text classification. Joachims (2001)
uses statistical learning theory and support vector machines to give a theoretical analysis of
when classification will be successful. Apté et al. (1994) report an accuracy of 96% in clas-
sifying Reuters news articles into the “Earnings” category. Koller and Sahami (1997) report
accuracy up to 95% with a naive Bayes classifier, and up to 98.6% with a Bayes classifier.

Schapire and Singer (2000) show that simple linear classifiers can often achieve accu-
racy almost as good as more complex models, and run faster. Zhang et al. (2016) describe a
character-level (rather than word-level) text classifier. Witten et al. (1999) describe compres-
sion algorithms for classification, and show the deep connection between the LZW compres-
sion algorithm and maximum-entropy language models.

Wordnet (Fellbaum, 2001) is a publicly available dictionary of about 100,000 words and
phrases, categorized into parts of speech and linked by semantic relations such as synonym,
antonym, and part-of. Charniak (1996) and Klein and Manning (2001) discuss parsing with
treebank grammars. The British National Corpus (Leech et al., 2001) contains 100 million
words, and the World Wide Web contains several trillion words; Franz and Brants (2006)
describe the publicly available Google n-gram corpus of 13 million unique words from a
trillion words of Web text. Buck et al. (2014) describe a similar data set from the Common
Crawl project. The Penn Treebank (Marcus et al., 1993; Bies et al., 2015) provides parse
trees for a 3-million-word corpus of English.

Many of the n-gram model techniques are also used in bioinformatics problems. Bio-
statistics and probabilistic NLP are coming closer together, as each deals with long, structured
sequences chosen from an alphabet.

Early part-of-speech (POS) taggers used a variety of techniques, including rule sets (Brill,
1992), n-grams (Church, 1988), decision trees (Màrquez and Rodrı́guez, 1998), HMMs
(Brants, 2000), and logistic regression (Ratnaparkhi, 1996). Historically, a logistic regres-
sion model was also called a “maximum entropy Markov model” or MEMM, so some work
is under that name. Jurafsky and Martin (2020) have a good chapter on POS tagging. Ng and
Jordan (2002) compare discriminative and generative models for classification tasks.

Like semantic networks, context-free grammars were first discovered by ancient Indian
grammarians (especially Panini, ca. 350 BCE) studying Shastric Sanskrit (Ingerman, 1967).
They were reinvented by Noam Chomsky (1956) for the analysis of English and indepen-
dently by John Backus (1959) and Peter Naur for the analysis of Algol-58.

Probabilistic context-free grammars were first investigated by Booth (1969) and Sa-
lomaa (1969). Algorithms for PCFGs are presented in the excellent short monograph by
Charniak (1993) and the excellent long textbooks by Manning and Schütze (1999) and Juraf-
sky and Martin (2020). Baker (1979) introduces the inside–outside algorithm for learning a
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PCFG. Lexicalized PCFGs (Charniak, 1997; Hwa, 1998) combine the best aspects of PCFGs
and n-gram models. Collins (1999) describes PCFG parsing that is lexicalized with head fea-
tures, and Johnson (1998) shows how the accuracy of a PCFG depends on the structure of the
treebank from which its probabilities were learned.

There have been many attempts to write formal grammars of natural languages, both in
“pure” linguistics and in computational linguistics. There are several comprehensive but in-
formal grammars of English (Quirk et al., 1985; McCawley, 1988; Huddleston and Pullum,
2002). Since the 1980s, there has been a trend toward lexicalization: putting more informa-
tion in the lexicon and less in the grammar.

Lexical-functional grammar, or LFG (Bresnan, 1982) was the first major grammar for-
malism to be highly lexicalized. If we carry lexicalization to an extreme, we end up with
categorial grammar (Clark and Curran, 2004), in which there can be as few as two grammar
rules, or with dependency grammar (Smith and Eisner, 2008; Kübler et al., 2009) in which
there are no syntactic categories, only relations between words.

Computerized parsing was first demonstrated by Yngve (1955). Efficient algorithms were
developed in the 1960s, with a few twists since then (Kasami, 1965; Younger, 1967; Earley,
1970; Graham et al., 1980). Church and Patil (1982) describe syntactic ambiguity and address
ways to resolve it.

Klein and Manning (2003) describe A∗ parsing, and Pauls and Klein (2009) extend that
to K-best A∗ parsing, in which the result is not a single parse but the K best. Goldberg et al.
(2013) describe the necessary implementation tricks to make sure that a beam search parser
is O(n) and not O(n2). Zhu et al. (2013) describe a fast deterministic shift-reduce parser
for natural languages, and Sagae and Lavie (2006) show how adding search to a shift-reduce
parser can make it more accurate, at the cost of some speed.

Today, highly accurate open-source parsers include Google’s Parsey McParseface (Andor
et al., 2016), the Stanford Parser (Chen and Manning, 2014), the Berkeley Parser (Kitaev and
Klein, 2018), and the SPACY parser. They all do generalization through neural networks and
achieve roughly 95% accuracy on Wall Street Journal or Penn Treebank test sets. There is
some criticism of the field that it is focusing too narrowly on measuring performance on a
few select corpora, and perhaps overfitting on them.

Formal semantic interpretation of natural languages originates within philosophy and
formal logic, particularly Alfred Tarski’s (1935) work on the semantics of formal languages.
Bar-Hillel (1954) was the first to consider the problems of pragmatics (such as indexicals) and
propose that they could be handled by formal logic. Richard Montague’s essay “English as a
formal language” (1970) is a kind of manifesto for the logical analysis of language, but there
are other books that are more readable (Dowty et al., 1991; Portner and Partee, 2002; Cruse,
2011). While semantic interpretation programs are designed to pick the most likely inter-
pretation, literary critics (Empson, 1953; Hobbs, 1990) have been ambiguous about whether
ambiguity is something to be resolved or cherished. Norvig (1988) discusses the problems of
considering multiple simultaneous interpretations, rather than settling for a single maximum-
likelihood interpretation. Lakoff and Johnson (1980) give an engaging analysis and catalog of
common metaphors in English. Martin (1990) and Gibbs (2006) offer computational models
of metaphor interpretation.

The first NLP system to solve an actual task was the BASEBALL question answering
system (Green et al., 1961), which handled questions about a database of baseball statistics.
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Close after that was Winograd’s (1972) SHRDLU, which handled questions and commands
about a blocks-world scene, and Woods’s (1973) LUNAR, which answered questions about
the rocks brought back from the moon by the Apollo program.

Banko et al. (2002) present the ASKMSR question-answering system; a similar system is
due to Kwok et al. (2001). Pasca and Harabagiu (2001) discuss a contest-winning question-
answering system.

Modern approaches to semantic interpretation usually assume that the mapping from
syntax to semantics will be learned from examples (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Zhao and Huang, 2015). The first important result on grammar induction was
a negative one: Gold (1967) showed that it is not possible to reliably learn an exactly correct
context-free grammar, given a set of strings from that grammar. Prominent linguists, such as
Chomsky (1957) and Pinker (2003), have used Gold’s result to argue that there must be an
innate universal grammar that all children have from birth. The so-called Poverty of the Universal grammar

Stimulus argument says that children aren’t given enough input to learn a CFG, so they must
already “know” the grammar and be merely tuning some of its parameters.

While this argument continues to hold sway throughout much of Chomskyan linguistics,
it has been dismissed by other linguists (Pullum, 1996; Elman et al., 1997) and most computer
scientists. As early as 1969, Horning showed that it is possible to learn, in the sense of PAC
learning, a probabilistic context-free grammar. Since then, there have been many convincing
empirical demonstrations of language learning from positive examples alone, such as learn-
ing semantic grammars with inductive logic programming (Muggleton and De Raedt, 1994;
Mooney, 1999), the Ph.D. theses of Schütze (1995) and de Marcken (1996), and the entire
line of modern language processing systems based on the transformer model (Section 25.4).
There is an annual International Conference on Grammatical Inference (ICGI).

James Baker’s DRAGON system (Baker, 1975) could be considered the first succesful
speech recognition system. It was the first to use HMMs for speech. After several decades
of systems based on probabilistic language models, the field began to switch to deep neural
networks (Hinton et al., 2012). Deng (2016) describes how the introduction of deep learning
enabled rapid improvement in speech recognition, and reflects on the implications for other
NLP tasks. Today deep learning is the dominant approach for all large-scale speech recogni-
tion systems. Speech recognition can be seen as the first application area that highlighted the
success of deep learning, with computer vision following shortly thereafter.

Interest in the field of information retrieval was spurred by widespread usage of Internet
searching. Croft et al. (2010) and Manning et al. (2008) provide textbooks that cover the
basics. The TREC conference hosts an annual competition for IR systems and publishes
proceedings with results.

Brin and Page (1998) describe the PageRank algorithm, which takes into account the
links between pages, and give an overview of the implementation of a Web search engine.
Silverstein et al. (1998) investigate a log of a billion Web searches. The journal Information
Retrieval and the proceedings of the annual flagship SIGIR conference cover recent develop-
ments in the field.

Information extraction has been pushed forward by the annual Message Understanding
Conferences (MUC), sponsored by the U.S. government. Surveys of template-based systems
are given by Roche and Schabes (1997), Appelt (1999), and Muslea (1999). Large databases
of facts were extracted by Craven et al. (2000), Pasca et al. (2006), Mitchell (2007), and
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Durme and Pasca (2008). Freitag and McCallum (2000) discuss HMMs for Information
Extraction. Conditional random fields have also been used for this task (Lafferty et al., 2001;
McCallum, 2003); a tutorial with practical guidance is given by Sutton and McCallum (2007).
Sarawagi (2007) gives a comprehensive survey.

Two early influential approaches to automated knowledge engineering for NLP were by
Riloff (1993), who showed that an automatically constructed dictionary performed almost
as well as a carefully handcrafted domain-specific dictionary, and by Yarowsky (1995), who
showed that the task of word sense classification could be accomplished through unsupervised
training on a corpus of unlabeled text with accuracy as good as supervised methods.

The idea of simultaneously extracting templates and examples from a handful of labeled
examples was developed independently and simultaneously by Blum and Mitchell (1998),
who called it cotraining, and by Brin (1998), who called it DIPRE (Dual Iterative Pattern
Relation Extraction). You can see why the term cotraining has stuck. Similar early work,
under the name of bootstrapping, was done by Jones et al. (1999). The method was advanced
by the QXTRACT (Agichtein and Gravano, 2003) and KNOWITALL (Etzioni et al., 2005)
systems. Machine reading was introduced by Mitchell (2005) and Etzioni et al. (2006) and is
the focus of the TEXTRUNNER project (Banko et al., 2007; Banko and Etzioni, 2008).

This chapter has focused on natural language sentences, but it is also possible to do
information extraction based on the physical structure or geometric layout of text rather than
on the linguistic structure. Lists, tables, charts, graphs, diagrams, etc., whether encoded in
HTML or accessed through the visual analysis of pdf documents, are home to data that can
be extracted and consolidated (Hurst, 2000; Pinto et al., 2003; Cafarella et al., 2008).

Ken Church (2004) shows that natural language research has cycled between concentrat-
ing on the data (empiricism) and concentrating on theories (rationalism); he describes the ad-
vantages of having good language resources and evaluation schemes, but wonders if we have
gone too far (Church and Hestness, 2019). Early linguists concentrated on actual language
usage data, including frequency counts. Noam Chomsky (1956) demonstrated the limitations
of finite-state models, leading to an emphasis on theoretical studies of syntax, disregarding
actual language performance. This approach dominated for twenty years, until empiricism
made a comeback based on the success of work in statistical speech recognition (Jelinek,
1976). Today, the emphasis on empirical language data continues, and there is heightened
interest in models that consider higher-level constructs, such as syntactic and semantic rela-
tions, not just sequences of words. There is also a strong emphasis on deep learning neural
network models of language, which we will cover in Chapter 25.

Work on applications of language processing is presented at the biennial Applied Natural
Language Processing conference (ANLP), the conference on Empirical Methods in Natural
Language Processing (EMNLP), and the journal Natural Language Engineering. A broad
range of NLP work appears in the journal Computational Linguistics and its conference,
ACL, and in the International Computational Linguistics (COLING) conference. Jurafsky
and Martin (2020) give a comprehensive introduction to speech and NLP.



CHAPTER 25
DEEP LEARNING FOR NATURAL
LANGUAGE PROCESSING
In which deep neural networks perform a variety of language tasks, capturing the structure
of natural language as well as its fluidity.

Chapter 24 explained the key elements of natural language, including grammar and semantics.
Systems based on parsing and semantic analysis have demonstrated success on many tasks,
but their performance is limited by the endless complexity of linguistic phenomena in real
text. Given the vast amount of text available in machine-readable form, it makes sense to
consider whether approaches based on data-driven machine learning can be more effective.
We explore this hypothesis using the tools provided by deep learning systems (Chapter 22).

We begin in Section 25.1 by showing how learning can be improved by representing
words as points in a high-dimensional space, rather than as atomic values. Section 25.2
covers the use of recurrent neural networks to capture meaning and long-distance context as
text is processed sequentially. Section 25.3 focuses primarily on machine translation, one of
the major successes of deep learning applied to NLP. Sections 25.4 and 25.5 cover models
that can be trained from large amounts of unlabeled text and then applied to specific tasks,
often achieving state-of-the-art performance. Finally, Section 25.6 takes stock of where we
are and how the field may progress.

25.1 Word Embeddings

We would like a representation of words that does not require manual feature engineering, but
allows for generalization between related words—words that are related syntactically (“col-
orless” and “ideal” are both adjectives), semantically (“cat” and “kitten” are both felines),
topically (“sunny” and “sleet” are both weather terms), in terms of sentiment (“awesome”
has opposite sentiment to “cringeworthy”), or otherwise.

How should we encode a word into an input vector x for use in a neural network? As
explained in Section 22.2.1 (page 807), we could use a one-hot vector—that is, we encode
the ith word in the dictionary with a 1 bit in the ith input position and a 0 in all the other
positions. But such a representation would not capture the similarity between words.

Following the linguist John R. Firth’s (1957) maxim, “You shall know a word by the com-
pany it keeps,” we could represent each word with a vector of n-gram counts of all the phrases
that the word appears in. However, raw n-gram counts are cumbersome. With a 100,000-word
vocabulary, there are 1025 5-grams to keep track of (although vectors in this 1025-dimensional
space would be quite sparse—most of the counts would be zero). We would get better gen-
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eralization if we reduced this to a smaller-size vector, perhaps with just a few hundred di-
mensions. We call this smaller, dense vector a word embedding: a low-dimensional vectorWord embedding

representing a word. Word embeddings are learned automatically from the data. (We will see
later how this is done.) What are these learned word embeddings like? On the one hand, each
one is just a vector of numbers, where the individual dimensions and their numeric values do
not have discernible meanings:

“aardvark” = [−0.7,+0.2,−3.2, . . .]
“abacus” = [+0.5,+0.9,−1.3, . . .]
· · ·
“zyzzyva” = [−0.1,+0.8,−0.4, . . .].

On the other hand, the feature space has the property that similar words end up having similar
vectors. We can see that in Figure 25.1, where there are separate clusters for country, kinship,
transportation, and food words.

It turns out, for reasons we do not completely understand, that the word embedding vec-
tors have additional properties beyond mere proximity for similar words. For example, sup-
pose we look at the vectors A for Athens and B for Greece. For these words the vector
difference B−A seems to encode the country/capital relationship. Other pairs—France and
Paris, Russia and Moscow, Zambia and Lusaka—have essentially the same vector difference.

We can use this property to solve word analogy problems such as “Athens is to Greece
as Oslo is to [what]?” Writing C for the Oslo vector and D for the unknown, we hypothesize
that B−A=D−C, giving us D=C+(B−A). And when we compute this new vector D,
we find that it is closer to “Norway” than to any other word. Figure 25.2 shows that this type
of vector arithmetic works for many relationships.

However, there is no guarantee that a particular word embedding algorithm run on a par-
ticular corpus will capture a particular semantic relationship. Word embeddings are popular
because they have proven to be a good representation for downstream language tasks (such
as question answering or translation or summarization), not because they are guaranteed to
answer analogy questions on their own.

Using word embedding vectors rather than one-hot encodings of words turns out to be
helpful for essentially all applications of deep learning to NLP tasks. Indeed, in many cases
it is possible to use generic pretrained vectors, obtained from any of several suppliers, for
one’s particular NLP task. At the time of writing, the commonly used vector dictionaries
include WORD2VEC, GloVe (Global Vectors), and FASTTEXT, which has embeddings for
157 languages. Using a pretrained model can save a great deal of time and effort. For more
on these resources, see Section 25.5.1.

It is also possible to train your own word vectors; this is usually done at the same time as
training a network for a particular task. Unlike generic pretrained embeddings, word embed-
dings produced for a specific task can be trained on a carefully selected corpus and will tend
to emphasize aspects of words that are useful for the task. Suppose, for example, that the
task is part-of-speech (POS) tagging (see Section 24.1.6). Recall that this involves predicting
the correct part of speech for each word in a sentence. Although this is a simple task, it is
nontrivial because many words can be tagged in multiple ways—for example, the word cut
can be a present-tense verb (transitive or intransitive), a past-tense verb, an infinitive verb, a
past participle, an adjective, or a noun. If a nearby temporal adverb refers to the past, that
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france
greece

germany

nephew
niece

auntuncle

car
bicycle

truck
apple

banana pizza

Figure 25.1 Word embedding vectors computed by the GloVe algorithm trained on 6 billion
words of text. 100-dimensional word vectors are projected down onto two dimensions in this
visualization. Similar words appear near each other.

A B C D=C+(B−A) Relationship
Athens Greece Oslo Norway Capital
Astana Kazakhstan Harare Zimbabwe Capital
Angola kwanza Iran rial Currency
copper Cu gold Au Atomic Symbol

Microsoft Windows Google Android Operating System
New York New York Times Baltimore Baltimore Sun Newspaper
Berlusconi Silvio Obama Barack First name
Switzerland Swiss Cambodia Cambodian Nationality

Einstein scientist Picasso painter Occupation
brother sister grandson granddaughter Family Relation
Chicago Illinois Stockton California State
possibly impossibly ethical unethical Negative
mouse mice dollar dollars Plural
easy easiest lucky luckiest Superlative

walking walked swimming swam Past tense

Figure 25.2 A word embedding model can sometimes answer the question “A is to B as C
is to [what]?” with vector arithmetic: given the word embedding vectors for the words A, B,
and C, compute the vector D=C+(B−A) and look up the word that is closest to D. (The
answers in column D were computed automatically by the model. The descriptions in the
“Relationship” column were added by hand.) Adapted from Mikolov et al. (2013, 2014).
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Yesterday they cut the rope
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Figure 25.3 Feedforward part-of-speech tagging model. This model takes a 5-word window
as input and predicts the tag of the word in the middle—here, cut. The model is able to
account for word position because each of the 5 input embeddings is multiplied by a different
part of the first hidden layer. The parameter values for the word embeddings and for the three
layers are all learned simultaneously during training.

suggests that this particular occurrence of cut is a past-tense verb; and we might hope, then,
that the embedding will capture the past-referring aspect of adverbs.

POS tagging serves as a good introduction to the application of deep learning to NLP,
without the complications of more complex tasks like question answering (see Section 25.5.3).
Given a corpus of sentences with POS tags, we learn the parameters for the word embeddings
and the POS tagger simultaneously. The process works as follows:

1. Choose the width w (an odd number of words) for the prediction window to be used
to tag each word. A typical value is w=5, meaning that the tag is predicted based on
the word plus the two words to the left and the two words to the right. Split every
sentence in your corpus into overlapping windows of length w. Each window produces
one training example consisting of the w words as input and the POS category of the
middle word as output.

2. Create a vocabulary of all of the unique word tokens that occur more than, say, 5 times
in the training data. Denote the total number of words in the vocabulary as v.

3. Sort this vocabulary in any arbitrary order (perhaps alphabetically).
4. Choose a value d as the size of each word embedding vector.
5. Create a new v-by-d weight matrix called E. This is the word embedding matrix. Row

i of E is the word embedding of the ith word in the vocabulary. Initialize E randomly
(or from pretrained vectors).

6. Set up a neural network that outputs a part of speech label, as shown in Figure 25.3. The
first layer will consist of w copies of the embedding matrix. We might use two additional
hidden layers, z1 and z2 (with weight matrices W1 and W2, respectively), followed by
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a softmax layer yielding an output probability distribution ŷ over the possible part-of-
speech categories for the middle word:

z1 = σ(W1x)
z2 = σ(W2z1)

ŷ = softmax(Woutz2) .

7. To encode a sequence of w words into an input vector, simply look up the embedding
for each word and concatenate the embedding vectors. The result is a real-valued in-
put vector x of length wd. Even though a given word will have the same embedding
vector whether it occurs in the first position, the last, or somewhere in between, each
embedding will be multiplied by a different part of the first hidden layer; therefore we
are implicitly encoding the relative position of each word.

8. Train the weights E and the other weight matrices W1, W2, and Wout using gradient
descent. If all goes well, the middle word, cut, will be labeled as a past-tense verb, based
on the evidence in the window, which includes the temporal past word “yesterday,” the
third-person subject pronoun “they” immediately before cut, and so on.

An alternative to word embeddings is a character-level model in which the input is a se-
quence of characters, each encoded as a one-hot vector. Such a model has to learn how
characters come together to form words. The majority of work in NLP sticks with word-level
rather than character-level encodings.

25.2 Recurrent Neural Networks for NLP

We now have a good representation for single words in isolation, but language consists of
an ordered sequence of words in which the context of surrounding words is important. For
simple tasks like part of speech tagging, a small, fixed-size window of perhaps five words
usually provides enough context.

More complex tasks such as question answering or reference resolution may require
dozens of words as context. For example, in the sentence “Eduardo told me that Miguel
was very sick so I took him to the hospital,” knowing that him refers to Miguel and not
Eduardo requires context that spans from the first to the last word of the 14-word sentence.

25.2.1 Language models with recurrent neural networks

We’ll start with the problem of creating a language model with sufficient context. Recall that
a language model is a probability distribution over sequences of words. It allows us to predict
the next word in a text given all the previous words, and is often used as a building block for
more complex tasks.

Building a language model with either an n-gram model (as in Section 24.1) or a feedfor-
ward network with a fixed window of n words can run into difficulty due to the problem of
context: either the required context will exceed the fixed window size or the model will have
too many parameters, or both.

In addition, a feedforward network has the problem of asymmetry: whatever it learns
about, say, the appearance of the word him as the 12th word of the sentence it will have to
relearn for the appearance of him at other positions in the sentence, because the weights are
different for each word position.
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Δ

Figure 25.4 (a) Schematic diagram of an RNN where the hidden layer z has recurrent con-
nections; the ∆ symbol indicates a delay. Each input x is the word embedding vector of the
next word in the sentence. Each output y is the output for that time step. (b) The same net-
work unrolled over three timesteps to create a feedforward network. Note that the weights
are shared across all timesteps.

In Section 22.6, we introduced the recurrent neural network or RNN, which is designed
to process time-series data, one datum at a time. This suggests that RNNs might be useful for
processing language, one word at a time. We repeat Figure 22.8 here as Figure 25.4.

In an RNN language model each input word is encoded as a word embedding vector, xi.
There is a hidden layer zt which gets passed as input from one time step to the next. We are
interested in doing multiclass classification: the classes are the words of the vocabulary. Thus
the output yt will be a softmax probability distribution over the possible values of the next
word in the sentence.

The RNN architecture solves the problem of too many parameters. The number of param-
eters in the weight matrixes w,z,z, w,x,z, and w,z,y stays constant, regardless of the number of
words—it is O(1). This is in contrast to feedforward networks, which have O(n) parameters,
and n-gram models, which have O(vn) parameters, where v is the size of the vocabulary.

The RNN architecture also solves the problem of asymmetry, because the weights are the
same for every word position.

The RNN architecture can sometimes solve the limited context problem as well. In theory
there is no limit to how far back in the input the model can look. Each update of the hidden
layer zt has access to both the current input word xt and the previous hidden layer zt−1,
which means that information about any word in the input can be kept in the hidden layer
indefinitely, copied over (or modified as appropriate) from one time step to the next. Of
course, there is a limited amount of storage in z, so it can’t remember everything about all the
previous words.

In practice RNN models perform well on a variety of tasks, but not on all tasks. It can be
hard to predict whether they will be succesful for a given problem. One factor that contributes
to success is that the training process encourages the network to allocate storage space in z to
the aspects of the input that will actually prove to be useful.

To train an RNN language model, we use the training process described in Section 22.6.1.
The inputs, xt , are the words in a training corpus of text, and the observed outputs are the same
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Figure 25.5 A bidirectional RNN network for POS tagging.

words offset by 1. That is, for the training text “hello world,” the first input x1 is the word
embedding for “hello” and the first output y1 is the word embedding for “world.” We are
training the model to predict the next word, and expecting that in order to do so it will use the
hidden layer to represent useful information. As explained in Section 22.6.1 we compute the
difference between the observed output and the actual output computed by the network, and
back-propagate through time, taking care to keep the weights the same for all time steps.

Once the model has been trained, we can use it to generate random text. We give the
model an initial input word x1, from which it will produce an output y1 which is a softmax
probability distribution over words. We sample a single word from the distribution, record the
word as the output for time t, and feed it back in as the next input word x2. We repeat for as
long as desired. In sampling from y1 we have a choice: we could always take the most likely
word; we could sample according to the probability of each word; or we could oversample
the less-likely words, in order to inject more variety into the generated output. The sampling
weight is a hyperparameter of the model.

Here is an example of random text generated by an RNN model trained on Shakespeare’s
works (Karpathy, 2015):

Marry, and will, my lord, to weep in such a one were prettiest;
Yet now I was adopted heir
Of the world’s lamentable day,
To watch the next way with his father with his face?

25.2.2 Classification with recurrent neural networks

It is also possible to use RNNs for other language tasks, such as part of speech tagging or
coreference resolution. In both cases the input and hidden layers will be the same, but for
a POS tagger the output will be a softmax distribution over POS tags, and for coreference
resolution it will be a softmax distribution over the possible antecedents. For example, when
the network gets to the input him in “Eduardo told me that Miguel was very sick so I took
him to the hospital” it should output a high probability for “Miguel.”
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Training an RNN to do classification like this is done the same way as with the language
model. The only difference is that the training data will require labels—part of speech tags
or reference indications. That makes it much harder to collect the data than for the case of a
language model, where unlabelled text is all we need.

In a language model we want to predict the nth word given the previous words. But for
classification, there is no reason we should limit ourselves to looking at only the previous
words. It can be very helpful to look ahead in the sentence. In our coreference example, the
referent him would be different if the sentence concluded “to see Miguel” rather than “to the
hospital,” so looking ahead is crucial. We know from eye-tracking experiments that human
readers do not go strictly left-to-right.

To capture the context on the right, we can use a bidirectional RNN, which concatenatesBidirectional RNN

a separate right-to-left model onto the left-to-right model. An example of using a bidirectional
RNN for POS tagging is shown in Figure 25.5.

In the case of a multilayer RNN, zt will be the hidden vector of the last layer. For a
bidirectional RNN, zt is usually taken to be the concatenation of vectors from the left-to-right
and right-to-left models.

RNNs can also be used for sentence-level (or document-level) classification tasks, in
which a single output comes at the end, rather than having a stream of outputs, one per
time step. For example in sentiment analysis the goal is to classify a text as having either
Positive or Negative sentiment. For example, “This movie was poorly written and poorly
acted” should be classified as Negative. (Some sentiment analysis schemes use more than
two categories, or use a numeric scalar value.)

Using RNNs for a sentence-level task is a bit more complex, since we need to obtain
an aggregate whole-sentence representation, y from the per-word outputs yt of the RNN.
The simplest way to do this is to use the RNN hidden state corresponding to the last word
of the input, since the RNN will have read the entire sentence at that timestep. However,
this can implicitly bias the model towards paying more attention to the end of the sentence.
Another common technique is to pool all of the hidden vectors. For instance, average poolingAverage pooling

computes the element-wise average over all of the hidden vectors:

z̃ =
1
s

s

∑
t=1

zt .

The pooled d-dimensional vector z̃ can then be fed into one or more feedforward layers before
being fed into the output layer.

25.2.3 LSTMs for NLP tasks

We said that RNNs sometimes solve the limited context problem. In theory, any information
could be passed along from one hidden layer to the next for any number of time steps. But
in practice the information can get lost or distorted, just as in playing the game of telephone,
in which players stand in line and the first player whispers a message to the second, who
repeats it to the third, and so on down the line. Usually, the message that comes out at the
end is quite corrupted from the original message. This problem for RNNs is similar to the
vanishing gradient problem we described on page 807, except that we are dealing now with
layers over time rather than with deep layers.

In Section 22.6.2 we introduced the long short-term memory (LSTM) model. This is a
kind of RNN with gating units that don’t suffer from the problem of imperfectly reproducing
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The man is tall <start> El hombre es alto

El hombre es alto <end>

Figure 25.6 Basic sequence-to-sequence model. Each block represents one LSTM timestep.
(For simplicity, the embedding and output layers are not shown.) On successive steps we feed
the network the words of the source sentence “The man is tall,” followed by the <start> tag
to indicate that the network should start producing the target sentence. The final hidden state
at the end of the source sentence is used as the hidden state for the start of the target sentence.
After that, each target sentence word at time t is used as input at time t +1, until the network
produces the <end> tag to indicate that sentence generation is finished.

a message from one time step to the next. Rather, an LSTM can choose to remember some
parts of the input, copying it over to the next timestep, and to forget other parts. Consider a
language model handling a text such as

The athletes, who all won their local qualifiers and advanced to the finals in Tokyo, now ...

At this point if we asked the model which next word was more probable, “compete” or “com-
petes,” we would expect it to pick “compete” because it agrees with the subject “The athletes.”
An LSTM can learn to create a latent feature for the subject person and number and copy that
feature forward without alteration until it is needed to make a choice like this. A regular
RNN (or an n-gram model for that matter) often gets confused in long sentences with many
intervening words between the subject and verb.

25.3 Sequence-to-Sequence Models

One of the most widely studied tasks in NLP is machine translation (MT), where the goal Machine translation
(MT)

is to translate a sentence from a source language to a target language—for example, from Source language

Target languageSpanish to English. We train an MT model with a large corpus of source/target sentence pairs.
The goal is to then accurately translate new sentences that are not in our training data.

Can we use RNNs to create an MT system? We can certainly encode the source sentence
with an RNN. If there were a one-to-one correspondence between source words and target
words, then we could treat MT as a simple tagging task—given the source word “perro” in
Spanish, we tag it as the corresponding English word “dog.” But in fact, words are not one-
to-one: in Spanish the three words “caballo de mar” corresponds to the single English word
“seahorse,” and the two words “perro grande” translate to “big dog,” with the word order
reversed. Word reordering can be even more extreme; in English the subject is usually at the
start of a sentence, but in Fijian the subject is usually at the end. So how do we generate a
sentence in the target language?

It seems like we should generate one word at a time, but keep track of the context so that
we can remember parts of the source that haven’t been translated yet, and keep track of what
has been translated so that we don’t repeat ourselves. It also seems that for some sentences
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we have to process the entire source sentence before starting to generate the target. In other
words, the generation of each target word is conditional on the entire source sentence and on
all previously generated target words.

This gives text generation for MT a close connection to a standard RNN language model,
as described in Section 25.2. Certainly, if we had trained an RNN on English text, it would
be more likely to generate “big dog” than “dog big.” However, we don’t want to generate
just any random target language sentence; we want to generate a target language sentence
that corresponds to the source language sentence. The simplest way to do that is to use two
RNNs, one for the source and one for the target. We run the source RNN over the source
sentence and then use the final hidden state from the source RNN as the initial hidden state
for the target RNN. This way, each target word is implicitly conditioned on both the entire
source sentence and the previous target words.

This neural network architecture is called a basic sequence-to-sequence model, an ex-
Sequence-to-
sequence
model ample of which is shown in Figure 25.6. Sequence-to-sequence models are most commonly

used for machine translation, but can also be used for a number of other tasks, like automati-
cally generating a text caption from an image, or summarization: rewriting a long text into a
shorter one that maintains the same meaning.

Basic sequence-to-sequence models were a significant breakthrough in NLP and MT
specifically. According to Wu et al. (2016b) the approach led to a 60% error reduction over
the previous MT methods. But these models suffer from three major shortcomings:
• Nearby context bias: whatever RNNs want to remember about the past, they have to fit

into their hidden state. For example, let’s say an RNN is processing word (or timestep)
57 in a 70-word sequence. The hidden state will likely contain more information about
the word at timestep 56 than the word at timestep 5, because each time the hidden vector
is updated it has to replace some amount of existing information with new information.
This behavior is part of the intentional design of the model, and often makes sense for
NLP, since nearby context is typically more important. However, far-away context can
be crucial as well, and can get lost in an RNN model; even LSTMs have difficulty with
this task.
• Fixed context size limit: In an RNN translation model the entire source sentence is

compressed into a single fixed-dimensional hidden state vector. An LSTM used in
a state-of-the-art NLP model typically has around 1024 dimensions, and if we have to
represent, say, a 64-word sentence in 1024 dimensions, this only gives us 16 dimensions
per word—not enough for complex sentences. Increasing the hidden state vector size
can lead to slow training and overfitting.
• Slower sequential processing: As discussed in Section 22.3, neural networks realize

considerable efficiency gains by processing the training data in batches so as to take
advantage of efficient hardware support for matrix arithmetic. RNNs, on the other hand,
seem to be constrained to operate on the training data one word at a time.

25.3.1 Attention

What if the target RNN were conditioned on all of the hidden vectors from the source RNN,
rather than just the last one? This would mitigate the shortcomings of nearby context bias and
fixed context size limits, allowing the model to access any previous word equally well. One
way to achieve this access is to concatenate all of the source RNN hidden vectors. However,
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Figure 25.7 (a) Attentional sequence-to-sequence model for English-to-Spanish translation.
The dashed lines represent attention. (b) Example of attention probability matrix for a bilin-
gual sentence pair, with darker boxes representing higher values of ai j. The attention proba-
bilities sum to one over each column.

this would cause a huge increase in the number of weights, with a concomitant increase in
computation time and potentially overfitting as well. Instead, we can take advantage of the
fact that when the target RNN is generating the target one word at a time, it is likely that only
a small part of the source is actually relevant to each target word.

Crucially, the target RNN must pay attention to different parts of the source for every
word. Suppose a network is trained to translate English to Spanish. It is given the words
“The front door is red” followed by an end of sentence marker, which means it is time to start
outputting Spanish words. So ideally it should first pay attention to “The” and generate “La,”
then pay attention to “door” and output “puerta,” and so on.

We can formalize this concept with a neural network component called attention, which Attention

can be used to create a “context-based summarization” of the source sentence into a fixed-
dimensional representation. The context vector ci contains the most relevant information
for generating the next target word, and will be used as an additional input to the target
RNN. A sequence-to-sequence model that uses attention is called an attentional sequence-
to-sequence model. If the standard target RNN is written as:

Attentional
sequence-to-
sequence
model

hi = RNN(hi−1,xi) ,

the target RNN for attentional sequence-to-sequence models can be written as:

hi = RNN(hi−1, [xi;ci])

where [xi;ci] is the concatenation of the input and context vectors, ci, defined as:

ri j = hi−1 · s j

ai j = eri j/(∑
k

erik)

ci = ∑
j

ai j · s j
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where hi−1 is the target RNN vector that is going to be used for predicting the word at timestep
i, and s j is the output of the source RNN vector for the source word (or timestep) j. Both hi−1
and s j are d-dimensional vectors, where d is the hidden size. The value of ri j is therefore the
raw “attention score” between the current target state and the source word j. These scores are
then normalized into a probability ai j using a softmax over all source words. Finally, these
probabilities are used to generate a weighted average of the source RNN vectors, ci (another
d-dimensional vector).

An example of an attentional sequence-to-sequence model is given in Figure 25.7 (a).
There are a few important details to understand. First, the attention component itself has no
learned weights and supports variable-length sequences on both the source and target side.
Second, like most of the other neural network modeling techniques we’ve learned about,
attention is entirely latent. The programmer does not dictate what information gets used
when; the model learns what to use. Attention can also be combined with multilayer RNNs.
Typically attention is applied at each layer in that case.

The probabilistic softmax formulation for attention serves three purposes. First, it makes
attention differentiable, which is necessary for it to be used with back-propagation. Even
though attention itself has no learned weights, the gradients still flow back through attention
to the source and target RNNs. Second, the probabilistic formulation allows the model to
capture certain types of long-distance contextualization that may have not been captured by
the source RNN, since attention can consider the entire source sequence at once, and learn to
keep what is important and ignore the rest. Third, probabilistic attention allows the network
to represent uncertainty—if the network does not know exactly what source word to translate
next, it can distribute the attention probabilities over several options, and then actually choose
the word using the target RNN.

Unlike most components of neural networks, attention probabilities are often interpretable
by humans and intuitively meaningful. For example, in the case of machine translation, the
attention probabilities often correspond to the word-to-word alignments that a human would
generate. This is shown in Figure 25.7(b).

Sequence-to-sequence models are a natural for machine translation, but almost any nat-
ural language task can be encoded as a sequence-to-sequence problem. For example, a
question-answering system can be trained on input consisting of a question followed by a
delimiter followed by the answer.

25.3.2 Decoding

At training time, a sequence-to-sequence model attempts to maximize the probability of each
word in the target training sentence, conditioned on the source and all of the previous target
words. Once training is complete, we are given a source sentence, and our goal is to generate
the corresponding target sentence. As shown in Figure 25.7, we can generate the target one
word at a time, and then feed back in the word that we generated at the next timestep. This
procedure is called decoding.Decoding

The simplest form of decoding is to select the highest probability word at each timestep
and then feed this word as input to the next timestep. This is called greedy decoding becauseGreedy decoding

after each target word is generated, the system has fully committed to the hypothesis that it
has produced so far. The problem is that the goal of decoding is to maximize the probability
of the entire target sequence, which greedy decoding may not achieve. For example, consider
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Figure 25.8 Beam search with beam size of b=2. The score of each word is the log-
probability generated by the target RNN softmax, and the score of each hypothesis is the
sum of the word scores. At timestep 3, the highest scoring hypothesis La entrada can only
generate low-probability continuations, so it “falls off the beam.”

using a greedy decoder to translate into Spanish the English sentence we saw before, The
front door is red.

The correct translation is “La puerta de entrada es roja”—literally “The door of entry is
red.” Suppose the target RNN correctly generates the first word La for The. Next, a greedy
decoder might propose entrada for front. But this is an error—Spanish word order should put
the noun puerta before the modifier. Greedy decoding is fast—it only considers one choice at
each timestep and can do so quickly—but the model has no mechanism to correct mistakes.

We could try to improve the attention mechanism so that it always attends to the right
word and guesses correctly every time. But for many sentences it is infeasible to guess
correctly all the words at the start of the sentence until you have seen what’s at the end.

A better approach is to search for an optimal decoding (or at least a good one) using
one of the search algorithms from Chapter 3. A common choice is a beam search (see Sec-
tion 4.1.3). In the context of MT decoding, beam search typically keeps the top k hypotheses
at each stage, extending each by one word using the top k choices of words, then chooses
the best k of the resulting k2 new hypotheses. When all hypotheses in the beam generate the
special <end> token, the algorithm outputs the highest scoring hypothesis.

A visualization of beam search is given in Figure 25.8. As deep learning models become
more accurate, we can usually afford to use a smaller beam size. Current state-of-the-art
neural MT models use a beam size of 4 to 8, whereas the older generation of statistical MT
models would use a beam size of 100 or more.

25.4 The Transformer Architecture

The influential article “Attention is all you need” (Vaswani et al., 2018) introduced the trans-
former architecture, which uses a self-attention mechanism that can model long-distance Transformer

Self-attentioncontext without a sequential dependency.

25.4.1 Self-attention

Previously, in sequence-to-sequence models, attention was applied from the target RNN to
the source RNN. Self-attention extends this mechanism so that each sequence of hidden Self-attention

states also attends to itself—the source to the source, and the target to the target. This allows
the model to additionally capture long-distance (and nearby) context within each sequence.
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The most straightforward way of applying self-attention is where the attention matrix is
directly formed by the dot product of the input vectors. However, this is problematic. The dot
product between a vector and itself will always be high, so each hidden state will be biased
towards attending to itself. The transformer solves this by first projecting the input into three
different representations using three different weight matrices:

• The query vector qi=Wqxi is the one being attended from, like the target in the stan-Query vector

dard attention mechanism.

• The key vector ki=Wkxi is the one being attended to, like the source in the basicKey vector

attention mechanism.

• The value vector vi=Wvxi is the context that is being generated.Value vector

In the standard attention mechanism, the key and value networks are identical, but intuitively
it makes sense for these to be separate representations. The encoding results of the ith word,
ci, can be calculated by applying an attention mechanism to the projected vectors:

ri j = (qi ·k j)/
√

d

ai j = eri j/(∑
k

erik)

ci = ∑
j

ai j ·v j ,

where d is the dimension of k and q. Note that i and j are indexes in the same sentence, since
we are encoding the context using self-attention. In each transformer layer, self-attention uses
the hidden vectors from the previous layer, which initially is the embedding layer.

There are several details worth mentioning here. First of all, the self-attention mecha-
nism is asymmetric, as ri j is different from r ji. Second, the scale factor

√
d was added to

improve numerical stability. Third, the encoding for all words in a sentence can be calculated
simultaneously, as the above equations can be expressed using matrix operations that can be
computed efficiently in parallel on modern specialized hardware.

The choice of which context to use is completely learned from training examples, not
prespecified. The context-based summarization, ci, is a sum over all previous positions in the
sentence. In theory, any information from the sentence could appear in ci, but in practice,
sometimes important information gets lost, because it is essentially averaged out over the
whole sentence. One way to address that is called multiheaded attention. We divide theMultiheaded

attention
sentence up into m equal pieces and apply the attention model to each of the m pieces. Each
piece has its own set of weights. Then the results are concatenated together to form ci. By
concatenating rather than summing, we make it easier for an important subpiece to stand out.

25.4.2 From self-attention to transformer

Self-attention is only one component of the transformer model. Each transformer layer con-
sists of several sub-layers. At each transformer layer, self-attention is applied first. The out-
put of the attention module is fed through feedforward layers, where the same feedforward
weight matrices are applied independently at each position. A nonlinear activation function,
typically ReLU, is applied after the first feedforward layer. In order to address the potential
vanishing gradient problem, two residual connections are added into the transformer layer.
A single-layer transformer in shown in Figure 25.9. In practice, transformer models usually
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Figure 25.9 A single-layer transformer consists of self-attention, a feedforward network,
and residual connections.
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Figure 25.10 Using the transformer architecture for POS tagging.

have six or more layers. As with the other models that we’ve learned about, the output of
layer i is used as the input to layer i+1.

The transformer architecture does not explicitly capture the order of words in the se-
quence, since context is modeled only through self-attention, which is agnostic to word order.
To capture the ordering of the words, the transformer uses a technique called positional em-
bedding. If our input sequence has a maximum length of n, then we learn n new embedding Positional

embedding
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vectors—one for each word position. The input to the first transformer layer is the sum of the
word embedding at position t plus the positional embedding corresponding to position t.

Figure 25.10 illustrates the transformer architecture for POS tagging, applied to the same
sentence used in Figure 25.3. At the bottom, the word embedding and the positional embed-
dings are summed to form the input for a three-layer transformer. The transformer produces
one vector per word, as in RNN-based POS tagging. Each vector is fed into a final output
layer and softmax layer to produce a probability distribution over the tags.

In this section, we have actually only told half the transformer story: the model we de-
scribed here is called the transformer encoder. It is useful for text classification tasks. TheTransformer encoder

full transformer architecture was originally designed as a sequence-to-sequence model for
machine translation. Therefore, in addition to the encoder, it also includes a transformer
decoder. The encoder and decoder are nearly identical, except that the decoder uses a ver-Transformer decoder

sion of self-attention where each word can only attend to the words before it, since text is
generated left-to-right. The decoder also has a second attention module in each transformer
layer that attends to the output of the transformer encoder.

25.5 Pretraining and Transfer Learning

Getting enough data to build a robust model can be a challenge. In computer vision (see
Chapter 27), that challenge was addressed by assembling large collections of images (such as
ImageNet) and hand-labeling them.

For natural language, it is more common to work with text that is unlabeled. The dif-
ference is in part due to the difficulty of labeling: an unskilled worker can easily label an
image as “cat” or “sunset,” but it requires extensive training to annotate a sentence with part-
of-speech tags or parse trees. The difference is also due to the abundance of text: the Internet
adds over 100 billion words of text each day, including digitized books, curated resources
such as Wikipedia, and uncurated social media posts.

Projects such as Common Crawl provide easy access to this data. Any running text can
be used to build n-gram or word embedding models, and some text comes with structure that
can be helpful for a variety of tasks—for example, there are many FAQ sites with question-
answer pairs that can be used to train a question-answering system. Similarly, many Web
sites publish side-by-side translations of texts, which can be used to train machine translation
systems. Some text even comes with labels of a sort, such as review sites where users annotate
their text reviews with a 5-star rating system.

We would prefer not to have to go to the trouble of creating a new data set every time
we want a new NLP model. In this section, we introduce the idea of pretraining: a formPretraining

of transfer learning (see Section 22.7.2) in which we use a large amount of shared general-
domain language data to train an initial version of an NLP model. From there, we can use a
smaller amount of domain-specific data (perhaps including some labeled data) to refine the
model. The refined model can learn the vocabulary, idioms, syntactic structures, and other
linguistic phenomena that are specific to the new domain.

25.5.1 Pretrained word embeddings

In Section 25.1, we briefly introduced word embeddings. We saw that how similar words
like banana and apple end up with similar vectors, and we saw that we can solve analogy
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problems with vector subtraction. This indicates that the word embeddings are capturing
substantial information about the words.

In this section we will dive into the details of how word embeddings are created using an
entirely unsupervised process over a large corpus of text. That is in contrast to the embeddings
from Section 25.1, which were built during the process of supervised part of speech tagging,
and thus required POS tags that come from expensive hand annotation.

We will concentrate on one specific model for word embeddings, the GloVe (Global
Vectors) model. The model starts by gathering counts of how many times each word appears
within a window of another word, similar to the skip-gram model. First choose window size
(perhaps 5 words) and let Xi j be the number of times that words i and j co-occur within
a window, and let Xi be the number of times word i co-occurs with any other word. Let
Pi j =Xi j/Xi be the probability that word j appears in the context of word i. As before, let Ei

be the word embedding for word i.
Part of the intuition of the GloVe model is that the relationship between two words can

best be captured by comparing them both to other words. Consider the words ice and steam.
Now consider the ratio of their probabilities of co-occurrence with another word, w, that is:

Pw,ice/Pw,steam .

When w is the word solid the ratio will be high (meaning solid applies more to ice) and when
w is the word gas it will be low (meaning gas applies more to steam). And when w is a
non-content word like the, a word like water that is equally relevant to both, or an equally
irrelevant word like fashion, the ratio will be close to 1.

The GloVe model starts with this intuition and goes through some mathematical reason-
ing (Pennington et al., 2014) that converts ratios of probabilities into vector differences and
dot products, eventually arriving at the constraint

Ei ·E′k= log(Pi j) .

In other words, the dot product of two word vectors is equal to the log probability of their
co-occurrence. That makes intuitive sense: two nearly-orthogonal vectors have a dot product
close to 0, and two nearly-identical normalized vectors have a dot product close to 1. There
is a technical complication wherein the GloVe model creates two word embedding vectors
for each word, Ei and E ′i ; computing the two and then adding them together at the end helps
limit overfitting.

Training a model like GloVe is typically much less expensive than training a standard
neural network: a new model can be trained from billions of words of text in a few hours
using a standard desktop CPU.

It is possible to train word embeddings on a specific domain, and recover knowledge in
that domain. For example, Tshitoyan et al. (2019) used 3.3 million scientific abstracts on the
subject of material science to train a word embedding model. They found that, just as we saw
that a generic word embedding model can answer “Athens is to Greece as Oslo is to what?”
with “Norway,” their material science model can answer “NiFe is to ferromagnetic as IrMn
is to what?” with “antiferromagnetic.”

Their model does not rely solely on co-occurrence of words; it seems to be capturing
more complex scientific knowledge. When asked what chemical compounds can be classified
as “thermoelectric” or “topological insulator,” their model is able to answer correctly. For
example, CsAgGa2Se4 never appears near “thermoelectric” in the corpus, but it does appear
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near “chalcogenide,” “band gap,” and “optoelectric,” which are all clues enabling it to be
classified as similar to “thermoelectric.” Furthermore, when trained only on abstracts up
to the year 2008 and asked to pick compounds that are “thermoelectric” but have not yet
appeared in abstracts, three of the model’s top five picks were discovered to be thermoelectric
in papers published between 2009 and 2019.

25.5.2 Pretrained contextual representations

Word embeddings are better representations than atomic word tokens, but there is an impor-
tant issue with polysemous words. For example, the word rose can refer to a flower or the
past tense of rise. Thus, we expect to find at least two entirely distinct clusters of word con-
texts for rose: one similar to flower names such as dahlia, and one similar to upsurge. No
single embedding vector can capture both of these simultaneously. Rose is a clear example of
a word with (at least) two distinct meanings, but other words have subtle shades of meaning
that depend on context, such as the word need in you need to see this movie versus humans
need oxygen to survive. And some idiomatic phrases like break the bank are better analyzed
as a whole rather than as component words.

Therefore, instead of just learning a word-to-embedding table, we want to train a model to
generate contextual representations of each word in a sentence. A contextual representationContextual

representations

maps both a word and the surrounding context of words into a word embedding vector. In
other words, if we feed this model the word rose and the context the gardener planted a rose
bush, it should produce a contextual embedding that is similar (but not necessarily identical)
to the representation we get with the context the cabbage rose had an unusual fragrance, and
very different from the representation of rose in the context the river rose five feet.

Figure 25.11 shows a recurrent network that creates contextual word embeddings—the
boxes that are unlabeled in the figure. We assume we have already built a collection of
noncontextual word embeddings. We feed in one word at a time, and ask the model to predict
the next word. So for example in the figure at the point where we have reached the word
“car,” the the RNN node at that time step will receive two inputs: the noncontextual word
embedding for “car” and the context, which encodes information from the previous words
“The red.” The RNN node will then output a contextual representation for “car.” The network
as a whole then outputs a prediction for the next word, “is.” We then update the network’s
weights to minimize the error between the prediction and the actual next word.

This model is similar to the one for POS tagging in Figure 25.5, with two important
differences. First, this model is unidirectional (left-to-right), whereas the POS model is bidi-
rectional. Second, instead of predicting the POS tags for the current word, this model predicts
the next word using the prior context. Once the model is built, we can use it to retrieve rep-
resentations for words and pass them on to some other task; we need not continue to predict
the next word. Note that computing a contextual representations always requires two inputs,
the current word and the context.

25.5.3 Masked language models

A weakness of standard language models such as n-gram models is that the contextualization
of each word is based only on the previous words of the sentence. Predictions are made from
left to right. But sometimes context from later in a sentence—for example, feet in the phrase
rose five feet—helps to clarify earlier words.
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Figure 25.12 Masked language modeling: pretrain a bidirectional model—for example, a
multilayer RNN—by masking input words and predicting only those masked words.

One straightforward workaround is to train a separate right-to-left language model that
contextualizes each word based on subsequent words in the sentence, and then concatenate
the left-to-right and right-to-left representations. However, such a model fails to combine
evidence from both directions.

Instead, we can use a masked language model (MLM). MLMs are trained by masking Masked language
model (MLM)

(hiding) individual words in the input and asking the model to predict the masked words. For
this task, one can use a deep bidirectional RNN or transformer on top of the masked sentence.
For example, given the input sentence “The river rose five feet” we can mask the middle word
to get “The river five feet” and ask the model to fill in the blank.
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1. What will best separate a mixture of iron filings and black pepper?
(a) magnet (b) filter paper (c) triple beam balance (d) voltmeter

2. Which form of energy is produced when a rubber band vibrates?
(a) chemical (b) light (c) electrical (d) sound

3. Because copper is a metal, it is
(a) liquid at room temperature (b) nonreactive with other substances
(c) a poor conductor of electricity (d) a good conductor of heat

4. Which process in an apple tree primarily results from cell division?
(a) growth (b) photosynthesis (c) gas exchange (d) waste removal

Figure 25.13 Questions from an 8th grade science exam that the ARISTO system can an-
swer correctly using an ensemble of methods, with the most influential being a ROBERTA
language model. Answering these questions requires knowledge about natural language, the
structure of multiple-choice tests, commonsense, and science.

The final hidden vectors that correspond to the masked tokens are then used to predict
the words that were masked—in this example, rose. During training a single sentence can
be used multiple times with different words masked out. The beauty of this approach is
that it requires no labeled data; the sentence provides its own label for the masked word. If
this model is trained on a large corpus of text, it generates pretrained representations that
perform well across a wide variety of NLP tasks (machine translation, question answering,
summarization, grammaticality judgments, and others).

25.6 State of the art

Deep learning and transfer learning have markedly advanced the state of the art for NLP—so
much so that one commentator in 2018 declared that “NLP’s ImageNet moment has arrived”
(Ruder, 2018). The implication is that just as a turning point occurred in 2012 for computer
vision when deep learning systems produced surprising good results in the ImageNet compe-
tition, a turning point occurred in 2018 for NLP. The principal impetus for this turning point
was the finding that transfer learning works well for natural language problems: a general
language model can be downloaded and fine-tuned for a specific task.

It started with simple word embeddings from systems such as WORD2VEC in 2013 and
GloVe in 2014. Researchers can download such a model or train their own relatively quickly
without access to supercomputers. Pretrained contextual representations, on the other hand,
are orders of magnitude more expensive to train.

These models became feasible only after hardware advances (GPUs and TPUs) became
widespread, and in this case researchers were grateful to be able to download models rather
than having to spend the resources to train their own. The transformer model allowed for
efficient training of much larger and deeper neural networks than was previously possible
(this time due to software advances, not hardware). Since 2018, new NLP projects typically
start with a pretrained transformer model.

Although these transformer models were trained to predict the next word in a text, they do
a surprisingly good job at other language tasks. A ROBERTA model with some fine-tuning
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It is a truth universally acknowledged that the earth is not the center of the uni-
verse. There are those who assert there is. I do not accept them, but others I
consider to be of the same opinion. The truth is, however, that if there are other
than the center, and if there are any other living things in the universe and if they
are not human, then we do not yet have our answers. We have to go on. This page
gives a simplified, simplified answer to the problem. We don’t have all the answers.
The truth is, however, that the truth is out there.

When Gregor Samsa woke up one morning, he did not notice anything strange.
“When my wife is looking at me, I feel like she is looking at a piece of art,” he said.
“I think she is admiring something I have created.” The idea is that by looking at
your own life, you learn something important and become a better person. It is a
theory that emerged from psychologist Daniel Goleman’s work, in which he asked
“How do you know you’re not a loser?”

Alice was beginning to get very tired of sitting with her sister on the bank. She
sat up, yawned, and said, with a loud little scream, “I hope you don’t mind if I keep
on doing what I should like to do, and if someone asks me which of us will do
more, don’t tell them that I won’t do much, my dear sister.”

All happy families are alike; each happy family is like a garden of paradise. The
only difference between happy families and unhappy families, is that the unhappy
family doesn’t have any flowers or trees.

Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.
Tell me a story. Tell me a story. Tell me a story. Tell me a story. Tell me a story.
Tell me a story. Tell me a story. Please fill out the following details. Thank you...
Thank you for your interest in this interview. Please wait...

Figure 25.14 Example completion texts generated by the GPT-2 language model, given the
prompts in bold. Most of the texts are quite fluent English, at least locally. The final example
demonstrates that sometimes the model just breaks down.

achieves state-of-the-art results in question answering and reading comprehension tests (Liu
et al., 2019b). GPT-2, a transformer-like language model with 1.5 billion parameters trained
on 40GB of Internet text, achieves good results on such diverse tasks as translation between
French and English, finding referents of long-distance dependencies, and general-knowledge
question answering, all without fine-tuning for the particular task. As Figure 25.14 illustrates,
GPT-2 can generate fairly convincing text given just a few words as a prompt.

As an example state-of-the-art NLP system, ARISTO (Clark et al., 2019) achieved a score
of 91.6% on an 8th grade multiple-choice science exam (see Figure 25.13). ARISTO consists
of an ensemble of solvers: some use information retrieval (similar to a web search engine),
some do textual entailment and qualitative reasoning, and some use large transformer lan-
guage models. It turns out that ROBERTA, by itself, scores 88.2% on the test. ARISTO also
scores 83% on the more advanced 12th grade exam. (A score of 65% is considered “meeting
the standards” and 85% is “meeting the standards with distinction”.)
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There are limitations of ARISTO. It deals only with multiple-choice questions, not essay
questions, and it can neither read nor generate diagrams.1

T5 (the Text-to-Text Transfer Transformer) is designed to produce textual responses to
various kinds of textual input. It includes a standard encoder–decoder transformer model,
pretrained on 35 billion words from the 750 GB Colossal Clean Crawled Corpus (C4). This
unlabeled training is designed to give the model generalizable linguistic knowledge that will
be useful for multiple specific tasks. T5 is then trained for each task with input consisting of
the task name, followed by a colon and some content. For example, when given “translate
English to German: That is good,” it produces as output “Das ist gut.” For some tasks, the
input is marked up; for example in the Winograd Schema Challenge, the input highlights a
pronoun with an ambiguous referent. Given the input “referent: The city councilmen refused
the demonstrators a permit because they feared violence,” the correct response is “The city
councilmen” (not “the demonstrators”).

Much work remains to be done to improve NLP systems. One issue is that transformer
models rely on only a narrow context, limited to a few hundred words. Some experimental
approaches are trying to extend that context; the Reformer system (Kitaev et al., 2020) can
handle context of up to a million words.

Recent results have shown that using more training data results in better models—for
example, ROBERTA achieved state-of-the-art results after training on 2.2 trillion words. If
using more textual data is better, what would happen if we included other types of data:
structured databases, numerical data, images, and video? We would need a breakthrough in
hardware processing speeds to train on a large corpus of video, and we may need several
breakthroughs in AI as well.

The curious reader may wonder why we learned about grammars, parsing, and semantic
interpretation in the previous chapter, only to discard those notions in favor of purely data-
driven models in this chapter? At present, the answer is simply that the data-driven models
are easier to develop and maintain, and score better on standard benchmarks, compared to
the hand-built systems that can be constructed using a reasonable amount of human effort
with the approaches described in Chapter 24. It may be that transformer models and their
relatives are learning latent representations that capture the same basic ideas as grammars
and semantic information, or it may be that something entirely different is happening within
these enormous models; we simply don’t know. We do know that a system that is trained with
textual data is easier to maintain and to adapt to new domains and new natural languages than
a system that relies on hand-crafted features.

It may also be the case that future breakthroughs in explicit grammatical and semantic
modeling will cause the pendulum to swing back. Perhaps more likely is the emergence of
hybrid approaches that combine the best concepts from both chapters. For example, Kitaev
and Klein (2018) used an attention mechanism to improve a traditional constituency parser,
achieving the best result ever recorded on the Penn Treebank test set. Similarly, Ringgaard
et al. (2017) demonstrate how a dependency parser can be improved with word embeddings
and a recurrent neural network. Their system, SLING, parses directly into a semantic frame
representation, mitigating the problem of errors building up in a traditional pipeline system.

1 It has been pointed out that in some multiple-choice exams, it is possible to get a good score even without
looking at the questions, because there are tell-tale signs in the incorrect answers (Gururangan et al., 2018). That
seems to be true for visual question answering as well (Chao et al., 2018) .
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There is certainly room for improvement: not only do NLP systems still lag human per-
formance on many tasks, but they do so after processing thousands of times more text than
any human could read in a lifetime. This suggests that there is plenty of scope for new insights
from linguists, psychologists, and NLP researchers.

Summary

The key points of this chapter are as follows:

• Continuous representations of words with word embeddings are more robust than dis-
crete atomic representations, and can be pretrained using unlabeled text data.

• Recurrent neural networks can effectively model local and long-distance context by
retaining relevant information in their hidden-state vectors.

• Sequence-to-sequence models can be used for machine translation and text generation
problems.

• Transformer models use self-attention and can model long-distance context as well as
local context. They can make effective use of hardware matrix multiplication.

• Transfer learning that includes pretrained contextual word embeddings allows models to
be developed from very large unlabeled corpora and applied to a range of tasks. Models
that are pretrained to predict missing words can handle other tasks such as question
answering and textual entailment, after fine-tuning for the target domain.

Bibliographical and Historical Notes

The distribution of words and phrases in natural language follow Zipf’s Law (Zipf, 1935,
1949): the frequency of the nth most popular word is roughly inversely proportional to n.
That means we have a data sparsity problem: even with billions of words of training data, we
are constantly running into novel words and phrases that were not seen before.

Generalization to novel words and phrases is aided by representations that capture the
basic insight that words with similar meanings appear in similar contexts. Deerwester et al.
(1990) projected words into low-dimensional vectors by decomposing the co-occurrence ma-
trix formed by words and the documents the words appear in. Another possibility is to treat
the surrounding words—say, a 5-word window—as context. Brown et al. (1992) grouped
words into hierarchical clusters according to the bigram context of words; this has proven to
be effective for tasks such as named entity recognition (Turian et al., 2010). The WORD2VEC

system (Mikolov et al., 2013) was the first significant demonstration of the advantages of
word embeddings obtained from training neural networks. The GloVe word embedding vec-
tors (Pennington et al., 2014) were obtained by operating directly on a word co-occurrence
matrix obtained from billions of words of text. Levy and Goldberg (2014) explain why and
how these word embeddings are able to capture linguistic regularities.

Bengio et al. (2003) pioneered the use of neural networks for language models, proposing
to combine “(1) a distributed representation for each word along with (2) the probability func-
tion for word sequences, expressed in terms of these representations.” Mikolov et al. (2010)
demonstrated the use of RNNs for modeling local context in language models. Jozefowicz
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et al. (2016) showed how an RNN trained on a billion words can outperform carefully hand-
crafted n-gram models. Contextual representations for words were emphasized by Peters
et al. (2018), who called them ELMO (Embeddings from Language Models) representations.

Note that some authors compare language models by measuring their perplexity. ThePerplexity

perplexity of a probability distribution is 2H , where H is the entropy of the distribution (see
Section 19.3.3). A language model with lower perplexity is, all other things being equal, a
better model. But in practice, all other things are rarely equal. Therefore it is more informa-
tive to measure performance on a real task rather than relying on perplexity.

Howard and Ruder (2018) describe the ULMFIT (Universal Language Model Fine-
tuning) framework, which makes it easier to fine-tune a pretrained language model without
requiring a vast corpus of target-domain documents. Ruder et al. (2019) give a tutorial on
transfer learning for NLP.

Mikolov et al. (2010) introduced the idea of using RNNs for NLP, and Sutskever et al.
(2015) introduced the idea of sequence to sequence learning with deep networks. Zhu et al.
(2017) and (Liu et al., 2018b) showed that an unsupervised approach works, and makes
data collection much easier. It was soon found that these kinds of models could perform
surprisingly well at a variety of tasks, for example, image captioning (Karpathy and Fei-Fei,
2015; Vinyals et al., 2017b).

Devlin et al. (2018) showed that transformer models pretrained with the masked language
modeling objective can be directly used for multiple tasks. The model was called BERT
(Bidirectional Encoder Representations from Transformers). Pretrained BERT models can be
fine-tuned for particular domains and particular tasks, including question answering, named
entity recognition, text classification, sentiment analysis, and natural language inference.

The XLNET system (Yang et al., 2019) improves on BERT by eliminating a discrepancy
between the pretraining and fine-tuning. The ERNIE 2.0 framework (Sun et al., 2019) extracts
more from the training data by considering sentence order and the presence of named entities,
rather than just co-occurrence of words, and was shown to outperform BERT and XLNET.
In response, researchers revisited and improved on BERT: the ROBERTA system (Liu et al.,
2019b) used more data and different hyperparameters and training procedures, and found that
it could match XLNET. The Reformer system (Kitaev et al., 2020) extends the range of the
context that can be considered all the way up to a million words. Meanwhile, ALBERT (A
Lite BERT) went in the other direction, reducing the number of parameters from 108 million
to 12 million (so as to fit on mobile devices) while maintaining high accuracy.

The XLM system (Lample and Conneau, 2019) is a transformer model with training
data from multiple languages. This is useful for machine translation, but also provides more
robust representations for monolingual tasks. Two other important systems, GPT-2 (Radford
et al., 2019) and T5 (Raffel et al., 2019), were described in the chapter. The later paper also
introduced the 35 billion word Colossal Clean Crawled Corpus (C4).

Various promising improvements on pretraining algorithms have been proposed (Yang
et al., 2019; Liu et al., 2019b). Pretrained contextual models are described by Peters et al.
(2018) and Dai and Le (2016).

The GLUE (General Language Understanding Evaluation) benchmark, a collection of
tasks and tools for evaluating NLP systems, was introduced by Wang et al. (2018a). Tasks
include question answering, sentiment analysis, textual entailment, translation, and parsing.
Transformer models have so dominated the leaderboard (the human baseline is way down at
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ninth place) that a new version, SUPERGLUE (Wang et al., 2019), was introduced with tasks
that are designed to be harder for computers, but still easy for humans.

At the end of 2019, T5 was the overall leader with a score of 89.3, just half a point
below the human baseline of 89.8. On three of the ten tasks, T5 actually exceeds human
performance: yes/no question answering (such as “Is France the same time zone as the UK?”)
and two reading comprehension tasks involving answering questions after reading either a
paragraph or a news article.

Machine translation is a major application of language models. In 1933, Petr Troyanskii
received a patent for a “translating machine,” but there were no computers available to imple-
ment his ideas. In 1947, Warren Weaver, drawing on work in cryptography and information
theory, wrote to Norbert Wiener: “When I look at an article in Russian, I say: ‘This is really
written in English, but it has been coded in strange symbols. I will now proceed to decode.”’
The community proceeded to try to decode in this way, but they didn’t have sufficient data
and computing resources to make the approach practical.

In the 1970s that began to change, and the SYSTRAN system (Toma, 1977) was the first
commercially successful machine translation system. SYSTRAN relied on lexical and gram-
matical rules hand-crafted by linguists as well as on training data. In the 1980s, the com-
munity embraced purely statistical models based on frequency of words and phrases (Brown
et al., 1988; Koehn, 2009). Once training sets reached billions or trillions of tokens (Brants
et al., 2007), this yielded systems that produced comprehensible but not fluent results (Och
and Ney, 2004; Zollmann et al., 2008). Och and Ney (2002) show how discriminative training
led to an advance in machine translation in the early 2000s.

Sutskever et al. (2015) first showed that it is possible to learn an end-to-end sequence-
to-sequence neural model for machine translation. Bahdanau et al. (2015) demonstrated the
advantage of a model that jointly learns to align sentences in the source and target language
and to translate between the languages. Vaswani et al. (2018) showed that neural machine
translation systems can further be improved by replacing LSTMs with transformer archi-
tectures, which use the attention mechanism to capture context. These neural translation
systems quickly overtook statistical phrase-based methods, and the transformer architecture
soon spread to other NLP tasks.

Research on question answering was facilitated by the creation of SQUAD, the first
large-scale data set for training and testing question-answering systems (Rajpurkar et al.,
2016). Since then, a number of deep learning models have been developed for this task (Seo
et al., 2017; Keskar et al., 2019). The ARISTO system (Clark et al., 2019) uses deep learn-
ing in conjunction with an ensemble of other tactics. Since 2018, the majority of question-
answering models use pretrained language representations, leading to a noticeable improve-
ment over earlier systems.

Natural language inference is the task of judging whether a hypothesis (dogs need to
eat) is entailed by a premise (all animals need to eat). This task was popularized by the
PASCAL Challenge (Dagan et al., 2005). Large-scale data sets are now available (Bowman
et al., 2015; Williams et al., 2018). Systems based on pretrained models such as ELMO and
BERT currently provide the best performance on language inference tasks.

The Conference on Computational Natural Language Learning (CoNLL) focuses on
learning for NLP. All the conferences and journals mentioned in Chapter 24 now include
papers on deep learning, which now has a dominant position in the field of NLP.



CHAPTER 26
ROBOTICS
In which agents are endowed with sensors and physical effectors with which to move about
and make mischief in the real world.

26.1 Robots

Robots are physical agents that perform tasks by manipulating the physical world. To doRobot

so, they are equipped with effectors such as legs, wheels, joints, and grippers. Effectors areEffector

designed to assert physical forces on the environment. When they do this, a few things may
happen: the robot’s state might change (e.g., a car spins its wheels and makes progress on the
road as a result), the state of the environment might change (e.g., a robot arm uses its gripper
to push a mug across the counter), and even the state of the people around the robot might
change (e.g., an exoskeleton moves and that changes the configuration of a person’s leg; or
a mobile robot makes progress toward the elevator doors, and a person notices and is nice
enough to move out of the way, or even push the button for the robot).

Robots are also equipped with sensors, which enable them to perceive their environment.Sensor

Present-day robotics employs a diverse set of sensors, including cameras, radars, lasers, and
microphones to measure the state of the environment and of the people around it; and gyro-
scopes, strain and torque sensors, and accelerometers to measure the robot’s own state.

Maximizing expected utility for a robot means choosing how to actuate its effectors to
assert the right physical forces—the ones that will lead to changes in state that accumulate as
much expected reward as possible. Ultimately, robots are trying to accomplish some task in
the physical world.

Robots operate in environments that are partially observable and stochastic: cameras
cannot see around corners, and gears can slip. Moreover, the people acting in that same
environment are unpredictable, so the robot needs to make predictions about them.

Robots usually model their environment with a continuous state space (the robot’s po-
sition has continuous coordinates) and a continuous action space (the amount of current a
robot sends to its motor is also measured in continuous units). Some robots operate in high-
dimensional spaces: cars need to know the position, orientation, and velocity of themselves
and the nearby agents; robot arms have six or seven joints that can each be independently
moved; and robots that mimic the human body have hundreds of joints.

Robotic learning is constrained because the real world stubbornly refuses to operate faster
than real time. In a simulated environment, it is possible to use learning algorithms (such as
the Q-learning algorithm described in Chapter 23) to learn in a few hours from millions of
trials. In a real environment, it might take years to run these trials, and the robot cannot risk
(and thus cannot learn from) a trial that might cause harm. Thus, transferring what has been
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(a) (b)

Figure 26.1 (a) An industrial robotic arm with a custom end-effector. Image credit: Ma-
cor/123RF. (b) A Kinova® JACO® Assistive Robot arm mounted on a wheelchair. Kinova
and JACO are trademarks of Kinova, Inc.

learned in simulation to a real robot in the real world—the sim-to-real problem—is an active
area of research. Practical robotic systems need to embody prior knowledge about the robot,
the physical environment, and the tasks to be performed so that the robot can learn quickly
and perform safely.

Robotics brings together many of the concepts we have seen in this book, including prob-
abilistic state estimation, perception, planning, unsupervised learning, reinforcement learn-
ing, and game theory. For some of these concepts robotics serves as a challenging example
application. For other concepts this chapter breaks new ground, for instance in introducing
the continuous version of techniques that we previously saw only in the discrete case.

26.2 Robot Hardware

So far in this book, we have taken the agent architecture—sensors, effectors, and processors—
as given, and have concentrated on the agent program. But the success of real robots depends
at least as much on the design of sensors and effectors that are appropriate for the task.

26.2.1 Types of robots from the hardware perspective

When you think of a robot, you might imagine something with a head and two arms, moving
around on legs or wheels. Such anthropomorphic robots have been popularized in fiction Anthropomorphic

robot
such as the movie The Terminator and the cartoon The Jetsons. But real robots come in many
shapes and sizes.

Manipulators are just robot arms. They do not necessarily have to be attached to a robot Manipulator

body; they might simply be bolted onto a table or a floor, as they are in factories (Figure 26.1
(a)). Some have a large payload, like those assembling cars, while others, like wheelchair-
mountable arms that assist people with motor impairments (Figure 26.1(b)), can carry less
but are safer in human environments.
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(a) (b)

Figure 26.2 (a) NASA’s Curiosity rover taking a selfie on Mars. Image courtesy of NASA.
(b) A Skydio drone accompanying a family on a bike ride. Image courtesy of Skydio.

Mobile robots are those that use wheels, legs, or rotors to move about the environment.Mobile robot

Quadcopter drones are a type of unmanned aerial vehicle (UAV); autonomous underwa-Quadcopter drone

UAV ter vehicles (AUVs) roam the oceans. But many mobile robots stay indoors and move on
AUV wheels, like a vacuum cleaner or a towel delivery robot in a hotel. Their outdoor counterparts

include autonomous cars or rovers that explore new terrain, even on the surface of MarsAutonomous car

Rover (Figure 26.2). Finally, legged robots are meant to traverse rough terrain that is inaccessible
Legged robot with wheels. The downside is that controlling legs to do the right thing is more challenging

than spinning wheels.
Other kinds of robots include prostheses, exoskeletons, robots with wings, swarms, and

intelligent environments in which the robot is the entire room.

26.2.2 Sensing the world

Sensors are the perceptual interface between robot and environment. Passive sensors, suchPassive sensor

as cameras, are true observers of the environment: they capture signals that are generated
by other sources in the environment. Active sensors, such as sonar, send energy into theActive sensor

environment. They rely on the fact that this energy is reflected back to the sensor. Active
sensors tend to provide more information than passive sensors, but at the expense of increased
power consumption and with a danger of interference when multiple active sensors are used
at the same time. We also distinguish whether a sensor is directed at sensing the environment,
the robot’s location, or the robot’s internal configuration.

Range finders are sensors that measure the distance to nearby objects. Sonar sensorsRange finder

Sonar are active range finders that emit directional sound waves, which are reflected by objects,
with some of the sound making it back to the sensor. The time and intensity of the returning
signal indicates the distance to nearby objects. Sonar is the technology of choice for au-
tonomous underwater vehicles, and was popular in the early days of indoor robotics. Stereo
vision (see Section 27.6) relies on multiple cameras to image the environment from slightlyStereo vision
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(a) (b)

Figure 26.3 (a) Time-of-flight camera; image courtesy of Mesa Imaging GmbH. (b) 3D
range image obtained with this camera. The range image makes it possible to detect obstacles
and objects in a robot’s vicinity. Image courtesy of Willow Garage, LLC.

different viewpoints, analyzing the resulting parallax in these images to compute the range of
surrounding objects.

For mobile ground robots, sonar and stereo vision are now rarely used, because they are
not reliably accurate. The Kinect is a popular low-cost sensor that combines a camera and a
structured light projector, which projects a pattern of grid lines onto a scene. The camera Structured light

sees how the grid lines bend, giving the robot information about the shape of the objects in
the scene. If desired, the projection can be infrared light, so as not to interfere with other
sensors (such as human eyes).

Most ground robots are now equipped with active optical range finders. Just like sonar
sensors, optical range sensors emit active signals (light) and measure the time until a reflection
of this signal arrives back at the sensor. Figure 26.3(a) shows a time-of-flight camera. This Time-of-flight

camera
camera acquires range images like the one shown in Figure 26.3(b) at up to 60 frames per
second. Autonomous cars often use scanning lidars (short for light detection and ranging)— Scanning lidar

active sensors that emit laser beams and sense the reflected beam, giving range measurements
accurate to within a centimeter at a range of 100 meters. They use complex arrangements of
mirrors or rotating elements to sweep the beam across the environment and build a map.
Scanning lidars tend to work better than time-of-flight cameras at longer ranges, and tend to
perform better in bright daylight.

Radar is often the range finding sensor of choice for air vehicles (autonomous or not). Radar

Radar sensors can measure distances up to kilometers, and have an advantage over optical
sensors in that they can see through fog. On the close end of range sensing are tactile sensors Tactile sensor

such as whiskers, bump panels, and touch-sensitive skin. These sensors measure range based
on physical contact, and can be deployed only for sensing objects very close to the robot.

A second important class is location sensors. Most location sensors use range sensing Location sensor

as a primary component to determine location. Outdoors, the Global Positioning System Global Positioning
System

(GPS) is the most common solution to the localization problem. GPS measures the distance to
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satellites that emit pulsed signals. At present, there are 31 operational GPS satellites in orbit,
and 24 GLONASS satellites, the Russian counterpart. GPS receivers can recover the distance
to a satellite by analyzing phase shifts. By triangulating signals from multiple satellites, GPS
receivers can determine their absolute location on Earth to within a few meters. Differential
GPS involves a second ground receiver with known location, providing millimeter accuracyDifferential GPS

under ideal conditions.
Unfortunately, GPS does not work indoors or underwater. Indoors, localization is often

achieved by attaching beacons in the environment at known locations. Many indoor environ-
ments are full of wireless base stations, which can help robots localize through the analysis of
the wireless signal. Underwater, active sonar beacons can provide a sense of location, using
sound to inform AUVs of their relative distances to those beacons.

The third important class is proprioceptive sensors, which inform the robot of its ownProprioceptive
sensor

motion. To measure the exact configuration of a robotic joint, motors are often equipped with
shaft decoders that accurately measure the angular motion of a shaft. On robot arms, shaftShaft decoder

decoders help track the position of joints. On mobile robots, shaft decoders report wheel rev-
olutions for odometry—the measurement of distance traveled. Unfortunately, wheels tend toOdometry

drift and slip, so odometry is accurate only over short distances. External forces, such as wind
and ocean currents, increase positional uncertainty. Inertial sensors, such as gyroscopes, re-Inertial sensor

duce uncertainty by relying on the resistance of mass to the change of velocity.
Other important aspects of robot state are measured by force sensors and torque sensors.Force sensor

Torque sensor These are indispensable when robots handle fragile objects or objects whose exact size and
shape are unknown. Imagine a one-ton robotic manipulator screwing in a light bulb. It would
be all too easy to apply too much force and break the bulb. Force sensors allow the robot
to sense how hard it is gripping the bulb, and torque sensors allow it to sense how hard it is
turning. High-quality sensors can measure forces in all three translational and three rotational
directions. They do this at a frequency of several hundred times a second so that a robot can
quickly detect unexpected forces and correct its actions before it breaks a light bulb. However,
it can be a challenge to outfit a robot with high-end sensors and the computational power to
monitor them.

26.2.3 Producing motion

The mechanism that initiates the motion of an effector is called an actuator; examples includeActuator

transmissions, gears, cables, and linkages. The most common type of actuator is the electric
actuator, which uses electricity to spin up a motor. These are predominantly used in systems
that need rotational motion, like joints on a robot arm. Hydraulic actuators use pressurizedHydraulic actuator

hydraulic fluid (like oil or water) and pneumatic actuators use compressed air to generatePneumatic actuator

mechanical motion.
Actuators are often used to move joints, which connect rigid bodies (links). Arms and

legs have such joints. In revolute joints, one link rotates with respect to the other. In pris-Revolute joint

matic joints, one link slides along the other. Both of these are single-axis joints (one axisPrismatic joint

of motion). Other kinds of joints include spherical, cylindrical, and planar joints, which are
multi-axis joints.

To interact with objects in the environment, robots use grippers. The most basic type
of gripper is the parallel jaw gripper, with two fingers and a single actuator that movesParallel jaw gripper

the fingers together to grasp objects. This effector is both loved and hated for its simplicity.
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Three-fingered grippers offer slightly more flexibility while maintaining simplicity. At the
other end of the spectrum are humanoid (anthropomorphic) hands. For instance, the Shadow
Dexterous Hand has a total of 20 actuators. This offers a lot more flexibility for complex
manipulation, including in-hand manipulator maneuvers (think of picking up your cell phone
and rotating it in-hand to orient it right-side up), but this flexibility comes at a price—learning
to control these complex grippers is more challenging.

26.3 What kind of problem is robotics solving?

Now that we know what the robot hardware might be, we’re ready to consider the agent
software that drives the hardware to achieve our goals. We first need to decide the computa-
tional framework for this agent. We have talked about search in deterministic environments,
MDPs for stochastic but fully observable environments, POMDPs for partial observability,
and games for situations in which the agent is not acting in isolation. Given a computational
framework, we need to instantiate its ingredients: reward or utility functions, states, actions,
observation spaces, etc.

We have already noted that robotics problems are nondeterministic, partially observable,
and multiagent. Using the game-theoretic notions from Chapter 17, we can see that some-
times the agents are cooperative and sometimes they are competitive. In a narrow corridor
where only one agent can go first, a robot and a person collaborate because they both want
to make sure they don’t bump into each other. But in some cases they might compete a bit to
reach their destination quickly. If the robot is too polite and always makes room, it might get
stuck in crowded situations and never reach its goal.

Therefore, when robots act in isolation and know their environment, the problem they
are solving can be formulated as an MDP; when they are missing information it becomes a
POMDP; and when they act around people it can often be formulated as a game.

What is the robot’s reward function in this formulation? Usually the robot is acting in
service of a human—for example delivering a meal to a hospital patient for the patient’s
reward, not its own. For most robotics settings, even though robot designers might try to
specify a good enough proxy reward function, the true reward function lies with the user
whom the robot is supposed to help. The robot will either need to decipher the user’s desires,
or rely on an engineer to specify an approximation of the user’s desires.

As for the robot’s action, state, and observation spaces, the most general form is that
observations are raw sensor feeds (e.g., the images coming in from cameras, or the laser hits
coming in from lidar); actions are raw electric currents being sent to the motors; and state is
what the robot needs to know for its decision making. This means there is a huge gap between
the low-level percepts and motor controls, and the high-level plans the robot needs to make.
To bridge the gap, roboticists decouple aspects of the problem to simplify it.

For instance, we know that when we solve POMDPs properly, perception and action
interact: perception informs which actions make sense, but action also informs perception,
with agents taking actions to gather information when that information has value in later
time steps. However, robots often separate perception from action, consuming the outputs
of perception and pretending they will not get any more information in the future. Further,
hierarchical planning is called for, because a high-level goal like “get to the cafeteria” is far
removed from a motor command like “rotate the main axle 1 ◦,”
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In robotics we often use a three-level hierarchy. The task planning level decides a planTask planning

or policy for high-level actions, sometimes called action primitives or subgoals: move to the
door, open it, go to the elevator, press the button, etc. Then motion planning is in charge of
finding a path that gets the robot from one point to another, achieving each subgoal. Finally,
control is used to achieve the planned motion using the robot’s actuators. Since the taskControl

planning level is typically defined over discrete states and actions, in this chapter we will
focus primarily on motion planning and control.

Separately, preference learning is in charge of estimating an end user’s objective, andPreference learning

people prediction is used to forecast the actions of other people in the robot’s environment.People prediction

All these combine to determine the robot’s behavior.
Whenever we split a problem into separate pieces we reduce complexity, but we give up

opportunities for the pieces to help each other. Action can help improve perception, and also
determine what kind of perception is useful. Similarly, decisions at the motion level might
not be the best when accounting for how that motion will be tracked; or decisions at the task
level might render the task plan uninstantiatable at the motion level. So, with progress in
these separate areas comes the push to reintegrate them: to do motion planning and control
together, to do task and motion planning together, and to reintegrate perception, prediction,
and action—closing the feedback loop. Robotics today is about continuing progress in each
area while also building on this progress to achieve better integration.

26.4 Robotic Perception

Perception is the process by which robots map sensor measurements into internal representa-
tions of the environment. Much of it uses the computer vision techniques from the previous
chapter. But perception for robotics must deal with additional sensors like lidar and tactile
sensors.

Perception is difficult because sensors are noisy and the environment is partially observ-
able, unpredictable, and often dynamic. In other words, robots have all the problems of state
estimation (or filtering) that we discussed in Section 14.2. As a rule of thumb, good internal
representations for robots have three properties:

1. They contain enough information for the robot to make good decisions.
2. They are structured so that they can be updated efficiently.
3. They are natural in the sense that internal variables correspond to natural state variables

in the physical world.

In Chapter 14, we saw that Kalman filters, HMMs, and dynamic Bayes nets can represent the
transition and sensor models of a partially observable environment, and we described both
exact and approximate algorithms for updating the belief state—the posterior probability
distribution over the environment state variables. Several dynamic Bayes net models for
this process were shown in Chapter 14. For robotics problems, we include the robot’s own
past actions as observed variables in the model. Figure 26.4 shows the notation used in this
chapter: Xt is the state of the environment (including the robot) at time t, Zt is the observation
received at time t, and At is the action taken after the observation is received.

We would like to compute the new belief state, P(Xt+1 | z1:t+1,a1:t), from the current
belief state, P(Xt | z1:t ,a1:t−1), and the new observation zt+1. We did this in Section 14.2,
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Figure 26.4 Robot perception can be viewed as temporal inference from sequences of ac-
tions and measurements, as illustrated by this dynamic decision network.

but there are two differences here: we condition on the actions as well as the observations,
and we deal with continuous rather than discrete variables. Thus, we modify the recursive
filtering equation (14.5 on page 485) to use integration rather than summation:

P(Xt+1 | z1:t+1,a1:t)

= αP(zt+1 | Xt+1)
∫

P(Xt+1 | xt ,at) P(xt | z1:t ,a1:t−1) dxt . (26.1)

This equation states that the posterior over the state variables X at time t + 1 is calculated
recursively from the corresponding estimate one time step earlier. This calculation involves
the previous action at and the current sensor measurement zt+1. For example, if our goal is
to develop a soccer-playing robot, Xt+1 might include the location of the soccer ball relative
to the robot. The posterior P(Xt |z1:t ,a1:t−1) is a probability distribution over all states that
captures what we know from past sensor measurements and controls. Equation (26.1) tells us
how to recursively estimate this location, by incrementally folding in sensor measurements
(e.g., camera images) and robot motion commands. The probability P(Xt+1 | xt ,at) is called
the transition model or motion model, and P(zt+1 | Xt+1) is the sensor model. Motion model

26.4.1 Localization and mapping

Localization is the problem of finding out where things are—including the robot itself. To Localization

keep things simple, let us consider a mobile robot that moves slowly in a flat two-dimensional
world. Let us also assume the robot is given an exact map of the environment. (An example
of such a map appears in Figure 26.7.) The pose of such a mobile robot is defined by its
two Cartesian coordinates with values x and y and its heading with value θ, as illustrated in
Figure 26.5(a). If we arrange those three values in a vector, then any particular state is given
by Xt =(xt ,yt ,θt)

>. So far so good.
In the kinematic approximation, each action consists of the “instantaneous” specification

of two velocities—a translational velocity vt and a rotational velocity ωt . For small time
intervals ∆t, a crude deterministic model of the motion of such robots is given by

X̂t+1 = f (Xt ,vt ,ωt︸︷︷︸
at

) = Xt +

 vt∆t cosθt

vt∆t sinθt

ωt∆t

 .
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Figure 26.5 (a) A simplified kinematic model of a mobile robot. The robot is shown as a
circle with an interior radius line marking the forward direction. The state xt consists of the
(xt ,yt) position (shown implicitly) and the orientation θt . The new state xt+1 is obtained by
an update in position of vt∆t and in orientation of ωt∆t . Also shown is a landmark at (xi,yi)
observed at time t. (b) The range-scan sensor model. Two possible robot poses are shown for
a given range scan (z1,z2,z3,z4). It is much more likely that the pose on the left generated
the range scan than the pose on the right.

The notation X̂ refers to a deterministic state prediction. Of course, physical robots are
somewhat unpredictable. This is commonly modeled by a Gaussian distribution with mean
f (Xt ,vt ,ωt) and covariance Σx. (See Appendix A for a mathematical definition.)

P(Xt+1 | Xt ,vt ,ωt) = N (X̂t+1,Σx) .

This probability distribution is the robot’s motion model. It models the effects of the motion
at on the location of the robot.

Next, we need a sensor model. We will consider two kinds of sensor models. The first
assumes that the sensors detect stable, recognizable features of the environment called land-
marks. For each landmark, the range and bearing are reported. Suppose the robot’s stateLandmark

is xt =(xt ,yt ,θt)
> and it senses a landmark whose location is known to be (xi,yi)

>. With-
out noise, a prediction of the range and bearing can be calculated by simple geometry (see
Figure 26.5(a)):

ẑt = h(xt) =

( √
(xt − xi)2 +(yt − yi)2

arctan yi−yt
xi−xt
−θt

)
.

Again, noise distorts our measurements. To keep things simple, assume Gaussian noise with
covariance Σz, giving us the sensor model

P(zt | xt) =N (ẑt ,Σz) .

A somewhat different sensor model is used for a sensor array of range sensors, each ofSensor array

which has a fixed bearing relative to the robot. Such sensors produce a vector of range values
zt = (z1, . . . ,zM)>.

Given a pose xt , let ẑ j be the computed range along the jth beam direction from xt to the
nearest obstacle. As before, this will be corrupted by Gaussian noise. Typically, we assume
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function MONTE-CARLO-LOCALIZATIONa, z, N, P(X ′|X , v, ω), P(z|z∗), map
returns a set of samples, S, for the next time step
inputs: a, robot velocities v and ω

z, a vector of M range scan data points
P(X ′|X , v, ω), motion model
P(z|z∗), a range sensor noise model
map, a 2D map of the environment

persistent: S, a vector of N samples
local variables: W , a vector of N weights

S′, a temporary vector of N samples

if S is empty then
for i = 1 to N do // initialization phase

S[i]←sample from P(X0)
for i = 1 to N do // update cycle

S′[i]←sample from P(X ′|X = S[i],v,ω)
W [i]←1
for j = 1 to M do

z∗←RAYCAST( j, X = S′[i], map)
W [i]←W [i] · P(z j| z∗)

S←WEIGHTED-SAMPLE-WITH-REPLACEMENT(N, S′, W)
return S

Figure 26.6 A Monte Carlo localization algorithm using a range-scan sensor model with
independent noise.

that the errors for the different beam directions are independent and identically distributed,
so we have

P(zt | xt) = α
M

∏
j=1

e−(z j−ẑ j)/2σ2
.

Figure 26.5(b) shows an example of a four-beam range scan and two possible robot poses,
one of which is reasonably likely to have produced the observed scan and one of which is not.
Comparing the range-scan model to the landmark model, we see that the range-scan model
has the advantage that there is no need to identify a landmark before the range scan can be
interpreted; indeed, in Figure 26.5(b), the robot faces a featureless wall. On the other hand,
if there are visible, identifiable landmarks, they may provide instant localization.

Section 14.4 described the Kalman filter, which represents the belief state as a single
multivariate Gaussian, and the particle filter, which represents the belief state by a collection
of particles that correspond to states. Most modern localization algorithms use one of these
two representations of the robot’s belief P(Xt | z1:t ,a1:t−1).

Localization using particle filtering is called Monte Carlo localization, or MCL. The Monte Carlo
localization

MCL algorithm is an instance of the particle-filtering algorithm of Figure 14.17 (page 510).
All we need to do is supply the appropriate motion model and sensor model. Figure 26.6
shows one version using the range-scan sensor model. The operation of the algorithm is
illustrated in Figure 26.7 as the robot finds out where it is inside an office building. In the first
image, the particles are uniformly distributed based on the prior, indicating global uncertainty
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about the robot’s position. In the second image, the first set of measurements arrives and the
particles form clusters in the areas of high posterior belief. In the third, enough measurements
are available to push all the particles to a single location.

The Kalman filter is the other major way to localize. A Kalman filter represents the
posterior P(Xt | z1:t ,a1:t−1) by a Gaussian. The mean of this Gaussian will be denoted µt and
its covariance Σt . The main problem with Gaussian beliefs is that they are closed only under
linear motion models f and linear measurement models h. For nonlinear f or h, the result of
updating a filter is in general not Gaussian. Thus, localization algorithms using the Kalman
filter linearize the motion and sensor models. Linearization is a local approximation of aLinearization

nonlinear function by a linear function. Figure 26.8 illustrates the concept of linearization
for a (one-dimensional) robot motion model. On the left, it depicts a nonlinear motion model
f (xt ,at) (the control at is omitted in this graph since it plays no role in the linearization). On
the right, this function is approximated by a linear function f̃ (xt ,at). This linear function is
tangent to f at the point µt , the mean of our state estimate at time t. Such a linearization
is called first degree Taylor expansion. A Kalman filter that linearizes f and h via TaylorTaylor expansion

expansion is called an extended Kalman filter (or EKF). Figure 26.9 shows a sequence of
estimates of a robot running an extended Kalman filter localization algorithm.

As the robot moves, the uncertainty in its location estimate increases, as shown by the
error ellipses. Its error decreases as it senses the range and bearing to a landmark with known
location and increases again as the robot loses sight of the landmark. EKF algorithms work
well if landmarks are easily identified. Otherwise, the posterior distribution may be multi-
modal, as in Figure 26.7(b). The problem of needing to know the identity of landmarks is an
instance of the data association problem discussed in Figure 18.3.

In some situations, no map of the environment is available. Then the robot will have to
acquire a map. This is a bit of a chicken-and-egg problem: the navigating robot will have to
determine its location relative to a map it doesn’t quite know, at the same time building this
map while it doesn’t quite know its actual location. This problem is important for many robot
applications, and it has been studied extensively under the name simultaneous localization
and mapping, abbreviated as SLAM.

Simultaneous
localization and
mapping

SLAM problems are solved using many different probabilistic techniques, including the
extended Kalman filter discussed above. Using the EKF is straightforward: just augment
the state vector to include the locations of the landmarks in the environment. Luckily, the
EKF update scales quadratically, so for small maps (e.g., a few hundred landmarks) the com-
putation is quite feasible. Richer maps are often obtained using graph relaxation methods,
similar to the Bayesian network inference techniques discussed in Chapter 13. Expectation–
maximization is also used for SLAM.

26.4.2 Other types of perception

Not all of robot perception is about localization or mapping. Robots also perceive temper-
ature, odors, sound, and so on. Many of these quantities can be estimated using variants of
dynamic Bayes networks. All that is required for such estimators are conditional probability
distributions that characterize the evolution of state variables over time, and sensor models
that describe the relation of measurements to state variables.

It is also possible to program a robot as a reactive agent, without explicitly reasoning
about probability distributions over states. We cover that approach in Section 26.9.1.
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Robot position

(a)

Robot position

(b)

Robot position

(c)

Figure 26.7 Monte Carlo localization, a particle filtering algorithm for mobile robot localiza-
tion. (a) Initial, global uncertainty. (b) Approximately bimodal uncertainty after navigating
in the (symmetric) corridor. (c) Unimodal uncertainty after entering a room and finding it to
be distinctive.
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Figure 26.8 One-dimensional illustration of a linearized motion model: (a) The function f ,
and the projection of a mean µt and a covariance interval (based on Σt ) into time t + 1. (b)
The linearized version is the tangent of f at µt . The projection of the mean µt is correct.
However, the projected covariance Σ̃t+1 differs from Σt+1.

robot

landmark

Figure 26.9 Localization using the extended Kalman filter. The robot moves on a straight
line. As it progresses, its uncertainty in its location estimate increases, as illustrated by the
error ellipses. When it observes a landmark with known position, the uncertainty is reduced.

The trend in robotics is clearly towards representations with well-defined semantics.
Probabilistic techniques outperform other approaches in many hard perceptual problems such
as localization and mapping. However, statistical techniques are sometimes too cumbersome,
and simpler solutions may be just as effective in practice. To help decide which approach to
take, experience working with real physical robots is your best teacher.

26.4.3 Supervised and unsupervised learning in robot perception

Machine learning plays an important role in robot perception. This is particularly the case
when the best internal representation is not known. One common approach is to map high-
dimensional sensor streams into lower-dimensional spaces using unsupervised machine learn-
ing methods (see Chapter 19). Such an approach is called low-dimensional embedding.Low-dimensional

embedding

Machine learning makes it possible to learn sensor and motion models from data, while si-
multaneously discovering a suitable internal representation.

Another machine learning technique enables robots to continuously adapt to big changes
in sensor measurements. Picture yourself walking from a sunlit space into a dark room with
neon lights. Clearly, things are darker inside. But the change of light source also affects all
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(a) (b) (c)

Figure 26.10 Sequence of “drivable surface” classifications using adaptive vision. (a) Only
the road is classified as drivable (pink area). The V-shaped blue line shows where the vehicle
is heading. (b) The vehicle is commanded to drive off the road, and the classifier is beginning
to classify some of the grass as drivable. (c) The vehicle has updated its model of drivable
surfaces to correspond to grass as well as road. Courtesy of Sebastian Thrun.

the colors: neon light has a stronger component of green light than sunlight has. Yet somehow
we seem not to notice the change. If we walk together with people into a neon-lit room, we
don’t think that their faces suddenly turned green. Our perception quickly adapts to the new
lighting conditions, and our brain ignores the differences.

Adaptive perception techniques enable robots to adjust to such changes. One example
is shown in Figure 26.10, taken from the autonomous driving domain. Here an unmanned
ground vehicle adapts its classifier of the concept “drivable surface.” How does this work?
The robot uses a laser to provide classification for a small area immediately in front of the
robot. When this area is found to be flat in the laser range scan, it is used as a positive training
example for the concept “drivable surface.” A mixture-of-Gaussians technique similar to the
EM algorithm discussed in Chapter 21 is then trained to recognize the specific color and
texture coefficients of the small sample patch. The images in Figure 26.10 are the result of
applying this classifier to the full image.

Methods that make robots collect their own training data (with labels!) are called self-
supervised. In this instance, the robot uses machine learning to leverage a short-range sensor Self-supervised

learning

that works well for terrain classification into a sensor that can see much farther. That allows
the robot to drive faster, slowing down only when the sensor model says there is a change in
the terrain that needs to be examined more carefully by the short-range sensors.

26.5 Planning and Control

The robot’s deliberations ultimately come down to deciding how to move, from the abstract
task level all the way down to the currents that are sent to its motors. In this section, we
simplify by assuming that perception (and, where needed, prediction) are given, so the world
is observable. We further assume deterministic transitions (dynamics) of the world.

We start by separating motion from control. We define a path as a sequence of points in Path

geometric space that a robot (or a robot part, such as an arm) will follow. This is related to
the notion of path in Chapter 3, but here we mean a sequence of points in space rather than a
sequence of discrete actions. The task of finding a good path is called motion planning.
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Figure 26.11 A simple triangular robot that can translate, and needs to avoid a rectangular
obstacle. On the left is the workspace, on the right is the configuration space.

Once we have a path, the task of executing a sequence of actions to follow the path is
called trajectory tracking control. A trajectory is a path that has a time associated withTrajectory tracking

control
Trajectory each point on the path. A path just says “go from A to B to C, etc.” and a trajectory says

“start at A, take 1 second to get to B, and another 1.5 seconds to get to C, etc.”

26.5.1 Configuration space

Imagine a simple robot,R, in the shape of a right triangle as shown by the lavender triangle in
the lower left corner of Figure 26.11. The robot needs to plan a path that avoids a rectangular
obstacle, O. The physical space that a robot moves about in is called the workspace. ThisWorkspace

particular robot can move in any direction in the x− y plane, but cannot rotate. The figure
shows five other possible positions of the robot with dashed outlines; these are each as close
to the obstacle as the robot can get.

The body of the robot could be represented as a set of (x,y) points (or (x,y,z) points
for a three-dimensional robot), as could the obstacle. With this representation, avoiding the
obstacle means that no point on the robot overlaps any point on the obstacle. Motion planning
would require calculations on sets of points, which can be complicated and time-consuming.

We can simplify the calculations by using a representation scheme in which all the points
that comprise the robot are represented as a single point in an abstract multidimensional
space, which we call the configuration space, or C-space. The idea is that the set of pointsConfiguration space

C-space that comprise the robot can be computed if we know (1) the basic measurements of the robot
(for our triangle robot, the length of the three sides will do) and (2) the current pose of the
robot—its position and orientation.

For our simple triangular robot, two dimensions suffice for the C-space: if we know the
(x,y) coordinates of a specific point on the robot—we’ll use the right-angle vertex—then we
can calculate where every other point of the triangle is (because we know the size and shape of
the triangle and because the triangle cannot rotate). In the lower-left corner of Figure 26.11,
the lavender triangle can be represented by the configuration (0,0).

If we change the rules so that the robot can rotate, then we will need three dimensions,
(x,y,θ), to be able to calculate where every point is. Here θ is the robot’s angle of rotation
in the plane. If the robot also had the ability to stretch itself, growing uniformly by a scaling
factor s, then the C-space would have four dimensions, (x,y,θ,s).
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For now we’ll stick with the simple two-dimensional C-space of the non-rotating triangle
robot. The next task is to figure out where the points in the obstacle are in C-space. Consider
the five dashed-line triangles on the left of Figure 26.11 and notice where the right-angle
vertex is on each of these. Then imagine all the ways that the triangle could slide about.
Obviously, the right-angle vertex can’t go inside the obstacle, and neither can it get any
closer than it is on any of the five dashed-line triangles. So you can see that the area where
the right-angle vertex can’t go—the C-space obstacle—is the five-sided polygon on the right C-space obstacle

of Figure 26.11 labeled Cobs
In everyday language we speak of there being multiple obstacles for the robot—a table, a

chair, some walls. But the math notation is a bit easier if we think of all of these as combining
into one “obstacle” that happens to have disconnected components. In general, the C-space
obstacle is the set of all points q in C such that, if the robot were placed in that configuration,
its workspace geometry would intersect the workspace obstacle.

Let the obstacles in the workspace be the set of points O, and let the set of all points on
the robot in configuration q be A(q). Then the C-space obstacle is defined as

Cobs = {q : q ∈C andA(q)∩O 6= {}}
and the free space is Cfree =C−Cobs. Free space

The C-space becomes more interesting for robots with moving parts. Consider the two-
link arm from Figure 26.12(a). It is bolted to a table so the base does not move, but the arm
has two joints that move independently—we call these degrees of freedom (DOF). Moving Degrees of freedom

(DOF)

the joints alters the (x,y) coordinates of the elbow, the gripper, and every point on the arm.
The arm’s configuration space is two-dimensional: (θshou,θelb), where θshou is the angle of
the shoulder joint, and θelb is the angle of the elbow joint.

Knowing the configuration for our two-link arm means we can determine where each
point on the arm is through simple trigonometry. In general, the forward kinematics map- Forward kinematics

ping is a function
φb : C→W

that takes in a configuration and outputs the location of a particular point b on the robot when
the robot is in that configuration. A particularly useful forward kinematics mapping is that for
the robot’s end effector, φEE . The set of all points on the robot in a particular configuration q
is denoted by A(q)⊂W :

A(q) =
⋃
b

{φb(q)} .

The inverse problem, of mapping a desired location for a point on the robot to the config-
uration(s) the robot needs to be in for that to happen, is known as inverse kinematics: Inverse kinematics

IKb : x ∈W 7→ {q ∈C s.t. φb(q) = x} .
Sometimes the inverse kinematics mapping might take not just a position, but also a desired
orientation as input. When we want a manipulator to grasp an object, for instance, we can
compute a desired position and orientation for its gripper, and use inverse kinematics to de-
termine a goal configuration for the robot. Then a planner needs to find a way to get the robot
from its current configuration to the goal configuration without intersecting obstacles.

Workspace obstacles are often depicted as simple geometric forms—especially in robotics
textbooks, which tend to focus on polygonal obstacles. But how do the obstacles look in con-
figuration space?



948 Chapter 26 Robotics

shou

elb

shoshoshoshoshoshoshoshoshoshoshoshosho

elbelbelbelbelbelbelbelbelbelbelbelbelbelb

e

table

table

left wall

vertical

obstacle

s
w

w

(a) (b)

Figure 26.12 (a) Workspace representation of a robot arm with two degrees of freedom. The
workspace is a box with a flat obstacle hanging from the ceiling. (b) Configuration space of
the same robot. Only white regions in the space are configurations that are free of collisions.
The dot in this diagram corresponds to the configuration of the robot shown on the left.

For the two-link arm, simple obstacles in the workspace, like a vertical line, have very
complex C-space counterparts, as shown in Figure 26.12(b). The different shadings of the
occupied space correspond to the different objects in the robot’s workspace: the dark region
surrounding the entire free space corresponds to configurations in which the robot collides
with itself. It is easy to see that extreme values of the shoulder or elbow angles cause such a
violation. The two oval-shaped regions on both sides of the robot correspond to the table on
which the robot is mounted. The third oval region corresponds to the left wall.

Finally, the most interesting object in configuration space is the vertical obstacle that
hangs from the ceiling and impedes the robot’s motions. This object has a funny shape in
configuration space: it is highly nonlinear and at places even concave. With a little bit of
imagination the reader will recognize the shape of the gripper at the upper left end.

We encourage the reader to pause for a moment and study this diagram. The shape of this
obstacle in C-space is not at all obvious! The dot inside Figure 26.12(b) marks the configu-
ration of the robot in Figure 26.12(a). Figure 26.13 depicts three additional configurations,
both in workspace and in configuration space. In configuration conf-1, the gripper is grasping
the vertical obstacle.

We see that even if the robot’s workspace is represented by flat polygons, the shape of
the free space can be very complicated. In practice, therefore, one usually probes a configu-
ration space instead of constructing it explicitly. A planner may generate a configuration and
then test to see if it is in free space by applying the robot kinematics and then checking for
collisions in workspace coordinates.
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Figure 26.13 Three robot configurations, shown in workspace and configuration space.

26.5.2 Motion planning

The motion planning problem is that of finding a plan that takes a robot from one configura- Motion planning

tion to another without colliding with an obstacle. It is a basic building block for movement
and manipulation. In Section 26.5.4 we will discuss how to do this under complicated dy-
namics, like steering a car that may drift off the path if you take a curve too fast. For now, we
will focus on the simple motion planning problem of finding a geometric path that is collision
free. Motion planning is a quintessentially continuous-state search problem, but it is often
possible to discretize the space and apply the search algorithms from Chapter 3.

The motion planning problem is sometimes referred to as the piano mover’s problem. It Piano mover’s
problem

gets its name from a mover’s struggles with getting a large, irregular-shaped piano from one
room to another without hitting anything. We are given:

• a workspace world W in either R2 for the plane or R3 for three dimensions,
• an obstacle region O⊂W ,
• a robot with a configuration space C and set of points A(q) for q ∈C,
• a starting configuration qs ∈C, and
• a goal configuration qg ∈C.

The obstacle region induces a C-space obstacle Cobs and its corresponding free space Cfree
defined as in the previous section. We need to find a continuous path through free space. We
will use a parameterized curve, τ(t), to represent the path, where τ(0) = qs and τ(1) = qg

and τ(t) for every t between 0 and 1 is some point in C f ree. That is, t parameterizes how
far we are along the path, from start to goal. Note that t acts somewhat like time in that as
t increases the distance along the path increases, but t is always a point on the interval [0,1]
and is not measured in seconds.
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qg

qs

Figure 26.14 A visibility graph. Lines connect every pair of vertices that can “see” each
other—lines that don’t go through an obstacle. The shortest path must lie upon these lines.

The motion planning problem can be made more complex in various ways: defining the
goal as a set of possible configurations rather than a single configuration; defining the goal
in the workspace rather than the C-space; defining a cost function (e.g., path length) to be
minimized; satisfying constraints (e.g., if the path involves carrying a cup of coffee, making
sure that the cup is always oriented upright so the coffee does not spill).

The spaces of motion planning: Let’s take a step back and make sure we understand the
spaces involved in motion planning. First, there is the workspace or world W . Points in W are
points in the everyday three-dimensional world. Next, we have the space of configurations,
C. Points q in C are d-dimensional, with d the robot’s number of degrees of freedom, and
map to sets of points A(q) in W . Finally, there is the space of paths. The space of paths is a
space of functions. Each point in this space maps to an entire curve through C-space. This
space is ∞-dimensional! Intuitively, we need d dimensions for each configuration along the
path, and there are as many configurations on a path as there are points in the number line
interval [0,1]. Now let’s consider some ways of solving the motion planning problem.

Visibility graphs

For the simplified case of two-dimensional configuration spaces and polygonal C-space ob-
stacles, visibility graphs are a convenient way to solve the motion planning problem with aVisibility graph

guaranteed shortest-path solution. Let Vobs ⊂C be the set of vertices of the polygons making
up Cobs, and let V =Vobs∪{qs,qg}.

We construct a graph G = (V,E) on the vertex set V with edges ei j ∈ E connecting a
vertex vi to another vertex v j if the line connecting the two vertices is collision-free—that is,
if {λvi +(1−λ)v j : λ ∈ [0,1]}∩Cobs = {}. When this happens, we say the two vertices “can
see each other,” which is where “visibility” graphs got their name.

To solve the motion planning problem, all we need to do is run a discrete graph search
(e.g., best-first search) on the graph G with starting state qs and goal qg. In Figure 26.14
we see a visibility graph and an optimal three-step solution. An optimal search on visibility
graphs will always give us the optimal path (if one exists), or report failure if no path exists.

Voronoi diagrams

Visibility graphs encourage paths that run immediately adjacent to an obstacle—if you had to
walk around a table to get to the door, the shortest path would be to stick as close to the table
as possible. However, if motion or sensing is nondeterministic, that would put you at risk of
bumping into the table. One way to address this is to pretend that the robot’s body is a bit
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Figure 26.15 A Voronoi diagram showing the set of points (black lines) equidistant to two
or more obstacles in configuration space.

larger than it actually is, providing a buffer zone. Another way is to accept that path length
is not the only metric we want to optimize. Section 26.8.2 shows how to learn a good metric
from human examples of behavior.

A third way is to use a different technique, one that puts paths as far away from obstacles
as possible rather than hugging close to them. A Voronoi diagram is a representation that Voronoi diagram

allows us to do just that. To get an idea for what a Voronoi diagram does, consider a space
where the obstacles are, say, a dozen small points scattered about a plane. Now surround each
of the obstacle points with a region consisting of all the points in the plane that are closer to Region

that obstacle point than to any other obstacle point. Thus, the regions partition the plane. The
Voronoi diagram consists of the set of regions, and the Voronoi graph consists of the edges Voronoi graph

and vertices of the regions.
When obstacles are areas, not points, everything stays pretty much the same. Each region

still contains all the points that are closer to one obstacle than to any other, where distance is
measured to the closest point on an obstacle. The boundaries between regions still correspond
to points that are equidistant between two obstacles, but now the boundary may be a curve
rather than a straight line. Computing these boundaries can be prohibitively expensive in
high-dimensional spaces.

To solve the motion planning problem, we connect the start point qs to the closest point
on the Voronoi graph via a straight line, and the same for the goal point qg. We then use
discrete graph search to find the shortest path on the graph. For problems like navigating
through corridors indoors, this gives a nice path that goes down the middle of the corridor.
However, in outdoor settings it can come up with inefficient paths, for example suggesting an
unnecessary 100 meter detour to stick to the middle of a wide-open 200-meter space.
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Figure 26.16 (a) Value function and path found for a discrete grid cell approximation of the
configuration space. (b) The same path visualized in workspace coordinates. Notice how the
robot bends its elbow to avoid a collision with the vertical obstacle.

Cell decomposition

An alternative approach to motion planning is to discretize the C-space. Cell decompositionCell decomposition

methods decompose the free space into a finite number of contiguous regions, called cells.
These cells are designed so that the path-planning problem within a single cell can be solved
by simple means (e.g., moving along a straight line). The path-planning problem then be-
comes a discrete graph search problem (as with visibility graphs and Voronoi graphs) to find
a path through a sequence of cells.

The simplest cell decomposition consists of a regularly spaced grid. Figure 26.16(a)
shows a square grid decomposition of the space and a solution path that is optimal for this
grid size. Grayscale shading indicates the value of each free-space grid cell—the cost of
the shortest path from that cell to the goal. (These values can be computed by a deterministic
form of the VALUE-ITERATION algorithm given in Figure 16.6 on page 563.) Figure 26.16(b)
shows the corresponding workspace trajectory for the arm. Of course, we could also use the
A∗ algorithm to find a shortest path.

This grid decomposition has the advantage that it is simple to implement, but it suffers
from three limitations. First, it is workable only for low-dimensional configuration spaces,
because the number of grid cells increases exponentially with d, the number of dimensions.
(Sounds familiar? This is the curse of dimensionality.) Second, paths through discretized
state space will not always be smooth. We see in Figure 26.16(a) that the diagonal parts of
the path are jagged and hence very difficult for the robot to follow accurately. The robot can
attempt to smooth out the solution path, but this is far from straightforward.

Third, there is the problem of what to do with cells that are “mixed”—that is, neither
entirely within free space nor entirely within occupied space. A solution path that includes
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such a cell may not be a real solution, because there may be no way to safely cross the
cell. This would make the path planner unsound. On the other hand, if we insist that only
completely free cells may be used, the planner will be incomplete, because it might be the
case that the only paths to the goal go through mixed cells—it might be that a corridor is
actually wide enough for the robot to pass, but the corridor is covered only by mixed cells.

The first approach to this problem is further subdivision of the mixed cells—perhaps
using cells of half the original size. This can be continued recursively until a path is found
that lies entirely within free cells. This method works well and is complete if there is a way to
decide if a given cell is a mixed cell, which is easy only if the configuration space boundaries
have relatively simple mathematical descriptions.

It is important to note that cell decomposition does not necessarily require explicitly rep-
resenting the obstacle space Cobs. We can decide to include a cell or not by using a collision
checker. This is a crucial notion to motion planning. A collision checker is a function γ(q) Collision checker

that maps to 1 if the configuration collides with an obstacle, and 0 otherwise. It is much easier
to check whether a specific configuration is in collision than to explicitly construct the entire
obstacle space Cobs.

Examining the solution path shown in Figure 26.16(a), we can see an additional difficulty
that will have to be resolved. The path contains arbitrarily sharp corners, but a physical robot
has momentum and cannot change direction instantaneously. This problem can be solved by
storing, for each grid cell, the exact continuous state (position and velocity) that was attained
when the cell was reached in the search. Assume further that when propagating information
to nearby grid cells, we use this continuous state as a basis, and apply the continuous robot
motion model for jumping to nearby cells. So we don’t make an instantaneous 90◦ turn; we
make a rounded turn governed by the laws of motion. We can now guarantee that the resulting
trajectory is smooth and can indeed be executed by the robot. One algorithm that implements
this is hybrid A∗. Hybrid A∗

Randomized motion planning

Randomized motion planning does graph search on a random decomposition of the configu-
ration space, rather than a regular cell decomposition. The key idea is to sample a random set
of points and to create edges between them if there is a very simple way to get from one to
the other (e.g., via a straight line) without colliding; then we can search on this graph.

A probabilistic roadmap (PRM) algorithm is one way to leverage this idea. We assume Probabilistic
roadmap (PRM)

access to a collision checker γ (defined on page 953), and to a simple planner B(q1,q2) that Simple planner

returns a path from q1 to q2 (or failure) but does so quickly. This simple planner is not going
to be complete—it might return failure even if a solution actually exists. Its job is to quickly
try to connect q1 and q2 and let the main algorithm know if it succeeds. We will use it to
define whether an edge exists between two vertices.

The algorithm starts by sampling M milestones—points in C f ree—in addition to the Milestone

points qs and qg. It uses rejection sampling, where configurations are sampled randomly
and collision-checked using γ until a total of M milestones are found. Next, the algorithm
uses the simple planner to try to connect pairs of milestones. If the simple planner returns
success, then an edge between the pair is added to the graph; otherwise, the graph remains as
is. We try to connect each milestone either to its k nearest neighbors (we call this k-PRM), or
to all milestones in a sphere of a radius r. Finally, the algorithm searches for a path on this
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Figure 26.17 The probabilistic roadmap (PRM) algorithm. Top left: the start and goal con-
figurations. Top right: sample M collision-free milestones (here M = 5). Bottom left: con-
nect each milestone to its k nearest neighbors (here k = 3). Bottom right: find the shortest
path from the start to the goal on the resulting graph.

graph from qs to qg. If no path is found, then M more milestones are sampled, added to the
graph, and the process is repeated.

Figure 26.17 shows a roadmap with the path found between two configurations. PRMs
are not complete, but they are what is called probabilistically complete—they will eventu-Probabilistically

complete

ally find a path, if one exists. Intuitively, this is because they keep sampling more milestones.
PRMs work well even in high-dimensional configuration spaces.

PRMs are also popular for multi-query planning, in which we have multiple motionMulti-query planning

planning problems within the same C-space. Often, once the robot reaches a goal, it is called
upon to reach another goal in the same workspace. PRMs are really useful, because the robot
can dedicate time up front to constructing a roadmap, and amortize the use of that roadmap
over multiple queries.

Rapidly-exploring random trees

An extension of PRMs called rapidly exploring random trees (RRTs) is popular for single-
Rapidly exploring
random trees
(RRTs)

query planning. We incrementally build two trees, one with qs as the root and one with qg

as the root. Random milestones are chosen, and an attempt is made to connect each new
milestone to the existing trees. If a milestone connects both trees, that means a solution has
been found, as in Figure 26.18. If not, the algorithm finds the closest point in each tree and
adds to the tree a new edge that extends from the point by a distance δ towards the milestone.
This tends to grow the tree towards previously unexplored sections of the space.

Roboticists love RRTs for their ease of use. However, RRT solutions are typically nonop-
timal and lack smoothness. Therefore, RRTs are often followed by a post-processing step.
The most common one is “short-cutting,” in which we randomly select one of the vertices on
the solution path and try to remove it by connecting its neighbors to each other (via the simple
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qg

qs
qsample

Figure 26.18 The bidirectional RRT algorithm constructs two trees (one from the start, the
other from the goal) by incrementally connecting each sample to the closest node in each
tree, if the connection is possible. When a sample connects to both trees, that means we have
found a solution path.

(a) (b) (c)

Figure 26.19 Snapshots of a trajectory produced by an RRT and post-processed with short-
cutting. Courtesy of Anca Dragan.

planner). We do this repeatedly for as many steps as we have compute time for. Even then,
the trajectories might look a little unnatural due to the random positions of the milestone that
were selected, as shown in Figure 26.19.

RRT∗ is a modification to RRT that makes the algorithm asymptotically optimal: the RRT∗

solution converges to the optimal solution as more and more milestones are sampled. The
key idea is to pick the nearest neighbor based on a notion of cost to come rather than distance
from the milestone only, and to rewire the tree, swapping parents of older vertices if it is
cheaper to reach them via the new milestone.

Trajectory optimization for kinematic planning

Randomized sampling algorithms tend to first construct a complex but feasible path and then
optimize it. Trajectory optimization does the opposite: it starts with a simple but infeasible
path, and then works to push it out of collision. The goal is to find a path that optimizes a cost
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function1 over paths. That is, we want to minimize the cost function J(τ), where τ(0) = qs

and τ(1) = qg.
J is called a functional because it is a function over functions. The argument to J is

τ , which is itself a function: τ(t) takes as input a point in the [0,1] interval and maps it to
a configuration. A standard cost functional trades off between two important aspects of the
robot’s motion: collision avoidance and efficiency,

J = Jobs +λJeff

where the efficiency Jeff measures the length of the path and may also measure smoothness. A
convenient way to define efficiency is with a quadratic: it integrates the squared first derivative
of τ (we will see in a bit why this does in fact incentivize short paths):

Jeff =
∫ 1

0

1
2
‖τ̇(s)‖2ds .

For the obstacle term, assume we can compute the distance d(x) from any point x ∈W to
the nearest obstacle edge. This distance is positive outside of obstacles, 0 at the edge, and
negative inside. This is called a signed distance field. We can now define a cost field in theSigned distance field

workspace, call it c, that has high cost inside of obstacles, and a small cost right outside. With
this cost, we can make points in the workspace really hate being inside obstacles, and dislike
being right next to them (avoiding the visibility graph problem of their always hanging out
by the edges of obstacles). Of course, our robot is not a point in the workspace, so we have
some more work to do—we need to consider all points b on the robot’s body:

Jobs =
∫ 1

0

∫
b

c(φb(τ(s))︸ ︷︷ ︸
∈W

)‖ d
ds
φb(τ(s))︸ ︷︷ ︸
∈W

‖ db ds .

This is called a path integral—it does not just integrate c along the way for each body point,Path integral

but it multiplies by the derivative to make the cost invariant to retiming of the path. Imagine a
robot sweeping through the cost field, accumulating cost as is moves. Regardless of how fast
or slow the arm moves through the field, it must accumulate the exact same cost.

The simplest way to solve the optimization problem above and find a path is gradient
descent. If you are wondering how to take gradients of functionals with respect to functions,
something called the calculus of variations is here to help. It is especially easy for functionals
of the form

J[τ ] =
∫ 1

0
F(s, τ(s), τ̇(s))ds

which are integrals of functions that depend just on the parameter s, the value of the function
at s, and the derivative of the function at s. In such a case, the Euler-Lagrange equationEuler-Lagrange

equation

says that the gradient is

∇τJ(s) =
∂F

∂τ(s)
(s)− d

dt
∂F

∂ τ̇(s)
(s) .

If we look closely at Jeff and Jobs, they both follow this pattern. In particular for Jeff , we have
F(s, τ(s), τ̇(s)) = ‖τ̇(s)‖2. To get a bit more comfortable with this, let’s compute the gradient

1 Roboticists like to minimize a cost function J, whereas in other parts of AI we try to maximize a utility function
U or a reward R.
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Figure 26.20 Trajectory optimization for motion planning. Two point-obstacles with circu-
lar bands of decreasing cost around them. The optimizer starts with the straight line trajectory,
and lets the obstacles bend the line away from collisions, finding the minimum path through
the cost field.

for Jeff only. We see that F does not have a direct dependence on τ(s), so the first term in the
formula is 0. We are left with

∇τJ(s) = 0− d
dt
τ̇(s)

since the partial of F with respect to τ̇(s) is τ̇(s).
Notice how we made things easier for ourselves when defining Jeff —it’s a nice quadratic

of the derivative (and we even put a 1
2 in front so that the 2 nicely cancels out). In practice,

you will see this trick happen a lot for optimization—the art is not just in choosing how to
optimize the cost function, but also in choosing a cost function that will play nicely with how
you will optimize it. Simplifying our gradient, we get

∇τJ(s) =−τ̈(s) .
Now, since Jeff is a quadratic, setting this gradient to 0 gives us the solution for τ if we
didn’t have to deal with obstacles. Integrating once, we get that the first derivative needs
to be constant; integrating again we get that τ(s) = a · s+ b, with a and b determined by
the endpoint constraints for τ(0) and τ(1). The optimal path with respect to Jeff is thus the
straight line from start to goal! It is indeed the most efficient way to go from one to the other
if there are no obstacles to worry about.

Of course, the addition of Jobs is what makes things difficult—and we will spare you
deriving its gradient here. The robot would typically initialize its path to be a straight line,
which would plow right through some obstacles. It would then calculate the gradient of the
cost about the current path, and the gradient would serve to push the path away from the
obstacles (Figure 26.20). Keep in mind that gradient descent will only find a locally optimal
solution—just like hill climbing. Methods such as simulated annealing (Section 4.1.2) can be
used for exploration, to make it more likely that the local optimum is a good one.

26.5.3 Trajectory tracking control

We have covered how to plan motions, but not how to actually move—to apply current to
motors, to produce torque, to move the robot. This is the realm of control theory, a field Control theory

of increasing importance in AI. There are two main questions to deal with: how do we turn
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Figure 26.21 The task of reaching to grasp a bottle solved with a trajectory optimizer. Left:
the initial trajectory, plotted for the end effector. Middle: the final trajectory after optimiza-
tion. Right: the goal configuration. Courtesy of Anca Dragan. See Ratliff et al. (2009).

a mathematical description of a path into a sequence of actions in the real world (open-loop
control), and how do we make sure that we are staying on track (closed-loop control)?

From configurations to torques for open-loop tracking: Our path τ(t) gives us config-
urations. The robot starts at rest at qs = τ(0). From there the robot’s motors will turn currents
into torques, leading to motion. But what torques should the robot aim for, such that it ends
up at qg = τ(1)?

This is where the idea of a dynamics model (or transition model) comes in. We can giveDynamics model

the robot a function f that computes the effects torques have on the configuration. Remem-
ber F = ma from physics? Well, there is something like that for torques too, in the form
u = f−1(q, q̇, q̈), with u a torque, q̇ a velocity, and q̈ an acceleration.2 If the robot is at config-
uration q and velocity q̇, and applied torque u, that would lead to acceleration q̈ = f (q, q̇,u).
The tuple (q, q̇) is a dynamic state, because it includes velocity, whereas q is the kinematicDynamic state

state and is not sufficient for computing exactly what torque to apply. f is a deterministicKinematic state

dynamics model in the MDP over dynamic states with torques as actions. f−1 is the inverse
dynamics, telling us what torque to apply if we want a particular acceleration, which leadsInverse dynamics

to a change in velocity and thus a change in dynamic state.
Now, naively, we could think of t ∈ [0,1] as “time” on a scale from 0 to 1 and select our

torque using inverse dynamics:

u(t) = f−1(τ(t), τ̇(t), τ̈(t)) (26.2)

assuming that the robot starts at (τ(0), τ̇(0)). In reality though, things are not that easy.
The path τ was created as a sequence of points, without taking velocities and accelera-

tions into account. As such, the path may not satisfy τ̇(0) = 0 (the robot starts at 0 velocity),
or even that τ is differentiable (let alone twice differentiable). Further, the meaning of the
endpoint “1” is unclear: how many seconds does that map to?

In practice, before we even think of tracking a reference path, we usually retime it, thatRetiming

is, transform it into a trajectory ξ(t) that maps the interval [0,T ] for some time duration T
into points in the configuration space C. (The symbol ξ is the Greek letter Xi.) Retiming is
trickier than you might think, but there are approximate ways to do it, for instance by picking
a maximum velocity and acceleration, and using a profile that accelerates to that maximum

2 We omit the details of f−1 here, but they involve mass, inertia, gravity, and Coriolis and centrifugal forces.
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(a) (b) (c)

Figure 26.22 Robot arm control using (a) proportional control with gain factor 1.0, (b) pro-
portional control with gain factor 0.1, and (c) PD (proportional derivative) control with gain
factors 0.3 for the proportional component and 0.8 for the differential component. In all cases
the robot arm tries to follow the smooth line path, but in (a) and (b) deviates substantially from
the path.

velocity, stays there as long as it can, and then decelerates back to 0. Assuming we can do
this, Equation (26.2) above can be rewritten as

u(t) = f−1(ξ(t), ξ̇(t), ξ̈(t)) . (26.3)

Even with the change from τ to ξ, an actual trajectory, the equation of applying torques from
above (called a control law) has a problem in practice. Thinking back to the reinforcement Control law

learning section, you might guess what it is. The equation works great in the situation where
f is exact, but pesky reality gets in the way as usual: in real systems, we can’t measure masses
and inertias exactly, and f might not properly account for physical phenomena like stiction in Stiction

the motors (the friction that tends to prevent stationary surfaces from being set in motion—to
make them stick). So, when the robot arm starts applying those torques but f is wrong, the
errors accumulate and you deviate further and further from the reference path.

Rather than just letting those errors accumulate, a robot can use a control process that
looks at where it thinks it is, compares that to where it wanted to be, and applies a torque to
minimize the error.

A controller that provides force in negative proportion to the observed error is known as
a proportional controller or P controller for short. The equation for the force is: P controller

u(t) = KP(ξ(t)−qt)

where qt is the current configuration, and KP is a constant representing the gain factor of the Gain factor

controller. KP regulates how strongly the controller corrects for deviations between the actual
state qt and the desired state ξ(t).

Figure 26.22(a) illustrates what can go wrong with proportional control. Whenever a de-
viation occurs—whether due to noise or to constraints on the forces the robot can apply—the
robot provides an opposing force whose magnitude is proportional to this deviation. Intu-
itively, this might appear plausible, since deviations should be compensated by a counterforce
to keep the robot on track. However, as Figure 26.22(a) illustrates, a proportional controller
can cause the robot to apply too much force, overshooting the desired path and zig-zagging
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back and forth. This is the result of the natural inertia of the robot: once driven back to its
reference position the robot has a velocity that can’t instantaneously be stopped.

In Figure 26.22(a), the parameter KP = 1. At first glance, one might think that choosing
a smaller value for KP would remedy the problem, giving the robot a gentler approach to
the desired path. Unfortunately, this is not the case. Figure 26.22(b) shows a trajectory for
KP = .1, still exhibiting oscillatory behavior. The lower value of the gain parameter helps, but
does not solve the problem. In fact, in the absence of friction, the P controller is essentially a
spring law; so it will oscillate indefinitely around a fixed target location.

There are a number of controllers that are superior to the simple proportional control law.
A controller is said to be stable if small perturbations lead to a bounded error between theStable

robot and the reference signal. It is said to be strictly stable if it is able to return to and thenStrictly stable

stay on its reference path upon such perturbations. Our P controller appears to be stable but
not strictly stable, since it fails to stay anywhere near its reference trajectory.

The simplest controller that achieves strict stability in our domain is a PD controller.PD controller

The letter ‘P’ stands again for proportional, and ‘D’ stands for derivative. PD controllers are
described by the following equation:

u(t) = KP(ξ(t)−qt)+KD(ξ̇(t)− q̇t) . (26.4)

As this equation suggests, PD controllers extend P controllers by a differential component,
which adds to the value of u(t) a term that is proportional to the first derivative of the error
ξ(t)− qt over time. What is the effect of such a term? In general, a derivative term damp-
ens the system that is being controlled. To see this, consider a situation where the error is
changing rapidly over time, as is the case for our P controller above. The derivative of this
error will then counteract the proportional term, which will reduce the overall response to
the perturbation. However, if the same error persists and does not change, the derivative will
vanish and the proportional term dominates the choice of control.

Figure 26.22(c) shows the result of applying this PD controller to our robot arm, using as
gain parameters KP = .3 and KD = .8. Clearly, the resulting path is much smoother, and does
not exhibit any obvious oscillations.

PD controllers do have failure modes, however. In particular, PD controllers may fail to
regulate an error down to zero, even in the absence of external perturbations. Often such a
situation is the result of a systematic external force that is not part of the model. For example,
an autonomous car driving on a banked surface may find itself systematically pulled to one
side. Wear and tear in robot arms causes similar systematic errors. In such situations, an
over-proportional feedback is required to drive the error closer to zero. The solution to this
problem lies in adding a third term to the control law, based on the integrated error over time:

u(t) = KP(ξ(t)−qt)+KI

∫ t

0
(ξ(s)−qs)ds+KD(ξ̇(t)− q̇t) . (26.5)

Here KI is a third gain parameter. The term
∫ t

0(ξ(s) calculates the integral of the error over
time. The effect of this term is that long-lasting deviations between the reference signal and
the actual state are corrected. Integral terms, then, ensure that a controller does not exhibit
systematic long-term error, although they do pose a danger of oscillatory behavior.

A controller with all three terms is called a PID controller (for proportional integralPID controller

derivative). PID controllers are widely used in industry, for a variety of control problems.
Think of the three terms as follows—proportional: try harder the farther away you are from
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the path; derivative: try even harder if the error is increasing; integral: try harder if you
haven’t made progress for a long time.

A middle ground between open-loop control based on inverse dynamics and closed-loop
PID control is called computed torque control. We compute the torque our model thinks we Computed torque

control
will need, but compensate for model inaccuracy with proportional error terms:

u(t) = f−1(ξ(t), ξ̇(t), ξ̈(t))︸ ︷︷ ︸
feedforward

+m(ξ(t))
(
KP(ξ(t)−qt)+KD(ξ̇(t)− q̇t)

)︸ ︷︷ ︸
feedback

. (26.6)

The first term is called the feedforward component because it looks forward to where the Feedforward
component

robot needs to go and computes what torque might be required. The second is the feedback
component because it feeds the current error in the dynamic state back into the control law. Feedback

component

m(q) is the inertia matrix at configuration q—unlike normal PD control, the gains change
with the configuration of the system.

Plans versus policies

Let’s take a step back and make sure we understand the analogy between what happened so far
in this chapter and what we learned in the search, MDP, and reinforcement learning chapters.
With motion in robotics, we are really considering an underlying MDP where the states are
dynamic states (configuration and velocity), and the actions are control inputs, usually in
the form of torques. If you take another look at our control laws above, they are policies,
not plans—they tell the robot what action to take from any state it might reach. However,
they are usually far from optimal policies. Because the dynamic state is continuous and high
dimensional (as is the action space), optimal policies are computationally difficult to extract.

Instead, what we did here is to break up the problem. We come up with a plan first, in
a simplified state and action space: we use only the kinematic state, and assume that states
are reachable from one another without paying attention to the underlying dynamics. This is
motion planning, and it gives us the reference path. If we knew the dynamics perfectly, we
could turn this into a plan for the original state and action space with Equation (26.3).

But because our dynamics model is typically erroneous, we turn it instead into a policy
that tries to follow the plan—getting back to it when it drifts away. When doing this, we
introduce suboptimality in two ways: first by planning without considering dynamics, and
second by assuming that if we deviate from the plan, the optimal thing to do is to return to
the original plan. In what follows, we describe techniques that compute policies directly over
the dynamic state, avoiding the separation altogether.

26.5.4 Optimal control

Rather than using a planner to create a kinematic path, and only worrying about the dynamics
of the system after the fact, here we discuss how we might be able to do it all at once. We’ll
take the trajectory optimization problem for kinematic paths, and turn it into true trajectory
optimization with dynamics: we will optimize directly over the actions, taking the dynamics
(or transitions) into account.

This brings us much closer to what we’ve seen in the search and MDP chapters. If we
know the system’s dynamics, then we can find a sequence of actions to execute, as we did in
Chapter 3. If we’re not sure, then we might want a policy, as in Chapter 16.
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In this section, we are looking more directly at the underlying MDP the robot works
in. We’re switching from the familiar discrete MDPs to continuous ones. We will denote
our dynamic state of the world by x, as is common practice—the equivalent of s in discrete
MDPs. Let xs and xg be the starting and goal states.

We want to find a sequence of actions that, when executed by the robot, result in state-
action pairs with low cumulative cost. The actions are torques which we denote with u(t)
for t starting at 0 and ending at T . Formally, we want to find the sequence of torques u that
minimize a cumulative cost J:

min
u

∫ T
0 J(x(t),u(t))dt (26.7)

subject to the constraints

∀t, ẋ(t) = f (x(t),u(t))

x(0) = xs, x(T ) = xg .

How is this connected to motion planning and trajectory tracking control? Well, imagine
we take the notion of efficiency and clearance away from the obstacles and put it into the cost
function J, just as we did before in trajectory optimization over kinematic state. The dynamic
state is the configuration and velocity, and torques u change it via the dynamics f from open-
loop trajectory tracking. The difference is that now we’re thinking about the configurations
and the torques at the same time. Sometimes, we might want to treat collision avoidance as a
hard constraint as well, something we’ve also mentioned before when we looked at trajectory
optimization for the kinematic state only.

To solve this optimization problem, we can take gradients of J—not with respect to the
sequence τ of configurations anymore, but directly with respect to the controls u. It is some-
times helpful to include the state sequence x as a decision variable too, and use the dynamics
constraints to ensure that x and u are consistent. There are various trajectory optimization
techniques using this approach; two of them go by the names multiple shooting and direct
collocation. None of these techniques will find the global optimal solution, but in practice
they can effectively make humanoid robots walk and make autonomous cars drive.

Magic happens when in the problem above, J is quadratic and f is linear in x and u. We
want to minimize

min
∫

∞

0
xT Qx+uT Rudt subject to ∀t, ẋ(t) = Ax(t)+Bu(t) .

We can optimize over an infinite horizon rather than a finite one, and we obtain a policy
from any state rather than just a sequence of controls. Q and R need to be positive definite
matrices for this to work. This gives us the linear quadratic regulator (LQR). With LQR,Linear quadratic

regulator (LQR)

the optimal value function (called cost to go) is quadratic, and the optimal policy is linear.
The policy looks like u = −Kx, where finding the matrix K requires solving an algebraic
Riccati equation—no local optimization, no value iteration, no policy iteration are needed!Riccati equation

Because of the ease of finding the optimal policy, LQR finds many uses in practice de-
spite the fact that real problems seldom actually have quadratic costs and linear dynamics. A
really useful method is called iterative LQR (ILQR), which works by starting with a solu-Iterative LQR

(ILQR)

tion and then iteratively computing a linear approximation of the dynamics and a quadratic
approximation of the cost around it, then solving the resulting LQR system to arrive at a new
solution. Variants of LQR are also often used for trajectory tracking.
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26.6 Planning Uncertain Movements

In robotics, uncertainty arises from partial observability of the environment and from the
stochastic (or unmodeled) effects of the robot’s actions. Errors can also arise from the use
of approximation algorithms such as particle filtering, which does not give the robot an exact
belief state even if the environment is modeled perfectly.

The majority of today’s robots use deterministic algorithms for decision making, such
as the path-planning algorithms of the previous section, or the search algorithms that were
introduced in Chapter 3. These deterministic algorithms are adapted in two ways: first, they
deal with the continuous state space by turning it into a discrete space (for example with
visibility graphs or cell decomposition). Second, they deal with uncertainty in the current
state by choosing the most likely state from the probability distribution produced by the Most likely state

state estimation algorithm. That approach makes the computation faster and makes a better
fit for the deterministic search algorithms. In this section we discuss methods for dealing with
uncertainty that are analogous to the more complex search algorithms covered in Chapter 4.

First, instead of deterministic plans, uncertainty calls for policies. We already discussed
how trajectory tracking control turns a plan into a policy to compensate for errors in dynamics.
Sometimes though, if the most likely hypothesis changes enough, tracking the plan designed
for a different hypothesis is too suboptimal. This is where online replanning comes in: we Online replanning

can recompute a new plan based on the new belief. Many robots today use a technique called
model predictive control (MPC), where they plan for a shorter time horizon, but replan Model predictive

control (MPC)

at every time step. (MPC is therefore closely related to real-time search and game-playing
algorithms.) This effectively results in a policy: at every step, we run a planner and take the
first action in the plan; if new information comes along, or we end up not where we expected,
that’s OK, because we are going to replan anyway and that will tell us what to do next.

Second, uncertainty calls for information gathering actions. When we consider only the
information we have and make a plan based on it (this is called separating estimation from
control), we are effectively solving (approximately) a new MDP at every step, corresponding
to our current belief about where we are or how the world works. But in reality, uncertainty is
better captured by the POMDP framework: there is something we don’t directly observe, be
it the robot’s location or configuration, the location of objects in the world, or the parameters
of the dynamics model itself—for example, where exactly is the center of mass of link two
on this arm?

What we lose when we don’t solve the POMDP is the ability to reason about future
information the robot will get: in MDPs we only plan with what we know, not with what we
might eventually know. Remember the value of information? Well, robots that plan using
their current belief as if they will never find out anything more fail to account for the value of
information. They will never take actions that seem suboptimal right now according to what
they know, but that will actually result in a lot of information and enable the robot to do well.

What does such an action look like for a navigation robot? The robot could get close
to a landmark to get a better estimate of where it is, even if that landmark is out of the way
according to what it currently knows. This action is optimal only if the robot considers the
new observations it will get, as opposed to looking only at the information it already has.

To get around this, robotics techniques sometimes define information gathering actions
explicitly—such as moving a hand until it touches a surface (called guarded movements)— Guarded movement
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Figure 26.23 A two-dimensional environment, velocity uncertainty cone, and envelope of
possible robot motions. The intended velocity is v, but with uncertainty the actual velocity
could be anywhere in Cv, resulting in a final configuration somewhere in the motion envelope,
which means we wouldn’t know if we hit the hole or not.

and make sure the robot does that before coming up with a plan for reaching its actual goal.
Each guarded motion consists of (1) a motion command and (2) a termination condition,
which is a predicate on the robot’s sensor values saying when to stop.

Sometimes, the goal itself could be reached via a sequence of guarded moves guaranteed
to succeed regardless of uncertainty. As an example, Figure 26.23 shows a two-dimensional
configuration space with a narrow vertical hole. It could be the configuration space for inser-
tion of a rectangular peg into a hole or a car key into the ignition. The motion commands are
constant velocities. The termination conditions are contact with a surface. To model uncer-
tainty in control, we assume that instead of moving in the commanded direction, the robot’s
actual motion lies in the cone Cv about it.

The figure shows what would happen if the robot attempted to move straight down from
the initial configuration. Because of the uncertainty in velocity, the robot could move any-
where in the conical envelope, possibly going into the hole, but more likely landing to one
side of it. Because the robot would not then know which side of the hole it was on, it would
not know which way to move.

A more sensible strategy is shown in Figures 26.24 and 26.25. In Figure 26.24, the robot
deliberately moves to one side of the hole. The motion command is shown in the figure,
and the termination test is contact with any surface. In Figure 26.25, a motion command is
given that causes the robot to slide along the surface and into the hole. Because all possible
velocities in the motion envelope are to the right, the robot will slide to the right whenever it
is in contact with a horizontal surface.

It will slide down the right-hand vertical edge of the hole when it touches it, because
all possible velocities are down relative to a vertical surface. It will keep moving until it
reaches the bottom of the hole, because that is its termination condition. In spite of the
control uncertainty, all possible trajectories of the robot terminate in contact with the bottom
of the hole—that is, unless surface irregularities cause the robot to stick in one place.

Other techniques beyond guarded movements change the cost function to incentivize ac-
tions we know will lead to information—like the coastal navigation heuristic which requiresCoastal navigation

the robot to stay near known landmarks. More generally, techniques can incorporate the ex-
pected information gain (reduction of entropy of the belief) as a term in the cost function,
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Figure 26.24 The first motion command and the resulting envelope of possible robot mo-
tions. No matter what actual motion ensues, we know the final configuration will be to the
left of the hole.
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Figure 26.25 The second motion command and the envelope of possible motions. Even with
error, we will eventually get into the hole.

leading to the robot explicitly reasoning about how much information each action might bring
when deciding what to do. While more difficult computationally, such approaches have the
advantage that the robot invents its own information gathering actions rather than relying on
human-provided heuristics and scripted strategies that often lack flexibility.

26.7 Reinforcement Learning in Robotics

Thus far we have considered tasks in which the robot has access to the dynamics model of
the world. In many tasks, it is very difficult to write down such a model, which puts us in the
domain of reinforcement learning (RL).

One challenge of RL in robotics is the continuous nature of the state and action spaces,
which we handle either through discretization, or, more commonly, through function approxi-
mation. Policies or value functions are represented as combinations of known useful features,
or as deep neural networks. Neural nets can map from raw inputs directly to outputs, and thus
largely avoid the need for feature engineering, but they do require more data.

A bigger challenge is that robots operate in the real world. We have seen how reinforce-
ment learning can be used to learn to play chess or Go by playing simulated games. But when
a real robot moves in the real world, we have to make sure that its actions are safe (things
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(a) (b) (c)

Figure 26.26 Training a robust policy. (a) Multiple simulations are run of a robot hand ma-
nipulating objects, with different randomized parameters for physics and lighting. Courtesy
of Wojciech Zaremba. (b) The real-world environment, with a single robot hand in the center
of a cage, surrounded by cameras and range finders. (c) Simulation and real-world train-
ing yields multiple different policies for grasping objects; here a pinch grasp and a quadpod
grasp. Courtesy of OpenAI. See Andrychowicz et al. (2018a).

break!), and we have to accept that progress will be slower than in a simulation because the
world refuses to move faster than one second per second. Much of what is interesting about
using reinforcement learning in robotics boils down to how we might reduce the real world
sample complexity—the number of interactions with the physical world that the robot needs
before it has learned how to do the task.

26.7.1 Exploiting models

A natural way to avoid the need for many real-world samples is to use as much knowledge
of the world’s dynamics as possible. For instance, we might not know exactly what the
coefficient of friction or the mass of an object is, but we might have equations that describe
the dynamics as a function of these parameters.

In such a case, model-based reinforcement learning (Chapter 23) is appealing, where
the robot can alternate between fitting the dynamics parameters and computing a better pol-
icy. Even if the equations are incorrect because they fail to model every detail of physics,
researchers have experimented with learning an error term, in addition to the parameters, that
can compensate for the inaccuracy of the physical model. Or, we can abandon the equations
and instead fit locally linear models of the world that each approximate the dynamics in a
region of the state space, an approach that has been successful in getting robots to master
complex dynamic tasks like juggling.

A model of the world can also be useful in reducing the sample complexity of model-free
reinforcement learning methods by doing sim-to-real transfer: transferring policies that workSim-to-real
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in simulation to the real world. The idea is to use the model as a simulator for a policy search
(Section 23.5). To learn a policy that transfers well, we can add noise to the model during
training, thereby making the policy more robust. Or, we can train policies that will work
with a variety of models by sampling different parameters in the simulations—sometimes
referred to as domain randomization. An example is in Figure 26.26, where a dexterous Domain

randomization
manipulation task is trained in simulation by varying visual attributes, as well as physical
attributes like friction or damping.

Finally, hybrid approaches that borrow ideas from both model-based and model-free al-
gorithms are meant to give us the best of both. The hybrid approach originated with the Dyna
architecture, where the idea was to iterate between acting and improving the policy, but the
policy improvement would come in two complementary ways: 1) the standard model-free
way of using the experience to directly update the policy, and 2) the model-based way of
using the experience to fit a model, then plan with it to generate a policy.

More recent techniques have experimented with fitting local models, planning with them
to generate actions, and using these actions as supervision to fit a policy, then iterating to get
better and better models around the areas that the policy needs. This has been successfully
applied in end-to-end learning, where the policy takes pixels as input and directly outputs
torques as actions—it enabled the first demonstration of deep RL on physical robots.

Models can also be exploited for the purpose of ensuring safe exploration. Learning
slowly but safely may be better than learning quickly but crashing and burning half way
through. So arguably, more important than reducing real-world samples is reducing real-
world samples in dangerous states—we don’t want robots falling off cliffs, and we don’t
want them breaking our favorite mugs or, even worse, colliding with objects and people. An
approximate model, with uncertainty associated to it (for example by considering a range of
values for its parameters), can guide exploration and impose constraints on the actions that
the robot is allowed to take in order to avoid these dangerous states. This is an active area of
research in robotics and control.

26.7.2 Exploiting other information

Models are useful, but there is more we can do to further reduce sample complexity.
When setting up a reinforcement learning problem, we have to select the state and action

spaces, the representation of the policy or value function, and the reward function we’re using.
These decisions have a large impact on how easy or how hard we are making the problem.

One approach is to use higher-level motion primitives instead of low-level actions like Motion primitive

torque commands. A motion primitive is a parameterized skill that the robot has. For exam-
ple, a robotic soccer player might have the skill of “pass the ball to the player at (x,y).” All
the policy needs to do is to figure out how to combine them and set their parameters, instead
of reinventing them. This approach often learns much faster than low-level approaches, but
does restrict the space of possible behaviors that the robot can learn.

Another way to reduce the number of real-world samples required for learning is to reuse
information from previous learning episodes on other tasks, rather than starting from scratch.
This falls under the umbrella of metalearning or transfer learning.

Finally, people are a great source of information. In the next section, we talk about how
to interact with people, and part of it is how to use their actions to guide the robot’s learning.
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26.8 Humans and Robots

Thus far, we’ve focused on a robot planning and learning how to act in isolation. This is
useful for some robots, like the rovers we send out to explore distant planets on our behalf.
But, for the most part, we do not build robots to work in isolation. We build them to help us,
and to work in human environments, around and with us.

This raises two complementary challenges. First is optimizing reward when there are
people acting in the same environment as the robot. We call this the coordination problem
(see Section 17.1). When the robot’s reward depends on not just its own actions, but also the
actions that people take, the robot has to choose its actions in a way that meshes well with
theirs. When the human and the robot are on the same team, this turns into collaboration.

Second is the challenge of optimizing for what people actually want. If a robot is to
help people, its reward function needs to incentivize the actions that people want the robot to
execute. Figuring out the right reward function (or policy) for the robot is itself an interaction
problem. We will explore these two challenges in turn.

26.8.1 Coordination

Let’s assume for now, as we have been, that the robot has access to a clearly defined reward
function. But, instead of needing to optimize it in isolation, now the robot needs to optimize
it around a human who is also acting. For example, as an autonomous car merges on the
highway, it needs to negotiate the maneuver with the human driver coming in the target lane—
should it accelerate and merge in front, or slow down and merge behind? Later, as it pulls to
a stop sign, preparing to take a right, it has to watch out for the cyclist in the bicycle lane, and
for the pedestrian about to step onto the crosswalk.

Or, consider a mobile robot in a hallway. Someone heading straight toward the robot
steps slightly to the right, indicating which side of the robot they want to pass on. The robot
has to respond, clarifying its intentions.

Humans as approximately rational agents

One way to formulate coordination with a human is to model it as a game between the robot
and the human (Section 17.2). With this approach, we explicitly make the assumption that
people are agents incentivized by objectives. This does not automatically mean that they are
perfectly rational agents (i.e., find optimal solutions in the game), but it does mean that the
robot can structure the way it reasons about the human via the notion of possible objectives
that the human might have. In this game:

• the state of the environment captures the configurations of both the robot and human
agents; call it x = (xR,xH);

• each agent can take actions, uR and uH respectively;
• each agent has an objective that can be represented as a cost, JR and JH : each agent

wants to get to its goal safely and efficiently;
• and, as in any game, each objective depends on the state and on the actions of both

agents: JR(x,uR,uH) and JH(x,uH ,uR). Think of the car-pedestrian interaction—the car
should stop if the pedestrian crosses, and should go forward if the pedestrian waits.

Three important aspects complicate this game. First is that the human and the robot don’t
necessarily know each other’s objectives. This makes it an incomplete information game.Incomplete

information game
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Second is that the state and action spaces are continuous, as they’ve been throughout this
chapter. We learned in Chapter 6 how to do tree search to tackle discrete games, but how do
we tackle continuous spaces?

Third, even though at the high level the game model makes sense—humans do move,
and they do have objectives—a human’s behavior might not always be well-characterized as
a solution to the game. The game comes with a computational challenge not only for the
robot, but for us humans too. It requires thinking about what the robot will do in response to
what the person does, which depends on what the robot thinks the person will do, and pretty
soon we get to “what do you think I think you think I think”— it’s turtles all the way down!
Humans can’t deal with all of that, and exhibit certain suboptimalities. This means that the
robot should account for these suboptimalities.

So, then, what is an autonomous car to do when the coordination problem is this hard?
We will do something similar to what we’ve done before in this chapter. For motion planning
and control, we took an MDP and broke it up into planning a trajectory and then tracking it
with a controller. Here too, we will take the game, and break it up into making predictions
about human actions, and deciding what the robot should do given these predictions.

Predicting human action

Predicting human actions is hard because they depend on the robot’s actions and vice versa.
One trick that robots use is to pretend the person is ignoring the robot. The robot assumes
people are noisily optimal with respect to their objective, which is unknown to the robot and
is modeled as no longer dependent on the robot’s actions: JH(x,uH). In particular, the higher
the value of an action for the objective (the lower the cost to go), the more likely the human
is to take it. The robot can create a model for P(uH | x,JH), for instance using the softmax
function from page 862:

P(uH | x,JH) ∝ e−Q(x,uH ;JH) (26.8)

with Q(x,uH ;JH) the Q-value function corresponding to JH (the negative sign is there because
in robotics we like to minimize cost, not maximize reward). Note that the robot does not
assume perfectly optimal actions, nor does it assume that the actions are chosen based on
reasoning about the robot at all.

Armed with this model, the robot uses the human’s ongoing actions as evidence about JH .
If we have an observation model for how human actions depend on the human’s objective,
each human action can be incorporated to update the robot’s belief over what objective the
person has:

b′(JH) ∝ b(JH)P(uH | x,JH) . (26.9)

An example is in Figure 26.27: the robot is tracking a human’s location and as the hu-
man moves, the robot updates its belief over human goals. As the human heads toward the
windows, the robot increases the probability that the goal is to look out the window, and
decreases the probability that the goal is going to the kitchen, which is in the other direction.

This is how the human’s past actions end up informing the robot about what the human
will do in the future. Having a belief about the human’s goal helps the robot anticipate
what next actions the human will take. The heatmap in the figure shows the robot’s future
predictions: red is most probable; blue least probable.
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(a) (b) (c)

Figure 26.27 Making predictions by assuming that people are noisily rational given their
goal: the robot uses the past actions to update a belief over what goal the person is heading
to, and then uses the belief to make predictions about future actions. (a) The map of a room.
(b) Predictions after seeing a small part of the person’s trajectory (white path); (c) Predictions
after seeing more human actions: the robot now knows that the person is not heading to the
hallway on the left, because the path taken so far would be a poor path if that were the
person’s goal. Images courtesy of Brian D. Ziebart. See Ziebart et al. (2009).

The same can happen in driving. We might not know how much another driver values
efficiency, but if we see them accelerate as someone is trying to merge in front of them, we
now know a bit more about them. And once we know that, we can better anticipate what they
will do in the future—the same driver is likely to come closer behind us, or weave through
traffic to get ahead.

Once the robot can make predictions about human future actions, it has reduced its prob-
lem to solving an MDP. The human actions complicate the transition function, but as long as
the robot can anticipate what action the person will take from any future state, the robot can
calculate P(x′ | x,uR): it can compute P(uH | x) from P(uH | x,JH) by marginalizing over JH ,
and combine it with P(x′ | x,uR,uH), the transition (dynamics) function for how the world
updates based on both the robot’s and the human’s actions. In Section 26.5 we focused on
how to solve this in continuous state and action spaces for deterministic dynamics, and in
Section 26.6 we discussed doing it with stochastic dynamics and uncertainty.

Splitting prediction from action makes it easier for the robot to handle interaction, but
sacrifices performance much as splitting estimation from motion did, or splitting planning
from control.

A robot with this split no longer understands that its actions can influence what people
end up doing. In contrast, the robot in Figure 26.27 anticipates where people will go and then
optimizes for reaching its own goal and avoiding collisions with them. In Figure 26.28, we
have an autonomous car merging on the highway. If it just planned in reaction to other cars,
it might have to wait a long time while other cars occupy its target lane. In contrast, a car
that reasons about prediction and action jointly knows that different actions it could take will
result in different reactions from the human. If it starts to assert itself, the other cars are likely
to slow down a bit and make room. Roboticists are working towards coordinated interactions
like this so robots can work better with humans.
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(a) (b)

Figure 26.28 (a) Left: An autonomous car (middle lane) predicts that the human driver (left
lane) wants to keep going forward, and plans a trajectory that slows down and merges behind.
Right: The car accounts for the influence its actions can have on human actions, and realizes
it can merge in front and rely on the human driver to slow down. (b) That same algorithm
produces an unusual strategy at an intersection: the car realizes that it can make it more
likely for the person (bottom) to proceed faster through the intersection by starting to inch
backwards. Images courtesy of Anca Dragan. See Sadigh et al. (2016).

Human predictions about the robot

Incomplete information is often two-sided: the robot does not know the human’s objective
and the human, in turn, does not know the robot’s objective—people need to be making
predictions about robots. As robot designers, we are not in charge of how the human makes
predictions; we can only control what the robot does. However, the robot can act in a way
to make it easier for the human to make correct predictions. The robot can assume that
the human is using something roughly analogous to Equation (26.8) to estimate the robot’s
objective JR, and thus the robot will act so that its true objective can be easily inferred.

A special case of the game is when the human and the robot are on the same team,
working toward the same goal or objective: JH = JR. Imagine getting a personal home robot
that is helping you make dinner or clean up—these are examples of collaboration.

We can now define a joint agent whose actions are tuples of human–robot actions, Joint agent

(uH ,uR) and who optimizes for JH(x,uH ,uR) = JR(x,uR,uH), and we’re solving a regular
planning problem. We compute the optimal plan or policy for the joint agent, and voila, we
now know what the robot and human should do.

This would work really well if people were perfectly optimal. The robot would do its part
of the joint plan, the human theirs. Unfortunately, in practice, people don’t seem to follow
the perfectly laid out joint-agent plan; they have a mind of their own! We’ve already learned
one way to handle this though, back in Section 26.6. We called it model predictive control
(MPC): the idea was to come up with a plan, execute the first action, and then replan. That
way, the robot always adapts its plan to what the human is actually doing.

Let’s work through an example. Suppose you and the robot are in your kitchen, and have
decided to make waffles. You are slightly closer to the fridge, so the optimal joint plan would
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have you grab the eggs and milk from the fridge, while the robot fetches the flour from the
cabinet. The robot knows this because it can measure quite precisely where everyone is. But
suppose you start heading for the flour cabinet. You are going against the optimal joint plan.
Rather than sticking to it and stubbornly also going for the flour, the MPC robot recalculates
the optimal plan, and now that you are close enough to the flour it is best for the robot to grab
the waffle iron instead.

If we know that people might deviate from optimality, we can account for it ahead of time.
In our example, the robot can try to anticipate that you are going for the flour the moment you
take your first step (say, using the prediction technique above). Even if it is still technically
optimal for you to turn around and head for the fridge, the robot should not assume that’s
what is going to happen. Instead, the robot can compute a plan in which you keep doing what
you seem to want.

Humans as black box agents

We don’t have to treat people as objective-driven, intentional agents to get robots to coordi-
nate with us. An alternative model is that the human is merely some agent whose policy πH

“messes” with the environment dynamics. The robot does not know πH , but can model the
problem as needing to act in an MDP with unknown dynamics. We have seen this before: for
general agents in Chapter 23, and for robots in particular in Section 26.7.

The robot can fit a policy model πH to human data, and use it to compute an optimal
policy for itself. Due to scarcity of data, this has been mostly used so far at the task level. For
instance, robots have learned through interaction what actions people tend to take (in response
to its own actions) for the task of placing and drilling screws in an industrial assembly task.

Then there is also the model-free reinforcement learning alternative: the robot can start
with some initial policy or value function, and keep improving it over time via trial and error.

26.8.2 Learning to do what humans want

Another way interaction with humans comes into robotics is in JR itself—the robot’s cost or
reward function. The framework of rational agents and the associated algorithms reduce the
problem of generating good behavior to specifying a good reward function. But for robots,
as for many other AI agents, getting the cost right is still difficult.

Take autonomous cars: we want them to reach the destination, to be safe, to drive com-
fortably for their passengers, to obey traffic laws, etc. A designer of such a system needs to
trade off these different components of the cost function. The designer’s task is hard because
robots are built to help end users, and not every end user is the same. We all have different
preferences for how aggressively we want our car to drive, etc.

Below, we explore two alternatives for trying to get robot behavior to match what we
actually want the robot to do. The first is to learn a cost function from human input. The
second is to bypass the cost function and imitate human demonstrations of the task.

Preference learning: Learning cost functions

Imagine that an end user is showing a robot how to do a task. For instance, they are driving
the car in the way they would like it to be driven by the robot. Can you think of a way for the
robot to use these actions—we call them “demonstrations”—to figure out what cost function
it should optimize?
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Figure 26.29 Left: A mobile robot is shown a demonstration that stays on the dirt road.
Middle: The robot infers the desired cost function, and uses it in a new scene, knowing to
put lower cost on the road there. Right: The robot plans a path for the new scene that also
stays on the road, reproducing the preferences behind the demonstration. Images courtesy of
Nathan Ratliff and James A. Bagnell. See Ratliff et al. (2006).

We have actually already seen the answer to this back in Section 26.8.1. There, the setup
was a little different: we had another person taking actions in the same space as the robot, and
the robot needed to predict what the person would do. But one technique we went over for
making these predictions was to assume that people act to noisily optimize some cost function
JH , and we can use their ongoing actions as evidence about what cost function that is. We
can do the same here, except not for the purpose of predicting human behavior in the future,
but rather acquiring the cost function the robot itself should optimize. If the person drives
defensively, the cost function that will explain their actions will put a lot of weight on safety
and less so on efficiency. The robot can adopt this cost function as its own and optimize it
when driving the car itself.

Roboticists have experimented with different algorithms for making this cost inference
computationally tractable. In Figure 26.29, we see an example of teaching a robot to prefer
staying on the road to going over the grassy terrain. Traditionally in such methods, the cost
function has been represented as a combination of hand-crafted features, but recent work has
also studied how to represent it using a deep neural network, without feature engineering.

There are other ways for a person to provide input. A person could use language rather
than demonstration to instruct the robot. A person could act as a critic, watching the robot
perform a task one way (or two ways) and then saying how well the task was done (or which
way was better), or giving advice on how to improve.

Learning policies directly via imitation

An alternative is to bypass cost functions and learn the desired robot policy directly. In our
car example, the human’s demonstrations make for a convenient data set of states labeled by
the action the robot should take at each state: D = {(xi,ui)}. The robot can run supervised
learning to fit a policy π : x 7→ u, and execute that policy. This is called imitation learning or
behavioral cloning. Behavioral cloning

A challenge with this approach is in generalization to new states. The robot does not Generalization

know why the actions in its database have been marked as optimal. It has no causal rule; all
it can do is run a supervised learning algorithm to try to learn a policy that will generalize to
unknown states. However, there is no guarantee that the generalization will be correct.
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Figure 26.30 A human teacher pushes the robot down to teach it to stay closer to the ta-
ble. The robot appropriately updates its understanding of the desired cost function and starts
optimizing it. Courtesy of Anca Dragan. See Bajcsy et al. (2017).

Figure 26.31 A programming interface that involves placing specially designed blocks in
the robot’s workspace to select objects and specify high-level actions. Images courtesy of
Maya Cakmak. See Sefidgar et al. (2017).

The ALVINN autonomous car project used this approach, and found that even when
starting from a state in D, π will make small errors, which will take the car off the demon-
strated trajectory. There, π will make a larger error, which will take the car even further off
the desired course.

We can address this at training time if we interleave collecting labels and learning: start
with a demonstration, learn a policy, then roll out that policy and ask the human for what
action to take at every state along the way, then repeat. The robot then learns how to correct
its mistakes as it deviates from the human’s desired actions.

Alternatively, we can address it by leveraging reinforcement learning. The robot can fit a
dynamics model based on the demonstrations, and then use optimal control (Section 26.5.4)
to generate a policy that optimizes for staying close to the demonstration. A version of this
has been used to perform very challenging maneuvers at an expert level in a small radio-
controlled helicopter (see Figure 23.9(b)).

The DAGGER (Data Aggregation) system starts with a human expert demonstration.
From that it learns a policy, π1 and uses the policy to generate a data set D. Then from
D it generates a new policy π2 that best imitates the original human data. This repeats, and
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on the nth iteration it uses πn to generate more data, to be added to D, which is then used to
create πn+1. In other words, at each iteration the system gathers new data under the current
policy and trains the next policy using all the data gathered so far.

Related recent techniques use adversarial training: they alternate between training a
classifier to distinguish between the robot’s learned policy and the human’s demonstrations,
and training a new robot policy via reinforcement learning to fool the classifier. These ad-
vances enable the robot to handle states that are near demonstrations, but generalization to
far-off states or to new dynamics is a work in progress.

Teaching interfaces and the correspondence problem. So far, we have imagined the
case of an autonomous car or an autonomous helicopter, for which human demonstrations use
the same actions that the robot can take itself: accelerating, braking, and steering. But what
happens if we do this for tasks like cleaning up the kitchen table? We have two choices here:
either the person demonstrates using their own body while the robot watches, or the person
physically guides the robot’s effectors.

The first approach is appealing because it comes naturally to end users. Unfortunately,
it suffers from the correspondence problem: how to map human actions onto robot actions. Correspondence

problem

People have different kinematics and dynamics than robots. Not only does that make it dif-
ficult to translate or retarget human motion onto robot motion (e.g., retargeting a five-finger
human grasp to a two-finger robot grasp), but often the high-level strategy a person might use
is not appropriate for the robot.

The second approach, where the human teacher moves the robot’s effectors into the right
positions, is called kinesthetic teaching. It is not easy for humans to teach this way, espe- Kinesthetic teaching

cially to teach robots with multiple joints. The teacher needs to coordinate all the degrees of
freedom as it is guiding the arm through the task. Researchers have thus investigated alter-
natives, like demonstrating keyframes as opposed to continuous trajectories, as well as the Keyframe

use of visual programming to enable end users to program primitives for a task rather than Visual programming

demonstrate from scratch (Figure 26.31). Sometimes both approaches are combined.

26.9 Alternative Robotic Frameworks

Thus far, we have taken a view of robotics based on the notion of defining or learning a
reward function, and having the robot optimize that reward function (be it via planning or
learning), sometimes in coordination or collaboration with humans. This is a deliberative Deliberative

view of robotics, to be contrasted with a reactive view. Reactive

26.9.1 Reactive controllers

In some cases, it is easier to set up a good policy for a robot than to model the world and plan.
Then, instead of a rational agent, we have a reflex agent.

For example, picture a legged robot that attempts to lift a leg over an obstacle. We could
give this robot a rule that says lift the leg a small height h and move it forward, and if the leg
encounters an obstacle, move it back and start again at a higher height. You could say that h
is modeling an aspect of the world, but we can also think of h as an auxiliary variable of the
robot controller, devoid of direct physical meaning.

One such example is the six-legged (hexapod) robot, shown in Figure 26.32(a), designed
for walking through rough terrain. The robot’s sensors are inadequate to obtain accurate



976 Chapter 26 Robotics

S1S2

S4S3

push backward

lift up set down

retract, lift higher

move

forward
no

yes

stuck?

(a) (b)

Figure 26.32 (a) Genghis, a hexapod robot. (Image courtesy of Rodney A. Brooks.) (b) An
augmented finite state machine (AFSM) that controls one leg. The AFSM reacts to sensor
feedback: if a leg is stuck during the forward swinging phase, it will be lifted increasingly
higher.

models of the terrain for path planning. Moreover, even if we added high-precision cameras
and rangefinders, the 12 degrees of freedom (two for each leg) would render the resulting
path planning problem computationally difficult.

It is possible, nonetheless, to specify a controller directly without an explicit environ-
mental model. (We have already seen this with the PD controller, which was able to keep a
complex robot arm on target without an explicit model of the robot dynamics.)

For the hexapod robot we first choose a gait, or pattern of movement of the limbs. OneGait

statically stable gait is to first move the right front, right rear, and left center legs forward
(keeping the other three fixed), and then move the other three. This gait works well on
flat terrain. On rugged terrain, obstacles may prevent a leg from swinging forward. This
problem can be overcome by a remarkably simple control rule: when a leg’s forward motion
is blocked, simply retract it, lift it higher, and try again. The resulting controller is shown in
Figure 26.32(b) as a simple finite state machine; it constitutes a reflex agent with state, where
the internal state is represented by the index of the current machine state (s1 through s4).

26.9.2 Subsumption architectures

The subsumption architecture (Brooks, 1986) is a framework for assembling reactive con-Subsumption
architecture

trollers out of finite state machines. Nodes in these machines may contain tests for certain
sensor variables, in which case the execution trace of a finite state machine is conditioned
on the outcome of such a test. Arcs can be tagged with messages that will be generated
when traversing them, and that are sent to the robot’s motors or to other finite state machines.
Additionally, finite state machines possess internal timers (clocks) that control the time it
takes to traverse an arc. The resulting machines are called augmented finite state machines
(AFSMs), where the augmentation refers to the use of clocks.

Augmented finite
state machine
(AFSM)

An example of a simple AFSM is the four-state machine we just talked about, shown in
Figure 26.32(b). This AFSM implements a cyclic controller, whose execution mostly does
not rely on environmental feedback. The forward swing phase, however, does rely on sensor
feedback. If the leg is stuck, meaning that it has failed to execute the forward swing, the
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robot retracts the leg, lifts it up a little higher, and attempts to execute the forward swing once
again. Thus, the controller is able to react to contingencies arising from the interplay of the
robot and its environment.

The subsumption architecture offers additional primitives for synchronizing AFSMs, and
for combining output values of multiple, possibly conflicting AFSMs. In this way, it enables
the programmer to compose increasingly complex controllers in a bottom-up fashion. In
our example, we might begin with AFSMs for individual legs, followed by an AFSM for
coordinating multiple legs. On top of this, we might implement higher-level behaviors such
as collision avoidance, which might involve backing up and turning.

The idea of composing robot controllers from AFSMs is quite intriguing. Imagine how
difficult it would be to generate the same behavior with any of the configuration-space path-
planning algorithms described in the previous section. First, we would need an accurate
model of the terrain. The configuration space of a robot with six legs, each of which is driven
by two independent motors, totals 18 dimensions (12 dimensions for the configuration of the
legs, and six for the location and orientation of the robot relative to its environment). Even
if our computers were fast enough to find paths in such high-dimensional spaces, we would
have to worry about nasty effects such as the robot sliding down a slope.

Because of such stochastic effects, a single path through configuration space would al-
most certainly be too brittle, and even a PID controller might not be able to cope with such
contingencies. In other words, generating motion behavior deliberately is simply too complex
a problem in some cases for present-day robot motion planning algorithms.

Unfortunately, the subsumption architecture has its own problems. First, the AFSMs
are driven by raw sensor input, an arrangement that works if the sensor data is reliable and
contains all necessary information for decision making, but fails if sensor data has to be
integrated in nontrivial ways over time. Subsumption-style controllers have therefore mostly
been applied to simple tasks, such as following a wall or moving toward visible light sources.

Second, the lack of deliberation makes it difficult to change the robot’s goals. A robot
with a subsumption architecture usually does just one task, and it has no notion of how to
modify its controls to accommodate different goals (just like the dung beetle on page 59).

Third, in many real-world problems, the policy we want is often too complex to encode
explicitly. Think about the example from Figure 26.28, of an autonomous car needing to
negotiate a lane change with a human driver. We might start off with a simple policy that
goes into the target lane. But when we test the car, we find out that not every driver in the
target lane will slow down to let the car in. We might then add a bit more complexity: make
the car nudge towards the target lane, wait for a response form the driver in that lane, and
then either proceed or retreat back. But then we test the car, and realize that the nudging
needs to happen at a different speed depending on the speed of the vehicle in the target lane,
on whether there is another vehicle in front in the target lane, on whether there is a vehicle
behind the car in the initial, and so on. The number of conditions that we need to consider
to determine the right course of action can be very large, even for such a deceptively simple
maneuver. This in turn presents scalability challenges for subsumption-style architectures.

All that said, robotics is a complex problem with many approaches: deliberative, reactive,
or a mixture thereof; based on physics, cognitive models, data, or a mixture thereof. The right
approach is still a subject for debate, scientific inquiry, and engineering prowess.
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(a) (b)

Figure 26.33 (a) A patient with a brain–machine interface controlling a robot arm to grab a
drink. Image courtesy of Brown University. (b) Roomba, the robot vacuum cleaner. Photo
by HANDOUT/KRT/Newscom.

26.10 Application Domains

Robotic technology is already permeating our world, and has the potential to improve our
independence, health, and productivity. Here are some example applications.

Home care: Robots have started to enter the home to care for older adults and people
with motor impairments, assisting them with activities of daily living and enabling them to
live more independently. These include wheelchairs and wheelchair-mounted arms like the
Kinova arm from Figure 26.1(b). Even though they start off as being operated by a human di-
rectly, these robots are gaining more and more autonomy. On the horizon are robots operated
by brain–machine interfaces, which have been shown to enable people with quadriplegia to
use a robot arm to grasp objects and even feed themselves (Figure 26.33(a)). Related to these
are prosthetic limbs that intelligently respond to our actions, and exoskeletons that give us
superhuman strength or enable people who can’t control their muscles from the waist down
to walk again.

Personal robots are meant to assist us with daily tasks like cleaning and organizing, free-
ing up our time. Although manipulation still has a way to go before it can operate seamlessly
in messy, unstructured human environments, navigation has made some headway. In particu-
lar, many homes already enjoy a mobile robot vacuum cleaner like the one in Figure 26.33(b).

Health care: Robots assist and augment surgeons, enabling more precise, minimally
invasive, safer procedures with better patient outcomes. The Da Vinci surgical robot from
Figure 26.34(a) is now widely deployed at hospitals in the U.S.

Services: Mobile robots help out in office buildings, hotels, and hospitals. Savioke has
put robots in hotels delivering products like towels or toothpaste to your room. The Help-
mate and TUG robots carry food and medicine in hospitals (Figure 26.34(b)), while Dili-
gent Robotics’ Moxi robot helps out nurses with back-end logistical responsibilities. Co-Bot
roams the halls of Carnegie Mellon University, ready to guide you to someone’s office. We
can also use telepresence robots like the Beam to attend meetings and conferences remotely,Telepresence robots

or check in on our grandparents.
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(a) (b)

Figure 26.34 (a) Surgical robot in the operating room. Photo by Patrick Landmann/Science
Source. (b) Hospital delivery robot. Photo by Wired.

(a) (b)

Figure 26.35 (a) Autonomous car BOSS which won the DARPA Urban Challenge. Photo
by Tangi Quemener/AFP/Getty Images/Newscom. Courtesy of Sebastian Thrun. (b) Aerial
view showing the perception and predictions of the Waymo autonomous car (white vehicle
with green track). Other vehicles (blue boxes) and pedestrians (orange boxes) are shown with
anticipated trajectories. Road/sidewalk boundaries are in yellow. Photo courtesy of Waymo.

Autonomous cars: Some of us are occasionally distracted while driving, by cell phone
calls, texts, or other distractions. The sad result: more than a million people die every year in
traffic accidents. Further, many of us spend a lot of time driving and would like to recapture
some of that time. All this has led to a massive ongoing effort to deploy autonomous cars.

Prototypes have existed since the 1980s, but progress was stimulated by the 2005 DARPA
Grand Challenge, an autonomous vehicle race over 200 challenging kilometers of unre-
hearsed desert terrain. Stanford’s Stanley vehicle completed the course in less than seven
hours, winning a $2 million prize and a place in the National Museum of American History.
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(a) (b)

Figure 26.36 (a) A robot mapping an abandoned coal mine. (b) A 3D map of the mine
acquired by the robot. Courtesy of Sebastian Thrun.

Figure 26.35(a) depicts BOSS, which in 2007 won the DARPA Urban Challenge, a compli-
cated road race on city streets where robots faced other robots and had to obey traffic rules.

In 2009, Google started an autonomous driving project (featuring many of the researchers
who had worked on Stanley and BOSS), which has now spun off as Waymo. In 2018 Waymo
started driverless testing (with nobody in the driver seat) in the suburbs of Pheonix, Ari-
zona. In the meantime, other autonomous driving companies and ride-sharing companies
are working on developing their own technology, while car manufacturers have been selling
cars with more and more assistive intelligence, such as Tesla’s driver assist, which is meantDriver assist

for highway driving. Other companies are targeting non-highway driving applications in-
cluding college campuses and retirement communities. Still other companies are focused on
non-passenger applications such as trucking, grocery delivery, and valet parking.

Entertainment: Disney has been using robots (under the name animatronics) in theirAnimatronics

parks since 1963. Originally, these robots were restricted to hand-designed, open-loop, un-
varying motion (and speech), but since 2009 a version called autonomatronics can generateAutonomatronics

autonomous actions. Robots also take the form of intelligent toys for children; for example,
Anki’s Cozmo plays games with children and may pound the table with frustration when it
loses. Finally, quadrotors like Skydio’s R1 from Figure 26.2(b) act as personal photographers
and videographers, following us around to take action shots as we ski or bike.

Exploration and hazardous environments: Robots have gone where no human has
gone before, including the surface of Mars. Robotic arms assist astronauts in deploying and
retrieving satellites and in building the International Space Station. Robots also help explore
under the sea. They are routinely used to acquire maps of sunken ships. Figure 26.36 shows
a robot mapping an abandoned coal mine, along with a 3D model of the mine acquired using
range sensors. In 1996, a team of researches released a legged robot into the crater of an
active volcano to acquire data for climate research. Robots are becoming very effective tools
for gathering information in domains that are difficult (or dangerous) for people to access.

Robots have assisted people in cleaning up nuclear waste, most notably in Three Mile
Island, Chernobyl, and Fukushima. Robots were present after the collapse of the World Trade
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Center, where they entered structures deemed too dangerous for human search and rescue
crews. Here too, these robots are initially deployed via teleoperation, and as technology
advances they are becoming more and more autonomous, with a human operator in charge
but not having to specify every single command.

Industry: The majority of robots today are deployed in factories, automating tasks that
are difficult, dangerous, or dull for humans. (The majority of factory robots are in automobile
factories.) Automating these tasks is a positive in terms of efficiently producing what society
needs. At the same time, it also means displacing some human workers from their jobs. This
has important policy and economics implications—the need for retraining and education, the
need for a fair division of resources, etc. These topics are discussed further in Section 28.3.5.

Summary

Robotics is about physically embodied agents, which can change the state of the physical
world. In this chapter, we have learned the following:

• The most common types of robots are manipulators (robot arms) and mobile robots.
They have sensors for perceiving the world and actuators that produce motion, which
then affects the world via effectors.

• The general robotics problem involves stochasticity (which can be handled by MDPs),
partial observability (which can be handled by POMDPs), and acting with and around
other agents (which can be handled with game theory). The problem is made even
harder by the fact that most robots work in continuous and high-dimensional state and
action spaces. They also operate in the real world, which refuses to run faster than real
time and in which failures lead to real things being damaged, with no “undo” capability.

• Ideally, the robot would solve the entire problem in one go: observations in the form
of raw sensor feeds go in, and actions in the form of torques or currents to the motors
come out. In practice though, this is too daunting, and roboticists typically decouple
different aspects of the problem and treat them independently.

• We typically separate perception (estimation) from action (motion generation). Percep-
tion in robotics involves computer vision to recognize the surroundings through cam-
eras, but also localization and mapping.

• Robotic perception concerns itself with estimating decision-relevant quantities from
sensor data. To do so, we need an internal representation and a method for updating
this internal representation over time.

• Probabilistic filtering algorithms such as particle filters and Kalman filters are useful
for robot perception. These techniques maintain the belief state, a posterior distribution
over state variables.

• For generating motion, we use configuration spaces, where a point specifies everything
we need to know to locate every body point on the robot. For instance, for a robot arm
with two joints, a configuration consists of the two joint angles.

• We typically decouple the motion generation problem into motion planning, concerned
with producing a plan, and trajectory tracking control, concerned with producing a
policy for control inputs (actuator commands) that results in executing the plan.
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• Motion planning can be solved via graph search using cell decomposition; using ran-
domized motion planning algorithms, which sample milestones in the continuous
configuration space; or using trajectory optimization, which can iteratively push a
straight-line path out of collision by leveraging a signed distance field.

• A path found by a search algorithm can be executed using the path as the reference
trajectory for a PID controller, which constantly corrects for errors between where the
robot is and where it is supposed to be, or via computed torque control, which adds a
feedforward term that makes use of inverse dynamics to compute roughly what torque
to send to make progress along the trajectory.

• Optimal control unites motion planning and trajectory tracking by computing an op-
timal trajectory directly over control inputs. This is especially easy when we have
quadratic costs and linear dynamics, resulting in a linear quadratic regulator (LQR).
Popular methods make use of this by linearizing the dynamics and computing second-
order approximations of the cost (ILQR).

• Planning under uncertainty unites perception and action by online replanning (such as
model predictive control) and information gathering actions that aid perception.

• Reinforcement learning is applied in robotics, with techniques striving to reduce the
required number of interactions with the real world. Such techniques tend to exploit
models, be it estimating models and using them to plan, or training policies that are
robust with respect to different possible model parameters.

• Interaction with humans requires the ability to coordinate the robot’s actions with
theirs, which can be formulated as a game. We usually decompose the solution into
prediction, in which we use the person’s ongoing actions to estimate what they will
do in the future, and action, in which we use the predictions to compute the optimal
motion for the robot.

• Helping humans also requires the ability to learn or infer what they want. Robots can
approach this by learning the desired cost function they should optimize from human
input, such as demonstrations, corrections, or instruction in natural language. Alterna-
tively, robots can imitate human behavior, and use reinforcement learning to help tackle
the challenge of generalization to new states.

Bibliographical and Historical Notes

The word robot was popularized by Czech playwright Karel Čapek in his 1920 play R.U.R.
(Rossum’s Universal Robots). The robots, which were grown chemically rather than con-
structed mechanically, end up resenting their masters and decide to take over. It appears that
it was Čapek’s brother, Josef, who first combined the Czech words “robota” (obligatory work)
and “robotnik” (serf) to yield “robot” in his 1917 short story Opilec (Glanc, 1978). The term
robotics was invented for a science fiction story (Asimov, 1950).

The idea of an autonomous machine predates the word “robot” by thousands of years. In
7th century BCE Greek mythology, a robot named Talos was built by Hephaistos, the Greek
god of metallurgy, to protect the island of Crete. The legend is that the sorceress Medea
defeated Talos by promising him immortality but then draining his life fluid. Thus, this is the
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first example of a robot making a mistake in the process of changing its objective function.
In 322 BCE, Aristotle anticipated technological unemployment, speculating “If every tool,
when ordered, or even of its own accord, could do the work that befits it. . . then there would
be no need either of apprentices for the master workers or of slaves for the lords.”

In the 3rd century BCE an actual humanoid robot called the Servant of Philon could pour
wine or water into a cup; a series of valves cut off the flow at the right time. Wonderful
automata were built in the 18th century—Jacques Vaucanson’s mechanical duck from 1738
being one early example—but the complex behaviors they exhibited were entirely fixed in
advance. Possibly the earliest example of a programmable robot-like device was the Jacquard
loom (1805), described on page 33.

Grey Walter’s “turtle,” built in 1948, could be considered the first autonomous mobile
robot, although its control system was not programmable. The “Hopkins Beast,” built in
1960 at Johns Hopkins University, was much more sophisticated; it had sonar and photocell
sensors, pattern-recognition hardware, and could recognize the cover plate of a standard AC
power outlet. It was capable of searching for outlets, plugging itself in, and then recharging
its batteries! Still, the Beast had a limited repertoire of skills.

The first general-purpose mobile robot was “Shakey,” developed at what was then the
Stanford Research Institute (now SRI) in the late 1960s (Fikes and Nilsson, 1971; Nilsson,
1984). Shakey was the first robot to integrate perception, planning, and execution, and much
subsequent research in AI was influenced by this remarkable achievement. Shakey appears
on the cover of this book with project leader Charlie Rosen (1917–2002). Other influential
projects include the Stanford Cart and the CMU Rover (Moravec, 1983). Cox and Wilfong
(1990) describe classic work on autonomous vehicles.

The first commercial robot was an arm called UNIMATE, for universal automation, de-
veloped by Joseph Engelberger and George Devol in their compnay, Unimation. In 1961, the
first UNIMATE robot was sold to General Motors for use in manufacturing TV picture tubes.
1961 was also the year when Devol obtained the first U.S. patent on a robot.

In 1973, Toyota and Nissan started using an updated version of UNIMATE for auto body
spot welding. This initiated a major revolution in automobile manufacturing that took place
mostly in Japan and the U.S., and that is still ongoing. Unimation followed up in 1978 with
the development of the Puma robot (Programmable Universal Machine for Assembly), which
was the de facto standard for robotic manipulation for the two decades that followed. About
500,000 robots are sold each year, with half of those going to the automotive industry.

In manipulation, the first major effort at creating a hand–eye machine was Heinrich
Ernst’s MH-1, described in his MIT Ph.D. thesis (Ernst, 1961). The Machine Intelligence
project at Edinburgh also demonstrated an impressive early system for vision-based assem-
bly called FREDDY (Michie, 1972).

Research on mobile robotics has been stimulated by several important competitions.
AAAI’s annual mobile robot competition began in 1992. The first competition winner was
CARMEL (Congdon et al., 1992). Progress has been steady and impressive: in recent com-
petitions robots entered the conference complex, found their way to the registration desk,
registered for the conference, and even gave a short talk.

The RoboCup competition, launched in 1995 by Kitano and colleagues (1997), aims
to “develop a team of fully autonomous humanoid robots that can win against the human
world champion team in soccer” by 2050. Some competitions use wheeled robots, some
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humanoid robots, and some software simulations. Stone (2016) describes recent innovations
in RoboCup.

The DARPA Grand Challenge, organized by DARPA in 2004 and 2005, required au-
tonomous vehicles to travel more than 200 kilometers through the desert in less than ten
hours (Buehler et al., 2006). In the original event in 2004, no robot traveled more than eight
miles, leading many to believe the prize would never be claimed. In 2005, Stanford’s robot
Stanley won the competition in just under seven hours (Thrun, 2006). DARPA then orga-
nized the Urban Challenge, a competition in which robots had to navigate 60 miles in an
urban environment with other traffic. Carnegie Mellon University’s robot BOSS took first
place and claimed the $2 million prize (Urmson and Whittaker, 2008). Early pioneers in the
development of robotic cars included Dickmanns and Zapp (1987) and Pomerleau (1993).

The field of robotic mapping has evolved from two distinct origins. The first thread
began with work by Smith and Cheeseman (1986), who applied Kalman filters to the simulta-
neous localization and mapping (SLAM) problem. This algorithm was first implemented by
Moutarlier and Chatila (1989) and later extended by Leonard and Durrant-Whyte (1992); see
Dissanayake et al. (2001) for an overview of early Kalman filter variations. The second thread
began with the development of the occupancy grid representation for probabilistic mapping,Occupancy grid

which specifies the probability that each (x,y) location is occupied by an obstacle (Moravec
and Elfes, 1985).

Kuipers and Levitt (1988) were among the first to propose topological rather than metric
mapping, motivated by models of human spatial cognition. A seminal paper by Lu and Milios
(1997) recognized the sparseness of the simultaneous localization and mapping problem,
which gave rise to the development of nonlinear optimization techniques by Konolige (2004)
and Montemerlo and Thrun (2004), as well as hierarchical methods by Bosse et al. (2004).
Shatkay and Kaelbling (1997) and Thrun et al. (1998) introduced the EM algorithm into the
field of robotic mapping for data association. An overview of probabilistic mapping methods
can be found in (Thrun et al., 2005).

Early mobile robot localization techniques are surveyed by Borenstein et al. (1996).
Although Kalman filtering was well known as a localization method in control theory for
decades, the general probabilistic formulation of the localization problem did not appear in
the AI literature until much later, through the work of Tom Dean and colleagues (Dean et al.,
1990) and of Simmons and Koenig (1995). The latter work introduced the term Markov
localization. The first real-world application of this technique was by Burgard et al. (1999),Markov localization

through a series of robots that were deployed in museums. Monte Carlo localization based
on particle filters was developed by Fox et al. (1999) and is now widely used. The Rao-
Blackwellized particle filter combines particle filtering for robot localization with exactRao-Blackwellized

particle filter

filtering for map building (Murphy and Russell, 2001; Montemerlo et al., 2002).
A great deal of early work on motion planning focused on geometric algorithms for de-

terministic and fully observable motion planning problems. The PSPACE-hardness of robot
motion planning was shown in a seminal paper by Reif (1979). The configuration space rep-
resentation is due to Lozano-Perez (1983). A series of papers by Schwartz and Sharir on what
they called piano movers problems (Schwartz et al., 1987) was highly influential.Piano movers

Recursive cell decomposition for configuration space planning was originated in the work
of Brooks and Lozano-Perez (1985) and improved significantly by Zhu and Latombe (1991).
The earliest skeletonization algorithms were based on Voronoi diagrams (Rowat, 1979) and
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visibility graphs (Wesley and Lozano-Perez, 1979). Guibas et al. (1992) developed efficient Visibility graph

techniques for calculating Voronoi diagrams incrementally, and Choset (1996) generalized
Voronoi diagrams to broader motion planning problems.

John Canny (1988) established the first singly exponential algorithm for motion planning.
The seminal text by Latombe (1991) covers a variety of approaches to motion planning, as
do the texts by Choset et al. (2005) and LaValle (2006). Kavraki et al. (1996) developed the
theory of probabilistic roadmaps. Kuffner and LaValle (2000) developed rapidly exploring
random trees (RRTs).

Involving optimization in geometric motion planning began with elastic bands (Quinlan
and Khatib, 1993), which refine paths when the configuration-space obstacles change. Ratliff
et al. (2009) formulated the idea as the solution to an optimal control problem, allowing
the initial trajectory to start in collision, and deforming it by mapping workspace obstacle
gradients via the Jacobian into the configuration space. Schulman et al. (2013) proposed a
practical second-order alternative.

The control of robots as dynamical systems—whether for manipulation or navigation—
has generated a vast literature. While this chapter explained the basics of trajectory tracking
control and optimal control, it left out entire subfields, including adaptive control, robust
control, and Lyapunov analysis. Rather than assuming everything about the system is known
a priori, adaptive control aims to adapt the dynamics parameters and/or the control law online.
Robust control, on the other hand, aims to design controllers that perform well in spite of
uncertainty and external disturbances.

Lyapunov analysis was originally developed in the 1890s for the stability analysis of
general nonlinear systems, but it was not until the early 1930s that control theorists realized
its true potential. With the development of optimization methods, Lyapunov analysis was
extended to control barrier functions, which lend themselves nicely to modern optimization
tools. These methods are widely used in modern robotics for real-time controller design and
safety analysis.

Crucial works in robotic control include a trilogy on impedance control by Hogan (1985)
and a general study of robot dynamics by Featherstone (1987). Dean and Wellman (1991)
were among the first to try to tie together control theory and AI planning systems. Three clas-
sic textbooks on the mathematics of robot manipulation are due to Paul (1981), Craig (1989),
and Yoshikawa (1990). Control for manipulation is covered by Murray (2017).

The area of grasping is also important in robotics—the problem of determining a stable
grasp is quite difficult (Mason and Salisbury, 1985). Competent grasping requires touch sens-
ing, or haptic feedback, to determine contact forces and detect slip (Fearing and Hollerbach, Haptic feedback

1985). Understanding how to grasp the the wide variety of objects in the world is a daunting
task. (Bousmalis et al., 2017) describe a system that combines real-world experimentation
with simulations guided by sim-to-real transfer to produce robust grasping.

Potential-field control, which attempts to solve the motion planning and control problems
simultaneously, was developed for robotics by Khatib (1986). In mobile robotics, this idea
was viewed as a practical solution to the collision avoidance problem, and was later extended
into an algorithm called vector field histograms by Borenstein (1991). Vector field

histogram

ILQR is currently widely used at the intersection of motion planning and control and is
due to Li and Todorov (2004). It is a variant of the much older differential dynamic program-
ming technique (Jacobson and Mayne, 1970).
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Fine-motion planning with limited sensing was investigated by Lozano-Perez et al. (1984)
and Canny and Reif (1987). Landmark-based navigation (Lazanas and Latombe, 1992) uses
many of the same ideas in the mobile robot arena. Navigation functions, the robotics version
of a control policy for deterministic MDPs, were introduced by Koditschek (1987). Key work
applying POMDP methods (Section 16.4) to motion planning under uncertainty in robotics is
due to Pineau et al. (2003) and Roy et al. (2005).

Reinforcement learning in robotics took off with the seminal work by Bagnell and
Schneider (2001) and Ng et al. (2003), who developed the paradigm in the context of au-
tonomous helicopter control. Kober et al. (2013) offers an overview of how reinforcement
learning changes when applied to the robotics problem. Many of the techniques implemented
on physical systems build approximate dynamics models, dating back to locally weighted
linear models due to Atkeson et al. (1997). But policy gradients played their role as well,
enabling (simplified) humanoid robots to walk (Tedrake et al., 2004), or a robot arm to hit a
baseball (Peters and Schaal, 2008).

Levine et al. (2016) demonstrated the first deep reinforcement learning application on a
real robot. At the same time, model-free RL in simulation was being extended to continuous
domains (Schulman et al., 2015a; Heess et al., 2016; Lillicrap et al., 2015). Other work
scaled up physical data collection massively to showcase the learning of grasps and dynamics
models (Pinto and Gupta, 2016; Agrawal et al., 2017; Levine et al., 2018). Transfer from
simulation to reality or sim-to-real (Sadeghi and Levine, 2016; Andrychowicz et al., 2018a),
metalearning (Finn et al., 2017), and sample-efficient model-free reinforcement learning
(Andrychowicz et al., 2018b) are active areas of research.

Early methods for predicting human actions made use of filtering approaches (Madha-
van and Schlenoff, 2003), but seminal work by Ziebart et al. (2009) proposed prediction by
modeling people as approximately rational agents. Sadigh et al. (2016) captured how these
predictions should actually depend on what the robot decides to do, building toward a game-
theoretic setting. For collaborative settings, Sisbot et al. (2007) pioneered the idea of account-
ing for what people want in the robot’s cost function. Nikolaidis and Shah (2013) decomposed
collaboration into learning how the human will act, but also learning how the human wants
the robot to act, both achievable from demonstrations. For learning from demonstration see
Argall et al. (2009). Akgun et al. (2012) and Sefidgar et al. (2017) studied teaching by end
users rather than by experts.

Tellex et al. (2011) showed how robots can infer what people want from natural language
instructions. Finally, not only do robots need to infer what people want and plan on doing, but
people too need to make the same inferences about robots. Dragan et al. (2013) incorporated
a model of the human’s inferences into robot motion planning.

The field of human–robot interaction is much broader than what we covered in this
chapter, which focused primarily on the planning and learning aspects. Thomaz et al. (2016)
provides a survey of interaction more broadly from a computational perspective. Ross et al.
(2011) describe the DAGGER system.

The topic of software architectures for robots engenders much religious debate. The
good old-fashioned AI candidate—the three-layer architecture—dates back to the design of
Shakey and is reviewed by Gat (1998). The subsumption architecture is due to Brooks (1986),
although similar ideas were developed independently by Braitenberg, whose book, Vehicles
(1984), describes a series of simple robots based on the behavioral approach.
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The success of Brooks’s six-legged walking robot was followed by many other projects.
Connell, in his Ph.D. thesis (1989), developed an entirely reactive mobile robot that was ca-
pable of retrieving objects. Extensions of the paradigm to multirobot systems can be found
in work by Parker (1996) and Mataric (1997). GRL (Horswill, 2000) and COLBERT (Kono-
lige, 1997) abstract the ideas of concurrent behavior-based robotics into general robot control
languages. Arkin (1998) surveys some of the most popular approaches in this field.

Two early textbooks, by Dudek and Jenkin (2000) and by Murphy (2000), cover robotics
generally. More recent overviews are due to Bekey (2008) and Lynch and Park (2017). An ex-
cellent book on robot manipulation addresses advanced topics such as compliant motion (Ma-
son, 2001). Robot motion planning is covered in Choset et al. (2005) and LaValle (2006).
Thrun et al. (2005) introduces probabilistic robotics. The Handbook of Robotics (Siciliano
and Khatib, 2016) is a massive, comprehensive overview of all of robotics.

The premiere conference for robotics is Robotics: Science and Systems Conference, fol-
lowed by the IEEE International Conference on Robotics and Automation. Human–Robot
Interaction is the premiere venue for interaction. Leading robotics journals include IEEE
Robotics and Automation, the International Journal of Robotics Research, and Robotics and
Autonomous Systems.



CHAPTER 27
COMPUTER VISION
In which we connect the computer to the raw, unwashed world through the eyes of a camera.

Most animals have eyes, often at significant cost: eyes take up a lot of space; use energy;
and are quite fragile. This cost is justified by the immense value that eyes provide. An agent
that can see can predict the future—it can tell what it might bump into; it can tell whether to
attack or to flee or to court; it can guess whether the ground ahead is swampy or firm; and
it can tell how far away the fruit is. In this chapter, we describe how to recover information
from the flood of data that comes from eyes or cameras.

27.1 Introduction

Vision is a perceptual channel that accepts a stimulus and reports some representation of the
world. Most agents that use vision use passive sensing—they do not need to send out light
to see. In contrast, active sensing involves sending out a signal such as radar or ultrasound,
and sensing a reflection. Examples of agents that use active sensing include bats (ultrasound),
dolphins (sound), abyssal fishes (light), and some robots (light, sound, radar). To understand
a perceptual channel, one must study both the physical and statistical phenomena that occur
in sensing and what the perceptual process should produce. We concentrate on vision in this
chapter, but robots in the real world use a variety of sensors to perceive sound, touch, distance,
temperature, global position, and acceleration.

A feature is a number obtained by applying simple computations to an image. Very use-Feature

ful information can be obtained directly from features. The wumpus agent had five sensors,
each of which extracted a single bit of information. These bits, which are features, could
be interpreted directly by the program. As another example, many flying animals compute a
simple feature that gives a good estimate of time to contact with a nearby object; this feature
can be passed directly to muscles that control steering or wings, allowing very fast changes of
direction. This feature extraction approach emphasizes simple, direct computations applied
to sensor responses.

The model-based approach to vision uses two kinds of models. An object model could
be the kind of precise geometric model produced by computer aided design systems. It could
also be a vague statement about general properties of objects, for example, the claim that all
faces viewed in low resolution look approximately the same. A rendering model describes
the physical, geometric, and statistical processes that produce the stimulus from the world.
While rendering models are now sophisticated and exact, the stimulus is usually ambiguous.
A white object under low light may look like a black object under intense light. A small,
nearby object may look the same as a large, distant object. Without additional evidence,
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we cannot tell if what we see is a toy Godzilla tearing up a toy building, or a real monster
destroying a real building.

There are two main ways to manage these ambiguities. First, some interpretations are
more likely than others. For example, we can be confident that the picture doesn’t show a
real Godzilla destroying a real building, because there are no real Godzillas. Second, some
ambiguities are insignificant. For example, distant scenery may be trees or may be a flat
painted surface. For most applications, the difference is unimportant, because the objects are
far away and so we will not bump into them or interact with them soon.

The two core problems of computer vision are reconstruction, where an agent builds Reconstruction

a model of the world from an image or a set of images, and recognition, where an agent Recognition

draws distinctions among the objects it encounters based on visual and other information.
Both problems should be interpreted very broadly. Building a geometric model from images
is obviously reconstruction (and solutions are very valuable), but sometimes we need to build
a map of the different textures on a surface, and this is reconstruction, too. Attaching names
to objects that appear in an image is clearly recognition. Sometimes we need to answer
questions like: Is it asleep? Does it eat meat? Which end has teeth? Answering these
questions is recognition, too.

The last thirty years of research have produced powerful tools and methods for addressing
these core problems. Understanding these methods requires an understanding of the processes
by which images are formed.

27.2 Image Formation

Imaging distorts the appearance of objects. A picture taken looking down a long straight set
of railway tracks will suggest that the rails converge and meet. If you hold your hand in front
of your eye, you can block out the moon, even though the moon is larger than your hand (this
works with the sun too, but you could damage your eyes checking it). If you hold a book
flat in front of your face and tilt it backward and forward, it will seem to shrink and grow in
the image. This effect is known as foreshortening (Figure 27.1). Models of these effects are
essential for building competent object recognition systems and also yield powerful cues for
reconstructing geometry.

27.2.1 Images without lenses: The pinhole camera

Image sensors gather light scattered from objects in a scene and create a two-dimensional Scene

(2D) image. In the eye, these sensors consist of two types of cell: There are about 100 Image

million rods, which are sensitive to light at a wide range of wavelengths, and 5 million cones.
Cones, which are essential for color vision, are of three main types, each of which is sensitive
to a different set of wavelengths. In cameras, the image is formed on an image plane. In film
cameras the image plane is coated with silver halides. In digital cameras, the image plane is
subdivided into a grid of a few million pixels. Pixels

We refer to the whole image plane as a sensor, but each pixel is an individual tiny Sensor

sensor—usually a charge-coupled device (CCD) or complementary metal-oxide semiconduc-
tor (CMOS). Each photon arriving at the sensor produces an electrical effect, whose strength
depends on the wavelength of the photon. The output of the sensor is the sum of all these
effects in some time window, meaning that image sensors report a weighted average of the
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Figure 27.1 Geometry in the scene appears distorted in images. Parallel lines appear to
meet, like the railway tracks in a desolate town. Buildings that have right angles in the real
world scene have distorted angles in the image.

intensity of light arriving at the sensor. The average is over wavelength, direction from which
photons can arrive, time, and the area of the sensor.

To see a focused image, we must ensure that all the photons arriving at a sensor come
from approximately the same spot on the object in the world. The simplest way to form a fo-
cused image is to view stationary objects with a pinhole camera, which consists of a pinholePinhole camera

opening, O, at the front of a box, and an image plane at the back of the box (Figure 27.2).
The opening is called the aperture. If the pinhole is small enough, each tiny sensor in theAperture

image plane will see only photons that come from approximately the same spot on the object,
and so the image is focused. We can form focused images of moving objects with a pinhole
camera, too, as long as the object moves only a short distance in the sensors’ time window.
Otherwise, the image of the moving object is defocused, an effect known as motion blur.Motion blur

One way to manipulate the time window is to open and close the pinhole.
Pinhole cameras make it easy to understand the geometric model of camera behavior

(which is more complicated—but similar—with most other imaging devices). We will use a
three-dimensional (3D) coordinate system with the origin at O, and will consider a point P
in the scene, with coordinates (X ,Y,Z). P gets projected to the point P′ in the image plane
with coordinates (x,y,z). If f is the focal length—the distance from the pinhole to the imageFocal length

plane—then by similar triangles, we can derive the following equations:

−x
f

=
X
Z
,
−y
f

=
Y
Z
⇒ x =

− f X
Z

, y =
− fY

Z
.

These equations define an image formation process known as perspective projection. NotePerspective
projection

that the Z in the denominator means that the farther away an object is, the smaller its image
will be. Also, note that the minus signs mean that the image is inverted, both left–right and
up–down, compared with the scene.

Perspective imaging has a number of geometric effects. Distant objects look small. Par-
allel lines converge to a point on the horizon. (Think of railway tracks, Figure 27.1.) A line
in the scene in the direction (U,V,W ) and passing through the point (X0,Y0,Z0) can be de-
scribed as the set of points (X0+λU,Y0+λV,Z0+λW ), with λ varying between−∞ and +∞.
Different choices of (X0,Y0,Z0) yield different lines parallel to one another. The projection
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Figure 27.2 Each light sensitive element at the back of a pinhole camera receives light that
passes through the pinhole from a small range of directions. If the pinhole is small enough,
the result is a focused image behind the pinhole. The process of projection means that large,
distant objects look the same as smaller, nearby objects—the point P′ in the image plane
could have come from a nearby toy tower at point P or from a distant real tower at point Q.

of a point Pλ from this line onto the image plane is given by

Pλ =
(

f
X0 +λU
Z0 +λW

, f
Y0 +λV
Z0 +λW

)
.

As λ→ ∞ or λ→−∞, this becomes P∞ = ( fU/W, fV/W ) if W 6= 0. This means that two
parallel lines leaving different points in space will converge in the image—for large λ, the
image points are nearly the same, whatever the value of (X0,Y0,Z0) (again, think railway
tracks, Figure 27.1). We call P∞ the vanishing point associated with the family of straight Vanishing point

lines with direction (U,V,W ). Lines with the same direction share the same vanishing point.

27.2.2 Lens systems

Pinhole cameras can focus light well, but because the pinhole is small, only a little light will
get in, and the image will be dark. Over a short period of time, only a few photons will hit
each point on the sensor, so the signal at each point will be dominated by random fluctuations;
we say that a dark film image is grainy and a dark digital image is noisy; either way, the image
is of low quality.

Enlarging the hole (the aperture) will make the image brighter by collecting more light
from a wider range of directions. However, with a larger aperture the light that hits a particular
point in the image plane will have come from multiple points in the real world scene, so the
image will be defocused. We need some way to refocus the image.

Vertebrate eyes and modern cameras use a lens system—a single piece of transparent Lens

tissue in the eye and a system of multiple glass lens elements in a camera. In Figure 27.3 we
see that light from the tip of the candle spreads out in all directions. A camera (or an eye)
with a lens captures all the light that hits anywhere on the lens—a much larger area than a
pinhole—and focuses all that light to a single point on the image plane. Light from other parts
of the candle would similarly be gathered and focused to other points on the image plane. The
result is a brighter, less noisy, focused image.
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Figure 27.3 Lenses collect the light leaving a point in the scene (here, the tip of the candle
flame) in a range of directions, and steer all the light to arrive at a single point on the image
plane. Points in the scene near the focal plane—within the depth of field—will be focused
properly. In cameras, elements of the lens system move to change the focal plane, whereas
in the eye, the shape of the lens is changed by specialized muscles.

Lens systems do not focus all the light from everywhere in the real world; the lens design
restricts them to focusing light only from points that lie within a range of Z depths from the
lens. The center of this range—where focus is sharpest—is called the focal plane, and theFocal plane

range of depths for which focus remains sharp enough is called the depth of field. The largerDepth of field

the lens aperture (opening), the smaller the depth of field.
What if you want to focus on something at a different distance? To move the focal plane,

the lens elements in a camera can move back and forth, and the lens in the eye can change
shape—but with age the eye lens tends to harden, making it less able to adjust focal distances,
and requiring many humans to augment their vision with external lens—eyeglasses.

27.2.3 Scaled orthographic projection

The geometric effects of perspective imaging aren’t always pronounced. For example, win-
dows on a building across the street look much smaller than ones right nearby, but two win-
dows that are next to each other will have about the same size even though one is slightly
farther away. We have the option to handle the windows with a simplified model called
scaled orthographic projection, rather than perspective projection. If the depth Z of allScaled orthographic

projection

points on an object fall within the range Z0±∆Z, with ∆Z� Z0, then the perspective scaling
factor f/Z can be approximated by a constant s = f/Z0. The equations for projection from
the scene coordinates (X ,Y,Z) to the image plane become x = sX and y = sY . Foreshortening
still occurs in the scaled orthographic projection model, because it is caused by the object
tilting away from the view.
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27.2.4 Light and shading

The brightness of a pixel in the image is a function of the brightness of the surface patch in
the scene that projects to the pixel. For modern cameras, this function is linear for middling
intensities of light, but has pronounced nonlinearities for darker and brighter illumination. We
will use a linear model. Image brightness is a strong, if ambiguous, cue to both the shape and
the identity of objects. The ambiguity occurs because there are three factors that contribute
to the amount of light that comes from a point on an object to the image: the overall intensity
of ambient light); whether the point is facing the light or is in shadow); and the amount of Ambient light

light reflected from the point. Reflection

People are surprisingly good at disambiguating brightness—they usually can tell the dif-
ference between a black object in bright light and a white object in shadow, even if both have
the same overall brightness. However, people sometimes get shading and markings mixed
up—-a streak of dark makeup under a cheekbone will often look like a shading effect, mak-
ing the face look thinner.

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scatters Diffuse reflection

light evenly across the directions leaving a surface, so the brightness of a diffuse surface
doesn’t depend on the viewing direction. Most cloth has this property, as do most paints,
rough wooden surfaces, most vegetation, and rough stone or concrete.

Specular reflection causes incoming light to leave a surface in a lobe of directions that Specular reflection

is determined by the direction the light arrived from. A mirror is one example. What you see
depends on the direction in which you look at the mirror. In this case, the lobe of directions
is very narrow, which is why you can resolve different objects in a mirror.

For many surfaces, the lobe is broader. These surfaces display small bright patches,
usually called specularities. As the surface or the light moves, the specularities move, too. Specularities

Away from these patches, the surface behaves as if it is diffuse. Specularities are often seen on
metal surfaces, painted surfaces, plastic surfaces, and wet surfaces. These are easy to identify,
because they are small and bright (Figure 27.4). For almost all purposes, it is enough to model
all surfaces as being diffuse with specularities.

The main source of illumination outside is the sun, whose rays all travel parallel to one
another in a known direction because it is so far away. We model this behavior with a distant
point light source. This is the most important model of lighting, and is quite effective for Distant point light

source
indoor scenes as well as outdoor scenes. The amount of light collected by a surface patch in
this model depends on the angle θ between the illumination direction and the normal (per-
pendicular) to the surfaces (Figure 27.5).

A diffuse surface patch illuminated by this model will reflect some fraction of the light it
collects, given by the diffuse albedo. For practical surfaces, this lies in the range 0.05-0.95. Diffuse albedo

Lambert’s cosine law states the brightness of a diffuse patch is given by Lambert’s cosine law

I = ρI0 cosθ,

where I0 is the intensity of the light source, θ is the angle between the light source direction
and the surface normal, and ρ is the diffuse albedo. This law predicts that bright image pixels
come from surface patches that face the light directly and dark pixels come from patches
that see the light only tangentially, so that the shading on a surface provides some shape
information. If the surface cannot see the source, then it is in shadow. Shadows are very Shadow

seldom a uniform black, because the shadowed surface usually receives some light from
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Specularities

Cast shadow

Diffuse reflection, dark

Diffuse reflection, bright

Figure 27.4 This photograph illustrates a variety of illumination effects. There are specular-
ities on the stainless steel cruet. The onions and carrots are bright diffuse surfaces because
they face the light direction. The shadows appear at surface points that cannot see the light
source at all. Inside the pot are some dark diffuse surfaces where the light strikes at a tangen-
tial angle. (There are also some shadows inside the pot.) Photo by Ryman Cabannes/Image
Professionals GmbH/Alamy Stock Photo.

A B

u u

Figure 27.5 Two surface patches are illuminated by a distant point source, whose rays are
shown as light arrows. Patch A is tilted away from the source (θ is close to 90◦) and collects
less energy, because it cuts fewer light rays per unit surface area. Patch B, facing the source
(θ is close to 0◦), collects more energy.

other sources. Outdoors, the most important source other than the sun is the sky, which
is quite bright. Indoors, light reflected from other surfaces illuminates shadowed patches.
These interreflections can have a significant effect on the brightness of other surfaces, too.Interreflections

These effects are sometimes modeled by adding a constant ambient illumination term to theAmbient illumination

predicted intensity.
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27.2.5 Color

Fruit is a bribe that a tree offers to animals to carry its seeds around. Trees that can signal
when this bribe is ready have an advantage, as do animals that can read these signals. As a
result, most fruits start green, and turn red or yellow when ripe, and most fruit-eating animals
can see these color changes. Generally, light arriving at the eye has different amounts of
energy at different wavelengths, and is represented by a spectral energy density.

Cameras and the human vision system respond to light at wavelengths ranging from about
380nm (violet) to about 750nm (red). In color imaging systems, there are different types of
receptor that respond more or less strongly to different wavelengths. In humans, the sensation
of color occurs when the vision system compares the responses of receptors near each other
on the retina. Animal color vision systems typically have relatively few types of receptor,
and so represent relatively little of the detail in the spectral energy density function (some
animals have only one type of receptor; some have as many as six types). Human color
vision is produced by three types of receptor. Most color camera systems use only three types
of receptor, too, because the images are produced for humans, but some specialized systems
can produce very detailed measurements of the spectral energy density.

Because most humans have three types of color-sensitive receptors, the principle of
trichromacy applies. This idea, first proposed by Thomas Young in 1802, states that a human Principle of

trichromacy

observer can match the visual appearance of any spectral energy density, however complex,
by mixing appropriate amounts of just three primaries. Primaries are colored light sources, Primaries

chosen so that no mixture of any two will match the third. A common choice is to have one
red primary, one green, and one blue, abbreviated as RGB. Although a given colored object RGB

may have many component frequencies of light, we can match the color by mixing just the
three primaries, and most people will agree on the proportions of the mixture. That means
we can represent color images with just three numbers per pixel—the RGB values.

For most computer vision applications, it is accurate enough to model a surface as having
three different (RGB) diffuse albedos and to model light sources as having three (RGB) in-
tensities. We then apply Lambert’s cosine law to each to get red, green, and blue pixel values.
This model predicts, correctly, that the same surface will produce different colored image
patches under different colored lights. In fact, human observers are quite good at ignoring
the effects of different colored lights and appear to estimate the color the surface would have
under white light, an effect known as color constancy. Color constancy

27.3 Simple Image Features

Light reflects off objects in the scene to form an image consisting of, say, twelve million
three-byte pixels. As with all sensors there will be noise in the image, and in any case there is
a lot of data to deal with. The way to get started analyzing this data is to produce simplified
representations that expose what’s important, but reduce detail. Much current practice learns
these representations from data. But there are four properties of images and video that are
particularly general: edges, texture, optical flow and segmentation into regions.

An edge occurs where there is a big difference in pixel intensity across part of an image.
Building representations of edges involves local operations on an image—you need to com-
pare a pixel value to some values nearby—and doesn’t require any knowledge about what is
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Figure 27.6 Different kinds of edges: (1) depth discontinuities; (2) surface orientation dis-
continuities; (3) reflectance discontinuities; (4) illumination discontinuities (shadows).

in the image. Thus, edge detection can come early in the pipeline of operations and we call it
an “early” or “low-level” operation.

The other operations require handling a larger area of the image. For example, a texture
description applies to a pool of pixels—to say “stripey,” you need to see some stripes. Optical
flow represents where pixels move to from one image in a sequence to the next, and this
can cover a larger area. Segmentation cuts an image into regions of pixels that naturally
belong together, and doing so requires looking at the whole region. Operations like this are
sometimes referred to as “mid-level” operations.

27.3.1 Edges

Edges are straight lines or curves in the image plane across which there is a “significant”Edges

change in image brightness. The goal of edge detection is to abstract away from the messy,
multi-megabyte image and towards a more compact, abstract representation, as in Figure 27.6.
Effects in the scene very often result in large changes in image intensity, and so produce edges
in the image. Depth discontinuities (labeled 1 in the figure) can cause edges because when
you cross the discontinuity, the color typically changes. When the surface normal changes
(labeled 2 in the figure), the image intensity often changes. When the surface reflectance
changes (labeled 3), the image intensity often changes. Finally, a shadow (labeled 4) is a
discontinuity in illumination that causes an edge in the image, even though there is not an
edge in the object. Edge detectors can’t disentangle the cause of the discontinuity, which is
left to later processing.

Finding edges requires care. Figure 27.7 (top) shows a one-dimensional crosssection of
an image perpendicular to an edge, with an edge at x = 50.

You might differentiate the image and look for places where the magnitude of the deriva-
tive I′(x) is large. This almost works, but in Figure 27.7 (middle), we see that although there
is a peak at x=50, there are also subsidiary peaks at other locations (e.g., x=75) that could be
mistaken for true edges. These arise because of the presence of “noise” in the image. NoiseNoise

here means changes to the value of a pixel that don’t have to do with an edge. For example,
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Figure 27.7 Top: Intensity profile I(x) along a one-dimensional section across a step edge.
Middle: The derivative of intensity, I′(x). Large values of this function correspond to edges,
but the function is noisy. Bottom: The derivative of a smoothed version of the intensity. The
noisy candidate edge at x=75 has disappeared.

there could be thermal noise in the camera; there could be scratches on the object surface that
change the surface normal at the finest scale; there could be minor variations in the surface
albedo; and so on. Each of these effects make the gradient look big, but don’t mean that an
edge is present. If we “smooth” the image first, the spurious peaks are diminished, as we see
in Figure 27.7 (bottom).

Smoothing involves using surrounding pixels to suppress noise. We will predict the “true”
value of our pixel as a weighted sum of nearby pixels, with more weight for the closest pixels.
A natural choice of weights is a Gaussian filter. Recall that the zero-mean Gaussian function Gaussian filter

with standard deviation σ is

Gσ(x) = 1√
2πσ

e−x2/2σ2
in one dimension, or

Gσ(x,y) = 1
2πσ2 e−(x

2+y2)/2σ2
in two dimensions.

Applying a Gaussian filter means replacing the intensity I(x0,y0) with the sum, over all (x,y)
pixels, of I(x,y)Gσ(d), where d is the distance from (x0,y0) to (x,y). This kind of weighted
sum is so common that there is a special name and notation for it. We say that the function h
is the convolution of two functions f and g (denoted as h = f ∗g) if we have Convolution

h(x) =
+∞

∑
u=−∞

f (u)g(x−u) in one dimension, or

h(x,y) =
+∞

∑
u=−∞

+∞

∑
v=−∞

f (u,v)g(x−u,y− v) in two dimensions.
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So the smoothing function is achieved by convolving the image with the Gaussian, I ∗Gσ. A
σ of 1 pixel is enough to smooth over a small amount of noise, whereas 2 pixels will smooth
a larger amount, but at the loss of some detail. Because the Gaussian’s influence fades rapidly
with distance, in practice we can replace the ±∞ in the sums with something like ±3σ.

We have a chance to make an optimization here: we can combine the smoothing and
the edge finding into a single operation. It is a theorem that for any functions f and g, the
derivative of the convolution, ( f ∗g)′, is equal to the convolution with the derivative, f ∗ (g′).
So rather than smoothing the image and then differentiating, we can just convolve the image
with the derivative of the Gaussian smoothing function, G′σ. We then mark as edges those
peaks in the response that are above some threshold, chosen to eliminate spurious peaks due
to noise.

There is a natural generalization of this algorithm from one-dimensional crosssections to
general 2D images. In two dimensions edges may be at any angle θ. Considering the image
brightness as a scalar function of the variables x, y, its gradient is a vector

∇I =

 ∂ I
∂x

∂ I
∂y


Edges correspond to locations in images where the brightness undergoes a sharp change,
and thus the magnitude of the gradient, ||∇I|| should be large at an edge point. When the
image gets brighter or darker, the gradient vector at each point gets longer or shorter, but the
direction of the gradient

∇I
||∇I||

=

(
cosθ
sinθ

)
does not change. This gives us a θ= θ(x,y) at every pixel, which defines the edge orientationOrientation

at that pixel. This feature is often useful, because it does not depend on image intensity.
As you might expect from the discussion on detecting edges in one-dimensional signals,

to form the gradient, we don’t actually compute ∇I, but rather ∇(I ∗Gσ), after smoothing the
image by convolving it with a Gaussian. A property of convolutions is that this is equivalent
to convolving the image with the partial derivatives of the Gaussian. Once we have computed
the gradient, we can obtain edges by finding edge points and linking them together. To tell
whether a point is an edge point, we must look at other points a small distance forward and
back along the direction of the gradient. If the gradient magnitude at one of these points is
larger, then we could get a better edge point by shifting the edge curve very slightly. Further-
more, if the gradient magnitude is too small, the point cannot be an edge point. So at an edge
point, the gradient magnitude is a local maximum along the direction of the gradient, and the
gradient magnitude is above a suitable threshold.

Once we have marked edge pixels by this algorithm, the next stage is to link those pixels
that belong to the same edge curves. This can be done by assuming that any two neighboring
pixels that are both edge pixels with consistent orientations belong to the same edge curve.

Edge detection isn’t perfect. Figure 27.8(a) shows an image of a scene containing a
stapler resting on a desk, and Figure 27.8(b) shows the output of an edge detection algorithm
on this image. As you can see, the output is not perfect: there are gaps where no edge appears,
and there are “noise” edges that do not correspond to anything of significance in the scene.
Later stages of processing will have to correct for these errors.
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Figure 27.8 (a) Photograph of a stapler. (b) Edges computed from (a).

27.3.2 Texture

In everyday language, the texture of surfaces hints at what they feel like when you run a Texture

finger over them (the words “texture,” “textile,” and “text” have the same Latin root, a word
for weaving). In computational vision, texture refers to a pattern on a surface that can be
sensed visually. Usually, these patterns are roughly regular. Examples include the pattern of
windows on a building, the stitches on a sweater, the spots on a leopard’s skin, blades of grass
on a lawn, pebbles on a beach, and a crowd of people in a stadium.

Sometimes the arrangement is quite periodic, as in the stitches on a sweater; in other
instances, such as pebbles on a beach, the regularity is only in a statistical sense: the density
of pebbles is roughly the same on different parts of the beach. A usual rough model of texture
is a repetitive pattern of elements, sometimes called texels. This model is quite useful because Texels

it is surprisingly hard to make or find real textures that never repeat.
Texture is a property of an image patch, rather than a pixel in isolation. A good descrip-

tion of a patch’s texture should summarize what the patch looks like. The description should
not change when the lighting changes. This rules out using edge points; if a texture is brightly
lit, many locations within the patch will have high contrast and will generate edge points; but
if the same texture is viewed under less bright light, many of these edges will not be above
the threshold. The description should change in a sensible way when the patch rotates. It is
important to preserve the difference between vertical stripes and horizontal stripes but not if
the vertical stripes are rotated to the horizontal.

Texture representations with these properties have been shown to be useful for two key
tasks. The first is identifying objects—a zebra and horse have similar shape, but different
textures. The second is matching patches in one image to patches in another image, a key
step in recovering 3D information from multiple images (Section 27.6.1).

Here is a basic construction for a texture representation. Given an image patch, compute
the gradient orientation at each pixel in the patch, and then characterize the patch by a his-
togram of orientations. Gradient orientations are largely invariant to changes in illumination
(the gradient will get longer, but it will not change direction). The histogram of orientations
seems to capture important aspects of the texture. For example, vertical stripes will have two
peaks in the histogram (one for the left side of each stripe and one for the right); leopard spots
will have more uniformly distributed orientations.

But we do not know how big a patch to describe. There are two strategies. In specialized
applications, image information reveals how big the patch should be (for example, one might
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grow a patch full of stripes until it covers the zebra). An alternative is to describe a patch
centered at each pixel for a range of scales. This range usually runs from a few pixels to the
extent of the image. Now divide the patch into bins, and in each bin construct an orientation
histogram, then summarize the pattern of histograms across bins. It is no longer usual to
construct these descriptions by hand. Instead, convolutional neural networks are used to
produce texture representations. But the representations constructed by the networks seem to
mirror this construction very roughly.

27.3.3 Optical flow

Next, let us consider what happens when we have a video sequence, instead of just a single
static image. Whenever there is relative movement between the camera and one or more
objects in the scene, the resulting apparent motion in the image is called optical flow. ThisOptical flow

describes the direction and speed of motion of features in the image as a result of relative
motion between the viewer and the scene. For example, distant objects viewed from a moving
car have much slower apparent motion than nearby objects, so the rate of apparent motion
can tell us something about distance.

In Figure 27.9 we show two frames from a video of a tennis player. On the right we
display the optical flow vectors computed from these images. The optical flow encodes useful
information about scene structure—the tennis player is moving and the background (largely)
isn’t. Furthermore, the flow vectors reveal something about what the player is doing—one
arm and one leg are moving fast, and the other body parts aren’t.

The optical flow vector field can be represented by its components vx(x,y) in the x direc-
tion and vy(x,y) in the y direction. To measure optical flow, we need to find corresponding
points between one time frame and the next. A very simple-minded technique is based on the
fact that image patches around corresponding points have similar intensity patterns. Consider
a block of pixels centered at pixel p, (x0,y0), at time t. This block of pixels is to be compared
with pixel blocks centered at various candidate pixels qi at (x0 +Dx,y0 +Dy) at time t +Dt .
One possible measure of similarity is the sum of squared differences (SSD):Sum of squared

differences (SSD)

SSD(Dx,Dy) = ∑
(x,y)

(I(x,y, t)− I(x+Dx,y+Dy, t +Dt))
2 .

Figure 27.9 Two frames of a video sequence and the optical flow field corresponding to the
displacement from one frame to the other. Note how the movement of the tennis racket and
the front leg is captured by the directions of the arrows. (Images courtesy of Thomas Brox.)
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Here, (x,y) ranges over pixels in the block centered at (x0,y0). We find the (Dx,Dy) that
minimizes the SSD. The optical flow at (x0,y0) is then (vx,vy) = (Dx/Dt ,Dy/Dt). Note that
for this to work, there should be some texture in the scene, resulting in windows containing a
significant variation in brightness among the pixels. If one is looking at a uniform white wall,
then the SSD is going to be nearly the same for the different candidate matches q, and the
algorithm is reduced to making a blind guess. The best-performing algorithms for measuring
optical flow rely on a variety of additional constraints to deal with situations in which the
scene is only partially textured.

27.3.4 Segmentation of natural images

Segmentation is the process of breaking an image into groups of similar pixels. The basic Segmentation

idea is that each image pixel can be associated with certain visual properties, such as bright-
ness, color, and texture. Within an object, or a single part of an object, these attributes vary
relatively little, whereas across an inter-object boundary there is typically a large change in
one or more of these attributes. We need to find a partition of the image into sets of pixels
such that these constraints are satisfied as well as possible. Notice that it isn’t enough just to
find edges, because many edges are not object boundaries. So, for example, a tiger in grass
may generate an edge on each side of each stripe and each blade of grass. In all the confusing
edge data, we may miss the tiger for the stripes.

There are two ways of studying the problem, one focusing on detecting the boundaries of
these groups, and the other on detecting the groups themselves, called regions. We illustrate Regions

this in Figure 27.10, showing boundary detection in (b) and region extraction in (c) and (d).
One way to formalize the problem of detecting boundary curves is as a classification

problem, amenable to the techniques of machine learning. A boundary curve at pixel location
(x,y) will have an orientation θ. An image neighborhood centered at (x,y) looks roughly
like a disk, cut into two halves by a diameter oriented at θ. We can compute the probability
Pb(x,y,θ) that there is a boundary curve at that pixel along that orientation by comparing
features in the two halves. The natural way to predict this probability is to train a machine
learning classifier using a data set of natural images in which humans have marked the ground
truth boundaries—the goal of the classifier is to mark exactly those boundaries marked by
humans and no others.

Boundaries detected by this technique are better than those found using the simple edge
detection technique described previously. But there are still two limitations: (1) the boundary
pixels formed by thresholding Pb(x,y,θ) are not guaranteed to form closed curves, so this
approach doesn’t deliver regions, and (2) the decision making exploits only local context,
and does not use global consistency constraints.

The alternative approach is based on trying to “cluster” the pixels into regions based on
their brightness, color and texture properties. There are a number of different ways in which
this intuition can be formalized mathematically. For instance, Shi and Malik (2000) set this
up as a graph partitioning problem. The nodes of the graph correspond to pixels, and edges
to connections between pixels. The weight Wi j on the edge connecting a pair of pixels i and
j is based on how similar the two pixels are in brightness, color, texture, etc. They then
find partitions that minimize a normalized cut criterion. Roughly speaking, the criterion for
partitioning the graph is to minimize the sum of weights of connections across the groups and
maximize the sum of weights of connections within the groups.
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(a) (b) (c) (d)

Figure 27.10 (a) Original image. (b) Boundary contours, where the higher the Pb value,
the darker the contour. (c) Segmentation into regions, corresponding to a fine partition of
the image. Regions are rendered in their mean colors. (d) Segmentation into regions, corre-
sponding to a coarser partition of the image, resulting in fewer regions. (Images courtesy of
Pablo Arbelaez, Michael Maire, Charless Fowlkes and Jitendra Malik.)

It turns out that the approaches based on finding boundaries and on finding regions can
be coupled, but we will not explore these possibilities here. Segmentation based purely on
low-level, local attributes such as brightness and color can not be expected to deliver the final
correct boundaries of all the objects in the scene. To reliably find boundaries associated with
objects, it is also necessary to incorporate high-level knowledge of the kinds of objects one
may expect to encounter in a scene. At this time, a popular strategy is to produce an over-
segmentation of an image, where one is guaranteed not to have missed marking any of the true
boundaries but may have marked many extra false boundaries as well. The resulting regions,
called superpixels, provide a significant reduction in computational complexity for various
algorithms, as the number of superpixels may be in the hundreds, compared to millions of
raw pixels. Exploiting high-level knowledge of objects is the subject of the next section, and
actually detecting the objects in images is the subject of Section 27.5.

27.4 Classifying Images

Image classification applies to two main cases. In one, the images are of objects, taken from
a given taxonomy of classes, and there’s not much else of significance in the picture—for
example, a catalog of clothing or furniture images, where the background doesn’t matter, and
the output of the classifier is “cashmere sweater” or “desk chair.”

In the other case, each image shows a scene containing multiple objects. So in grassland
you might see a giraffe and a lion, and in the living room you might see a couch and lamp,
but you don’t expect a giraffe or a submarine in a living room. We now have methods for
large-scale image classification that can accurately output “grassland” or “living room.”

Modern systems classify images using appearance (i.e., color and texture, as opposedAppearance

to geometry). There are two difficulties. First, different instances of the same class could
look different—some cats are black and others are orange. Second, the same cat could look
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Foreshortening Aspect

Occlusion Deformation

Figure 27.11 Important sources of appearance variation that can make different images of
the same object look different. First, elements can foreshorten, like the circular patch on the
top left. This patch is viewed at a glancing angle, and so is elliptical in the image. Second,
objects viewed from different directions can change shape quite dramatically, a phenomenon
known as aspect. On the top right are three different aspects of a doughnut. Occlusion causes
the handle of the mug on the bottom left to disappear when the mug is rotated. In this case,
because the body and handle belong to the same mug, we have self-occlusion. Finally, on the
bottom right, some objects can deform dramatically.

different at different times depending on several effects, (as illustrated in Figure 27.11):

• Lighting, which changes the brightness and color of the image.
• Foreshortening, which causes a pattern viewed at a glancing angle to be distorted.
• Aspect, which causes objects to look different when seen from different directions. A

doughnut seen from the side looks like a flattened oval, but from above it is an annulus.
• Occlusion, where some parts of the object are hidden. Objects can occlude one another,

or parts of an object can occlude other parts, an effect known as self-occlusion.
• Deformation, where the object changes its shape. For example, the tennis player moves

her arms and legs.

Modern methods deal with these problems by learning representations and classifiers from
very large quantities of training data using a convolutional neural network. With a sufficiently
rich training set the classifier will have seen any effect of importance many times in training,
and so can adjust for the effect.

27.4.1 Image classification with convolutional neural networks

Convolutional neural networks (CNNs) are spectacularly successful image classifiers. With
enough training data and enough training ingenuity, CNNs produce very successful classifi-
cation systems, much better than anyone has been able to produce with other methods.

The ImageNet data set played a historic role in the development of image classification
systems by providing them with over 14 million training images, classified into over 30,000
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fine-grained categories. ImageNet also spurred progress with an annual competition. Systems
are evaluated by both the classification accuracy of their single best guess and by top-5 ac-
curacy, in which systems are allowed to submit five guesses—for example, malamute, husky,
akita, samoyed, eskimo dog. ImageNet has 189 subcategories of dog, so even dog-loving
humans find it hard to label images correctly with a single guess.

In the first ImageNet competition in 2010, systems could do no better than 70% top-5
accuracy. The introduction of convolutional neural networks in 2012 and their subsequent
refinement led to an accuracy of 98% in top-5 (surpassing human performance) and 87% in
top-1 accuracy by 2019. The primary reason for this success seems to be that the features that
are being used by CNN classifiers are learned from data, not hand-crafted by a researcher;
this ensures that the features are actually useful for classification.

Progress in image classification has been rapid because of the availability of large, chal-
lenging data sets such as ImageNet; because of competitions based on these data sets that
are fair and open; and because of the widespread dissemination of successful models. The
winners of competitions publish the code and often the pretrained parameters of their models,
making it easy for others to fiddle with successful architectures and try to make them better.

27.4.2 Why convolutional neural networks classify images well

Image classification is best understood by looking at data sets, but ImageNet is much too
large to look at in detail. The MNIST data set is a collection of 70,000 images of handwritten
digits, 0–9, which is often used as a standard warmup data set. Looking at this data set (some
examples appear in Figure 27.12) exposes some important, quite general, properties. You can
take an image of a digit and make a number of small alterations without changing the identity
of the digit: you can shift it, rotate it, make it brighter or darker, smaller or larger. This means
that individual pixel values are not particularly informative—we know that an 8 should have
some dark pixels in the center and a 0 should not, but those dark pixels will be in slightly
different pixel locations in each instance of an 8.

Another important property of images is that local patterns can be quite informative:
The digits 0, 6, 8 and 9 have loops; the digits 4 and 8 have crossings; the digits 1, 2, 3, 5
and 7 have line endings, but no loops or crossings; the digits 6 and 9 have loops and line
endings. Furthermore, spatial relations between local patterns are informative. A 1 has two
line endings above one another; a 6 has a line ending above a loop. These observations
suggest a strategy that is a central tenet of modern computer vision: you construct features
that respond to patterns in small, localized neighborhoods; then other features look at patterns
of those features; then others look at patterns of those, and so on.

This is what convolutional neural networks do well. You should think of a layer—a con-
volution followed by a ReLU activation function—as a local pattern detector (Figure 27.12).
The convolution measures how much each local window of the image looks like the kernel
pattern; the ReLU sets low-scoring windows to zero, and emphasizes high-scoring windows.
So convolution with multiple kernels finds multiple patterns; furthermore, composite patterns
can be detected by applying another layer to the output of the first layer.

Think about the output of the first convolutional layer. Each location receives inputs from
pixels in a window about that location. The output of the ReLU, as we have seen, forms a
simple pattern detector. Now if we put a second layer on top of this, each location in the
second layer receives inputs from first-layer values in a window about that location. This
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Figure 27.12 On the far left, some images from the MNIST data set. Three kernels appear
on the center left. They are shown at actual size (tiny blocks) and magnified to reveal their
content: mid-grey is zero, light is positive, and dark is negative. Center right shows the results
of applying these kernels to the images. Right shows pixels where the response is bigger than
a threshold (green) or smaller than a threshold (red). You should notice that this gives (from
top to bottom): a horizontal bar detector; a vertical bar detector; and (harder to note) a line
ending detector. These detectors pay attention to the contrast of the bar, so (for example) a
horizontal bar that is light on top and dark below produces a positive (green) response, and
one that is dark on top and light below gets a negative (red) response. These detectors are
moderately effective, but not perfect.

means that locations in the second layer are affected by a larger window of pixels than those
in the first layer. You should think of these as representing “patterns of patterns.” If we place
a third layer on top of the second layer, locations in that third layer will depend on an even
larger window of pixels; a fourth layer will depend on a yet larger window, and so on. The
network is creating patterns at multiple levels, and is doing that by learning from the data
rather than having the patterns given to it by a programmer.

While training a CNN “out of the box” does sometimes work, it helps to know a few
practical techniques. One of the most important is data set augmentation, in which training Data set

augmentation

examples are copied and modified slightly. For example, one might randomly shift, rotate,
or stretch an image by a small amount, or randomly shift the hue of the pixels by a small
amount. Introducing this simulated variation in viewpoint or lighting to the data set helps to
increase the size of the data set, though of course the new examples are highly correlated with
the originals. It is also possible to use augmentation at test time rather than training time. In
this approach, the image is replicated and modified several times (e.g., with random cropping)
and the classifier is run on each of the modified images. The outputs of the classifier from
each copy are then used to vote for a final decision on the overall class.

When you are classifying images of scenes, every pixel could be helpful. But when you
are classifying images of objects, some pixels aren’t part of the object, and so might be a
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distraction. For example, if a cat is lying on a dog bed, we want a classifier to concentrate
on the pixels of the cat, not the bed. Modern image classifiers handle this well, classifying
an image as “cat” accurately even if few pixels actually lie on the cat. There are two reasons
for this. First, CNN-based classifiers are good at ignoring patterns that aren’t discriminative.
Second, patterns that lie off the object might be discriminative (e.g., a cat toy, a collar with
a little bell, or a dish of cat food might actually help tell that we are looking at a cat). This
effect is known as context. Context can help or can hurt, depending quite strongly on theContext

particular data set and application.

27.5 Detecting Objects

Image classifiers predict what is in the image—they classify the whole image as belonging to
one class. Object detectors find multiple objects in an image, report what class each object is,
and also report where each object is by giving a bounding box around the object.1 The set ofBounding box

classes is fixed in advance. So we might try to detect all faces, all cars, or all cats.
We can build an object detector by looking at a small sliding window onto the largerSliding window

image—a rectangle. At each spot, we classify what we see in the window, using a CNN
classifier. We then take the high-scoring classifications—a cat over here and a dog over
there—and ignore the other windows. After some work resolving conflicts, we have a final
set of objects with their locations. There are still some details to work out:

• Decide on a window shape: The easiest choice by far is to use axis-aligned rectangles.
(The alternative—some form of mask that cuts the object out of the image—is hardly
ever used, because it is hard to represent and to compute with.) We still need to choose
the width and height of the rectangles.

• Build a classifier for windows: We already know how to do this with a CNN.
• Decide which windows to look at: Out of all possible windows, we want to select ones

that are likely to have interesting objects in them.
• Choose which windows to report: Windows will overlap, and we don’t want to report

the same object multiple times in slightly different windows. Some objects are not
worth mentioning; think about the number of chairs and people in a picture of a large
packed lecture hall. Should they all be reported as individual objects? Perhaps only the
objects that appear large in the image—the front row—should be reported. The choice
depends on the intended use of the object detector.

• Report precise locations of objects using these windows: Once we know that the
object is somewhere in the window, we can afford to do more computation to figure out
a more precise location within the window.

Let’s look more carefully at the problem of deciding which windows to look at. Search-
ing all possible windows isn’t efficient—in an n× n pixel image there are O(n4) possible
rectangular windows. But we know that windows that contain objects tend to have quite co-
herent color and texture. On the other hand, windows that cut an object in half have regions
or edges that cross the side of the window. So it makes sense to have a mechanism that scores

1 We will use the term “box” to mean any axis-aligned rectangular region of the image, and the term “window”
mostly as a synonym for “box,” but with the connotation that we have a window onto the input where we are
hoping to see something, and a bounding box in the output when we have found it.
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“objectness”—whether a box has an object in it, independent of what that object is. We can
find the boxes that look like they have an object in them, and then classify the object for just
those boxes that pass the objectness test.

A network that finds regions with objects is called a regional proposal network (RPN). Regional proposal
network (RPN)

The object detector known as Faster RCNN encodes a large collection of bounding boxes as a
map of fixed size. Then it builds a network that can predict a score for each box, and trains this
network so the score is large when the box contains an object, and small otherwise. Encoding
boxes as a map is straightforward. We consider boxes centered on points throughout the
image; we don’t need to consider every possible point (because moving by one pixel is not
likely to change the classification); a good choice is a stride (the offset between center points)
of 16 pixels. For each center point we consider several possible boxes, called anchor boxes.
Faster RCNN uses nine boxes: small, medium, and large sizes; and tall, wide, and square
aspect ratios.

In terms of the neural network architecture, construct a 3D block where each spatial
location in the block has two dimensions for the center point and one dimension for the type
of box. Now any box with a good enough objectness score is called a region of interest
(ROI), and must be checked by a classifier. But CNN classifiers prefer images of fixed size,
and the boxes that pass the objectness test will differ in size and shape. We can’t make
the boxes have the same number of pixels, but we can make them have the same number
of features by sampling the pixels to extract features, a process called ROI pooling. This
fixed-size feature map is then passed to the classifier.

Now for the problem of deciding which windows to report. Assume we look at windows
of size 32×32 with a stride of 1: each window is offset by just one pixel from the one before.
There will be many windows that are similar, and should have similar scores. If they all have
a score above threshold we don’t want to report all of them, because they very likely all refer
to slightly different views of the same object. On the other hand if the stride is too large, it
might be that an object is not contained within any one window, and will be missed. Instead,
we can use a greedy algorithm called non-maximum suppression. First, build a sorted list Non-maximum

suppression

of all windows with scores over a threshold. Then, while there are windows in the list, choose
the window with the highest score and accept it as containing an object; discard from the list
all other largely overlapping windows.

Finally, we have the problem of reporting the precise location of objects. Assume we
have a window that has a high score, and has passed through non-maximum suppression. This
window is unlikely to be in exactly the right place (remember, we looked at a relatively small
number of windows with a small number of possible sizes). We use the feature representation
computed by the classifier to predict improvements that will trim the window down to a
proper bounding box, a step known as bounding box regression. Bounding box

regression

Evaluating object detectors takes care. First we need a test set: a collection of images
with each object in the image marked by a ground truth category label and bounding box.
Usually, the boxes and labels are supplied by humans. Then we feed each image to the object
detector and compare its output to the ground truth. We should be willing to accept boxes
that are off by a few pixels, because the ground truth boxes won’t be perfect. The evaluation
score should balance recall (finding all the objects that are there) and precision (not finding
objects that are not there).
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Figure 27.13 Faster RCNN uses two networks. A picture of a young Nelson Mandela is
fed into the object detector. One network computes “objectness” scores of candidate image
boxes, called “anchor boxes,” centered at a grid point. There are nine anchor boxes (three
scales, three aspect ratios) at each grid point. For the example image, an inner green box and
an outer blue box have passed the objectness test. The second network is a feature stack that
computes a representation of the image suitable for classification. The boxes with highest
objectness score are cut from the feature map, standardized in size with ROI pooling, and
passed to a classifier. The blue box has a higher score than the green box and overlaps it, so
the green box is rejected by non-maximum suppression. Finally, bounding box regression the
blue box so that it fits the face. This means that the relatively coarse sampling of locations,
scales, and aspect ratios does not weaken accuracy. Photo by Sipa/Shutterstock.

27.6 The 3D World

Images show a 2D picture of a 3D world. But this 2D picture is rich with cues about the 3D
world. One kind of cue occurs when we have multiple pictures of the same world, and can
match points between pictures. Another kind of cue is available within a single picture.

27.6.1 3D cues from multiple views

Two pictures of objects in a 3D world are better than one for several reasons:

• If you have two images of the same scene taken from different viewpoints and you know
enough about the two cameras, you can construct a 3D model—a collection of points
with their coordinates in 3 dimensions—by figuring out which point in the first view
corresponds to which point in the second view and applying some geometry. This is
true for almost all pairs of viewing directions and almost all kinds of camera.

• If you have two views of enough points, and you know which point in the first view
corresponds to which point in the second view, you do not need to know much about
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the cameras to construct a 3D model. Two views of two points gives you four x,y co-
ordinates, and you only need three coordinates to specify a point in 3D space; the extra
coordinate comes in helpful to figure out what you need to know about the cameras.
This is true for almost all pairs of viewing directions and almost all kinds of camera.

The key problem is to establish which point in the first view corresponds to which in the
second view. Detailed descriptions of the local appearance of a point using simple texture
features (like those in section 27.3.2) are often enough to match points. For example, in a
scene of traffic on a street, there might be only one green light visible in two images taken
of the scene; we can then hypothesize that these correspond to each other. The geometry of
multiple camera views is very well understood (but sadly too complicated to expound here).
The theory produces geometric constraints on which point in one image can match with which
point in the other. Other constraints can be obtained by reasoning about the smoothness of
the reconstructed surfaces.

There are two ways of getting multiple views of a scene. One is to have two cameras
or two eyes (section 27.6.2). Another is to move (section 27.6.3). If you have more than
two views, you can recover both the geometry of the world and the details of the view very
accurately. Section 27.7.3 discusses some applications for this technology.

27.6.2 Binocular stereopsis

Most vertebrates have two eyes. This is useful for redundancy in case of a lost eye, but it
helps in other ways too. Most prey have eyes on the side of the head to enable a wider field of
vision. Predators have the eyes in the front, enabling them to use binocular stereopsis. Hold Binocular stereopsis

both index fingers up in front of your face, with one eye closed, and adjust them so the front
finger occludes the other finger in the open eye’s view. Now swap eyes; you should notice that
the fingers have shifted position with respect to one another. This shifting of position from
left view to right view is known as disparity. In the right choice of coordinate system, if we Disparity

superimpose left and right images of an object at some depth, the object shifts horizontally in
the superimposed image, and the size of the shift is the reciprocal of the depth. You can see
this in Figure 27.14, where the nearest point of the pyramid is shifted to the left in the right
image and to the right in the left image.

To measure disparity we need to solve the correspondence problem—to determine for a
point in the left image, its “partner” in the right image which results from the projection of
the same scene point. This is analogous to what is done in measuring optical flow, and the
most simple-minded approaches are somewhat similar. These methods search for blocks of
left and right pixels that match, using the sum of squared differences (as in Section 27.3.3).
More sophisticated methods use more detailed texture representations of blocks of pixels (as
in Section 27.3.2). In practice, we use much more sophisticated algorithms, which exploit
additional constraints.

Assuming that we can measure disparity, how does this yield information about depth
in the scene? We will need to work out the geometrical relationship between disparity and
depth. We will consider first the case when both the eyes (or cameras) are looking forward
with their optical axes parallel. The relationship of the right camera to the left camera is then
just a displacement along the x-axis by an amount b, the baseline. We can use the optical Baseline

flow equations from Section 27.3.3, if we think of this as resulting from a translation vector
T acting for time δt, with Tx = b/δt and Ty = Tz = 0. The horizontal and vertical disparity
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Figure 27.14 Translating a camera parallel to the image plane causes image features to move
in the camera plane. The disparity in positions that results is a cue to depth. If we superimpose
left and right images, as in (b), we see the disparity.

are given by the optical flow components, multiplied by the time step δt, H = vx δt, V = vy δt.
Carrying out the substitutions, we get the result that H = b/Z, V = 0. In other words, the
horizontal disparity is equal to the ratio of the baseline to the depth, and the vertical disparity
is zero. We can recover the depth Z given that we know b, and can measure H.

Under normal viewing conditions, humans fixate; that is, there is some point in the sceneFixate

at which the optical axes of the two eyes intersect. Figure 27.15 shows two eyes fixated
at a point P0, which is at a distance Z from the midpoint of the eyes. For convenience,
we will compute the angular disparity, measured in radians. The disparity at the point of
fixation P0 is zero. For some other point P in the scene that is δZ farther away, we can
compute the angular displacements of the left and right images of P, which we will call PL

and PR, respectively. If each of these is displaced by an angle δθ/2 relative to P0, then the
displacement between PL and PR, which is the disparity of P, is just δθ. From Figure 27.15,
tanθ = b/2

Z and tan(θ− δθ/2) = b/2
Z+δZ , but for small angles, tanθ ≈ θ, so

δθ/2 =
b/2
Z
− b/2

Z + δZ
≈ bδZ

2Z2

and, since the actual disparity is δθ, we have

disparity =
bδZ
Z2

In humans, the baseline b is about 6 cm. Suppose that Z is about 100 cm and that the
smallest detectable δθ (corresponding to the size of a single pixel) is about 5 seconds of arc,
giving a δZ of 0.4 mm. For Z = 30 cm, we get the impressively small value δZ = 0.036 mm.
That is, at a distance of 30 cm, humans can discriminate depths that differ by as little as 0.036
mm, enabling us to thread needles and the like.
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Figure 27.15 The relation between disparity and depth in stereopsis. The centers of projec-
tion of the two eyes are distance b apart, and the optical axes intersect at the fixation point
P0. The point P in the scene projects to points PL and PR in the two eyes. In angular terms,
the disparity between these is δθ (the diagram shows two angles of δθ/2).

27.6.3 3D cues from a moving camera

Assume we have a camera moving in a scene. Take Figure 27.14 and label the left image
“Time t” and the right image “Time t +1”. The geometry has not changed, so all the material
from the discussion of stereopsis also applies when a camera moves. What we called disparity
in that section is now thought of as apparent motion in the image, and called optical flow. This
is a source of information for both the movement of the camera and the geometry of the scene.
To understand this, we state (without proof) an equation that relates the optical flow to the
viewer’s translational velocity T and the depth in the scene.

The optical flow field is a vector field of velocities in the image, (vx(x,y),vy(x,y)). Ex-
pressions for these components, in a coordinate frame centered on the camera and assuming
a focal length of f =1, are

vx(x,y) =
−Tx + xTz

Z(x,y)
and vy(x,y) =

−Ty + yTz

Z(x,y)
.

where Z(x,y) is the z-coordinate (that is, depth) of the point in the scene corresponding to the
point in the image at (x,y).

Note that both components of the optical flow, vx(x,y) and vy(x,y), are zero at the point
x = Tx/Tz,y = Ty/Tz. This point is called the focus of expansion of the flow field. Suppose Focus of expansion

we change the origin in the x–y plane to lie at the focus of expansion; then the expressions
for optical flow take on a particularly simple form. Let (x′,y′) be the new coordinates defined
by x′ = x−Tx/Tz, y′ = y−Ty/Tz. Then

vx(x′,y′) =
x′Tz

Z(x′,y′)
, vy(x′,y′) =

y′Tz

Z(x′,y′)
.

Note that there is a scale factor ambiguity here (which is why assuming a focal length of
f =1 is harmless). If the camera was moving twice as fast, and every object in the scene was
twice as big and at twice the distance to the camera, the optical flow field would be exactly
the same. But we can still extract quite useful information.
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1. Suppose you are a fly trying to land on a wall and you want useful information from
the optical flow field. The optical flow field cannot tell you the distance to the wall or
the velocity to the wall, because of the scale ambiguity. But if you divide the distance
by the velocity, the scale ambiguity cancels. The result is the time to contact, given by
Z/Tz, and is very useful indeed to control the landing approach. There is considerable
experimental evidence that many different animal species exploit this cue.

2. Consider two points at depths Z1, Z2 respectively. We may not know the absolute value
of either of these, but by considering the inverse of the ratio of the optical flow magni-
tudes at these points, we can determine the depth ratio Z1/Z2. This is the cue of motion
parallax, one we use when we look out of the side window of a moving car or train and
infer that the slower-moving parts of the landscape are farther away.

27.6.4 3D cues from one view

Even a single image provides a rich collection of information about the 3D world. This is
true even if the image is just a line drawing. Line drawings have fascinated vision scientists,
because people have a sense of 3D shape and layout even though the drawing seems to contain
very little information to choose from the vast collection of scenes that could produce the
same drawing. Occlusion is one key source of information: if there is evidence in the picture
that one object occludes another, then the occluding object is closer to the eye.

In images of real scenes, texture is a strong cue to 3D structure. Section 27.3.2 stated that
texture is a repetitive pattern of texels. Although the distribution of texels may be uniform on
objects in the scene—for example, pebbles on a beach—it may not be uniform in image—
the farther pebbles appear smaller than the nearer pebbles. As another example, think about
a piece of polka-dot fabric. All the dots are the same size and shape on the fabric, but in
a perspective view some dots are ellipses due to foreshortening. Modern methods exploit
these cues by learning a mapping from images to 3D structure (Section 27.7.4), rather than
reasoning directly about the underlying mathematics of texture.

Shading—variation in the intensity of light received from different portions of a surface
in a scene—is determined by the geometry of the scene and by the reflectance properties of
the surfaces. There is very good evidence that shading is a cue to 3D shape. The physical
argument is easy. From the physical model of section 27.2.4, we know that if a surface normal
points toward the light source, the surface is brighter, and if it points away, the surface is
darker. This argument gets more complicated if the reflectance of the surface isn’t known,
and the illumination field isn’t even, but humans seem to be able to get a useful perception of
shape from shading. We know frustratingly little about algorithms to do this.

If there is a familiar object in the picture, what it looks like depends very strongly on its
pose, that is, its position and orientation with respect to the viewer. There are straightforwardPose

algorithms for recovering pose from correspondences between points on an object and points
on a model of the object. Recovering the pose of a known object has many applications. For
instance, in an industrial manipulation task, the robot arm cannot pick up an object until the
pose is known. Robotic surgery applications depend on exactly computing the transforma-
tions between the camera’s position and the positions of the surgical tool and the patient (to
yield the transformation from the tool’s position to the patient’s position).

Spatial relations between objects are another important cue. Here is an example. All
pedestrians are about the same height, and they tend to stand on a ground plane. If we
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know where the horizon is in an image, we can rank pedestrians by distance to the camera.
This works because we know where their feet are, and pedestrians whose feet are closer to
the horizon in the image are farther away from the camera, and so must be smaller in the
image. This means we can rule out some detector responses—if a detector finds a pedestrian
who is large in the image and whose feet are close to the horizon, it has found an enormous
pedestrian; these don’t exist, so the detector is wrong. In turn, a reasonably reliable pedestrian
detector is capable of producing estimates of the horizon, if there are several pedestrians in
the scene at different distances from the camera. This is because the relative scaling of the
pedestrians is a cue to where the horizon is. So we can extract a horizon estimate from the
detector, then use this estimate to prune the pedestrian detector’s mistakes.

27.7 Using Computer Vision

Here we survey a range of computer vision applications. There are now many reliable com-
puter vision tools and toolkits, so the range of applications that are successful and useful is
extraordinary. Many are developed at home by enthusiasts for special purposes, which is
testimony to how usable the methods are and how much impact they have. (For example, an
enthusiast created a great object-detection-based pet door that refuses entry to a cat if it is
bringing in a dead mouse–a Web search will find it for you).

27.7.1 Understanding what people are doing

If we could build systems that understood what people are doing by analyzing video, we could
build human-computer interfaces that watch people and react to their behavior. With these
interfaces, we could: design buildings and public places better, by collecting and using data
about what people do in public; build more accurate and less intrusive security surveillance
systems; build automated sports commentators; make construction sites and workplaces safer
by generating warnings when people and machines get dangerously close; build computer
games that make a player get up and move around; and save energy by managing heat and
light in a building to match where the occupants are and what they are doing.

The state of the art for some problems is now extremely strong. There are methods that
can predict the locations of a person’s joints in an image very accurately. Quite good estimates
of the 3D configuration of that person’s body follow (see Figure 27.16). This works because
pictures of the body tend to have weak perspective effects, and body segments don’t vary
much in length, so the foreshortening of a body segment in an image is a good cue to the
angle between it and the camera plane. With a depth sensor, these estimates can be made fast
enough to build them into computer game interfaces.

Classifying what people are doing is harder. Video that shows rather structured behaviors,
like ballet, gymnastics, or tai chi, where there are quite specific vocabularies that refer to very
precisely delineated activities on simple backgrounds, is quite easy to deal with. Good results
can be obtained with a lot of labeled data and an appropriate convolutional neural network.
However, it can be difficult to prove that the methods actually work, because they rely so
strongly on context. For example, a classifier that labels “swimming” sequences very well
might just be a swimming pool detector, which wouldn’t work for (say) swimmers in rivers.

More general problems remain open—for example, how to link observations of the body
and the objects nearby to the goals and intentions of the moving people. One source of
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Figure 27.16 Reconstructing humans from a single image is now practical. Each row shows
a reconstruction of 3D body shape obtained using a single image. These reconstructions are
possible because methods can estimate the location of joints, the joint angles in 3D, the shape
of the body, and the pose of the body with respect to an image. Each row shows the follow-
ing: far left a picture; center left the picture with the reconstructed body superimposed;
center right another view of the reconstructed body; and far right yet another view of the
reconstructed body. The different views of the body make it much harder to conceal errors
in reconstruction. Figure courtesy of Angjoo Kanazawa, produced by a system described in
Kanazawa et al. (2018a).

difficulty is that similar behaviors look different, and different behaviors look similar, as
Figure 27.17 shows.

Another difficulty is caused by time scale. What someone is doing depends quite strongly
on the time scale, as Figure 27.18 illustrates. Another important effect shown in that figure
is that behavior composes—several recognized behaviors may be combined to form a single
higher-level behavior such as fixing a snack.

It may also be that unrelated behaviors are going on at the same time, such as singing a
song while fixing a snack. A challenge is that we don’t have a common vocabulary for the
pieces of behavior. People tend to think they know a lot of behavior names but can’t produce
long lists of such words on demand. That makes it harder to get data sets of consistently
labeled behaviors.

Learned classifiers are guaranteed to behave well only if the training and test data come
from the same distribution. We have no way of checking that this constraint applies to images,
but empirically we observe that image classifiers and object detectors work very well. But for
activity data, the relationship between training and test data is more untrustworthy because
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Open fridge

Take something 

out of fridge

Figure 27.17 The same action can look very different; and different actions can look similar.
These examples show actions taken from a data set of natural behaviors; the labels are chosen
by the curators of the data set, rather than predicted by an algorithm. Top: examples of the
label “opening fridge,” some shown in closeup and some from afar. Bottom: examples of
the label “take something out of fridge.” Notice how in both rows the subject’s hand is close
to the fridge door—telling the difference between the cases requires quite subtle judgment
about where the hand is and where the door is. Figure courtesy of David Fouhey, taken from
a data set described in Fouhey et al. (2018).

Timeline

Figure 27.18 What you call an action depends on the time scale. The single frame at the
top is best described as opening the fridge (you don’t gaze at the contents when you close a
fridge). But if you look at a short clip of video (indicated by the frames in the center row),
the action is best described as getting milk from the fridge. If you look at a long clip (the
frames in the bottom row), the action is best described as fixing a snack. Notice that this
illustrates one way in which behavior composes: getting milk from the fridge is sometimes
part of fixing a snack, and opening the fridge is usually part of getting milk from the fridge.
Figure courtesy of David Fouhey, taken from a data set described in Fouhey et al. (2018).
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A baby eating a piece
of food in his mouth

A young boy eating
a piece of cake

A small bird is perched
on a branch

A small brown bear is
sitting in the grass

Figure 27.19 Automated image captioning systems produce some good results and some
failures. The two captions at left describe the respective images well, although “eating . . . in
his mouth” is a disfluency that is fairly typical of the recurrent neural network language mod-
els used by early captioning systems. For the two captions on the right, the captioning system
seems not to know about squirrels, and so guesses the animal from context; it also fails to
recognize that the two squirrels are eating. Image credits: geraine/Shutterstock; ESB Pro-
fessional/Shutterstock; BushAlex/Shutterstock; Maria.Tem/Shutterstock. The images shown
are similar but not identical to the original images from which the captions were generated.
For the original images see Aneja et al. (2018).

people do so many things in so many contexts. For example, suppose we have a pedestrian
detector that performs well on a large data set. There will be rare phenomena (for example,
people mounting unicycles) that do not appear in the training set, so we can’t say for sure
how the detector will work in such cases. The challenge is to prove that the detector is safe
whatever pedestrians do, which is difficult for current theories of learning.

27.7.2 Linking pictures and words

Many people create and share pictures and videos on the Internet. The difficulty is finding
what you want. Typically, people want to search using words (rather than, say, example
sketches). Because most pictures don’t come with words attached, it is natural to try and
build tagging systems that tag images with relevant words. The underlying machinery isTagging system

straightforward—we apply image classification and object detection methods and tag the im-
age with the output words. But tags aren’t a comprehensive description of what is happening
in an image. It matters who is doing what, and tags don’t capture this. For example, tagging
a picture of a cat in the street with the object categories “cat”, “street”, “trash can” and “fish
bones” leaves out the information that the cat is pulling the fish bones out of an open trash
can on the street.

As an alternative to tagging, we might build captioning systems—systems that write aCaptioning systems

caption of one or more sentences describing the image. The underlying machinery is again
straightforward—couple a convolutional network (to represent the image) to a recurrent neu-
ral network or transformer network (to generate sentences), and train the result with a data set
of captioned images. There are many images with captions available on the Internet; curated
data sets use human labor to augment each image with additional captions to capture the vari-
ation in natural language. For example, the COCO (Common Objects in Context) data set is
a comprehensive collection of over 200,000 images labeled with five captions per image.

Current methods for captioning use detectors to find a set of words that describe the
image, and provide those words to a sequence model that is trained to generate a sentence.
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Q. What is the cat wearing?
A. Hat

Q. What is the weather like?
A. Rainy

Q. What surface is this?
A. Clay

Q. What toppings are on the pizza?
A. Mushrooms

Q. How many holes are in the pizza?
A. 8

Q. What letter is on the racket?
A. w

Q. What color is the right front leg?
A. Brown

Q. Why is the sign bent?
A. It’s not

Figure 27.20 Visual question-answering systems produce answers (typically chosen from a
multiple-choice set) to natural-language questions about images. Top: the system is produc-
ing quite sensible answers to rather difficult questions about the image. Bottom: less satis-
factory answers. For example, the system is guessing about the number of holes in a pizza,
because it doesn’t understand what counts as a hole, and it has real difficulty counting. Simi-
larly, the system selects brown for the cat’s leg because the background is brown and it can’t
localize the leg properly. Image credits: (Top) Tobyanna/Shutterstock; 679411/Shutterstock;
ESB Professional/Shutterstock; Africa Studio/Shutterstock; (Bottom) Stuart Russell; Max-
isport/Shutterstock; Chendongshan/Shutterstock; Scott Biales DitchTheMap/Shutterstock.
The images shown are similar but not identical to the original images to which the question-
answering system was applied. For the original images see Goyal et al. (2017).

The most accurate methods search through the sentences that the model can generate to find
the best, and strong methods appear to require a slow search. Sentences are evaluated with
a set of scores that check whether the generated sentence (a) uses phrases common in the
ground truth annotations and (b) doesn’t use other phrases. These scores are hard to use
directly as a loss function, but reinforcement learning methods can be used to train networks
that get very good scores. Often there will be an image in the training set whose description
has the same set of words as an image in the test set; in that case a captioning system can just
retrieve a valid caption rather than having to generate a new one. Caption writing systems
produce a mix of excellent results and embarrassing errors (see Figure 27.19).

Captioning systems can hide their ignorance by omitting to mention details they can’t get
right or by using contextual cues to guess. For example, captioning systems tend to be poor at
identifying the gender of people in images, and often guess based on training data statistics.
That can lead to errors—men also like shopping and women also snowboard. One way to
establish whether a system has a good representation of what is happening in an image is to
force it to answer questions about the image. This is a visual question answering or VQA Visual question

answering (VQA)

system. An alternative is a visual dialog system, which is given a picture, its caption, and a Visual dialog

dialog. The system must then answer the last question in the dialog. As Figure 27.20 shows,
vision remains extremely hard and VQA systems often make errors.
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27.7.3 Reconstruction from many views

Reconstructing a set of points from many views—which could come from video or from an
aggregation of tourist photographs—is similar to reconstructing the points from two views,
but there are some important differences. There is far more work to be done to establish cor-
respondence between points in different views, and points can go in and out of view, making
the matching and reconstruction process messier. But more views means more constraints
on the reconstruction and on the recovered viewing parameters, so it is usually possible to
produce extremely accurate estimates of both the position of the points and of the viewing
parameters. Rather roughly, reconstruction proceeds by matching points over pairs of im-
ages, extending these matches to groups of images, coming up with a rough solution for both
geometry and viewing parameters, then polishing that solution. Polishing means minimizing
the error between points predicted by the model (of geometry and viewing parameters) and
the locations of image features. The detailed procedures are too complex to cover fully, but
are now very well understood and quite reliable.

All the geometric constraints on correspondences are known for any conceivably useful
form of camera. The procedures can be generalized to deal with views that are not ortho-
graphic; to deal with points that are observed in only some views; to deal with unknown
camera parameters (like focal length); and to exploit various sophisticated searches for ap-
propriate correspondences. It is practical to accurately reconstruct a model of an entire city
from images. Some applications are:

• Model building: For example, one might build a modeling system that takes many
views depicting an object and produces a very detailed 3D mesh of textured polygons
for use in computer graphics and virtual reality applications. It is routine to build models
like this from video, but such models can now be built from apparently random sets of
pictures. For example, you can build a 3D model of the Statue of Liberty from pictures
found on the Internet.

• Mix animation with live actors in video: To place computer graphics characters into
real video, we need to know how the camera moved for the real video, so we can render
the character correctly, changing the view as the camera moves.

• Path reconstruction: Mobile robots need to know where they have been. If the robot
has a camera, we can build a model of the camera’s path through the world; that will
serve as a representation of the robot’s path.

• Construction management: Buildings are enormously complicated artifacts, and keep-
ing track of what is happening during construction is difficult and expensive. One way
to keep track is to fly drones through the construction site once a week, filming the
current state. Then build a 3D model of the current state and explore the difference
between the plans and the reconstruction using visualization techniques. Figure 27.21
illustrates this application.

27.7.4 Geometry from a single view

Geometric representations are particularly useful if you want to move, because they can reveal
where you are, where you can go, and what you are likely bump into. But it is not always
convenient to use multiple views to produce a geometric model. For example, when you open
the door and step into a room, your eyes are too close together to recover a good representation
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Figure 27.21 3D models of construction sites are produced from images by structure-from-
motion and multiview stereo algorithms. They help construction companies to coordinate
work on large buildings by comparing a 3D model of the actual construction to date with
the building plans. Left: A visualization of a geometric model captured by drones. The
reconstructed 3D points are rendered in color, so the result looks like progress to date (note
the partially completed building with crane). The small pyramids show the pose of a drone
when it captured an image, to allow visualization of the flight path. Right: These systems
are actually used by construction teams; this team views the model of the as-built site, and
compares it with building plans as part of the coordination meeting. Figure courtesy of Derek
Hoiem, Mani Golparvar-Fard and Reconstruct, produced by a commercial system described
in a blog post at medium.com/reconstruct-inc.

of the depth to distant objects across the room. You could move your head back and forth,
but that is time-consuming and inconvenient.

An alternative is to predict a depth map—an array giving the depth to each pixel in the Depth map

image, nominally from the camera—from a single image. For many kinds of scenes, this is
surprisingly easy to do accurately, because the depth map has quite a simple structure. This is
particularly true of rooms and indoor scenes in general. The mechanics are straightforward.
One obtains a data set of images and depth maps, then trains a network to predict depth
maps from images. A variety of interesting variations of the problem can be solved. The
problem with a depth map is that it doesn’t tell you anything about the backs of objects, or
the space behind the objects. But there are methods that can predict what voxels (3D pixels)
are occupied by known objects (the object geometry is known) and what a depth map would
look like if an object were removed (and so where you could hide objects). These methods
work because object shapes are quite strongly stylized.

As we saw in Section 27.6.4, recovering the pose of a known object using a 3D model
is straightforward. Now imagine you see a single image of, say, a sparrow. If you have seen
many images of sparrow-like birds in the past, you can reconstruct a reasonable estimate of
both the pose of the sparrow and its geometric model from that single image. Using the past
images you build a small, parametric family of geometric models for sparrow-like birds; then
an optimization procedure is used to find the best set of parameters and viewpoints to explain
the image that you see. This argument works to supply texture for that model, too, even for
the parts you cannot see (Figure 27.22).

http://medium.com/reconstruct-inc
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Figure 27.22 If you have seen many pictures of some category—say, birds (top)—you can
use them to produce a 3D reconstruction from a single new view (bottom). You need to be
sure that all objects have a fairly similar geometry (so a picture of an ostrich won’t help if
you’re looking at a sparrow), but classification methods can sort this out. From the many
images you can estimate how texture values in the image are distributed across the object,
and thus complete the texture for parts of the bird you haven’t seen yet (bottom). Figure
courtesy of Angjoo Kanazawa, produced by a system described in Kanazawa et al. (2018b).
Top photo credit: Satori/123RF; Bottom left credit: Four Oaks/Shutterstock.

27.7.5 Making pictures

It is now common to insert computer graphics models into photographs in a convincing fash-
ion, as in Figure 27.23, where a statue has been placed into a photo of a room. First estimate
a depth map and albedo for the picture. Then estimate the lighting in the image by matching
it to other images with known lighting. Place the object in the image’s depth map, and render
the resulting world with a physical rendering program—a standard tool in computer graphics.
Finally, blend the modified image with the original image.

Neural networks can also be trained to do image transformation: mapping images fromImage
transformation

type X—for example, a blurry image; an aerial image of a town; or a drawing of a new
product—to images of type Y—for example, a deblurred version of the image; a road map;
or a product photograph. This is easiest when the training data consists of (X, Y) pairs of
images—in Figure 27.24 each example pair has an aerial image and the corresponding road
map section. The training loss compares the output of the network with the desired output,
and also has a loss component from a generative adversarial network (GAN) that ensures that
the output has the right kinds of features for images of type Y. As we see in the test portion
of Figure 27.24, systems of this kind perform very well.

Sometimes we don’t have images that are paired with each other, but we do have a big
collection of images of type X (say, pictures of horses) and a separate collection of type Y
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Figure 27.23 On the left, an image of a real scene. On the right, a computer graphics object
has been inserted into the scene. You can see that the light appears to be coming from the
right direction, and that the object seems to cast appropriate shadows. The generated image
is convincing even if there are small errors in the lighting and shadows, because people are
not expert at identifying these errors. Figure courtesy of Kevin Karsch, produced by a system
described in Karsch et al. (2011).

xi yi…

Training data Input

ixiX Y

regression error

xi yi

yi

Objective Result

Training Test

,

,

y^^

Figure 27.24 Paired image translation where the input consists of aerial images and the
corresponding map tiles, and the goal is to train a network to produce a map tile from an
aerial image. (The system can also learn to generate aerial images from map tiles.) The
network is trained by comparing ŷi (the output for example xi of type X) to the right output yi
of type Y . Then at test time, the network must make new images of type Y from new inputs
of type X . Figure courtesy of Phillip Isola, Jun-Yan Zhu and Alexei A. Efros, produced by a
system described in Isola et al. (2017). Map data © 2019 Google.

(say, pictures of zebras). Imagine an artist who is tasked with creating an image of a zebra
running in a field. The artist would appreciate being able to select just the right image of
a horse, and then having the computer automatically transform the horse into a zebra (Fig-
ure 27.25). To achieve this we can train two transformation networks, with an additional
constraint called a cycle constraint. The first network maps horses to zebras; the second net-
work maps zebras to horses; and the cycle constraint requires that when you map X to Y to
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Figure 27.25 Unpaired image translation: given two populations of images (here type X is
horses and type Y is zebras), but no corresponding pairs, learn to translate a horse into a
zebra. The method trains two predictors: one that maps type X to type Y, and another that
maps type Y to type X. If the first network maps a horse xi to a zebra ŷi, the second network
should map ŷi back to the original xi. The difference between xi and x̂i is what trains the two
networks. The cycle from Y to X and back must be closed. Such networks can successfully
impose rich transformations on images. Figure courtesy of Alexei A. Efros; see Zhu et al.
(2017). Running horse photo by Justyna Furmanczyk Gibaszek/Shutterstock.

X (or Y to X to Y), you get what you started with. Again, GAN losses ensure that the horse
(or zebra) pictures that the networks output are “like” real horse (or zebra) pictures.

Another artistic effect is called style transfer: the input consists of two images—theStyle transfer

content (for example, a photograph of a cat); and the style (for example, an abstract painting).
The output is a version of the cat rendered in the abstract style (see Figure 27.26). The key
insight to solving this problem is that if we examine a deep convolutional neural network
(CNN) that has been trained to do object recognition (say, on ImageNet), we find that the
early layers tend to represent the style of a picture, and the late layers represent the content.
Let p be the content image and s be the style image, and let E(x) be the vector of activations
of an early layer on image x and L(x) be the vector of activations of a late layer on image
x. Then we want to generate some image x that has similar content to the house photo,
that is, minimizes |L(x)−L(p)|, and also has similar style to the impressionist painting, that
is, minimizes |E(x)−E(s)|. We use gradient descent with a loss function that is a linear
combination of these two factors to find an image x that minimizes the loss.

Generative adversarial networks (GANs) can create novel photorealistic images, fooling
most people most of the time. One kind of image is the deepfake—an image or video thatDeepfake

looks like a particular person, but is generated from a model. For example, when Carrie Fisher
was 60, a generated replica of her 19-year-old face was superimposed on another actor’s body
for the making of Rogue One. The movie industry creates ever-better deepfakes for artistic
purposes, and researchers work on countermeasures for detecting deepfakes, to mitigate the
destructive effects of fake news.

Generated images can also be used to maintain privacy. For example, there are image
data sets in radiological practices that would be useful for researchers, but can’t be published
because of patient confidentiality. Generative image models can take a private data set of
images and produce a synthetic data set that can be shared with researchers. This data set
should be (a) like the training data set; (b) different; and (c) controllable. Consider chest
X-rays. The synthetic data set should be like the training data set in the sense that each image
individually would fool a radiologist and the frequencies of each effect should be right, so
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Figure 27.26 Style transfer: The content of a photo of a cat is combined with the style of an
abstract painting to yield a new image of the cat rendered in the abstract style (right). The
painting is Wassily Kandinsky’s Lyrisches or The Lyrical (public domain); the cat is Cosmo.

Figure 27.27 GAN generated images of lung X-rays. On the left, a pair consisting of a real
X-ray and a GAN-generated X-ray. On the right, results of a test asking radiologists, given
a pair of X-rays as seen on the left, to tell which is the real X-ray. On average, they chose
correctly 61% of the time, somewhat better than chance. But they differed in their accuracy—
the chart on the right shows the error rate for 12 different radiologists; one of them had an
error rate near 0% and another had 80% errors. The size of each dot indicates the number
of images each radiologist viewed. Figure courtesy of Alex Schwing, produced by a system
described in Deshpande et al. (2019).

a radiologist would not be surprised by how often (say) pneumonia appears. The new data
set should be different, in the sense that it does not reveal personally identifiable information.
The new data set should be controllable, so that the frequencies of effects can be adjusted
to reflect the communities of interest. For example, pneumonias are more common in the
elderly than in young adults. Each of these goals is technically difficult to reach, but image
data sets have been created that fool practicing radiologists some of the time (Figure 27.27).
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27.7.6 Controlling movement with vision

One of the principal uses of vision is to provide information both for manipulating objects—
picking them up, grasping them, twirling them, and so on—and for navigating while avoiding
obstacles. The ability to use vision for these purposes is present in the most primitive of
animal visual systems. In many cases, the visual system is minimal, in the sense that it
extracts from the available light field just the information the animal needs to inform its
behavior. Quite probably, modern vision systems evolved from early, primitive organisms
that used a photosensitive spot at one end in order to orient themselves toward (or away from)
the light. We saw in Section 27.6 that flies use a very simple optical flow detection system to
land on walls.

Suppose that, rather than landing on walls, we want to build a self-driving car. This is
a project that places much greater demands on the perceptual system. Perception in a self-
driving car has to support the following tasks:
• Lateral control: Ensure that the vehicle remains securely within its lane or changes

lanes smoothly when required.
• Longitudinal control: Ensure that there is a safe distance to the vehicle in front.
• Obstacle avoidance: Monitor vehicles in neighboring lanes and be prepared for evasive

maneuvers. Detect pedestrians and allow them to cross safely.
• Obey traffic signals: These include traffic lights, stop signs, speed limit signs, and

police hand signals.
The problem for a driver (human or computer) is to generate appropriate steering, accelera-
tion, and braking actions to best accomplish these tasks.

To make good decisions, the driver should construct a model of the world and the objects
in it. Figure 27.28 shows some of the visual inferences that are necessary to build this model.
For lateral control, the driver needs to maintain a representation of the position and orientation
of the car relative to the lane. For longitudinal control, the driver needs to keep a safe distance
from the vehicle in front (which may not be easy to identify on, say, curving multilane roads).
Obstacle avoidance and following traffic signals require additional inferences.

Roads were designed for humans who navigate using vision, so it should in principle be
possible to drive using vision alone. However, in practice, commercial self-driving cars use
a variety of sensors, including cameras, lidars, radars, and microphones. A lidar or radar en-
ables direct measurement of depth, which can be more accurate than the vision-only methods
of Section 27.6. Having multiple sensors increases performance in general, and is particu-
larly important in conditions of poor visibility; for example, radar can cut through fog that
blocks cameras and lidars. Microphones can detect approaching vehicles (especially ones
with sirens) before they become visible.

There has also been much research on mobile robots navigating in indoor and outdoor
environments. Applications abound, such as the last mile of package or pizza delivery. Tra-
ditional approaches break this task up into two stages as shown in Figure 27.29:
• Map building: Simultaneous Localization and Mapping or SLAM (see page 942) is

the task of constructing a 3D model of the world, including the location of the robot in
the world (or more specifically, the location of each of the robot’s cameras). This model
(typically represented as a point cloud of obstacles) can be built from a series of images
from different camera positions.
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Figure 27.28 Mobileye’s camera-based sensing for autonomous vehicles. Top row: Two
images from a front-facing camera, taken a few seconds apart. The green area is the free
space—the area to which the vehicle could physically move in the immediate future. Objects
are displayed with 3D bounding boxes defining their sides (red for the rear, blue for the right
side, yellow for the left side, and green for the front). Objects include vehicles, pedestrians,
the inner edge of the self-lane marks (necessary for lateral control), other painted road and
crosswalk marks, traffic signs, and traffic lights. Not shown are animals, poles and cones,
sidewalks, railings, and general objects (e.g., a couch that fell from the back of a truck). Each
object is then marked with a 3D position and velocity. Bottom row: A full physical model of
the environment, rendered from the detected objects. (Images show Mobileye’s vision-only
system results). Images courtesy of Mobileye.

• Path planning: Once the robot has access to this 3D map and can localize itself in it,
the objective becomes one of finding a collision-free trajectory from the current position
to the goal location (see Section 26.6).

Many variants of this general approach have been explored. For instance, in the cognitive
mapping and planning approach, the two stages of map building and path planning are two
modules in a neural network that is trained end-to-end to minimize a loss function. Such a
system does not have to build a complete map—which is often redundant and unnecessary—
if all you need is enough information to navigate from point A to point B without colliding
with obstacles.
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Figure 27.29 Navigation is tackled by decomposition into two problems: mapping and plan-
ning. With each successive time step, information from sensors is used to incrementally build
an uncertain model of the world. This model along with the goal specification is passed to
a planner that outputs the next action that the robot should take in order to achieve the goal.
Models of the world can be purely geometric (as in classical SLAM), or semantic (as ob-
tained via learning), or even topological (based on landmarks). The actual robot appears on
the right. Figures courtesy of Saurabh Gupta.

Summary

Although perception appears to be an effortless activity for humans, it requires a significant
amount of sophisticated computation. The goal of vision is to extract information needed for
tasks such as manipulation, navigation, and object recognition.

• The geometry and optics of image formation is well understood. Given a description of
a 3D scene, we can easily produce a picture of it from some arbitrary camera position—
this is the graphics problem. The inverse problem, the computer vision problem—
taking a picture and turning it into a 3D description—is more difficult.

• Representations of images capture edges, texture, optical flow, and regions. These yield
cues to the boundaries of objects and to correspondence between images.

• Convolutional neural networks produce accurate image classifiers that use learned fea-
tures. Rather roughly, the features are patterns of patterns of patterns. . . . It is hard to
predict when these classifiers will work well, because the test data may be unlike the
training data in some important way. Experience teaches that they are often accurate
enough to use in practice.

• Image classifiers can be turned into object detectors. One classifier scores boxes in an
image for objectness; another then decides whether an object is in the box, and what
object it is. Object detection methods aren’t perfect, but are usable for a wide variety of
applications.

• With more than one view of a scene, it is possible to recover the 3D structure of the
scene and the relationship between views. In many cases, it is possible to recover 3D
geometry from a single view.

• The methods of computer vision are being very widely applied.
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Bibliographical and Historical Notes

This chapter has concentrated on vision, but other perceptual channels have been studied and
put to use in robotics. For auditory perception (hearing), we have already covered speech
recognition, and there has also been considerable work on music perception (Koelsch and
Siebel, 2005) and machine learning of music (Engel et al., 2017) as well as on machine
learning for sounds in general (Sharan and Moir, 2016).

Tactile perception or touch (Luo et al., 2017) is important in robotics and is discussed in
Chapter 26. Automated olfactory perception (smell) has seen less work, but it has been shown
that deep learning models can learn to predict smells based on the structure of molecules
(Sanchez-Lengeling et al., 2019).

Systematic attempts to understand human vision can be traced back to ancient times.
Euclid (ca. 300 BCE) wrote about natural perspective—the mapping that associates, with
each point P in the three-dimensional world, the direction of the ray OP joining the center
of projection O to the point P. He was well aware of the notion of motion parallax. Ancient
Roman paintings, such as the ones perserved by the eruption of Vesuvius in 79 CE, used an
informal kind of perspective, with more than one horizon line.

The mathematical understanding of perspective projection, this time in the context of
projection onto planar surfaces, had its next significant advance in the 15th century in Re-
naissance Italy. Brunelleschi is usually credited with creating the first paintings based on
geometrically correct projection of a three-dimensional scene in about 1413. In 1435, Alberti
codified the rules and inspired generations of artists. Particularly notable in their develop-
ment of the science of perspective, as it was called in those days, were Leonardo da Vinci and
Albrecht Dürer. Leonardo’s late 15th-century descriptions of the interplay of light and shade
(chiaroscuro), umbra and penumbra regions of shadows, and aerial perspective are still worth
reading in translation (Kemp, 1989).

Although perspective was known to the Greeks, they were curiously confused by the role
of the eyes in vision. Aristotle thought of the eyes as devices emitting rays, rather in the
manner of modern laser range finders. This mistaken view was laid to rest by the work of
Arab scientists, such as Alhazen, in the 10th century.

The development of various kinds of cameras followed. These consisted of rooms (cam-
era is Latin for “chamber”) where light would be let in through a small hole in one wall to
cast an image of the scene outside on the opposite wall. Of course, in all these cameras, the
image was inverted, which caused no end of confusion. If the eye was to be thought of as
such an imaging device, how do we see right side up? This enigma exercised the greatest
minds of the era (including Leonardo). It took the work of Kepler and Descartes to settle the
question. Descartes placed an eye from which the opaque cuticle had been removed in a hole
in a window shutter. The result was an inverted image formed on a piece of paper laid out
on the retina. Although the retinal image is indeed inverted, this does not cause a problem
because the brain interprets the image the right way. In modern jargon, one just has to access
the data structure appropriately.

The next major advances in the understanding of vision took place in the 19th century.
The work of Helmholtz and Wundt, described in Chapter 1, established psychophysical ex-
perimentation as a rigorous scientific discipline. Through the work of Young, Maxwell, and
Helmholtz, a trichromatic theory of color vision was established. The fact that humans can
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see depth if the images presented to the left and right eyes are slightly different was demon-
strated by Wheatstone’s (1838) invention of the stereoscope. The device immediately became
popular in parlors and salons throughout Europe.

The essential concept of binocular stereopsis—that two images of a scene taken from
slightly different viewpoints carry information sufficient to obtain a three-dimensional re-
construction of the scene—was exploited in the field of photogrammetry. Key mathematical
results were obtained; for example, Kruppa (1913) proved that, given two views of five dis-
tinct points in a scene, one could reconstruct the rotation and translation between the two
camera positions as well as the depth of the scene (up to a scale factor).

Although the geometry of stereopsis had been understood for a long time, the corre-
spondence problem in photogrammetry used to be solved by humans trying to match up
corresponding points. The amazing ability of humans in solving the correspondence problem
was illustrated by Julesz’s (1971) random dot stereograms. The field of computer vision has
devoted much effort towards an automatic solution of the correspondence problem.

In the first half of the 20th century, the most significant research results in vision were
obtained by the Gestalt school of psychology, led by Max Wertheimer. They pointed out the
importance of perceptual organization: for a human, the image is not a collection of pointillist
photoreceptor outputs (pixels), rather it is organized into coherent groups. The computer
vision task of finding regions and curves traces back to this insight. The Gestaltists also drew
attention to the “figure-ground” phenomenon—a contour separating two image regions that
in the world are at different depths appears to belong only to the nearer region, the “figure,”
and not to the farther region, the “ground.”

The gestalt work was carried on by J. J. Gibson (1950, 1979), who pointed out the impor-
tance of optical flow and texture gradients in the estimation of environmental variables such
as surface slant and tilt. He reemphasized the importance of the stimulus and how rich it was.
Gibson, Olum, and Rosenblatt (1955) pointed out that the optical flow field contained enough
information to determine the motion of the observer relative to the environment. Gibson par-
ticularly emphasized the role of the active observer, whose self-directed movement facilitates
the pickup of information about the external environment.

Computer vision dates back to the 1960s. Roberts’s (1963) thesis at MIT on perceiving
cubes and other blocks-world objects was one of the earliest publications in the field. Roberts
introduced several key ideas, including edge detection and model-based matching.

In the 1960s and 1970s progress was slow, hampered by the lack of computational and
storage resources. Low-level visual processing received a lot of attention, with techniques
drawn from related fields such as signal processing, pattern recognition, and data clustering.

Edge detection was treated as an essential first step in image processing, as it reduced
the amount of data to be processed. The widely used Canny edge detection technique was
introduced by John Canny (1986). Martin, Fowlkes, and Malik (2004) showed how to com-
bine multiple clues, such as brightness, texture and color, in a machine learning framework
to better find boundary curves.

The closely related problem of finding regions of coherent brightness, color, and texture
naturally lends itself to formulations where finding the best partition becomes an optimization
problem. Three leading examples are based on Markov Random Fields due to Geman and
Geman (1984), the variational formulation of Mumford and Shah (1989), and normalized
cuts by Shi and Malik (2000).
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Through much of the 1960s, 1970s, and 1980s, there were two distinct paradigms in
which visual recognition was pursued, dictated by different perspectives on what was per-
ceived to be the primary problem. Computer vision research on object recognition largely fo-
cused on issues arising from the projection of three-dimensional objects onto two-dimensional
images. The idea of alignment, also first introduced by Roberts, resurfaced in the 1980s in
the work of Lowe (1987) and Huttenlocher and Ullman (1990).

The pattern recognition community took a different approach, viewing the 3D–to–2D
aspects of the problem as insignificant. Their motivating examples were in domains such
as optical character recognition and handwritten zip code recognition, in which the primary
concern is that of learning the typical variations characteristic of a class of objects and sep-
arating them from other classes. We can trace neural net architectures for image analysis
back to Hubel and Wiesel’s (1962, 1968) studies of the visual cortex in cats and monkeys.
They developed a hierarchical model of the visual pathway with neurons in lower areas of the
brain (especially the area called V1) responding to features such as oriented edges and bars,
and neurons in higher areas responding to more specific stimuli (“grandmother cells” in the
cartoon version).

Fukushima (1980) proposed a neural network architecture for pattern recognition explic-
itly motivated by Hubel and Wiesel’s hierarchy. His model had alternating layers of simple
cells and complex cells, thus incorporating downsampling, and also had shift invariance, thus
incorporating convolutional structure. LeCun et al. (1989) took the additional step of using
back-propagation to train the weights of this network, and what we today call convolutional
neural networks were born. See LeCun et al. (1995) for a comparison of approaches.

Starting in the late 1990s, accompanying a much greater role of probabilistic modeling
and statistical machine learning in the field of artificial intelligence in general, there was a
rapprochement between these two traditions. Two lines of work contributed significantly.
One was research on face detection (Rowley et al., 1998; Viola and Jones, 2004) that demon-
strated the power of pattern recognition techniques on clearly important and useful tasks.

The other was the development of point descriptors, which enable the construction of
feature vectors from parts of objects (Schmid and Mohr, 1996). There are three key strategies
to build a good local point descriptor: one uses orientations to get illumination invariance; one
needs to describe image structure close to a point in detail, and further away only roughly; and
one needs to use spatial histograms to suppress variations caused by small errors in locating
the point. Lowe’s (2004) SIFT descriptor exploited these ideas very effectively; another
popular variant was the HOG descriptor due to Dalal and Triggs (2005).

The 1990s and 2000s saw a continuing debate between the devotees of clever feature
design such as SIFT and HOG and the aficionados of neural networks who believed that good
features should emerge automatically from end-to-end training. The way to settle such a
debate is through benchmarks on standard data sets, and in the 2000s results on a standard
object detection data set, PASCAL VOC, argued in favor of hand-designed features. This
changed when Krizhevsky et al. (2013) showed that on the task of image classification on the
ImageNet data set, their neural network (called AlexNet) gave significantly lower error rates
than the mainstream computer vision techniques.

What was the secret sauce behind the success of AlexNet? Besides the technical innova-
tions (such as the use of ReLU activation units) we must give a lot of credit to big data and
big computation. By big data we mean the availability of large data sets with category labels,
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such as ImageNet, which provided the training data for these large, deep networks with mil-
lions of parameters. Previous data sets like Caltech-101 or PASCAL VOC didn’t have enough
training data, and MNIST and CIFAR were regarded as “toy data sets” by the computer vi-
sion community. This strand of labeling data sets for benchmarking and for extracting image
statistics itself was enabled by the desire of people to upload their photo collections to the
Internet on sites such as Flickr. The way big computation proved most helpful was through
GPUs, a hardware development initially driven by the needs of the video game industry.

Within a year or two, the evidence was quite clear. For example, the region-based con-
volutional neural network (RCNN) work of Girshick et al. (2016) showed that the AlexNet
architecture could be modified, by making use of computer vision ideas such as region pro-
posals, to make possible state-of-the-art object detection on PASCAL VOC. We have realized
that generally deeper networks work better and that overfitting fears are overblown. We have
new techniques such as batch normalization to deal with regularization.

The reconstruction of three-dimensional structure from multiple views has its roots in
the photogrammetry literature. In the computer vision era, Ullman (1979), and Longuet-
Higgins (1981) are influential early works. Concerns about the stability of structure from
motion were significantly allayed by the work of Tomasi and Kanade (1992) who showed that
with the use of multiple frames, and the resulting wide baseline, shape could be recovered
quite accurately.

A conceptual innovation introduced in the 1990s was the study of projective structure
from motion. Here camera calibration is not necessary, as was shown by Faugeras (1992).
This discovery is related to the introduction of the use of geometrical invariants in object
recognition, as surveyed by Mundy and Zisserman (1992), and the development of affine
structure from motion by Koenderink and Van Doorn (1991).

In the 1990s, with great increase in computer speed and storage and the widespread avail-
ability of digital video, motion analysis found many new applications. Building geometrical
models of real-world scenes for rendering by computer graphics techniques proved particu-
larly popular, led by reconstruction algorithms such as the one developed by Debevec et al.
(1996). The books by Hartley and Zisserman (2000) and Faugeras et al. (2001) provide a
comprehensive treatment of the geometry of multiple views.

Humans can perceive shape and spatial layout from a single image, and modeling this
has proved to be quite a challenge for computer vision researchers. Inferring shape from
shading was first studied by Berthold Horn (1970), and Horn and Brooks (1989) present an
extensive survey of the main papers from a period when this was a much studied problem.
Gibson (1950) was the first to propose texture gradients as a cue to shape. The mathematics
of occluding contours, and more generally understanding the visual events in the projection
of smooth curved objects, owes much to the work of Koenderink and van Doorn, which finds
an extensive treatment in Koenderink’s (1990) Solid Shape.

More recently, attention has turned to treating the problem of shape and surface recovery
from a single image as a probabilistic inference problem, where geometrical cues are not
modeled explicitly, but used implicitly in a learning framework. A good example is the work
of Hoiem et al. (2007); recently this has been reworked using deep neural networks.

Turning now to the applications of computer vision for guiding action, Dickmanns and
Zapp (1987) first demonstrated a self-driving car driving on freeways at high speeds; Pomer-
leau (1993) achieved similar performance using a neural network approach. Today building
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self-driving cars is a big business, with the established car companies competing with new
entrants such as Baidu, Cruise, Didi, Google Waymo, Lyft, Mobileye, Nuro, Nvidia, Sam-
sung, Tata, Tesla, Uber, and Voyage to market systems that provide capabilities ranging from
driver assistance to full autonomy.

For the reader interested in human vision, Vision Science: Photons to Phenomenology by
Stephen Palmer (1999) provides the best comprehensive treatment; Visual Perception: Phys-
iology, Psychology and Ecology by Vicki Bruce, Patrick Green, and Mark Georgeson (2003)
is a shorter textbook. The books Eye, Brain and Vision by David Hubel (1988) and Per-
ception by Irvin Rock (1984) are friendly introductions centered on neurophysiology and
perception respectively. David Marr’s book Vision (Marr, 1982) played a historical role in
connecting computer vision to the traditional areas of biological vision—psychophysics and
neurobiology. While many of his specific models for tasks such as edge detection and ob-
ject recognition haven’t stood the test of time, the theoretical perspective where each task is
analyzed at an informational, computational, and implementation level is still illuminating.

For the field of computer vision, the most comprehensive textbooks available today are
Computer Vision: A Modern Approach (Forsyth and Ponce, 2002) and Computer Vision:
Algorithms and Applications (Szeliski, 2011). Geometrical problems in computer vision are
treated thoroughly in Multiple View Geometry in Computer Vision (Hartley and Zisserman,
2000). These books were written before the deep learning revolution, so for the latest results,
consult the primary literature.

Two of the main journals for computer vision are the IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence and the International Journal of Computer Vision. Computer
vision conferences include ICCV (International Conference on Computer Vision), CVPR
(Computer Vision and Pattern Recognition), and ECCV (European Conference on Com-
puter Vision). Research with a significant machine learning component is also published
at NeurIPS (Neural Information Processing Systems), and work on the interface with com-
puter graphics often appears at the ACM SIGGRAPH (Special Interest Group in Graphics)
conference. Many vision papers appear as preprints on the arXiv server, and early reports of
new results appear in blogs from the major research labs.



CHAPTER 28
PHILOSOPHY, ETHICS, AND SAFETY
OF AI
In which we consider the big questions around the meaning of AI, how we can ethically
develop and apply it, and how we can keep it safe.

Philosophers have been asking big questions for a long time: How do minds work? Is it
possible for machines to act intelligently in the way that people do? Would such machines
have real, conscious minds?

To these, we add new ones: What are the ethical implications of intelligent machines in
day-to-day use? Should machines be allowed to decide to kill humans? Can algorithms be
fair and unbiased? What will humans do if machines can do all kinds of work? And how do
we control machines that may become more intelligent than us?

28.1 The Limits of AI

In 1980, philosopher John Searle introduced a distinction between weak AI—the idea thatWeak AI

machines could act as if they were intelligent—and strong AI—the assertion that machinesStrong AI

that do so are actually consciously thinking (not just simulating thinking). Over time the
definition of strong AI shifted to refer to what is also called “human-level AI” or “general
AI”—programs that can solve an arbitrarily wide variety of tasks, including novel ones, and
do so as well as a human.

Critics of weak AI who objected to the very possibility of intelligent behavior in machines
now appear as shortsighted as Simon Newcomb, who in October 1903 wrote “aerial flight
is one of the great class of problems with which man can never cope”—just two months
before the Wright brothers’ flight at Kitty Hawk. The rapid progress of recent years does
not, however, prove that there can be no limits to what AI can achieve. Alan Turing (1950),
the first person to define AI, was also the first to raise possible objections to AI, foreseeing
almost all the ones subsequently raised by others.

28.1.1 The argument from informality

Turing’s “argument from informality of behavior” says that human behavior is far too com-
plex to be captured by any formal set of rules—humans must be using some informal guide-
lines that (the argument claims) could never be captured in a formal set of rules and thus
could never be codified in a computer program.

A key proponent of this view was Hubert Dreyfus, who produced a series of influen-
tial critiques of artificial intelligence: What Computers Can’t Do (1972), the sequel What
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Computers Still Can’t Do (1992), and, with his brother Stuart, Mind Over Machine (1986).
Similarly, philosopher Kenneth Sayre (1993) said “Artificial intelligence pursued within the
cult of computationalism stands not even a ghost of a chance of producing durable results.”
The technology they criticized came to be called Good Old-Fashioned AI (GOFAI). Good Old-Fashioned

AI (GOFAI)

GOFAI corresponds to the simplest logical agent design described in Chapter 7, and we
saw there that it is indeed difficult to capture every contingency of appropriate behavior in a
set of necessary and sufficient logical rules; we called that the qualification problem. But
as we saw in Chapter 12, probabilistic reasoning systems are more appropriate for open-
ended domains, and as we saw in Chapter 22, deep learning systems do well on a variety
of “informal” tasks. Thus, the critique is not addressed against computers per se, but rather
against one particular style of programming them with logical rules—a style that was popular
in the 1980s but has been eclipsed by new approaches.

One of Dreyfus’s strongest arguments is for situated agents rather than disembodied log-
ical inference engines. An agent whose understanding of “dog” comes only from a limited
set of logical sentences such as “Dog(x) ⇒ Mammal(x)” is at a disadvantage compared to an
agent that has watched dogs run, has played fetch with them, and has been licked by one. As
philosopher Andy Clark (1998) says, “Biological brains are first and foremost the control sys-
tems for biological bodies. Biological bodies move and act in rich real-world surroundings.”
According to Clark, we are “good at frisbee, bad at logic.”

The embodied cognition approach claims that it makes no sense to consider the brain Embodied cognition

separately: cognition takes place within a body, which is embedded in an environment. We
need to study the system as a whole; the brain’s functioning exploits regularities in its envi-
ronment, including the rest of its body. Under the embodied cognition approach, robotics,
vision, and other sensors become central, not peripheral.

Overall, Dreyfus saw areas where AI did not have complete answers and said that AI is
therefore impossible; we now see many of these same areas undergoing continued research
and development leading to increased capability, not impossibility.

28.1.2 The argument from disability

The “argument from disability” makes the claim that “a machine can never do X.” As exam-
ples of X, Turing lists the following:

Be kind, resourceful, beautiful, friendly, have initiative, have a sense of humor, tell right
from wrong, make mistakes, fall in love, enjoy strawberries and cream, make someone
fall in love with it, learn from experience, use words properly, be the subject of its own
thought, have as much diversity of behavior as man, do something really new.

In retrospect, some of these are rather easy—we’re all familiar with computers that “make
mistakes.” Computers with metareasoning capabilities (Chapter 6) can examine their own
computations, thus being the subject of their own reasoning. A century-old technology has
the proven ability to “make someone fall in love with it”—the teddy bear. Computer chess
expert David Levy predicts that by 2050 people will routinely fall in love with humanoid
robots. As for a robot falling in love, that is a common theme in fiction,1 but there has
been only limited academic speculation on the subject (Kim et al., 2007). Computers have

1 For example, the opera Coppélia (1870), the novel Do Androids Dream of Electric Sheep? (1968), the movies
AI (2001), Wall-E (2008), and Her (2013).
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done things that are “really new,” making significant discoveries in astronomy, mathematics,
chemistry, mineralogy, biology, computer science, and other fields, and creating new forms of
art through style transfer (Gatys et al., 2016). Overall, programs exceed human performance
in some tasks and lag behind on others. The one thing that it is clear they can’t do is be
exactly human.

28.1.3 The mathematical objection

Turing (1936) and Gödel (1931) proved that certain mathematical questions are in princi-
ple unanswerable by particular formal systems. Gödel’s incompleteness theorem (see Sec-
tion 9.5) is the most famous example of this. Briefly, for any formal axiomatic framework F
powerful enough to do arithmetic, it is possible to construct a so-called Gödel sentence G(F)
with the following properties:

• G(F) is a sentence of F , but cannot be proved within F .
• If F is consistent, then G(F) is true.

Philosophers such as J. R. Lucas (1961) have claimed that this theorem shows that machines
are mentally inferior to humans, because machines are formal systems that are limited by
the incompleteness theorem—they cannot establish the truth of their own Gödel sentence—
while humans have no such limitation. This has caused a lot of controversy, spawning a
vast literature, including two books by the mathematician/physicist Sir Roger Penrose (1989,
1994). Penrose repeats Lucas’s claim with some fresh twists, such as the hypothesis that
humans are different because their brains operate by quantum gravity—a theory that makes
multiple false predictions about brain physiology.

We will examine three of the problems with Lucas’s claim. First, an agent should not be
ashamed that it cannot establish the truth of some sentence while other agents can. Consider
the following sentence:

Lucas cannot consistently assert that this sentence is true.

If Lucas asserted this sentence, then he would be contradicting himself, so therefore Lucas
cannot consistently assert it, and hence it is true. We have thus demonstrated that there is a
true sentence that Lucas cannot consistently assert while other people (and machines) can.
But that does not make us think any less of Lucas.

Second, Gödel’s incompleteness theorem and related results apply to mathematics, not
to computers. No entity—human or machine—can prove things that are impossible to prove.
Lucas and Penrose falsely assume that humans can somehow get around these limits, as when
Lucas (1976) says “we must assume our own consistency, if thought is to be possible at all.”
But this is an unwarranted assumption: humans are notoriously inconsistent. This is certainly
true for everyday reasoning, but it is also true for careful mathematical thought. A famous
example is the four-color map problem. Alfred Kempe (1879) published a proof that was
widely accepted for 11 years until Percy Heawood (1890) pointed out a flaw.

Third, Gödel’s incompleteness theorem technically applies only to formal systems that
are powerful enough to do arithmetic. This includes Turing machines, and Lucas’s claim is
in part based on the assertion that computers are equivalent to Turing machines. This is not
quite true. Turing machines are infinite, whereas computers (and brains) are finite, and any
computer can therefore be described as a (very large) system in propositional logic, which is
not subject to Gödel’s incompleteness theorem. Lucas assumes that humans can “change their
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minds” while computers cannot, but that is also false—a computer can retract a conclusion
after new evidence or further deliberation; it can upgrade its hardware; and it can change its
decision-making processes with machine learning or software rewriting.

28.1.4 Measuring AI

Alan Turing, in his famous paper “Computing Machinery and Intelligence” (1950), suggested
that instead of asking whether machines can think, we should ask whether machines can pass
a behavioral test, which has come to be called the Turing test. The test requires a program
to have a conversation (via typed messages) with an interrogator for five minutes. The in-
terrogator then has to guess if the conversation is with a program or a person; the program
passes the test if it fools the interrogator 30% of the time. To Turing, the key point was not
the exact details of the test, but instead the idea of measuring intelligence by performance on
some kind of open-ended behavioral task, rather than by philosophical speculation.

Nevertheless, Turing conjectured that by the year 2000 a computer with a storage of a
billion units could pass the test, but here we are on the other side of 2000, and we still can’t
agree whether any program has passed. Many people have been fooled when they didn’t know
they might be chatting with a computer. The ELIZA program and Internet chatbots such as
MGONZ (Humphrys, 2008) and NATACHATA (Jonathan et al., 2009) fool their correspondents
repeatedly, and the chatbot CYBERLOVER has attracted the attention of law enforcement be-
cause of its penchant for tricking fellow chatters into divulging enough personal information
that their identity can be stolen.

In 2014, a chatbot called Eugene Goostman fooled 33% of the untrained amateur judges
in a Turing test. The program claimed to be a boy from Ukraine with limited command of
English; this helped explain its grammatical errors. Perhaps the Turing test is really a test of
human gullibility. So far no well-trained judge has been fooled (Aaronson, 2014).

Turing test competitions have led to better chatbots, but have not been a focus of research
within the AI community. Instead, AI researchers who crave competition are more likely
to concentrate on playing chess or Go or StarCraft II, or taking an 8th grade science exam,
or identifying objects in images. In many of these competitions, programs have reached
or surpassed human-level performance, but that doesn’t mean the programs are human-like
outside the specific task. The point is to improve basic science and technology and to provide
useful tools, not to fool judges.

28.2 Can Machines Really Think?

Some philosophers claim that a machine that acts intelligently would not be actually thinking,
but would be only a simulation of thinking. But most AI researchers are not concerned with
the distinction, and the computer scientist Edsger Dijkstra (1984) said that “The question of
whether Machines Can Think . . . is about as relevant as the question of whether Submarines
Can Swim.” The American Heritage Dictionary’s first definition of swim is “To move through
water by means of the limbs, fins, or tail,” and most people agree that submarines, being
limbless, cannot swim. The dictionary also defines fly as “To move through the air by means
of wings or winglike parts,” and most people agree that airplanes, having winglike parts,
can fly. However, neither the questions nor the answers have any relevance to the design or
capabilities of airplanes and submarines; rather they are about word usage in English. (The
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fact that ships do swim (“privet”) in Russian amplifies this point.) English speakers have
not yet settled on a precise definition for the word “think”—does it require “a brain” or just
“brain-like parts?”

Again, the issue was addressed by Turing. He notes that we never have any direct ev-
idence about the internal mental states of other humans—a kind of mental solipsism. Nev-
ertheless, Turing says, “Instead of arguing continually over this point, it is usual to have the
polite convention that everyone thinks.” Turing argues that we would also extend the politePolite convention

convention to machines, if only we had experience with ones that act intelligently. How-
ever, now that we do have some experience, it seems that our willingness to ascribe sentience
depends at least as much on humanoid appearance and voice as on pure intelligence.

28.2.1 The Chinese room

The philosopher John Searle rejects the polite convention. His famous Chinese room argu-Chinese room

ment (Searle, 1990) goes as follows: Imagine a human, who understands only English, inside
a room that contains a rule book, written in English, and various stacks of paper. Pieces of
paper containing indecipherable symbols are slipped under the door to the room. The human
follows the instructions in the rule book, finding symbols in the stacks, writing symbols on
new pieces of paper, rearranging the stacks, and so on. Eventually, the instructions will cause
one or more symbols to be transcribed onto a piece of paper that is passed back to the outside
world. From the outside, we see a system that is taking input in the form of Chinese sentences
and generating fluent, intelligent Chinese responses.

Searle then argues: it is given that the human does not understand Chinese. The rule book
and the stacks of paper, being just pieces of paper, do not understand Chinese. Therefore,
there is no understanding of Chinese. And Searle says that the Chinese room is doing the
same thing that a computer would do, so therefore computers generate no understanding.

Searle (1980) is a proponent of biological naturalism, according to which mental statesBiological naturalism

are high-level emergent features that are caused by low-level physical processes in the neu-
rons, and it is the (unspecified) properties of the neurons that matter: according to Searle’s
biases, neurons have “it” and transistors do not. There have been many refutations of Searle’s
argument, but no consensus. His argument could equally well be used (perhaps by robots) to
argue that a human cannot have true understanding; after all, a human is made out of cells,
the cells do not understand, therefore there is no understanding. In fact, that is the plot of
Terry Bisson’s (1990) science fiction story They’re Made Out of Meat, in which alien robots
explore Earth and can’t believe that hunks of meat could possibly be sentient. How they can
be remains a mystery.

28.2.2 Consciousness and qualia

Running through all the debates about strong AI is the issue of consciousness: awarenessConsciousness

of the outside world, and of the self, and the subjective experience of living. The technical
term for the intrinsic nature of experiences is qualia (from the Latin word meaning, roughly,Qualia

“of what kind”). The big question is whether machines can have qualia. In the movie 2001,
when astronaut David Bowman is disconnecting the “cognitive circuits” of the HAL 9000
computer, it says “I’m afraid, Dave. Dave, my mind is going. I can feel it.” Does HAL
actually have feelings (and deserve sympathy)? Or is the reply just an algorithmic response,
no different from “Error 404: not found”?
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There is a similar question for animals: pet owners are certain that their dog or cat has
consciousness, but not all scientists agree. Crickets change their behavior based on tempera-
ture, but few people would say that crickets experience the feeling of being warm or cold.

One reason that the problem of consciousness is hard is that it remains ill-defined, even
after centuries of debate. But help may be on the way. Recently philosophers have teamed
with neuroscientists under the auspices of the Templeton Foundation to start a series of ex-
periments that could resolve some of the issues. Advocates of two leading theories of con-
sciousness (global workspace theory and integrated information theory) have agreed that the
experiments could confirm one theory over the other—a rarity in philosophy.

Alan Turing (1950) concedes that the question of consciousness is a difficult one, but
denies that it has much relevance to the practice of AI: “I do not wish to give the impression
that I think there is no mystery about consciousness . . . But I do not think these mysteries
necessarily need to be solved before we can answer the question with which we are concerned
in this paper.” We agree with Turing—we are interested in creating programs that behave
intelligently. Individual aspects of consciousness—awareness, self-awareness, attention—
can be programmed and can be part of an intelligent machine. The additional project of
making a machine conscious in exactly the way humans are is not one that we are equipped
to take on. We do agree that behaving intelligently will require some degree of awareness,
which will differ from task to task, and that tasks involving interaction with humans will
require a model of human subjective experience.

In the matter of modeling experience, humans have a clear advantage over machines,
because they can use their own subjective apparatus to appreciate the subjective experience
of others. For example, if you want to know what it’s like when someone hits their thumb
with a hammer, you can hit your thumb with a hammer. Machines have no such capability—
although unlike humans, they can run each other’s code.

28.3 The Ethics of AI

Given that AI is a powerful technology, we have a moral obligation to use it well, to promote
the positive aspects and avoid or mitigate the negative ones.

The positive aspects are many. For example, AI can save lives through improved med-
ical diagnosis, new medical discoveries, better prediction of extreme weather events, and
safer driving with driver assistance and (eventually) self-driving technologies. There are also
many opportunities to improve lives. Microsoft’s AI for Humanitarian Action program ap-
plies AI to recovering from natural disasters, addressing the needs of children, protecting
refugees, and promoting human rights. Google’s AI for Social Good program supports work
on rainforest protection, human rights jurisprudence, pollution monitoring, measurement of
fossil fuel emissions, crisis counseling, news fact checking, suicide prevention, recycling, and
other issues. The University of Chicago’s Center for Data Science for Social Good applies
machine learning to problems in criminal justice, economic development, education, public
health, energy, and environment.

AI applications in crop management and food production help feed the world. Optimiza-
tion of business processes using machine learning will make businesses more productive,
increasing wealth and providing more employment. Automation can replace the tedious and
dangerous tasks that many workers face, and free them to concentrate on more interesting
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aspects. People with disabilities will benefit from AI-based assistance in seeing, hearing, and
mobility. Machine translation already allows people from different cultures to communicate.
Software-based AI solutions have near zero marginal cost of production, and so have the po-
tential to democratize access to advanced technology (even as other aspects of software have
the potential to centralize power).

Despite these many positive aspects, we shouldn’t ignore the negatives. Many new tech-
nologies have had unintended negative side effects: nuclear fission brought Chernobyl andNegative side effects

the threat of global destruction; the internal combustion engine brought air pollution, global
warming, and the paving of paradise. Other technologies can have negative effects even when
used as intended, such as sarin gas, AR-15 rifles, and telephone solicitation. Automation will
create wealth, but under current economic conditions much of that wealth will flow to the
owners of the automated systems, leading to increased income inequality. This can be dis-
ruptive to a well-functioning society. In developing countries, the traditional path to growth
through low-cost manufacturing for export may be cut off, as wealthy countries adopt fully
automated manufacturing facilities on-shore. Our ethical and governance decisions will dic-
tate the level of inequality that AI will engender.

All scientists and engineers face ethical considerations of what projects they should or
should not take on, and how they can make sure the execution of the project is safe and bene-
ficial. In 2010, the UK’s Engineering and Physical Sciences Research Council held a meeting
to develop a set of Principles of Robotics. In subsequent years other government agencies,
nonprofit organizations, and companies created similar sets of principles. The gist is that ev-
ery organization that creates AI technology, and everyone in the organization, has a responsi-
bility to make sure the technology contributes to good, not harm. The most commonly-cited
principles are:

Ensure safety Establish accountability
Ensure fairness Uphold human rights and values
Respect privacy Reflect diversity/inclusion
Promote collaboration Avoid concentration of power
Provide transparency Acknowledge legal/policy implications
Limit harmful uses of AI Contemplate implications for employment

Note that many of the principles, such as “ensure safety,” have applicability to all software or
hardware systems, not just AI systems. Several principles are worded in a vague way, making
them difficult to measure or enforce. That is in part because AI is a big field with many
subfields, each of which has a different set of historical norms and different relationships
between the AI developers and the stakeholders. Mittelstadt (2019) suggests that the subfields
should each develop more specific actionable guidelines and case precedents.

28.3.1 Lethal autonomous weapons

The UN defines a lethal autonomous weapon as one that locates, selects, and engages (i.e.,
kills) human targets without human supervision. Various weapons fulfill some of these cri-
teria. For example, land mines have been used since the 17th century: they can select and
engage targets in a limited sense according to the degree of pressure exerted or the quan-
tity of metal present, but they cannot go out and locate targets by themselves. (Land mines
are banned under the Ottawa Treaty.) Guided missiles, in use since the 1940s, can chase
targets, but they have to be pointed in the right general direction by a human. Auto-firing
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radar-controlled guns have been used to defend naval ships since the 1970s; they are mainly
intended to destroy incoming missiles, but they could also attack manned aircraft. Although
the word “autonomous” is often used to describe unmanned air vehicles or drones, most such
weapons are both remotely piloted and require human actuation of the lethal payload.

At the time of writing, several weapons systems seem to have crossed the line into full au-
tonomy. For example Israel’s Harop missile is a “loitering munition” with a ten-foot wingspan
and a fifty-pound warhead. It searches for up to six hours in a given geographical region for
any target that meets a given criterion and then destroys it. The criterion could be “emits
a radar signal resembling antiaircraft radar” or “looks like a tank.” The Turkish manufac-
turer STM advertises its Kargu quadcopter—which carries up to 1.5kg of explosives—as
capable of “Autonomous hit . . . targets selected on images . . . tracking moving targets . . . anti-
personnel . . . face recognition.”

Autonomous weapons have been called the “third revolution in warfare” after gunpowder
and nuclear weapons. Their military potential is obvious. For example, few experts doubt
that autonomous fighter aircraft would defeat any human pilot. Autonomous aircraft, tanks,
and submarines can be cheaper, faster, more maneuverable, and have longer range than their
manned counterparts.

Since 2014, the United Nations in Geneva has conducted regular discussions under the
auspices of the Convention on Certain Conventional Weapons (CCW) on the question of
whether to ban lethal autonomous weapons. At the time of writing, 30 nations, ranging
in size from China to the Holy See, have declared their support for an international treaty,
while other key countries—including Israel, Russia, South Korea, and the United States—are
opposed to a ban.

The debate over autonomous weapons includes legal, ethical and practical aspects. The
legal issues are governed primarily by the CCW, which requires the possibility of discrim-
inating between combatants and non-combatants, the judgment of military necessity for an
attack, and the assessment of proportionality between the military value of a target and the
possibility of collateral damage. The feasibility of meeting these criteria is an engineering
question—one whose answer will undoubtedly change over time. At present, discrimination
seems feasible in some circumstances and will undoubtedly improve rapidly, but necessity
and proportionality are not presently feasible: they require that machines make subjective
and situational judgments that are considerably more difficult than the relatively simple tasks
of searching for and engaging potential targets. For these reasons, it would be legal to use
autonomous weapons only in circumstances where a human operator can reasonably predict
that the execution of the mission will not result in civilians being targeted or the weapons
conducting unnecessary or disproportionate attacks. This means that, for the time being, only
very restricted missions could be undertaken by autonomous weapons.

On the ethical side, some find it simply morally unacceptable to delegate the decision to
kill humans to a machine. For example, Germany’s ambassador in Geneva has stated that
it “will not accept that the decision over life and death is taken solely by an autonomous
system” while Japan “has no plan to develop robots with humans out of the loop, which may
be capable of committing murder.” Gen. Paul Selva, at the time the second-ranking military
officer in the United States, said in 2017, “I don’t think it’s reasonable for us to put robots
in charge of whether or not we take a human life.” Finally, António Guterres, the head of
the United Nations, stated in 2019 that “machines with the power and discretion to take lives
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without human involvement are politically unacceptable, morally repugnant and should be
prohibited by international law.”

More than 140 NGOs in over 60 countries are part of the Campaign to Stop Killer Robots,
and an open letter organized in 2015 by the Future of Life Institute organized an open letter
was signed by over 4,000 AI researchers2 and 22,000 others.

Against this, it can be argued that as technology improves it ought to be possible to de-
velop weapons that are less likely than human soldiers or pilots to cause civilian casualties.
(There is also the important benefit that autonomous weapons reduce the need for human sol-
diers and pilots to risk death.) Autonomous systems will not succumb to fatigue, frustration,
hysteria, fear, anger, or revenge, and need not “shoot first, ask questions later” (Arkin, 2015).
Just as guided munitions have reduced collateral damage compared to unguided bombs, one
may expect intelligent weapons to further improve the precision of attacks. (Against this, see
Benjamin (2013) for an analysis of drone warfare casualties.) This, apparently, is the position
of the United States in the latest round of negotiations in Geneva.

Perhaps counterintuitively, the United States is also one of the few nations whose own
policies currently preclude the use of autonomous weapons. The 2011 U.S. Department of
Defense (DOD) roadmap says: “For the foreseeable future, decisions over the use of force
[by autonomous systems] and the choice of which individual targets to engage with lethal
force will be retained under human control.” The primary reason for this policy is practical:
autonomous systems are not reliable enough to be trusted with military decisions.

The issue of reliability came to the fore on September 26, 1983, when Soviet missile
officer Stanislav Petrov’s computer display flashed an alert of an incoming missile attack.
According to protocol, Petrov should have initiated a nuclear counterattack, but he suspected
the alert was a bug and treated it as such. He was correct, and World War III was (narrowly)
averted. We don’t know what would have happened if there had been no human in the loop.

Reliability is a very serious concern for military commanders, who know well the com-
plexity of battlefield situations. Machine learning systems that operate flawlessly in training
may perform poorly when deployed. Cyberattacks against autonomous weapons could result
in friendly-fire casualties; disconnecting the weapon from all communication may prevent
that (assuming it has not already been compromised), but then the weapon cannot be recalled
if it is malfunctioning.

The overriding practical issue with autonomous weapons is that they they are scalable
weapons of mass destruction, in the sense that the scale of an attack that can be launched is
proportional to the amount of hardware one can afford to deploy. A quadcopter two inches
in diameter can carry a lethal explosive charge, and one million can fit in a regular shipping
container. Precisely because they are autonomous, these weapons would not need one million
human supervisors to do their work.

As weapons of mass destruction, scalable autonomous weapons have advantages for the
attacker compared to nuclear weapons and carpet bombing: they leave property intact and can
be applied selectively to eliminate only those who might threaten an occupying force. They
could certainly be used to wipe out an entire ethnic group or all the adherents of a particular
religion. In many situations, they would also be untraceable. These characteristics make them
particularly attractive to non-state actors.

2 Including the two authors of this book.
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These considerations—particularly those characteristics that advantage the attacker—
suggest that autonomous weapons will reduce global and national security for all parties.
The rational response for governments seems to be to engage in arms control discussions
rather than an arms race.

The process of designing a treaty is not without its difficulties, however. AI is a dual
use technology: AI technologies that have peaceful applications such as flight control, vi- Dual use

sual tracking, mapping, navigation, and multiagent planning, can easily be applied to military
purposes. It is easy to turn an autonomous quadcopter into a weapon simply by attaching
an explosive and commanding it to seek out a target. Dealing with this will require care-
ful implementation of compliance regimes with industry cooperation, as has already been
demonstrated with some success by the Chemical Weapons Convention.

28.3.2 Surveillance, security, and privacy

In 1976, Joseph Weizenbaum warned that automated speech recognition technology could
lead to widespread wiretapping, and hence to a loss of civil liberties. Today, that threat has
been realized, with most electronic communication going through central servers that can
be monitored, and cities packed with microphones and cameras that can identify and track
individuals based on their voice, face, and gait. Surveillance that used to require expensive
and scarce human resources can now be done at a mass scale by machines.

As of 2018, there were as many as 350 million surveillance cameras in China and 70 Surveillance camera

million in the United States. China and other countries have begun exporting surveillance
technology to low-tech countries, some with reputations for mistreating their citizens and
disproportionately targeting marginalized communities. AI engineers should be clear on what
uses of surveillance are compatible with human rights, and decline to work on applications
that are incompatible.

As more of our institutions operate online, we become more vulnerable to cybercrime
(phishing, credit card fraud, botnets, ransomware) and cyberterrorism (including potentially
deadly attacks such as shutting down hospitals and power plants or commandeering self-
driving cars). Machine learning can be a powerful tool for both sides in the cybersecurity Cybersecurity

battle. Attackers can use automation to probe for insecurities and they can apply reinforce-
ment learning for phishing attempts and automated blackmail. Defenders can use unsuper-
vised learning to detect anomalous incoming traffic patterns (Chandola et al., 2009; Malhotra
et al., 2015) and various machine learning techniques to detect fraud (Fawcett and Provost,
1997; Bolton and Hand, 2002). As attacks get more sophisticated, there is a greater responsi-
bility for all engineers, not just the security experts, to design secure systems from the start.
One forecast (Kanal, 2017) puts the market for machine learning in cybersecurity at about
$100 billion by 2021.

As we interact with computers for increasing amounts of our daily lives, more data on us
is being collected by governments and corporations. Data collectors have a moral and legal
responsibility to be good stewards of the data they hold. In the U.S., the Health Insurance
Portability and Accountability Act (HIPAA) and the Family Educational Rights and Privacy
Act (FERPA) protect the privacy of medical and student records. The European Union’s
General Data Protection Regulation (GDPR) mandates that companies design their systems
with protection of data in mind and requires that they obtain user consent for any collection
or processing of data.
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Balanced against the individual’s right to privacy is the value that society gains from
sharing data. We want to be able to stop terrorists without oppressing peaceful dissent, and
we want to cure diseases without compromising any individual’s right to keep their health
history private. One key practice is de-identification: eliminating personally identifying in-De-identification

formation (such as name and social security number) so that medical researchers can use the
data to advance the common good. The problem is that the shared de-identified data may
be subject to re-identification. For example, if the data strips out the name, social security
number, and street address, but includes date of birth, gender, and zip code, then, as shown by
Latanya Sweeney (2000), 87% of the U.S. population can be uniquely re-identified. Sweeney
emphasized this point by re-identifying the health record for the governor of her state when
he was admitted to the hospital. In the Netflix Prize competition, de-identified records of in-Netflix Prize

dividual movie ratings were released, and competitors were asked to come up with a machine
learning algorithm that could accurately predict which movies an individual would like. But
researchers were able to re-identify individual users by matching the date of a rating in the
Netflix database with the date of a similar ranking in the Internet Movie Database (IMDB),
where users sometimes use their actual names (Narayanan and Shmatikov, 2006).

This risk can be mitigated somewhat by generalizing fields: for example, replacing the
exact birth date with just the year of birth, or a broader range like “20-30 years old.” Deleting
a field altogether can be seen as a form of generalizing to “any.” But generalization alone
does not guarantee that records are safe from re-identification; it may be that there is only
one person in zip code 94720 who is 90–100 years old. A useful property is k-anonymity:K-anonymity

a database is k-anonymized if every record in the database is indistinguishable from at least
k−1 other records. If there are records that are more unique than this, they would have to be
further generalized.

An alternative to sharing de-identified records is to keep all records private, but allow
aggregate querying. An API for queries against the database is provided, and valid queriesAggregate querying

receive a response that summarizes the data with a count or average. But no response is
given if it would violate certain guarantees of privacy. For example, we could allow an
epidemiologist to ask, for each zip code, the percentage of people with cancer. For zip codes
with at least n people a percentage would be given (with a small amount of random noise),
but no response would be given for zip codes with fewer than n people..

Care must be taken to protect against de-identification using multiple queries. For exam-
ple, if the query “average salary and number of employees of XYZ company age 30-40” gives
the response [$81,234, 12] and the query “average salary and number of employees of XYZ
company age 30-41” gives the response [$81,199, 13], and if we use LinkedIn to find the one
41-year-old at XYZ company, then we have successfully identified them, and can compute
their exact salary, even though all the responses involved 12 or more people. The system must
be carefully designed to protect against this, with a combination of limits on the queries that
can be asked (perhaps only a predefined set of non-overlapping age ranges can be queried)
and the precision of the results (perhaps both queries give the answer “about $81,000”).

A stronger guarantee is differential privacy, which assures that an attacker cannot useDifferential privacy

queries to re-identify any individual in the database, even if the attacker can make multiple
queries and has access to separate linking databases. The query response employs a random-
ized algorithm that adds a small amount of noise to the result. Given a database D, any record
in the database r, any query Q, and a possible response y to the query, we say that the database



Section 28.3 The Ethics of AI 1043

D has ε–differential privacy if the log probability of the response y varies by less than ε when
we add the record r:

| logP(Q(D)=y)− logP(Q(D+ r)=y)| ≤ ε .

In other words, whether any one person decides to participate in the data base or not makes
no appreciable difference to the answers anyone can get, and therefore there is no privacy
disincentive to participate. Many databases are designed to guarantee differential privacy.

So far we have considered the issue of sharing de-identified data from a central database.
An approach called federated learning (Konečnỳ et al., 2016) has no central database; in- Federated learning

stead, users maintain their own local databases that keep their data private. However, they
can share parameters of a machine learning model that is enhanced with their data, without
the risk of revealing any of the private data. Imagine a speech understanding application that
users can run locally on their phone. The application contains a baseline neural network,
which is then improved by local training on the words that are heard on the user’s phone.
Periodically, the owners of the application poll a subset of the users and ask them for the
parameter values of their improved local network, but not for any of their raw data. The
parameter values are combined together to form a new improved model which is then made
available to all users, so that they all get the benefit of the training that is done by other users.

For this scheme to preserve privacy, we have to be able to guarantee that the model
parameters shared by each user cannot be reverse-engineered. If we sent the raw parameters,
there is a chance that an adversary inspecting them could deduce whether, say, a certain word
had been heard by the user’s phone. One way to eliminate this risk is with secure aggregation Secure aggregation

(Bonawitz et al., 2017). The idea is that the central server doesn’t need to know the exact
parameter value from each distributed user; it only needs to know the average value for each
parameter, over all polled users. So each user can disguise their parameter values by adding
a unique mask to each value; as long as the sum of the masks is zero, the central server will
be able to compute the correct average. Details of the protocol make sure that it is efficient
in terms of communication (less than half the bits transmitted correspond to masking), is
robust to individual users failing to respond, and is secure in the face of adversarial users,
eavesdroppers, or even an adversarial central server.

28.3.3 Fairness and bias

Machine learning is augmenting and sometimes replacing human decision-making in im-
portant situations: whose loan gets approved, to what neighborhoods police officers are de-
ployed, who gets pretrial release or parole. But machine learning models can perpetuate
societal bias. Consider the example of an algorithm to predict whether criminal defendants Societal bias

are likely to re-offend, and thus whether they should be released before trial. It could well be
that such a system picks up the racial or gender prejudices of human judges from the exam-
ples in the training set. Designers of machine learning systems have a moral responsibility to
ensure that their systems are in fact fair. In regulated domains such as credit, education, em-
ployment, and housing, they have a legal responsibility as well. But what is fairness? There
are multiple criteria; here are six of the most commonly-used concepts:

• Individual fairness: A requirement that individuals are treated similarly to other simi-
lar individuals, regardless of what class they are in.
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• Group fairness: A requirement that two classes are treated similarly, as measured by
some summary statistic.
• Fairness through unawareness: If we delete the race and gender attributes from the

data set, then it might seem that the system cannot discriminate on those attributes.
Unfortunately, we know that machine learning models can predict latent variables (such
as race and gender) given other correlated variables (such as zip code and occupation).
Furthermore, deleting those attributes makes it impossible to verify equal opportunity
or equal outcomes. Still, some countries (e.g., Germany) have chosen this approach for
their demographic statistics (whether or not machine learning models are involved).
• Equal outcome: The idea that each demographic class gets the same results; they have

demographic parity. For example, suppose we have to decide whether we shouldDemographic parity

approve loan applications; the goal is to approve those applicants who will pay back
the loan and not those who will default on the loan. Demographic parity says that
both males and females should have the same percentage of loans approved. Note that
this is a group fairness criterion that does nothing to ensure individual fairness; a well-
qualified applicant might be denied and a poorly-qualified applicant might be approved,
as long as the overall percentages are equal. Also, this approach favors redress of past
biases over accuracy of prediction. If a man and a woman are equal in every way, except
the woman receives a lower salary for the same job, should she be approved because she
would be equal if not for historical biases, or should she be denied because the lower
salary does in fact make her more likely to default?
• Equal opportunity: The idea that the people who truly have the ability to pay back

the loan should have an equal chance of being correctly classified as such, regardless of
their sex. This approach is also called “balance.” It can lead to unequal outcomes and
ignores the effect of bias in the societal processes that produced the training data.
• Equal impact: People with similar likelihood to pay back the loan should have the

same expected utility, regardless of the class they belong to. This goes beyond equal
opportunity in that it considers both the benefits of a true prediction and the costs of a
false prediction.

Let us examine how these issues play out in a particular context. COMPAS is a com-
mercial system for recidivism (re-offense) scoring. It assigns to a defendant in a criminal
case a risk score, which is then used by a judge to help make decisions: Is it safe to release
the defendant before trial, or should they be held in jail? If convicted, how long should the
sentence be? Should parole be granted? Given the significance of these decisions, the system
has been the subject of intense scrutiny (Dressel and Farid, 2018).

COMPAS is designed to be well calibrated: all the individuals who are given the sameWell calibrated

score by the algorithm should have approximately the same probability of re-offending, re-
gardless of race. For example, among all people that the model assigns a risk score of 7 out
of 10, 60% of whites and 61% of blacks re-offend. The designers thus claim that it meets the
desired fairness goal.

On the other hand, COMPAS does not achieve equal opportunity: the proportion of
those who did not re-offend but were falsely rated as high-risk was 45% for blacks and 23%
for whites. In the case State v. Loomis, where a judge relied on COMPAS to determine the
sentence of the defendant, Loomis argued that the secretive inner workings of the algorithm
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violated his due process rights. Though the Wisconsin Supreme Court found that the sentence
given would be no different without COMPAS in this case, it did issue warnings about the
algorithm’s accuracy and risks to minority defendants. Other researchers have questioned
whether it is appropriate to use algorithms in applications such as sentencing.

We could hope for an algorithm that is both well calibrated and equal opportunity, but,
as Kleinberg et al. (2016) show, that is impossible. If the base classes are different, then
any algorithm that is well calibrated will necessarily not provide equal opportunity, and vice
versa. How can we weigh the two criteria? Equal impact is one possibility. In the case of
COMPAS, this means weighing the negative utility of defendants being falsely classified as
high risk and losing their freedom, versus the cost to society of an additional crime being
committed, and finding the point that optimizes the tradeoff. This is complicated because
there are multiple costs to consider. There are individual costs—a defendant who is wrong-
fully held in jail suffers a loss, as does the victim of a defendant who was wrongfully released
and re-offends. But beyond that there are group costs—everyone has a certain fear that they
will be wrongfully jailed, or will be the victim of a crime, and all taxpayers contribute to the
costs of jails and courts. If we give value to those fears and costs in proportion to the size of
a group, then utility for the majority may come at the expense of a minority.

Another problem with the whole idea of recidivism scoring, regardless of the model used,
is that we don’t have unbiased ground truth data. The data does not tell us who has committed
a crime—all we know is who has been convicted of a crime. If the arresting officers, judge,
or jury is biased, then the data will be biased. If more officers patrol some locations, then
the data will be biased against people in those locations. Only defendants who are released
are candidates to recommit, so if the judges making the release decisions are biased, the data
may be biased. If you assume that behind the biased data set there is an underlying, unknown,
unbiased data set which has been corrupted by an agent with biases, then there are techniques
to recover an approximation to the unbiased data. Jiang and Nachum (2019) describe various
scenarios and the techniques involved.

One more risk is that machine learning can be used to justify bias. If decisions are made
by a biased human after consulting with a machine learning system, the human can say “here
is how my interpretation of the model supports my decision, so you shouldn’t question my
decision.” But other interpretations could lead to an opposite decision.

Sometimes fairness means that we should reconsider the objective function, not the data
or the algorithm. For example, in making job hiring decisions, if the objective is to hire
candidates with the best qualifications in hand, we risk unfairly rewarding those who have
had advantageous educational opportunities throughout their lives, thereby enforcing class
boundaries. But if the objective is to hire candidates with the best ability to learn on the job,
we have a better chance to cut across class boundaries and choose from a broader pool. Many
companies have programs designed for such applicants, and find that after a year of training,
the employees hired this way do as well as the traditional candidates. Similarly, just 18% of
computer science graduates in the U.S. are women, but some schools, such as Harvey Mudd
University, have achieved 50% parity with an approach that is focused on encouraging and
retaining those who start the computer science program, especially those who start with less
programming experience.

A final complication is deciding which classes deserve protection. In the U.S., the Fair
Housing Act recognized seven protected classes: race, color, religion, national origin, sex,
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disability, and familial status. Other local, state, and federal laws recognize other classes,
including sexual orientation, and pregnancy, marital, and veteran status. Is it fair that these
classes count for some laws and not others? International human rights law, which encom-
passes a broad set of protected classes, is a potential framework to harmonize protections
across various groups.

Even in the absence of societal bias, sample size disparity can lead to biased results.Sample size disparity

In most data sets there will be fewer training examples of minority class individuals than
of majority class individuals. Machine learning algorithms give better accuracy with more
training data, so that means that members of minority classes will experience lower accuracy.
For example, Buolamwini and Gebru (2018) examined a computer vision gender identifica-
tion service, and found that it had near-perfect accuracy for light-skinned males, and a 33%
error rate for dark-skinned females. A constrained model may not be able to simultaneously
fit both the majority and minority class—a linear regression model might minimize average
error by fitting just the majority class, and in an SVM model, the support vectors might all
correspond to majority class members.

Bias can also come into play in the software development process (whether or not the
software involves machine learning). Engineers who are debugging a system are more likely
to notice and fix those problems that are applicable to themselves. For example, it is difficult
to notice that a user interface design won’t work for colorblind people unless you are in fact
colorblind, or that an Urdu language translation is faulty if you don’t speak Urdu.

How can we defend against these biases? First, understand the limits of the data you are
using. It has been suggested that data sets (Gebru et al., 2018; Hind et al., 2018) and models
(Mitchell et al., 2019) should come with annotations: declarations of provenance, security,
conformity, and fitness for use. This is similar to the data sheets that accompany electronicData sheet

components such as resistors; they allow designers to decide what components to use. In
addition to the data sheets, it is important to train engineers to be aware of issues of fairness
and bias, both in school and with on-the-job training. Having a diversity of engineers from
different backgrounds makes it easier for them to notice problems in the data or models. A
study by the AI Now Institute (West et al., 2019) found that only 18% of authors at leading
AI conferences and 20% of AI professors are women. Black AI workers are at less than 4%.
Rates at industry research labs are similar. Diversity could be increased by programs earlier
in the pipeline—in college or high school—and by greater awareness at the professional level.
Joy Buolamwini founded the Algorithmic Justice League to raise awareness of this issue and
develop practices for accountability.

A second idea is to de-bias the data (Zemel et al., 2013). We could over-sample from
minority classes to defend against sample size disparity. Techniques such as SMOTE, the
synthetic minority over-sampling technique (Chawla et al., 2002) or ADASYN, the adaptive
synthetic sampling approach for imbalanced learning (He et al., 2008), provide principled
ways of oversampling. We could examine the provenance of data and, for example, eliminate
examples from judges who have exhibited bias in their past court cases. Some analysts object
to the idea of discarding data, and instead would recommend building a hierarchical model of
the data that includes sources of bias, so they can be modeled and compensated for. Google
and NeurIPS have attempted to raise awareness of this issue by sponsoring the Inclusive
Images Competition, in which competitors train a network on a data set of labeled images
collected in North America and Europe, and then test it on images taken from all around the
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world. The issue is that given this data set, it is easy to apply the label “bride” to a woman
in a standard Western wedding dress, but harder to recognize traditional African and Indian
matrimonial dress.

A third idea is to invent new machine learning models and algorithms that are more resis-
tant to bias; and the final idea is to let a system make initial recommendations that may be bi-
ased, but then train a second system to de-bias the recommendations of the first one. Bellamy
et al. (2018) introduced the IBM AI FAIRNESS 360 system, which provides a framework for
all of these ideas. We expect there will be increased use of tools like this in the future.

How do you make sure that the systems you build will be fair? A set of best practices has
been emerging (although they are not always followed):

• Make sure that the software engineers talk with social scientists and domain experts to
understand the issues and perspectives, and consider fairness from the start.

• Create an environment that fosters the development of a diverse pool of software engi-
neers that are representative of society.

• Define what groups your system will support: different language speakers, different age
groups, different abilities with sight and hearing, etc.

• Optimize for an objective function that incorporates fairness.
• Examine your data for prejudice and for correlations between protected attributes and

other attributes.
• Understand how any human annotation of data is done, design goals for annotation

accuracy, and verify that the goals are met.
• Don’t just track overall metrics for your system; make sure you track metrics for sub-

groups that might be victims of bias.
• Include system tests that reflect the experience of minority group users.
• Have a feedback loop so that when fairness problems come up, they are dealt with.

28.3.4 Trust and transparency

It is one challenge to make an AI system accurate, fair, safe, and secure; a different chal-
lenge to convince everyone else that you have done so. People need to be able to trust the Trust

systems they use. A PwC survey in 2017 found that 76% of businesses were slowing the
adoption of AI because of trustworthiness concerns. In Section 19.9.4 we covered some of
the engineering approaches to trust; here we discuss the policy issues.

To earn trust, any engineered systems must go through a verification and validation Verification and
validation

(V&V) process. Verification means that the product satisfies the specifications. Validation
means ensuring that the specifications actually meet the needs of the user and other affected
parties. We have an elaborate V&V methodology for engineering in general, and for tradi-
tional software development done by human coders; much of that is applicable to AI systems.
But machine learning systems are different and demand a different V&V process, which has
not yet been fully developed. We need to verify the data that these systems learn from; we
need to verify the accuracy and fairness of the results, even in the face of uncertainty that
makes an exact result unknowable; and we need to verify that adversaries cannot unduly
influence the model, nor steal information by querying the resulting model.

One instrument of trust is certification; for example, Underwriters Laboratories (UL) Certification

was founded in 1894 at a time when consumers were apprehensive about the risks of electric
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power. UL certification of appliances gave consumers increased trust, and in fact UL is now
considering entering the business of product testing and certification for AI.

Other industries have long had safety standards. For example, ISO 26262 is an interna-
tional standard for the safety of automobiles, describing how to develop, produce, operate,
and service vehicles in a safe way. The AI industry is not yet at this level of clarity, although
there are some frameworks in progress, such as IEEE P7001, a standard defining ethical de-
sign for artificial intelligence and autonomous systems (Bryson and Winfield, 2017). There is
ongoing debate about what kind of certification is necessary, and to what extent it should be
done by the government, by professional organizations like IEEE, by independent certifiers
such as UL, or through self-regulation by the product companies.

Another aspect of trust is transparency: consumers want to know what is going onTransparency

inside a system, and that the system is not working against them, whether due to intentional
malice, an unintentional bug, or pervasive societal bias that is recapitulated by the system. In
some cases this transparency is delivered directly to the consumer. In other cases their are
intellectual property issues that keep some aspects of the system hidden to consumers, but
open to regulators and certification agencies.

When an AI system turns you down for a loan, you deserve an explanation. In Europe,
the GDPR enforces this for you. An AI system that can explain itself is called explainable AI
(XAI). A good explanation has several properties: it should be understandable and convincingExplainable AI (XAI)

to the user, it should accurately reflect the reasoning of the system, it should be complete, and
it should be specific in that different users with different conditions or different outcomes
should get different explanations.

It is quite easy to give a decision algorithm access to its own deliberative processes,
simply by recording them and making them available as data structures. This means that
machines may eventually be able to give better explanations of their decisions than humans
can. Moreover, we can take steps to certify that the machine’s explanations are not deceptions
(intentional or self-deception), something that is more difficult with a human.

An explanation is a helpful but not sufficient ingredient to trust. One issue is that expla-
nations are not decisions: they are stories about decisions. As discussed in Section 19.9.4, we
say that a system is interpretable if we can inspect the source code of the model and see what
it is doing, and we say it is explainable if we can make up a story about what it is doing—even
if the system itself is an uninterpretable black box. To explain an uninterpretable black box,
we need to build, debug, and test a separate explanation system, and make sure it is in sync
with the original system. And because humans love a good story, we are all too willing to be
swayed by an explanation that sounds good. Take any political controversy of the day, and
you can always find two so-called experts with diametrically opposed explanations, both of
which are internally consistent.

A final issue is that an explanation about one case does not give you a summary over
other cases. If the bank explains, “Sorry, you didn’t get the loan because you have a history
of previous financial problems,” you don’t know if that explanation is accurate or if the bank is
secretly biased against you for some reason. In this case, you require not just an explanation,
but also an audit of past decisions, with aggregated statistics across various demographic
groups, to see if their approval rates are balanced.

Part of transparency is knowing whether you are interacting with an AI system or a hu-
man. Toby Walsh (2015) proposed that “an autonomous system should be designed so that
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it is unlikely to be mistaken for anything besides an autonomous system, and should identify
itself at the start of any interaction.” He called this the “red flag” law, in honor of the UK’s
1865 Locomotive Act, which required any motorized vehicle to have a person with a red flag
walk in front of it, to signal the oncoming danger.

In 2019, California enacted a law stating that “It shall be unlawful for any person to use
a bot to communicate or interact with another person in California online, with the intent to
mislead the other person about its artificial identity.”

28.3.5 The future of work

From the first agricultural revolution (10,000 BCE) to the industrial revolution (late 18th
century) to the green revolution in food production (1950s), new technologies have changed
the way humanity works and lives. A primary concern arising from the advance of AI is that
human labor will become obsolete. Aristotle, in Book I of his Politics, presents the main
point quite clearly:

For if every instrument could accomplish its own work, obeying or anticipating the will
of others . . . if, in like manner, the shuttle would weave and the plectrum touch the lyre
without a hand to guide them, chief workmen would not want servants, nor masters slaves.

Everyone agrees with Aristotle’s observation that there is an immediate reduction in employ-
ment when an employer finds a mechanical method to perform work previously done by a
person. The issue is whether the so-called compensation effects that ensue—and that tend to
increase employment—will eventually make up for this reduction. The primary compensa-
tion effect is the increase in overall wealth from greater productivity, which leads in turn to
greater demand for goods and tends to increase employment. For example, PwC (Rao and
Verweij, 2017) predicts that AI contribute $15 trillion annually to global GDP by 2030. The
healthcare and automotive/transportation industries stand to gain the most in the short term.
However, the advantages of automation have not yet taken over in our economy: the current
rate of growth in labor productivity is actually below historical standards. Brynjolfsson et al.
(2018) attempt to explain this paradox by suggesting that the lag between the development of
basic technology and its implementation in the economy is longer than commonly supposed.

Technological innovations have historically put some people out of work. Weavers were
replaced by automated looms in the 1810s, leading to the Luddite protests. The Luddites were
not against technology per se; they just wanted the machines to be used by skilled workers
paid a good wage to make high-quality goods, rather than by unskilled workers to make poor-
quality goods at low wages. The global destruction of jobs in the 1930s led John Maynard
Keynes to coin the term technological unemployment. In both cases, and several others, Technological

unemployment

employment levels eventally recovered.
The mainstream economic view for most of the 20th century was that technological em-

ployment was at most a short-term phenomenon. Increased productivity would always lead
to increased wealth and increased demand, and thus net job growth. A commonly cited ex-
ample is that of bank tellers: although ATMs replaced humans in the job of counting out cash
for withdrawals, that made it cheaper to operate a bank branch, so the number of branches
increased, leading to more bank employees overall. The nature of the work also changed, be-
coming less routine and requiring more advanced business skills. The net effect of automation
seems to be in eliminating tasks rather than jobs.
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The majority of commenters predict that the same will hold true with AI technology, at
least in the short run. Gartner, McKinsey, Forbes, the World Economic Forum, and the Pew
Research Center each released reports in 2018 predicting a net increase in jobs due to AI-
driven automation. But some analysts think that this time around, things will be different. In
2019, IBM predicted that 120 million workers would need retraining due to automation by
2022, and Oxford Economics predicted that 20 million manufacturing jobs could be lost to
automation by 2030.

Frey and Osborne (2017) survey 702 different occupations, and estimate that 47% of them
are at risk of being automated, meaning that at least some of the tasks in the occupation can
be performed by machine. For example, almost 3% of the workforce in the U.S. are vehicle
drivers, and in some districts, as much as 15% of the male workforce are drivers. As we saw in
Chapter 26, the task of driving is likely to be eliminated by driverless cars/trucks/buses/taxis.

It is important to distinguish between occupations and the tasks within those occupations.
McKinsey estimates that only 5% of occupations are fully automatable, but that 60% of oc-
cupations can have about 30% of their tasks automated. For example, future truck drivers
will spend less time holding the steering wheel and more time making sure that the goods
are picked up and delivered properly; serving as customer service representatives and sales-
people at either end of the journey; and perhaps managing convoys of, say, three robotic
trucks. Replacing three drivers with one convoy manager implies a net loss in employment,
but if transportation costs decrease, there will be more demand, which wins some of the
jobs back—but perhaps not all of them. As another example, despite many advances in ap-
plying machine learning to the problem of medical imaging, radiologists have so far been
augmented, not replaced, by these tools. Ultimately, there is a choice of how to make use of
automation: do we want to focus on cutting cost, and thus see job loss as a positive; or do we
want to focus on improving quality, making life better for the worker and the customer?

It is difficult to predict exact timelines for automation, but currently, and for the next
few years, the emphasis is on automation of structured analytical tasks, such as reading x-ray
images, customer relationship management (e.g., bots that automatically sort customer com-
plaints and respond with suggested remedies), and business process automation that com-Business process

automation
bines text documents and structured data to make business decisions and improve workflow.
Over time, we will see more automation with physical robots, first in controlled warehouse
environments, then in more uncertain environments, building to a significant portion of the
marketplace by around 2030.

As populations in developed countries grow older, the ratio between workers and retirees
changes. In 2015 there were less than 30 retirees per 100 workers; by 2050 there may be
over 60 per 100 workers. Care for the elderly will be an increasingly important role, one that
can partially be filled by AI. Moreover, if we want to maintain the current standard of living,
it will also be necessary to make the remaining workers more productive; automation seems
like the best opportunity to do that.

Even if automation has a multi-trillion-dollar net positive impact, there may still be prob-
lems due to the pace of change. Consider how change came to the farming industry: in 1900,Pace of change

over 40% of the U.S. workforce was in agriculture, but by 2000 that had fallen to 2%.3 That

3 In 2010, although only 2% of the U.S. workforce were actual farmers, over 25% of the population (80 million
people) played the FARMVILLE game at least once.
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is a huge disruption in the way we work, but it happened over a period of 100 years, and thus
across generations, not in the lifetime of one worker.

Workers whose jobs are automated away this decade may have to retrain for a new pro-
fession within a few years—and then perhaps see their new profession automated and face
yet another retraining period. Some may be happy to leave their old profession—we see that
as the economy improves, trucking companies need to offer new incentives to hire enough
drivers—but workers will be apprehensive about their new roles. To handle this, we as a soci-
ety need to provide lifelong education, perhaps relying in part on online education driven by
artificial intelligence (Martin, 2012). Bessen (2015) argues that workers will not see increases
in income until they are trained to implement the new technologies, a process that takes time.

Technology tends to magnify income inequality. In an information economy marked Income inequality

by high-bandwidth global communication and zero-marginal-cost replication of intellectual
property (what Frank and Cook (1996) call the “Winner-Take-All Society”), rewards tend to
be concentrated. If farmer Ali is 10% better than farmer Bo, then Ali gets about 10% more
income: Ali can charge slightly more for superior goods, but there is a limit on how much
can be produced on the land, and how far it can be shipped. But if software app developer
Cary is 10% better than Dana, it may be that Cary ends up with 99% of the global market. AI
increases the pace of technological innovation and thus contributes to this overall trend, but
AI also holds the promise of allowing us to take some time off and let our automated agents
handle things for a while. Tim Ferriss (2007) recommends using automation and outsourcing
to achieve a four-hour work week.

Before the industrial revolution, people worked as farmers or in other crafts, but didn’t
report to a job at a place of work and put in hours for an employer. But today, most adults
in developed countries do just that, and the job serves three purposes: it fuels the production
of the goods that society needs to flourish, it provides the income that the worker needs to
live, and it gives the worker a sense of purpose, accomplishment, and social integration. With
increasing automation, it may be that these three purposes become disaggregated—society’s
needs will be served in part by automation, and in the long run, individuals will get their
sense of purpose from contributions other than work. Their income needs can be served by
social policies that include a combination of free or inexpensive access to social services and
education, portable health care, retirement, and education accounts, progressive tax rates,
earned income tax credits, negative income tax, or universal basic income.

28.3.6 Robot rights

The question of robot consciousness, discussed in Section 28.2, is critical to the question of
what rights, if any, robots should have. If they have no consciousness, no qualia, then few
would argue that they deserve rights.

But if robots can feel pain, if they can dread death, if they are considered “persons,” then
the argument can be made (e.g., by Sparrow (2004)) that they have rights and deserve to have
their rights recognized, just as slaves, women, and other historically oppressed groups have
fought to have their rights recognized. The issue of robot personhood is often considered in
fiction: from Pygmalion to Coppélia to Pinocchio to the movies AI and Centennial Man, we
have the legend of a doll/robot coming to life and striving to be accepted as a human with
human rights. In real life, Saudi Arabia made headlines by giving honorary citizenship to
Sophia, a human-looking puppet capable of speaking preprogrammed lines.
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If robots have rights, then they should not be enslaved, and there is a question of whether
reprogramming them would be a kind of enslavement. Another ethical issue involves voting
rights: a rich person could buy thousands of robots and program them to cast thousands
of votes—should those votes count? If a robot clones itself, can they both vote? What is
the boundary between ballot stuffing and exercising free will, and when does robotic voting
violate the “one person, one vote” principle?

Ernie Davis argues for avoiding the dilemmas of robot consciousness by never building
robots that could possibly be considered conscious. This argument was previously made by
Joseph Weizenbaum in his book Computer Power and Human Reason (1976), and before that
by Julien de La Mettrie in L’Homme Machine (1748). Robots are tools that we create, to do
the tasks we direct them to do, and if we grant them personhood, we are just declining to take
responsibility for the actions of our own property: “I’m not at fault for my self-driving car
crash—the car did it itself.”

This issue takes a different turn if we develop human–robot hybrids. Of course we already
have humans enhanced by technology such as contact lenses, pacemakers, and artificial hips.
But adding computational protheses may blur the lines between human and machine.

28.3.7 AI Safety

Almost any technology has the potential to cause harm in the wrong hands, but with AI
and robotics, the hands might be operating on their own. Countless science fiction stories
have warned about robots or cyborgs running amok. Early examples include Mary Shelley’s
Frankenstein, or the Modern Prometheus (1818) and Karel Čapek’s play R.U.R. (1920), in
which robots conquer the world. In movies, we have The Terminator (1984) and The Matrix
(1999), which both feature robots trying to eliminate humans—the robopocalypse (Wilson,Robopocalypse

2011). Perhaps robots are so often the villains because they represent the unknown, just like
the witches and ghosts of tales from earlier eras. We can hope that a robot that is smart
enough to figure out how to terminate the human race is also smart enough to figure out that
that was not the intended utility function; but in building intelligent systems, we want to rely
not just on hope, but on a design process with guarantees of safety.

It would be unethical to distribute an unsafe AI agent. We require our agents to avoid
accidents, to be resistant to adversarial attacks and malicious abuse, and in general to cause
benefits, not harms. That is especially true as AI agents are deployed in safety-critical appli-
cations, such as driving cars, controlling robots in dangerous factory or construction settings,
and making life-or-death medical decisions.

There is a long history of safety engineering in traditional engineering fields. We knowSafety engineering

how to build bridges, airplanes, spacecraft, and power plants that are designed up front to
behave safely even when components of the system fail. The first technique is failure modes
and effect analysis (FMEA): analysts consider each component of the system, and imagine

Failure modes and
effect analysis
(FMEA)

every possible way the component could go wrong (for example, what if this bolt were to
snap?), drawing on past experience and on calculations based on the physical properties of
the component. Then the analysts work forward to see what would result from the failure.
If the result is severe (a section of the bridge could fall down) then the analysts alter the
design to mitigate the failure. (With this additional cross-member, the bridge can survive the
failure of any 5 bolts; with this backup server, the online service can survive a tsunami taking
out the primary server.) The technique of fault tree analysis (FTA) is used to make theseFault tree analysis

(FTA)
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determinations: analysts build an AND/OR tree of possible failures and assign probabilities
to each root cause, allowing for calculations of overall failure probability. These techniques
can and should be applied to all safety-critical engineered systems, including AI systems.

The field of software engineering is aimed at producing reliable software, but the em-
phasis has historically been on correctness, not safety. Correctness means that the software
faithfully implements the specification. But safety goes beyond that to insist that the specifi-
cation has considered any feasible failure modes, and is designed to degrade gracefully even
in the face of unforeseen failures. For example, the software for a self-driving car wouldn’t
be considered safe unless it can handle unusual situations. For example, what if the power to
the main computer dies? A safe system will have a backup computer with a separate power
supply. What if a tire is punctured at high speed? A safe system will have tested for this, and
will have software to correct for the resulting loss of control.

An agent designed as a utility maximizer, or as a goal achiever, can be unsafe if it has
the wrong objective function. Suppose we give a robot the task of fetching a coffee from
the kitchen. We might run into trouble with unintended side effects—the robot might rush Unintended side

effect
to accomplish the goal, knocking over lamps and tables along the way. In testing, we might
notice this kind of behavior and modify the utility function to penalize such damage, but it is
difficult for the designers and testers to anticipate all possible side effects ahead of time.

One way to deal with this is to design a robot to have low impact (Armstrong and Levin- Low impact

stein, 2017): instead of just maximizing utility, maximize the utility minus a weighted sum-
mary of all changes to the state of the world. In this way, all other things being equal, the
robot prefers not to change those things whose effect on utility is unknown; so it avoids
knocking over the lamp not because it knows specifically that knocking the lamp will cause
it to fall over and break, but because it knows in general that disruption might be bad. This
can be seen as a version of the physician’s creed “first, do no harm,” or as an analog to regu-
larization in machine learning: we want a policy that achieves goals, but we prefer policies
that take smooth, low-impact actions to get there. The trick is how to measure impact. It
is not acceptable to knock over a fragile lamp, but perfectly fine if the air molecules in the
room are disturbed a little, or if some bacteria in the room are inadvertently killed. It is cer-
tainly not acceptable to harm pets and humans in the room. We need to make sure that the
robot knows the differences between these cases (and many subtle cases in between) through
a combination of explicit programming, machine learning over time, and rigorous testing.

Utility functions can go wrong due to externalities, the word used by economists for
factors that are outside of what is measured and paid for. The world suffers when green-
house gases are considered as externalities—companies and countries are not penalized for
producing them, and as a result everyone suffers. Ecologist Garrett Hardin (1968) called the
exploitation of shared resources the tragedy of the commons. We can mitigate the tragedy
by internalizing the externalities—making them part of the utility function, for example with
a carbon tax—or by using the design principles that economist Elinor Ostrom identified as
being used by local people throughout the world for centuries (work that won her the Nobel
Prize in Economics in 2009):

• Clearly define the shared resource and who has access.

• Adapt to local conditions.

• Allow all parties to participate in decisions.
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• Monitor the resource with accountable monitors.

• Sanctions, proportional to the severity of the violation.

• Easy conflict resolution procedures.

• Hierarchical control for large shared resources.

Victoria Krakovna (2018) has cataloged examples of AI agents that have gamed the system,
figuring out how to maximize utility without actually solving the problem that their designers
intended them to solve. To the designers this looks like cheating, but to the agents, they
are just doing their job. Some agents took advantage of bugs in the simulation (such as
floating point overflow bugs) to propose solutions that would not work once the bug was
fixed. Several agents in video games discovered ways to crash or pause the game when they
were about to lose, thus avoiding a penalty. And in a specification where crashing the game
was penalized, one agent learned to use up just enough of the game’s memory so that when it
was the opponent’s turn, it would run out of memory and crash the game. Finally, a genetic
algorithm operating in a simulated world was supposed to evolve fast-moving creatures but
in fact produced creatures that were enormously tall and moved fast by falling over.

Designers of agents should be aware of these kinds of specification failures and take steps
to avoid them. To help them do that, Krakovna was part of the team that released the AI Safety
Gridworlds environments (Leike et al., 2017), which allows designers to test how well their
agents perform.

The moral is that we need to be very careful in specifying what we want, because with
utility maximizers we get what we actually asked for. The value alignment problem is theValue alignment

problem

problem of making sure that what we ask for is what we really want; it is also known as the
King Midas problem, as discussed on page 51. We run into trouble when a utility function
fails to capture background societal norms about acceptable behavior. For example, a human
who is hired to clean floors, when faced with a messy person who repeatedly tracks in dirt,
knows that it is acceptable to politely ask the person to be more careful, but it is not acceptable
to kidnap or incapacitate said person.

A robotic cleaner needs to know these things too, either through explicit programming or
by learning from observation. Trying to write down all the rules so that the robot always does
the right thing is almost certainly hopeless. We have been trying to write loophole-free tax
laws for several thousand years without success. Better to make the robot want to pay taxes,
so to speak, than to try to make rules to force it to do so when it really wants to do something
else. A sufficiently intelligent robot will find a way to do something else.

Robots can learn to conform better with human preferences by observing human behav-
ior. This is clearly related to the notion of apprenticeship learning (Section 23.6). The robot
may learn a policy that directly suggests what actions to take in what situations; this is often
a straightforward supervised learning problem if the environment is observable. For exam-
ple, a robot can watch a human playing chess: each state–action pair is an example for the
learning process. Unfortunately, this form of imitation learning means that the robot will
repeat human mistakes. Instead, the robot can apply inverse reinforcement learning to dis-
cover the utility function that the humans must be operating under. Watching even terrible
chess players is probably enough for the robot to learn the objective of the game. Given just
this information, the robot can then go on to exceed human performance—as, for example,
ALPHAZERO did in chess—by computing optimal or near-optimal policies from the objec-
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tive. This approach works not just in board games, but in real-world physical tasks such as
helicopter aerobatics (Coates et al., 2009).

In more complex settings involving, for example, social interactions with humans, it is
very unlikely that the robot will converge to exact and correct knowledge of each human’s
individual preferences. (After all, many humans never quite learn what makes other humans
tick, despite a lifetime of experience, and many of us are unsure of our own preferences too.)
It will be necessary, therefore, for machines to function appropriately when it is uncertain
about human preferences. In Chapter 17, we introduced assistance games, which capture
exactly this situation. Solutions to assistance games include acting cautiously, so as not to
disturb aspects of the world that the human might care about, and asking questions. For
example, the robot could ask whether turning the oceans into sulphuric acid is an acceptable
solution to global warming before it puts the plan into effect.

In dealing with humans, a robot solving an assistance game must accommodate human
imperfections. If the robot asks permission, the human may give it, not foreseeing that the
robot’s proposal is in fact catastrophic in the long term. Moreover, humans do not have
complete introspective access to their true utility function, and they don’t always act in a way
that is compatible with it. Humans sometimes lie or cheat, or do things they know are wrong.
They sometimes take self-destructive actions like overeating or abusing drugs. AI systems
need not learn to adopt these problematic tendencies, but they must understand that they exist
when interpreting human behavior to get at the underlying human preferences.

Despite this toolbox of safeguards, there is a fear, expressed by prominent technologists
such as Bill Gates and Elon Musk and scientists such as Stephen Hawking and Martin Rees,
that AI could evolve out of control. They warn that we have no experience controlling power-
ful nonhuman entities with super-human capabilities. However, that’s not quite true; we have
centuries of experience with nations and corporations; non-human entities that aggregate the
power of thousands or millions of people. Our record of controlling these entities is not very
encouraging: nations produce periodic convulsions called wars that kill tens of millions of
human beings, and corporations are partly responsible for global warming and our inability
to confront it.

AI systems may present much greater problems than nations and corporations because of
their potential to self-improve at a rapid pace, as considered by I. J. Good (1965b):

Let an ultraintelligent machine be defined as a machine that can far surpass all the Ultraintelligent
machine

intellectual activities of any man however clever. Since the design of machines is one of
these intellectual activities, an ultraintelligent machine could design even better machines;
there would then unquestionably be an “intelligence explosion,” and the intelligence of
man would be left far behind. Thus the first ultraintelligent machine is the last invention
that man need ever make, provided that the machine is docile enough to tell us how to
keep it under control.

Good’s “intelligence explosion” has also been called the technological singularity by math- Technological
singularity

ematics professor and science fiction author Vernor Vinge, who wrote in 1993: “Within thirty
years, we will have the technological means to create superhuman intelligence. Shortly after,
the human era will be ended.” In 2017, inventor and futurist Ray Kurzweil predicted the
singularity would appear by 2045, which means it got 2 years closer in 24 years. (At that
rate, only 336 years to go!) Vinge and Kurzweil correctly note that technological progress on
many measures is growing exponentially at present.
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It is, however, quite a leap to extrapolate all the way from the rapidly decreasing cost
of computation to a singularity. So far, every technology has followed an S-shaped curve,
where the exponential growth eventually tapers off. Sometimes new technologies step in
when the old ones plateau, but sometimes it is not possible to keep the growth going, for
technical, political, or sociological reasons. For example, the technology of flight advanced
dramatically from the Wright brothers’ flight in 1903 to the moon landing in 1969, but has
had no breakthroughs of comparable magnitude since then.

Another obstacle in the way of ultraintelligent machines taking over the world is the
world. More specifically, some kinds of progress require not just thinking but acting in the
physical world. (Kevin Kelly calls the overemphasis on pure intelligence thinkism.) An ul-Thinkism

traintelligent machine tasked with creating a grand unified theory of physics might be capable
of cleverly manipulating equations a billion times faster than Einstein, but to make any real
progress, it would still need to raise millions of dollars to build a more powerful supercollider
and run physical experiments over the course of months or years. Only then could it start
analyzing the data and theorizing. Depending on how the data turn out, the next step might
require raising additional billions of dollars for an interstellar probe mission that would take
centuries to complete. The “ultraintelligent thinking” part of this whole process might actu-
ally be the least important part. As another example, an ultraintelligent machine tasked with
bringing peace to the Middle East might just end up getting 1000 times more frustrated than
a human envoy. As yet, we don’t know how many of the big problems are like mathematics
and how many are like the Middle East.

While some people fear the singularity, others relish it. The transhumanism socialTranshumanism

movement looks forward to a future in which humans are merged with—or replaced by—
robotic and biotech inventions. Ray Kurzweil writes in The Singularity is Near (2005):

The Singularity will allow us to transcend these limitations of our biological bodies and
brain. We will gain power over our fates. . . . We will be able to live as long as we want
. . . We will fully understand human thinking and will vastly extend and expand its reach.
By the end of this century, the nonbiological portion of our intelligence will be trillions
of trillions of times more powerful than unaided human intelligence.

Similarly, when asked whether robots will inherit the Earth, Marvin Minsky said “yes, but
they will be our children.” These possibilities present a challenge for most moral theorists,
who take the preservation of human life and the human species to be a good thing. Kurzweil
also notes the potential dangers, writing “But the Singularity will also amplify the ability to
act on our destructive inclinations, so its full story has not yet been written.” We humans
would do well to make sure that any intelligent machine we design today that might evolve
into an ultraintelligent machine will do so in a way that ends up treating us well. As Eric
Brynjolfsson puts it, “The future is not preordained by machines. It’s created by humans.”

Summary

This chapter has addressed the following issues:

• Philosophers use the term weak AI for the hypothesis that machines could possibly
behave intelligently, and strong AI for the hypothesis that such machines would count
as having actual minds (as opposed to simulated minds).



Bibliographical and Historical Notes 1057

• Alan Turing rejected the question “Can machines think?” and replaced it with a be-
havioral test. He anticipated many objections to the possibility of thinking machines.
Few AI researchers pay attention to the Turing test, preferring to concentrate on their
systems’ performance on practical tasks, rather than the ability to imitate humans.

• Consciousness remains a mystery.
• AI is a powerful technology, and as such it poses potential dangers, through lethal au-

tonomous weapons, security and privacy breaches, unintended side effects, uninten-
tional errors, and malignant misuse. Those who work with AI technology have an
ethical imperative to responsibly reduce those dangers.

• AI systems must be able to demonstrate they are fair, trustworthy, and transparent.
• There are multiple aspects of fairness, and it is impossible to maximize all of them at

once. So a first step is to decide what counts as fair.
• Automation is already changing the way people work. As a society, we will have to

deal with these changes.

Bibliographical and Historical Notes

Weak AI: When Alan Turing (1950) proposed the possibility of AI, he also posed many of
the key philosophical questions, and provided possible replies. But various philosophers had
raised similar issues long before AI was invented. Maurice Merleau-Ponty’s Phenomenology
of Perception (1945) stressed the importance of the body and the subjective interpretation of
reality afforded by our senses, and Martin Heidegger’s Being and Time (1927) asked what it
means to actually be an agent. In the computer age, Alva Noe (2009) and Andy Clark (2015)
propose that our brains form a rather minimal representation of the world, use the world itself
on a just-in-time basis to maintain the illusion of a detailed internal model, and use props
in the world (such as paper and pencil as well as computers) to increase the capabilities of
the mind. Pfeifer et al. (2006) and Lakoff and Johnson (1999) present arguments for how
the body helps shape cognition. Speaking of bodies, Levy (2008), Danaher and McArthur
(2017), and Devlin (2018) address the issue of robot sex.

Strong AI: René Descartes is known for his dualistic view of the human mind, but ironi-
cally his historical influence was toward mechanism and physicalism. He explicitly conceived
of animals as automata, and he anticipated the Turing test, writing “it is not conceivable [that
a machine] should produce different arrangements of words so as to give an appropriately
meaningful answer to whatever is said in its presence, as even the dullest of men can do”
(Descartes, 1637). Descartes’s spirited defense of the animals-as-automata viewpoint ac-
tually had the effect of making it easier to conceive of humans as automata as well, even
though he himself did not take this step. The book L’Homme Machine (La Mettrie, 1748)
did explicitly argue that humans are automata. As far back as Homer (circa 700 BCE), the
Greek legends envisioned automata such as the bronze giant Talos and considered the issue
of biotechne, or life through craft (Mayor, 2018).

The Turing test (Turing, 1950) has been debated (Shieber, 2004), anthologized (Epstein
et al., 2008), and criticized (Shieber, 1994; Ford and Hayes, 1995). Bringsjord (2008) gives
advice for a Turing test judge, and Christian (2011) for a human contestant. The annual
Loebner Prize competition is the longest-running Turing test-like contest; Steve Worswick’s
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MITSUKU won four in a row from 2016 to 2019. The Chinese room has been debated end-
lessly (Searle, 1980; Chalmers, 1992; Preston and Bishop, 2002). Hernández-Orallo (2016)
gives an overview of approaches to measuring AI progress, and Chollet (2019) proposes a
measure of intelligence based on skill-acquisition efficiency.

Consciousness remains a vexing problem for philosophers, neuroscientists, and anyone
who has pondered their own existence. Block (2009), Churchland (2013) and Dehaene (2014)
provide overviews of the major theories. Crick and Koch (2003) add their expertise in biol-
ogy and neuroscience to the debate, and Gazzaniga (2018) shows what can be learned from
studying brain disabilities in hospital cases. Koch (2019) gives a theory of consciousness—
“intelligence is about doing while experience is about being”—that includes most animals,
but not computers. Giulio Tononi and his colleagues propose integrated information theory
(Oizumi et al., 2014). Damasio (1999) has a theory based on three levels: emotion, feeling,
and feeling a feeling. Bryson (2012) shows the value of conscious attention for the process
of learning action selection.

The philosophical literature on minds, brains, and related topics is large and jargon-filled.
The Encyclopedia of Philosophy (Edwards, 1967) is an impressively authoritative and very
useful navigation aid. The Cambridge Dictionary of Philosophy (Audi, 1999) is shorter and
more accessible, and the online Stanford Encyclopedia of Philosophy offers many excellent
articles and up-to-date references. The MIT Encyclopedia of Cognitive Science (Wilson and
Keil, 1999) covers the philosophy, biology, and psychology of mind. There are multiple intro-
ductions to the philosophical “AI question” (Haugeland, 1985; Boden, 1990; Copeland, 1993;
McCorduck, 2004; Minsky, 2007). The Behavioral and Brain Sciences, abbreviated BBS, is
a major journal devoted to philosophical and scientific debates about AI and neuroscience.

Science fiction writer Isaac Asimov (1942, 1950) was one of the first to address the issue
of robot ethics, with his laws of robotics:

0. A robot may not harm humanity, or through inaction, allow humanity to come to harm.
1. A robot may not injure a human being or, through inaction, allow a human being to

come to harm.
2. A robot must obey orders given to it by human beings, except where such orders would

conflict with the First Law.
3. A robot must protect its own existence as long as such protection does not conflict with

the First or Second Law.

At first glance, these laws seem reasonable. But the trick is how to implement them. Should
a robot allow a human to cross the street, or eat junk food, if the human might conceivably
come to harm? In Asimov’s story Runaround (1942), humans need to debug a robot that is
found wandering in a circle, acting “drunk.” They work out that the circle defines the locus of
points that balance the second law (the robot was ordered to fetch some selenium at the center
of the circle) with the third law (there is a danger there that threatens the robot’s existence).4

This suggests that the laws are not logical absolutes, but rather are weighed against each
other, with a higher weight for the earlier laws. As this was 1942, before the emergence of

4 Science fiction writers are in broad agreement that robots are very bad at resolving contradictions. In 2001, the
HAL 9000 computer becomes homicidal due to a conflict in its orders, and in the Star Trek episode “I, Mudd,”
Captain Kirk tells an enemy robot that “Everything Harry tells you is a lie,” and Harry says “I am lying.” At this,
smoke comes out of the robot’s head and it shuts down.
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digital computers, Asimov was probably thinking of an architecture based on control theory
via analog computing.

Weld and Etzioni (1994) analyze Asimov’s laws and suggest some ways to modify the
planning techniques of Chapter 11 to generate plans that do no harm. Asimov has considered
many of the ethical issues around technology; in his 1958 story The Feeling of Power he
tackles the issue of automation leading to a lapse of human skill—a technician rediscovers
the lost art of multiplication—as well as the dilemma of what to do when the rediscovery is
applied to warfare.

Norbert Wiener’s book God & Golem, Inc. (1964) correctly predicted that computers
would achieve expert-level performance at games and other tasks, and that specifying what it
is that we want would prove to be difficult. Wiener writes:

While it is always possible to ask for something other than we really want, this
possibility is most serious when the process by which we are to obtain our wish
is indirect, and the degree to which we have obtained our wish is not clear until
the very end. Usually we realize our wishes, insofar as we do actually realize
them, by a feedback process, in which we compare the degree of attainment of
intermediate goals with our anticipation of them. In this process, the feedback
goes through us, and we can turn back before it is too late. If the feedback is
built into a machine that cannot be inspected until the final goal is attained, the
possibilities for catastrophe are greatly increased. I should very much hate to ride
on the first trial of an automobile regulated by photoelectric feedback devices,
unless there were somewhere a handle by which I could take over control if I
found myself driving smack into a tree.

We summarized codes of ethics in the chapter, but the list of organizations that have is-
sued sets of principles is growing rapidly, and now includes Apple, DeepMind, Facebook,
Google, IBM, Microsoft, the Organisation for Economic Co-operation and Development
(OECD), the United Nations Educational, Scientific and Cultural Organization (UNESCO),
the U.S. Office of Science and Technology Policy the Beijing Academy of Artificial Intelli-
gence (BAAI), the Institute of Electrical and Electronics Engineers (IEEE), the Association
of Computing Machinery (ACM), the World Economic Forum, the Group of Twenty (G20),
OpenAI, the Machine Intelligence Research Institute (MIRI), AI4People, the Centre for the
Study of Existential Risk, the Center for Human-Compatible AI, the Center for Humane Tech-
nology, the Partnership on AI, the AI Now Institute, the Future of Life Institute, the Future
of Humanity Institute, the European Union, and at least 42 national governments. We have
the handbook on the Ethics of Computing (Berleur and Brunnstein, 2001) and introductions
to the topic of AI ethics in book (Boddington, 2017) and survey (Etzioni and Etzioni, 2017a)
form. The Journal of Artificial Intelligence and Law and AI and Society cover ethical issues.
We’ll now look at some of the individual issues.

Lethal autonomous weapons: P. W. Singer’s Wired for War (2009) raised ethical, legal,
and technical issues around robots on the battlefield. Paul Scharre’s Army of None (2018),
written by one of the authors of current US policy on autonomous weapons, offers a balanced
and authoritative view. Etzioni and Etzioni (2017b) address the question of whether artifi-
cial intelligence should be regulated; they recommend a pause in the development of lethal
autonomous weapons, and an international discussion on the subject of regulation.
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Privacy: Latanya Sweeney (Sweeney, 2002b) presents the k-anonymity model and the
idea of generalizing fields (Sweeney, 2002a). Achieving k-anonymity with minimal loss of
data is an NP-hard problem, but Bayardo and Agrawal (2005) give an approximation algo-
rithm. Cynthia Dwork (2008) describes differential privacy, and in subsequent work gives
practical examples of clever ways to apply differential privacy to get better results than the
naive approach (Dwork et al., 2014). Guo et al. (2019) describe a process for certified data
removal: if you train a model on some data, and then there is a request to delete some of the
data, this extension of differential privacy lets you modify the model and prove that it does
not make use of the deleted data. Ji et al. (2014) gives a review of the field of privacy. Etzioni
(2004) argues for a balancing of privacy and security; individual rights and community. Fung
et al. (2018), Bagdasaryan et al. (2018) discuss the various attacks on federated learning pro-
tocols. Narayanan et al. (2011) describe how they were able to de-anonymize the obfuscated
connection graph from the 2011 Social Network Challenge by crawling the site where the
data was obtained (Flickr), and matching nodes with unusually high in-degree or out-degree
between the provided data and the crawled data. This allowed them to gain additional infor-
mation to win the challenge, and it also allowed them to uncover the true identity of nodes
in the data. Tools for user privacy are becoming available; for example, TensorFlow provides
modules for federated learning and privacy (McMahan and Andrew, 2018).

Fairness: Cathy O’Neil’s book Weapons of Math Destruction (2017) describes how var-
ious black box machine learning models influence our lives, often in unfair ways. She calls
on model builders to take responsibility for fairness, and for policy makers to impose appro-
priate regulation. Dwork et al. (2012) showed the flaws with the simplistic “fairness through
unawareness” approach. Bellamy et al. (2018) present a toolkit for mitigating bias in machine
learning systems. Tramèr et al. (2016) show how an adversary can “steal” a machine learning
model by making queries against an API, Hardt et al. (2017) describe equal opportunity as
a metric for fairness. Chouldechova and Roth (2018) give an overview of the frontiers of
fairness, and Verma and Rubin (2018) give an exhaustive survey of fairness definitions.

Kleinberg et al. (2016) show that, in general, an algorithm cannot be both well-calibrated
and equal opportunity. Berk et al. (2017) give some additional definitions of types of fairness,
and again conclude that it is impossible to satisfy all aspects at once. Beutel et al. (2019) give
advice for how to put fairness metrics into practice.

Dressel and Farid (2018) report on the COMPAS recidivism scoring model. Christin
et al. (2015) and Eckhouse et al. (2019) discuss the use of predictive algorithms in the le-
gal system. Corbett-Davies et al. (2017) show that that there is a tension between ensuring
fairness and optimizing public safety, and Corbett-Davies and Goel (2018) discuss the dif-
ferences between fairness frameworks. Chouldechova (2017) advocates for fair impact: all
classes should have the same expected utility. Liu et al. (2018a) advocate for a long-term
measure of impact, pointing out that, for example, if we change the decision point for ap-
proving a loan in order to be more fair in the short run, this could have negative effect in the
long run on people who end up defaulting on a loan and thus have their credit score reduced.

Since 2014 there has been an annual conference on Fairness, Accountability, and Trans-
parency in Machine Learning. Mehrabi et al. (2019) give a comprehensive survey of bias and
fairness in machine learning, cataloging 23 kinds of bias and 10 definitions of fairness.

Trust: Explainable AI was an important topic going back to the early days of expert
systems (Neches et al., 1985), and has been making a resurgence in recent years (Biran and
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Cotton, 2017; Miller et al., 2017; Kim, 2018). Barreno et al. (2010) give a taxonomy of
the types of security attacks that can be made against a machine learning system, and Tygar
(2011) surveys adversarial machine learning. Researchers at IBM have a proposal for gaining
trust in AI systems through declarations of conformity (Hind et al., 2018). DARPA requires
explainable decisions for its battlefield systems, and has issued a call for research in the area
(Gunning, 2016).

AI safety: The book Artificial Intelligence Safety and Security (Yampolskiy, 2018) col-
lects essays on AI safety, both recent and classic, going back to Bill Joy’s Why the Future
Doesn’t Need Us (Joy, 2000). The “King Midas problem” was anticipated by Marvin Minsky,
who once suggested that an AI program designed to solve the Riemann Hypothesis might end
up taking over all the resources of Earth to build more powerful supercomputers. Similarly,
Omohundro (2008) foresees a chess program that hijacks resources, and Bostrom (2014) de-
scribes the runaway paper clip factory that takes over the world. Yudkowsky (2008) goes into
more detail about how to design a Friendly AI. Amodei et al. (2016) present five practical
safety problems for AI systems.

Omohundro (2008) describes the Basic AI Drives and concludes, “Social structures which
cause individuals to bear the cost of their negative externalities would go a long way toward
ensuring a stable and positive future.” Elinor Ostrom’s Governing the Commons (1990) de-
scribes practices for dealing with externalities by traditional cultures. Ostrom has also applied
this approach to the idea of knowledge as a commons (Hess and Ostrom, 2007).

Ray Kurzweil (2005) proclaimed The Singularity is Near, and a decade later Murray
Shanahan (2015) gave an update on the topic. Microsoft cofounder Paul Allen countered
with The Singularity isn’t Near (2011). He didn’t dispute the possibility of ultraintelligent
machines; he just thought it would take more than a century to get there. Rod Brooks is a
frequent critic of singularitarianism; he points out that technologies often take longer than
predicted to mature, that we are prone to magical thinking, and that exponentials don’t last
forever (Brooks, 2017).

On the other hand, for every optimistic singularitarian there is a pessimist who fears
new technology. The Web site pessimists.co shows that this has been true throughout
history: for example, in the 1890s people were concerned that the elevator would inevitably
cause nausea, that the telegraph would lead to loss of privacy and moral corruption, that the
subway would release dangerous underground air and disturb the dead, and that the bicycle—
especially the idea of a woman riding one—was the work of the devil.

Hans Moravec (2000) introduces some of the ideas of transhumanism, and Bostrom
(2005) gives an updated history. Good’s ultraintelligent machine idea was foreseen a hun-
dred years earlier in Samuel Butler’s Darwin Among the Machines (1863). Written four
years after the publication of Charles Darwin’s On the Origins of Species and at a time when
the most sophisticated machines were steam engines, Butler’s article envisioned “the ultimate
development of mechanical consciousness” by natural selection. The theme was reiterated by
George Dyson (1998) in a book of the same title, and was referenced by Alan Turing, who
wrote in 1951 “At some stage therefore we should have to expect the machines to take control
in the way that is mentioned in Samuel Butler’s Erewhon” (Turing, 1996).

Robot rights: A book edited by Yorick Wilks (2010) gives different perspectives on how
we should deal with artificial companions, ranging from Joanna Bryson’s view that robots
should serve us as tools, not as citizens, to Sherry Turkle’s observation that we already per-
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sonify our computers and other tools, and are quite willing to blur the boundaries between
machines and life. Wilks also contributed a recent update on his views (Wilks, 2019). The
philosopher David Gunkel’s book Robot Rights (2018) considers four possibilities: can robots
have rights or not, and should they or not? The American Society for the Prevention of Cru-
elty to Robots (ASPCR) proclaims that “The ASPCR is, and will continue to be, exactly as
serious as robots are sentient.”

The future of work: In 1888, Edward Bellamy published the best-seller Looking Back-
ward, which predicted that by the year 2000, technological advances would led to a utopia
where equality is achieved and people work short hours and retire early. Soon after, E. M.
Forster took the dystopian view in The Machine Stops (1909), in which a benevolent machine
takes over the running of a society; things fall apart when the machine inevitably fails. Nor-
bert Wiener’s prescient book The Human Use of Human Beings (1950) argues for the benefits
of automation in freeing people from drudgery while offering more creative work, but also
discusses several dangers that we recognize as problems today, particularly the problem of
value alignment.

The book Disrupting Unemployment (Nordfors et al., 2018) discuss some of the ways
that work is changing, opening opportunities for new careers. Erik Brynjolfsson and Andrew
McAfee address these themes and more in their books Race Against the Machine (2011) and
The Second Machine Age (2014). Ford (2015) describes the challenges of increasing au-
tomation, and West (2018) provides recommendations to mitigate the problems, while MIT’s
Thomas Malone (2004) shows that many of the same issues were apparent a decade earlier,
but at that time were attributed to worldwide communication networks, not to automation.



CHAPTER 29
THE FUTURE OF AI
In which we try to see a short distance ahead.

In Chapter 2, we decided to view AI as the task of designing approximately rational agents. A
variety of different agent designs were considered, ranging from reflex agents to knowledge-
based decision-theoretic agents to deep learning agents using reinforcement learning. There is
also variety in the component technologies from which these designs are assembled: logical,
probabilistic, or neural reasoning; atomic, factored, or structured representations of states;
various learning algorithms from various types of data; sensors and actuators to interact with
the world. Finally, we have seen a variety of applications, in medicine, finance, transportation,
communication, and other fields. There has been progress on all these fronts, both in our
scientific understanding and in our technological capabilities.

Most experts are optimistic about continued progress; as we saw on page 46, the median
estimate is for approximately human-level AI across a broad variety of tasks somewhere in
the next 50 to 100 years. Within the next decade, AI is predicted to add trillions of dollars to
the economy each year. But as we also saw, there are some critics who think general AI is
centuries off, and there are numerous ethical concerns about the fairness, equity, and lethality
of AI. In this chapter, we ask: where are we headed and what remains to be done? We do
that by asking whether we have the right components, architectures, and goals to make AI a
successful technology that delivers benefits to the world.

29.1 AI Components

This section examines the components of AI systems and the extent to which each of them
might accelerate or hinder future progress.

Sensors and actuators

For much of the history of AI, direct access to the world has been glaringly absent. With a
few notable exceptions, AI systems were built in such a way that humans had to supply the
inputs and interpret the outputs. Meanwhile, robotic systems focused on low-level tasks in
which high-level reasoning and planning were largely ignored and the need for perception
was minimized. This was partly due to the great expense and engineering effort required to
get real robots to work at all, and partly because of the lack of sufficient processing power
and sufficiently effective algorithms to handle high-bandwidth visual input.

The situation has changed rapidly in recent years with the availability of ready-made
programmable robots. These, in turn, have benefited from compact reliable motor drives and
improved sensors. The cost of lidar for a self-driving car has fallen from $75,000 to $1,000,
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and a single-chip version may reach $10 per unit (Poulton and Watts, 2016). Radar sensors,
once capable of only coarse-grained detection, are now sensitive enough to count the number
of sheets in a stack of paper (Yeo et al., 2018).

The demand for better image processing in cellphone cameras has given us inexpensive
high-resolution cameras for use in robotics. MEMS (micro-electromechanical systems) tech-
nology has supplied miniaturized accelerometers, gyroscopes, and actuators small enough to
fit in artificial flying insects (Floreano et al., 2009; Fuller et al., 2014). It may be possible to
combine millions of MEMS devices to produce powerful macroscopic actuators. 3-D printing
(Muth et al., 2014) and bioprinting (Kolesky et al., 2014) have made it easier to experiment
with prototypes.

Thus, we see that AI systems are at the cusp of moving from primarily software-only sys-
tems to useful embedded robotic systems. The state of robotics today is roughly comparable
to the state of personal computers in the early 1980s: at that time personal computers were
becoming available, but it would take another decade before they became commonplace. It is
likely that flexible, intelligent robots will first make strides in industry (where environments
are more controlled, tasks are more repetitive, and the value of an investment is easier to
measure) before the home market (where there is more variability in environment and tasks).

Representing the state of the world

Keeping track of the world requires perception as well as updating of internal representations.
Chapter 4 showed how to keep track of atomic state representations; Chapter 7 described
how to do it for factored (propositional) state representations; Chapter 10 extended this to
first-order logic; and Chapter 14 described probabilistic reasoning over time in uncertain
environments. Chapter 22 introduced recurrent neural networks, which are also capable of
maintaining a state representation over time.

Current filtering and perception algorithms can be combined to do a reasonable job of rec-
ognizing objects (“that’s a cat”) and reporting low-level predicates (“the cup is on the table”).
Recognizing higher-level actions, such as “Dr. Russell is having a cup of tea with Dr. Norvig
while discussing plans for next week,” is more difficult. Currently it can sometimes be done
(see Figure 27.17 on page 1015) given enough training examples, but future progress will
require techniques that generalize to novel situations without requiring exhaustive examples
(Poppe, 2010; Kang and Wildes, 2016).

Another problem is that although the approximate filtering algorithms from Chapter 14
can handle quite large environments, they are still dealing with a factored representation—
they have random variables, but do not represent objects and relations explicitly. Also, their
notion of time is restricted to step-by-step change; given the recent trajectory of a ball, we
can predict where it will be at time t + 1, but it is difficult to represent the abstract idea that
what goes up must come down.

Section 18.1 explained how probability and first-order logic can be combined to solve
these problems; Section 18.2 showed how we can handle uncertainty about the identity of
objects; and Chapter 27 showed how recurrent neural networks enable computer vision to
track the world; but we don’t yet have a good way of putting all these techniques together.
Chapter 25 showed how word embeddings and similar representations can free us from the
strict bounds of concepts defined by necessary and sufficient conditions. It remains a daunting
task to define general, reusable representation schemes for complex domains.
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Selecting actions

The primary difficulty in action selection in the real world is coping with long-term plans—
such as graduating from college in four years—that consist of billions of primitive steps.
Search algorithms that consider sequences of primitive actions scale only to tens or perhaps
hundreds of steps. It is only by imposing hierarchical structure on behavior that we humans
cope at all. We saw in Section 11.4 how to use hierarchical representations to handle problems
of this scale; furthermore, work in hierarchical reinforcement learning has succeeded in
combining these ideas with the MDP formalism described in Chapter 16.

As yet, these methods have not been extended to the partially observable case (POMDPs).
Moreover, algorithms for solving POMDPs are typically using the same atomic state repre-
sentation we used for the search algorithms of Chapter 3. There is clearly a great deal of
work to do here, but the technical foundations are largely in place for making progress. The
main missing element is an effective method for constructing the hierarchical representations
of state and behavior that are necessary for decision making over long time scales.

Deciding what we want

Chapter 3 introduced search algorithms to find a goal state. But goal-based agents are brittle
when the environment is uncertain, and when there are multiple factors to consider. In princi-
ple, utility-maximization agents address those issues in a completely general way. The fields
of economics and game theory, as well as AI, make use of this insight: just declare what you
want to optimize, and what each action does, and we can compute the optimal action.

In practice, however, we now realize that the task of picking the right utility function is a
challenging problem in its own right. Imagine, for example, the complex web of interacting
preferences that must be understood by an agent operating as an office assistant for a human
being. The problem is exacerbated by the fact that each human is different, so an agent just
“out of the box” will not have enough experience with any one individual to learn an accurate
preference model; it will necessarily need to operate under preference uncertainty. Further
complexity arises if we want to ensure that our agents are acting in a way that is fair and
equitable for society, rather than just one individual.

We do not yet have much experience with building complex real-world preference mod-
els, let alone probability distributions over such models. Although there are factored for-
malisms, similar to Bayes nets, that are intended to decompose preferences over complex
states, it has proven difficult to use these formalisms in practice. One reason may be that
preferences over states are really compiled from preferences over state histories, which are
described by reward functions (see Chapter 16). Even if the reward function is simple, the
corresponding utility function may be very complex.

This suggests that we take seriously the task of knowledge engineering for reward func-
tions as a way of conveying to our agents what we want them to do. The idea of inverse
reinforcement learning (Section 23.6) is one approach to this problem when we have an
expert who can perform a task, but not explain it. We could also use better languages for
expressing what we want. For example, in robotics, linear temporal logic makes it easier to
say what things we want to happen in the near future, what things we want to avoid, and what
states we want to persist forever (Littman et al., 2017). We need better ways of saying what
we want and better ways for robots to interpret the information we provide.
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The computer industry as a whole has developed a powerful ecosystem for aggregating
user preferences. When you click on something in an app, online game, social network, or
shopping site, that serves as a recommendation that you (and your similar peers) would like
to see similar things in the future. (Or it might be that the site is confusing and you clicked
on the wrong thing—the data are always noisy.) The feedback inherent in this system makes
it very effective in the short run for picking out ever more addictive games and videos.

But these systems often fail to provide an easy way of opting out—your device will auto-
play a relevant video, but it is less likely to tell you “maybe it is time to put away your devices
and take a relaxing walk in nature.” A shopping site will help you find clothes that match your
style, but will not address world peace or ending hunger and poverty. To the extent that the
menu of choices is driven by companies trying to profit from a customer’s attention, the menu
will remain incomplete.

However, companies do respond to customers’ interests, and many customers have voiced
the opinion that they are interested in a fair and sustainable world. Tim O’Reilly explains why
profit is not the only motive with the following analogy: “Money is like gasoline during a road
trip. You don’t want to run out of gas on your trip, but you’re not doing a tour of gas stations.
You have to pay attention to money, but it shouldn’t be about the money.”

Tristan Harris’s time well spent movement at the Center for Humane Technology is aTime well spent

step towards giving us more well-rounded choices (Harris, 2016). The movement addresses
an issue that was recognized by Herbert Simon in 1971: “A wealth of information creates a
poverty of attention.” Perhaps in the future we will have personal agents that stick up forPersonal agent

our true long-term interests rather than the interests of the corporations whose apps currently
fill our devices. It will be the agent’s job to mediate the offerings of various vendors, protect
us from addictive attention-grabbers, and guide us towards the goals that really matter to us.

Learning

Chapters 19, 21, 22, and 23 described how agents can learn. Current algorithms can cope
with quite large problems, reaching or exceeding human capabilities in many tasks—as long
as we have sufficient training examples and we are dealing with a predefined vocabulary of
features and concepts. But learning can stall when data are sparse, or unsupervised, or when
we are dealing with complex representations.

Much of the recent resurgence of AI in the popular press and in industry is due to the
success of deep learning (Chapter 22). On the one hand, this can be seen as the incremental
maturation of the subfield of neural networks. On the other hand, we can see it as a rev-
olutionary leap in capabilities spurred by a confluence of factors: the availability of more
training data thanks to the Internet, increased processing power from specialized hardware,
and a few algorithmic tricks, such as generative adversarial networks (GANs), batch normal-
ization, dropout, and the rectified linear (ReLU) activation function.

The future should see continued emphasis on improving deep learning for the tasks it
excels at, and also extending it to cover other tasks. The brand name “deep learning” has
proven to be so popular that we should expect its use to continue, even if the mix of techniques
that fuel it changes considerably.

We have seen the emergence of the field of data science as the confluence of statistics,
programming, and domain expertise. While we can expect to see continued development in
the tools and techniques necessary to acquire, manage, and maintain big data, we will also
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need advances in transfer learning so that we can take advantage of data in one domain to
improve performance on a related domain.

The vast majority of machine learning research today assumes a factored representation,
learning a function h : Rn→R for regression and h : Rn→{0,1} for classification. Machine
learning has been less successful for problems that have only a small amount of data, or
problems that require the construction of new structured, hierarchical representations. Deep
learning, especially with convolutional networks applied to computer vision problems, has
demonstrated some success in going from low-level pixels to intermediate-level concepts like
Eye and Mouth, then to Face, and finally to Person or Cat.

A challenge for the future is to more smoothly combine learning and prior knowledge.
If we give a computer a problem it has not encountered before—say, recognizing different
models of cars—we don’t want the system to be powerless until it has been fed millions of
labeled examples.

The ideal system should be able to draw on what it already knows: it should already have
a model of how vision works, and how the design and branding of products in general work;
now it should use transfer learning to apply that to the new problem of car models. It should
be able to find on its own information about car models, drawing from text, images, and
video available on the Internet. It should be capable of apprenticeship learning: having a
conversation with a teacher, and not just asking “may I have a thousand images of a Corolla,”
but rather being able to understand advice like “the Insight is similar to the Prius, but the
Insight has a larger grille.” It should know that each model comes in a small range of possible
colors, but that a car can be repainted, so there is a chance that it might see a car in a color
that was not in the training set. (If it didn’t know that, it should be capable of learning it, or
being told about it.)

All this requires a communication and representation language that humans and comput-
ers can share; we can’t expect a human analyst to directly modify a model with millions of
weights. Probabilistic models (including probabilistic programming languages) give humans
some ability to describe what we know, but these models are not yet well integrated with
other learning mechanisms.

The work of Bengio and LeCun (2007) is one step towards this integration. Recently
Yann LeCun has suggested that the term “deep learning” should be replaced with the more
general differentiable programming (Siskind and Pearlmutter, 2016; Li et al., 2018); this Differentiable

programming

suggests that our general programming languages and our machine learning models could be
merged together.

Right now, it is common to build a deep learning model that is differentiable, and thus can
be trained to minimize loss, and retrained when circumstances change. But that deep learning
model is only one part of a larger software system that takes in data, massages the data, feeds
it to the model, and figures out what to do with the model’s output. All these other parts of the
larger system were written by hand by a programmer, and thus are nondifferentiable, which
means that when circumstances change, it is up to the programmer to recognize any problems
and fix them by hand. With differentiable programming, the hope is that the entire system is
subject to automated optimization.

The end goal is to be able to express what we know in whatever form is convenient to us:
informal advice given in natural language, a strong mathematical law like F =ma, a statistical
model accompanied by data, or a probabilistic program with unknown parameters that can
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be automatically optimized through gradient descent. Our computer models will learn from
conversations with human experts as well as by using all the available data.

Yann LeCun, Geoffrey Hinton, and others have suggested that the current emphasis on
supervised learning (and to a lesser extent reinforcement learning) is not sustainable—that
computer models will have to rely on weakly supervised learning, in which some supervi-
sion is given with a small number of labeled examples and/or a small number of rewards, but
most of the learning is unsupervised, because unannotated data are so much more plentiful.

LeCun uses the term predictive learning for an unsupervised learning system that canPredictive learning

model the world and learn to predict aspects of future states of the world—not just predict
labels for inputs that are independent and identically distributed with respect to past data, and
not just predict a value function over states. He suggests that GANs (generative adversarial
networks) can be used to learn to minimize the difference between predictions and reality.

Geoffrey Hinton stated in 2017 that “My view is throw it all away and start again,” mean-
ing that the overall idea of learning by adjusting parameters in a network is enduring, but the
specifics of the architecture of the networks and the technique of back-propagation need to be
rethought. Smolensky (1988) had a prescription for how to think about connectionist models;
his thoughts remain relevant today.

Resources

Machine learning research and development has been accelerated by the increasing availabil-
ity of data, storage, processing power, software, trained experts, and the investments needed to
support them. Since the 1970s, there has been a 100,000-fold speedup in general-purpose pro-
cessors and an additional 1,000-fold speedup due to specialized machine learning hardware.
The Web has served as a rich source of images, videos, speech, text, and semi-structured data,
currently adding over 1018 bytes every day.

Hundreds of high-quality data sets are available for a range of tasks in computer vision,
speech recognition, and natural language processing. If the data you need is not already
available, you can often assemble it from other sources, or engage humans to label data for
you through a crowdsourcing platform. Validating the data obtained in this way becomes an
important part of the overall workflow (Hirth et al., 2013).

An important recent development is the shift from shared data to shared models. TheShared model

major cloud service providers (e.g., Amazon, Microsoft, Google, Alibaba, IBM, Salesforce)
have begun competing to offer machine learning APIs with pre-built models for specific tasks
such as visual object recognition, speech recognition, and machine translation. These models
can be used as is, or can serve as a baseline to be customized with your particular data for
your particular application.

We expect that these models will improve over time, and that it will become unusual to
start a machine learning project from scratch, just as it is now unusual to do a Web develop-
ment project from scratch, with no libraries. It is possible that a big jump in model quality
will occur when it becomes economical to process all the video on the Web; for example, the
YouTube platform alone adds 300 hours of video every minute.

Moore’s law has made it more cost effective to process data; a megabyte of storage cost $1
million in 1969 and less then $0.02 in 2019, and supercomputer throughput has increased by a
factor of more than 1010 in that time. Specialized hardware components for machine learning
such as graphics processing units (GPUs), tensor cores, tensor processing units (TPUs), and
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field programmable gate arrays (FPGAs) are hundreds of times faster than conventional CPUs
for machine learning training (Vasilache et al., 2014; Jouppi et al., 2017). In 2014 it took a
full day to train an ImageNet model; in 2018 it takes just 2 minutes (Ying et al., 2018).

The OpenAI Institute reports that the amount of compute power used to train the largest
machine learning models doubled every 3.5 months from 2012 to 2018, reaching over an
exaflop/second-day for ALPHAZERO (although they also report that some very influential
work used 100 million times less computing power (Amodei and Hernandez, 2018)). The
same economic trends that have made cell-phone cameras cheaper and better also apply to
processors—we will see continued progress in low-power, high-performance computing that
benefits from economies of scale.

There is a possibility that quantum computers could accelerate AI. Currently there are
some fast quantum algorithms for the linear algebra operations used in machine learning
(Harrow et al., 2009; Dervovic et al., 2018), but no quantum computer capable of running
them. We have some example applications of tasks such as image classification (Mott et al.,
2017) where quantum algorithms are as good as classical algorithms on small problems.

Current quantum computers handle only a few tens of bits, whereas machine learning
algorithms often handle inputs with millions of bits and create models with hundreds of mil-
lions of parameters. So we need breakthroughs in both quantum hardware and software to
make quantum computing practical for large-scale machine learning. Alternatively, there may
be a division of labor—perhaps a quantum algorithm to efficiently search the space of hyper-
parameters while the normal training process runs on conventional computers—but we don’t
know how to do that yet. Research on quantum algorithms can sometimes inspire new and
better algorithms on classical computers (Tang, 2018).

We have also seen exponential growth in the number of publications, people, and dollars
in AI/machine learning/data science. Dean et al. (2018) show that the number of papers
about “machine learning” on arXiv doubled every two years from 2009 to 2017. Investors are
funding startup companies in these fields, large companies are hiring and spending as they
determine their AI strategy, and governments are investing to make sure their country doesn’t
fall too far behind.

29.2 AI Architectures

It is natural to ask, “Which of the agent architectures in Chapter 2 should an agent use?” The
answer is, “All of them!” Reflex responses are needed for situations in which time is of the
essence, whereas knowledge-based deliberation allows the agent to plan ahead. Learning is
convenient when we have lots of data, and necessary when the environment is changing, or
when human designers have insufficient knowledge of the domain.

AI has long had a split between symbolic systems (based on logical and probabilistic
inference) and connectionist systems (based on loss minimization over a large number of
uninterpreted parameters). A continuing challenge for AI is to bring these two together,
to capture the best of both. Symbolic systems allow us to string together long chains of
reasoning and to take advantage of the expressive power of structured representations, while
connectionist systems can recognize patterns even in the face of noisy data. One line of
research aims to combine probabilistic programming with deep learning, although as yet the
various proposals are limited in the extent to which the approaches are truly merged.
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Agents also need ways to control their own deliberations. They must be able to use the
available time well, and cease deliberating when action is demanded. For example, a taxi-
driving agent that sees an accident ahead must decide in a split second whether to brake or
swerve. It should also spend that split second thinking about the most important questions,
such as whether the lanes to the left and right are clear and whether there is a large truck close
behind, rather than worrying about where to pick up the next passenger. These issues are
usually studied under the heading of real-time AI. As AI systems move into more complexReal-time AI

domains, all problems will become real-time, because the agent will never have long enough
to solve the decision problem exactly.

Clearly, there is a pressing need for general methods of controlling deliberation, rather
than specific recipes for what to think about in each situation. The first useful idea is the
anytime algorithms (Dean and Boddy, 1988; Horvitz, 1987): an algorithm whose outputAnytime algorithm

quality improves gradually over time, so that it has a reasonable decision ready whenever it is
interrupted. Examples of anytime algorithms include iterative deepening in game-tree search
and MCMC in Bayesian networks.

The second technique for controlling deliberation is decision-theoretic metareasoningDecision-theoretic
metareasoning

(Russell and Wefald, 1989; Horvitz and Breese, 1996; Hay et al., 2012). This method, which
was mentioned briefly in Sections 3.6.5 and 6.7, applies the theory of information value
(Chapter 15) to the selection of individual computations (Section 3.6.5). The value of a
computation depends on both its cost (in terms of delaying action) and its benefits (in terms
of improved decision quality).

Metareasoning techniques can be used to design better search algorithms and to guarantee
that the algorithms have the anytime property. Monte Carlo tree search is one example: the
choice of leaf node at which to begin the next playout is made by an approximately rational
metalevel decision derived from bandit theory.

Metareasoning is more expensive than reflex action, of course, but compilation methods
can be applied so that the overhead is small compared to the costs of the computations being
controlled. Metalevel reinforcement learning may provide another way to acquire effective
policies for controlling deliberation: in essence, computations that lead to better decisions are
reinforced, while those that turn out to have no effect are penalized. This approach avoids the
myopia problems of the simple value-of-information calculation.

Metareasoning is one specific example of a reflective architecture—that is, an architec-Reflective
architecture

ture that enables deliberation about the computational entities and actions occurring within
the architecture itself. A theoretical foundation for reflective architectures can be built by
defining a joint state space composed from the environment state and the computational state
of the agent itself. Decision-making and learning algorithms can be designed that operate
over this joint state space and thereby serve to implement and improve the agent’s compu-
tational activities. Eventually, we expect task-specific algorithms such as alpha–beta search,
regression planning, and variable elimination to disappear from AI systems, to be replaced
by general methods that direct the agent’s computations toward the efficient generation of
high-quality decisions.

Metareasoning and reflection (and many other efficiency-related architectural and algo-
rithmic devices explored in this book) are necessary because making decisions is hard. Ever
since computers were invented, their blinding speed has led people to overestimate their abil-
ity to overcome complexity, or, equivalently, to underestimate what complexity really means.
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The truly gargantuan power of today’s machines tempts one to think that we could bypass
all the clever devices and rely more on brute force. So let’s try to counteract this tendency.
We begin with what physicists believe to be the speed of the ultimate 1kg computing device:
about 1051 operations per second, or a billion trillion trillion times faster than the fastest su-
percomputer as of 2020 (Lloyd, 2000).1 Then we propose a simple task: enumerating strings
of English words, much as Borges proposed in The Library of Babel. Borges stipulated books
of 410 pages. Would that be feasible? Not quite. In fact, the computer running for a year
could enumerate only the 11-word strings.

Now consider the fact that a detailed plan for a human life consists of (very roughly)
twenty trillion potential muscle actuations (Russell, 2019), and you begin to see the scale
of the problem. A computer that is a billion trillion trillion times more powerful than the
human brain is much further from being rational than a slug is from overtaking the starship
Enterprise traveling at warp nine.

With these considerations in mind, it seems that the goal of building rational agents is
perhaps a little too ambitious. Rather than aiming for something that cannot possibly exist,
we should consider a different normative target—one that necessarily exists. Recall from
Chapter 2 the following simple idea:

agent = architecture+program .

Now fix the agent architecture (the underlying machine capabilities, perhaps with a fixed soft-
ware layer on top) and allow the agent program to vary over all possible programs that the
architecture can support. In any given task environment, one of these programs (or an equiv-
alence class of them) delivers the best possible performance—perhaps not close to perfect
rationality, but still better than any other agent program. We say that this program satisfies
the criterion of bounded optimality. Clearly it exists, and clearly it constitutes a desirable Bounded optimality

goal. The trick is finding it, or something close to it.
For some elementary classes of agent programs in simple real-time environments, it is

possible to identify bounded-optimal agent programs (Etzioni, 1989; Russell and Subrama-
nian, 1995). The success of Monte Carlo tree search has revived interest in metalevel decision
making, and there is reason to hope that bounded optimality within more complex families of
agent programs can be achieved by techniques such as metalevel reinforcement learning. It
should also be possible to develop a constructive theory of architecture, beginning with theo-
rems on the bounded optimality of suitable methods of combining different bounded-optimal
components such as reflex and action–value systems.

General AI

Much of the progress in AI in the 21st century so far has been guided by competition on nar-
row tasks, such as the DARPA Grand Challenge for autonomous cars, the ImageNet object
recognition competition, or playing Go, chess, poker, or Jeopardy! against a world cham-
pion. For each separate task, we build a separate AI system, usually with a separate machine
learning model trained from scratch with data collected specifically for this task. But a truly
intelligent agent should be able to do more than one thing. Alan Turing (1950) proposed his
list (page 1033) and science fiction author Robert Heinlein (1973) countered with:

1 We gloss over the fact that this device consumes the entire energy output of a star and operates at a billion
degrees centigrade.
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A human being should be able to change a diaper, plan an invasion, butcher a hog,
conn a ship, design a building, write a sonnet, balance accounts, build a wall, set
a bone, comfort the dying, take orders, give orders, cooperate, act alone, solve
equations, analyse a new problem, pitch manure, program a computer, cook a
tasty meal, fight efficiently, die gallantly. Specialization is for insects.

So far, no AI system measures up to either of these lists, and some proponents of general or
human-level AI (HLAI) insist that continued work on specific tasks (or on individual com-
ponents) will not be enough to reach mastery on a wide variety of tasks; that we will need a
fundamentally new approach. It seems to us that numerous new breakthroughs will indeed be
necessary, but overall, AI as a field has made a reasonable exploration/exploitation tradeoff,
assembling a portfolio of components, improving on particular tasks, while also exploring
promising and sometimes far-out new ideas.

It would have been a mistake to tell the Wright brothers in 1903 to stop work on their
single-task airplane and design an “artificial general flight” machine that can take off verti-
cally, fly faster than sound, carry hundreds of passengers, and land on the moon. It also would
have been a mistake to follow up their first flight with an annual competition to make spruce
wood biplanes incrementally better.

We have seen that work on components can spur new ideas; for example, generative
adversarial networks (GANs) and transformer language models each opened up new areas of
research. We have also seen steps towards “diversity of behaviour.” For example, machine
translation systems in the 1990s were built one at a time for each language pair (such as
French to English), but today a single system can identifying the input text as being one of a
hundred languages, and translate it into any of 100 target languages. Another natural language
system can perform five distinct tasks with one joint model (Hashimoto et al., 2016).

AI engineering

The field of computer programming started with a few extraordinary pioneers. But it didn’t
reach the status of a major industry until a practice of software engineering was developed,
with a powerful collection of widely available tools, and a thriving ecosystem of teachers,
students, practitioners, entrepreneurs, investors, and customers.

The AI industry has not yet reached that level of maturity. We do have a variety of pow-
erful tools and frameworks, such as TensorFlow, Keras, PyTorch, CAFFE, Scikit-Learn and
SCIPY. But many of the most promising approaches, such as GANs and deep reinforcement
learning, have proven to be difficult to work with—they require experience and a degree of
fiddling to get them to train properly in a new domain. We don’t have enough experts to do
this across all the domains where we need it, and we don’t yet have the tools and ecosystem
to let less-expert practitioners succeed.

Google’s Jeff Dean sees a future where we will want machine learning to handle millions
of tasks; it won’t be feasible to develop each of them from scratch, so he suggests that rather
than building each new system from scratch, we should start with a single huge system and,
for each new task, extract from it the parts that are relevant to the task. We have seen some
steps in this direction, such as the transformer language models (e.g., BERT, GPT-2) with
billions of parameters, and an “outrageously large” ensemble neural network architecture
that scales up to 68 billion parameters in one experiment (Shazeer et al., 2017). Much work
remains to be done.
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The future

Which way will the future go? Science fiction authors seem to favor dystopian futures over
utopian ones, probably because they make for more interesting plots. So far, AI seems to fit
in with other powerful revolutionary technologies such as printing, plumbing, air travel, and
telephony. All these technologies have made positive impacts, but also have some unintended
side effects that disproportionately impact disadvantaged classes. We would do well to invest
in minimizing the negative impacts.

AI is also different from previous revolutionary technologies. Improving printing, plumb-
ing, air travel, and telephony to their logical limits would not produce anything to threaten
human supremacy in the world. Improving AI to its logical limit certainly could.

In conclusion, AI has made great progress in its short history, but the final sentence of
Alan Turing’s (1950) essay on Computing Machinery and Intelligence is still valid today:

We can see only a short distance ahead,
but we can see that much remains to be done.



APPENDIX A
MATHEMATICAL BACKGROUND
A.1 Complexity Analysis and O() Notation

Computer scientists are often faced with the task of comparing algorithms to see how fast
they run or how much memory they require. There are two approaches to this task. The first
is benchmarking—running the algorithms on a computer and measuring speed in secondsBenchmarking

and memory consumption in bytes. Ultimately, this is what really matters, but a benchmark
can be unsatisfactory because it is so specific: it measures the performance of a particular
program written in a particular language, running on a particular computer, with a particular
compiler and particular input data. From the single result that the benchmark provides, it can
be difficult to predict how well the algorithm would do on a different compiler, computer, or
data set. The second approach relies on a mathematical analysis of algorithms, independentAnalysis of

algorithms

of the particular implementation and input, as discussed below.

A.1.1 Asymptotic analysis

We will consider algorithm analysis through the following example, a program to compute
the sum of a sequence of numbers:

function SUMMATION(sequence) returns a number
sum←0
for i = 1 to LENGTH(sequence) do

sum←sum + sequence[i]
return sum

The first step in the analysis is to abstract over the input, in order to find some parameter or
parameters that characterize the size of the input. In this example, the input can be charac-
terized by the length of the sequence, which we will call n. The second step is to abstract
over the implementation, to find some measure that reflects the running time of the algorithm
but is not tied to a particular compiler or computer. For the SUMMATION program, this could
be just the number of lines of code executed, or it could be more detailed, measuring the
number of additions, assignments, array references, and branches executed by the algorithm.
Either way gives us a characterization of the total number of steps taken by the algorithm as
a function of the size of the input. We will call this characterization T (n). If we count lines
of code, we have T (n)=2n+2 for our example.

If all programs were as simple as SUMMATION, the analysis of algorithms would be a
trivial field. But two problems make it more complicated. First, it is rare to find a parameter
like n that completely characterizes the number of steps taken by an algorithm. Instead,
the best we can usually do is compute the worst case Tworst(n) or the average case Tavg(n).
Computing an average means that the analyst must assume some distribution of inputs.
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The second problem is that algorithms tend to resist exact analysis. In that case, it is
necessary to fall back on an approximation. We say that the SUMMATION algorithm is O(n),
meaning that its measure is at most a constant times n, with the possible exception of a few
small values of n. More formally,

T (n) is O( f (n)) if T (n)≤ k f (n) for some k, for all n> n0 .

The O() notation gives us what is called an asymptotic analysis. We can say without ques- Asymptotic analysis

tion that, as n asymptotically approaches infinity, an O(n) algorithm is better than an O(n2)
algorithm. A single benchmark figure could not substantiate such a claim.

The O() notation abstracts over constant factors, which makes it easier to use, but less
precise, than the T () notation. For example, an O(n2) algorithm will always be worse than
an O(n) in the long run, but if the two algorithms are T (n2+1) and T (100n+1000), then the
O(n2) algorithm is actually better for n< 110.

Despite this drawback, asymptotic analysis is the most widely used tool for analyzing
algorithms. It is precisely because the analysis abstracts over both the exact number of oper-
ations (by ignoring the constant factor k) and the exact content of the input (by considering
only its size n) that the analysis becomes mathematically feasible. The O() notation is a good
compromise between precision and ease of analysis.

A.1.2 NP and inherently hard problems

The analysis of algorithms and the O() notation allow us to talk about the efficiency of a
particular algorithm. However, they have nothing to say about whether there could be a better
algorithm for the problem at hand. The field of complexity analysis analyzes problems rather Complexity analysis

than algorithms. The first gross division is between problems that can be solved in polynomial
time and problems that cannot be solved in polynomial time, no matter what algorithm is
used. The class of polynomial problems—those which can be solved in time O(nk) for some
k—is called P. These are sometimes called “easy” problems, because the class contains those P

problems with running times like O(logn) and O(n). But it also contains those with time
O(n1000), so the name “easy” should not be taken too literally.

Another important class of problems is NP, the class of nondeterministic polynomial NP

problems. A problem is in this class if there is some algorithm that can guess a solution and
then verify whether a guess is correct in polynomial time. The idea is that if you have an
arbitrarily large number of processors so that you can try all the guesses at once, or if you are
very lucky and always guess right the first time, then the NP problems become P problems.
One of the biggest open questions in computer science is whether the class NP is equivalent
to the class P when one does not have the luxury of an infinite number of processors or
omniscient guessing. Most computer scientists are convinced that P 6= NP; that NP problems
are inherently hard and have no polynomial-time algorithms. But this has never been proven.

Those who are interested in deciding whether P = NP look at a subclass of NP called the
NP-complete problems. The word “complete” is used here in the sense of “most extreme” NP-complete

and thus refers to the hardest problems in the class NP. It has been proven that either all
the NP-complete problems are in P or none of them is. This makes the class theoretically
interesting, but the class is also of practical interest because many important problems are
known to be NP-complete. An example is the satisfiability problem: given a sentence of
propositional logic, is there an assignment of truth values to the proposition symbols of the
sentence that makes it true? Unless a miracle occurs and P = NP, there can be no algorithm
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that solves all satisfiability problems in polynomial time. However, AI is more interested in
whether there are algorithms that perform efficiently on typical problems drawn from a pre-
determined distribution; as we saw in Chapter 7, there are algorithms such as WALKSAT that
do quite well on many problems.

The class of NP-hard problems consists of those problems that are reducible (in poly-NP-hard

nomial time) to all the problems in NP, so if you solved any NP-hard problem, you could
solve all the problems in NP. The NP-complete problems are all NP-hard, but there are some
NP-hard problems that are even harder than NP-complete.

The class co-NP is the complement of NP, in the sense that, for every decision problemCo-NP

in NP, there is a corresponding problem in co-NP with the “yes” and “no” answers reversed.
We know that P is a subset of both NP and co-NP, and it is believed that there are problems
in co-NP that are not in P. The co-NP-complete problems are the hardest problems in co-NP.Co-NP-complete

The class #P (pronounced “number P” according to Garey and Johnson (1979), but often
pronounced “sharp P”) is the set of counting problems corresponding to the decision problems
in NP. Decision problems have a yes-or-no answer: is there a solution to this 3-SAT formula?
Counting problems have an integer answer: how many solutions are there to this 3-SAT
formula? In some cases, the counting problem is much harder than the decision problem.
For example, deciding whether a bipartite graph has a perfect matching can be done in time
O(V E) (where the graph has V vertices and E edges), but the counting problem “how many
perfect matches does this bipartite graph have” is #P-complete, meaning that it is hard as any
problem in #P and thus at least as hard as any NP problem.

Another class is the class of PSPACE problems—those that require a polynomial amount
of space, even on a nondeterministic machine. It is believed that PSPACE-hard problems are
worse than NP-complete problems, although it could turn out that NP = PSPACE, just as it
could turn out that P = NP.

A.2 Vectors, Matrices, and Linear Algebra

Mathematicians define a vector as a member of a vector space, but we will use a more con-Vector

crete definition: a vector is an ordered sequence of values. For example, in two-dimensional
space, we have vectors such as x=〈3,4〉 and y=〈0,2〉. We follow the convention of boldface
characters for vector names, although some authors use arrows or bars over the names: ~x or
ȳ. The elements of a vector can be accessed using subscripts: z=〈z1,z2, . . . ,zn〉. One con-
fusing point: this book is synthesizing work from many subfields, which variously call their
sequences vectors, lists, or tuples, and variously use the notations 〈1,2〉, [1, 2], or (1, 2).

The two fundamental operations on vectors are vector addition and scalar multiplication.
The vector addition x + y is the elementwise sum: x + y=〈3 + 0,4 + 2〉=〈3,6〉. Scalar
multiplication multiplies each element by a constant: 5x=〈5×3,5×4〉=〈15,20〉.

The length of a vector is denoted |x| and is computed by taking the square root of the
sum of the squares of the elements: |x|=

√
(32 +42)=5. The dot product x · y (also called

scalar product) of two vectors is the sum of the products of corresponding elements, that is,
x ·y= ∑i xiyi, or in our particular case, x ·y=3×0+4×2=8.

Vectors are often interpreted as directed line segments (arrows) in an n-dimensional Eu-
clidean space. Vector addition is then equivalent to placing the tail of one vector at the head
of the other, and the dot product x ·y is |x| |y| cosθ, where θ is the angle between x and y.
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A matrix is a rectangular array of values arranged into rows and columns. Here is a Matrix

matrix A of size 3×4: A1,1 A1,2 A1,3 A1,4
A2,1 A2,2 A2,3 A2,4
A3,1 A3,2 A3,3 A3,4


The first index of Ai, j specifies the row and the second the column. In programming lan-
guages, Ai, j is often written A[i,j] or A[i][j].

The sum of two matrices is defined by adding their corresponding elements; for example
(A+B)i, j =Ai, j +Bi, j. (The sum is undefined if A and B have different sizes.) We can also
define the multiplication of a matrix by a scalar: (cA)i, j =cAi, j. Matrix multiplication (the
product of two matrices) is more complicated. The product AB is defined only if A is of size
a×b and B is of size b× c (i.e., the second matrix has the same number of rows as the first
has columns); the result is a matrix of size a× c. If the matrices are of appropriate size, then
the result is

(AB)i,k= ∑
j

Ai, jB j,k .

Matrix multiplication is not commutative, even for square matrices: AB 6= BA in general. It
is, however, associative: (AB)C = A(BC). Note that the dot product can be expressed in
terms of a transpose and a matrix multiplication: x ·y = x>y.

The identity matrix I has elements Ii, j equal to 1 when i= j and equal to 0 otherwise. It Identity matrix

has the property that AI=A for all A. The transpose of A, written A> is formed by turning Transpose

rows into columns and vice versa, or, more formally, by A>i, j =A j,i. The inverse of a square Inverse

matrix A is another square matrix A−1 such that A−1A=I. For a singular matrix, the inverse Singular

does not exist. For a nonsingular matrix, it can be computed in O(n3) time.
Matrices are used to solve systems of linear equations in O(n3) time; the time is domi-

nated by inverting a matrix of coefficients. Consider the following set of equations, for which
we want a solution in x, y, and z:

+2x+ y− z = 8

−3x− y+2z = −11

−2x+ y+2z = −3 .

We can represent this system as the matrix equation Ax = b, where

A =

 2 1 −1
−3 −1 2
−2 1 2

 , x =

 x
y
z

 , b =

 8
−11
−3

 .

To solve Ax = b we multiply both sides by A−1, yielding A−1Ax = A−1b, which simplifies
to x = A−1b. After inverting A and multiplying by b, we get the answer

x =

 x
y
z

=

 2
3
−1

 .

A few more miscellaneous points: we use log(x) for the natural logarithm, loge(x). We
use argmaxx f (x) for the value of x for which f (x) is maximal.
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A.3 Probability Distributions

A probability is a measure over a set of events that satisfies three axioms:

1. The measure of each event is between 0 and 1. We write this as 0 ≤ P(X =xi) ≤ 1,
where X is a random variable representing an event and xi are the possible values of
X . In general, random variables are denoted by uppercase letters and their values by
lowercase letters.

2. The measure of the whole set is 1; that is, ∑
n
i=1 P(X =xi)=1.

3. The probability of a union of disjoint events is the sum of the probabilities of the indi-
vidual events; that is, P(X =x1∨X =x2)=P(X =x1)+P(X =x2), in the case where x1
and x2 are disjoint.

A probabilistic model consists of a sample space of mutually exclusive possible outcomes,
together with a probability measure for each outcome. For example, in a model of the
weather tomorrow, the outcomes might be sun, cloud, rain, and snow. A subset of these
outcomes constitutes an event. For example, the event of precipitation is the subset consist-
ing of {rain, snow}.

We use P(X) to denote the vector of values 〈P(X =x1), . . . ,P(X =xn)〉. We also use P(xi)
as an abbreviation for P(X =xi) and ∑x P(x) for ∑

n
i=1 P(X =xi).

The conditional probability P(B |A) is defined as P(B∩A)/P(A). A and B are condition-
ally independent if P(B |A)=P(B) (or equivalently, P(A |B)=P(A)).

For continuous variables, there are an infinite number of values, and unless there are
point spikes, the probability of any one exact value is 0. So it makes more sense to talk
about the value being within a range. We do that with a probability density function, whichProbability density

function
has a slightly different meaning from the discrete probability function. Since P(X =x)—the
probability that X has the value x exactly—is zero, we instead measure how likely it is that X
falls into an interval around x, compared to the width of the interval, and take the limit as the
interval width goes to zero:

P(x)= lim
dx→0

P(x≤ X ≤ x+dx)/dx .

The density function must be nonnegative for all x and must have∫
∞

−∞

P(x)dx=1 .

We can also define the cumulative distribution FX(x), which is the probability of a randomCumulative
distribution

variable being less than x:

FX(x) = P(X ≤ x) =
∫ x

−∞

P(u)du .

Note that the probability density function has units, whereas the discrete probability function
is unitless. For example, if values of X are measured in seconds, then the density is measured
in Hz (i.e., 1/sec). If values of X are points in three-dimensional space measured in meters,
then density is measured in 1/m3.

One of the most important probability distributions is the Gaussian distribution, alsoGaussian distribution

known as the normal distribution. We use the notation N (x;µ,σ2) for the normal distribu-
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tion that is a function of x with mean µ and standard deviation σ (and therefore variance σ2).
It is defined as

N (x;µ,σ2)=
1

σ
√

2π
e−(x−µ)

2/(2σ2) ,

where x is a continuous variable ranging from −∞ to +∞. With mean µ=0 and variance
σ2=1, we get the special case of the standard normal distribution. For a distribution over Standard normal

distribution
a vector x in n dimensions, there is the multivariate Gaussian distribution: Multivariate

Gaussian

N (x;µ,Σ)=
1√

(2π)n|Σ|
e−

1
2

(
(x−µ)>Σ

−1
(x−µ)

)
,

where µ is the mean vector and Σ is the covariance matrix (see below). The cumulative
distribution for a univariate normal distribution is given by

F(x)=
x∫

−∞

N (z;µ,σ2)dz=
1
2
(1+ erf(

x−µ
σ
√

2
)) ,

where erf(x) is the so-called error function, which has no closed-form representation.
The central limit theorem states that the distribution formed by sampling n independent Central limit

theorem
random variables and taking their mean tends to a normal distribution as n tends to infin-
ity. This holds for almost any collection of random variables, even if they are not strictly
independent, unless the variance of any finite subset of variables dominates the others.

The expectation of a random variable, E(X), is the mean or average value, weighted by Expectation

the probability of each value. For a discrete variable it is:

E(X)= ∑
i

xi P(X =xi) .

For a continuous variable, replace the summation with an integral and use the probability
density function, P(x):

E(X)=

∞∫
−∞

xP(x)dx .

For any function f , we also have

E( f (X))=

∞∫
−∞

f (x)P(x)dx .

Finally, when necessary, one may specify the distribution for the random variable as a sub-
script to the expectation operator:

EX∼Q(x)(g(X))=

∞∫
−∞

g(x)Q(x)dx .

Besides the expectation, other important statistical properties of a distribution include the
variance, which is the expected value of the square of the difference from the mean, µ, of the Variance

distribution:

Var(X)=E((X−µ)2)

and the standard deviation, which is the square root of the variance. Standard deviation
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The root mean square (RMS) of a set of values (often samples of a random variable) is
the square root of the mean of the squares of the values,

RMS(x1, . . . ,xn) =

√
x2

1 + . . .+ x2
n

n
.

The covariance of two random variables is the expectation of the product of their differencesCovariance

from their means:

cov(X ,Y ) = E((X−µX)(Y −µY )) .

The covariance matrix, often denoted Σ, is a matrix of covariances between elements of aCovariance matrix

vector of random variables. Given X = 〈X1, . . .Xn〉>, the entries of the covariance matrix are
as follows:

Σi, j = cov(Xi,X j) = E((Xi−µi)(X j−µ j)) .

We say we sample from a probability distribution, when we pick a value at random. WeSampling

don’t know what any one pick will bring, but in the limit a large collection of samples will
approach the same probability density function as the distribution it is sampled from. The
uniform distribution is one where every element is equally (uniformly) probable. So whenUniform distribution

we say we “sample uniformly (at random) from the integers 0 to 99” it means that we are
equally likely to pick any integer in that range.

Bibliographical and Historical Notes

The O() notation so widely used in computer science today was first introduced in the con-
text of number theory by the mathematician P. G. H. Bachmann (1894). The concept of
NP-completeness was invented by Cook (1971), and the modern method for establishing a
reduction from one problem to another is due to Karp (1972). Cook and Karp have both won
the Turing award for their work.

Textbooks on the analysis and design of algorithms include Sedgewick and Wayne (2011)
and Cormen, Leiserson, Rivest and Stein (2009). These books place an emphasis on designing
and analyzing algorithms to solve tractable problems. For the theory of NP-completeness and
other forms of intractability, see Garey and Johnson (1979) or Papadimitriou (1994). Good
texts on probability include Chung (1979), Ross (2015), and Bertsekas and Tsitsiklis (2008).



APPENDIX B
NOTES ON LANGUAGES AND
ALGORITHMS
B.1 Defining Languages with Backus–Naur Form (BNF)

In this book we define several languages, including the languages of propositional logic (235),
first-order logic (276), and a subset of English (page 893). A formal language is defined as
a set of strings where each string is a sequence of symbols. The languages we are interested
in consist of an infinite set of strings, so we need a concise way to characterize the set.
We do that with a grammar. The particular type of grammar we use is called a context-
free grammar, because each expression has the same form in any context. We write our Context-free

grammar

grammars in a formalism called Backus–Naur form (BNF). There are four components to a Backus–Naur form
(BNF)

BNF grammar:

• A set of terminal symbols. These are the symbols or words that make up the strings of Terminal symbol

the language. They could be letters (A, B, C, . . .) or words (a, aardvark, abacus, . . .),
or whatever symbols are appropriate for the domain.

• A set of nonterminal symbols that categorize subphrases of the language. For exam- Nonterminal symbol

ple, the nonterminal symbol NounPhrase in English denotes an infinite set of strings
including “you” and “the big slobbery dog.”

• A start symbol, which is the nonterminal symbol that denotes the complete set of Start symbol

strings of the language. In English, this is Sentence; for arithmetic, it might be Expr,
and for programming languages it is Program.

• A set of rewrite rules, of the form LHS → RHS, where LHS is a nonterminal sym- Rewrite rules

bol and RHS is a sequence of zero or more symbols. These can be either terminal or
nonterminal symbols, or the symbol ε, which is used to denote the empty string.

A rewrite rule of the form

Sentence → NounPhrase VerbPhrase

means that whenever we have two strings categorized as a NounPhrase and a VerbPhrase, we
can append them together and categorize the result as a Sentence. As an abbreviation, the two
rules (S → A) and (S → B) can be written (S → A | B). To illustrate these concepts, here is
a BNF grammar for simple arithmetic expressions:

Expr → Expr Operator Expr | ( Expr ) | Number

Number → Digit | Number Digit

Digit → 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
Operator → + | − | ÷ | ×
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We cover languages and grammars in more detail in Chapter 24. Be aware that other books
use slightly different notations for BNF; for example, you might see 〈Digit〉 instead of Digit
for a nonterminal, ‘word’ instead of word for a terminal, or ::= instead of → in a rule.

B.2 Describing Algorithms with Pseudocode

The algorithms in this book are described in pseudocode. Most of the pseudocode shouldPseudocode

be familiar to programmers who use languages like Java, C++, or especially Python. In
some places we use mathematical formulas or ordinary English to describe parts that would
otherwise be more cumbersome. A few idiosyncrasies should be noted:

• Persistent variables: We use the keyword persistent to say that a variable is given an
initial value the first time a function is called and retains that value (or the value given to
it by a subsequent assignment statement) on all subsequent calls to the function. Thus,
persistent variables are like global variables in that they outlive a single call to their
function; but they are accessible only within the function. The agent programs in the
book use persistent variables for memory. Programs with persistent variables can be
implemented as objects in object-oriented languages such as C++, Java, Python, and
Smalltalk. In functional languages, they can be implemented by functional closures
over an environment containing the required variables.

• Functions as values: Functions have capitalized names, and variables have lowercase
italic names. So most of the time, a function call looks like FN(x). However, we allow
the value of a variable to be a function; for example, if the value of the variable f is the
square root function, then f (9) returns 3.

• Indentation is significant: Indentation is used to mark the scope of a loop or con-
ditional, as in the languages Python and CoffeeScript, and unlike Java, C++, and Go
(which use braces) or Lua and Ruby (which use end).

• Destructuring assignment: The notation “x,y←pair” means that the right-hand side
must evaluate to a two-element collection, and the first element is assigned to x and the
second to y. The same idea is used in “for x,y in pairs do” and can be used to swap two
variables: “x,y←y,x”

• Default values for parameters: The notation “function F(x,y=0) returns a number”
means that y is an optional argument with default value 0; that is, the calls F(3, 0) and
F(3) are equivalent.

• yield: a function that contains the keyword yield is a generator that generates a se-Generator

quence of values, one each time the yield expression is encountered. After yielding, the
function continues execution with the next statement. The languages Python, Ruby, C#,
and Javascript (ECMAScript) have this same feature.

• Loops: There are four kinds of loops:

– “for x in c do” executes the loop with the variable x bound to successive elements
of the collection c.

– “for i = 1 to n do” executes the loop with i bound to successive integers from 1 to
n inclusive.

– “while condition do” means the condition is evaluated before each iteration of the
loop, and the loop exits if the condition is false.
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– “repeat . . . until condition” means that the loop is executed unconditionally the
first time, then the condition is evaluated, and the loop exits if the condition is
true; otherwise the loop keeps executing (and testing at the end).

• Lists: [x,y,z] denotes a list of three elements. The “+” operator concatenates lists:
[1,2] + [3,4] = [1,2,3,4]. A list can be used as a stack: POP removes and returns the
last element of a list, TOP returns the last element.

• Sets: {x,y,z} denotes a set of three elements. {x : p(x)} denotes the set of all elements
x for which p(x) is true.

• Arrays start at 1: the first index of an array is 1 as in usual mathematical notation (and
in R and Julia), not 0 (as in Python and Java and C).

B.3 Online Supplemental Material

The book has a Web site with supplemental material, instructions for sending suggestions,
and opportunities for joining discussion lists:

• aima.cs.berkeley.edu

The algorithms in the book, and multiple additional programming exercises, have been
implemented in Python and Java (and some in other languages) at the online code repository,
accessible from the Web site and currently hosted at:

• github.com/aimacode

http://github.com/aimacode
http://aima.cs.berkeley.edu
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séquentielles. Cahiers du Centre d’Études de
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Li, M., Vitányi, P., et al. (2008). An Introduction to
Kolmogorov Complexity and Its Applications (3rd edi-
tion). Springer-Verlag.

Li, T.-M., Gharbi, M., Adams, A., Durand, F., and
Ragan-Kelley, J. (2018). Differentiable programming
for image processing and deep learning in Halide.
ACM Transactions on Graphics, 37, 139.

Li, W. and Todorov, E. (2004). Iterative linear
quadratic regulator design for nonlinear biological
movement systems. In Proc. 1st International Con-
ference on Informatics in Control, Automation and
Robotics.

Li, X. and Yao, X. (2012). Cooperatively coevolv-
ing particle swarms for large scale optimization. IEEE
Trans. Evolutionary Computation, 16, 210–224.

Li, Z., Li, P., Krishnan, A., and Liu, J. (2011). Large-
scale dynamic gene regulatory network inference com-
bining differential equation models with local dynamic
Bayesian network analysis. Bioinformatics, 27 19,
2686–91.

Liang, P., Jordan, M. I., and Klein, D. (2011).
Learning dependency-based compositional semantics.
arXiv:1109.6841.

Liang, P. and Potts, C. (2015). Bringing machine
learning and compositional semantics together. Annual
Review of Linguistics, 1, 355–376.

Liberatore, P. (1997). The complexity of the language
A. Electronic Transactions on Artificial Intelligence, 1,
13–38.

Lifschitz, V. (2001). Answer set programming and
plan generation. AIJ, 138, 39–54.

Lighthill, J. (1973). Artificial intelligence: A general
survey. In Lighthill, J., Sutherland, N. S., Needham,
R. M., Longuet-Higgins, H. C., and Michie, D. (Eds.),
Artificial Intelligence: A Paper Symposium. Science
Research Council of Great Britain.

Lillicrap, T., Hunt, J. J., Pritzel, A., Heess, N., Erez,
T., Tassa, Y., Silver, D., and Wierstra, D. (2015).
Continuous control with deep reinforcement learning.
arXiv:1509.02971.

Lin, S. (1965). Computer solutions of the travelling
salesman problem. Bell Systems Technical Journal,
44(10), 2245–2269.

Lin, S. and Kernighan, B. W. (1973). An effective
heuristic algorithm for the travelling-salesman prob-
lem. Operations Research, 21, 498–516.

Lindley, D. V. (1956). On a measure of the informa-
tion provided by an experiment. Annals of Mathemat-
ical Statistics, 27, 986–1005.

Lindsay, R. K., Buchanan, B. G., Feigenbaum, E. A.,
and Lederberg, J. (1980). Applications of Artificial
Intelligence for Organic Chemistry: The DENDRAL
Project. McGraw-Hill.

Lindsten, F., Jordan, M. I., and Schön, T. B. (2014).
Particle Gibbs with ancestor sampling. JMLR, 15,
2145–2184.

Littman, M. L. (1994). Markov games as a framework
for multi-agent reinforcement learning. In ICML-94.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P.
(1995). Learning policies for partially observable en-
vironments: Scaling up. In ICML-95.

Littman, M. L. (2015). Reinforcement learning im-
proves behaviour from evaluative feedback. Nature,
521, 445–451.

Littman, M. L., Topcu, U., Fu, J., Isbell, C., Wen, M.,
and MacGlashan, J. (2017). Environment-independent
task specifications via GLTL. arXiv:1704.04341.

Liu, B., Gemp, I., Ghavamzadeh, M., Liu, J., Ma-
hadevan, S., and Petrik, M. (2018). Proximal gradi-
ent temporal difference learning: Stable reinforcement
learning with polynomial sample complexity. JAIR,
63, 461–494.

Liu, H., Simonyan, K., Vinyals, O., Fernando, C., and
Kavukcuoglu, K. (2017). Hierarchical representations
for efficient architecture search. arXiv:1711.00436.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS:
Differentiable architecture search. In ICLR-19.

Liu, J. and Chen, R. (1998). Sequential Monte Carlo
methods for dynamic systems. JASA, 93, 1022–1031.

Liu, J. and West, M. (2001). Combined parame-
ter and state estimation in simulation-based filtering.
In Doucet, A., de Freitas, J. F. G., and Gordon, N.
(Eds.), Sequential Monte Carlo Methods in Practice.
Springer.

Liu, L. T., Dean, S., Rolf, E., Simchowitz, M., and
Hardt, M. (2018a). Delayed impact of fair machine
learning. arXiv:1803.04383.

Liu, M.-Y., Breuel, T., and Kautz, J. (2018b). Un-
supervised image-to-image translation networks. In
NeurIPS 30.

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J.,
Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas,
M., Kern, C., Ledsam, J. R., Schmid, M., Balaskas, K.,
Topol, E., Bachmann, L. M., Keane, P. A., and Dennis-
ton, A. K. (2019a). A comparison of deep learning
performance against health-care professionals in de-
tecting diseases from medical imaging: A systematic
review and meta-analysis. The Lancet Digital Health.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
(2019b). RoBERTa: A robustly optimized BERT pre-
training approach. arXiv:1907.11692.

Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui,
P., Kanada, K., de Oliveira Marinho, G., Gallegos,
J., Gabriele, S., Gupta, V., Singh, N., Natarajan, V.,
Hofmann-Wellenhof, R., Corrado, G., Peng, L., Web-
ster, D. R., Ai, D., Huang, S., Liu, Y., Dunn, R. C., and
Coz, D. (2019c). A deep learning system for differen-
tial diagnosis of skin diseases. arXiv:1909.

Liu, Y., Gadepalli, K. K., Norouzi, M., Dahl, G.,
Kohlberger, T., Venugopalan, S., Boyko, A. S., Tim-
ofeev, A., Nelson, P. Q., Corrado, G., Hipp, J. D.,
Peng, L., and Stumpe, M. C. (2017). Detecting
cancer metastases on gigapixel pathology images.
arXiv:1703.02442.

Liu, Y., Kohlberger, T., Norouzi, M., Dahl, G.,
Smith, J. L., Mohtashamian, A., Olson, N., Peng, L.,
Hipp, J. D., and Stumpe, M. C. (2018). Artificial
intelligence-based breast cancer nodal metastasis de-
tection: Insights into the black box for pathologists.
Archives of Pathology & Laboratory Medicine, 143,
859–868.

Livescu, K., Glass, J., and Bilmes, J. (2003). Hid-
den feature modeling for speech recognition using dy-
namic Bayesian networks. In EUROSPEECH-2003.

Lloyd, S. (2000). Ultimate physical limits to compu-
tation. Nature, 406, 1047–1054.

Lloyd, W. F. (1833). Two Lectures on the Checks to
Population. Oxford University.

Llull, R. (1305). Ars Magna. Published as Salzinger,
I. et al. (Eds.), Raymundi Lulli Opera omnia, Mainz,
1721–1742.

Loftus, E. and Palmer, J. (1974). Reconstruction of
automobile destruction: An example of the interaction
between language and memory. J. Verbal Learning and
Verbal Behavior, 13, 585–589.

Lohn, J. D., Kraus, W. F., and Colombano, S. P.
(2001). Evolutionary optimization of yagi-uda an-
tennas. In Proc. Fourth International Conference on
Evolvable Systems.

Longuet-Higgins, H. C. (1981). A computer algo-
rithm for reconstructing a scene from two projections.
Nature, 293, 133–135.

Loos, S., Irving, G., Szegedy, C., and Kaliszyk, C.
(2017). Deep network guided proof search. In Proc.
21st Int’l Conf. on Logic for Programming, Artificial
Intelligence and Reasoning.

Lopez de Segura, R. (1561). Libro de la invencion lib-
eral y arte del juego del axedrez. Andres de Angulo.

Lorentz, R. (2015). Early playout termination in
MCTS. In Plaat, A., van den Herik, J., and Kosters,
W. (Eds.), Advances in Computer Games. Springer-
Verlag.

Love, N., Hinrichs, T., and Genesereth, M. R. (2006).
General game playing: Game description language
specification. Tech. rep., Stanford University Com-
puter Science Dept.

Lovejoy, W. S. (1991). A survey of algorithmic meth-
ods for partially observed Markov decision processes.
Annals of Operations Research, 28, 47–66.

Lovelace, A. (1843). Sketch of the analytical en-
gine invented by Charles Babbage. Notes appended
to Lovelace’s translation of an article of the above title
written by L. F. Menabrea based on lectures by Charles
babbage in 1840. The translation appeared in R. Taylor
(Ed.), Scientific Memoirs, vol. III. R. and J. E. Taylor,
London.

Loveland, D. (1970). A linear format for resolution. In
Proc. IRIA Symposium on Automatic Demonstration.

Lowe, D. (1987). Three-dimensional object recog-
nition from single two-dimensional images. AIJ, 31,
355–395.

Lowe, D. (2004). Distinctive image features from
scale-invariant keypoints. IJCV, 60, 91–110.
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PPSZ/Schöning-algorithm for 3-SAT. Journal on Sat-
isfiability, Boolean Modeling and Computation, 1,
111–122.

Rolnick, D., Donti, P. L., Kaack, L. H., et al.
(2019). Tackling climate change with machine learn-
ing. arXiv:1906.05433.

Rolnick, D. and Tegmark, M. (2018). The power of
deeper networks for expressing natural functions. In
ICLR-18.

Romanovskii, I. (1962). Reduction of a game with
complete memory to a matrix game. Soviet Mathemat-
ics, 3, 678–681.

Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and
Lopez, A. M. (2016). The SYNTHIA dataset: A large
collection of synthetic images for semantic segmenta-
tion of urban scenes. In CVPR-16.

Rosenblatt, F. (1957). The perceptron: A perceiving
and recognizing automaton. Report, Project PARA,
Cornell Aeronautical Laboratory.

Rosenblatt, F. (1960). On the convergence of rein-
forcement procedures in simple perceptrons. Report,
Cornell Aeronautical Laboratory.

Rosenblatt, F. (1962). Principles of Neurodynam-
ics: Perceptrons and the Theory of Brain Mechanisms.
Spartan.

Rosenblatt, M. (1956). Remarks on some nonpara-
metric estimates of a density function. Annals of Math-
ematical Statistics, 27, 832–837.

Rosenblueth, A., Wiener, N., and Bigelow, J. (1943).
Behavior, purpose, and teleology. Philosophy of Sci-
ence, 10, 18–24.



Bibliography 1111

Rosenschein, J. S. and Zlotkin, G. (1994). Rules of
Encounter. MIT Press.

Rosenschein, S. J. (1985). Formal theories of knowl-
edge in AI and robotics. New Generation Computing,
3, 345–357.

Ross, G. (2012). Fisher and the millionaire: The statis-
tician and the calculator. Significance, 9, 46–48.

Ross, S. (2015). A First Course in Probability (9th
edition). Pearson.

Ross, S., Gordon, G., and Bagnell, D. (2011). A re-
duction of imitation learning and structured prediction
to no-regret online learning. In AISTATS-11.

Rossi, F., van Beek, P., and Walsh, T. (2006). Hand-
book of Constraint Processing. Elsevier.

Roth, D. (1996). On the hardness of approximate rea-
soning. AIJ, 82, 273–302.

Roussel, P. (1975). Prolog: Manual de référence et
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Smith, J. M. and Szathmáry, E. (1999). The Origins of
Life: From the Birth of Life to the Origin of Language.
Oxford University Press.

Smith, M. K., Welty, C., and McGuinness, D. (2004).
OWL web ontology language guide. Tech. rep., W3C.

Smith, R. G. (1980). A Framework for Distributed
Problem Solving. UMI Research Press.

Smith, R. C. and Cheeseman, P. (1986). On the repre-
sentation and estimation of spatial uncertainty. Int. J.
Robotics Research, 5, 56–68.

Smith, S. J. J., Nau, D. S., and Throop, T. A. (1998).
Success in spades: Using AI planning techniques to
win the world championship of computer bridge. In
AAAI-98.

Smith, W. E. (1956). Various optimizers for single-
stage production. Naval Research Logistics Quarterly,
3, 59–66.

Smolensky, P. (1988). On the proper treatment of con-
nectionism. BBS, 2, 1–74.

Smolensky, P. and Prince, A. (1993). Optimality
theory: Constraint interaction in generative grammar.
Tech. rep., Department of Computer Science, Univer-
sity of Colorado at Boulder.

Smullyan, R. M. (1995). First-Order Logic. Dover.

Smyth, P., Heckerman, D., and Jordan, M. I.
(1997). Probabilistic independence networks for hid-
den Markov probability models. Neural Computation,
9, 227–269.

Snoek, J., Larochelle, H., and Adams, R. P. (2013).
Practical Bayesian optimization of machine learning
algorithms. In NeurIPS 25.

Solomonoff, R. J. (1964). A formal theory of inductive
inference. Information and Control, 7, 1–22, 224–254.

Solomonoff, R. J. (2009). Algorithmic probability–
theory and applications. In Emmert-Streib, F. and
Dehmer, M. (Eds.), Information Theory and Statitical
Learning. Springer.

Sondik, E. J. (1971). The Optimal Control of Partially
Observable Markov Decision Processes. Ph.D. thesis,
Stanford University.

Sosic, R. and Gu, J. (1994). Efficient local search with
conflict minimization: A case study of the n-queens
problem. IEEE Transactions on Knowledge and Data
Engineering, 6, 661–668.

Sowa, J. (1999). Knowledge Representation: Logi-
cal, Philosophical, and Computational Foundations.
Blackwell.

Spaan, M. T. J. and Vlassis, N. (2005). Perseus:
Randomized point-based value iteration for POMDPs.
JAIR, 24, 195–220.

Sparrow, R. (2004). The Turing triage test. Ethics and
Information Technology, 6, 203–213.

Spiegelhalter, D. J., Dawid, A. P., Lauritzen, S., and
Cowell, R. (1993). Bayesian analysis in expert sys-
tems. Statistical Science, 8, 219–282.

Spirtes, P., Glymour, C., and Scheines, R. (1993).
Causation, Prediction, and Search. Springer-Verlag.

Spitkovsky, V. I., Alshawi, H., and Jurafsky, D.
(2010a). From baby steps to leapfrog: How less is
more in unsupervised dependency parsing. In NAACL
HLT.

Spitkovsky, V. I., Jurafsky, D., and Alshawi, H.
(2010b). Profiting from mark-up: Hyper-text anno-
tations for guided parsing. In ACL-10.

Srivas, M. and Bickford, M. (1990). Formal verifica-
tion of a pipelined microprocessor. IEEE Software, 7,
52–64.

Srivastava, N., Hinton, G. E., Krizhevsky, A.,
Sutskever, I., and Salakhutdinov, R. (2014a). Dropout:
A simple way to prevent neural networks from overfit-
ting. JMLR, 15, 1929–1958.

Srivastava, S., Russell, S. J., and Ruan, P. (2014b).
First-order open-universe POMDPs. In UAI-14.

Staab, S. (2004). Handbook on Ontologies. Springer.

Stallman, R. M. and Sussman, G. J. (1977). Forward
reasoning and dependency-directed backtracking in a
system for computer-aided circuit analysis. AIJ, 9,
135–196.

Stanfill, C. and Waltz, D. (1986). Toward memory-
based reasoning. CACM, 29, 1213–1228.

Stanislawska, K., Krawiec, K., and Vihma, T. (2015).
Genetic programming for estimation of heat flux be-
tween the atmosphere and sea ice in polar regions. In
GECCO-15.

Stefik, M. (1995). Introduction to Knowledge Systems.
Morgan Kaufmann.

Steiner, D. F., MacDonald, R., Liu, Y., Truszkowski,
P., Hipp, J. D., Gammage, C., Thng, F., Peng, L., and
Stumpe, M. C. (2018). Impact of deep learning as-
sistance on the histopathologic review of lymph nodes
for metastatic breast cancer. Am. J. Surgical Pathology,
42, 1636–1646.

Steinruecken, C., Smith, E., Janz, D., Lloyd, J., and
Ghahramani, Z. (2019). The Automatic Statistician.
In Hutter, F., Kotthoff, L., and Vanschoren, J. (Eds.),
Automated Machine Learning. Springer.

Stergiou, K. and Walsh, T. (1999). The difference all-
difference makes. In IJCAI-99.

Stickel, M. E. (1992). A Prolog technology theorem
prover: a new exposition and implementation in Pro-
log. Theoretical Computer Science, 104, 109–128.

Stiller, L. (1992). KQNKRR. J. International Com-
puter Chess Association, 15, 16–18.

Stiller, L. (1996). Multilinear algebra and chess
endgames. In Nowakowski, R. J. (Ed.), Games of No
Chance, MSRI, 29, 1996. Mathematical Sciences Re-
search Institute.

Stockman, G. (1979). A minimax algorithm better
than alpha–beta? AIJ, 12, 179–196.

Stoffel, K., Taylor, M., and Hendler, J. (1997). Effi-
cient management of very large ontologies. In AAAI-
97.

Stone, M. (1974). Cross-validatory choice and assess-
ment of statistical predictions. J. Royal Statistical So-
ciety, 36, 111–133.

Stone, P. (2000). Layered Learning in Multi-Agent
Systems: A Winning Approach to Robotic Soccer. MIT
Press.

Stone, P. (2003). Multiagent competitions and re-
search: Lessons from RoboCup and TAC. In Lima,
P. U. and Rojas, P. (Eds.), RoboCup-2002: Robot Soc-
cer World Cup VI. Springer Verlag.

Stone, P. (2016). What’s hot at RoboCup. In AAAI-16.



1114 Bibliography

Stone, P., Brooks, R. A., Brynjolfsson, E., Calo, R.,
Etzioni, O., Hager, G., Hirschberg, J., Kalyanakrish-
nan, S., Kamar, E., Kraus, S., et al. (2016). Artificial
intelligence and life in 2030. Tech. rep., Stanford Uni-
versity One Hundred Year Study on Artificial Intelli-
gence: Report of the 2015-2016 Study Panel.

Stone, P., Kaminka, G., and Rosenschein, J. S. (2009).
Leading a best-response teammate in an ad hoc team.
In AAMAS Workshop in Agent Mediated Electronic
Commerce.

Stone, P., Sutton, R. S., and Kuhlmann, G. (2005).
Reinforcement learning for robocup soccer keepaway.
Adaptive Behavior, 13, 165–188.

Storvik, G. (2002). Particle filters for state-space mod-
els with the presence of unknown static parameters.
IEEE Transactions on Signal Processing, 50, 281–289.

Strachey, C. (1952). Logical or non-mathematical
programmes. In Proc. 1952 ACM National Meeting.

Stratonovich, R. L. (1959). Optimum nonlinear sys-
tems which bring about a separation of a signal with
constant parameters from noise. Radiofizika, 2, 892–
901.

Stratonovich, R. L. (1965). On value of information.
Izvestiya of USSR Academy of Sciences, Technical Cy-
bernetics, 5, 3–12.

Sturtevant, N. R. and Bulitko, V. (2016). Scrubbing
during learning in real-time heuristic search. JAIR, 57,
307–343.

Subramanian, D. and Wang, E. (1994). Constraint-
based kinematic synthesis. In Proc. International Con-
ference on Qualitative Reasoning.

Suk, H.-I., Sin, B.-K., and Lee, S.-W. (2010). Hand
gesture recognition based on dynamic Bayesian net-
work framework. Pattern Recognition, 43, 3059–3072.

Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu,
H., and Wang, H. (2019). ERNIE 2.0: A contin-
ual pre-training framework for language understand-
ing. arXiv:1907.12412.

Sussman, G. J. (1975). A Computer Model of Skill
Acquisition. Elsevier.

Sutcliffe, G. (2016). The CADE ATP system compe-
tition - CASC. AIMag, 37, 99–101.

Sutcliffe, G. and Suttner, C. (1998). The TPTP Prob-
lem Library: CNF Release v1.2.1. JAR, 21, 177–203.

Sutcliffe, G., Schulz, S., Claessen, K., and Gelder,
A. V. (2006). Using the TPTP language for writing
derivations and finite interpretations. In Proc. Interna-
tional Joint Conference on Automated Reasoning.

Sutherland, I. (1963). Sketchpad: A man-machine
graphical communication system. In Proc. Spring
Joint Computer Conference.

Sutskever, I., Vinyals, O., and Le, Q. V. (2015). Se-
quence to sequence learning with neural networks. In
NeurIPS 27.

Sutton, C. and McCallum, A. (2007). An introduction
to conditional random fields for relational learning. In
Getoor, L. and Taskar, B. (Eds.), Introduction to Sta-
tistical Relational Learning. MIT Press.

Sutton, R. S. (1988). Learning to predict by the meth-
ods of temporal differences. Machine Learning, 3, 9–
44.

Sutton, R. S., McAllester, D. A., Singh, S., and Man-
sour, Y. (2000). Policy gradient methods for rein-
forcement learning with function approximation. In
NeurIPS 12.

Sutton, R. S. (1990). Integrated architectures for
learning, planning, and reacting based on approximat-
ing dynamic programming. In ICML-90.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
Learning: An Introduction (2nd edition). MIT Press.

Swade, D. (2000). Difference Engine: Charles Bab-
bage And The Quest To Build The First Computer. Di-
ane Publishing Co.

Sweeney, L. (2000). Simple demographics often iden-
tify people uniquely. Health (San Francisco), 671, 1–
34.

Sweeney, L. (2002a). Achieving k-anonymity pri-
vacy protection using generalization and suppression.
International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems, 10, 571–588.

Sweeney, L. (2002b). k-anonymity: A model for pro-
tecting privacy. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 10, 557–
570.

Swerling, P. (1959). First order error propagation in
a stagewise smoothing procedure for satellite observa-
tions. J. Astronautical Sciences, 6, 46–52.

Swift, T. and Warren, D. S. (1994). Analysis of SLG-
WAM evaluation of definite programs. In Logic Pro-
gramming: Proc. 1994 International Symposium.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Er-
han, D., Goodfellow, I., and Fergus, R. (2013). Intrigu-
ing properties of neural networks. arXiv:1312.6199.

Szeliski, R. (2011). Computer Vision: Algorithms and
Applications. Springer-Verlag.

Szepesvari, C. (2010). Algorithms for reinforcement
learning. Synthesis Lectures on Artificial Intelligence
and Machine Learning, 4, 1–103.

Tadepalli, P., Givan, R., and Driessens, K. (2004).
Relational reinforcement learning: An overview. In
ICML-04.

Tait, P. G. (1880). Note on the theory of the “15 puz-
zle”. Proc. Royal Society of Edinburgh, 10, 664–665.

Tamaki, H. and Sato, T. (1986). OLD resolution with
tabulation. In ICLP-86.

Tan, P., Steinbach, M., Karpatne, A., and Kumar, V.
(2019). Introduction to Data Mining (2nd edition).
Pearson.

Tang, E. (2018). A quantum-inspired clas-
sical algorithm for recommendation systems.
arXiv:1807.04271.

Tarski, A. (1935). Die Wahrheitsbegriff in den formal-
isierten Sprachen. Studia Philosophica, 1, 261–405.

Tarski, A. (1941). Introduction to Logic and to the
Methodology of Deductive Sciences. Dover.

Tarski, A. (1956). Logic, Semantics, Metamathemat-
ics: Papers from 1923 to 1938. Oxford University
Press.

Tash, J. K. and Russell, S. J. (1994). Control strategies
for a stochastic planner. In AAAI-94.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y.,
Casas, D. d. L., Budden, D., Abdolmaleki, A., Merel,
J., Lefrancq, A., et al. (2018). Deepmind control suite.
arXiv:1801.00690.

Tate, A. (1975a). Interacting goals and their use. In
IJCAI-75.

Tate, A. (1975b). Using Goal Structure to Direct
Search in a Problem Solver. Ph.D. thesis, University
of Edinburgh.

Tate, A. (1977). Generating project networks. In
IJCAI-77.

Tate, A. and Whiter, A. M. (1984). Planning with mul-
tiple resource constraints and an application to a naval
planning problem. In Proc. First Conference on AI Ap-
plications.

Tatman, J. A. and Shachter, R. D. (1990). Dynamic
programming and influence diagrams. IEEE Transac-
tions on Systems, Man and Cybernetics, 20, 365–379.

Tattersall, C. (1911). A Thousand End-Games: A Col-
lection of Chess Positions That Can be Won or Drawn
by the Best Play. British Chess Magazine.

Taylor, A. D. and Zwicker, W. S. (1999). Sim-
ple Games: Desirability Relations, Trading, Pseu-
doweightings. Princeton University Press.

Taylor, G., Stensrud, B., Eitelman, S., and Dunham,
C. (2007). Towards automating airspace management.
In Proc. Computational Intelligence for Security and
Defense Applications (CISDA) Conference.

Taylor, P. (2009). Text-to-Speech Synthesis. Cam-
bridge University Press.

Tedrake, R., Zhang, T. W., and Seung, H. S. (2004).
Stochastic policy gradient reinforcement learning on a
simple 3D biped. In IROS-04.

Tellex, S., Kollar, T., Dickerson, S., Walter, M. R.,
Banerjee, A., Teller, S., and Roy, N. (2011). Under-
standing natural language commands for robotic navi-
gation and mobile manipulation. In AAAI-11.

Tenenbaum, J. B., Griffiths, T. L., and Niyogi, S.
(2007). Intuitive theories as grammars for causal in-
ference. In Gopnik, A. and Schulz, L. (Eds.), Causal
Learning: Psychology, Philosophy, and Computation.
Oxford University Press.

Tesauro, G. (1990). Neurogammon: A neural-network
backgammon program. In IJCNN-90.

Tesauro, G. (1992). Practical issues in temporal dif-
ference learning. Machine Learning, 8, 257–277.

Tesauro, G. (1995). Temporal difference learning and
TD-Gammon. CACM, 38, 58–68.

Tesauro, G. and Galperin, G. R. (1997). On-line policy
improvement using Monte-Carlo search. In NeurIPS 9.

Tetlock, P. E. (2017). Expert Political Judgment: How
Good Is It? How Can We Know? Princeton University
Press.

Teyssier, M. and Koller, D. (2005). Ordering-based
search: A simple and effective algorithm for learning
Bayesian networks. In UAI-05.

Thaler, R. (1992). The Winner’s Curse: Paradoxes
and Anomalies of Economic Life. Princeton University
Press.

Thaler, R. and Sunstein, C. (2009). Nudge: Improv-
ing Decisions About Health, Wealth, and Happiness.
Penguin.

Thayer, J. T., Dionne, A., and Ruml, W. (2011).
Learning inadmissible heuristics during search. In
ICAPS-11.

Theocharous, G., Murphy, K., and Kaelbling, L. P.
(2004). Representing hierarchical POMDPs as DBNs
for multi-scale robot localization. In ICRA-04.

Thiele, T. (1880). Om anvendelse af mindste
kvadraters methode i nogle tilfælde, hvor en komplika-
tion af visse slags uensartede tilfældige fejlkilder giver
fejlene en ‘systematisk’ karakter. Vidensk. Selsk. Skr.
5. Rk., naturvid. og mat. Afd., 12, 381–408.

Thielscher, M. (1999). From situation calculus to flu-
ent calculus: State update axioms as a solution to the
inferential frame problem. AIJ, 111, 277–299.

Thomas, P. S., da Silva, B. C., Barto, A. G., and Brun-
skill, E. (2017). On ensuring that intelligent machines
are well-behaved. arXiv:1708.05448.

Thomaz, A., Hoffman, G., Cakmak, M., et al. (2016).
Computational human-robot interaction. Foundations
and Trends in Robotics, 4, 105–223.

Thompson, K. (1986). Retrograde analysis of certain
endgames. J. International Computer Chess Associa-
tion, 9, 131–139.

Thompson, K. (1996). 6-piece endgames. J. Interna-
tional Computer Chess Association, 19, 215–226.

Thompson, W. R. (1933). On the likelihood that one
unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25, 285–294.

Thorndike, E. (1911). Animal Intelligence. Macmil-
lan.



Bibliography 1115

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-
Brown, K. (2013). Auto-WEKA: Combined selection
and hyperparameter optimization of classification al-
gorithms. In KDD-13.

Thrun, S., Burgard, W., and Fox, D. (2005). Proba-
bilistic Robotics. MIT Press.

Thrun, S., Fox, D., and Burgard, W. (1998). A prob-
abilistic approach to concurrent mapping and localiza-
tion for mobile robots. Machine Learning, 31, 29–53.

Thrun, S. (2006). Stanley, the robot that won the
DARPA Grand Challenge. J. Field Robotics, 23, 661–
692.

Thrun, S. and Pratt, L. (2012). Learning to Learn.
Springer.

Thurstone, L. L. (1927). A law of comparative judg-
ment. Psychological Review, 34, 273–286.

Tian, J., Paz, A., and Pearl, J. (1998). Finding a min-
imal d-separator. Tech. rep., UCLA Department of
Computer Science.

Tikhonov, A. N. (1963). Solution of incorrectly for-
mulated problems and the regularization method. So-
viet Math. Dokl., 5, 1035–1038.

Tipping, M. E. and Bishop, C. M. (1999). Probabilis-
tic principal component analysis. J. Royal Statistical
Society, 61, 611–622.

Titterington, D. M., Smith, A. F. M., and Makov,
U. E. (1985). Statistical Analysis of Finite Mixture Dis-
tributions. Wiley.

Toma, P. (1977). SYSTRAN as a multilingual
machine translation system. In Proc. Third Euro-
pean Congress on Information Systems and Networks:
Overcoming the Language Barrier.

Tomasi, C. and Kanade, T. (1992). Shape and motion
from image streams under orthography: A factoriza-
tion method. IJCV, 9, 137–154.

Topol, E. (2019). Deep Medicine: How Artificial In-
telligence Can Make Healthcare Human Again. Basic
Books.

Torralba, A., Fergus, R., and Weiss, Y. (2008). Small
codes and large image databases for recognition. In
CVPR.

Torralba, A., Linares López, C., and Borrajo, D.
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CNF (conjunctive normal form), 244,

244–245, 265, 317–318
CNLP (conditional nonlinear planning),

401
CNN (convolutional neural network),

811, 1003
co-NP, 1076
co-NP-complete, 240, 1076
coalition, 616
coalition structure, 616
coalition structure graph, 621
coarse-to-fine search, 126
Coase, R. H., 639, 1091
coastal navigation, 964
Coates, A., 868, 872, 1055, 1091
Coates, M., 473, 1090
Cobham, A., 27, 1091
Cocke, A., 886
Cocke, J., 931, 1089
COCO (image data set), 43, 832, 1016
codes of ethics, 1059
coercion, 384
cognitive architecture, 52, 310
cognitive modeling, 20–21
cognitive psychology, 31, 874
cognitive science, 21, 667
Cohen, B., 267, 1112
Cohen, C., 983, 1091
Cohen, P. R., 42, 636, 1091
Cohen, W., 901, 1106
Cohn, A. G., 360, 1091
COLBERT (robot control language), 987
collaboration, 968, 971
Collin, Z., 191, 1091
Collins, M., 736, 896, 904, 905, 1085,

1087, 1118
collision checker, 953
collusion, 624
Colmerauer, A., 296, 329, 1091
Colombano, S.P., 161, 1104
color, 995
Colossal Clean Crawled Corpus (C4),

928, 930
Colossus, 32
Colton, S., 222, 1089
column player, 596
combinatorial auction, 628
combinatorial explosion, 39
commitment
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consequent, 235
consequentialism, 26, 57
conservative approximation, 261, 387
consistency, 349

arc, 170
condition, 125
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Dürer, A., 1027
Durfee, E. H., 639, 1094
Durme, B. V., 906, 1094
Durrant-Whyte, H., 984, 1093, 1103

Duru, G., 549, 1087
Dwork, C., 1046, 1060, 1094, 1117
DYNA (reinforcement learning agent),

871
dynamical system, 515

quadratic, 161
dynamic backtracking, 190
dynamic Bayesian network (DBN), 479,

503, 503–516
approximate inference in, 509
exact inference in, 507

dynamic decision network (DDN), 560,
585

dynamic environment, 63
dynamic programming, 79, 119, 125, 315,

488, 553, 586, 886
adaptive (ADP), 844, 844
nonserial, 474

dynamics model, 958
dynamic state, 958
Dyson, F., 734, 1094
Dyson, G., 1061, 1094
dystopia, 1062, 1073

E
E (theorem prover), 330, 331
E0 (English fragment), 884
Earley, J., 904, 1094
early playout termination, 210
early stopping, 682
earthquake, 431
Ebendt, R., 126, 1094
EBL (explanation-based learning), 400
Eck, D., 1027, 1094
Ecker, A. S., 1034, 1096
Ecker, K., 402, 1088
Eckerle, J., 114, 126, 1094
Eckert, J., 32
Eckhouse, L., 1060, 1094
economics, 27–28, 79, 524
economy, 192
Edelkamp, S., 127, 399, 1094
edge (in a scene), 996
edge detection, 996–999
Edinburgh, 983
Edmonds, D., 35
Edmonds, J., 27, 1094
Edward (probabilistic programming

language), 667
Edwards, D. J., 221, 1098
Edwards, P., 1058, 1094
Edwards, W., 548, 1116
EEG, 29
Een, N., 330, 1085
effect, 363

missing, 390
effective depth, 116
effector, 932
efficient auction, 624



Index 1131

Efros, A., 44, 930, 1015, 1020–1022,
1030, 1095, 1098–1101, 1118

egalitarian social welfare, 600
egocentric action, 85
Ehrenfeucht, A., 735, 1088
8-puzzle, 86, 115, 118, 124
8-queens problem, 128, 130, 134, 181
Einstein, A., 1
Eisner, J., 904, 1113
Eitelman, S., 329, 1114
Eiter, T., 360, 1094
Ekart, A., 161, 1110
EKF (extended Kalman filter), 501, 942
ELBO (evidence lower bound), 829
Elder, J. F., 736, 1112
Elementary Perceiver And Memorizer

(EPAM), 733
Elfes, A., 984, 1107
ELIMINATION-ASK, 450
Elio, R., 550, 1094
Eliot, T.S., 824
Elisseeff, A., 737, 1097
elitism, 134
ELIZA (chatbot), 1035
Elkan, C., 798, 1060, 1094, 1100
Elkind, E., 638, 1090
Ellington, C., 1064, 1095
Elliott, G. L., 189, 1098
Elliott, P., 267, 1116
Ellsberg, D., 550, 1094
Ellsberg paradox, 528, 550
Elman, J. L., 837, 905, 1094
ELMO (natural language system), 930
Elo, A. E., 667, 1094
Elsken, T., 838, 1094
EM algorithm, 484, 788–797

structural, 797
embodied cognition, 1033
empirical gradient, 138, 862
empirical loss, 688
empiricism, 24, 906
Empson, W., 904, 1094
EMV (expected monetary value), 524
ENAS (Efficient Neural Architecture

Search), 838
encoder (in autoencoders), 829
end-to-end learning, 967
Enderton, H. B., 297, 328, 1094
Endriss, U., 639, 1088
Eng, C., 48, 1104
Engel, J., 1027, 1094
Engelbart, D., 32
Engelberger, J., 983
ENIAC, 32
ensemble learning, 714, 714–720
ensemble model, 714
entailment, 232, 264
entailment constraints, 767
entropy (H), 679, 680

ENUMERATE-ALL, 447
ENUMERATION-ASK, 447
environment, 54, 60–65

class, 65
competitive, 63
continuous, 64
cooperative, 63
deterministic, 63
discrete, 64
dynamic, 63
episodic, 63
history, 553
known, 64
multiagent, 62, 589
nondeterministic, 63, 128
observable, 61
one-shot, 63
partially observable, 61
properties, 61
semidynamic, 64
sequential, 63
single-agent, 62
static, 63
stochastic, 63, 552
taxi, 60, 61
unknown, 64
unobservable, 62
virtual, 61

EPAM (Elementary Perceiver And
Memorizer), 733

Ephrati, E., 639, 1102
epistemological commitment, 273, 295,

404
epoch, 697
Epstein, R., 1057, 1094
EQP (theorem prover), 331
equality (in logic), 282, 324
equality symbol, 282
equality test, 683
equilibrium, 217

Bayes-Nash, 613
dominant strategy, 597
maximin, 603
Nash, 598, 635
subgame perfect, 609

equivalence (logical), 240
Erdmann, M. A., 162, 1094
Erez, T., 873, 986, 1098, 1104, 1114
ergodic, 462
Erhan, D., 48, 838, 930, 1114, 1115
ERNIE (NLP system), 930
Ernst, G., 125, 1107
Ernst, H. A., 983, 1094
Ernst, M., 399, 1094
Erol, K., 400, 1094
Erol, Y., 517, 1094
error (of a hypothesis), 684, 691
error function, 1079
error rate, 684

Escalante, H. J., 737, 1097
Escalera, S., 737, 1097
Essig, A., 428, 1097
Esteva, A., 48, 1094
Estrin, D., 1060, 1086
Etchemendy, J., 297, 1086
ethics, 1037–1056
Etzioni, A., 1059, 1060, 1094
Etzioni, O., 45, 334, 357, 401, 901, 905,

906, 927, 931, 1059, 1071, 1086,
1091, 1094, 1103, 1114, 1116

Euclid, 27, 1027
Eugene Goostman, 1035
Euler-Lagrange equation, 956
EUROPA (planning system), 47
Europe, 41
European Space Agency, 402
evaluation function, 91, 123, 192,

202–204, 854
linear, 122

Evans, O., 46, 872, 1097, 1111
Evans, T. G., 38, 1094
event, 340–343

exogenous, 390
in probability, 407, 445

event calculus, 340–342, 341, 358, 897
Everett, B., 984, 1088
Everitt, T., 873, 1054, 1103
evidence, 407, 772

reversal, 516
evidence lower bound (ELBO), 829
evidence variable, 445
evolution, 136

machine, 39
of machines, 39

evolutionary algorithm, 133, 159
evolutionary psychology, 529
evolution strategies, 134, 161
Ewalds, T., 48, 225, 873, 1115
exception, 333, 349
exclusive or, 237
execution monitoring, 389–392, 390, 401
exhaustive decomposition, 336
existence uncertainty, 648
existential graph, 347
Existential Instantiation, 299
existential quantifier, 280
expansion (of nodes), 89
expectation, 1079
expectation maximization, 797
expected monetary value (EMV), 524
expected utility, 73, 80, 405, 518, 519,

524
expected value (in a game tree), 202, 211
expectiminimax, 212, 220, 221

complexity of, 213
value, 211

experience replay, 857
expert system, 41, 356, 548



1132 Index

commercial, 41, 310
medical, 477
Prolog-based, 312

expit model, 442
explainability, 729
explainable AI (XAI), 737, 1048
explanation, 354

most probable, 475
explanation-based learning (EBL), 400,

749, 767
branching factor, 753
definition, 750
efficiency, 752–754
general rules, 751–752
logic programming implementation,

751
memoization, 751
operationality, 754
prune, 752

exploitation, 207, 571, 849
exploration, 58, 59, 152–159, 207, 581,

842, 848, 849
bonus, 575
function, 850, 853
safe, 154

exploratory data analysis, 671, 726
expressiveness, 77
extended Kalman filter (EKF), 501, 942
extension (of default theory), 353
extensive form, 607
externalities, 627, 1053
extremely randomized trees (ExtraTrees),

716
extrinsic property, 340
eyes, 988, 991, 992, 1027

F
Facebook, 47, 873, 1059
fact, 248
factor (in variable elimination), 448
factored frontier, 517
factored representation, 77, 81, 164, 362,

408, 560, 670
factoring, 244, 319
Faes, L., 48, 1104
Fagin, R., 190, 359, 1087, 1094
Fahlman, S. E., 38, 360, 1094
failure model, 506
failure modes and effect analysis

(FMEA), 1052
fair division, 618
fairness, 724, 729, 1043–1047, 1060
fall in love, 1033
false alarm (in data association), 657
false positive, 728
Fan, J., 48, 1094
Farhadi, A., 931, 1112
Farid, H., 1044, 1060, 1093
FARMVILLE (video game), 1050

Farrell, R., 329, 1089
FASTDOWNWARD (planning system), 398
Fast Downward Stone Soup, 399
Faster RCNN (computer vision system),

1007
FASTFORWARD (planning system), 374
FASTTEXT (word embedding), 908
Fatica, M., 48, 1103
Faugeras, O., 1030, 1094
fault tree analysis (FTA), 1052
Favini, G. P., 222, 1091
Fawcett, T., 1041, 1094
FDSS (planning system), 399
Fearing, R. S., 985, 1094
Featherstone, R., 985, 1094
feature (of a state), 122, 202
feature expectation, 865
feature extraction, 988
feature map, 815
feature matching, 865
feature selection, 689, 876
federated learning, 724, 1043, 1060
feedback, 33, 669, 671
feedforward network, 802
Fei-Fei, L., 44, 837, 930, 1093, 1101,

1111
Feigenbaum, E. A., 35, 40, 41, 125, 356,

733, 1086, 1089, 1094, 1104
Feiten, W., 984, 1088
Feldman, J., 80, 548, 1094
Feldman, M., 31, 1094
Fellbaum, C., 903, 1094
Fellegi, I., 666, 1094
Feller, A., 1060, 1091
Felner, A., 106, 126, 127, 399, 1094,

1099, 1102, 1111
Felzenszwalb, P., 162, 1094
Feng, L., 984, 1088
Feng, S., 930, 1114
Feng, T. K., 190, 1087
Fenton, N., 548, 1094
Fergus, R., 708, 838, 1114, 1115
Ferguson, T., 222, 587, 799, 1094
Fermat, P., 26, 426
Fern, A., 551, 1094
Fernández, F., 872, 1096
Fernandez, J. M. F., 48, 225, 1094
Fernando, C., 838, 1100, 1104
FERPA, 1041
Ferraris, P., 400, 1094
Ferriss, T., 1051, 1094
Ferrucci, D., 48, 1094
FF (planning system), 374, 398
Fidjeland, A., 871, 873, 1106
FIFO queue, 92
15-puzzle, 86, 124
Fifth Generation project, 41
figure of speech, 898, 899

Fikes, R.E., 79, 162, 296, 398, 400, 401,
983, 1095

filtering, 150, 353, 484–485, 514, 578,
795, 938

assumed-density, 517
Fine, S., 516, 1095
finite state machine, 604
Fink, D., 137, 161, 1106
Finkelstein, L., 191, 1089
Finn, C., 737, 841, 986, 1095, 1103
Finney, D. J., 473, 1095
Firat, O., 901, 1090
Firby, R. J., 401, 1092
FIRE (theorem prover), 357
Firoiu, V., 225, 1095
first-order logic, 269, 269–297
first mover, 632
Firth, J., 907, 1095
Fisac, J. F., 648, 872, 1085, 1105
Fischer, A., 734, 1086
Fischer, B., 330, 1093
Fischer, P., 587, 1086
Fischer, R., 214
Fisher, M. L., 551, 1107
Fisher, R. A., 27, 427, 1095
fitness landscape, 161
Fix, E., 735, 1095
fixation, 1010
FIXED-LAG-SMOOTHING, 493
fixed-lag smoothing, 489
Flannery, B. P., 160, 1109
Floreano, D., 1064, 1095
Floyd, R. W., 125, 1095
fluent, 256, 265, 343

missing, 390
fly eyes, 1012, 1024
FMEA (failure modes and effect

analysis), 1052
focal length, 990
focal plane, 992
focal point (in game theory), 598
focus of expansion, 1011
Fogel, D.B., 162, 1095
Fogel, L. J., 161, 1095
fog of war, 214
FOL-BC-AND, 311
FOL-BC-ASK, 311
FOL-BC-OR, 311
FOL-FC-ASK, 306
folk psychology, 361
Fong, R., 986, 1085
FOPC, see logic, first-order
Forbes, J., 588, 1095
FORBIN (planning system), 401, 402
Forbus, K.D., 329, 357, 360, 1095
force sensor, 936
Ford, K. M., 1057, 1095
Ford, L. R., 125, 1095
Ford, M., 46, 53, 1062, 1095



Index 1133

foreshortening, 989
Forestier, J.-P., 873, 1095
forget gate (in LSTM), 826
Forgy, C., 329, 1095
formal logic, 26
Forrest, S., 161, 1106
Forster, E. M., 1062, 1095
Forsyth, D., 1021, 1023, 1031, 1093,

1095, 1101
Fortmann, T. E., 515, 667, 1086
Fortran, 807
forward-backward, 488, 795
FORWARD-BACKWARD, 488
forward chaining, 248, 248–249, 265,

304–311, 329
forward checking, 178, 178
forward kinematics, 947
forward message, 487
forward pruning, 205
forward search for planning, 366–368
Foster, G., 901, 1090
Fouhey, D., 1015, 1095
four-color map problem, 188, 1034
Fourier, J., 188, 1095
Fowlkes, C., 1028, 1105
Fox, C., 560, 1095
Fox, D., 667, 984, 987, 1089, 1095, 1112,

1115
Fox, M. S., 401, 1095
FPGA, 45
frame, 41, 359
FrameNet (lexical database), 357
frame problem, 257, 267, 268

representational, 257
framing effect, 529
Francis, J., 549, 1101
Franco, J., 266, 1095
Francois-Lavet, V., 871, 1095
Francon, O., 137, 161, 1106
Frank, E., 738, 1117
Frank, I., 222, 1095
Frank, J., 47, 1086
Frank, R. H., 1051, 1095
Frankenstein, 1052
Frans, K., 873, 1095
Franz, A., 903, 1095
Frasconi, P., 837, 1087
FREDDY (robot), 125, 162, 983
Fredkin Prize, 222
Freeman, W., 476, 1116, 1117
Freer, C., 667, 1085
free space, 947
free will, 24
Frege, G., 26, 266, 296, 328, 1095
Freitag, D., 905, 906, 1091, 1095
frequentism, 426
Freuder, E. C., 189, 190, 1095, 1105,

1111
Freund, Y., 718, 736, 1095

Frey, B. J., 838, 1095
Frey, C. B., 1050, 1095
Friedberg, R. M., 39, 161, 1095
Friedman, G. J., 161, 1095
Friedman, J., 734, 736, 738, 800, 1089,

1095, 1098
Friedman, N., 473, 474, 478, 516, 517,

586, 798, 799, 871, 1085, 1088,
1092, 1095, 1102

Friendly AI, 1061
frisbee, 48, 1033
Fristedt, B., 587, 1087
front-to-end, 114
front-to-front, 114
frontier, 90
Frost, D., 189, 191, 1092
Fruhwirth, T., 191, 1095
FTA (fault tree analysis), 1052
Fu, D. J., 48, 1104
Fu, J., 359, 1065, 1104
Fu, M. C., 587, 1090
Fuchs, J. J., 402, 1095
Fudenberg, D., 638, 1095
Fukunaga, A. S., 401, 1095
Fukushima, K., 837, 1029, 1095
Fuller, S. B., 1064, 1095
full joint distribution, 413, 415
fully connected (neural network), 805
fully observable, 578
function, 272

total, 275
functional, 956
functional magnetic resonance imaging

(fMRI), 29, 271
function approximation, 854
function symbol, 275, 277
Fung, C., 1060, 1095
Fung, C. C., 1035, 1100
Fung, R., 475, 1095
Furcy, D., 163, 1102
Furnas, G. W., 903, 929, 1093
Furst, M., 399, 1088
futility pruning, 222
Future of Humanity Institute, 1059
Future of Life Institute, 1059
future of work, 1049–1051, 1062
fuzzy control, 477
fuzzy logic, 232, 273, 477
fuzzy set, 477

G
g (path cost), 91
Gabriele, S., 48, 1104
Gabrilovich, E., 334, 1093
Gaddum, J. H., 473, 1095
Gadepalli, K. K., 48, 1104
Gaffney, S., 873, 1087
Gaifman, H., 665, 666, 1095
gain factor, 959

gait, 47, 976, 1041
Gale, W.A., 902, 1090
Galfrin, E., 474, 1112
Galileo, G., 175, 75
Gallagher, G., 970, 986, 1118
Gallaire, H., 329, 1095
Gallegos, J., 48, 1104
Gallier, J. H., 297, 1095
Galperin, G. R., 222, 1114
Galstyan, A., 1060, 1106
Galton, F., 1095
Gamba, A., 836, 1096
Gamba perceptrons, 836
Gamberini, L., 836, 1096
gambling, 26, 521
game, 28

assistance, 52, 613, 866
backgammon, 210, 224, 855, 866
billiards, 225
of chance, 212–214
checkers, 37, 80, 223, 870, 871
chess, 23, 32, 39, 48, 64, 125, 193,

201–204, 222
cooperative, 616
dice, 217
Diplomacy, 197
Go, 207
of imperfect information, 192
incomplete information, 551
inspection game, 596
Kriegspiel, 214
multiplayer, 197–198
normal form, 595
optimal decisions in, 194–201
Othello, 224
partially observable, 214–218
of perfect information, 193
physical, 225
poker, 224, 638
principal-agent, 638
repeated, 598, 604
Reversi, 224
Scrabble, 225
Settlers of Catan, 197
stochastic, 210
Tetris, 562, 571
Yahtzee, 214
zero-sum, 193, 600

game playing, 192–221
game show, 524
game theory, 28, 590, 635

cooperative, 616
non-cooperative, 595–615

Gammage, C., 48, 1113
GAN (generative adversarial network),

831, 838, 1022
Ganchev, K., 904, 1085
Gandomi, A., 737, 1096
Ganguli, S., 837, 838, 1092, 1109



1134 Index

Gannon, I., 474, 1112
Gao, J., 670, 1096
Gao, Q., 47, 834, 901, 916, 1117
Gao, Y., 873, 1100
Garcia, E. A., 725, 1046, 1098
Garcı́a, J., 872, 1096
Gardner, M., 266, 901, 930, 1096, 1106,

1109
Garey, M. R., 1076, 1080, 1096
Garg, A., 516, 1108
GARI (planning system), 401
Garrett, C., 134, 1086
Gaschnig, J., 125, 189, 190, 1096
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