
www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

FOURTH EDITION

Programming Perl

Tom Christiansen, brian d foy & Larry Wall
with Jon Orwant

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

www.it-ebooks.info

http://www.it-ebooks.info/

Programming Perl, Fourth Edition
by Tom Christiansen, brian d foy & Larry Wall, with Jon Orwant

Copyright © 2012 Tom Christiansen, brian d foy, Larry Wall, and Jon Orwant. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Holly Bauer
Proofreader: Marlowe Shaeffer
Indexer: Lucie Haskins

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

January 1991: First Edition.
September 1996: Second Edition.
July 2000: Third Edition.
February 2012: Fourth Edition.

Revision History for the Fourth Edition:
2011-02-13 First release

See http://oreilly.com/catalog/errata.csp?isbn=9780596004927 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Programming Perl, the image of a dromedary camel, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-0-596-00492-7

[M]

1329160875

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9780596004927
http://www.it-ebooks.info/

Table of Contents

Preface . xxiii

Part I. Overview

1. An Overview of Perl . 3
Getting Started 3
Natural and Artificial Languages 4

Variable Syntax 5
Verbs 17

An Average Example 18
How to Do It 20

Filehandles 21
Operators 24

Some Binary Arithmetic Operators 25
String Operators 25
Assignment Operators 26
Unary Arithmetic Operators 28
Logical Operators 29
Some Numeric and String Comparison Operators 30
Some File Test Operators 31

Control Structures 31
What Is Truth? 32
The given and when Statements 34
Looping Constructs 35

Regular Expressions 39
Quantifiers 43
Minimal Matching 44
Nailing Things Down 44
Backreferences 45

iii

www.it-ebooks.info

http://www.it-ebooks.info/

List Processing 47
What You Don’t Know Won’t Hurt You (Much) 49

Part II. The Gory Details

2. Bits and Pieces . 53
Atoms 53
Molecules 54
Built-in Data Types 56
Variables 58
Names 60

Name Lookups 62
Scalar Values 65

Numeric Literals 67
String Literals 67
Pick Your Own Quotes 70
Or Leave Out the Quotes Entirely 72
Interpolating Array Values 73
“Here” Documents 73
Version Literals 75
Other Literal Tokens 76

Context 76
Scalar and List Context 76
Boolean Context 78
Void Context 79
Interpolative Context 79

List Values and Arrays 79
List Assignment 82
Array Length 83

Hashes 84
Typeglobs and Filehandles 86
Input Operators 87

Command Input (Backtick) Operator 87
Line Input (Angle) Operator 88
Filename Globbing Operator 91

3. Unary and Binary Operators . 95
Terms and List Operators (Leftward) 97
The Arrow Operator 99
Autoincrement and Autodecrement 100

iv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Exponentiation 101
Ideographic Unary Operators 101
Binding Operators 103
Multiplicative Operators 104
Additive Operators 105
Shift Operators 105
Named Unary and File Test Operators 106
Relational Operators 111
Equality Operators 111
Smartmatch Operator 112

Smartmatching of Objects 117
Bitwise Operators 118
C-Style Logical (Short-Circuit) Operators 119
Range Operators 120
Conditional Operator 123
Assignment Operators 125
Comma Operators 126
List Operators (Rightward) 127
Logical and, or, not, and xor 127
C Operators Missing from Perl 128

4. Statements and Declarations . 129
Simple Statements 130
Compound Statements 131
if and unless Statements 133
The given Statement 133

The when Statement and Modifier 137
Loop Statements 139

while and until Statements 139
Three-Part Loops 140
foreach Loops 142
Loop Control 144
Bare Blocks as Loops 147
Loopy Topicalizers 149

The goto Operator 149
Paleolithic Perl Case Structures 150
The Ellipsis Statement 152
Global Declarations 153
Scoped Declarations 155

Scoped Variable Declarations 156

Table of Contents | v

www.it-ebooks.info

http://www.it-ebooks.info/

Lexically Scoped Variables: my 159
Persistent Lexically Scoped Variables: state 160
Lexically Scoped Global Declarations: our 161
Dynamically Scoped Variables: local 162

Pragmas 164
Controlling Warnings 165
Controlling the Use of Globals 165

5. Pattern Matching . 167
The Regular Expression Bestiary 168
Pattern-Matching Operators 171

Pattern Modifiers 175
The m// Operator (Matching) 181
The s/// Operator (Substitution) 184
The tr/// Operator (Transliteration) 189

Metacharacters and Metasymbols 192
Metasymbol Tables 193
Specific Characters 199
Wildcard Metasymbols 200

Character Classes 202
Bracketed Character Classes 202
Classic Perl Character Class Shortcuts 204
Character Properties 207
POSIX-Style Character Classes 210

Quantifiers 214
Positions 217

Beginnings: The \A and ^ Assertions 218
Endings: The \z, \Z, and $ Assertions 218
Boundaries: The \b and \B Assertions 219
Progressive Matching 219
Where You Left Off: The \G Assertion 220

Grouping and Capturing 221
Capturing 221
Grouping Without Capturing 229
Scoped Pattern Modifiers 230

Alternation 231
Staying in Control 232

Letting Perl Do the Work 233
Variable Interpolation 234
The Regex Compiler 239

vi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

The Little Engine That /Could(n’t)?/ 241
Fancy Patterns 247

Lookaround Assertions 247
Possessive Groups 249
Programmatic Patterns 251
Recursive Patterns 260
Grammatical Patterns 262
Defining Your Own Assertions 270
Alternate Engines 271

6. Unicode . 275
Show, Don’t Tell 280
Getting at Unicode Data 282

The Encode Module 285
A Case of Mistaken Identity 287
Graphemes and Normalization 290
Comparing and Sorting Unicode Text 297

Using the UCA with Perl’s sort 303
Locale Sorting 305

More Goodies 306
Custom Regex Boundaries 308
Building Character 309

References 313

7. Subroutines . 315
Syntax 315
Semantics 317

Tricks with Parameter Lists 318
Error Indications 320
Scoping Issues 321

Passing References 324
Prototypes 326

Inlining Constant Functions 331
Care with Prototypes 332
Prototypes of Built-in Functions 333

Subroutine Attributes 335
The method Attribute 335
The lvalue Attribute 336

Table of Contents | vii

www.it-ebooks.info

http://www.it-ebooks.info/

8. References . 339
What Is a Reference? 339
Creating References 342

The Backslash Operator 342
Anonymous Data 342
Object Constructors 345
Handle References 346
Symbol Table References 347
Implicit Creation of References 348

Using Hard References 348
Using a Variable As a Variable Name 348
Using a BLOCK As a Variable Name 349
Using the Arrow Operator 350
Using Object Methods 352
Pseudohashes 352
Other Tricks You Can Do with Hard References 353
Closures 355

Symbolic References 359
Braces, Brackets, and Quoting 360

References Don’t Work As Hash Keys 361
Garbage Collection, Circular References, and Weak References 362

9. Data Structures . 365
Arrays of Arrays 365

Creating and Accessing a Two-Dimensional Array 366
Growing Your Own 366
Access and Printing 368
Slices 370
Common Mistakes 371

Hashes of Arrays 374
Composition of a Hash of Arrays 374
Generation of a Hash of Arrays 374
Access and Printing of a Hash of Arrays 375

Arrays of Hashes 376
Composition of an Array of Hashes 376
Generation of an Array of Hashes 377
Access and Printing of an Array of Hashes 377

Hashes of Hashes 378
Composition of a Hash of Hashes 378
Generation of a Hash of Hashes 379

viii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Access and Printing of a Hash of Hashes 380
Hashes of Functions 381
More Elaborate Records 382

Composition, Access, and Printing of More Elaborate Records 382
Composition, Access, and Printing of Even More Elaborate Records 383
Generation of a Hash of Complex Records 384

Saving Data Structures 385

10. Packages . 387
Symbol Tables 389
Qualified Names 393
The Default Package 394
Changing the Package 395
Autoloading 397

11. Modules . 401
Loading Modules 402
Unloading Modules 404
Creating Modules 405

Naming Modules 405
A Sample Module 405
Module Privacy and the Exporter 406

Overriding Built-in Functions 411

12. Objects . 415
Brief Refresher on Object-Oriented Lingo 415
Perl’s Object System 417
Method Invocation 418

Method Invocation Using the Arrow Operator 419
Method Invocation Using Indirect Objects 421
Syntactic Snafus with Indirect Objects 421
Package-Quoted Classes 423

Object Construction 424
Inheritable Constructors 425
Initializers 427

Class Inheritance 429
Inheritance Through @ISA 430
Alternate Method Searching 432
Accessing Overridden Methods 433
UNIVERSAL: The Ultimate Ancestor Class 435

Table of Contents | ix

www.it-ebooks.info

http://www.it-ebooks.info/

Method Autoloading 438
Private Methods 440

Instance Destructors 440
Garbage Collection with DESTROY Methods 441

Managing Instance Data 442
Generating Accessors with Autoloading 444
Generating Accessors with Closures 445
Using Closures for Private Objects 446
New Tricks 449

Managing Class Data 450
The Moose in the Room 453
Summary 455

13. Overloading . 457
The overload Pragma 458
Overload Handlers 459
Overloadable Operators 460
The Copy Constructor (=) 468
When an Overload Handler Is Missing (nomethod and fallback) 469
Overloading Constants 470
Public Overload Functions 472
Inheritance and Overloading 472
Runtime Overloading 473
Overloading Diagnostics 473

14. Tied Variables . 475
Tying Scalars 477

Scalar-Tying Methods 478
Magical Counter Variables 483
Cycling Through Values 483
Magically Banishing $_ 484

Tying Arrays 486
Array-Tying Methods 487
Notational Convenience 491

Tying Hashes 492
Hash-Tying Methods 493

Tying Filehandles 498
Filehandle-Tying Methods 499
Creative Filehandles 506

A Subtle Untying Trap 510

x | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Tie Modules on CPAN 512

Part III. Perl as Technology

15. Interprocess Communication . 517
Signals 518

Signalling Process Groups 520
Reaping Zombies 521
Timing Out Slow Operations 522
Blocking Signals 522
Signal Safety 523

Files 523
File Locking 524
Passing Filehandles 528

Pipes 531
Anonymous Pipes 531
Talking to Yourself 533
Bidirectional Communication 536
Named Pipes 538

System V IPC 540
Sockets 543

Networking Clients 545
Networking Servers 547
Message Passing 550

16. Compiling . 553
The Life Cycle of a Perl Program 554
Compiling Your Code 556
Executing Your Code 562
Compiler Backends 564
Code Generators 565

The Bytecode Generator 566
The C Code Generators 566

Code Development Tools 567
Avant-Garde Compiler, Retro Interpreter 569

17. The Command-Line Interface . 575
Command Processing 575

#! and Quoting on Non-Unix Systems 578
Location of Perl 580

Table of Contents | xi

www.it-ebooks.info

http://www.it-ebooks.info/

Switches 580
Environment Variables 594

18. The Perl Debugger . 603
Using the Debugger 604
Debugger Commands 606

Stepping and Running 607
Breakpoints 607
Tracing 609
Display 609
Locating Code 610
Actions and Command Execution 611
Miscellaneous Commands 613

Debugger Customization 615
Editor Support for Debugging 615
Customizing with Init Files 616
Debugger Options 616

Unattended Execution 619
Debugger Support 620

Writing Your Own Debugger 622
Profiling Perl 623

Devel::DProf 623
Devel::NYTProf 627

19. CPAN . 629
History 629
A Tour of the Repository 630

Creating a MiniCPAN 632
The CPAN Ecosystem 633

PAUSE 633
Searching CPAN 635
Testing 635
Bug Tracking 635

Installing CPAN Modules 636
By Hand 637
CPAN Clients 638

Creating CPAN Distributions 640
Starting Your Distribution 640
Testing Your Modules 642

xii | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Part IV. Perl as Culture

20. Security . 647
Handling Insecure Data 648

Detecting and Laundering Tainted Data 651
Cleaning Up Your Environment 656
Accessing Commands and Files Under Reduced Privileges 657
Defeating Taint Checking 660

Handling Timing Glitches 661
Unix Kernel Security Bugs 662
Handling Race Conditions 663
Temporary Files 665

Handling Insecure Code 668
Changing Root 669
Safe Compartments 670
Code Masquerading As Data 675

21. Common Practices . 679
Common Goofs for Novices 679

Universal Blunders 680
Frequently Ignored Advice 682
C Traps 683
Shell Traps 684
Python Traps 685
Ruby Traps 687
Java Traps 689

Efficiency 691
Time Efficiency 691
Space Efficiency 697
Programmer Efficiency 698
Maintainer Efficiency 698
Porter Efficiency 699
User Efficiency 700

Programming with Style 701
Fluent Perl 705
Program Generation 715

Generating Other Languages in Perl 716
Generating Perl in Other Languages 717
Source Filters 718

Table of Contents | xiii

www.it-ebooks.info

http://www.it-ebooks.info/

22. Portable Perl . 721
Newlines 723
Endianness and Number Width 724
Files and Filesystems 725
System Interaction 727
Interprocess Communication (IPC) 727
External Subroutines (XS) 728
Standard Modules 728
Dates and Times 729
Internationalization 729
Style 730

23. Plain Old Documentation . 731
Pod in a Nutshell 731

Verbatim Paragraphs 733
Command Paragraphs 733
Flowed Text 737

Pod Translators and Modules 740
Writing Your Own Pod Tools 742
Pod Pitfalls 747
Documenting Your Perl Programs 748

24. Perl Culture . 751
History Made Practical 751
Perl Poetry 754
Virtues of the Perl Programmer 756
Events 757
Getting Help 758

Part V. Reference Material

25. Special Names . 763
Special Names Grouped by Type 763

Regular Expression Special Variables 763
Per-Filehandle Variables 764
Per-Package Special Variables 764
Program-Wide Special Variables 765
Per-Package Special Filehandles 766
Per-Package Special Functions 766

Special Variables in Alphabetical Order 767

xiv | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

26. Formats . 793
String Formats 793
Binary Formats 799

pack 800
unpack 809

Picture Formats 810
Format Variables 814
Footers 817
Accessing Formatting Internals 817

27. Functions . 819
Perl Functions by Category 822
Perl Functions in Alphabetical Order 824

28. The Standard Perl Library . 991
Library Science 991
A Tour of the Perl Library 993

Roll Call 995
The Future of the Standard Perl Library 997
Wandering the Stacks 998

29. Pragmatic Modules . 1001
attributes 1002
autodie 1003
autouse 1004
base 1005
bigint 1006
bignum 1006
bigrat 1007
blib 1007
bytes 1007
charnames 1008

Custom Character Names 1009
Runtime Lookups 1010

constant 1012
Restrictions on constant 1013

deprecate 1014
diagnostics 1014
encoding 1017
feature 1017

Table of Contents | xv

www.it-ebooks.info

http://www.it-ebooks.info/

fields 1018
filetest 1018
if 1019
inc::latest 1019
integer 1019
less 1020
lib 1021
locale 1022
mro 1023
open 1023
ops 1024
overload 1025
overloading 1025
parent 1026
re 1026
sigtrap 1029

Signal Handlers 1029
Predefined Signal Lists 1030
Other Arguments to sigtrap 1030
Examples of sigtrap 1031

sort 1032
strict 1032

strict "refs" 1033
strict "vars" 1033
strict "subs" 1034

subs 1035
threads 1035
utf8 1037
vars 1037
version 1037
vmsish 1038

exit 1038
hushed 1038
status 1039
time 1039

warnings 1039
User-Defined Pragmas 1042

xvi | Table of Contents

www.it-ebooks.info

http://www.it-ebooks.info/

Glossary . 1045

Index of Perl Modules in This Book . 1083

Index . 1091

Table of Contents | xvii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

List of Tables

P-1. Selected Perl manpages . xxxiii

P-2. The perlfaq manpages . xxxiv

P-3. Platform-specific manpages . xxxiv

1-1. Variable types and their uses . 6

1-2. Mathematical operators . 25

1-3. Increment operators . 28

1-4. Logical operators . 29

1-5. Comparison operators . 30

1-6. File test operators . 31

1-7. Shortcuts for alphabetic characters . 42

1-8. Regular expression backreferences . 46

2-1. Accessing scalar values . 59

2-2. Syntax for scalar terms . 59

2-3. Syntax for list terms . 59

2-4. Syntax for hash terms . 59

2-5. Backslashed character escapes . 68

2-6. Translation escapes . 69

2-7. Quote constructs . 71

3-1. Operator precedence . 96

3-2. Named unary operators . 106

3-3. Ambiguous characters . 107

3-4. File test operators . 108

xix

www.it-ebooks.info

http://www.it-ebooks.info/

3-5. Relational operators . 111

3-6. Equality operators . 112

3-7. Smartmatch behavior . 114

3-8. Logical operators . 119

5-1. Regular expression modifiers . 175

5-2. m// modifiers . 182

5-3. s/// modifiers . 185

5-4. Small capitals and their codepoints . 190

5-5. tr/// modifiers . 190

5-6. General regex metacharacters . 193

5-7. Regex quantifiers . 194

5-8. Extended regex sequences . 195

5-9. Alphanumeric regex metasymbols . 196

5-10. Double-quotish character aliases . 199

5-11. Classic character classes . 205

5-12. Unicode General Categories (major) . 207

5-13. Unicode General Categories (all) . 208

5-14. ASCII symbols that count as punctuation . 210

5-15. POSIX character classes . 211

5-16. POSIX character classes and their Perl equivalents . 213

5-17. Regex quantifiers compared . 214

5-18. Alternate regex engines . 271

6-1. Sample Unicode characters . 276

6-2. Unicode confusables for capital A . 278

6-3. Case-related properties . 289

6-4. Canonical conundra . 292

7-1. Prototypes to emulate built-ins . 327

7-2. Prototypes for built-in functions . 334

12-1. Mapping methods to subroutines . 426

13-1. Overloadable operators . 460

xx | List of Tables

www.it-ebooks.info

http://www.it-ebooks.info/

14-1. Object fields in DotFiles . 493

14-2. Tie modules on CPAN . 512

16-1. Corresponding terms in computer languages and natural languages 557

16-2. What happens when . 574

17-1. Values for the -C switch . 582

17-2. -D options . 584

19-1. Build commands for the two major build tools . 637

20-1. Selected opcode tags from Opcode . 673

21-1. A mapping of Python to Perl jargon . 685

22-1. System-specific manpages . 721

25-1. Annotations for special variables . 767

26-1. Formats for sprintf . 794

26-2. Formats by value type . 795

26-3. sprintf numeric conversions . 795

26-4. Backward compatible synonyms for numeric conversions 795

26-5. Format modifiers for sprintf . 796

26-6. Template characters for pack/unpack . 801

26-7. Template modifiers for pack/unpack . 802

27-1. Return values for fcntl . 862

27-2. Return values for ioctl . 886

27-3. Modes for open . 904

27-4. Expected return values for coderefs in @INC . 929

27-5. Splice equivalents for array operations . 951

27-6. Fields returned by stat . 956

27-7. Flags for sysopen . 965

27-8. Less common flags for sysopen . 965

List of Tables | xxi

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

The Pursuit of Happiness
Perl is a language for getting your job done.

Of course, if your job is programming, you can get your job done with any “com-
plete” computer language, theoretically speaking. But we know from experience
that computer languages differ not so much in what they make possible, but in
what they make easy. At one extreme, the so-called “fourth generation languages”
make it easy to do some things, but nearly impossible to do other things. At the
other extreme, so-called “industrial-strength” languages make it equally difficult
to do almost everything.

Perl is different. In a nutshell, Perl is designed to make the easy jobs easy, without
making the hard jobs impossible.

And what are these “easy jobs” that ought to be easy? The ones you do every day,
of course. You want a language that makes it easy to manipulate numbers and
text, files and directories, computers and networks, and especially programs. It
should be easy to run external programs and scan their output for interesting
tidbits. It should be easy to send those same tidbits off to other programs that
can do special things with them. It should be easy to develop, modify, and debug
your own programs, too. And, of course, it should be easy to compile and run
your programs, and do it portably, on any modern operating system.

Perl does all that, and a whole lot more.

Initially designed as a glue language for Unix, Perl has long since spread to most
other operating systems. Because it runs nearly everywhere, Perl is one of the
most portable programming environments available today. To program C or C
++ portably, you have to put in all those strange #ifdef markings for different
operating systems. To program Java portably, you have to understand the id-
iosyncrasies of each new Java implementation. To program a shell script porta-
bly, you have to remember the syntax for each operating system’s version of each

xxiii

www.it-ebooks.info

http://www.it-ebooks.info/

command, and somehow find the common factor that (you hope) works every-
where. And to program Visual Basic portably, you just need a more flexible def-
inition of the word “portable”. :–)

Perl happily avoids such problems while retaining many of the benefits of these
other languages, with some additional magic of its own. Perl’s magic comes from
many sources: the utility of its feature set, the inventiveness of the Perl commu-
nity, and the exuberance of the open source movement in general. But much of
this magic is simply hybrid vigor; Perl has a mixed heritage, and has always
viewed diversity as a strength rather than a weakness. Perl is a “give me your
tired, your poor” language. If you feel like a huddled mass longing to be free,
then Perl is for you.

Perl reaches out across cultures. Much of the explosive growth of Perl was fueled
by the hankerings of former Unix systems programmers who wanted to take along
with them as much of the “old country” as they could. For them, Perl is the
portable distillation of Unix culture, an oasis in the wilderness of “can’t get there
from here”. On the other hand, it also works in the other direction: Windows-
based web designers are often delighted to discover that they can take their Perl
programs and run them unchanged on the company’s Unix servers.

Although Perl is especially popular with systems programmers and web devel-
opers, that’s just because they discovered it first; Perl appeals to a much broader
audience. From its small start as a text-processing language, Perl has grown into
a sophisticated, general-purpose programming language with a rich software de-
velopment environment complete with debuggers, profilers, cross-referencers,
compilers, libraries, syntax-directed editors, and all the rest of the trappings of
a “real” programming language—if you want them. But those are all about mak-
ing hard things possible; and lots of languages can do that. Perl is unique in that
it never lost its vision for keeping easy things easy.

Because Perl is both powerful and accessible, it is being used daily in every imag-
inable field, from aerospace engineering to molecular biology, from mathematics
to linguistics, from graphics to document processing, from database manipula-
tion to client-server network management. Perl is used by people who are des-
perate to analyze or convert lots of data quickly, whether you’re talking DNA
sequences, web pages, or pork belly futures.

There are many reasons for the success of Perl. Perl was a successful open source
project long before the open source movement got its name. Perl is free, and it
will always be free. You can use Perl however you see fit, subject only to a very
liberal licensing policy. If you are in business and want to use Perl, go right ahead.
You can embed Perl in the commercial applications you write without fee or

xxiv | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

restriction. And if you have a problem that the Perl community can’t fix, you
have the ultimate backstop: the source code itself. The Perl community is not in
the business of renting you their trade secrets in the guise of “upgrades”. The
Perl community will never “go out of business” and leave you with an orphaned
product.

It certainly helps that Perl is free software. But that’s not enough to explain the
Perl phenomenon, since many freeware packages fail to thrive. Perl is not just
free; it’s also fun. People feel like they can be creative in Perl, because they have
freedom of expression: they get to choose what to optimize for, whether that’s
computer speed or programmer speed, verbosity or conciseness, readability or
maintainability or reusability or portability or learnability or teachability. You
can even optimize for obscurity, if you’re entering an Obfuscated Perl Contest.

Perl can give you all these degrees of freedom because it’s a language with a split
personality. It’s simultaneously a very simple language and a very rich language.
Perl has taken good ideas from nearly everywhere, and installed them into an
easy-to-use mental framework. To those who merely like it, Perl is the Practical
Extraction and Report Language. To those who love it, Perl is the Pathologically
Eclectic Rubbish Lister. And to the minimalists in the crowd, Perl seems like a
pointless exercise in redundancy. But that’s okay. The world needs a few reduc-
tionists (mainly as physicists). Reductionists like to take things apart. The rest
of us are just trying to get it together.

There are many ways in which Perl is a simple language. You don’t have to know
many special incantations to compile a Perl program—you can just execute it
like a batch file or shell script. The types and structures used by Perl are easy to
use and understand. Perl doesn’t impose arbitrary limitations on your data—
your strings and arrays can grow as large as they like (so long as you have mem-
ory), and they’re designed to scale well as they grow. Instead of forcing you to
learn new syntax and semantics, Perl borrows heavily from other languages you
may already be familiar with (such as C, and awk, and BASIC, and Python, and
English, and Greek). In fact, just about any programmer can read a well-written
piece of Perl code and have some idea of what it does.

Most important, you don’t have to know everything there is to know about Perl
before you can write useful programs. You can learn Perl “small end first”. You
can program in Perl Baby-Talk, and we promise not to laugh. Or more precisely,
we promise not to laugh any more than we’d giggle at a child’s creative way of
putting things. Many of the ideas in Perl are borrowed from natural language,
and one of the best ideas is that it’s okay to use a subset of the language as long
as you get your point across. Any level of language proficiency is acceptable in

Preface | xxv

www.it-ebooks.info

http://www.it-ebooks.info/

Perl culture. We won’t send the language police after you. A Perl script is “cor-
rect” if it gets the job done before your boss fires you.

Though simple in many ways, Perl is also a rich language, and there is much to
be learned about it. That’s the price of making hard things possible. Although it
will take some time for you to absorb all that Perl can do, you will be glad to have
access to Perl’s extensive capabilities when the time comes that you need them.

Because of its heritage, Perl was a rich language even when it was “just” a data-
reduction language designed for navigating files, scanning large amounts of text,
creating and obtaining dynamic data, and printing easily formatted reports based
on that data. But somewhere along the line, Perl started to blossom. It also be-
came a language for filesystem manipulation, process management, database
administration, client-server programming, secure programming, Web-based
information management, and even for object-oriented and functional program-
ming. These capabilities were not just slapped onto the side of Perl—each new
capability works synergistically with the others, because Perl was designed to be
a glue language from the start.

But Perl can glue together more than its own features. Perl is designed to be mod-
ularly extensible. Perl allows you to rapidly design, program, debug, and deploy
applications, and it also allows you to easily extend the functionality of these
applications as the need arises. You can embed Perl in other languages, and you
can embed other languages in Perl. Through the module importation mecha-
nism, you can use these external definitions as if they were built-in features of
Perl. Object-oriented external libraries retain their object-orientedness in Perl.

Perl helps you in other ways, too. Unlike a strictly interpreted language such as
command files or shell scripts, which compile and execute a program one com-
mand at a time, Perl first compiles your whole program quickly into an inter-
mediate format. Like any other compiler, it performs various optimizations, and
gives you instant feedback on everything from syntax and semantic errors to
library binding mishaps. Once Perl’s compiler frontend is happy with your pro-
gram, it passes off the intermediate code to the interpreter to execute (or op-
tionally to any of several modular backends that can emit C or bytecode). This
all sounds complicated, but the compiler and interpreter are quite efficient, and
most of us find that the typical compile-run-fix cycle is measured in mere seconds.
Together with Perl’s many fail-soft characteristics, this quick turnaround capa-
bility makes Perl a language in which you really can do rapid prototyping. Then
later, as your program matures, you can tighten the screws on yourself, and make
yourself program with less flair but more discipline. Perl helps you with that, too,
if you ask nicely.

xxvi | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Perl also helps you to write programs more securely. In addition to all the typical
security interfaces provided by other languages, Perl also guards against acci-
dental security errors through a unique data tracing mechanism that automati-
cally determines which data came from insecure sources and prevents dangerous
operations before they can happen. Finally, Perl lets you set up specially pro-
tected compartments in which you can safely execute Perl code of dubious origin,
masking out dangerous operations.

But, paradoxically, the way in which Perl helps you the most has almost nothing
to do with Perl, and everything to do with the people who use Perl. Perl folks are,
frankly, some of the most helpful folks on earth. If there’s a religious quality to
the Perl movement, then this is at the heart of it. Larry wanted the Perl community
to function like a little bit of heaven, and by and large he seems to have gotten
his wish, so far. Please do your part to keep it that way.

Whether you are learning Perl because you want to save the world, or just because
you are curious, or because your boss told you to, this handbook will lead you
through both the basics and the intricacies. And although we don’t intend to
teach you how to program, the perceptive reader will pick up some of the art,
and a little of the science, of programming. We will encourage you to develop
the three great virtues of a programmer: laziness, impatience, and hubris. Along
the way, we hope you find the book mildly amusing in some spots (and wildly
amusing in others). And if none of this is enough to keep you awake, just keep
reminding yourself that learning Perl will increase the value of your resume. So
keep reading.

What’s New in This Edition
What’s not new? It’s been a long time since we’ve updated this book. Let’s just say
we had a couple of distractions, but we’re all better now.

The third edition was published in the middle of 2000, just as Perl v5.6 was com-
ing out. As we write this, it’s 12 years later and Perl v5.16 is coming out soon. A
lot has happened in those years, including several new releases of Perl 5, and a
little thing we call Perl 6. That 6 is deceptive though; Perl 6 is really a “kid sister”
language to Perl 5, and not just a major update to Perl 5 that version numbers
have trained you to expect. This book isn’t about that other language. It’s still

Preface | xxvii

www.it-ebooks.info

http://www.it-ebooks.info/

about Perl 5, the version that most people in the world (even the Perl 6 folks!)
are still using quite productively.1

To tell you what’s new in this book is to tell you what’s new in Perl. This isn’t just
a facelift to spike book sales. It’s a long anticipated major update for a language
that’s been very active in the past five years. We won’t list everything that’s
changed (you can read the perldelta pages), but there are some things we’d like to
call out specifically.

In Perl 5, we started adding major new features, along with a way to shield older
programs from new keywords. For instance, we finally relented to popular de-
mand for a switch-like statement. In typical Perl fashion, though, we made it
better and more fancy, giving you more control to do what you need to do. We
call it given–when, but you only get that feature if you ask for it. Any of these
statements enable the feature:

use v5.10;
use feature qw(switch);
use feature qw(:5.10);

and once enabled, you have your super-charged switch:

given ($item) {
 when (/a/) { say "Matched an a" }
 when (/bee/) { say "Matched a bee" }
}

You’ll see more about that in Chapter 4, along with many of the other new features
as they appear where they make the most sense.

Although Perl has had Unicode support since v5.6, that support is greatly im-
proved in recent versions, including better regular expression support than any
other language at the moment. Perl’s better-and-better support is even acting as
a testbed for future Unicode developments. In the previous edition of this book,
we had all of that Unicode stuff in one chapter, but you’ll find it throughout this
book when we need it.

Regular expressions, the feature that many people associate with Perl, are even
better. Other languages stole Perl’s pattern language, calling it Perl Compatible
Regular Expressions, but also adding some features of their own. We’ve stolen
back some of those features, continuing Perl’s tradition of taking the best ideas
from everywhere and everything. You’ll also find powerful new features for deal-
ing with Unicode in patterns.

1. Since we’re lazy, and since by now you already know this book is about Perl 5, we should mention that we
won’t always spell out “Perl v5.n”—for the rest of this book, if you see a bare version number that starts
with “v5”, just assume we’re talking about that version of Perl.

xxviii | Preface

www.it-ebooks.info

http://www.it-ebooks.info/

Threads are much different today, too. Perl used to support two thread models:
one we called 5005threads (because that’s when we added them), and interpreter
threads. As of v5.10, it’s just the interpreter threads. However, for various rea-
sons, we didn’t think we could do the topic justice in this edition since we
dedicated our time to many of the other features. If you want to learn about
threads, see the perlthrtut manpage, which would have been approximately the
same thing our “Threads” chapter would have been. Maybe we can provide a
bonus chapter later, though.

Other things have come or gone. Some experiments didn’t work out and we took
them out of Perl, replacing them with other experiments. Pseudohashes, for in-
stance, were deprecated, removed, and forgotten. If you don’t know what those
are, don’t worry about it, but don’t look for them in this edition either.

And, since we last updated this book, there’s been a tremendous revolution (or
two) in Perl programming practice as well as its testing culture. CPAN (the Com-
prehensive Perl Archive Network) continues to grow exponentially, making it
Perl’s killer feature. This isn’t a book about CPAN, though, but we tell you about
those modules when they are important. Don’t try to do everything with just
vanilla Perl.

We’ve also removed two chapters, the list of modules in the Standard Library
(Chapter 32 in the previous edition) and the diagnostic messages (Chapter 33 in
the previous edition). Both of these will be out of date before the book even gets
on your bookshelf. We’ll show you how to get that list yourself. For the diagnostic
messages, you can find all of them in the perldiag manpage, or turn warnings into
longer messages with the diagnostics pragma.

Part I, Overview
Getting started is always the hardest part. This part presents the fundamen-
tal ideas of Perl in an informal, curl-up-in-your-favorite-chair fashion. Not
a full tutorial, it merely offers a quick jump-start, which may not serve ev-
eryone. See the section on “Offline Documentation” below for other books
that might better suit your learning style.

Part II, The Gory Details
This part consists of an in-depth, no-holds-barred discussion of the guts of
the language at every level of abstraction, from data types, variables, and
regular expressions, to subroutines, modules, and objects. You’ll gain a
good sense of how the language works, and in the process, pick up a few
hints on good software design. (And if you’ve never used a language with
pattern matching, you’re in for a special treat.)

Preface | xxix

www.it-ebooks.info

http://perldoc.perl.org/perlthrtut.html
http://perldoc.perl.org/perldiag.html
http://www.it-ebooks.info/

Part III, Perl As Technology
You can do a lot with Perl all by itself, but this part will take you to a higher
level of wizardry. Here you’ll learn how to make Perl jump through whatever
hoops your computer sets up for it, everything from dealing with Unicode,
interprocess communication and multithreading, through compiling,
invoking, debugging, and profiling Perl, on up to writing your own external
extensions in C or C++, or interfaces to any existing API you feel like. Perl
will be quite happy to talk to any interface on your computer—or, for that
matter, on any other computer on the Internet, weather permitting.

Part IV, Perl As Culture
Everyone understands that a culture must have a language, but the Perl
community has always understood that a language must have a culture. This
part is where we view Perl programming as a human activity, embedded in
the real world of people. We’ll cover how you can improve the way you deal
with both good people and bad people. We’ll also dispense a great deal of
advice on how you can become a better person yourself, and on how to make
your programs more useful to other people.

Part V, Reference Material
Here we’ve put together all the chapters in which you might want to look
something up alphabetically, everything from special variables and func-
tions to standard modules and pragmas. The Glossary will be particularly
helpful to those who are unfamiliar with the jargon of computer science.
For example, if you don’t know what the meaning of “pragma” is, you could
look it up right now. (If you don’t know what the meaning of “is” is, we
can’t help you with that.)

The Standard Distribution
The official Perl policy, as noted in perlpolicy, is that the last two maintenance
releases are officially supported. Since the current release as we write this is v5.14,
that means both v5.12 and v5.14 are officially supported. When v5.16 is released,
v5.12 won’t be supported anymore.

Most operating system vendors these days include Perl as a standard component
of their systems, although their release cycles might not track the latest Perl. As
of this writing, AIX, BeOS, BSDI, Debian, DG/UX, DYNIX/ptx, FreeBSD, IRIX,
LynxOS, Mac OS X, OpenBSD, OS390, RedHat, SINIX, Slackware, Solaris,
SuSE, and Tru64 all came with Perl as part of their standard distributions. Some
companies provide Perl on separate CDs of contributed freeware or through their
customer service groups. Third-party companies like ActiveState offer prebuilt

xxx | Preface

www.it-ebooks.info

http://perldoc.perl.org/perlpolicy.html
http://www.it-ebooks.info/

Perl distributions for a variety of different operating systems, including those
from Microsoft.

Even if your vendor does ship Perl as standard, you’ll probably eventually want
to compile and install Perl on your own. That way you’ll know you have the
latest version, and you’ll be able to choose where to install your libraries and
documentation. You’ll also be able to choose whether to compile Perl with sup-
port for optional extensions such as multithreading, large files, or the many low-
level debugging options available through the –D command-line switch. (The
user-level Perl debugger is always supported.)

The easiest way to download a Perl source kit is probably to point your web
browser to Perl’s homepage, where you’ll find download information prominently
featured on the start-up page, along with links to precompiled binaries for plat-
forms that have misplaced their C compilers.

You can also head directly to CPAN, described in Chapter 19, using http://www
.cpan.org. If those are too slow for you (and they might be, because they’re very
popular), you should find a mirror close to you. The MIRRORED.BY file there
contains a list of all other CPAN sites, so you can just get that file and then pick
your favorite mirror. Some of them are available through FTP, others through
HTTP (which makes a difference behind some corporate firewalls). The http://
www.cpan.org multiplexor attempts to do this selection for you. You can change
your selection if you like later.

Once you’ve fetched the source code and unpacked it into a directory, you should
read the README and the INSTALL files there to learn how to build Perl. There
may also be an INSTALL.platform file for you to read there, where platform rep-
resents your operating system platform.

If your platform happens to be some variety of Unix, then your commands to
fetch, configure, build, and install Perl might resemble what follows. First, you
must choose a command to fetch the source code. You can download via the
Web using a browser or a command-line tool:

% wget http://www.cpan.org/src/5.0/maint.tar.gz

Now unpack, configure, build, and install:

% tar zxf latest.tar.gz # or gunzip first, then tar xf
% cd perl–5.14.2 # or 5.* for whatever number
% sh Configure –des # assumes default answers
% make test && make install # install typically requires superuser

Your platform might already have packages that do this work for you (as well as
providing platform-specific fixes or enhancements). Even then, many platforms
already come with Perl, so you might not need to do anything.

Preface | xxxi

www.it-ebooks.info

http://www.perl.org
http://www.cpan.org
http://www.cpan.org
http://www.cpan.org/SITES.html
http://www.cpan.org
http://www.cpan.org
http://www.it-ebooks.info/

If you already have Perl but want a different version, you can save yourself some
work by using the perlbrew tool. It automates all of this for you and installs it
where you (should) have permissions to install files so you don’t need any ad-
ministrator privileges. It’s on CPAN as App::perlbrew, but you can also install it
according to the documentation:

% curl –L http://xrl.us/perlbrewinstall | bash

Once installed, you can let the tool do all the work for you:

% ~/perl5/perlbrew/bin/perlbrew install perl–5.14.2

There’s a lot more that perlbrew can do for you, so see its documentation.

You can also get enhanced versions of the standard Perl distribution. ActiveState
offers ActivePerl for free for Windows, Mac OS X, and Linux, and for a fee for
Solaris, HP-UX, and AIX.

Strawberry Perl is Windows-only, and it comes with the various tools you need
to compile and install third-party Perl modules for CPAN.

Citrus Perl is a distribution for Windows, Mac OS X, and Linux that bundles
wxPerl tools for creating GUIs. It’s targeted at people who want to create dis-
tributed GUI applications with Perl instead of a general-purpose Perl. Its Cava
Packager tool helps you do that.

Online Documentation
Perl’s extensive online documentation comes as part of the standard Perl distri-
bution. (See the next section for offline documentation.) Additional documen-
tation shows up whenever you install a module from CPAN.

When we refer to a “Perl manpage” in this book, we’re talking about this set of
online Perl manual pages, sitting on your computer. The name manpage is purely
a convention meaning a file containing documentation—you don’t need a Unix-
style man program to read one. You may even have the Perl manpages installed
as HTML pages, especially on non-Unix systems.

The online manpages for Perl have been divided into separate sections so you can
easily find what you are looking for without wading through hundreds of pages
of text. Since the top-level manpage is simply called perl, the Unix command
“man perl” should take you to it.2 That page in turn directs you to more specific

2. If you still get a truly humongous page when you do that, you’re probably picking up the ancient v4
manpage. Check your MANPATH for archaeological sites. (Say “perldoc perl” to find out how to configure
your MANPATH based on the output of “perl –V:man.dir”.)

xxxii | Preface

www.it-ebooks.info

http://www.activestate.com/activeperl/downloads
http://www.strawberryperl.org
http://www.citrusperl.com/
http://www.cava.co.uk/
http://www.cava.co.uk/
http://www.it-ebooks.info/

pages. For example, “man perlre” will display the manpage for Perl’s regular ex-
pressions. The perldoc command often works on systems when the man com-
mand won’t. Your port may also provide the Perl manpages in HTML format or
your system’s native help format. Check with your local sysadmin, unless you’re
the local sysadmin. In which case, ask the monks at http://perlmonks.org.

Navigating the Standard Manpages
In the Beginning (of Perl, that is, back in 1987), the perl manpage was a terse
document, filling about 24 pages when typeset and printed. For example, its
section on regular expressions was only two paragraphs long. (That was enough,
if you knew egrep.) In some ways, nearly everything has changed since then.
Counting the standard documentation, the various utilities, the per-platform
porting information, and the scads of standard modules, we now have thousands
of typeset pages of documentation spread across many separate manpages. (And
that’s not counting any CPAN modules you install, which is likely to be quite a
few.)

But in other ways, nothing has changed: there’s still a perl manpage kicking
around. And it’s still the right place to start when you don’t know where to start.
The difference is that once you arrive, you can’t just stop there. Perl documen-
tation is no longer a cottage industry; it’s a supermall with hundreds of stores.
When you walk in the door, you need to find the YOU ARE HERE to figure out which
shop or department store sells what you’re shopping for. Of course, once you
get familiar with the mall, you’ll usually know right where to go.

A few of the store signs you’ll see are shown in Table P-1.

Table P-1. Selected Perl manpages

Manpage Covers

perl What perl manpages are available

perldata Data types

perlsyn Syntax

perlop Operators and precedence

perlre Regular expressions

perlvar Predefined variables

perlsub Subroutines

perlfunc Built-in functions

perlmod How perl modules work

Preface | xxxiii

www.it-ebooks.info

http://perlmonks.org
http://perldoc.perl.org/perl.html
http://perldoc.perl.org/perl.html
http://perldoc.perl.org/perl.html
http://perldoc.perl.org/perldata.html
http://perldoc.perl.org/perlsyn.html
http://perldoc.perl.org/perlop.html
http://perldoc.perl.org/perlre.html
http://perldoc.perl.org/perlvar.html
http://perldoc.perl.org/perlsub.html
http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perlmod.html
http://www.it-ebooks.info/

Manpage Covers

perlref References

perlobj Objects

perlipc Interprocess communication

perlrun How to run Perl commands, plus switches

perldebug Debugging

perldiag Diagnostic messages

That’s just a small excerpt, but it has the important parts. You can tell that if you
want to learn about an operator, that perlop is apt to have what you’re looking
for. And if you want to find something out about predefined variables, you’d
check in perlvar. If you got a diagnostic message you didn’t understand, you’d go
to perldiag. And so on.

Part of the standard Perl manual is the frequently asked questions (FAQ) list. It’s
split up into these nine different pages, as shown in Table P-2.

Table P-2. The perlfaq manpages

Manpage Covers

perlfaq1 General questions about Perl

perlfaq2 Obtaining and learning about Perl

perlfaq3 Programming tools

perlfaq4 Data manipulation

perlfaq5 Files and formats

perlfaq6 Regular expressions

perlfaq7 General Perl language issues

perlfaq8 System interaction

perlfaq9 Networking

Some manpages contain platform-specific notes, as listed in Table P-3.

Table P-3. Platform-specific manpages

Manpage Covers

perlamiga The Amiga port

perlcygwin The Cygwin port

perldos The MS-DOS port

xxxiv | Preface

www.it-ebooks.info

http://perldoc.perl.org/perlref.html
http://perldoc.perl.org/perlobj.html
http://perldoc.perl.org/perlipc.html
http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/perldebug.html
http://perldoc.perl.org/perldiag.html
http://perldoc.perl.org/perlop.html
http://perldoc.perl.org/perlvar.html
http://perldoc.perl.org/perldiag.html
http://perldoc.perl.org/perlfaq1.html
http://perldoc.perl.org/perlfaq2.html
http://perldoc.perl.org/perlfaq3.html
http://perldoc.perl.org/perlfaq4.html
http://perldoc.perl.org/perlfaq5.html
http://perldoc.perl.org/perlfaq6.html
http://perldoc.perl.org/perlfaq7.html
http://perldoc.perl.org/perlfaq8.html
http://perldoc.perl.org/perlfaq9.html
http://perldoc.perl.org/perlamiga.html
http://perldoc.perl.org/perlcygwin.html
http://perldoc.perl.org/perldos.html
http://www.it-ebooks.info/

Manpage Covers

perlhpux The HP-UX port

perlmachten The Power MachTen port

perlos2 The OS/2 port

perlos390 The OS/390 port

perlvms The DEC VMS port

perlwin32 The MS-Windows port

(See also Chapter 22 and the CPAN ports directory described earlier for porting
information.)

Non-Perl Manpages
When we refer to non-Perl documentation, as in getitimer(2), this refers to the
getitimer manpage from section 2 of the Unix Programmer’s Manual.3 Manpages
for syscalls such as getitimer may not be available on non-Unix systems, but that’s
probably okay, because you couldn’t use the Unix syscall there anyway. If you
really do need the documentation for a Unix command, syscall, or library func-
tion, many organizations have put their manpages on the Web—a quick search
of Google for crypt(3) manual will find many copies.

Although the top-level Perl manpages are typically installed in section 1 of the
standard man directories, we will omit appending a (1) to those manpage names
in this book. You can recognize them anyway because they are all of the form
“perlmumble”.

Offline Documentation
If you’d like to learn more about Perl, here are some related publications that we
recommend:

• Perl 5 Pocket Reference, by Johan Vromans; O’Reilly Media (5th Edition, July
2011). This small booklet serves as a convenient quick-reference for Perl.

• Perl Cookbook, by Tom Christiansen and Nathan Torkington; O’Reilly Media
(2nd Edition, August 2003). This is the companion volume to the book you

3. Section 2 is only supposed to contain direct calls into the operating system. (These are often called “system
calls”, but we’ll consistently call them syscalls in this book to avoid confusion with the system function,
which has nothing to do with syscalls). However, systems vary somewhat in which calls are implemented
as syscalls, and which are implemented as C library calls, so you could conceivably find getitimer(2) in
section 3 instead.

Preface | xxxv

www.it-ebooks.info

http://perldoc.perl.org/perlhpux.html
http://perldoc.perl.org/perlmachten.html
http://perldoc.perl.org/perlos2.html
http://perldoc.perl.org/perlos390.html
http://perldoc.perl.org/perlvms.html
http://perldoc.perl.org/perlwin32.html
http://www.cpan.org/ports/index.html
http://my.safaribooksonline.com/book/programming/perl/9781449311186
http://my.safaribooksonline.com/book/programming/perl/0596003137
http://www.it-ebooks.info/

have in your hands right now. This cookbook’s recipes teach you how to
cook with Perl.

• Learning Perl, by Randal Schwartz, brian d foy, and Tom Phoenix; O’Reilly
Media (6th Edition, June 2011). This book teaches programmers the 30% of
basic Perl they’ll use 70% of the time, and it is targeted at people writing self-
contained programs around a couple of hundred lines.

• Intermediate Perl, by Randal Schwartz, brian d foy, and Tom Phoenix; O’Reilly
Media (March 2006). This book picks up where Learning Perl left off, intro-
ducing references, data structures, packages, objects, and modules.

• Mastering Perl, by brian d foy; O’Reilly Media (July 2007). This book is the
final book in the trilogy along with Learning Perl and Intermediate Perl. In-
stead of focusing on language fundamentals, it shifts gears to teaching the
Perl programmer about applying Perl to the work at hand.

• Modern Perl, by chromatic; Oynx Neon (October 2010). This book provides
a survey of modern Perl programming practice and topics, suitable for people
who know programming already but haven’t paid attention to recent devel-
opments in Perl.

• Mastering Regular Expressions, by Jeffrey Friedl; O’Reilly Media (3rd Edition,
August 2006). Although it doesn’t cover the latest additions to Perl regular
expressions, this book is an invaluable reference for anyone seeking to learn
how regular expressions work.

• Object Oriented Perl, by Damian Conway; Manning (August 1999). For be-
ginning as well as advanced OO programmers, this book explains common
and esoteric techniques for writing powerful object systems in Perl.

• Mastering Algorithms with Perl, by Jon Orwant, Jarkko Hietaniemi, and John
Macdonald; O’Reilly Media (1999). All the useful techniques from a CS al-
gorithms course but without the painful proofs. This book covers funda-
mental and useful algorithms in the fields of graphs, text, sets, and more.

There are many other Perl books and publications out there, and out of senility
we have undoubtedly forgotten to mention some good ones. (Out of mercy we
have neglected to mention some bad ones.)

In addition to the Perl-related publications listed above, the following books aren’t
about Perl directly, but they still come in handy for reference, consultation, and
inspiration.

• The Art of Computer Programming, by Donald Knuth, Volumes 1–4A: “Fun-
damental Algorithms,” “Seminumerical Algorithms,” “Sorting and Search-
ing,” and “Combinatorial Algorithms”; Addison-Wesley (2011).

xxxvi | Preface

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/9781449311063
http://my.safaribooksonline.com/book/programming/perl/0596102062
http://my.safaribooksonline.com/book/programming/perl/9781449311063
http://my.safaribooksonline.com/book/programming/perl/9780596527242
http://my.safaribooksonline.com/book/programming/perl/9781449311063
http://my.safaribooksonline.com/book/programming/perl/0596102062
http://onyxneon.com/books/modern_perl/
http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124
http://www.it-ebooks.info/

• Introduction to Algorithms, by Thomas Cormen, Charles Leiserson, and Ron-
ald Rivest; MIT Press and McGraw-Hill (1990).

• Algorithms in C, by Robert Sedgewick; Addison-Wesley (1990).

• The Elements of Programming Style, by Brian Kernighan and P.J. Plauger;
Prentice Hall (1988).

• The Unix Programming Environment, by Brian Kernighan and Rob Pike; Pren-
tice Hall (1984).

• POSIX Programmer’s Guide, by Donald Lewine; O’Reilly Media (1991).

• Advanced Programming in the UNIX Environment, by W. Richard Stevens;
Addison-Wesley (1–992).

• TCP/IP Illustrated, by W. Richard Stevens, Volumes I–III; Addison-Wesley
(1992–1996).

• The Lord of the Rings, by J. R. R. Tolkien; Houghton Mifflin (U.S.) and Harper
Collins (U.K.) (most recent printing: 2005).

Additional Resources
The Internet is a wonderful invention, and we’re all still discovering how to use
it to its full potential. (Of course, some people prefer to “discover” the Internet
the way Tolkien discovered Middle Earth.)

Perl on the Web
Visit the Perl website. It tells what’s new in the Perl world, and contains source
code and ports, feature articles, documentation, conference schedules, and a lot
more.

Also visit the Perl Mongers web page for a grassroots-level view of Perl’s, er, grass-
roots, which grow quite thickly in every part of the world, except at the South
Pole, where they have to be kept indoors. Local PM groups hold regular small
meetings where you can exchange Perl lore with other Perl hackers who live in
your part of the world.

Bug Reports
In the unlikely event that you should encounter a bug that’s in Perl proper and
not just in your own program, you should try to reduce it to a minimal test case
and then report it with the perlbug program that comes with Perl. See http://bugs
.perl.org for more info.

Preface | xxxvii

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/unix/0201433079
http://www.perl.org
http://www.pm.org
http://bugs.perl.org
http://bugs.perl.org
http://www.it-ebooks.info/

The perlbug command is really an interface to an instance of the RT bug tracking
tool.4 You can just as easily email a report to perlbug@perl.org without its help,
but perlbug collects various information about your installation, such as version
and compilation options, that can help the perl developers figure out your prob-
lem.

You can also look at the list of current issues, as someone is likely to have run
into your problem before. Start at https://rt.perl.org/ and follow the links for the
perl5 queue.

If you’re dealing with a third-party module from CPAN, you’ll use a different RT
instance at https://rt.cpan.org/. Not every CPAN module makes use of its free RT
account, though, so you should always check the module documentation for any
extra instructions on reporting bugs.

Conventions Used in This Book
Some of our conventions get larger sections of their very own. Coding conventions
are discussed in the section on “Programming with Style” in Chapter 21. In a
sense, our lexical conventions are given in the Glossary.

The following typographic conventions are used in this book:

SMALL CAPITALS

Is used mostly for the formal names of Unicode characters, and for talking
about Boolean operators.

Italic
Is used for URLs, manpages, pathnames, and programs. New terms are also
italicized when they first appear in the text. Many of these terms will have
alternate definitions in the Glossary, if the one in the text doesn’t do it for
you. It is also used for command names and command-line switches. This
allows one to distinguish, for example, between the –w warnings switch and
the –w filetest operator.

Monospace Regular

Is used in examples to show the text that you enter literally, and in regular
text to show any literal code. Data values are represented by monospace in
roman quotes, which are not part of the value.

4. Best Practical, the creators of Request Tracker, or RT, donate their service for free for major Perl projects
including perl itself and every CPAN distribution.

xxxviii | Preface

www.it-ebooks.info

mailto:perlbug@perl.org
https://rt.perl.org/
https://rt.cpan.org/
http://www.it-ebooks.info/

Monospace Oblique

Is used for generic code terms for which you must substitute particular val-
ues. It’s sometimes also used in examples to show output produced by a
program.

Monospace Bold

Is occasionally used for literal text that you would type into your command-
line shell.

Monospace Bold Oblique

Is used for literal output when needed to distinguish it from shell input.

We give lots of examples, most of which are pieces of code that should go into a
larger program. Some examples are complete programs, which you can recognize
because they begin with a #! line. We start nearly all of our longer programs with:

#!/usr/bin/perl

Still other examples are things to be typed on a command line. We’ve used % to
indicate a generic shell prompt:

% perl –e 'print "Hello, world.\n"'
Hello, world.

This style is representative of a standard Unix command line, where single quotes
represent the “most quoted” form. Quoting and wildcard conventions on other
systems vary. For example, many command-line interpreters under MS-DOS and
VMS require double quotes instead of single quotes when you need to group
arguments with spaces or wildcards in them.

Acknowledgments
Here we say nice things in public about our kibbitzers, consultants, and reviewers
to make up for all the rude things we said to them in private: Abigail, Matthew
Barnett, Piers Cawley, chromatic, Damian Conway, Dave Cross, Joaquin Fer-
rero, Jeremiah Foster, Jeff Haemer, Yuriy Malenkiy, Nuno Mendes, Steffen Mül-
ler, Enrique Nell, David Nicol, Florian Ragwitz, Allison Randal, Chris Roeder,
Keith Thompson, Leon Timmermans, Nathan Torkington, Johan Vromans, and
Karl Williamson. Any technical errors are our fault, not theirs.

We’d like to express our special gratitude to the entire production crew at O’Reilly
Media for their heroic efforts in overcoming uncountably many unexpected and
extraordinary challenges to bring this book to press in today’s post-modern pub-
lishing world. We wish to thank first and foremost our production editor, Holly
Bauer, for her infinite patience in applying thousands of nitpicking changes and
additions long after we had turned in the manuscript. We thank Production

Preface | xxxix

www.it-ebooks.info

http://www.it-ebooks.info/

Manager Dan Fauxsmith for chasing down the rare fonts needed for our many
Unicode examples and for keeping the production pipeline flowing smoothly.
We thank Production Director Adam Witwer for rolling up his sleeves and dodg-
ing the outrageous slings and arrows cast by the Antenna House formatting soft-
ware used to generate this book’s camera-ready copy. Finally, we thank Publisher
Laurie Petrycki not only for supporting all these people in creating the sort of
book its authors wanted to see printed, but also for encouraging those authors
to write the sort of books people might enjoy reading.

Safari® Books Online
Safari Books Online is an on-demand digital library that lets you
easily search over 7,500 technology and creative reference books and
videos to find the answers you need quickly.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles
before they are available for print, and get exclusive access to manuscripts in
development and post feedback for the authors. Copy and paste code samples,
organize your favorites, download chapters, bookmark key sections, create
notes, print out pages, and benefit from tons of other time-saving features.

O’Reilly Media has uploaded this book to the Safari Books Online service. To
have full digital access to this book and others on similar topics from O’Reilly
and other publishers, sign up for free at http://my.safaribooksonline.com.

We’d Like to Hear from You
We have tested and verified all of the information in this book to the best of our
ability, but you may find that features have changed (or even that we have made
mistakes!). Please let us know about any errors you find, as well as your sugges-
tions for future editions, by writing:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
1-800-998-9938 (in the United States or Canada)
1-707-829-0515 (international or local)
1-707-829-0104 (fax)

We have a website for the book, where we’ll list any errata and other Camel-related
information:

xl | Preface

www.it-ebooks.info

http://my.safaribooksonline.com/?portal=oreilly
http://www.it-ebooks.info/

http://shop.oreilly.com/product/9780596004927.do

Here also you’ll find all the example code from the book available for download
so you don’t have to type it all in like we did.

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Preface | xli

www.it-ebooks.info

http://shop.oreilly.com/product/9780596004927.do
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART I

Overview

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

An Overview of Perl

Getting Started
We think that Perl is an easy language to learn and use, and we hope to convince
you that we’re right. One thing that’s easy about Perl is that you don’t have to
say much before you say what you want to say. In many programming languages,
you have to declare the types, variables, and subroutines you are going to use
before you can write the first statement of executable code. And for complex
problems demanding complex data structures, declarations are a good idea. But
for many simple, everyday problems, you’d like a programming language in
which you can simply say:

print "Howdy, world!\n";

and expect the program to do just that.

Perl is such a language. In fact, this example is a complete program,1 and if you
feed it to the Perl interpreter, it will print “Howdy, world!” on your screen. (The
\n in the example produces a newline at the end of the output.)

And that’s that. You don’t have to say much after you say what you want to say,
either. Unlike many languages, Perl thinks that falling off the end of your program
is just a normal way to exit the program. You certainly may call the exit function
explicitly if you wish, just as you may declare some of your variables, or even
force yourself to declare all your variables. But it’s your choice. With Perl you’re
free to do The Right Thing, however you care to define it.

There are many other reasons why Perl is easy to use, but it would be pointless
to list them all here, because that’s what the rest of the book is for. The devil may
be in the details, as they say, but Perl tries to help you out down there in the hot

1. Or script, or application, or executable, or doohickey. Whatever.

3

www.it-ebooks.info

http://www.it-ebooks.info/

place, too. At every level, Perl is about helping you get from here to there with
minimum fuss and maximum enjoyment. That’s why so many Perl programmers
go around with a silly grin on their face.

This chapter is an overview of Perl, so we’re not trying to present Perl to the
rational side of your brain. Nor are we trying to be complete, or logical. That’s
what the following chapters are for. Vulcans, androids, and like-minded humans
should skip this overview and go straight to Chapter 2 for maximum information
density. If, on the other hand, you’re looking for a carefully paced tutorial, you
should probably get Learning Perl. But don’t throw this book out just yet.

This chapter presents Perl to the other side of your brain, whether you prefer to
call it associative, artistic, passionate, or merely spongy. To that end, we’ll be
presenting various views of Perl that will give you as clear a picture of Perl as the
blind men had of the elephant. Well, okay, maybe we can do better than that.
We’re dealing with a camel here (see the cover). Hopefully, at least one of these
views of Perl will help get you over the hump.

Natural and Artificial Languages
Languages were first invented by humans, for the benefit of humans. In the annals
of computer science, this fact has occasionally been forgotten.2 Since Perl was
designed (loosely speaking) by an occasional linguist, it was designed to work
smoothly in the same ways that natural language works smoothly. Naturally,
there are many aspects to this, since natural language works well at many levels
simultaneously. We could enumerate many of these linguistic principles here,
but the most important principle of language design is that easy things should
be easy, and hard things should be possible. (Actually, that’s two principles.)
They may seem obvious to you, but many computer languages fail at one or the
other.

Natural languages are good at both because people are continually trying to ex-
press both easy things and hard things, so the language evolves to handle both.
Perl was designed first of all to evolve, and indeed it has evolved. Many people
have contributed to the evolution of Perl over the years. We often joke that a
camel is a horse designed by a committee, but if you think about it, the camel is
pretty well adapted for life in the desert. The camel has evolved to be relatively
self-sufficient. (On the other hand, the camel has not evolved to smell good.
Neither has Perl.) This is one of the many strange reasons we picked the camel
to be Perl’s mascot, but it doesn’t have much to do with linguistics.

2. More precisely, this fact has occasionally been remembered.

4 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/9781449311063
http://www.it-ebooks.info/

Now when someone utters the word “linguistics”, many folks focus in on one of
two things. Either they think of words, or they think of sentences. But words and
sentences are just two handy ways to “chunk” speech. Either may be broken
down into smaller units of meaning or combined into larger units of meaning.
And the meaning of any unit depends heavily on the syntactic, semantic, and
pragmatic context in which the unit is located. Natural language has words of
various sorts: nouns and verbs and such. If someone says “dog” in isolation, you
think of it as a noun, but you can also use the word in other ways. That is, a noun
can function as a verb, an adjective, or an adverb when the context demands it.
If you dog a dog during the dog days of summer, you’ll be a dog tired dog-
catcher.3 Perl also evaluates words differently in various contexts. We will see how
it does that later. Just remember that Perl is trying to understand what you’re
saying, like any good listener does. Perl works pretty hard to try to keep up its
end of the bargain. Just say what you mean, and Perl will usually “get it”. (Unless
you’re talking nonsense, of course—the Perl parser understands Perl a lot better
than either English or Swahili.)

But back to nouns. A noun can name a particular object, or it can name a class
of objects generically without specifying which one is currently being referred to.
Most computer languages make this distinction, only we call the particular one
a value and the generic one a variable. A value just exists somewhere, who knows
where, but a variable gets associated with one or more values over its lifetime.
So whoever is interpreting the variable has to keep track of that association. That
interpreter may be in your brain or in your computer.

Variable Syntax
A variable is just a handy place to keep something, a place with a name, so you
know where to find your special something when you come back looking for it
later. As in real life, there are various kinds of places to store things, some of them
rather private, and some of them out in public. Some places are temporary, and
other places are more permanent. Computer scientists love to talk about the
“scope” of variables, but that’s all they mean by it. Perl has various handy ways
of dealing with scoping issues, which you’ll be happy to learn later when the time
is right. Which is not yet. (Look up the adjectives local, my, our, and state in
Chapter 27, when you get curious, or see “Scoped Declarations” on page 155 in
Chapter 4.)

3. And you’re probably dog tired of all this linguistics claptrap. But we’d like you to understand why Perl is
different from the typical computer language, doggone it!

Natural and Artificial Languages | 5

www.it-ebooks.info

http://www.it-ebooks.info/

But a more immediately useful way of classifying variables is by what sort of data
they can hold. As in English, Perl’s primary type distinction is between singular
and plural data. Strings and numbers are singular pieces of data, while lists of
strings or numbers are plural. (And when we get to object-oriented programming,
you’ll find that the typical object looks singular from the outside but plural from
the inside, like a class of students.) We call a singular variable a scalar, and a
plural variable an array. Since a string can be stored in a scalar variable, we might
write a slightly longer (and commented) version of our first example like this:

my $phrase = "Howdy, world!\n"; # Create a variable.
print $phrase; # Print the variable.

The my tells Perl that $phrase is a brand new variable, so it shouldn’t go and look
for an existing one. Note that we do not have to be very specific about what kind
of variable $phrase is. The $ character tells Perl that phrase is a scalar variable;
that is, one containing a singular value. An array variable, by contrast, would
start with an @ character. (It may help you to remember that a $ is a stylized “s”
for “scalar”, while @ is a stylized “a” for “array”.)4

Perl has some other variable types, with unlikely names like “hash”, “handle”, and
“typeglob”. Like scalars and arrays, these types of variables are also preceded by
funny characters, commonly known as sigils. For completeness, Table 1-1 lists all
the sigils you’ll encounter.

Table 1-1. Variable types and their uses

Type Sigil Example Is a Name For

Scalar $ $cents An individual value (number or string)

Array @ @large A list of values, keyed by number

Hash % %interest A group of values, keyed by string

Subroutine & &how A callable chunk of Perl code

Typeglob * *struck Everything named struck

Some language purists point to these sigils as a reason to abhor Perl. This is
superficial. Sigils have many benefits, not least of which is that variables can be
interpolated into strings with no additional syntax. Perl scripts are also easy to
read (for people who have bothered to learn Perl!) because the nouns stand out
from verbs. And new verbs can be added to the language without breaking old
scripts. (We told you Perl was designed to evolve.) And the noun analogy is not

4. This is a simplification of the real story of sigils, which we’ll tell you more about in Chapter 2.

6 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

frivolous—there is ample precedent in English and other languages for requiring
grammatical noun markers. It’s how we think! (We think.)

Singularities

From our earlier example, you can see that scalars may be assigned a new value
with the = operator, just as in many other computer languages. Scalar variables
can be assigned any form of scalar value: integers, floating-point numbers,
strings, and even esoteric things like references to other variables, or to objects.
There are many ways of generating these values for assignment.

As in the Unix5 shell, you can use different quoting mechanisms to make different
kinds of values. Double quotation marks (double quotes) do variable interpola-
tion6 and backslash interpolation (such as turning \n into a newline), while single
quotes suppress interpolation. And backquotes (the ones leaning to the left) will
execute an external program and return the output of the program, so you can
capture it as a single string containing all the lines of output.

my $answer = 42; # an integer
my $pi = 3.14159265; # a "real" number
my $avocados = 6.02e23; # scientific notation
my $pet = "Camel"; # string
my $sign = "I love my $pet"; # string with interpolation
my $cost = 'It costs $100'; # string without interpolation
my $thence = $whence; # another variable's value
my $salsa = $moles * $avocados; # a gastrochemical expression
my $exit = system("vi $file"); # numeric status of a command
my $cwd = `pwd`; # string output from a command

And while we haven’t covered fancy values yet, we should point out that scalars
may also hold references to other data structures, including subroutines and ob-
jects.

my $ary = \@myarray; # reference to a named array
my $hsh = \%myhash; # reference to a named hash
my $sub = \&mysub; # reference to a named subroutine

my $ary = [1,2,3,4,5]; # reference to an unnamed array
my $hsh = {Na => 19, Cl => 35}; # reference to an unnamed hash
my $sub = sub { print $state }; # reference to an unnamed subroutine

5. Here and elsewhere, when we say Unix we mean any operating system resembling Unix, including BSD,
Mac OS X, Linux, Solaris, AIX, and, of course, Unix.

6. Sometimes called “substitution” by shell programmers, but we prefer to reserve that word for something
else in Perl. So please call it interpolation. We’re using the term in the textual sense (“this passage is a
Gnostic interpolation”) rather than in the mathematical sense (“this point on the graph is an interpolation
between two other points”).

Natural and Artificial Languages | 7

www.it-ebooks.info

http://www.it-ebooks.info/

my $fido = Camel–>new("Amelia"); # reference to an object

When you create a new scalar variable, but before you assign it a value, it is
automatically initialized with the value we call undef, which as you might guess
means “undefined”. Depending on context, this undefined value might be in-
terpreted as a slightly more defined null value, such as "" or 0. More generally,
depending on how you use them, variables will be interpreted automatically as
strings, as numbers, or as “true” and “false” values (commonly called Boolean
values). Remember how important context is in human languages. In Perl, var-
ious operators expect certain kinds of singular values as parameters, so we will
speak of those operators as “providing” or “supplying” scalar context to those
parameters. Sometimes we’ll be more specific and say it supplies a numeric con-
text, a string context, or a Boolean context to those parameters. (Later we’ll also
talk about list context, which is the opposite of scalar context.) Perl will auto-
matically convert the data into the form required by the current context, within
reason. For example, suppose you said this:

my $camels = "123";
print $camels + 1, "\n";

The first assigned value of $camels is a string, but it is converted to a number to
add 1 to it, and then converted back to a string to be printed out as 124. The
newline, represented by "\n", is also in string context, but since it’s already a
string, no conversion is necessary. But notice that we had to use double quotes
there—using single quotes to say '\n' would result in a two-character string
consisting of a backslash followed by an “n”, which is not a newline by anybody’s
definition.

So, in a sense, double quotes and single quotes are yet another way of specifying
context. The interpretation of the innards of a quoted string depends on which
quotes you use. (Later, we’ll see some other operators that work like quotes
syntactically but use the string in some special way, such as for pattern matching
or substitution. These all work like double-quoted strings, too. The double-
quote context is the “interpolative” context of Perl, and it is supplied by many
operators that don’t happen to resemble double quotes.)

Similarly, a reference behaves as a reference when you give it a “dereference” con-
text, but otherwise acts like a simple scalar value. For example, we might say:

my $fido = Camel–>new("Amelia");
if (not $fido) { die "dead camel"; }
$fido–>saddle();

Here we create a reference to a Camel object and put it into a new variable,
$fido. On the next line, we test $fido as a scalar Boolean to see if it is “true”, and

8 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

we throw an exception (that is, we complain) if it is not true, which in this case
would mean that the Camel–>new constructor failed to make a proper Camel ob-
ject. But on the last line, we treat $fido as a reference by asking it to look up the
saddle method for the object held in $fido, which happens to be a Camel, so Perl
looks up the saddle method for Camel objects. More about that later. For now,
just remember that context is important in Perl because that’s how Perl knows
what you want without your having to say it explicitly, as many other computer
languages force you to do.

Pluralities

Some kinds of variables hold multiple values that are logically tied together. Perl
has two types of multivalued variables: arrays and hashes. In many ways, these
behave like scalars—new ones can be declared with my, for instance, and they are
automatically initialized to an empty state. But they are different from scalars in
that, when you assign to them, they supply list context to the right side of the
assignment rather than scalar context.

Arrays and hashes also differ from each other. You’d use an array when you want
to look something up by number. You’d use a hash when you want to look
something up by name. The two concepts are complementary—you’ll often see
people using an array to translate month numbers into month names, and a
corresponding hash to translate month names back into month numbers.
(Though hashes aren’t limited to holding only numbers. You could have a hash
that translates month names to birthstone names, for instance.)

An array is an ordered list of scalars, accessed7 by the scalar’s position in
the list. The list may contain numbers, strings, or a mixture of both. (It might
also contain references to subarrays or subhashes.) To assign a list value to an
array, simply group the values together (with a set of parentheses):

my @home = ("couch", "chair", "table", "stove");

Conversely, if you use @home in list context, such as on the right side of a list
assignment, you get back out the same list you put in. So you could create four
scalar variables from the array like this:

my ($potato, $lift, $tennis, $pipe) = @home;

These are called list assignments. They logically happen in parallel, so you can
swap two existing variables by saying:

($alpha,$omega) = ($omega,$alpha);

Arrays.

7. Or keyed, or indexed, or subscripted, or looked up. Take your pick.

Natural and Artificial Languages | 9

www.it-ebooks.info

http://www.it-ebooks.info/

As in C, arrays are zero-based, so while you would talk about the first through
fourth elements of the array, you would get to them with subscripts 0 through
3.8 Array subscripts are enclosed in square brackets [like this], so if you want to
select an individual array element, you would refer to it as $home[n], where n is
the subscript (one less than the element number) you want. See the example that
follows. Since the element you are dealing with is a scalar, you always precede it
with a $.

If you want to assign to one array element at a time, you can; the elements of the
array are automatically created as needed, so you could write the earlier assign-
ment as:

my @home;
$home[0] = "couch";
$home[1] = "chair";
$home[2] = "table";
$home[3] = "stove";

Here we see that you can create a variable with my without giving it an initial value.
(We don’t need to use my on the individual elements because the array already
exists and knows how to create elements on demand.)

Since arrays are ordered, you can do various useful operations on them, such as
the stack operations push and pop. A stack is, after all, just an ordered list with a
beginning and an end. Especially an end. Perl regards the end of your array as
the top of a stack. (Although most Perl programmers think of an array as hori-
zontal, with the top of the stack on the right.)

A hash is an unordered set of scalars, accessed9 by some string value that
is associated with each scalar. For this reason hashes are often called associative
arrays. But that’s too long for lazy typists, and we talk about them so often that
we decided to name them something short and snappy. The other reason we
picked the name “hash” is to emphasize the fact that they’re disordered. (They
are, coincidentally, implemented internally using a hash-table lookup, which is
why hashes are so fast and stay so fast no matter how many values you put into
them.) You can’t push or pop a hash, though, because it doesn’t make sense. A
hash has no beginning or end. Nevertheless, hashes are extremely powerful and
useful. Until you start thinking in terms of hashes, you aren’t really thinking in
Perl. Figure 1-1 shows the ordered elements of an array and the unordered (but
named) elements of a hash.

Hashes.

8. If this seems odd to you, just think of the subscript as an offset; that is, the count of how many array
elements come before it. Obviously, the first element doesn’t have any elements before it, and so it has
an offset of 0. This is how computers think. (We think.)

9. Or keyed, or indexed, or subscripted, or looked up. Take your pick.

10 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Since the keys to a hash are not automatically implied by their position, you must
supply the key as well as the value when populating a hash. You can still assign
a list to it like an ordinary array, but each pair of items in the list will be interpreted
as a key and a value. Since we’re dealing with pairs of items, hashes use the % sigil
to mark hash names. (If you look carefully at the % character, you can see the key
and the value with a slash between them. It may help to squint.)

Suppose you wanted to translate abbreviated day names to the corresponding full
names. You could write the following list assignment:

my %longday = ("Sun", "Sunday", "Mon", "Monday", "Tue", "Tuesday",
 "Wed", "Wednesday", "Thu", "Thursday", "Fri",
 "Friday", "Sat", "Saturday");

But that’s rather difficult to read, so Perl provides the => (equals sign, greater-than
sign) sequence as an alternative separator to the comma. Using this syntactic
sugar (and some creative formatting), it is much easier to see which strings are
the keys and which strings are the associated values.

Figure 1-1. An array and a hash

Natural and Artificial Languages | 11

www.it-ebooks.info

http://www.it-ebooks.info/

my %longday = (
 "Sun" => "Sunday",
 "Mon" => "Monday",
 "Tue" => "Tuesday",
 "Wed" => "Wednesday",
 "Thu" => "Thursday",
 "Fri" => "Friday",
 "Sat" => "Saturday",
);

Not only can you assign a list to a hash, as we did above, but if you mention a
hash in list context, it’ll convert the hash back to a list of key/value pairs, in a
weird order. This is occasionally useful. More often people extract a list of just
the keys, using the (aptly named) keys function. The key list is also unordered,
but can easily be sorted if desired, using the (aptly named) sort function. Then
you can use the ordered keys to pull out the corresponding values in the order
you want.

Because hashes are a fancy kind of array, you select an individual hash element
by enclosing the key in braces (those fancy brackets also known as “curlies”). So,
for example, if you want to find out the value associated with Wed in the hash
above, you would use $longday{"Wed"}. Note again that you are dealing with a
scalar value, so you use $ on the front, not %, which would indicate the entire hash.

Linguistically, the relationship encoded in a hash is genitive or possessive, like the
word “of” in English, or like “’s”. The wife of Adam is Eve, so we write:

my %wife;
$wife{"Adam"} = "Eve";

Complexities

Arrays and hashes are lovely, simple, flat data structures. Unfortunately, the world
does not always cooperate with our attempts to oversimplify. Sometimes you
need to build not-so-lovely, not-so-simple, not-so-flat data structures. Perl lets
you do this by pretending that complicated values are really simple ones. To put
it the other way around, Perl lets you manipulate simple scalar references that
happen to refer to complicated arrays and hashes. We do this all the time in
natural language when we use a simple singular noun like “government” to rep-
resent an entity that is completely convoluted and inscrutable. Among other
things.

To extend our previous example, suppose we want to switch from talking about
Adam’s wife to Jacob’s wife. Now, as it happens, Jacob had four wives. (Don’t
try this at home.) In trying to represent this in Perl, we find ourselves in the odd

12 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

situation where we’d like to pretend that Jacob’s four wives were really one wife.
(Don’t try this at home, either.) You might think you could write it like this:

$wife{"Jacob"} = ("Leah", "Rachel", "Bilhah", "Zilpah"); # WRONG

But that wouldn’t do what you want, because even parentheses and commas are
not powerful enough to turn a list into a scalar in Perl. (Parentheses are used for
syntactic grouping, and commas for syntactic separation.) Rather, you need to
tell Perl explicitly that you want to pretend that a list is a scalar. It turns out that
square brackets are powerful enough to do that:

$wife{"Jacob"} = ["Leah", "Rachel", "Bilhah", "Zilpah"]; # ok

That statement creates an unnamed array and puts a reference to it into the hash
element $wife{"Jacob"}. So we have a named hash containing an unnamed array.
This is how Perl deals with both multidimensional arrays and nested data struc-
tures. As with ordinary arrays and hashes, you can also assign individual ele-
ments, like this:

$wife{"Jacob"}[0] = "Leah";
$wife{"Jacob"}[1] = "Rachel";
$wife{"Jacob"}[2] = "Bilhah";
$wife{"Jacob"}[3] = "Zilpah";

You can see how that looks like a multidimensional array with one string sub-
script and one numeric subscript. To see something that looks more tree-struc-
tured, like a nested data structure, suppose we wanted to list not only Jacob’s
wives but all the sons of each of his wives. In this case we want to treat a hash as
a scalar. We can use braces for that. (Inside each hash value we’ll use square
brackets to represent arrays, just as we did earlier. But now we have an array in
a hash in a hash.)

my %kids_of_wife;
$kids_of_wife{"Jacob"} = {
 "Leah" => ["Reuben", "Simeon", "Levi", "Judah", "Issachar", "Zebulun"],
 "Rachel" => ["Joseph", "Benjamin"],
 "Bilhah" => ["Dan", "Naphtali"],
 "Zilpah" => ["Gad", "Asher"],
};

That would be more or less equivalent to saying:

my %kids_of_wife;
$kids_of_wife{"Jacob"}{"Leah"}[0] = "Reuben";
$kids_of_wife{"Jacob"}{"Leah"}[1] = "Simeon";
$kids_of_wife{"Jacob"}{"Leah"}[2] = "Levi";
$kids_of_wife{"Jacob"}{"Leah"}[3] = "Judah";
$kids_of_wife{"Jacob"}{"Leah"}[4] = "Issachar";
$kids_of_wife{"Jacob"}{"Leah"}[5] = "Zebulun";
$kids_of_wife{"Jacob"}{"Rachel"}[0] = "Joseph";

Natural and Artificial Languages | 13

www.it-ebooks.info

http://www.it-ebooks.info/

$kids_of_wife{"Jacob"}{"Rachel"}[1] = "Benjamin";
$kids_of_wife{"Jacob"}{"Bilhah"}[0] = "Dan";
$kids_of_wife{"Jacob"}{"Bilhah"}[1] = "Naphtali";
$kids_of_wife{"Jacob"}{"Zilpah"}[0] = "Gad";
$kids_of_wife{"Jacob"}{"Zilpah"}[1] = "Asher";

You can see from this that adding a level to a nested data structure is like adding
another dimension to a multidimensional array. Perl lets you think of it either
way, but the internal representation is the same.

The important point here is that Perl lets you pretend that a complex data struc-
ture is a simple scalar. On this simple kind of encapsulation, Perl’s entire object-
oriented structure is built. When we earlier invoked the Camel constructor like
this:

my $fido = Camel–>new("Amelia");

we created a Camel object that is represented by the scalar $fido. But the inside of
the Camel is more complicated. As well-behaved object-oriented programmers,
we’re not supposed to care about the insides of Camels (unless we happen to be
the people implementing the methods of the Camel class). But, generally, an object
like a Camel would consist of a hash containing the particular Camel’s attributes,
such as its name (“Amelia” in this case, not “fido”), and the number of humps
(which we didn’t specify, but probably defaults to 1; check the front cover).

Simplicities

If your head isn’t spinning a bit from reading that last section, then you have an
unusual head. People generally don’t like to deal with complex data structures,
whether governmental or genealogical. So, in our natural languages, we have
many ways of sweeping complexity under the carpet. Many of these fall into the
category of topicalization, which is just a fancy linguistics term for agreeing with
someone about what you’re going to talk about (and by exclusion, what you’re
probably not going to talk about). This happens on many levels in language. On
a high level, we divide ourselves into various subcultures that are interested in
various subtopics, and we establish sublanguages that talk primarily about those
subtopics. The lingo of the doctor’s office (“indissoluble asphyxiant”) is different
from the lingo of the chocolate factory (“everlasting gobstopper”). Most of us
automatically switch contexts as we go from one lingo to another.

On a conversational level, the context switch has to be more explicit, so our lan-
guage gives us many ways of saying what we’re about to say. We put titles on
our books and headers on our sections. On our sentences, we put quaint phrases
like “In regard to your recent query” or “For all X”. Usually, though, we just say

14 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

things like, “You know that dangly thingy that hangs down in the back of your
throat?”

Perl also has several ways of topicalizing. One important topicalizer is the pack
age declaration. Suppose you want to talk about Camels in Perl. You’d likely start
off your Camel module by saying:

package Camel;

This has several notable effects. One of them is that Perl will assume from this
point on that any global verbs or nouns are about Camels. It does this by auto-
matically prefixing any global name10 with the module name “Camel::”. So if you
say:

package Camel;
our $fido = &fetch();

then the real name of $fido is $Camel::fido (and the real name of &fetch is
&Camel::fetch, but we’re not talking about verbs yet). This means that if some
other module says:

package Dog;
our $fido = &fetch();

Perl won’t get confused, because the real name of this $fido is $Dog::fido, not
$Camel::fido. A computer scientist would say that a package establishes a name-
space. You can have as many namespaces as you like, but since you’re only in one
of them at a time, you can pretend that the other namespaces don’t exist. That’s
how namespaces simplify reality for you. Simplification is based on pretending.
(Of course, so is oversimplification, which is what we’re doing in this chapter.)

Now it’s important to keep your nouns straight, but it’s just as important to keep
your verbs straight. It’s nice that &Camel::fetch is not confused with
&Dog::fetch within the Camel and Dog namespaces, but the really nice thing about
packages is that they classify your verbs so that other packages can use them.
When we said:

my $fido = Camel–>new("Amelia");

we were actually invoking the &new verb in the Camel package, which has the full
name of &Camel::new. And when we said:

$fido–>saddle();

10. You can declare global variables using our, which looks a lot like my, but tells people that it’s a shared
variable. A my variable is not shared and cannot be seen by anyone outside the current block. When in
doubt, use my rather than our since unneeded globals just clutter up the world and confuse people.

Natural and Artificial Languages | 15

www.it-ebooks.info

http://www.it-ebooks.info/

we were invoking the &Camel::saddle routine, because $fido remembers that it is
pointing to a Camel. This is how object-oriented programming works.

When you say package Camel, you’re starting a new package. But sometimes you
just want to borrow the nouns and verbs of an existing package. Perl lets you do
that with a use declaration, which not only borrows verbs from another package,
but also checks that the module you name is loaded in from disk. In fact, you
must say something like:

use Camel;

before you say:

my $fido = Camel–>new("Amelia");

because otherwise Perl wouldn’t know what a Camel is.

The interesting thing is that you yourself don’t really need to know what a
Camel is, provided you can get someone else to write the Camel module for you.
Even better would be if someone had already written the Camel module for you.
It could be argued that the most powerful thing about Perl is not Perl itself, but
CPAN (Comprehensive Perl Archive Network; see Chapter 19), which contains
myriad modules that accomplish many different tasks that you don’t have to
know how to do. You just have to download whatever module you like and say:

use Some::Cool::Module;

Then you can use the verbs from that module in a manner appropriate to the topic
under discussion.

So, like topicalization in a natural language, topicalization in Perl “warps” the
language that you’ll use from there to the end of the scope. In fact, some of the
built-in modules don’t actually introduce verbs at all, but simply warp the Perl
language in various useful ways. We call these special modules pragmas (see
Chapter 29). For instance, you’ll often see people use the pragma strict, like this:

use strict;

What the strict module does is tighten up some of the rules so that you have to
be more explicit about various things that Perl would otherwise guess about,
such as how you want your variables to be scoped.11 Making things explicit is
helpful when you’re working on large projects. By default, Perl is optimized for
small projects, but with the strict pragma, Perl is also good for large projects
that need to be more maintainable. Since you can add the strict pragma at any

11. More specifically, use strict requires you to use my , state, or our on variable declarations; otherwise, it
just assumes undeclared variables are package variables, which can get you into trouble later. It also
disallows various constructs that have proven to be error-prone over the years.

16 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

time, Perl is also good for evolving small projects into large ones, even when you
didn’t expect that to happen. Which is usually.

As Perl evolves, the Perl community also evolves, and one of the things that
changes is how the community thinks Perl should behave by default. (This is in
conflict with the desire for Perl to behave as it always did.) So, for instance, most
Perl programmers now think that you should always put “use strict” at the
front of your program. Over time we tend to accumulate such “culturally re-
quired” language-warping pragmas. So another built-in pragma is just the version
number of Perl, which is a kind of “metapragma” that tells Perl it’s okay to behave
like a more modern language in all the ways it should:

use v5.14;

This particular declaration turns on several pragmas including “use strict”;12

it also enables new features like the say verb, which (unlike print) adds a newline
for you. So we could have written our very first example above as:

use v5.14;
say "Howdy, world!";

The examples in this book all assume the v5.14 release of Perl; we will try to
remember to include the use v5.14 for you when we show you a complete pro-
gram, but when we show you snippets, we will assume you’ve already put in that
declaration yourself. (If you do not have the latest version of Perl, some of our
examples may not work. In the case of say, you could change it back to a print
with a newline—but it would be better to upgrade. You’ll need to say at least
use v5.10 for say to work.)

Verbs
As is typical of your typical imperative computer language, many of the verbs in
Perl are commands: they tell the Perl interpreter to do something. On the other
hand, as is typical of a natural language, the meanings of Perl verbs tend to mush
off in various directions depending on the context. A statement starting with a
verb is generally purely imperative and evaluated entirely for its side effects. (We
sometimes call these verbs procedures, especially when they’re user-defined.) A
frequently seen built-in command (in fact, you’ve seen it already) is the say com-
mand:

say "Adam's wife is $wife{'Adam'}.";

12. The implicit strictures feature was added in v5.12. Also see the feature pragma in Chapter 29.

Natural and Artificial Languages | 17

www.it-ebooks.info

http://www.it-ebooks.info/

This has the side effect of producing the desired output:

Adam's wife is Eve.

But there are other “moods” besides the imperative mood. Some verbs are for
asking questions and are useful in conditionals such as if statements. Other verbs
translate their input parameters into return values, just as a recipe tells you how
to turn raw ingredients into something (hopefully) edible. We tend to call these
verbs functions, in deference to generations of mathematicians who don’t know
what the word “functional” means in normal English.

An example of a built-in function would be the exponential function:

my $e = exp(1); # 2.718281828459 or thereabouts

But Perl doesn’t make a hard distinction between procedures and functions. You’ll
find the terms used interchangeably. Verbs are also sometimes called operators
(when built-in), or subroutines (when user-defined).13 But call them whatever
you like—they all return a value, which may or may not be a meaningful value,
which you may or may not choose to ignore.

As we go on, you’ll see additional examples of how Perl behaves like a natural
language. But there are other ways to look at Perl, too. We’ve already sneakily
introduced some notions from mathematical language, such as subscripts, ad-
dition, and the exponential function. But Perl is also a control language, a glue
language, a prototyping language, a text-processing language, a list-processing
language, and an object-oriented language. Among other things.

But Perl is also just a plain old computer language. And that’s how we’ll look at
it next.

An Average Example
Suppose you’ve been teaching a Perl class, and you’re trying to figure out how to
grade your students. You have a set of exam scores for each member of a class,
in random order. You’d like a combined list of all the grades for each student,
plus their average score. You have a text file (imaginatively named grades) that
looks like this:

13. Historically, Perl required you to put an ampersand character (&) on any calls to user-defined subroutines
(see $fido = &fetch(); earlier). But with Perl v5, the ampersand became optional, so user-defined verbs
can now be called with the same syntax as built-in verbs ($fido = fetch();). We still use the ampersand
when talking about the name of the routine, such as when we take a reference to it ($fetcher =
\&fetch;). Linguistically speaking, you can think of the ampersand form &fetch as an infinitive, “to fetch”,
or the similar form “do fetch”. But we rarely say “do fetch” when we can just say “fetch”. That’s the real
reason we dropped the mandatory ampersand in v5.

18 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Noël 25
Ben 76
Clementine 49
Norm 66
Chris 92
Doug 42
Carol 25
Ben 12
Clementine 0
Norm 66
...

You can use the following script to gather all their scores together, determine each
student’s average, and print them all out in alphabetical order. This program
assumes rather naïvely that you don’t have two Carols in your class. That is, if
there is a second entry for Carol, the program will assume it’s just another score
for the first Carol (not to be confused with the first Noël).

By the way, the line numbers are not part of the program, any other resemblances
to BASIC notwithstanding.

 1 #!/usr/bin/perl
 2 use v5.14;
 3
 4 open(GRADES, "<:utf8", "grades") || die "Can't open grades: $!\n";
 5 binmode(STDOUT, ':utf8');
 6
 7 my %grades;
 8 while (my $line = <GRADES>) {
 9 my ($student, $grade) = split(" ", $line);
10 $grades{$student} .= $grade . " ";
11 }
12
13 for my $student (sort keys %grades) {
14 my $scores = 0;
15 my $total = 0;
16 my @grades = split(" ", $grades{$student});
17 for my $grade (@grades) {
18 $total += $grade;
19 $scores++;
20 }
21 my $average = $total / $scores;
22 print "$student: $grades{$student}\tAverage: $average\n";
23 }

Now, before your eyes cross permanently, we’d better point out that this example
demonstrates a lot of what we’ve covered so far, plus quite a bit more that we’ll
explain presently. But if you let your eyes go just a little out of focus, you may
start to see some interesting patterns. Take some wild guesses now as to what’s
going on, and then later on we’ll tell you if you’re right.

An Average Example | 19

www.it-ebooks.info

http://www.it-ebooks.info/

We’d tell you to try running it, but you may not know how yet.

How to Do It
Gee, right about now you’re probably wondering how to run a Perl program. The
short answer is that you feed it to the Perl language interpreter program, which
coincidentally happens to be named perl. The long answer starts out like this:
There’s More Than One Way To Do It.14

The first way to invoke perl (and the way most likely to work on any operating
system) is to simply call perl explicitly from the command line.15 If you are doing
something fairly simple, you can use the –e switch (% in the following example
represents a standard shell prompt, so don’t type it). On Unix, you might type:

% perl –e 'print "Hello, world!\n";'

On other operating systems, you may have to fiddle with the quotes some. But
the basic principle is the same: you’re trying to cram everything Perl needs to
know into 80 columns or so.16

For longer scripts, you can use your favorite text editor (or any other text editor)
to put all your commands into a file and then, presuming you named the script
gradation (not to be confused with graduation), you’d say:

% perl gradation

You’re still invoking the Perl interpreter explicitly, but at least you don’t have to
put everything on the command line every time. And you no longer have to fiddle
with quotes to keep the shell happy.

The most convenient way to invoke a script is just to name it directly (or click on
it), and let the operating system find the interpreter for you. On some systems,
there may be ways of associating various file extensions or directories with a
particular application. On those systems, you should do whatever it is you do to
associate the Perl script with the perl interpreter. On Unix systems that support
the #! “shebang” notation (and most Unix systems do, nowadays), you can make
the first line of your script be magical, so the operating system will know which
program to run. Put a line resembling line 1 of our example into your program:

14. That’s the Perl Slogan, and you’ll get tired of hearing it, unless you’re the Local Expert, in which case you’ll
get tired of saying it. Sometimes it’s shortened to TMTOWTDI, pronounced “tim-toady”. But you can
pronounce it however you like. After all, TMTOWTDI.

15. Assuming that your operating system provides a command-line interface. If not, you should upgrade.

16. These types of scripts are often referred to as “one-liners”. If you ever end up hanging out with other Perl
programmers, you’ll find that some of us are quite fond of creating intricate one-liners. Perl has
occasionally been maligned as a write-only language because of these shenanigans.

20 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

#!/usr/bin/perl

(If perl v5.14 isn’t in /usr/bin, you’ll have to change the #! line accordingly.17). Then
all you have to say is:

% gradation

Of course, this didn’t work because you forgot to make sure the script was exe-
cutable (see the manpage for chmod(1)) and in your PATH. If it isn’t in your PATH,
you’ll have to provide a complete filename so that the operating system knows
how to find your script. Something like:

% /home/sharon/bin/gradation

Finally, if you are unfortunate enough to be on an ancient Unix system that doesn’t
support the magic #! line, or if the path to your interpreter is longer than 32
characters (a built-in limit on many systems), you may be able to work around
it like this:

#!/bin/sh –– # perl, to stop looping
eval 'exec /usr/bin/perl –S $0 ${1+"$@"}'
 if 0;

Some operating systems may require variants of this to deal with /bin/csh, DCL,
COMMAND.COM, or whatever happens to be your default command interpreter.
Ask your Local Expert.

Throughout this book, we’ll just use #!/usr/bin/perl to represent all these no-
tions and notations, but you’ll know what we really mean by it.

A random clue: when you write a test script, don’t call your script test. Unix
systems have a built-in test command, which will likely be executed instead of
your script. Try try instead.

Now that you know how to run your own Perl program (not to be confused with
the perl program), let’s get back to our example.

Filehandles
Unless you’re using artificial intelligence to model a solipsistic philosopher, your
program needs some way to communicate with the outside world. In lines 4 and
8 of our Average Example you’ll see the word GRADES, which exemplifies another
of Perl’s data types, the filehandle. A filehandle is just a name you give to a file,
device, socket, or pipe to help you remember which one you’re talking about,

17. If your /usr/bin/perl is an old version, you can compile a new one and put it elsewhere, such as /usr/local/
bin, as long as you fix the #! line to point to it.

Filehandles | 21

www.it-ebooks.info

http://www.it-ebooks.info/

and to hide some of the complexities of buffering and such. (Internally, filehan-
dles are similar to streams from a language like C++ or I/O channels from BA-
SIC.)

Filehandles make it easier for you to get input from and send output to many
different places. Part of what makes Perl a good glue language is that it can talk
to many files and processes at once. Having nice symbolic names for various
external objects is just part of being a good glue language.18

You create a filehandle and attach it to a file by using open. The open function
takes at least two parameters: the filehandle and filename you want to associate
it with. Perl also gives you some predefined (and preopened) filehandles. STDIN
is your program’s normal input channel, while STDOUT is your program’s normal
output channel. And STDERR is an additional output channel that allows your
program to make snide remarks off to the side while it transforms (or attempts
to transform) your input into your output.19 In lines 4 and 5 of our program, we
also tell our new GRADES filehandle and the existing STDOUT filehandle to assume
that text is encoded in UTF-8, a common representation of Unicode text.

Since you can use the open function to create filehandles for various purposes
(input, output, piping), you need to be able to specify which behavior you want.
As you might do on the command line, you can simply add characters to the
filename:

open(SESAME, "filename") # read from existing file
open(SESAME, "< filename") # (same thing, explicitly)
open(SESAME, "> filename") # create file and write to it
open(SESAME, ">> filename") # append to existing file
open(SESAME, "| output–pipe–command") # set up an output filter
open(SESAME, "input–pipe–command |") # set up an input filter

However, the recommended three-argument form of open allows you to specify
the open mode in an argument separate from the filename itself. This is useful
when you’re dealing with filenames that aren’t literals and so might already con-
tain characters that look like open modes or significant whitespace.

18. Some of the other things that make Perl a good glue language are: it handles non-ASCII data, it’s
embeddable, and you can embed other things in it via extension modules. It’s concise, and it “networks”
easily. It’s environmentally conscious, so to speak. You can invoke it in many different ways (as we saw
earlier). But most of all, the language itself is not so rigidly structured that you can’t get it to “flow” around
your problem. It comes back to that TMTOWTDI thing again.

19. These filehandles are typically attached to your terminal, so you can type to your program and see its
output, but they may also be attached to files (and such). Perl can give you these predefined handles
because your operating system already provides them, one way or another. Under Unix, processes inherit
standard input, output, and error from their parent process, typically a shell. One of the duties of a shell
is to set up these I/O streams so that the child process doesn’t need to worry about them.

22 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

open(SESAME, "<", $somefile) # read from existing file
open(SESAME, ">", $somefile) # create file and write to it
open(SESAME, ">>", $somefile) # append to existing file
open(SESAME, "|–", "output–pipe–command") # set up an output filter
open(SESAME, "–|", "input–pipe–command") # set up an input filter

As we did in our program, this form of open also lets you specify the character
encoding of the file.

open(SESAME, "< :encoding(UTF–8)", $somefile)
open(SESAME, "> :crlf", $somefile)
open(SESAME, ">> :encoding(MacRoman)", $somefile)

As you can see, the name you pick for the filehandle is arbitrary. Once opened,
the filehandle SESAME can be used to access the file or pipe until it is explicitly
closed (with, you guessed it, close(SESAME)), or until the filehandle is attached
to another file by a subsequent open on the same filehandle. Opening an already
opened filehandle implicitly closes the first file, making it inaccessible to the
filehandle, and opens a different file. You must be careful that this is what you
really want to do. Sometimes it happens accidentally, like when you say
open($handle,$file), and $handle happens to contain a constant string. Be sure
to set $handle to something unique, or you’ll just open a new file on the same
filehandle.

A much better idea is to leave $handle undefined, letting Perl fill it in for you. This
is handy for when you get tired of choosing your own names for filehandles: if
you pass open an undefined variable (such as my creates), Perl will pick the file-
handle for you and fill it in automatically:

open(my $handle, "< :crlf :encoding(cp1252)", $somefile)
 || die "can't open $somefile: $!";

If the open succeeds, the $handle variable is now defined, and you can use it
wherever a filehandle is expected.

Once you’ve opened a filehandle for input, you can read a line using the line
reading operator, <>. This is also known as the angle operator because it’s made
of angle brackets. The angle operator encloses the filehandle (<SESAME> if a literal
handle, and <$handle> for an indirect one) you want to read lines from. The empty
angle operator, <>, will read lines from all the files specified on the command
line, or STDIN if no arguments were specified. (This is standard behavior for many
filter programs.) An example using the STDIN filehandle to read an answer sup-
plied by the user would look something like this:

print STDOUT "Enter a number: "; # ask for a number
$number = <STDIN>; # input the number
say STDOUT "The number is $number."; # print the number

Filehandles | 23

www.it-ebooks.info

http://www.it-ebooks.info/

Did you see what we just slipped by you? What’s that STDOUT doing there in those
print and say statements? Well, that’s just one of the ways you can use an output
filehandle. A filehandle may be supplied between the command and its argument
list, and if present, tells the output where to go. In this case, the filehandle is
redundant because the output would have gone to STDOUT anyway. Much as
STDIN is the default for input, STDOUT is the default for output. (In line 22 of our
Average Example, we left it out to avoid confusing you until now.)

If you try the previous example, you may notice that you get an extra blank line.
This happens because the line-reading operation does not automatically remove
the newline from your input line (your input would be, for example, "9\n"). For
those times when you do want to remove the newline, Perl provides the chop and
chomp functions. chop will indiscriminately remove (and return) the last character
of the string, while chomp will only remove the end of record marker (generally,
"\n") and return the number of characters so removed. You’ll often see this idiom
for inputting a single line:

chomp($number = <STDIN>); # input a number, then remove its newline

which means the same thing as:

$number = <STDIN>; # input a number
chomp($number); # remove trailing newline

One last thing, just because we called our variable $number doesn’t mean it was
one. Any string will do. Perl only cares whether something is a number if you try
to operate on that string as though it were a number—down which road lie
operators, our next topic.

Operators
As we alluded to earlier, Perl is also a mathematical language. This is true at several
levels, from low-level bitwise logical operations, up through number and set ma-
nipulation, on up to larger predicates and abstractions of various sorts. And as
we all know from studying math in school, mathematicians love strange symbols.
What’s worse, computer scientists have come up with their own versions of these
strange symbols. Perl has a number of these strange symbols, too—but take
heart, as most are borrowed directly from C, FORTRAN, sed(1) or awk(1), so
they’ll at least be familiar to users of those languages.

The rest of you can take comfort in knowing that, by learning all these strange
symbols in Perl, you’ve given yourself a head start on all those other strange
languages.

24 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Perl’s built-in operators may be classified by number of operands into unary, bi-
nary, and trinary (or ternary) operators. They may be classified by whether
they’re prefix operators (which go in front of their operands) or infix operators
(which go in between their operands). They may also be classified by the kinds
of objects they work with, such as numbers, strings, or files. Later, we’ll give you
a table of all the operators, but first here are some handy ones to get you started.

Some Binary Arithmetic Operators
Arithmetic operators do what you would expect from learning them in school.
They perform some sort of mathematical function on numbers; see Table 1-2.

Table 1-2. Mathematical operators

Example Name Result

$a + $b Addition Sum of $a and $b

$a * $b Multiplication Product of $a and $b

$a % $b Modulus Remainder of $a divided by $b

$a ** $b Exponentiation $a to the power of $b

Yes, we left out subtraction and division—we suspect you can figure out how they
should work. Try them and see if you’re right. (Or cheat and look in Chap-
ter 3.) Arithmetic operators are evaluated in the order your math teacher taught
you (exponentiation before multiplication; multiplication before addition). You
can always use parentheses to make it come out differently.

String Operators
There is also an “addition” operator for strings that performs concatenation (that
is, joining strings end to end). Unlike some languages that confuse this with
numeric addition, Perl defines a separate operator (.) for string concatenation:

$a = 123;
$b = 456;
say $a + $b; # prints 579
say $a . $b; # prints 123456

There’s also a “multiply” operator for strings, called the repeat operator. Again,
it’s a separate operator (x) to keep it distinct from numeric multiplication:

$a = 123;
$b = 3;
say $a * $b; # prints 369
say $a x $b; # prints 123123123

Operators | 25

www.it-ebooks.info

http://www.it-ebooks.info/

These string operators bind as tightly as their corresponding arithmetic operators.
The repeat operator is a bit unusual in taking a string for its left argument but a
number for its right argument. Note also how Perl is automatically converting
from numbers to strings. You could have put all the literal numbers above in
quotes, and it would still have produced the same output. Internally, though, it
would have been converting in the opposite direction (that is, from strings to
numbers).

A couple more things to think about. String concatenation is also implied by the
interpolation that happens in double-quoted strings. And when you print out a
list of values, you’re also effectively concatenating strings. So the following three
statements produce the same output:

say $a . " is equal to " . $b . "."; # dot operator
say $a, " is equal to ", $b, "."; # list
say "$a is equal to $b."; # interpolation

Which of these you use in any particular situation is entirely up to you. (But in
our opinion interpolation is often the most readable.)

The x operator may seem relatively worthless at first glance, but it is quite useful
at times, especially for things like this:

say "–" x $scrwid;

which draws a line across your screen, presuming $scrwid contains your screen
width, and not your screw identifier.

Assignment Operators
Although it’s not exactly a mathematical operator, we’ve already made extensive
use of the simple assignment operator, =   . Try to remember that = means “gets
set to” rather than “equals”. (There is also a mathematical equality operator ==
that means “equals”, and if you start out thinking about the difference between
them now, you’ll save yourself a lot of headache later. The == operator is like a
function that returns a Boolean value, while = is more like a procedure that is
evaluated for the side effect of modifying a variable.)

Like the operators described earlier, assignment operators are binary infix oper-
ators, which means they have an operand on either side of the operator. The right
operand can be any expression you like, but the left operand must be a valid
lvalue (which, when translated to English, means a valid storage location like a
variable, or a location in an array). The most common assignment operator is
simple assignment. It determines the value of the expression on its right side, and
then sets the variable on the left side to that value:

26 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

$a = $b;
$a = $b + 5;
$a = $a * 3;

Notice the last assignment refers to the same variable twice; once for the compu-
tation, once for the assignment. There’s nothing wrong with that, but it’s a com-
mon enough operation that there’s a shortcut for it (borrowed from C). If you say:

lvalue operator= expression

it is evaluated as if it were:

lvalue = lvalue operator expression

except that the lvalue is not computed twice. (This only makes a difference if
evaluation of the lvalue has side effects. But when it does make a difference, it
usually does what you want. So don’t sweat it.)

So, for example, you could write the previous example as:

$a *= 3;

which reads “multiply $a by 3”. You can do this with almost any binary operator
in Perl, even some that you can’t do it with in C:

$line .= "\n"; # Append newline to $line.
$fill x= 80; # Make string $fill into 80 repeats of itself.
$val ||= "2"; # Set $val to 2 if it isn't already "true".

Line 10 of our Average Example20 contains two string concatenations, one of
which is an assignment operator. And line 18 contains a +=.

Regardless of which kind of assignment operator you use, the final value of the
variable on the left is returned as the value of the assignment as a whole.21 This
will not surprise C programmers, who will already know how to use this idiom
to zero out variables:

$a = $b = $c = 0;

You’ll also frequently see assignment used as the condition of a while loop, as in
line 8 of our Average Example.

What will surprise C programmers is that assignment in Perl returns the actual
variable as an lvalue, so you can modify the same variable more than once in a
statement. For instance, you could say:

($temp –= 32) *= 5/9;

20. Thought we’d forgotten it, didn’t you?

21. This is unlike, say, Pascal, in which assignment is a statement and returns no value. We said earlier that
assignment is like a procedure, but remember that in Perl, even procedures return values.

Operators | 27

www.it-ebooks.info

http://www.it-ebooks.info/

to do an in-place conversion from Fahrenheit to Celsius. This is also why earlier
in this chapter we could say:

chop($number = <STDIN>);

and have it chop the final value of $number. Generally speaking, you can use this
feature whenever you want to copy something and at the same time do some-
thing else with it.

Unary Arithmetic Operators
As if $variable += 1 weren’t short enough, Perl borrows from C an even shorter
way to increment a variable. The autoincrement (and autodecrement) operators
simply add (or subtract) one from the value of the variable. They can be placed
on either side of the variable, depending on when you want them to be evaluated;
see Table 1-3.

Table 1-3. Increment operators

Example Name Result

++$a, $a++ Autoincrement Add 1 to $a

––$a, $a–– Autodecrement Subtract 1 from $a

If you place one of these “auto” operators before the variable, it is known as a
preincremented (predecremented) variable. Its value will be changed before it is
referenced. If it is placed after the variable, it is known as a postincremented
(postdecremented) variable, and its value is changed after it is used. For example:

$a = 5; # $a is assigned 5
$b = ++$a; # $b is assigned the incremented value of $a, 6
$c = $a––; # $c is assigned 6, then $a is decremented to 5

Line 15 of our Average Example increments the number of scores by one so that
we’ll know how many scores we’re averaging. It uses a postincrement operator
($scores++), but in this case it doesn’t matter since the expression is in void con-
text, which is just a funny way of saying that the expression is being evaluated
only for the side effect of incrementing the variable. The value returned is being
thrown away.22

22. The optimizer will notice this and optimize the postincrement into a preincrement, because that’s a bit
faster to execute. (You didn’t need to know that, but we hoped it would cheer you up.)

28 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Logical Operators
Logical operators, also known as “short-circuit” operators, allow the program to
make decisions based on multiple criteria without using nested if statements.
They are known as short-circuit operators because they skip (short circuit) the
evaluation of their right argument if they decide the left argument has already
supplied enough information to decide the overall value. This is not just for ef-
ficiency. You are explicitly allowed to depend on this short-circuiting behavior
to avoid evaluating code in the right argument that you know would blow up if
the left argument were not “guarding” it. You can say “California or bust!” in
Perl without busting (presuming you do get to California).

Perl actually has two sets of logical operators: a traditional set borrowed from C
and a newer (but even more traditional) set of ultralow-precedence operators
borrowed from BASIC. Both sets contribute to readability when used appropri-
ately. C’s punctuational operators work well when you want your logical oper-
ators to bind more tightly than commas, while BASIC’s word-based operators
work well when you want your commas to bind more tightly than your logical
operators. Often they work the same, and which set you use is a matter of per-
sonal preference. (For contrastive examples, see the section “Logical and, or, not,
and xor” on page 127 in Chapter 3.) Although the two sets of operators are not
interchangeable due to precedence, once they’re parsed, the operators them-
selves behave identically; precedence merely governs the extent of their argu-
ments. Table 1-4 lists logical operators.

Table 1-4. Logical operators

Example Name Result

$a && $b And $a if $a is false, $b otherwise

$a || $b Or $a if $a is true, $b otherwise

! $a Not True if $a is not true

$a and $b And $a if $a is false, $b otherwise

$a or $b Or $a if $a is true, $b otherwise

not $a Not True if $a is not true

$a xor $b Xor True if $a or $b is true, but not both

Since the logical operators “short circuit” the way they do, they’re often used in
Perl to conditionally execute code. The following line (line 4 from our Average
Example) tries to open the file grades:

open(GRADES, "<:utf8", "grades") || die "Can't open file grades: $!\n";

Operators | 29

www.it-ebooks.info

http://www.it-ebooks.info/

If it opens the file, it will jump to the next line of the program. If it can’t open the
file, it will provide us with an error message and then stop execution.

Literally, this line means “Open grades or bust!” Besides being another example
of natural language, the short-circuit operators preserve the visual flow. Impor-
tant actions are listed down the left side of the screen, and secondary actions are
hidden off to the right. (The $! variable contains the error message returned by
the operating system—see Chapter 25.) Of course, these logical operators can
also be used within the more traditional kinds of conditional constructs, such as
the if and while statements.

Some Numeric and String Comparison Operators
Comparison, or relational, operators tell us how two scalar values (numbers or
strings) relate to each other. There are two sets of operators: one does numeric
comparison and the other does string comparison. (In either case, the arguments
will be “coerced” to have the appropriate type first.) Assuming left and right
arguments of $a and $b, Table 1-5 shows us what we have.

Table 1-5. Comparison operators

Comparison Numeric String Return Value

Equal == eq True if $a is equal to $b

Not equal != ne True if $a is not equal to $b

Less than < lt True if $a is less than $b

Greater than > gt True if $a is greater than $b

Less than or equal <= le True if $a not greater than $b

Greater than or equal >= ge True if $a not less than $b

Comparison <=> cmp 0 if equal, 1 if $a greater, −1 if $b greater

The last pair of operators (<=> and cmp) are entirely redundant with the earlier
operators. However, they’re incredibly useful in sort subroutines (see Chap-
ter 27).23

23. Some folks feel that such redundancy is evil because it keeps a language from being minimalistic, or
orthogonal. But Perl isn’t an orthogonal language; it’s a diagonal language. By this we mean that Perl
doesn’t force you to always go at right angles. Sometimes you just want to follow the hypotenuse of the
triangle to get where you’re going. TMTOWTDI is about shortcuts. Shortcuts are about programmer
efficiency.

30 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Some File Test Operators
The file test operators allow you to test whether certain file attributes are set before
you go and blindly muck about with the files. The most basic file attribute is, of
course, whether the file exists. For example, it would be very nice to know
whether your mail aliases file already exists before you go and open it as a new
file, wiping out everything that was in there before. Table 1-6 gives a few of the
file test operators.

Table 1-6. File test operators

Example Name Result

–e $a Exists True if file named in $a exists

–r $a Readable True if file named in $a is readable

–w $a Writable True if file named in $a is writable

–d $a Directory True if file named in $a is a directory

–f $a File True if file named in $a is a regular file

–T $a Text File True if file named in $a is a text file

You might use them like this:

–e "/usr/bin/perl" or warn "Perl is improperly installed.\n";
–f "/vmlinuz" and say "I see you are a friend of Linus.";

Note that a regular file is not the same thing as a text file. Binary files
like /vmlinuz are regular files, but they aren’t text files. Text files are the opposite
of binary files, while regular files are the opposite of “irregular” files like direc-
tories and devices.

There are a lot of file test operators, many of which we didn’t list. Most of the file
tests are unary Boolean operators, which is to say they take only one operand (a
scalar that evaluates to a filename or a filehandle), and they return either a true
or false value. A few of them return something fancier, like the file’s size or age,
but you can look those up when you need them in the section “Named Unary
and File Test Operators” on page 106 in Chapter 3.

Control Structures
So far, except for our one large example, all of our examples have been completely
linear; we executed each command in order. We’ve seen a few examples of using
the short-circuit operators to cause a single command to be (or not to be) exe-
cuted. While you can write some very useful linear programs (a lot of CGI scripts

Control Structures | 31

www.it-ebooks.info

http://www.it-ebooks.info/

fall into this category), you can write much more powerful programs if you have
conditional expressions and looping mechanisms. Collectively, these are known
as control structures. So you can also think of Perl as a control language.

But to have control, you have to be able to decide things, and to decide things,
you have to know the difference between what’s true and what’s false.

What Is Truth?
We’ve bandied about the term truth,24 and we’ve mentioned that certain operators
return a true or a false value. Before we go any further, we really ought to explain
exactly what we mean by that. Perl treats truth a little differently than most com-
puter languages, but after you’ve worked with it a while, it will make a lot of
sense. (Actually, we hope it’ll make a lot of sense after you’ve read the following.)

Basically, Perl holds truths to be self-evident. That’s a glib way of saying that you
can evaluate almost anything for its truth value. Perl uses practical definitions of
truth that depend on the type of thing you’re evaluating. As it happens, there are
many more kinds of truth than there are of nontruth.

Truth in Perl is always evaluated in scalar context. Other than that, no type co-
ercion is done. So here are the rules for the various kinds of values a scalar can
hold:

1. Any string is true except for "" and "0".

2. Any number is true except for 0.

3. Any reference is true.

4. Any undefined value is false.

Actually, the last two rules can be derived from the first two. Any reference (rule
3) would point to something with an address and would evaluate to a number
or string containing that address, which is never 0 because it’s always defined.
And any undefined value (rule 4) would always evaluate to 0 or the null string.

And, in a way, you can derive rule 2 from rule 1 if you pretend that everything is
a string. Again, no string coercion is actually done to evaluate truth, but if the
string coercion were done, then any numeric value of 0 would simply turn into
the string "0" and be false. Any other number would not turn into the string
"0", and so would be true. Let’s look at some examples so we can understand this
better:

24. Strictly speaking, this is not true.

32 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

0 # would become the string "0", so false.
1 # would become the string "1", so true.
10 – 10 # 10 minus 10 is 0, would convert to string "0", so false.
0.00 # equals 0, would convert to string "0", so false.
"0" # is the string "0", so false.
"" # is a null string, so false.
"0.00" # is the string "0.00", neither "" nor "0", so true!
"0.00" + 0 # would become the number 0 (coerced by the +), so false.
\$a # is a reference to $a, so true, even if $a is false.
undef() # is a function returning the undefined value, so false.

Since we mumbled something earlier about truth being evaluated in scalar con-
text, you might be wondering what the truth value of a list is. Well, the simple
fact is none of the operations in Perl will return a list in scalar context. They’ll
all notice they’re in scalar context and return a scalar value instead, and then you
apply the rules of truth to that scalar. So there’s no problem, as long as you can
figure out what any given operator will return in scalar context. As it happens,
both arrays and hashes return scalar values that conveniently happen to be true
if the array or hash contains any elements. More on that later.

The if and unless statements

We saw earlier how a logical operator could function as a conditional. A slightly
more complex form of the logical operators is the if statement. The if statement
evaluates a truth condition (that is, a Boolean expression) and executes a block
if the condition is true:

if ($debug_level > 0) {
 # Something has gone wrong. Tell the user.
 say "Debug: Danger, Will Robinson, danger!";
 say "Debug: Answer was '54', expected '42'.";
}

A block is one or more statements grouped together by a set of braces. Since the
if statement executes a block, the braces are required by definition. If you know
a language like C, you’ll notice that this is different. Braces are optional in C if
you have a single statement, but the braces are not optional in Perl.

Sometimes just executing a block when a condition is met isn’t enough. You may
also want to execute a different block if that condition isn’t met. While you could
certainly use two if statements, one the negation of the other, Perl provides a
more elegant solution. After the block, if can take an optional second condition,
called else, to be executed only if the truth condition is false. (Veteran computer
programmers will not be surprised at this point.)

Control Structures | 33

www.it-ebooks.info

http://www.it-ebooks.info/

At times you may even have more than two possible choices. In this case, you’ll
want to add an elsif truth condition for the other possible choices. (Veteran
computer programmers may well be surprised by the spelling of “elsif”, for
which nobody here is going to apologize. Sorry.)

if ($city eq "New York") {
 say "New York is northeast of Washington, D.C.";
}
elsif ($city eq "Chicago") {
 say "Chicago is northwest of Washington, D.C.";
}
elsif ($city eq "Miami") {
 say "Miami is south of Washington, D.C. And much warmer!";
}
else {
 say "I don't know where $city is, sorry.";
}

The if and elsif clauses are each computed in turn, until one is found to be true
or the else condition is reached. When one of the conditions is found to be true,
its block is executed and all remaining branches are skipped. Sometimes, you
don’t want to do anything if the condition is true, only if it is false. Using an
empty if with an else may be messy, and a negated if may be illegible; it sounds
weird in English to say “if not this is true, do something”. In these situations,
you would use the unless statement:

unless ($destination eq $home) {
 say "I'm not going home.";
}

There is no elsunless though. This is generally construed as a feature.

The given and when Statements
To test a single value for a bunch of different alternatives, recent versions of Perl
have what other languages sometimes call switch and case. Because we like to
make Perl work like a natural language, however, we call these given and when.
(Since you’re already putting use v5.14 at the top, you should have this func-
tionality, which was introduced in 5.10.)

#!/usr/bin/perl
use v5.14;

print "What is your favorite color? ";
chomp(my $answer = <STDIN>);

given ($answer) {
 when ("purple") { say "Me too." }

34 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

 when ("green") { say "Go!" }
 when ("yellow") { say "Slow!" }
 when ("red") { say "Stop!" }

 when ("blue") { say "You may proceed." }
 when (/\w+, no \w+/) { die "AAAUUUGHHHHH!" }

 when (42) { say "Wrong answer." }

 when (['gray','orange','brown','black','white']) {
 say "I think $answer is pretty okay too.";
 }

 default {
 say "Are you sure $answer is a real color?";
 }
}

First the given part takes the value of its expression and makes it the topic of
conversation, so the when statements know which value to test. The cases are then
evaluated by matching the argument of each when against the topic to find the
first when statement that thinks the topic’s value matches. The when statements try
to match in order, and as soon as one matches, it doesn’t try any of the subsequent
statements, but drops out of the whole given construct.

The form of each when argument ("red" vs 42 vs /\w+, no \w+/) determines the
type of match performed, so strings match as strings, numbers match as numbers,
and patterns match as, well, patterns. Lists of values match if any of them match.
The when statement uses an underlying operation called “smartmatching” that is
designed to match the way you expect most of the time, except when it doesn’t.
See “Smartmatch Operator” on page 112 in Chapter 3 for more on that.

Looping Constructs
These statements allow a Perl program to repeatedly execute the same code, so
they are often known as iterative constructs. There are several kinds, which differ
primarily in how you know when you’re done with the loop and can go on to
other things.

Conditional loops

The while and until statements test an expression for truth just as the if and
unless statements do, except that they’ll execute the block repeatedly as long as
the condition is satisfied each time through. The condition is always checked
before each iteration. If the condition is met (that is, if it is true for a while or
false for an until), the block of the statement is executed.

Control Structures | 35

www.it-ebooks.info

http://www.it-ebooks.info/

print "How many tickets have we sold so far? ";
my $before = <STDIN>;

my $sold = $before;
while ($sold < 10000) {
 my $available = 10000 – $sold;
 print "$available tickets are available. How many would you like: ";
 my $purchase = <STDIN>;
 if ($purchase > $available) {
 say "Too many! Try again.";
 $purchase = 0;
 }
 $sold += $purchase;
}

say "This show is sold out, please come back later.";

Note that if the original condition is never met, the loop will never be entered at
all. For example, if we’ve already sold 10,000 tickets, we will report the show to
be sold out immediately.

In our Average Example earlier, line 8 reads:

while (my $line = <GRADES>) {

This assigns the next line to the variable $line and, as we explained earlier, returns
the value of $line so that the condition of the while statement can evaluate
$line for truth. You might wonder whether Perl will get a false negative on blank
lines and exit the loop prematurely. The answer is that it won’t. The reason is
clear if you think about everything we’ve said. The line input operator leaves the
newline on the end of the string, so a blank line has the value "\n". And you know
that "\n" is not one of the canonical false values. So the condition is true, and the
loop continues even on blank lines.

On the other hand, when we finally do reach the end of the file, the line input
operator returns the undefined value, which always evaluates to false. And the
loop terminates, just when we wanted it to. There’s no need for an explicit test
of the eof function in Perl, because the input operators are designed to work
smoothly in a conditional context.

In fact, almost everything is designed to work smoothly in a conditional (Boolean)
context. If you mention an array in scalar context, the length of the array is re-
turned. So you often see command-line arguments processed like this:

while (@ARGV) {
 process(shift @ARGV);
}

36 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

The shift operator removes one element from the argument list each time
through the loop (and returns that element). The loop automatically exits when
array @ARGV is exhausted; that is, when its length goes to 0. And 0 is already false
in Perl. In a sense, the array itself has become “false”.25

The three-part loop

Another iterative statement is the three-part loop, also known as a C-style for
loop. The three-part loop runs exactly like the while loop above, but it looks a
bit different because two of the statements get moved into the official definition
of the loop. (C programmers will find it very familiar though.)

print "How many tickets have we sold so far? ";
my $before = <STDIN>;

for (my $sold = $before; $sold < 10000; $sold += my $purchase) {
 my $available = 10000 – $sold;
 print "$available tickets are available. How many would you like: ";
 $purchase = <STDIN>;
 if ($purchase > $available) {
 say "Too many! Try again.";
 $purchase = 0;
 }
}

say "This show is sold out, please come back later.";

Within the loop’s parentheses, the three-part loop takes three expressions (hence
the name), separated by two semicolons. The first expression sets the initial state
of the loop variable. The second is a condition to test the loop variable; this works
just like the while statement’s condition. The third expression modifies the state
of the loop variable; this expression is effectively executed at the end of each
iteration, just as we did explicitly in the previous while loop.

When the three-part loop starts, the initial state is set and the truth condition is
checked. If the condition is true, the block is executed. When the block finishes,
the modification expression is executed, the truth condition is again checked,
and, if true, the block is rerun with the next value. As long as the truth condition
remains true, the block and the modification expression will continue to be ex-
ecuted. (Note that only the middle expression is evaluated for its value. The first

25. This is how Perl programmers think. So there’s no need to compare 0 to 0 to see if it’s false. Despite the
fact that other languages force you to, don’t go out of your way to write explicit comparisons like while
(@ARGV != 0). That’s just inefficient for both you and the computer. And anyone who has to maintain your
code.

Control Structures | 37

www.it-ebooks.info

http://www.it-ebooks.info/

and third expressions are evaluated only for their side effects, and the resulting
values are thrown away!)

Each of the three expressions may be omitted, but the two semicolons are always
required. If you leave out the middle expression, it assumes you want to loop
forever, so you can write an infinite loop like this:

for (;;) {
 say "Take out the trash!";
 sleep(5);
}

The foreach loop

The last of Perl’s iterative statements is known as the foreach loop.26 This loop
executes the same code for each of a known list of scalars, such as you might get
from an array:

for my $user (@users) {
 if (–f "$home{$user}/.nexrc") {
 say "$user is cool... they use a perl–aware vi!";
 }
}

Unlike the if and while statements, which provide scalar context to a conditional
expression, the foreach statement provides list context to the expression in
parentheses. So the expression is evaluated to produce a list, if possible (and, if
not, a single scalar value will be considered a list of one element). Then each
element of the list is aliased to the loop variable in turn, and the block of code is
executed once for each list element. Note that the loop variable refers to the
element itself, rather than a copy of the element. Hence, modifying the loop
variable also modifies the original array.

You’ll find many more of these loops in the typical Perl program than traditional
three-part for loops, because it’s very easy in Perl to generate the kinds of lists
that a foreach wants to iterate over. (That’s partly why we stole for’s keyword,
since we’re lazy and think commonly used words should be short.) One idiom
you’ll often see is a loop to iterate over the sorted keys of a hash:

for my $key (sort keys %hash) {

In fact, line 13 of our Average Example does precisely that, so we can print out
the students in alphabetical order.

26. Historically, it was written with the foreach keyword, hence the name. These days we tend to use the
for keyword instead, since it reads more like English when you include a my declaration (and because the
syntax cannot be confused with the three-part loop). So many of us never write foreach anymore, though
you can still do that if you like.

38 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Breaking out: next and last

The next and last operators allow you to modify the flow of your loop. It is not
at all uncommon to have a special case; you may want to skip it, or you may want
to quit when you encounter it. For example, if you are dealing with Unix ac-
counts, you may want to skip the system accounts (like root or lp). The next
operator would allow you to skip to the end of your current loop iteration and
start the next iteration. The last operator would allow you to skip to the end of
your block, as if your loop’s test condition had returned false. This might be
useful if, for example, you are looking for a specific account and want to quit as
soon as you find it.

for my $user (@users) {
 if ($user eq "root" || $user eq "lp") {
 next;
 }
 if ($user eq "special") {
 print "Found the special account.\n";
 # do some processing
 last;
 }
}

It’s possible to break out of multilevel loops by labeling your loops and specifying
which loop you want to break out of. Together with statement modifiers (another
form of conditional which we’ll talk about later), this can make for extremely
readable loop exits (if you happen to think English is readable):

LINE: while (my $line = <EMAIL>) {
 next LINE if $line eq "\n"; # skip blank lines
 last LINE if $line =~ /^>/; # stop on first quoted line
 # your ad here
}

You may be saying, “Wait a minute, what’s that funny ^> thing there inside the
leaning toothpicks? That doesn’t look much like English.” And you’re right.
That’s a pattern match containing a regular expression (albeit a rather simple
one). And that’s what the next section is about. Perl is just about the best text-
processing language in the world, and regular expressions are at the heart of Perl’s
text processing.

Regular Expressions
Regular expressions (a.k.a. regexes, regexps, or REs) are used by many search pro-
grams such as grep and findstr, text-munging programs like sed and awk, and
editors like vi and emacs. A regular expression is a way of describing a set of strings

Regular Expressions | 39

www.it-ebooks.info

http://www.it-ebooks.info/

without having to list all the strings in your set.27 Many other computer languages
incorporate regular expressions (some of them even advertise “Perl5 regular ex-
pressions”!), but none of these languages integrates regular expressions into the
language the way Perl does. Regular expressions are used several ways in Perl.
First and foremost, they’re used in conditionals to determine whether a string
matches a particular pattern, because in a Boolean context they return true and
false. So when you see something that looks like /foo/ in a conditional, you know
you’re looking at an ordinary pattern-matching operator:

if (/Windows 7/) { print "Time to upgrade?\n" }

Second, if you can locate patterns within a string, you can replace them with
something else. So when you see something that looks like s/foo/bar/, you know
it’s asking Perl to substitute “bar” for “foo”, if possible. We call that the substi-
tution operator. It also happens to return true or false depending on whether it
succeeded, but usually it’s evaluated for its side effect:

s/IBM/lenovo/;

Finally, patterns can specify not only where something is, but also where it isn’t.
So the split operator uses a regular expression to specify where the data isn’t.
That is, the regular expression defines the separators that delimit the fields of
data. Our Average Example has a couple of trivial examples of this. Lines 9 and
16 each split strings on whitespace in order to return a list of words. But you can
split on any separator you can specify with a regular expression:

my ($good, $bad, $ugly) = split(/,/, "vi,emacs,teco");

(There are various modifiers you can use in each of these situations to do exotic
things like ignore case when matching alphabetic characters, but these are the
sorts of gory details that we’ll cover in Part II when we get to the gory details.)

The simplest use of regular expressions is to match a literal expression. In the case
of the split above, we matched on a single comma character. But if you match
on several characters in a row, they all have to match sequentially. That is, the
pattern looks for a substring, much as you’d expect. Let’s say we want to show
all the lines of an HTML file that contain HTTP links (as opposed to FTP links).
Let’s imagine we’re working with HTML for the first time, and we’re being a
little naïve. We know that these links will always have “http:” in them some-
where. We could loop through our file with this:

27. A good source of information on regular expression concepts is Jeffrey Friedl’s book, Mastering Regular
Expressions.

40 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124
http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124
http://www.it-ebooks.info/

while (my $line = <FILE>) {
 if ($line =~ /http:/) {
 print $line;
 }
}

Here, the =~ (pattern binding) is telling Perl to look for a match of the regular
expression “http:” in the variable $line. If it finds the expression, the operator
returns a true value and the block (a print statement) is executed.28

By the way, if you don’t use the =~ binding operator, Perl will search a default string
instead of $line. It’s like when you say, “Eek! Help me find my contact lens!”
People automatically know to look around near you without your actually having
to tell them that. Likewise, Perl knows that there is a default place to search for
things when you don’t say where to search for them. This default string is actually
a special scalar variable that goes by the odd name of $_. In fact, it’s not the default
just for pattern matching; many operators in Perl default to using the $_ variable,
so a veteran Perl programmer would likely write the last example as:

while (<FILE>) {
 print if /http:/;
}

(Hmm, another one of those statement modifiers seems to have snuck in there.
Insidious little beasties.)

This stuff is pretty handy, but what if we wanted to find all of the link types, not
just the HTTP links? We could give a list of link types, like “http:”, “ftp:”,
“mailto:”, and so on. But that list could get long, and what would we do when a
new kind of link was added?

while (<FILE>) {
 print if /http:/;
 print if /ftp:/;
 print if /mailto:/;
 # What next?
}

Since regular expressions are descriptive of a set of strings, we can just describe
what we are looking for: a number of alphabetic characters followed by a colon.
In regular expression talk (Regexese?), that would be /[a–zA–Z]+:/, where the
brackets define a character class. The a–z and A–Z represent all ASCII alphabetic
characters (the dash means the range of all characters between the starting and
ending character, inclusive). And the + is a special character that says “one or
more of whatever was before me”. It’s what we call a quantifier, meaning a gizmo

28. This is very similar to what the Unix command grep 'http:' file would do.

Regular Expressions | 41

www.it-ebooks.info

http://www.it-ebooks.info/

that says how many times something is allowed to repeat. (The slashes aren’t
really part of the regular expression, but rather part of the pattern-match oper-
ator. The slashes are acting like quotes that just happen to contain a regular
expression.)

Because certain classes like the alphabetics are so commonly used, Perl defines
shortcuts for them, as listed in Table 1-7.

Table 1-7. Shortcuts for alphabetic characters

Name ASCII Definition Unicode Definition Shortcut

Whitespace [\t\n\r\f] \p{Whitespace} \s

Word character [a–zA–Z_0–9] [\p{Alphabetic}\p{Digit}\p{Mark}

\p{Pc}]

\w

Digit [0–9] \p{Digit} \d

Note that these match single characters. A \w will match any single word character,
not an entire word. (Remember that + quantifier? You can say \w+ to match a
word.) Perl also provides the negation of these classes by using the uppercased
character, such as \D for a nondigit character.

We should note that \w is not always equivalent to [a–zA–Z_0–9] (and \d is not
always [0–9]). Some locales define additional alphabetic characters outside the
ASCII sequence, and \w respects them. Versions of Perl newer than 5.8.1 also know
about Unicode letter and digit properties and treat Unicode characters with those
properties accordingly. (Perl also considers ideographs and combining marks to
be \w characters.)

There is one other very special character class, written with a “.”, that will match
any character whatsoever.29 For example, /a./ will match any string containing
an “a” that is not the last character in the string. Thus, it will match “at” or
“am” or even “a!”, but not “a”, since there’s nothing after the “a” for the dot to
match. Since it’s searching for the pattern anywhere in the string, it’ll match
“oasis” and “camel”, but not “sheba”. It matches “caravan” on the first “a”. It could
match on the second “a”, but it stops after it finds the first suitable match, search-
ing from left to right.

29. Except that it won’t normally match a newline. When you think about it, a “.” doesn’t normally match a
newline in grep(1) either.

42 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Quantifiers
The characters and character classes we’ve talked about all match single charac-
ters. We mentioned that you could match multiple “word” characters with \w+.
The + is one kind of quantifier, but there are others. All of them are placed after
the item being quantified.

The most general form of quantifier specifies both the minimum and maximum
number of times an item can match. You put the two numbers in braces, sepa-
rated by a comma. For example, if you were trying to match North American
phone numbers, the sequence \d{7,11} would match at least seven digits, but no
more than eleven digits. If you put a single number in the braces, the number
specifies both the minimum and the maximum; that is, the number specifies the
exact number of times the item can match. (All unquantified items have an im-
plicit {1} quantifier.)

If you put the minimum and the comma but omit the maximum, then the max-
imum is taken to be infinity. In other words, it will match at least the minimum
number of times, plus as many as it can get after that. For example, \d{7} will
match only the first seven digits (a local North American phone number, for
instance, or the first seven digits of a longer number), while \d{7,} will match
any phone number, even an international one (unless it happens to be shorter
than seven digits). There is no special way of saying “at most” a certain number
of times. Just say .{0,5}, for example, to find at most five arbitrary characters.

Certain combinations of minimum and maximum occur frequently, so Perl de-
fines special quantifiers for them. We’ve already seen +, which is the same as
{1,}, or “at least one of the preceding item”. There is also *, which is the same as
{0,}, or “zero or more of the preceding item”, and ?, which is the same as {0,1},
or “zero or one of the preceding item” (that is, the preceding item is optional).

You need to be careful of a couple things about quantification. First of all, Perl
quantifiers are by default greedy. This means that they will attempt to match as
much as they can as long as the whole pattern still matches. For example, if you
are matching /\d+/ against “1234567890”, it will match the entire string. This is
something to watch out for especially when you are using “.”, any character.
Often, someone will have a string like:

larry:JYHtPh0./NJTU:100:10:Larry Wall:/home/larry:/bin/bash

and will try to match “larry:” with /.+:/. However, since the + quantifier is
greedy, this pattern will match everything up to and including “/home/larry:”,
because it matches as much as possible before the last colon, including all the
other colons. Sometimes you can avoid this by using a negated character class;

Regular Expressions | 43

www.it-ebooks.info

http://www.it-ebooks.info/

that is, by saying /[^:]+:/, which says to match one or more noncolon characters
(as many as possible), up to the first colon. It’s that little caret in there that negates
the Boolean sense of the character class.30 The other point to be careful about is
that regular expressions will try to match as early as possible. This even takes
precedence over being greedy. Since scanning happens left to right, the pattern
will match as far left as possible, even if there is some other place where it could
match longer. (Regular expressions may be greedy, but they aren’t into delayed
gratification.) For example, suppose you’re using the substitution command
(s///) on the default string (variable $_, that is), and you want to remove a string
of x’s from the middle of the string. If you say:

$_ = "fred xxxxxxx barney";
s/x*//;

it will have absolutely no effect! This is because the x* (meaning zero or more
“x” characters) will be able to match the “nothing” at the beginning of the string,
since the null string happens to be zero characters wide and there’s a null string
just sitting there plain as day before the “f” of “fred”.31 There’s one other thing
you need to know. By default, quantifiers apply to a single preceding character,
so /bam{2}/ will match “bamm” but not “bambam”. To apply a quantifier to more
than one character, use parentheses. So to match “bambam”, use the pattern /(bam)
{2}/.

Minimal Matching
If you were using a prehistoric version of Perl and you didn’t want greedy match-
ing, you had to use a negated character class. (And, really, you were still getting
greedy matching of a constrained variety.)

In modern versions of Perl, you can force nongreedy, minimal matching by placing
a question mark after any quantifier. Our same username match would now
be /.*?:/. That .*? will now try to match as few characters as possible, rather
than as many as possible, so it stops at the first colon rather than at the last.

Nailing Things Down
Whenever you try to match a pattern, it’s going to try to match in every
location until it finds a match. An anchor allows you to restrict where the pattern
can match. Essentially, an anchor is something that matches a “nothing”, but a

30. Sorry, we didn’t pick that notation, so don’t blame us. That’s just how negated character classes are
customarily written in Unix culture.

31. Don’t feel bad. Even the authors get caught by this from time to time.

44 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

special kind of nothing that depends on its surroundings. You could also call it
a rule, a constraint, or an assertion. Whatever you care to call it, it tries to match
something of zero width and either succeeds or fails. (Failure merely means that
the pattern can’t match that particular way. The pattern will go on trying to
match some other way, if there are any other ways left to try.)

The special symbol \b matches at a word boundary, which is defined as the
“nothing” between a word character (\w) and a nonword character (\W), in either
order. (The characters that don’t exist off the beginning and end of your string
are considered to be nonword characters.) For example:

/\bFred\b/

would match “Fred” in both “The Great Fred” and “Fred the Great”, but not in
“Frederick the Great” because the “d” in “Frederick” is not followed by a non-
word character.

In a similar vein, there are also anchors for the beginning and the end of the string.
If it is the first character of a pattern, the caret (^) matches the “nothing” at the
beginning of the string. Therefore, the pattern /^Fred/ would match “Fred” in
“Frederick the Great” but not in “The Great Fred”, whereas /Fred^/ wouldn’t
match either. (In fact, it doesn’t even make much sense.) The dollar sign ($) works
like the caret, except that it matches the “nothing” at the end of the string instead
of the beginning.32 So now you can probably figure out that when we said:

next LINE if $line =~ /^#/;

we meant “Go to the next iteration of LINE loop if this line happens to begin with
a # character.”

Earlier we said that the sequence \d{7,11} would match a number from seven to
eleven digits long. While strictly true, the statement is misleading: when you use
that sequence within a real pattern-match operator such as /\d{7,11}/, it does
not preclude there being extra unmatched digits after the 11 matched digits! You
often need to anchor quantified patterns on either or both ends to get what you
expect.

Backreferences
We mentioned earlier that you can use parentheses to group things for quantifiers,
but you can also use parentheses to remember bits and pieces of what you

32. This is a bit oversimplified, since we’re assuming here that your string contains no newlines; ^ and $ are
actually anchors for the beginnings and endings of lines rather than strings. We’ll try to straighten this
all out in Chapter 5 (to the extent that it can be straightened out).

Regular Expressions | 45

www.it-ebooks.info

http://www.it-ebooks.info/

matched. A pair of parentheses around a part of a regular expression causes
whatever was matched by that part to be remembered for later use. It doesn’t
change what the part matches, so /\d+/ and /(\d+)/ will still match as many
digits as possible, but in the latter case they will be remembered in a special
variable to be backreferenced later.

How you refer back to the remembered part of the string depends on where you
want to do it from. Within the same regular expression, you use a backslash
followed by an integer. The integer corresponding to a given pair of parentheses
is determined by counting left parentheses from the beginning of the pattern,
starting with one. So, for example, to match something similar to an HTML tag
like “Bold”, you might use /<(.*?)>.*?<\/\1>/. This forces the two parts
of the pattern to match the exact same string, such as the “B” in this example.

Outside the regular expression itself, such as in the replacement part of a substi-
tution, you use a $ followed by an integer; that is, a normal scalar variable named
by the integer. So if you wanted to swap the first two words of a string, for ex-
ample, you could use:

s/(\S+)\s+(\S+)/$2 $1/

The right side of the substitution (between the second and third slashes) is mostly
just a funny kind of double-quoted string, which is why you can interpolate
variables there, including backreference variables. This is a powerful concept:
interpolation (under controlled circumstances) is one of the reasons Perl is a good
text-processing language. The other reason is the pattern matching, of course.
Regular expressions are good for picking things apart, and interpolation is good
for putting things back together again. Perhaps there’s hope for Humpty Dumpty
after all.

If you get tired of numbered backreferences, v5.10 or later also supports named
backreferences. This is the same substitution as just given but this time using
named groups:

s/(?<alpha>\S+)\s+(?<beta>\S+)/$+{beta} $+{alpha}/

Table 1-8. Regular expression backreferences

Where Numbered Group Named Group

Declare (...) (?<NAME> ...)

Inside same regex \1 \k<NAME>

In regular Perl code $1 $+{NAME}

46 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

It may take longer to type in the code that way, but once your patterns grow in
size and complexity, you’ll be glad you can name your groups with meaningful
words instead of just numbers.

List Processing
Much earlier in this chapter, we mentioned that Perl has two main contexts: scalar
context (for dealing with singular things) and list context (for dealing with plural
things). Many of the traditional operators we’ve described so far have been
strictly scalar in their operation. They always take singular arguments (or pairs
of singular arguments for binary operators) and always produce a singular result,
even in list context. So if you write this:

@array = (1 + 2, 3 – 4, 5 * 6, 7 / 8);

you know that the list on the right side contains exactly four values, because the
ordinary math operators always produce scalar values, even in the list context
provided by the assignment to an array.

However, other Perl operators can produce either a scalar or a list value, depending
on their context. They just “know” whether a scalar or a list is expected of them.
But how will you know that? It turns out to be pretty easy to figure out, once you
get your mind around a few key concepts.

First, list context has to be provided by something in the “surroundings”. In the
previous example, the list assignment provides it. Earlier we saw that the list of
a foreach loop provides it. The print operator also provides it. But you don’t have
to learn these one by one.

If you look at the various syntax summaries scattered throughout the rest of the
book, you’ll see various operators that are defined to take a LIST as an argument.
Those are the operators that provide list context. Throughout this book, LIST is
used as a specific technical term to mean “a syntactic construct that provides list
context”. For example, if you look up sort, you’ll find the syntax summary:

sort LIST

That means that sort provides list context to its arguments.

Second, at compile time (that is, while Perl is parsing your program and trans-
lating to internal opcodes), any operator that takes a LIST provides list context
to each syntactic element of that LIST. So every top-level operator or entity in the
LIST knows at compile time that it’s supposed to produce the best list it knows
how to produce. This means that if you say:

sort @dudes, @chicks, other();

List Processing | 47

www.it-ebooks.info

http://www.it-ebooks.info/

then each of @dudes, @chicks, and other() knows at compile time that it’s sup-
posed to produce a list value rather than a scalar value. So the compiler generates
internal opcodes that reflect this.

Later, at runtime (when the internal opcodes are actually interpreted), each of
those LIST elements produces its list in turn, and then (this is important) all the
separate lists are joined together, end to end, into a single list. And that squashed-
flat, one-dimensional list is what is finally handed off to the function that wanted
the LIST in the first place. So if @dudes contains (Fred,Barney), @chicks contains
(Wilma,Betty), and the other function returns the single-element list (Dino), then
the LIST that sort sees is:

(Fred,Barney,Wilma,Betty,Dino)

and the LIST that sort returns is:

(Barney,Betty,Dino,Fred,Wilma)

Some operators produce lists (like keys), while some consume them (like print),
and others transform lists into other lists (like sort). Operators in the last category
can be considered filters, except that, unlike in the shell, the flow of data is from
right to left, since list operators operate on arguments passed in from the right.
You can stack up several list operators in a row:

print reverse sort map {lc} keys %hash;

That takes the keys of %hash and returns them to the map function, which lower-
cases all the keys by applying the lc operator to each of them, and passes them
to the sort function, which sorts them, and passes them to the reverse function,
which reverses the order of the list elements, and passes them to the print func-
tion, which prints them.

As you can see, that’s much easier to describe in Perl than in English.

There are many other ways in which list processing produces more natural code.
We can’t enumerate all the ways here, but for an example, let’s go back to regular
expressions for a moment. We talked about using a pattern in scalar context to
see whether it matched, but if instead you use a pattern in list context, it does
something else: it pulls out all the backreferences as a list. Suppose you’re search-
ing through a log file or a mailbox, and you want to parse a string containing a
time of the form “12:59:59 am”. You might say this:

my ($hour, $min, $sec, $ampm) = /(\d+):(\d+):(\d+) *(\w+)/;

That’s a convenient way to set several variables simultaneously. But you could
just as easily say:

my @hmsa = /(\d+):(\d+):(\d+) *(\w+)/;

48 | Chapter 1: An Overview of Perl

www.it-ebooks.info

http://www.it-ebooks.info/

and put all four values into one array. Oddly, by decoupling the power of regular
expressions from the power of Perl expressions, list context increases the power
of the language. We don’t often admit it, but Perl is actually an orthogonal lan-
guage in addition to being a diagonal language. Have your cake and eat it, too.

What You Don’t Know Won’t Hurt You (Much)
Finally, allow us to return once more to the concept of Perl as a natural language.
Speakers of a natural language are allowed to have differing skill levels, to speak
different subsets of the language, to learn as they go, and, generally, to put the
language to good use before they know the whole language. You don’t know all
of Perl yet, just as you don’t know all of English. But that’s Officially Okay in
Perl culture. You can work with Perl usefully, even though we haven’t even told
you how to write your own subroutines yet. We’ve scarcely begun to explain
how to view Perl as a system management language, or a rapid prototyping lan-
guage, or a networking language, or an object-oriented language. We could write
entire chapters about some of these things. (Come to think of it, we already did.)

But, in the end, you must create your own view of Perl. It’s your privilege as an
artist to inflict the pain of creativity on yourself. We can teach you how we paint,
but we can’t teach you how you paint. There’s More Than One Way To Do It.

Have the appropriate amount of fun.

What You Don’t Know Won’t Hurt You (Much) | 49

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART II

The Gory Details

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 2

Bits and Pieces

We’re going to start small, so this chapter is about the elements of Perl.

Since we’re starting small, the progression through the next several chapters is
necessarily from small to large. That is, we take a bottom-up approach, beginning
with the smallest components of Perl programs and building them into more
elaborate structures, much like molecules are built out of atoms. The disadvan-
tage of this approach is that you don’t necessarily get the Big Picture before get-
ting lost in a welter of details. The advantage is that you can understand the
examples as we go along. (If you’re a top-down person, just turn the book over
and read the chapters backward.)

Each chapter does build on the preceding chapter (or the subsequent chapter, if
you’re reading backward), so you’ll need to be careful if you’re the sort of person
who skips around.

You’re certainly welcome to peek at the reference materials toward the end of the
book as we go along. (That doesn’t count as skipping around.) In particular, any
isolated word in monospaced font is likely to be found in Chapter 27. And although
we’ve tried to stay operating-system neutral, if you are unfamiliar with Unix
terminology and run into a word that doesn’t seem to mean what you think it
ought to mean, you should check whether the word is in the Glossary. If the
Glossary doesn’t work, the Index on page 1091 probably will. If that doesn’t work,
try your favorite search engine.

Atoms
Although there are various invisible things going on behind the scenes that we’ll
explain presently, the smallest things you generally work with in Perl are indi-
vidual characters. And we do mean characters; historically, Perl freely confused

53

www.it-ebooks.info

http://www.it-ebooks.info/

bytes with characters and characters with bytes, but in this new era of global
networking, we must be careful to distinguish the two.

Perl may, of course, be written entirely in the 7-bit ASCII character set. For his-
torical reasons, bytes in the range 128–255 are understood by Perl as being from
the ISO-8859-1 (Latin1) character set, whose codepoints correspond to Uni-
code’s. To tell Perl that bytes in the current source file are to be treated as Unicode
encoded as UTF-8, put this declaration at the top of your file:

use utf8;

As described in Chapter 6, Perl has had Unicode support since the last millen-
nium. This support is pervasive throughout the language: you can use Unicode
characters in identifiers (variable names and such) as well as within literal strings.
When you are using Unicode, you don’t need to worry about how many bits or
bytes it takes to represent a character. Perl just pretends all characters are the
same size (that is, size 1), even though any given character might be represented
by multiple bytes internally. Perl normally represents characters internally as
UTF-8, a variable-length encoding. (For instance, a Unicode smiley character ☺,
U+263A, would be represented internally as a three-byte sequence, but you aren’t
supposed to worry about that.)

If you’ll let us drive our analogy of the physical elements a bit further, characters
are atomic in the same sense as the individual atoms of the various elements. Yes,
they’re composed of smaller particles known as bits and bytes, but if you break
a character apart (in a character accelerator, no doubt), the individual bits and
bytes lose the distinguishing chemical properties of the character as a whole. Just
as neutrons are an implementation detail of the U-238 atom, so too bytes are an
implementation detail of the U+263A character.

So don’t sweat the small stuff. Let’s move on to bigger and better things.

Molecules
Perl is a free-form language, but that doesn’t mean that Perl is totally free of form.
As computer folks usually use the term, a free-form language is one in which you
can put spaces, tabs, and newlines anywhere you like—except where you can’t.

One obvious place you can’t put a whitespace character is in the middle of a token.
A token is what we call a sequence of characters with a unit of meaning, much
like a simple word in natural language. But unlike the typical word, a token might
contain other characters besides letters, just as long as they hang together to form
a unit of meaning. (In that sense, they’re more like molecules, which don’t have
to be composed of only one particular kind of atom.) For example, numbers and

54 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

mathematical operators are considered tokens. An identifier is a token that starts
with an alphabetic character (typically a letter) or connector punctuation like an
underscore and contains only alphabetics, combining marks, digits, and under-
scores. A token may not contain whitespace characters because this would split
the token into two tokens, just as a space in an English word turns it into two
words.1

Although whitespace is allowed between any two tokens, whitespace is required
only between tokens that would otherwise be confused as a single token. All
whitespace is equivalent for this purpose. Newlines are distinguished from spaces
and tabs only within quoted strings, formats, and certain line-oriented forms of
quoting. Specifically, newlines do not terminate statements as they do in certain
other languages (such as FORTRAN or Python). Statements in Perl are termi-
nated with semicolons, just as they are in C and various of its derivatives, like
C++ and Java.

Unicode whitespace characters are allowed in a Unicode Perl program, but you
need to be careful. If you use the special Unicode paragraph and line separators,
be aware that Perl may count line numbers differently than your text editor does,
so error messages may be more difficult to interpret. It’s best to stick with good
old-fashioned newlines.

Tokens are recognized greedily; if at a particular point the Perl parser has a choice
between recognizing a short token or a long token, it will choose the long one.
If you meant it to be two tokens, just insert some whitespace between the tokens.
(We tend to put extra space around most infix operators anyway, just for read-
ability.)

Comments are indicated by the # character and extend from there through the
end of the line. A comment counts as whitespace for separating tokens. The Perl
language attaches no special meaning to anything you might put into a com-
ment:2

my $comet = 'Haley'; # This is a comment

One other oddity is that if a line begins with = anywhere a statement would be
legal, Perl ignores everything from that line down to the next line that begins with
=cut. The ignored text is assumed to be pod, or “plain old documentation”. The

1. The astute reader will point out that literal strings may contain whitespace characters. But strings can get
away with it only because they have quotes on both ends to keep the spaces from leaking out.

2. Actually, that’s a small fib. The Perl parser does look for command-line switches on an initial #! line (see
Chapter 17). It can also interpret the line number directives that various preprocessors produce (see the
section “Generating Perl in Other Languages” on page 717 in Chapter 21). Some modules, such as
Perl::Critic and Smart::Comments, also use special comments to figure out what to do.

Molecules | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Perl distribution has programs that will extract pod commentary from Perl mod-
ules and turn it into flat text, manpages, , or even HTML or XML documents.
In a complementary fashion, the Perl parser extracts the Perl code from Perl
modules and ignores the pod. So you may consider this an alternate, multiline
form of commenting. The code in this pod section isn’t even compiled:

=pod

my $dog = 'Spot';
my $cat = 'Buster';

=cut

You may also consider it completely nuts, but Perl modules documented this way
never lose track of their documentation. See Chapter 23 for details on pod, in-
cluding a description of how to effect multiline comments in Perl.

But don’t look down on the normal comment character. There’s something com-
forting about the visual effect of a nice row of # characters down the left side of
a multiline comment. It immediately tells your eyes: “This is not code.” You’ll
note that even in languages with multiline commenting mechanisms like C, peo-
ple often put a row of * characters down the left side of their comments anyway.
Appearances are often more important than they appear:

start of a multiline comment
my $dog = 'Spot';
my $cat = 'Buster';

In Perl, just as in chemistry and in language, you can build larger and larger
structures out of the smaller ones. We already mentioned the statement; it’s just
a sequence of tokens that make up a command; that is, a sentence in the imper-
ative mood. You can combine a sequence of statements into a block that is de-
limited by braces (also known affectionately as “curlies” by people who confuse
braces with suspenders). Blocks can in turn be combined into larger blocks. Some
blocks function as subroutines, which can be combined into modules, which can
be combined into programs. But we’re getting ahead of ourselves—those are sub-
jects for coming chapters. Let’s build some more tokens out of characters.

Built-in Data Types
Before we start talking about various kinds of tokens you can build from char-
acters, we need a few more abstractions. To be specific, we need three data types.

Computer languages vary in how many and what kinds of data types they provide.
Unlike some commonly used languages that provide many confusing types for
similar kinds of values, Perl provides just a few built-in data types. Consider C,

56 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

in which you might run into char, short, int, long, long long, bool, wchar_t,
size_t, off_t, regex_t, uid_t, u_longlong_t, pthread_key_t, fp_excep

tion_field_type, and so on. That’s just some of the integer types! Then there are
floating-point numbers, and pointers, and strings.

All these complicated types correspond to just one type in Perl: the scalar. (Usually
Perl’s simple data types are all you need, but if not, you’re free to define fancy
dynamic types using Perl’s object-oriented features—see Chapter 12.) Perl’s three
basic data types are: scalars, arrays of scalars, and hashes of scalars (also known
as associative arrays). Some people may prefer to call these data structures rather
than types. That’s okay.

Scalars are the fundamental type from which more complicated structures are
built. A scalar stores a single, simple value—typically a string or a number. Ele-
ments of this simple type may be combined into either of the two aggregate types.
An array is an ordered list of scalars that you access with an integer subscript (or
index). All indexing in Perl starts at 0. Unlike many programming languages,
however, Perl treats negative subscripts as valid: instead of counting from the
beginning, negative subscripts count back from the end of whatever it is you’re
indexing into. (This applies to various substring and sublist operations as well
as to regular subscripting.) A hash, on the other hand, is an unordered set of key/
value pairs that you access using strings (the keys) as subscripts to look up the
scalars (the values) corresponding to a given key. Variables are always one of these
three types. Other than variables, Perl also has other abstractions that you can
think of as data types, such as filehandles, directory handles, formats, subrou-
tines, symbol tables, and symbol table entries.

Abstractions are wonderful, and we’ll collect more of them as we go along, but
they’re also useless in a way. You can’t do anything with an abstraction directly.
That’s why computer languages have syntax. We need to introduce you to the
various kinds of syntactic terms you can use to pull your abstract data into ex-
pressions. We like to use the technical term term when we want to talk in terms
of these syntactic units. (Hmm, this could get terminally confusing. Just remem-
ber how your math teacher used to talk about the terms of an equation, and you
won’t go terribly wrong.)

Just like the terms in a math equation, the purpose of most terms in Perl is to
produce values for operators like addition and multiplication to operate on. Un-
like in a math equation, however, Perl has to do something with the values it
calculates, not just think with a pencil in its hand about whether the two sides
of the equation are equal. One of the most common things to do with a value is
to store it somewhere:

Built-in Data Types | 57

www.it-ebooks.info

http://www.it-ebooks.info/

$x = $y;

That’s an example of the assignment operator (not the numeric equality operator,
which is spelled == in Perl). The assignment gets the value from $y and puts it
into $x. Notice that we aren’t using the term $x for its value; we’re using it for its
location. (The old value of $x gets clobbered by the assignment.) We say that $x
is an lvalue, meaning it’s the sort of storage location we can use on the left side
of an assignment. We say that $y is an rvalue because it’s used on the right side.

There’s also a third kind of value, called a temporary value, that you need to un-
derstand if you want to know what Perl is really doing with your lvalues and
rvalues. If we do some actual math and say:

$x = $y + 1;

Perl takes the rvalue $y and adds the rvalue 1 to it, which produces a temporary
value that is eventually assigned to the lvalue $x. It may help you to visualize what
is going on if we tell you that Perl stores these temporary values in an internal
structure called a stack.3 The terms of an expression (the ones we’re talking about
in this chapter) tend to push values onto the stack, while the operators of the
expression (which we’ll discuss in the next chapter) tend to pop them back off
the stack, perhaps leaving another temporary result on the stack for the next
operator to work with. The pushes and pops all balance out—by the time the
expression is done, the stack is entirely empty (or as empty as it was when we
started). More about temporary values later. Some terms can only be rvalues,
such as the 1 above, while others can serve as either lvalues or rvalues. In partic-
ular, as the assignments above illustrate, a variable may function as either. And
that’s what our next section is about.

Variables
Not surprisingly, there are three variable types corresponding to the three abstract
data types we mentioned earlier. Each of these is prefixed by what we call a
sigil.4 Scalar variables are always named with an initial $, even when referring to
a scalar that is part of an array or hash. It works a bit like the English word “the”.
See Table 2-1.

3. A stack works just like one of those spring-loaded plate dispensers you see in a buffet restaurant—you
can push plates onto the top of the stack, or you can pop them off again (to use the Comp. Sci. vernacular).

4. Presumably because it takes an ordinary name and makes it more magical.

58 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-1. Accessing scalar values

Construct Meaning

$days Simple scalar value $days

$days[28] 29th element of array @days

$days{"Feb"} “Feb” value from hash %days

Note that we can use the same name for $days, @days, and %days without Perl
getting confused.

There are other, fancier scalar terms that are useful in specialized situations that
we won’t go into yet. Table 2-2 shows what they look like.

Table 2-2. Syntax for scalar terms

Construct Meaning

${days} Same as $days but unambiguous before alphanumerics

$Dog::days Different $days variable, in the Dog package

$#days Last index of array @days

$days–>[28] 29th element of array pointed to by reference $days

$days[0][2] Multidimensional array

$days{2000}{"Feb"} Multidimensional hash

$days{2000,"Feb"} Multidimensional hash emulation

Entire arrays (or slices of arrays and hashes) are named with the sigil @, which
works much like the words “these” or “those”. Table 2-3 shows this syntax.

Table 2-3. Syntax for list terms

Construct Meaning

@days Array containing ($days[0], $days[1], ... $days[N])

@days[3, 4, 5] Array slice containing ($days[3], $days[4], $days[5])

@days[3..5] Array slice containing ($days[3], $days[4], $days[5])

@days{"Jan","Feb"} Hash slice containing ($days{"Jan"},$days{"Feb"})

Entire hashes are named by %, as shown in Table 2-4.

Table 2-4. Syntax for hash terms

Construct Meaning

%days (Jan => 31, Feb => $leap ? 29 : 28, ...)

Variables | 59

www.it-ebooks.info

http://www.it-ebooks.info/

Any of these constructs may also serve as an lvalue, specifying a location you
could assign a value to. With arrays, hashes, and slices of arrays or hashes, the
lvalue provides multiple locations to assign to, so you can assign multiple values
to them all at once:

@days = 1 .. 7;

Names
We’ve talked about storing values in variables, but the variables themselves (their
names and their associated definitions) also need to be stored somewhere. In the
abstract, these places are known as namespaces. Perl provides two kinds of name-
spaces, which are often called symbol tables and lexical scopes.5 You may have an
arbitrary number of symbol tables or lexical scopes, but every name you define
gets stored in one or the other. We’ll explain both kinds of namespaces as we go
along. For now we’ll just say that symbol tables are global hashes that happen
to contain symbol table entries for global variables (including the hashes for other
symbol tables). In contrast, lexical scopes are unnamed scratchpads that don’t live
in any symbol table but are attached to a block of code in your program. They
contain variables that can only be seen by the block. (That’s what we mean by
a scope. The lexical part just means, “having to do with text”, which is not at all
what a lexicographer would mean by it. Don’t blame us.)

Within any given namespace (whether global or lexical), every variable type has
its own subnamespace, determined by the sigil. You can, without fear of conflict,
use the same name for a scalar variable, an array, or a hash (or, for that matter,
a filehandle, a subroutine name, a label, or your pet llama). This means that
$foo and @foo are two different variables. Together with the previous rules, it also
means that $foo[1] is an element of @foo totally unrelated to the scalar variable
$foo. This may seem a bit weird, but that’s okay, because it is weird.6

Subroutines may be named with an initial &, although the sigil is optional when
calling the subroutine. Subroutines aren’t generally considered lvalues, though
you can talk Perl into allowing you to return an lvalue from a subroutine and
assign to that, so it can look as though you’re assigning to the subroutine.

Sometimes you just want a name for “everything named foo”, regardless of its sigil.
So symbol table entries can be named with an initial *, where the asterisk stands

5. We also call them packages and pads when we’re talking about Perl’s specific implementations, but those
longer monikers are the generic industry terms, so we’re pretty much stuck with them. Sorry.

6. In fact, it’s weird enough that we decided to make it work the other way in Perl 6, which is weird in other
ways instead.

60 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

for all the other sigils. These are called typeglobs, and they have several uses. They
can also function as lvalues. Assignment to typeglobs is how Perl implements
importing of symbols from one symbol table to another. More about that later.

Like most computer languages, Perl has a list of reserved words that it recognizes
as special keywords. However, because variable names always start with a sigil,
reserved words don’t actually conflict with variable names. Certain other kinds
of names don’t have sigils, though, such as labels and filehandles. With these,
you do have to worry (a little) about conflicting with reserved words. Since most
reserved words are entirely lowercase, we recommend that you pick label and
filehandle names that contain uppercase characters. For example, if you say
open(LOG, logfile) rather than the regrettable open(log, "logfile"), you won’t
confuse Perl into thinking you’re talking about the built-in log operator (which
does logarithms, not tree trunks). Using uppercase filehandles also improves
readability7 and protects you from conflict with reserved words we might add in
the future. For similar reasons, user-defined modules are typically named with
initial capitals so that they’ll look different from the built-in modules known as
pragmas, which are named in all lowercase. And when we get to object-oriented
programming, you’ll notice that class names are usually capitalized for the same
reason.

As you might deduce from the preceding paragraph, case is significant in iden-
tifiers—FOO, Foo, and foo are all different names in Perl. Identifiers start with a
letter or underscore and may be of any length (for values of “any” ranging be-
tween 1 and 251, inclusive) and may contain letters, digits, and underscores. If
you’ve declared your source code to be Unicode with use utf8, then the rules
change a bit: now identifiers must start with either connector punctuation (like
an underscore) or any character with the Unicode XID_Start (XIDS) property,
and can be followed by any character with the XID_Continue (XIDC) property.
This gives you access to more than 100,000 different characters8 for your iden-
tifiers, including ideographs, which count as letters, but we don’t recommend
you use them unless you can read them.9 See Chapter 6.

Names that follow sigils don’t have to be identifiers, strictly speaking. They can
start with a digit, in which case they may only contain more digits, as in $123.
Names that start with anything other than an alphabetic, digit, or connector

7. One of the design principles of Perl is that different things should look different. Contrast this with
languages that try to force different things to look the same, to the detriment of readability.

8. As of this writing, in Unicode v6.0.

9. As of v5.14, Perl does not normalize variable names, so even names that look the same might actually be
different if one has composed characters and another decomposed characters.

Names | 61

www.it-ebooks.info

http://www.it-ebooks.info/

punctuation are (usually) limited to that one character (like $? or $$), and gen-
erally have a predefined significance to Perl. For example, just as in the Unix
shell, $$ is the current process ID, and $? is the exit status of your last child process.
Perl also has an extensible syntax for internal variable names. Any variable of the
form ${^NAME} is a special variable reserved for use by Perl. All these nonidentifier
names are forced to be in the main symbol table. See Chapter 25 for some exam-
ples.

It’s tempting to think of identifiers and names as the same thing, but when we
say name, we usually mean a fully qualified name; that is, a name that says which
symbol table it lives in. Such names may be formed of a sequence of identifiers
separated by the :: token:

$Santa::Helper::Reindeer::Rudolph::nose

That works just like the directories and filenames in a pathname:

/Santa/Helper/Reindeer/Rudolph/nose

In the Perl version of that notion, all the leading identifiers are the names of nested
symbol tables, and the last identifier is the name of the variable within the most
deeply nested symbol table. For instance, in the variable above, the symbol table
is named Santa::Helper::Reindeer::Rudolph::, and the actual variable within
that symbol table is $nose. (The value of that variable is, of course, “red”.)

A symbol table in Perl is also known as a package, so these are often called package
variables. Package variables are nominally private to the package in which they
exist, but they are global in the sense that the packages themselves are global.
That is, anyone can name the package to get at the variable; it’s just hard to do
this by accident. For instance, any program that mentions $Dog::bert is asking
for the $bert variable within the Dog:: package. That is an entirely separate vari-
able from $Cat::bert. See Chapter 10.

Variables attached to a lexical scope are not in any package, so lexically scoped
variable names may not contain the :: sequence. (Lexically scoped variables are
declared with a my, our, or state declaration.)

Name Lookups
So the question is, what’s in a name? How does Perl figure out what you mean if
you just say $bert? Glad you asked. Here are the rules the Perl parser uses while
trying to understand an unqualified name in context:

62 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

1. First, Perl looks earlier in the immediately enclosing block to see whether the
variable is declared in that same block with a my, our, or state declaration
(see those entries in Chapter 27, as well as the section “Scoped Declara-
tions” on page 155 in Chapter 4). If there is a my or state declaration, the
variable is lexically scoped and doesn’t exist in any package—it exists only
in that lexical scope (that is, in the block’s scratchpad). Because lexical scopes
are unnamed, nobody outside that chunk of program can even name your
variable.10

2. If that doesn’t work, Perl looks for the block enclosing that block and tries
again for a lexically scoped variable in the larger block. Again, if Perl finds
one, the variable belongs only to the lexical scope from the point of decla-
ration through the end of the block in which it is declared—including any
nested blocks, like the one we just came from in step 1. If Perl doesn’t find
a declaration, it repeats step 2 until it runs out of enclosing blocks.

3. When Perl runs out of enclosing blocks, it examines the whole compilation
unit for declarations as if it were a block. (A compilation unit is just the entire
current file, or the string currently being compiled by an eval STRING opera-
tor.) If the compilation unit is a file, that’s the largest possible lexical scope,
and Perl will look no further for lexically scoped variables, so we go to step
4. If the compilation unit is a string, however, things get fancier. A string
compiled as Perl code at runtime pretends that it’s a block within the lexical
scope from which the eval STRING is running, even though the actual bound-
aries of the lexical scope are the limits of the string containing the code rather
than any real braces. So if Perl doesn’t find the variable in the lexical scope
of the string, we pretend that the eval STRING is a block and go back to step
2, only this time starting with the lexical scope of the eval STRING operator
instead of the lexical scope inside its string.

4. If we get here, it means Perl didn’t find any declaration (either my or our) for
our variable. Perl now gives up on lexically scoped variables and assumes
that our variable is a package variable. If the strict pragma is in effect, we
will now get an error, unless the variable is one of Perl’s predefined variables
or has been imported into the current package. This is because that pragma
disallows the use of unqualified global names. However, we aren’t done with
lexical scopes just yet. Perl does the same search of lexical scopes as it did in

10. If you use an our declaration instead of a my or state declaration, this only declares a lexically scoped
alias (a nickname) for a package variable, rather than declaring a true lexically scoped variable the way
my or state does. Outside code can still get at the real variable through its package, but in all other respects
an our declaration behaves like a my declaration. This is handy when you’re trying to limit your own use
of globals with the strict pragma (which is on by default if you say use v5.14; for details, see the
strict pragma in Chapter 5). But you should always prefer my or state if you don’t need a global.

Names | 63

www.it-ebooks.info

http://www.it-ebooks.info/

steps 1 through 3, only this time it searches for package declarations instead
of variable declarations. If it finds such a package declaration, it knows that
the current code is being compiled for the package in question and prepends
the declared package name to the front of the variable.

5. If there is no package declaration in any surrounding lexical scope, Perl looks
for the variable name in the unnamed top-level package, which happens to
have the name main when it isn’t going around without a name tag. So in the
absence of any declarations to the contrary, $bert means the same as
$::bert, which means the same as $main::bert. (But because main is just
another package in the top-level unnamed package, it’s also $::main::bert,
and $main::main::bert, $::main::main::bert, and so on. This could be con-
strued as a useless fact. But see “Symbol Tables” on page 389 in Chapter 10.)

There are several implications to these search rules that might not be obvious, so
we’ll make them explicit.

• Because the file is the largest possible lexical scope, a lexically scoped variable
can never be visible outside the file in which it’s declared. File scopes do not
nest.

• Any particular bit of Perl is compiled in at least one lexical scope and exactly
one package scope. The mandatory lexical scope is, of course, the file itself.
Additional lexical scopes are provided by each enclosing block. All Perl code
is also compiled in the scope of exactly one package, and although the dec-
laration of which package you’re in is lexically scoped, packages themselves
are not lexically constrained. That is, they’re global.

• An unqualified variable name may therefore be searched for in many lexical
scopes, but only one package scope, whichever one is currently in effect
(which is lexically determined).

• A variable name may only attach to one scope. Although at least two different
scopes (lexical and package) are active everywhere in your program, a vari-
able can only exist in one of those scopes.

• An unqualified variable name can therefore resolve to only a single storage
location, either in the first enclosing lexical scope in which it is declared, or
else in the current package—but not both. The search stops as soon as that
storage location is resolved, and any storage location that it would have found
had the search continued is effectively hidden.

• The location of the typical variable name can be completely determined at
compile time.

64 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Now that you know all about how the Perl compiler deals with names, you some-
times have the problem that you don’t know the name of what you want at com-
pile time. Sometimes you want to name something indirectly; we call this the
problem of indirection. So Perl provides a mechanism: you can always replace an
alphanumeric variable name with a block containing an expression that returns
a reference to the real data. For instance, instead of saying:

$bert

you might say:

${ some_expression() }

and if the some_expression() function returns a reference to variable $bert (or
even the string, "bert"), it will work just as if you’d said $bert in the first place.
On the other hand, if the function returns a reference to $ernie, you’ll get his
variable instead. The syntax shown is the most general (and least legible) form
of indirection, but we’ll cover several convenient variations in Chapter 8.

Scalar Values
Whether it’s named directly or indirectly, and whether it’s in a variable, or an array
element, or is just a temporary value, a scalar always contains a single value. This
value may be a number, a string, or a reference to another piece of data. Or, there
might even be no value at all, in which case the scalar is said to be undefined.
Although we might speak of a scalar as “containing” a number or a string, scalars
are typeless: you are not required to declare your scalars to be of type integer or
floating point or string or whatever.

Future versions of Perl might allow you to insert int, num, and str type declara-
tions. This is not to enforce strong typing, but to give the optimizer hints about
things that it might not figure out for itself. Some CPAN modules already do this
for you.

Perl stores strings as sequences of characters, with no arbitrary constraints on
length or content. In human terms, you don’t have to decide in advance how
long your strings are going to get, and you can include any characters, including
null bytes, within your string. Perl stores numbers as signed (or unsigned) inte-
gers if possible, or as double-precision floating-point values in the machine’s
native format otherwise. Floating-point values are not infinitely precise. This is
important to remember because comparisons like (10/3 == 1/3*10) tend to fail
mysteriously.

Scalar Values | 65

www.it-ebooks.info

http://www.it-ebooks.info/

However, you can swap out Perl’s normal notions of numbers using the bigint,
bigrat, and bignum pragmas. These provide integers, rational numbers (fractions),
and floating-point numbers of arbitrary precision. This can make things work
more as you expect them to:

% perl –E 'say 10/3 == 1/3*10 ? "Yes" : "No"'
No

% perl –Mbigrat –E 'say 10/3 == 1/3*10 ? "Yes" : "No"'
Yes

% perl –E 'say 4/3 * 5/12'
0.555555555555555

% perl –Mbigrat –E 'say 4/3 * 5/12'
5/9

Inside your program, instead of on the command line, you’d use the declarations
use bigint, use bigrat, and use bignum to get these fancier numbers:

use v5.14;
use bigrat;
say 1/3 * 6/5 * 5/4; # prints "1/2"

Perl converts between the various subtypes as needed, so you can treat a number
as a string or a string as a number, and Perl will do the Right Thing. To convert
from string to number, Perl internally uses something like the C library’s atof(3)
function. To convert from number to string, it does the equivalent of a
sprintf(3) with a format of "%.14g" on most machines. Improper conversions of a
nonnumeric string like foo to a number count as numeric 0; these trigger warn-
ings if you have them enabled, but are silent otherwise. See Chapter 5 for examples
of detecting what sort of data a string holds.

Although strings and numbers are interchangeable for nearly all intents, refer-
ences are a bit different. They’re strongly typed, uncastable pointers with built-
in reference-counting and destructor invocation. That is, you can use them to
create complex data types, including user-defined objects. But they’re still
scalars, for all that, because no matter how complicated a data structure gets,
you often want to treat it as a single value.

By uncastable we mean that you can’t, for instance, convert a reference to an array
into a reference to a hash. References are not castable to other pointer types.
However, if you use a reference as a number or a string, you will get a numeric
or string value, which is guaranteed to retain the uniqueness of the reference even
though the “referenceness” of the value is lost when the value is copied from the
real reference. You can compare such values or extract their type. But you can’t
do much else with the values, since there’s no way to convert numbers or strings

66 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

back into references. Usually, this is not a problem because Perl doesn’t force
you to do pointer arithmetic—or even allow it. See Chapter 8 for more on refer-
ences.

Numeric Literals
Numeric literals are specified in any of several customary11 floating-point or in-
teger formats:

my $x = 12345; # integer
my $x = 12345.67; # floating point
my $x = 6.02e23; # scientific notation
my $x = 4_294_967_296; # underline for legibility
my $x = 0377; # octal
my $x = 0xffff; # hexadecimal
my $x = 0b1100_0000; # binary

Because Perl uses the comma as a list separator, you cannot use it to separate the
thousands in a large number. Perl does allow you to use an underscore character
instead. The underscore only works within literal numbers specified in your pro-
gram, not for strings functioning as numbers or data read from somewhere else.
Similarly, the leading 0x for hexadecimal, 0b for binary, and 0 for octal work only
for literals. The automatic conversion of a string to a number does not recognize
these prefixes—you must do an explicit conversion12 with the oct function—
which works for hex and binary numbers, too, as it happens, provided you supply
the 0x or 0b on the front.

String Literals
String literals are usually surrounded by either single or double quotes. They work
much like Unix shell quotes: double-quoted string literals are subject to back-
slash and variable interpolation, but single-quoted strings are not (except for
\' and \\ so that you can embed single quotes and backslashes into single-quoted
strings). If you want to embed any other backslash sequences such as \n (new-
line), you must use the double-quoted form. (Backslash sequences are also
known as escape sequences, because you “escape” the normal interpretation of
characters temporarily.)

11. Customary in Unix culture, that is. If you’re from a different culture, welcome to ours!

12. Sometimes people think Perl should convert all incoming data for them. But there are far too many decimal
numbers with leading zeros in the world to make Perl do this automatically. For example, the zip code
for the O’Reilly Media office in Cambridge, Massachusetts, is 02140. The postmaster would get confused
if your mailing label program turned 02140 into 1120 decimal.

Scalar Values | 67

www.it-ebooks.info

http://www.it-ebooks.info/

A single-quoted string must be separated from a preceding word by a space be-
cause a single quote is a valid—though archaic—character in an identifier. Its
use has been replaced by the more visually distinct :: sequence. That means that
$main'var and $main::var are the same thing, but the second is generally consid-
ered easier to read for people and programs.

Double-quoted strings are subject to various forms of character interpolation, as
listed in Table 2-5. Many of these will be familiar to programmers of other lan-
guages.

Table 2-5. Backslashed character escapes

Code Meaning

\n Newline (usually LF)

\r Carriage return (usually CR)

\t Horizontal tab

\f Form feed

\b Backspace

\a Alert (bell)

\e ESC character

\033 ESC in octal

\o{33} Also ESC in octal

\x7f DEL in hexadecimal

\x{263a} Character number 0x263A

\N{LATIN SMALL LETTER E

WITH ACUTE}

The named character LATIN SMALL LETTER E WITH ACUTE,
“é”, which is codepoint 0xE9 in Unicode

\N{ U+E9 } Character number 0xE9 again

\cC Control-C

The \N{NAME} notation is usable only in conjunction with the charnames pragma
described in Chapter 29. This allows you to specify character names symbolically,
as in \N{GREEK SMALL LETTER SIGMA}, \N{greek:Sigma}, or \N{sigma}—depending
on how you call the pragma. The notation \N{U+HEXDIGITS} does not require the
charnames pragma, and guarantees that Unicode semantics will be used on the
string or regex it appears in. See also Chapter 6.

There are also escape sequences to modify the case or “meta-ness” of subsequent
characters. See Table 2-6.

68 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-6. Translation escapes

Code Meaning

\u Force next character to titlecasea

\l Force next character to lowercase

\U Force all following characters to uppercase; ends at \E

\L Force all following characters through \E to lowercase; ends at \E

\F Force all following characters through \E to foldcase;b ends at \E

\Q Backslash all following nonalphanumeric characters; ends at \E

\E End \U, \L, \F, or \Q
a Titlecase is a Unicode case that works mostly like uppercase. See Chapter 6.
b \F is new to v5.16. The foldcase map is a special form used for case-insensitive comparison. See Chap-

ter 5 and Chapter 6.

You may also embed newlines directly in your strings; that is, they can begin and
end on different lines. This is often useful, but it also means that if you forget a
trailing quote, the error will not be reported until Perl finds another line con-
taining the quote character, which may be much further on in the script. Fortu-
nately, this usually causes an immediate syntax error on the same line, and Perl
is then smart enough to warn you that you might have a runaway string where
it thought the string started.

Besides the backslash escapes listed above, double-quoted strings are subject to
variable interpolation of scalar and list values. This means that you can insert the
values of certain variables directly into a string literal. It’s really just a handy form
of string concatenation.13 Variable interpolation may be done for scalar variables,
entire arrays (but not hashes), single elements from an array or hash, or slices
(multiple subscripts) of an array or hash. Nothing else interpolates. In other
words, you may only interpolate expressions that begin with $ or @, because those
are the two characters (along with backslash) that the string parser looks for.
Inside strings, a literal @ that is not part of an array or slice identifier but is followed
by an alphanumeric character must be escaped with a backslash (\@), or else a
compilation error will result. Although a complete hash specified with a % will
not be interpolated into the string, single hash values or hash slices are okay
because they begin with $ and @, respectively.

13. With warnings enabled, Perl may report undefined values interpolated into strings as using the
concatenation or join operations, even though you don’t actually use those operators there. The compiler
created them for you anyway.

Scalar Values | 69

www.it-ebooks.info

http://www.it-ebooks.info/

The following code segment prints out “The price is $100.”:

my $Price = '$100'; # not interpolated
print "The price is $Price.\n"; # interpolated

As in some shells, you can put braces around the identifier to distinguish it from
following alphanumerics: "How ${verb}able!". An identifier within such braces
is forced to be a string, as is any single identifier within a hash subscript. For
example:

$days{"Feb"}

can be written as:

$days{Feb}

and the quotes will be assumed. Anything more complicated in the subscript is
interpreted as an expression, and then you’d have to put in the quotes:

$days{'February 29th'} # Ok.
$days{"February 29th"} # Also ok. "" doesn't have to interpolate.
$days{ February 29th } # WRONG, produces parse error.

In particular, you should always use quotes in slices such as:

@days{'Jan','Feb'} # Ok.
@days{"Jan","Feb"} # Also ok.
@days{ Jan, Feb } # Kinda wrong (breaks under use strict)

Apart from the subscripts of interpolated array and hash variables, there are no
multiple levels of interpolation. Contrary to the expectations of shell program-
mers, backticks do not interpolate within double quotes, nor do single quotes
impede evaluation of variables when used within double quotes. Interpolation
is extremely powerful but strictly controlled in Perl. It happens only inside double
quotes, and in certain other “double-quotish” operations that we’ll describe in
the next section:

print "\n"; # Ok, print a newline.
print \n ; # WRONG, no interpolative context.

Pick Your Own Quotes
Although we usually think of quotes as literal values, in Perl they function more
like operators, providing various kinds of interpolating and pattern-matching
capabilities. Perl provides the customary quote characters for these behaviors,
but it also provides a more general way for you to choose your quote character
for any of them. In Table 2-7, any nonalphanumeric, nonwhitespace delimiter
may be used in place of /. (The newline and space characters are no longer allowed
as delimiters, although prehistoric versions of Perl once allowed this.)

70 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Table 2-7. Quote constructs

Customary Generic Meaning Interpolates

'' q// Literal string No

"" qq// Literal string Yes

`` qx// Command execution Yes

() qw// Word list No

// m// Pattern match Yes

s/// s/// Pattern substitution Yes

tr/// y/// Character translation No

"" qr// Regular expression Yes

Some of these are simply forms of “syntactic sugar” to let you avoid putting too
many backslashes into quoted strings, particularly into pattern matches where
your regular slashes and backslashes tend to get all tangled.

If you choose single quotes for delimiters, no variable interpolation is done even
on those forms that ordinarily interpolate. If the opening delimiter is an opening
parenthesis, bracket, brace, or angle bracket, the closing delimiter will be the
corresponding closing character. (Embedded occurrences of the delimiters must
match in pairs.) Examples:

my $single = q!I said, "You said, 'She said it.'"!;

my $double = qq(Can't we get some "good" $variable?);

my $chunk_of_code = q {
 if ($condition) {
 print "Gotcha!";
 }
};

The last example demonstrates that you can use whitespace between the quote
specifier and its initial bracketing character. For two-element constructs like
s/// and tr///, if the first pair of quotes is a bracketing pair, the second part gets
its own starting quote character. In fact, the second pair needn’t be the same as
the first pair. So you can write things like s<foo>(bar) or tr(a–f)[A–F]. Because
whitespace is also allowed between the two inner quote characters, you could
even write that last one as:

tr (a–f)
 [A–F];

Scalar Values | 71

www.it-ebooks.info

http://www.it-ebooks.info/

Whitespace is not allowed, however, when # is being used as the quoting character.
q#foo# is parsed as the string 'foo', while q #foo# is parsed as the quote operator
q followed by a comment. Its delimiter will be taken from the next line. Comments
can also be placed in the middle of two-element constructs, which allows you to
write:

s {foo} # Replace foo
 {bar}; # with bar.

tr [a–f] # Transliterate lowercase hex
 [A–F]; # to uppercase hex

Or Leave Out the Quotes Entirely
A name that has no other interpretation in the grammar will be treated as if it
were a quoted string. These are known as barewords.14 As with filehandles and
labels, a bareword that consists entirely of lowercase ASCII letters risks conflict
with future reserved words. If you have warnings enabled, Perl will warn you
about barewords. For example:

my @days = (Mon,Tue,Wed,Thu,Fri);
print STDOUT hello, " ", world, "\n";

sets the array @days to the short form of the weekdays and prints “hello world”
followed by a newline on STDOUT. If you leave the filehandle out, Perl tries to
interpret hello as a filehandle, resulting in a syntax error. Because this is so error-
prone, some people may wish to avoid barewords entirely. The quoting operators
listed earlier provide many convenient forms, including the qw// “quote words”
construct, which nicely quotes a list of space-separated words:

my @days = qw(Mon Tue Wed Thu Fri);
print STDOUT "hello world\n";

You can go as far as to outlaw barewords entirely. If you say:

use strict "subs";

then any bareword will produce a compile-time error. The restriction lasts
through the end of the enclosing scope. An inner scope may countermand this
by saying:

no strict "subs";

14. Variable names, filehandles, labels, and the like are not considered barewords because they have a meaning
forced by a preceding token or a following token (or both). Predeclared names such as subroutines aren’t
barewords either. It’s only a bareword when the parser has no clue.

72 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Outlawing barewords is such a good idea that if you say

use v5.12;

or higher, Perl turns on all strictures for you automatically.

Note that the bare identifiers in constructs like:

"${verb}able"
$days{Feb}

are not considered barewords since they’re allowed by explicit rule rather than by
having “no other interpretation in the grammar”.

An unquoted name with a trailing double colon, such as main:: or Dog::, is always
treated as the package name. Perl turns the would-be bareword Camel:: into the
string “Camel” at compile time, so this usage is not subject to rebuke.

Interpolating Array Values
Array variables are interpolated into double-quoted strings by joining all ele-
ments of the array with the separator specified in the $" variable15 (which contains
a space by default). The following are equivalent:

my $temp = join($", @ARGV);
print $temp;

print "@ARGV";

Within search patterns, which also undergo double-quotish interpolation, there
is an unfortunate ambiguity: is /$foo[bar]/ to be interpreted as /${foo}[bar]/
(where [bar] is a character class for the regular expression), or as /${foo[bar]}/
(where [bar] is the subscript to array @foo)? If @foo doesn’t otherwise exist, it’s
obviously a character class. If @foo exists, Perl takes a good guess about [bar] and
is almost always right.16 If it does guess wrong, or if you’re just plain paranoid,
you can force the correct interpretation with braces as shown earlier. Even if
you’re merely prudent, it’s probably not a bad idea.

“Here” Documents
A line-oriented form of quoting is based on the Unix shell’s here-document syntax.
It’s line-oriented in the sense that the delimiters are lines rather than characters.

15. $LIST_SEPARATOR if you use the English module bundled with Perl.

16. The guesser is too boring to describe in full, but basically takes a weighted average of all the things that
look like character classes (a–z, \w, initial ^) versus things that look like expressions (variables or reserved
words).

Scalar Values | 73

www.it-ebooks.info

http://www.it-ebooks.info/

The starting delimiter is the current line, and the terminating delimiter is a line
consisting of the string you specify. Following a <<, you specify the string to
terminate the quoted material, and all lines following the current line down to
but not including the terminating line are part of the string. The terminating
string may be either an identifier (a word) or some quoted text. If quoted, the
type of quote determines the treatment of the text, just as it does in regular quot-
ing. An unquoted identifier works as though it were in double quotes. A back-
slashed identifier works as though it were in single quotes (for compatibility with
shell syntax). There must be no space between the << and an unquoted identifier,
although whitespace is permitted if you specify a quoted string instead of the
bare identifier. (If you insert a space, it will be treated as a null identifier, which
is valid but deprecated, and matches the first blank line—see the first Hurrah!
example below.) The terminating string must appear by itself, unquoted and with
no extra whitespace on either side, on the terminating line.

print <<EOF; # same as earlier example
The price is $Price.
EOF

print <<"EOF"; # same as above, with explicit quotes
The price is $Price.
EOF

print <<'EOF'; # single–quoted quote
All things (e.g. a camel's journey through
A needle's eye) are possible, it's true.
But picture how the camel feels, squeezed out
In one long bloody thread, from tail to snout.
 –– C.S. Lewis
EOF

print <<\EOF; # another single–quoted quote
I could really use $100 about now.
EOF

print << x 10; # print next line 10 times
The camels are coming! Hurrah! Hurrah!

print <<"" x 10; # the preferred way to write that
The camels are coming! Hurrah! Hurrah!

print <<`EOC`; # execute commands
echo hi there
echo lo there
EOC

print <<"dromedary", <<"camelid"; # you can stack them
I said bactrian.

74 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

dromedary
She said llama.
camelid

funkshun(<<"THIS", 23, <<'THAT'); # doesn't matter if they're in parens
Here's a line
or two.
THIS
And here's another.
THAT

Just don’t forget that you have to put a semicolon on the end to finish the state-
ment, because Perl doesn’t know you’re not going to try to do this:

print <<"odd"
2345
odd
 + 10000; # prints 12345

If you want your here docs to be indented with the rest of the code, you’ll need to
remove leading whitespace from each line manually:

(my $quote = <<'QUOTE') =~ s/^\s+//gm;
 The Road goes ever on and on,
 down from the door where it began.
QUOTE

You could even populate an array with the lines of a here document as follows:

my @sauces = <<End_Lines =~ m/(\S.*\S)/g;
 normal tomato
 spicy tomato
 green chile
 pesto
 white wine
End_Lines

Version Literals
A literal that begins with a v and is followed by one or more dot-separated decimal
integers is treated as a version number:

use v5.14; # turn on strict and warnings

(These used to be called v-strings, but the use of these to produce string values
has been deprecated. Now you may use this notation only to produce version
objects.)

Scalar Values | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Other Literal Tokens
You should consider any identifier that both begins and ends with a double un-
derscore to be reserved for special syntactic use by Perl. Two such special literals
are _ _LINE_ _ and _ _FILE_ _, which represent the current line number and file-
name at that point in your program. They may only be used as separate tokens;
they will not be interpolated into strings. Likewise, _ _PACKAGE_ _ is the name of
the package the current code is being compiled into. The token _ _END_ _ (or,
alternatively, a Control-D or Control-Z character) may be used to indicate the
logical end of the script before the real end-of-file. Any following text is ignored
but may be read via the DATA filehandle.

The _ _DATA_ _ token functions similarly to the _ _END_ _ token, but it opens the
DATA filehandle within the current package’s namespace, so files you require can
each have their own DATA filehandles open simultaneously. For more information,
see DATA in Chapter 25.

Context
Until now we’ve seen several terms that can produce scalar values. Before we can
discuss terms further, though, we must come to terms with the notion of context.

Scalar and List Context
Every operation17 that you invoke in a Perl script is evaluated in a specific context,
and how that operation behaves may depend on the requirements of that context.
There are two major contexts: scalar and list. For example, assignment to a scalar
variable, or to a scalar element of an array or hash, evaluates the righthand side
in a scalar context:

$x = funkshun(); # scalar context
$x[1] = funkshun(); # scalar context
$x{"ray"} = funkshun(); # scalar context

But assignment to an array or a hash, or to a slice of either, evaluates the righthand
side in a list context, even if the slice picks out only one element:

@x = funkshun(); # list context
@x[1] = funkshun(); # list context
@x{"ray"} = funkshun(); # list context
%x = funkshun(); # list context

17. Here we use the term “operation” loosely to mean either an operator or a term. The two concepts fuzz into
each other when you start talking about functions that parse like terms but look like unary operators.

76 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Assignment to a list of scalars also provides list context to the righthand side, even
if there’s only one element in the list:

($x,$y,$z) = funkshun(); # list context
($x) = funkshun(); # list context

These rules do not change at all when you declare a variable by modifying the
term with my, state, or our, so we have:

my $x = funkshun(); # scalar context
my @x = funkshun(); # list context
my %x = funkshun(); # list context
my ($x) = funkshun(); # list context

You will be miserable until you learn the difference between scalar and list con-
text, because certain operators (such as our mythical funkshun function above)
know which context they are in, and they return a list in contexts wanting a list
but a scalar value in contexts wanting a scalar. (If this is true of an operation, it
will be mentioned in the documentation for that operation.) In computer lingo,
the operations are overloaded on their return type. But it’s a very simple kind of
overloading, based only on the distinction between singular and plural values,
and nothing else.

If some operators respond to context, then obviously something around them has
to supply the context. We’ve shown that assignment can supply a context to its
right operand, but that’s not terribly surprising, since all operators supply some
kind of context to each of their operands. What you really want to know is
which operators supply which context to their operands. As it happens, you can
easily tell which ones supply list context because they all have LIST in their syn-
tactic descriptions. Everything else supplies scalar context. Generally, it’s quite
intuitive.18 If necessary, you can force scalar context onto an argument in the
middle of a LIST by using the scalar pseudofunction. Perl provides no way to
force list context in context, because anywhere you would want list context it’s
already provided by the LIST of some controlling function.

Scalar context can be further classified into string context, numeric context, and
don’t-care context. Unlike the scalar versus list distinction we just made, oper-
ations never know or care which scalar context they’re in. They simply return
whatever kind of scalar value they want to and let Perl lazily translate numbers
to strings in string context, and strings to numbers in numeric context. Some
scalar contexts don’t care whether a string or a number or a reference is returned,

18. Note, however, that the list context of a LIST can propagate down through subroutine calls, so it’s not
always obvious from inspection whether a given statement is going to be evaluated in a scalar or list
context. The program can find out its context within a subroutine by using the wantarray function.

Context | 77

www.it-ebooks.info

http://www.it-ebooks.info/

so no conversion will happen. This happens, for example, when you are assigning
the value to another variable. The new variable just takes on the same subtype
as the old value.

Boolean Context
Another special don’t-care scalar context is called Boolean context. Boolean con-
text is simply any place where an expression is being evaluated to see whether
it’s true or false. When we say “true” and “false” in this book, we mean the
technical definition that Perl uses: a scalar value is true if it is not the null string
"" or the number 0 (or its string equivalent, "0"). A reference is always true because
it represents an address that is never 0. An undefined value (often called undef)
is always false because it looks like either "" or 0, depending on whether you treat
it as a string or a number. (List values have no Boolean value because list values
are never produced in scalar context!)

Because Boolean context is a don’t-care context, it never causes any scalar con-
versions to happen, though of course the scalar context itself is imposed on any
operand that cares. And for many operands that care, the scalar they produce in
scalar context represents a reasonable Boolean value. That is, many operators
that would produce a list in list context can be used for a true/false test in Boolean
context. For instance, in list context such as that provided by the unlink operator,
an array name produces the list of its values:

unlink @files; # Delete all files, ignoring errors.

But if you use the array in a conditional (that is, in a Boolean context), the array
knows it’s in scalar context and returns the number of elements in the array,
which conveniently is true so long as there are any elements left. So supposing
you wanted to get warnings on each file that wasn’t deleted properly, you might
write a loop like this:

while (@files) {
 my $file = shift(@files);
 unlink($file) || warn "Can't delete $file: $!";
}

Here, @files is evaluated in the Boolean context supplied by the while statement,
so Perl evaluates the array itself to see whether it’s a “true array” or a “false array”.
It’s a true array as long as there are filenames in it, but it becomes a false array
as soon as the last filename is shifted out. Note that what we earlier said still
holds. Despite the fact that an array contains (and can produce) a list value, we
are not evaluating a list value in scalar context. We are telling the array it’s a
scalar and asking what it thinks of itself.

78 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

Do not be tempted to use defined @files for this. It doesn’t work because the
defined function is asking whether a scalar is equal to undef, but an array is not
a scalar. The simple Boolean test suffices.

Void Context
Another peculiar kind of scalar context is void context. This context not only
doesn’t care what the return value’s type is, it doesn’t even want a return value.
From the standpoint of how functions work, it’s no different from an ordinary
scalar context. But if you have warnings enabled, the Perl compiler will warn you
if you use an expression with no side effects in a place that doesn’t want a value,
such as in a statement that doesn’t return a value. For example, if you use a string
as a statement:

"Camel Lot";

you may get a warning like this:

Useless use of a constant in void context in myprog line 123;

Interpolative Context
We mentioned earlier that double-quoted literal strings do backslash interpreta-
tion and variable interpolation, but that interpolative context (often called “dou-
ble-quote context” because nobody can pronounce “interpolative”) applies to
more than just double-quoted strings. Some other double-quotish constructs are
the generalized backtick operator, qx//; the pattern-match operator, m//; the
substitution operator, s///; and the quote regex operator, qr//. The substitution
operator does interpolation on its left side before doing a pattern match and then
does interpolation on its right side each time the left side matches.

Interpolative context only happens inside quotes, or things that work like quotes,
so perhaps it’s not fair to call it a context in the same sense as scalar and list
contexts. (Then again, maybe it is.)

List Values and Arrays
Now that we’ve talked about context, we can talk about list literals and how they
behave in context. You’ve already seen some list literals. List literals are denoted
by separating individual values by commas (and enclosing the list in parentheses
where precedence requires it). Because it (almost) never hurts to use extra paren-
theses, the syntax diagram of a list value is usually indicated like this:

(LIST)

List Values and Arrays | 79

www.it-ebooks.info

http://www.it-ebooks.info/

Earlier we said that LIST in a syntax description indicates something that supplies
list context to its arguments. However, a bare list literal itself is the one partial
exception to that rule, in that it supplies list context to its arguments only when
the list as a whole is in list context. The value of a list literal in list context is just
the values of the arguments in the order specified. As a fancy sort of term in an
expression, a list literal merely pushes a series of temporary values onto Perl’s
stack, to be collected off the stack later by whatever operator wants the list. In
scalar context, however, the list literal doesn’t really behave like a LIST, in that
it doesn’t supply list context to its values. Instead, it merely evaluates each of its
arguments in scalar context, and returns the value of the final element. That’s
because it’s really just the C comma operator in disguise, which is a binary op-
erator that always throws away the value on the left and returns the value on the
right. In terms of what we discussed earlier, the left side of the comma operator
really provides context. Because the comma operator is left associative, if you
have a series of comma-separated values, you always end up with the last value
because the final comma throws away whatever any previous commas produced.
So, to contrast the two, the list assignment:

@stuff = ("one", "two", "three");

assigns the entire list value to array @stuff, but the scalar assignment:

$stuff = ("one", "two", "three");

assigns only the value “three” to variable $stuff. Like the @files array we men-
tioned earlier, the comma operator knows whether it is in a scalar or list context,
and chooses its behavior accordingly.

It bears repeating that a list value is different from an array. A real array variable
also knows its context, and in list context it would return its internal list of values
just like a list literal. But in scalar context it returns only the length of the array.
The following assigns to $stuff the value 3:

@stuff = ("one", "two", "three");
$stuff = @stuff;

If you expected it to get the value “three”, you were probably making a false gen-
eralization by assuming that Perl uses the comma operator rule to throw away
all but one of the temporary values that @stuff put on the stack. But that’s not
how it works. The @stuff array never put all its values on the stack. It never put
any of its values on the stack, in fact. It only put one value, the length of the array,
because it knew it was in scalar context. No term or operator in scalar context
will ever put a list on the stack. Instead, it will put one scalar on the stack, what-
ever it feels like, which is unlikely to be the last value of the list it would have
returned in list context. This is because the last value is not likely to be the most

80 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

useful value in scalar context. Got that? (If not, you’d better reread this paragraph
because it’s important.)

Now back to true LISTs, the ones that do list context. Until now we’ve pretended
that list literals were just lists of literals. But just as a string literal might inter-
polate other substrings, a list literal can interpolate other sublists. Any expression
that returns values may be used within a list. The values so used may be either
scalar values or list values, but they all become part of the new list value because
LISTs do automatic interpolation of sublists. That is, when a LIST is evaluated,
each element of the list is evaluated in list context, and the resulting list value is
flattened into LIST just as if each individual element were a member of LIST. Thus,
arrays lose their identity in a LIST.19 The list:

(@stuff,@nonsense,funkshun())

contains the elements of @stuff, followed by the elements of @nonsense, followed
by whatever values the subroutine &funkshun decides to return when called in list
context. Note that any or all of these might have interpolated a null (empty) list,
in which case it’s as if no array or function call had been interpolated at that
point. The null list itself is represented by the literal (). As with a null array, which
interpolates as a null list and is therefore effectively ignored, interpolating the
null list into another list has no effect. Thus, ((),(),()) is equivalent to ().

A corollary to this rule is that you may place an optional comma at the end of
any list value. This makes it easy to come back later and add more elements after
the last one:

@releases = (
 "alpha",
 "beta",
 "gamma",
);

Or you can do away with the commas entirely: another way to specify a literal
list is with the qw (quote words) syntax we mentioned earlier. This construct is
equivalent to splitting a single-quoted string on whitespace. For example:

@froots = qw(
 apple banana carambola
 coconut guava kumquat
 mandarin nectarine peach
 pear persimmon plum
);

19. Some people seem to think this is a problem, but it’s not. You can always interpolate a reference to an array
if you do not want it to lose its identity. See Chapter 8.

List Values and Arrays | 81

www.it-ebooks.info

http://www.it-ebooks.info/

(Note that those parentheses are behaving as quote characters, not ordinary
parentheses. We could just as easily have picked angle brackets or braces or
slashes. But parens are pretty.)

A list value may also be subscripted like a normal array. You must put the list in
parentheses (real ones) to avoid ambiguity. Though it’s often used to fetch a
single value out of a list, it’s really a slice of the list, so the syntax is:

(LIST)[LIST]

Examples:

Stat returns list value.
$modification_time = (stat($file))[9];

SYNTAX ERROR HERE.
$modification_time = stat($file)[9]; # OOPS, FORGOT PARENS

Find a hex digit.
$hexdigit = ("a","b","c","d","e","f")[$digit–10];

A "reverse comma operator".
return (pop(@foo),pop(@foo))[0];

Get multiple values as a slice.
($day, $month, $year) = (localtime)[3,4,5];

List Assignment
A list may be assigned to only if each element of the list is itself legal to assign to:

($a, $b, $c) = (1, 2, 3);

($map{red}, $map{green}, $map{blue}) = (0xff0000, 0x00ff00, 0x0000ff);

You may assign to undef in a list. This is useful for throwing away some of the
return values of a function:

($dev, $ino, undef, undef, $uid, $gid) = stat($file);

You can even do this on my declarations:

my ($dev, $ino, undef, undef, $uid, $gid) = stat($file);

The final list element may be an array or a hash:

($a, $b, @rest) = split;
my ($a, $b, %rest) = @arg_list;

You can actually put an array or hash anywhere in the list you assign to, but the
first array or hash in the list will soak up all the remaining values, and anything

82 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

after it will be set to the undefined value. This may be useful in a local or my,
where you probably want the arrays initialized to be empty anyway.

You can even assign to the empty list:

() = funkshun();

That ends up calling your function in list context but discarding the return values.
If you had just called the function without an assignment, it would have instead
been called in void context, which is a kind of scalar context, and might have
caused the function to behave completely differently. List assignment in scalar
context returns the number of elements produced by the expression on the
right side of the assignment:

$x = (($a, $b) = (7,7,7)); # set $x to 3, not 2
$x = (($a, $b) = funk()); # set $x to funk()'s return count
$x = (() = funk()); # also set $x to funk()'s return count

This is handy when you want to do a list assignment in a Boolean context, because
most list functions return a null list when finished, which when assigned pro-
duces a 0, which is interpreted as false. Here’s how you might use it in a while
statement:

while (($login, $password) = getpwent) {
 if (crypt($login, $password) eq $password) {
 print "$login has an insecure password!\n";
 }
}

Array Length
You may find the number of elements in the array @days by evaluating @days in
scalar context, such as:

@days + 0; # implicitly force @days into scalar context
scalar(@days) # explicitly force @days into scalar context

Note that this only works for arrays. It does not work for list values in general. As
we mentioned earlier, a comma-separated list evaluated in scalar context returns
the last value, like the C comma operator. But because you almost never actually
need to know the length of a list in Perl, this is not a problem.

Closely related to the scalar evaluation of @days is $#days. This will return the
subscript of the last element of the array, or one less than the length, since there
is a 0<th> element. Assigning to $#days changes the length of the array. Short-
ening an array by this method destroys intervening values. You can gain some
measure of efficiency by preextending an array that is going to get big. (You can
also extend an array by assigning to an element beyond the end of the array.) You

List Values and Arrays | 83

www.it-ebooks.info

http://www.it-ebooks.info/

can truncate an array down to nothing by assigning the null list () to it. The
following two statements are equivalent:

@whatever = ();
$#whatever = –1;

And the following is always true:

scalar(@whatever) == $#whatever + 1;

Truncating an array does not recover its memory. You have to undef(@whatever)
(or let it go out of scope) to free its memory back to your process’s memory pool.
You probably can’t free it all the way back to your system’s memory pool because
few operating systems support this.

Hashes
As we said earlier, a hash is just a funny kind of array in which you look values
up using key strings instead of numbers. A hash defines associations between
keys and values, so hashes are often called associative arrays by people who are
not lazy typists.

There really isn’t any such thing as a hash literal in Perl, but if you assign an
ordinary list to a hash, each pair of values in the list will be taken to indicate one
key/value association:

my %map = ("red",0xff0000,"green",0x00ff00,"blue",0x0000ff);

This has the same effect as:

my %map; # an uninitialized hash is born empty
$map{red} = 0xff0000;
$map{green} = 0x00ff00;
$map{blue} = 0x0000ff;

It is often more readable to use the => operator between key/value pairs. The =>
operator is just a synonym for a comma, but it’s more visually distinctive and
also quotes any bare identifiers to the left of it (just like the identifiers in braces
above), which makes it convenient for several sorts of operations, including ini-
tializing hash variables:

my %map = (
 red => 0xff0000,
 green => 0x00ff00,
 blue => 0x0000ff,
);

or initializing anonymous hash references to be used as records:

84 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

my $rec = {
 NAME => "John Smith",
 RANK => "Captain",
 SERNO => "951413",
};

or using named parameters to invoke complicated functions:

my $field = radio_group(
 NAME => "animals",
 VALUES => ["camel", "llama", "ram", "wolf"],
 DEFAULT => "camel",
 LINEBREAK => "true",
 LABELS => \%animal_names,
);

But we’re getting ahead of ourselves again. Back to hashes.

You can use a hash variable (%hash) in list context, in which case it interpolates
all its key/value pairs into the list. But just because the hash was initialized in a
particular order doesn’t mean that the values come back out in that order. Hashes
are implemented internally using hash tables for speedy lookup, which means
that the order in which entries are stored is dependent on the internal hash func-
tion used to calculate positions in the hash table, and not on anything interesting.
So the entries come back in a seemingly random order. (The two elements of
each key/value pair come out in the right order, of course.) For examples of how
to arrange for an output ordering, see the keys function in Chapter 27.

When you evaluate a hash variable in scalar context, it returns a true value only
if the hash contains any key/value pairs whatsoever. If there are any key/value
pairs at all, the value returned is a string consisting of the number of used buckets
and the number of allocated buckets, separated by a slash. This is pretty much
only useful to find out whether Perl’s (compiled in) hashing algorithm is per-
forming poorly on your data set. For example, you stick 10,000 things in a hash,
but evaluating %HASH in scalar context reveals “1/8”, which means only one out of
eight buckets has been touched. Presumably that one bucket contains all 10,000
of your items. This isn’t supposed to happen.

To find the number of keys in a hash, use the keys function in scalar context:

scalar(keys(%HASH))

You can emulate a multidimensional hash by specifying more than one key within
the braces, separated by commas. The listed keys are concatenated together,
separated by the contents of $; ($SUBSCRIPT_SEPARATOR), which has a default value
of chr(28). The resulting string is used as the actual key to the hash. These two
lines do the same thing:

Hashes | 85

www.it-ebooks.info

http://www.it-ebooks.info/

$people{ $state, $county } = $census_results;
$people{ join $; => $state, $county } = $census_results;

This feature was originally implemented to support a2p, the awk-to-Perl trans-
lator. These days, you’d usually just use a real (well, realer) multidimensional
array as described in Chapter 9. One place the old style may still be useful is for
hashes tied to external files that don’t support multidimensional keys, such as
DBM files.

Don’t confuse multidimensional hash emulations with slices. The one represents
a scalar value, and the other represents a list value:

$hash{ $x, $y, $z } # a single value
@hash{ $x, $y, $z } # a slice of three values

Typeglobs and Filehandles
Perl uses a special type called a typeglob to hold an entire symbol table entry. The
symbol table entry *foo contains the values of $foo, @foo, %foo, &foo, and several
interpretations of plain old foo. The type prefix of a typeglob is a * because it
represents all types.

One use of typeglobs (or references thereto) is for passing or storing filehandles,
which was especially popular before Perl had filehandle references. If you want
to save away a bareword filehandle, do it this way:

$fh = *STDOUT;

or perhaps as a real reference, like this:

$fh = *STDOUT;

or perhaps accessing the filehandle portion in that symbol table entry:

$fh = *STDOUT{IO};

This used to be the preferred way to create a local filehandle. For example:

sub newopen {
 my $path = shift;
 local *FH; # not my() nor our()
 open(FH, '<', $path) || return undef;
 return *FH; # not *FH!
}
$fh = newopen("/etc/passwd");

These days, however, it’s almost always better to let Perl pick a filehandle and fill
in an empty variable for you:

86 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

sub newopen {
 my $path = shift;
 open(my $fh, '<', $path) || return undef;
 return $fh;
}
$fh = newopen("/etc/passwd");

The main use of typeglobs nowadays is to alias one symbol table entry to another
symbol table entry. Think of an alias as a nickname. If you say:

*foo = *bar;

it makes everything named “foo” a synonym for every corresponding thing
named “bar”. You can alias just one variable from a typeglob by assigning a ref-
erence instead:

*foo = \$bar;

makes $foo an alias for $bar, but doesn’t make @foo an alias for @bar, or %foo an
alias for %bar. All these affect global (package) variables only; lexicals cannot be
accessed through symbol table entries. Aliasing global variables like this may
seem like a silly thing to want to do, but it turns out that the entire module import-
export mechanism is built around this feature, since there’s nothing that says the
symbol you’re aliasing has to be in your namespace. This:

local *Here::blue = \$There::green;

temporarily makes $Here::blue an alias for $There::green, but it doesn’t make
@Here::blue an alias for @There::green, or %Here::blue an alias for %There
::green. Fortunately, all these complicated typeglob manipulations are hidden
away where you don’t have to look at them. See the sections “Handle Refer-
ences” on page 346 and “Symbol Table References” on page 347 in Chapter 8,
“Symbol Tables” on page 389 in Chapter 10, and Chapter 11 for more discussions
on typeglobs and importation.

Input Operators
There are several input operators we’ll discuss here because they parse as terms.
Sometimes we call them pseudoliterals because they act like quoted strings in
many ways. (Output operators like print parse as list operators and are discussed
in Chapter 27.)

Command Input (Backtick) Operator
First of all, we have the command input operator, also known as the backtick
operator, because it looks like this:

Input Operators | 87

www.it-ebooks.info

http://www.it-ebooks.info/

$info = `perldoc $module`;

A string enclosed by backticks (grave accents, technically) first undergoes variable
interpolation just like a double-quoted string. The result is then interpreted as a
command line by the system, and the output of that command becomes the value
of the pseudoliteral. (This is modeled after a similar operator in Unix shells.) In
scalar context, a single string consisting of all the output is returned. In list con-
text, a list of values is returned, one for each line of output. (You can set $/ to
use a different line terminator.)

The command is executed each time the pseudoliteral is evaluated. The numeric
status value of the command is saved in $? (see Chapter 25 for the interpretation
of $?, also known as $CHILD_ERROR). Unlike the csh version of this command, no
translation is done on the return data—newlines remain newlines. Unlike in any
of the shells, single quotes in Perl do not hide variable names in the command
from interpretation. To pass a $ through to the shell, you need to hide it with a
backslash. The $user in our finger example above is interpolated by Perl, not by
the shell. (Because the command undergoes shell processing, see Chapter 20 for
security concerns.)

The generalized form of backticks is qx// (for “quoted execution”), but the oper-
ator works exactly the same way as ordinary backticks. You just get to pick your
quote characters. As with similar quoting pseudofunctions, if you happen to
choose a single quote as your delimiter, the command string doesn’t undergo
double-quote interpolation:

$perl_info = qx(ps $$); # that's Perl's $$
$shell_info = qx'ps $$'; # that's the shell's $$

Line Input (Angle) Operator
The most heavily used input operator is the line input operator, also known as
the angle operator or the readline function (since that’s what it calls internally).
Evaluating a filehandle in angle brackets (STDIN, for example) yields the next line
from the associated filehandle. (The newline is included, so according to Perl’s
criteria for truth, a freshly read line is always true, up until end-of-file, at which
point an undefined value is returned, which is conveniently false.) Ordinarily,
you would assign the input value to a variable, but there is one situation where
an automatic assignment happens. If and only if the line input operator is the
only thing inside the conditional of a while loop, the value is automatically as-
signed to the special variable $_. The assigned value is then tested to see whether
it is defined. (This may seem like an odd thing to you, but you’ll use the construct
frequently, so it’s worth learning.) Anyway, the following lines are equivalent:

88 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

while (defined($_ = <STDIN>)) { print $_ } # the longest way
while ($_ = <STDIN>) { print } # explicitly to $_
while (<STDIN>) { print } # the short way
for (;<STDIN>;) { print } # while loop in disguise
print $_ while defined($_ = <STDIN>); # long statement modifier
print while $_ = <STDIN>; # explicitly to $_
print while <STDIN>; # short statement modifier

Remember that this special magic requires a while loop. If you use the input
operator anywhere else, you must assign the result explicitly if you want to keep
the value:

while (<FH1> && <FH2>) { ... } # WRONG: discards both inputs
if (<STDIN>) { print } # WRONG: prints old value of $_
if ($_ = <STDIN>) { print } # suboptimal: doesn't test defined
if (defined($_ = <STDIN>)) { print } # best

When you’re implicitly assigning to $_ in a $_ loop, this is the global variable by
that name, not one localized to the while loop. You can protect an existing value
of $_ this way:

while (local $_ = <STDIN>) { print } # temporary value to global $_

or this way:

while (my $_ = <STDIN>) { print } # a new, lexical $_

Any previous value is restored when the loop is done. Unless declared with my or
state, $_ is still a global variable, though, so functions called from inside that
loop could still access it, intentionally or otherwise. You can avoid this, too, by
declaring it lexical. Better yet, give your lexical variable a proper name:

while (my $line = <STDIN>) { print $line } # now private

(Both of these while loops still implicitly test for whether the result of the assign-
ment is defined, because my, state, local, and our don’t change how assignment
is seen by the parser.) The filehandles STDIN, STDOUT, and STDERR are predefined
and preopened. Additional filehandles may be created with the open or sysopen
functions. See those functions’ documentation in Chapter 27 for details on this.

In the while loops above, we were evaluating the line input operator in scalar
context, so the operator returns each line separately. However, if you use the
operator in list context, a list consisting of all remaining input lines is returned,
one line per list element. It’s easy to make a large data space this way, so use this
feature with care:

$one_line = <MYFILE>; # Get first line.
@all_lines = <MYFILE>; # Get the rest of the lines.

Input Operators | 89

www.it-ebooks.info

http://www.it-ebooks.info/

There is no while magic associated with the list form of the input operator, be-
cause the condition of a while loop always provides scalar context (as does any
conditional).

Using the null filehandle within the angle operator is special; it emulates the
command-line behavior of typical Unix filter programs such as sed and awk.
When you read lines from <>, it magically gives you all the lines from all the files
mentioned on the command line. If no files were mentioned, it gives you standard
input instead, so your program is easy to insert into the middle of a pipeline of
processes.

Here’s how it works: the first time <> is evaluated, the @ARGV array is checked. If it
is null, $ARGV[0] is set to “–”, which when opened gives you standard input. The
@ARGV array is then processed as a list of filenames. More explicitly, the loop:

while (<>) {
 ... # code for each line
}

is equivalent to the following Perl-like pseudocode:

@ARGV = ("–") unless @ARGV; # assume STDIN iff empty
while (@ARGV) {
 $ARGV = shift @ARGV; # shorten @ARGV each time
 if (!open(ARGV, '<', $ARGV)) {
 warn "Can't open $ARGV: $!\n";
 next;
 }
 while (<ARGV>) {
 ... # code for each line
 }
}

except that it isn’t so cumbersome to say, and will actually work. It really does
shift array @ARGV and put the current filename into the global variable $ARGV. It
also uses the special filehandle ARGV internally—<> is just a synonym for the more
explicitly written <ARGV>, which is a magical filehandle. (The pseudocode above
doesn’t work because it treats <ARGV> as nonmagical.)

You can modify @ARGV before the first <> so long as the array ends up containing
the list of filenames you really want. Because Perl uses its normal open function
here, a filename of “–” counts as standard input wherever it is encountered, and
the more esoteric features of open are automatically available to you (such as
ignoring leading or trailing whitespace in the filename, or opening a “file” named
“gzip –dc < file.gz |”). Line numbers ($.) continue as if the input were one
big happy file. (But see the example under eof in Chapter 27 for how to reset line
numbers on each file.)

90 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to set @ARGV to your own list of files, go right ahead:

default to README file if no args given
@ARGV = ("README") unless @ARGV;

If you want to pass switches into your script, you can use one of the Getopt::*
modules or put a loop on the front, like this:

while (@ARGV and $ARGV[0] =~ /^–/) {
 $_ = shift;
 last if /^––$/;
 if (/^–D(.*)/) { $debug = $1 }
 if (/^–v/) { $verbose++ }
 ... # other switches
}
while (<>) {
 ... # code for each line
}

The <> symbol will return false only once. If you call it again after this, it will
assume you are processing another @ARGV list, and if you haven’t set @ARGV, it will
input from STDIN.

If the string inside the angle brackets is a scalar variable (for example, <$foo>),
that variable contains an indirect filehandle, either the name of the filehandle to
input from or a reference to such a filehandle. For example:

$fh = *STDIN;
$line = <$fh>;

or:

open(my $fh, '<', "data.txt");
$line = <$fh>;

Filename Globbing Operator
You might wonder what happens to a line input operator if you put something
fancier inside the angle brackets. What happens is that it mutates into a different
operator. If the string inside the angle brackets is anything other than a filehandle
name or a scalar variable (even if there are just extra spaces), it is interpreted as
a filename pattern to be “globbed”.20 The pattern is matched against the files in
the current directory (or the directory specified as part of the fileglob pattern),
and the filenames so matched are returned by the operator. As with line input,

20. Fileglobs have nothing to do with the previously mentioned typeglobs, other than that they both use the
* character in a wildcard fashion. The * character has the nickname “glob” when used like this. With
typeglobs, you’re globbing symbols with the same name from the symbol table. With a fileglob, you’re
doing wildcard matching on the filenames in a directory, just as the various shells do.

Input Operators | 91

www.it-ebooks.info

http://www.it-ebooks.info/

names are returned one at a time in scalar context, or all at once in list context.
The latter usage is more common; you often see things like:

@files = <*.xml>;

As with other kinds of pseudoliterals, one level of variable interpolation is done
first, but you can’t say <$foo> because that’s an indirect filehandle as explained
earlier. In older versions of Perl, programmers would insert braces to force in-
terpretation as a fileglob: <${foo}>. These days, it’s considered cleaner to call the
internal function directly as glob($foo), which is probably the right way to have
invented it in the first place. So you’d write:

@files = glob("*.xml");

if you despise overloading the angle operator for this. Which you’re allowed to do.

Whether you use the glob function or the old angle-bracket form, the fileglob
operator also does while magic like the line input operator, assigning the result
to $_. (That was the rationale for overloading the angle operator in the first place.)
For example, if you wanted to change the permissions on all your C code files,
you might say:

while (glob "*.c") {
 chmod 0644, $_;
}

which is equivalent to:

while (<*.c>) {
 chmod 0644, $_;
}

The glob function was originally implemented as a shell command in older ver-
sions of Perl (and in even older versions of Unix), which meant it was compara-
tively expensive to execute and, worse still, wouldn’t work exactly the same ev-
erywhere. Nowadays it’s a built-in, so it’s more reliable and a lot faster.

Of course, the shortest and arguably the most readable way to do the chmod com-
mand above is to use the fileglob as a list operator:

chmod 0644, <*.c>;

A fileglob evaluates its (embedded) operand only when starting a new list. All
values must be read before the operator will start over. In list context, this isn’t
important because you automatically get them all anyway. In scalar context,
however, the operator returns the next value each time it is called, or a false value
if you’ve just run out. Again, false is returned only once. So if you’re expecting a
single value from a fileglob, it is much better to say:

($file) = <blurch*>; # list context

92 | Chapter 2: Bits and Pieces

www.it-ebooks.info

http://www.it-ebooks.info/

than to say:

$file = <blurch*>; # scalar context

because the former returns all matched filenames and resets the operator, whereas
the latter alternates between returning filenames and returning false.

If you’re trying to do variable interpolation, it’s definitely better to use the glob
operator because the older notation can cause confusion with the indirect file-
handle notation. This is where it becomes apparent that the borderline between
terms and operators is a bit mushy:

@files = <$dir/*.[ch]>; # Works, but avoid.
@files = glob("$dir/*.[ch]"); # Call glob as function.
@files = glob $some_pattern; # Call glob as operator.

We left the parentheses off of the last example to illustrate that glob can be used
either as a function (a term) or as a unary operator; that is, a prefix operator that
takes a single argument. The glob operator is an example of a named unary op-
erator, which is just one kind of operator we’ll talk about in the next chapter.
Later, we’ll talk about pattern-matching operators, which also parse like terms
but behave like operators.

Input Operators | 93

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 3

Unary and Binary Operators

In the previous chapter, we talked about the various kinds of terms you might use
in an expression, but to be honest, isolated terms are a bit boring. Many terms
are party animals. They like to have relationships with one another. The typical
young term feels strong urges to identify with and influence other terms in various
ways, but there are many different kinds of social interaction and many different
levels of commitment. In Perl, these relationships are expressed using operators.

Sociology has to be good for something.

From a mathematical perspective, operators are just ordinary functions with spe-
cial syntax. From a linguistic perspective, operators are just irregular verbs. But
as any linguist will tell you, the irregular verbs in a language tend to be the ones
you use most often. And that’s important from an information theory perspective
because the irregular verbs tend to be shorter and more efficient in both pro-
duction and recognition.

In practical terms, operators are handy.

Operators come in various flavors, depending on their arity (how many operands
they take), their precedence (how hard they try to take those operands away from
surrounding operators), and their associativity (whether they prefer to do things
right to left or left to right when associated with operators of the same prece-
dence).

Perl operators come in three arities: unary, binary, and trinary (or ternary, if your
native tongue is Shibboleth). Unary operators are always prefix operators (except
for the postincrement and postdecrement operators).1 The others are all infix
operators—unless you count the list operators, which can prefix any number of

1. Though you can think of various quotes and brackets as circumfix operators that delimit terms.

95

www.it-ebooks.info

http://www.it-ebooks.info/

arguments. But most people just think of list operators as normal functions that
you can forget to put parentheses around. Here are some examples:

! $x # a unary operator
$x * $y # a binary operator
$x ? $y : $z # a trinary operator
print $x, $y, $z # a list operator

An operator’s precedence controls how tightly it binds. Operators with higher
precedence grab the arguments around them before operators with lower prece-
dence. The archetypal example is straight out of elementary math, where mul-
tiplication takes precedence over addition:

2 + 3 * 4 # yields 14, not 20

The order in which two operators of the same precedence are executed depends
on their associativity. These rules also follow math conventions to some extent:

2 * 3 * 4 # means (2 * 3) * 4, left associative
2 ** 3 ** 4 # means 2 ** (3 ** 4), right associative
2 != 3 != 4 # illegal, nonassociative

Table 3-1 lists the associativity and arity of the Perl operators from highest prece-
dence to lowest.

Table 3-1. Operator precedence

Associativity Arity Precedence Class

None 0 Terms, and list operators (leftward)

Left 2 –>

None 1 ++ ––

Right 2 **

Right 1 ! ~ \ and unary + and –

Left 2 =~ !~

Left 2 * / % x

Left 2 + – .

Left 2 << >>

Right 0,1 Named unary operators

None 2 < > <= >= lt gt le ge

None 2 == != <=> eq ne cmp ~~

Left 2 &

Left 2 | ^

Left 2 &&

96 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Associativity Arity Precedence Class

Left 2 || //

None 2

Right 3 ?:

Right 2 = += –= *= and so on

Left 2 , =>

Right 0+ List operators (rightward)

Right 1 not

Left 2 and

Left 2 or xor

It may seem to you that there are too many precedence levels to remember. Well,
you’re right, there are. Fortunately, you’ve got two things going for you here.
First, the precedence levels as they’re defined usually follow your intuition, pre-
suming you’re not psychotic. And, second, if you’re merely neurotic, you can
always put in extra parentheses to relieve your anxiety.

Another helpful hint is that any operators borrowed from C keep the same prece-
dence relationship with one another, even where C’s precedence is slightly
screwy. (This makes learning Perl easier for C folks and C++ folks. Maybe even
Java folks.)

The following sections cover these operators in precedence order. With very few
exceptions, these all operate on scalar values only, not list values. We’ll mention
the exceptions as they come up.

Although references are scalar values, using most of these operators on references
doesn’t make much sense, because the numeric value of a reference is only
meaningful to the internals of Perl. Nevertheless, if a reference points to an object
of a class that allows overloading, you can call these operators on such objects,
and if the class has defined an overloading for that particular operator, it will
define how the object is to be treated under that operator. This is how complex
numbers are implemented in Perl, for instance. For more on overloading, see
Chapter 13.

Terms and List Operators (Leftward)
Any term is of highest precedence in Perl. Terms include variables, quote and
quote-like operators, most expressions in parentheses, brackets or braces, and
any function whose arguments are parenthesized. Actually, there aren’t really

Terms and List Operators (Leftward) | 97

www.it-ebooks.info

http://www.it-ebooks.info/

any functions in this sense, just list operators and unary operators behaving as
functions because you put parentheses around their arguments. Nevertheless,
the name of Chapter 27 is Functions.

Now listen carefully. Here are a couple of rules that are very important and sim-
plify things greatly, but may occasionally produce counterintuitive results for the
unwary. If any list operator (such as print) or any named unary operator (such
as chdir) is followed by a left parenthesis as the next token (ignoring whitespace),
the operator and its parenthesized arguments are given highest precedence, as if
it were a normal function call. The rule is this: if it looks like a function call, it
is a function call. You can make it look like a nonfunction by prefixing the paren-
theses with a unary plus, which does absolutely nothing, semantically speaking
—it doesn’t even coerce the argument to be numeric.

For example, since || has lower precedence than chdir, we get:

chdir $foo || die; # (chdir $foo) || die
chdir($foo) || die; # (chdir $foo) || die
chdir ($foo) || die; # (chdir $foo) || die
chdir +($foo) || die; # (chdir $foo) || die

but because * has higher precedence than chdir, we get:

chdir $foo * 20; # chdir ($foo * 20)
chdir($foo) * 20; # (chdir $foo) * 20
chdir ($foo) * 20; # (chdir $foo) * 20
chdir +($foo) * 20; # chdir ($foo * 20)

Likewise for any numeric operator that happens to be a named unary operator,
such as rand:

rand 10 * 20; # rand (10 * 20)
rand(10) * 20; # (rand 10) * 20
rand (10) * 20; # (rand 10) * 20
rand +(10) * 20; # rand (10 * 20)

In the absence of parentheses, the precedence of list operators such as print,
sort, or chmod is either very high or very low depending on whether you look at
the left side or the right side of the operator. (That’s what the “Leftward” is doing
in the title of this section.) For example, in:

my @ary = (1, 3, sort 4, 2);
print @ary; # prints 1324

the commas on the right of the sort are evaluated before the sort, but the commas
on the left are evaluated after. In other words, a list operator tends to gobble up
all the arguments that follow it, and then act like a simple term with regard to
the preceding expression. You still have to be careful with parentheses:

98 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

These evaluate exit before doing the print:
print($foo, exit); # Obviously not what you want.
print $foo, exit; # Nor this.

These do the print before evaluating exit:
(print $foo), exit; # This is what you want.
print($foo), exit; # Or this.

The easiest place to get burned is where you’re using parentheses to group math-
ematical arguments, and you forget that parentheses are also used to group func-
tion arguments:

print ($foo & 255) + 1, "\n"; # prints ($foo & 255)

That probably doesn’t do what you expect at first glance.2 Fortunately, mistakes
of this nature generally produce warnings like “Useless use of addition (+) in
void context” and “print (...) interpreted as function” when warnings are
enabled. The second one is reminding you that the parentheses delimit the ar-
gument list, and that anything after it won’t be part of those arguments. Write
that this way instead:

print(($foo & 255) + 1, "\n"); # prints ($foo & 255)+1

Also parsed as terms are the do {} and eval {} constructs, as well as subroutine
and method calls, the anonymous array and hash composers [] and {}, and the
anonymous subroutine composer sub {}.

The Arrow Operator
Just as in C and C++, the binary –> operator is an infix dereference operator. If
the right side is a [...] array subscript, a {...} hash subscript, or a (...) sub-
routine argument list, the left side must be a reference3 to an array, a hash, or a
subroutine, respectively:

$aref–>[42] # an array dereference
$href–>{"corned beef"} # a hash dereference
$sref–>(1,2,3) # a subroutine dereference

In an lvalue (assignable) context, if the left side is not a reference, it must be a
location capable of holding a hard reference, in which case such a reference will
be autovivified for you.

2. Which is why we will be fixing it to do what you expect in Perl 6. Alas, we cannot easily retrofit this fix
to Perl 5 without breaking a lot of existing code.

3. This may be a symbolic reference, but only when no strict is in effect. Otherwise, it must be a hard
reference.

The Arrow Operator | 99

www.it-ebooks.info

http://www.it-ebooks.info/

$aref–>[42] = 'Huh!'; # autovivify an array in $aref
$href–>{"corned beef"} = 0; # autovivify a hash in $href

In either case, it also creates the new individual array or hash element with the
assigned value. For more on this (and some warnings about accidental autoviv-
ification), see Chapter 8.

If the right side of the arrow is not one of those brackets, it’s a method call of some
kind. The right side must be a method name (or a simple scalar variable con-
taining the method name or a method reference), and the left side must evaluate
to either an object (a blessed reference) or a class name (that is, a package name):

my $yogi = Bear–>new("Yogi"); # a class method call
$yogi–>swipe('picnic basket'); # an object method call

The method name may be qualified with a package name to indicate in which
class to start searching for the method, or with the special package name,
SUPER::, to indicate that the search should start in the parent class. See Chapter 12.

Autoincrement and Autodecrement
The ++ and –– operators work as in C. That is, when placed before a variable, they
increment or decrement the variable before returning the value; when placed
after, they increment or decrement the variable after returning the value. For
example, $a++ increments the value of scalar variable $a, returning the value it
had before the increment. Similarly, ––$b{(/(\w+)/)[0]} decrements the element
of the hash %b indexed by the first “word” in the default search variable ($_) and
returns the value after the decrement.4 Note that just as in C, Perl doesn’t define
when the variable is incremented or decremented. You just know it will be done
sometime before or after the value is returned. This also means that modifying a
variable twice in the same statement will lead to undefined behavior. Avoid
statements like:

$i = $i++;
print ++$i + $i++;

Perl will not guarantee the results of such code.

4. Okay, so that wasn’t exactly fair. We just wanted to make sure you were paying attention. Here’s how that
expression works. First, the pattern match finds the first word in $_ using the regular expression \w+. The
parentheses around that cause the word to be returned as a single-element list value because the pattern
match is in list context. The list context is supplied by the list slice operator, (...)[0], which returns the
first (and only) element of the list. That value is used as the key for the hash, and then the hash value
stored under that key is decremented and returned. In general, when confronted with a complex
expression, analyze it from the inside out to see what order things happen in.

100 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

The autoincrement operator has a little extra built-in magic. If you increment a
variable that is numeric, or that has ever been used in a numeric context, you get
a normal increment. If, however, the variable has been used only in string con-
texts since it was set, has a value that is not the null string, and matches the
pattern /^[a–zA–Z]*[0–9]*\z/, the increment is done as a string, preserving each
character within its range, with carry:

my $foo;
$foo = "99"; print ++$foo; # prints "100"
$foo = "a9"; print ++$foo; # prints "b0"
$foo = "Az"; print ++$foo; # prints "Ba"
$foo = "zz"; print ++$foo; # prints "aaa"

The undefined value is always treated as numeric, and in particular is changed to
0 before incrementing, so that a postincrement of an undef value will return 0
rather than undef.

As of this writing, magical autoincrement has not been extended to Unicode let-
ters and digits, but it might be in the future.

The autodecrement operator, however, is not magical.

Exponentiation
Binary ** is the exponentiation operator. Note that it binds even more tightly than
unary minus, so –2**4 is –(2**4), not (–2)**4. The operator is implemented using
C’s pow(3) function, which works with floating-point numbers internally. It cal-
culates using logarithms, which means that it works with fractional powers, but
you sometimes get results that aren’t as exact as straight multiplication would
produce.

Ideographic Unary Operators
Most unary operators just have names (see “Named Unary and File Test Opera-
tors” on page 106 later in this chapter), but some operators are deemed important
enough to merit their own special symbolic representation. All of these operators
seem to have something to do with negation. Blame the mathematicians.

Unary ! performs logical negation; that is, “not”. See not for a lower precedence
version of logical negation. The value of a negated operand is true (1) if the
operand is false (numeric 0, string "0", the null string, or undefined), and false
("") if the operand is true.

Unary – performs arithmetic negation if the operand is numeric. If the operand
is an identifier, a string consisting of a minus sign concatenated with the identifier

Ideographic Unary Operators | 101

www.it-ebooks.info

http://www.it-ebooks.info/

is returned. Otherwise, if the string starts with a plus or minus, a string starting
with the opposite sign is returned. One effect of these rules is that –bareword is
equivalent to "–bareword".5 If, however, the string begins with a nonalphabetic
character (excluding “+” or “-”), Perl will attempt to convert the string to a nu-
meric and the arithmetic negation is performed. If the string cannot be cleanly
converted to a numeric, Perl will give the warning “Argument "the string" isn't
numeric in negation (–)”.

Unary ~ performs bitwise negation; that is, 1’s complement. For example, 0666 &
~027 is 0640. By definition, this is somewhat nonportable when limited by the
word size of your machine. For example, on a 32-bit machine, ~123 is
4294967172, while on a 64-bit machine, it’s 18446744073709551492. But you knew
that already.

What you perhaps didn’t know is that if the argument to ~ happens to be a string
instead of a number, a string of identical length is returned, but with all the bits
of the string complemented. This is a fast way to flip a lot of bits all at once, and
it’s a way to flip those bits portably, since it doesn’t depend on the word size of
your computer. Later we’ll also cover the bitwise logical operators, which have
string-oriented variants as well.

When complementing strings, if all characters have ordinal values under 256,
then their complements will also. But if they do not, all characters will be in either
32- or 64-bit complements, depending on your architecture. So, for example, the
expression ~"\x{3B1}" is "\x{FFFF_FC4E}" on 32-bit machines and "\x{FFFF_
FFFF_FFFF_FC4E}" on 64-bit machines.

Unary + has no semantic effect whatsoever, even on strings. It is syntactically
useful for separating a function name from a parenthesized expression that would
otherwise be interpreted as the complete list of function arguments. (See exam-
ples under the section “Terms and List Operators (Leftward)” on page 97.) If you
think about it sideways, + negates the effect that parentheses have of turning prefix
operators into functions.

Unary \ creates a reference to whatever follows it. Used on a list, it creates a list
of references. See the section “The Backslash Operator” on page 342 in Chap-
ter 8 for details. Do not confuse this behavior with the behavior of backslash
within a string, although both forms do convey the vaguely negational notion of
protecting the next thing from interpretation. This resemblance is not entirely
accidental.

5. This is most useful for Tk programmers, for whom the convention was first adopted.

102 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Binding Operators
Binary =~ binds a string expression to a pattern match, substitution, or translit-
eration (loosely called translation). These operations would otherwise search or
modify the string contained in $_ (the default variable). The string you want to
bind is put on the left, while the operator itself is put on the right. The return
value in scalar context generally indicates the success or failure of the operator
on the right, since the binding operator doesn’t really do anything on its own.
The exception to this is when using the /r modifier with substitution (s///) or
transliteration (y///, tr///), which returns a copy of the modified string. Behavior
in list context depends on the particular operator.

If the right argument is an expression rather than a pattern match, substitution,
or transliteration, it will be interpreted as a search pattern at runtime. That is to
say, $_ =~ $pat is equivalent to $_ =~ /$pat/. This is less efficient than an explicit
search, since the pattern must be checked and possibly recompiled every time
the expression is evaluated. You can avoid this recompilation by precompiling
the original pattern using the qr// (quote regex) operator.

Binary !~ is just like =~ except the return value is negated logically. Binary “!~”
that attempts to use the /r modifier for a nondestructive substitution or trans-
literation is a syntax error. Apart from that, the following expressions are func-
tionally equivalent:

$string !~ /pattern/
!($string =~ /pattern/)
not $string =~ /pattern/

We said that the return value indicates success, but there are many kinds of suc-
cess. Unless you use the /r modifier to make them return their results instead,
substitutions return the number of successful matches, as do transliterations. (In
fact, the transliteration operator is often used to count characters.) Since any
nonzero result is true, it all works out. The most spectacular kind of true value
is a list assignment of a pattern: in list context, pattern matches can return sub-
strings matched by the parentheses in the pattern. But, again, according to the
rules of list assignment, the list assignment itself will return true if anything
matched and was assigned, and false otherwise. So you sometimes see things like:

if (my ($k,$v) = $string =~ m/(\w+)=(\w*)/) {
 print "KEY $k VALUE $v\n";
}

Binding Operators | 103

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s pick that apart. The =~ has precedence over =, so =~ happens first. The =~
binds $string to the pattern match on the right, which is scanning for occurrences
of things that look like KEY=VALUE in your string. It’s in list context because it’s on
the right side of a list assignment. If the pattern matches, it returns a list to be
assigned to $k and $v, which are new variables created by my. The list assignment
itself is in scalar context, so it returns 2, the number of values on the right side
of the assignment. And 2 happens to be true, since our scalar context is also a
Boolean context. When the match fails, no values are assigned, which returns 0,
which is false.

For more on the politics of patterns, see Chapter 5.

Multiplicative Operators
Perl provides the C-like operators * (multiply), / (divide), and % (modulo). The
* and / work exactly as you would expect, multiplying or dividing their two
operands. Division is done in floating point, unless you’ve used any of the inte
ger, bigint, bigrat, or bignum pragmatic modules. The % operator converts its
operands to integers before finding the remainder according to integer division.
(However, it does this integer division in floating point if necessary, so your
operands can be up to 15 digits long on most 32-bit machines.) Assume that your
two operands are called $a and $b. If $b is positive, then the result of $a % $b is
$a minus the largest multiple of $b that is not greater than $a (which means the
result will always be in the range 0 .. $b–1). If $b is negative, then the result of
$a % $b is $a minus the smallest multiple of $b that is not less than $a (which
means the result will be in the range $b+1 .. 0).

When use integer is in scope, % gives you direct access to the modulus operator
as implemented by your C compiler. This operator is not well defined for negative
operands, but it will execute faster.

Binary x is the repetition operator. Actually, it’s two operators. In scalar context,
it returns a concatenated string consisting of the left operand repeated the num-
ber of times specified by the right operand. (For backward compatibility, it also
does this in list context if the left argument is not in parentheses.)

print "–" x 80; # print row of dashes
print "\t" x ($tab/8), " " x ($tab%8); # tab over

In list context, if the left operand is a list in parentheses or is a list formed by
qw/STRING/, the x works as a list replicator rather than a string replicator. This is
useful for initializing all the elements of an array of indeterminate length to the
same value:

104 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

my @ones = (1) x 80; # a list of 80 1's
@ones = (5) x @ones; # set all elements to 5

Similarly, you can also use x to initialize array and hash slices:

my %hash;
my @keys = qw(perls before swine);
@hash{@keys} = ("") x @keys;

If this mystifies you, note that @keys is being used both as a list of keys on the left
side of the assignment and as a scalar value (returning the array length) on the
right side of the assignment. The previous example has the same effect on
%hash as:

$hash{perls} = "";
$hash{before} = "";
$hash{swine} = "";

Additive Operators
Strangely enough, Perl also has the customary + (addition) and – (subtraction)
operators. Both operators convert their arguments from strings to numeric val-
ues, if necessary, and return a numeric result.

Additionally, Perl provides the . operator, which does string concatenation. For
example:

my $almost = "Fred" . "Flintstone"; # returns FredFlintstone

Note that Perl does not place a space between the strings being concatenated. If
you want the space, or if you have more than two strings to concatenate, you can
use the join operator, described in Chapter 27. Most often, though, people do
their concatenation implicitly inside a double-quoted string:

my $fullname = "$firstname $lastname";

Shift Operators
The bit-shift operators (<< and >>) return the value of the left argument shifted
to the left (<<) or to the right (>>) by the number of bits specified by the right
argument. The arguments should be integers. For example:

1 << 4; # returns 16
32 >> 4; # returns 2

Be careful, though. Results on large (or negative) numbers may vary depending
on the number of bits your machine uses to represent integers. You can avoid
this restriction with the bigint pragma.

Shift Operators | 105

www.it-ebooks.info

http://www.it-ebooks.info/

use v5.14;
say 500 << 20; # prints 524288000
say 500 << 200; # prints (only) 128000

use bigint;
say 500 << 200;
803469022129495137770981046170581301261101496891396417650688000

Named Unary and File Test Operators
Some of the “functions” described in Chapter 27 are really unary operators. Ta-
ble 3-2 lists all the named unary operators.

Table 3-2. Named unary operators

–X (file tests) fileno lock setnetent

abs getc log setprotoent

alarm getgrgid lstat setservent

caller getgrnam my shift

chdir gethostbyname oct sin

chomp getnetbyname ord sleep

chop getpeername our sqrt

chr getpgrp pop srand

chroot getprotobyname pos stat

close getpwnam prototype state

closedir getpwuid quotemeta study

cos getsockname rand tell

dbmclose glob readdir telldir

defined gmtime readline tied

delete hex readlink uc

do int readpipe ucfirst

each keys ref umask

eof lc reset undef

eval lcfirst rewinddir untie

exists length rmdir values

exit local scalar write

exp localtime sethostent any ($) sub

fc

106 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike list operators, unary operators have a higher precedence than some of the
binary operators. For example:

sleep 4 | 3;

does not sleep for 7 seconds. It sleeps for 4 seconds and then takes the return value
of sleep (typically zero) and bitwise ORs that with 3, as if the expression were
parenthesized as:

(sleep 4) | 3;

Compare this with:

print 4 | 3;

which does take the value of 4 ORed with 3 before printing it (7, in this case), as if
it were written:

print (4 | 3);

This is because print is a list operator, not a simple unary operator. Once you’ve
learned which operators are list operators, you’ll have no trouble telling unary
operators and list operators apart. When in doubt, you can always use paren-
theses to turn a named unary operator into a function. Remember, if it looks like
a function, it is a function.

Another funny thing about named unary operators is that many of them default
to $_ if you don’t supply an argument. However, if you omit the argument but the
token following the named unary operator looks like it might be the start of an
argument, Perl will get confused because it’s expecting a term. Whenever the
Perl tokener gets to one of the characters listed in Table 3-3, the tokener returns
different token types depending on whether it expects a term or operator.

Table 3-3. Ambiguous characters

Character Operator Term

+ Addition Unary plus

– Subtraction Unary minus

* Multiplication *typeglob

/ Division /pattern/

< Less than, left shift <HANDLE>, <<END

. Concatenation .3333

? ?: ?pattern? (deprecated)

% Modulo %hash

& &, && &subroutine

Named Unary and File Test Operators | 107

www.it-ebooks.info

http://www.it-ebooks.info/

So a typical boo-boo is:

next if length < 80;

in which the < looks to the parser like the beginning of the <> input symbol (a
term) instead of the “less than” (an operator) you were thinking of. There’s really
no way to fix this and still keep Perl pathologically eclectic. If you’re so incredibly
lazy that you cannot bring yourself to type the two characters $_, then use one
of these instead:

next if length() < 80;
next if (length) < 80;
next if 80 > length;
next unless length >= 80;

When a term is expected, a minus sign followed by a single letter will always be
interpreted as a file test operator. A file test operator is a unary operator that takes
one argument, either a filename or a filehandle, and tests the associated file to
see whether something is true about it. If the argument is omitted, it tests $_,
except for –t, which tests STDIN. Unless otherwise documented, it returns 1 for
true and "" for false, or the undefined value if the file doesn’t exist or is otherwise
inaccessible. Currently implemented file test operators are listed in Table 3-4.

Table 3-4. File test operators

Operator Meaning

–r File is readable by effective UID/GID.

–w File is writable by effective UID/GID.

–x File is executable by effective UID/GID.

–o File is owned by effective UID.

–R File is readable by real UID/GID.

–W File is writable by real UID/GID.

–X File is executable by real UID/GID.

–O File is owned by real UID.

–e File exists.

–z File has zero size.

–s File has nonzero size (returns size).

–f File is a plain file.

–d File is a directory.

–l File is a symbolic link.

–p File is a named pipe (FIFO).

108 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Operator Meaning

–S File is a socket.

–b File is a block special file.

–c File is a character special file.

–t Filehandle is opened to a tty.

–u File has setuid bit set.

–g File has setgid bit set.

–k File has sticky bit set.

–T File is a text file.

–B File is a binary file (opposite of –T).

–M Age of file (at startup) in days since modification.

–A Age of file (at startup) in days since last access.

–C Age of file (at startup) in days since inode change.

These operators are exempt from the “looks like a function rule” described above.
That is, an opening parenthesis after the operator does not affect how much
of the following code constitutes the argument. That means, for example, that
–f($file).".bak" is equivalent to –f "$file.bak". Put the opening parentheses
before the operator to separate it from code that follows (this applies only to
operators with higher precedence than unary operators, of course):

–s($file) + 1024 # probably wrong; same as –s($file + 1024)
(–s $file) + 1024 # correct

Note that –s/a/b/ does not do a negated substitution. Saying –exp($foo) still
works as expected, however—only single letters following a minus are inter-
preted as file tests.

The interpretation of the file permission operators –r, –R, –w, –W, –x, and –X is
based solely on the mode of the file and the user and group IDs of the user. There
may be other reasons you can’t actually read, write, or execute the file, such as
if you are on a system that uses ACLs (Access Control Lists), and you’re not on
the list.6 Also note that for the superuser, –r, –R, –w, and –W always return 1, and
–x and –X return 1 if any execute bit is set in the mode. Thus, scripts run by the
superuser may need to do a stat in order to determine the actual mode of the
file, or pretend not to be superuser by temporarily setting the UID to something

6. You may, however, override the built-in semantics with the filetest pragma. See Chapter 29.

Named Unary and File Test Operators | 109

www.it-ebooks.info

http://www.it-ebooks.info/

else. The other file test operators don’t care who you are. Anybody can use the
test for “regular” files:

while (<>) {
 chomp;
 next unless –f $_; # ignore "special" files
 ...
}

The –T and –B switches work as follows. The first block or so of the file is examined
for strange characters such as control codes or bytes with the high bit set (that
don’t look like UTF-8). If more than a third of the bytes appear to be strange, it’s
a binary file; otherwise, it’s a text file. Also, any file containing ASCII NUL (\0)
in the first block is considered a binary file. If –T or –B is used on a filehandle, the
current input (standard I/O or “stdio”) buffer is examined rather than the first
block of the file. Both –T and –B return true on an empty file, or on a file at EOF
(end-of-file) when testing a filehandle. Because Perl has to read a file to do the
–T test, you don’t want to use –T on special files that might hang or give you other
kinds of grief. So on most occasions you’ll want to test with a –f first, as in:

next unless –f $file && –T $file;

If any stat, lstat, or file-test operator is given the special filehandle consisting
of a solitary underline, then the stat structure of the previous file test (or stat
operator) is used, thereby saving a system call. (This doesn’t work under use
filetest or with –t, and you need to remember that lstat and –l will leave values
in the stat structure for the symbolic link, not the real file. Likewise, –l _ will
always be false after a normal stat.)

Here are a couple of examples:

print "Can do.\n" if –r $a || –w _ || –x _;

stat($filename);
print "Readable\n" if –r _;
print "Writable\n" if –w _;
print "Executable\n" if –x _;
print "Setuid\n" if –u _;
print "Setgid\n" if –g _;
print "Sticky\n" if –k _;
print "Text\n" if –T _;
print "Binary\n" if –B _;

File ages for –M, –A, and –C are returned in days (including fractional days) since
the script started running. This start time is stored in the special variable $^T
($BASETIME). Thus, if the file changed after the script started, you would get a
negative time. Note that most time values (86,399 out of 86,400, on average) are

110 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

fractional, so testing for equality with an integer without using the int function
is usually futile. Examples:

next unless –M $file > .5; # files are older than 12 hours
&newfile if –M $file < 0; # file is newer than process
&mailwarning if int(–A) == 90; # file ($_) was accessed 90 days ago today

To reset the script’s start time to the current time, say this:

$^T = time;

Starting with v5.10, as a form of purely syntactic sugar, you can stack file test
operators, making –f –w –x $file equivalent to –x $file && –w _ && –f _.

Relational Operators
Perl has two classes of relational operators. One class operates on numeric values,
the other on string values, as shown in Table 3-5.

Table 3-5. Relational operators

Numeric String Meaning

> gt Greater than

>= ge Greater than or equal to

< lt Less than

<= le Less than or equal to

These operators return 1 for true and "" for false. Note that relational operators
are nonassociating, which means that $a < $b < $c is a syntax error.

In the absence of locale declarations, string comparisons are based on the numeric
Unicode codepoint order of each character in the string. With a locale declara-
tion, the collation order specified by the locale is used. These legacy, locale-based
collation mechanisms do not interact well with the Unicode collation mecha-
nisms provided by the Unicode::Collate and Unicode::Collate::Locale mod-
ules. It is better to use the modules, not locales. Codepoint order is not alphabetic
order except in (unicameral) ASCII, so Perl’s string operators will produce al-
phabetic results only on legacy ASCII data, not on arbitrary text.

Equality Operators
The equality operators listed in Table 3-6 are much like the relational operators.

Equality Operators | 111

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-6. Equality operators

Numeric String Meaning

== eq Equal to

!= ne Not equal to

<=> cmp Comparison, with signed result

~~ ~~ Smartmatch

The equal and not-equal operators return 1 for true and "" for false (just as the
relational operators do). The <=> and cmp operators return –1 if the left operand
is less than the right operand, 0 if they are equal, and +1 if the left operand is
greater than the right. Although the equality operators appear to be similar to
the relational operators, they do have a lower precedence level, so $a < $b <=>
$c < $d is syntactically valid.

For reasons that are apparent to anyone who has seen Star Wars, the <=> operator
is known as the “spaceship” operator.

The ~~ operator is described in the next section.

Smartmatch Operator
First available in v5.10.1,7 binary ~~ does a “smartmatch” between its arguments.
This is mostly used implicitly in the when construct, although not all when clauses
call the smartmatch operator. Unique among all of Perl’s operators, the smart-
match operator can recurse.

It is also unique in that all other Perl operators impose a context (usually string
or numeric context) on their operands, autoconverting those operands to those
imposed contexts. In contrast, smartmatch infers contexts from the actual types
of its operands and uses that type information to select a suitable comparison
mechanism.

The ~~ operator compares its operands “polymorphically”, determining how to
compare them according to their actual types (numeric, string, array, hash, and
so on). Like the equality operators with which it shares the same precedence,
~~ returns 1 for true and "" for false. Much like the =~ binding operator, this
operator’s right argument is considered to be a pattern that either accepts or

7. The version in v5.10.0 behaved differently on fancy cases, but that’s okay because you’re using at least v5.14
now, right?

112 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.starwars.com/
http://www.it-ebooks.info/

rejects the left argument. However, the notion of “pattern” is generalized greatly,
and nearly any value can function as a pattern, or as a list of patterns.

So ~~ is often best read aloud as “matches” or “matches any of”, because the left
operand submits itself to be accepted or rejected by the right operand (or some
part of the right operand).

The behavior of a smartmatch depends on what type of things its arguments are,
as determined by Table 3-7. The first row of the table whose types apply deter-
mines the smartmatch behavior. Because what actually happens is first deter-
mined by the type of the right operand, and only later by the type of the left
operand, the table is sorted on the right operand.

The smartmatch implicitly dereferences any nonblessed hash or array reference,
so the HASH and ARRAY entries apply in those cases. For blessed references, the
Object entries apply. Smartmatches involving hashes only consider hash keys,
never hash values.

The “Matches” column is not always an exact rendition. For example, the smart-
match operator short circuits whenever possible, but grep does not. Also, grep
in scalar context returns the number of matches, but ~~ returns only true or false.

Unlike most operators, the smartmatch operator knows to treat undef specially:

my @array = (1, 2, 3, undef, 4, 5);
say "some elements undefined" if undef ~~ @array;

Each operand is considered in a modified scalar context, the modification being
that array and hash variables are passed by reference to the operator, which im-
plicitly dereferences them. Both elements of each pair are the same:

my %hash = (red => 1, blue => 2, green => 3,
 orange => 4, yellow => 5, purple => 6,
 black => 7, grey => 8, white => 9);

my @array = qw(red blue green);

say "some array elements in hash keys" if @array ~~ %hash;
say "some array elements in hash keys" if \@array ~~ \%hash;

say "red in array" if "red" ~~ @array;
say "red in array" if "red" ~~ \@array;

say "some keys end in e" if /e$/ ~~ %hash;
say "some keys end in e" if /e$/ ~~ \%hash;

Smartmatch Operator | 113

www.it-ebooks.info

http://www.it-ebooks.info/

Table 3-7. Smartmatch behavior

Left Right Description Like (But Evaluated in Boolean
Context)

Any undef Check whether Any is unde-
fined

!defined Any

Any Object Invoke ~~ overloading on
Object, or die

HASH CODE Sub returns true on all HASH
keysa

!grep { !CODE–>($_) } keys

HASH

ARRAY CODE Sub returns true on all ARRAY
elementsa

!grep { !CODE–>($_) }

ARRAY

Any CODE Sub passed Any returns true CODE–>(Any)

HASH1 HASH2 All same keys in both HASHes keys HASH1 == grep

{ exists HASH2–>{$_} }

keys HASH1

ARRAY HASH Any ARRAY elements exist as
HASH keys

grep { exists HASH–>{$_} }

ARRAY

Regexp HASH Any HASH keys pattern match
Regexp

grep { /Regexp/ } keys

HASH

undef HASH Always false (undef can’t be a
key)

0 == 1

Any HASH HASH key existence exists HASH–>{Any}

HASH ARRAY Any ARRAY elements exist as
HASH keys

grep { exists HASH–>{$_} }

ARRAY

ARRAY1 ARRAY2 Recurse on paired elements of
ARRAY1 and ARRAY2b

(ARRAY1[0] ~~ ARRAY2[0])

&& (ARRAY1[1] ~~

ARRAY2[1]) && ...

Regexp ARRAY Any ARRAY elements pattern
match Regexp

grep { /Regexp/ } ARRAY

undef ARRAY undef in ARRAY grep { !defined } ARRAY

Any ARRAY Smartmatch each ARRAY
elementc

grep { Any ~~ $_ } ARRAY

114 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Left Right Description Like (But Evaluated in Boolean
Context)

HASH Regexp Any HASH keys match Regexp grep { /Regexp/ } keys

HASH

ARRAY Regexp Any ARRAY elements match
Regexp

grep { /Regexp/ } ARRAY

Any Regexp Pattern match Any =~ /Regexp/

Object Any Invoke ~~ overloading on
Object, or fall back to:

Any Num Numeric equality Any == Num

Num numlike d Numeric equality Num == numlike

undef Any Check whether undefined !defined(Any)

Any Any String equality Any eq Any
a Empty hashes or arrays match.
b That is, each element smart-matches the element of the same index in the other array.c
c If a circular reference is found, fall back to referential equality.
d Either an actual number or a string that looks like one.

Two arrays smartmatch if each element in the first array smartmatches (that is,
is “in”) the corresponding element in the second array, recursively:

my @little = qw(red blue green);
my @bigger = ("red", "blue", ["orange", "green"]);
if (@little ~~ @bigger) { # true!
 say "little is contained in bigger";
}

Because the smartmatch operator recurses on nested arrays, this will still report
that “red” is in the array:

my @array = qw(red blue green);
my $nested_array = [[[[[[[@array]]]]]]];
say "red in array" if "red" ~~ $nested_array;

If two arrays smartmatch each other, then they are deep copies of each other’s
values, as this example reports:

my @a = (0, 1, 2, [3, [4, 5], 6], 7);
my @b = (0, 1, 2, [3, [4, 5], 6], 7);

if (@a ~~ @b && @b ~~ @a) {
 say "a and b are deep copies of each other";
}
elsif (@a ~~ @b) {
 say "a smartmatches in b";

Smartmatch Operator | 115

www.it-ebooks.info

http://www.it-ebooks.info/

}
elsif (@b ~~ @a) {
 say "b smartmatches in a";
}
else {
 say "a and b don't smartmatch each other at all";
}

When you run this, you get:

a and b are deep copies of each other

If you were to set $b[3] = 4, then it would instead report that “b smartmatches
in a”, because the corresponding position in @a contains an array that (eventually)
has a 4 in it.

Smartmatching one hash against another reports whether both contain the same
keys, no more and no less. This could be used to see whether two records have
the same field names, without caring what values those fields might have. For
example:

use v5.10;
sub make_dogtag {
 state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

 my ($class, $init_fields) = @_;

 die "Must supply (only) name, rank, and serial number"
 unless $init_fields ~~ $REQUIRED_FIELDS;

 ...
}

Or, if other fields are allowed but not required, use ARRAY ~~ HASH:

use v5.10;
sub make_dogtag {
 state $REQUIRED_FIELDS = { name=>1, rank=>1, serial_num=>1 };

 my ($class, $init_fields) = @_;

 die "Must supply (at least) name, rank, and serial number"
 unless [keys %{$init_fields}] ~~ $REQUIRED_FIELDS;

 ...
}

The smartmatch operator is most often used as the implicit operator of a when
clause. See the section “The given Statement” on page 133 in Chapter 4.

116 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Smartmatching of Objects
To avoid relying on an object’s underlying representation, if the smartmatch’s right
operand is an object that doesn’t overload ~~, it raises the exception, “Smart
matching a non–overloaded object breaks encapsulation”. That’s because one
has no business digging around to see whether something is “in” an object. These
are all illegal on objects without a ~~ overload:

 %hash ~~ $object
 42 ~~ $object
"fred" ~~ $object

However, you can change the way an object is smartmatched by overloading the
~~ operator. This is allowed to extend the usual smartmatch semantics. For objects
that do have an ~~ overload, see Chapter 13.

Using an object as the left operand is allowed, although it’s not very useful.
Smartmatching rules take precedence over overloading, so even if the object in
the left operand has smartmatch overloading, this will be ignored. A left operand
that is a nonoverloaded object falls back on a string or numeric comparison of
whatever the ref operator returns. Meaning:

$object ~~ X

does not invoke the overload method with X as an argument. Instead, the above
table is consulted as normal, and based on the type of X, overloading may or may
not be invoked. For simple strings or numbers, in becomes equivalent to this:

$object ~~ $number ref($object) == $number
$object ~~ $string ref($object) eq $string

For example, this reports that the handle smells IOish:

use IO::Handle;
my $fh = IO::Handle–>new();
if ($fh ~~ /\bIO\b/) {
 say "handle smells IOish";
}

That’s because it treats $fh as a string like "IO::Handle=GLOB(0x8039e0)", then
pattern matches against that.8

8. But please don’t do this. In the future this is likely to change to be closer to Perl 6 semantics, where the
type of the right argument determines which overloading (string or number) the object on the left is
supposed to behave like. So please just avoid putting objects on the left for now.

Smartmatch Operator | 117

www.it-ebooks.info

http://www.it-ebooks.info/

Bitwise Operators
Like C, Perl has bitwise AND, OR, XOR (exclusive OR), and NOT operators: &, |, ̂ , and
the previously described ~. You’ll have noticed from your painstaking examina-
tion of the table at the start of this chapter that bitwise AND has a higher prece-
dence than the others, but we’ve cheated and combined them in this discussion.

These operators work differently on numeric values than they do on strings. (This
is one of the few places where Perl cares about the difference.) If either operand
is a number (or has been used as a number), both operands are converted to
integers, and the bitwise operation is performed between the two integers. These
integers are guaranteed to be at least 32 bits long, but they can be 64 bits on some
machines. The point is that there’s an arbitrary limit imposed by the machine’s
architecture. You can get around this restriction with the bigint pragma.

If both operands are strings (and have not been used as numbers since they were
set), the operators do bitwise operations between corresponding bits from the
two strings. In this case, there’s no arbitrary limit, since strings aren’t arbitrarily
limited in size. If one string is longer than the other, the shorter string is consid-
ered to have a sufficient number of 0 bits on the end to make up the difference.
Bits in each corresponding logical character in the two strings are AND’d, OR’d, or
XOR’d together.

For example, if you AND together two strings:

"123.45" & "234.56"

you get another string:

"020.44"

But if you AND together a string and a number:

"123.45" & 234.56

the string is first converted to a number, giving:

123.45 & 234.56

The numbers are then converted to integers:

123 & 234

which evaluates to 106. Note that all bit strings are true (unless they result in the
string “0”). This means if you want to see whether any byte came out to nonzero,
instead of writing this:

if ("fred" & "\x01\x02\x03\x04") { ... }

you need to write this:

118 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

if (("fred" & "\x01\x02\x03\x04") =~ /[^\0]/) { ... }

C-Style Logical (Short-Circuit) Operators
Like C, Perl provides the && (logical AND) and || (logical OR) operators. Perl also
provides a variant of ||, the logical defined OR operator, //. These evaluate from
left to right (with && having slightly higher precedence than || or //), testing the
truth of the statement. These operators, shown in Table 3-8, are known as short-
circuit operators because they determine the truth of the statement by evaluating
the fewest number of operands possible. For example, if the left operand of an
&& operator is false, the right operand is never evaluated because the result of the
operator is false regardless of the value of the right operand.

Table 3-8. Logical operators

Example Name Result

$a && $b AND $a if $a is false, $b otherwise

$a || $b OR $a if $a is true, $b otherwise

$a // $b Defined OR $a if $a is defined, $b otherwise

$a and $b Low precedence AND $a if $a is false, $b otherwise

$a or $b Low precedence OR $a if $a is true, $b otherwise

$a xor $b Low precedence XOR True is exactly one of $a or $b is true, false other-
wise

Such short circuits not only save time but are also frequently used to control the
flow of evaluation. For example, an oft-appearing idiom in Perl programs is:

open(FILE, "<", "somefile") || die "Can't open somefile: $!\n";

In this case, Perl first evaluates the open function. If the value is true (because
somefile was successfully opened), the execution of the die function is unneces-
sary, and so it is skipped. You can read this literally as “Open some file or die!”

The // operator is useful for functions that indicate failure by returning undef.
For example:

my $pid = fork() // die "Can't fork: $!";
if ($pid) {
 # parent code here
 ...
 wait $pid;
} else {
 # child code here
 ...

C-Style Logical (Short-Circuit) Operators | 119

www.it-ebooks.info

http://www.it-ebooks.info/

 exit;
}

It is also useful for detecting missing values from hashes. This returns the default
if the key is not in the hash or the key has an undefined value:

$value = $hash{$key} // "DEFAULT";

The && and || operators differ from C’s in that, rather than returning 0 or 1, they
return the last value evaluated. In the case of ||, this has the delightful result that
you can select the first of a series of scalar values that happens to be true. Thus,
a reasonably portable way to find out the user’s home directory might be:

my $home = $ENV{HOME}
 || $ENV{LOGDIR}
 || (getpwuid($<))[7]
 || die "You're homeless!\n";

On the other hand, since the left argument is always evaluated in scalar context,
you can’t use || for selecting between two aggregates for assignment:

@a = @b || @c; # This doesn't do the right thing
@a = scalar(@b) || @c; # because it really means this.
@a = @b ? @b : @c; # This works fine, though.

Perl also provides lower precedence and and or operators that don’t require paren-
theses on list operators. Some people find this more readable, although others
find it less readable. These spelled-out operators also short circuit. See Ta-
ble 3-8 for a complete list.

Range Operators
The .. range operator is really two different operators depending on the context.

In scalar context, .. returns a Boolean value. The operator is bi-stable, like an
electronic flip-flop, and emulates the line-range (comma) operator of sed, awk,
and various editors. Each scalar .. operator maintains its own Boolean state. It
is false as long as its left operand is false. Once the left operand is true, the range
operator stays true until the right operand is true, after which the range operator
becomes false again. The operator doesn’t become false until the next time it is
evaluated. It can test the right operand and become false on the same evaluation
as the one where it became true (the way awk’s range operator behaves), but it
still returns true once. If you don’t want it to test the right operand until the next
evaluation (which is how sed’s range operator works), just use three dots (...)

120 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

instead of two.9 With both .. and ..., the right operand is not evaluated while
the operator is in the false state, and the left operand is not evaluated while the
operator is in the true state.

The value returned is either the null string for false or a sequence number (be-
ginning with 1) for true. The sequence number is reset for each range encountered.
The final sequence number in a range has the string “E0” appended to it, which
doesn’t affect its numeric value, but gives you something to search for if you want
to exclude the endpoint. You can exclude the beginning point by waiting for the
sequence number to be greater than 1. If either operand of scalar .. is a numeric
literal, that operand is implicitly compared to the $. variable, which contains the
current line number for your input file.10

Examples:

if (101 .. 200) { print } # print 2nd hundred lines
next line if 1 .. /^$/; # skip header lines of a message
s/^/> / if /^$/ .. eof; # quote body of a message

In list context, .. returns a list of values counting (by ones) from the left value to
the right value. This is useful for writing for (1..10) loops and for doing slice
operations on arrays:

for (101 .. 200) { print } # prints 101102...199200

my @foo = getlist();
@foo = @foo[0 .. $#foo]; # an expensive no–op
@foo = @foo[–5 .. –1]; # slice last 5 items

In the current implementation, no temporary array is created when the range
operator is used as the expression in foreach loops, but older versions of Perl
might burn a lot of memory when you write something like this:

for (1 .. 1_000_000) {
 # code
}

If the left value is greater than the right value, a null list is returned. (To produce
a list in reverse order, see the reverse operator.)

If its operands are strings, the range operator makes use of the magical autoin-
crement algorithm discussed earlier. So you can say:

my @alphabet = ("A" .. "Z");

9. Do not confuse the ... range operator with the ... elliptical statement, which raises an “Unimplemented”
exception when executed.

10. Technically, it contains the number of times the readline operator has been called on the last handle it
was called on since that handle was last closed.

Range Operators | 121

www.it-ebooks.info

http://www.it-ebooks.info/

to get all the letters of the (modern English) alphabet, or:

my $hexdigit = (0 .. 9, "a" .. "f")[$num & 15];

to get a hexadecimal digit, or:

my @z2 = ("01" .. "31");
print $z2[$mday];

to get dates with leading zeros. You can also say:

my @combos = ("aa" .. "zz");

to get all two-letter combinations of lowercase ASCII letters. However, be careful
of something like:

my @bigcombos = ("aaaaaaa" .. "zzzzzzz");

since that will require lots of memory. More precisely, it’ll need space to store
8,031,810,176 scalars. Let’s hope you have a 64-bit machine. With a terabyte of
memory. Fast memory. Perhaps you should consider an iterative approach in-
stead.

If the final value specified is not in the sequence that the magical increment would
produce, the sequence goes until the next value would be longer than the final
value specified. For example, "W" .. "M" produces “W”, “X”, “Y”, and “Z”, but
then stops because the next item in the sequence, “AA”, is longer than the target
“M”.

If the initial value specified isn’t part of a magical increment sequence (that is, a
nonempty string matching /^[a–zA–Z]*[0–9]*\z/), only the initial value is re-
turned. So the following will only return an alpha:

use charnames "greek";
my @greek_small = ("\N{alpha}" .. "\N{omega}");

To get lowercase Greek letters, you might use this instead:

use charnames "greek";
my @greek_small = map { chr } (
 ord("\N{alpha}") .. ord("\N{omega}")
);

However, that picks up an extra letter because there are two different lowercase
sigmas between rho and tau, the extra one being "\N{final sigma}". In general,
assuming codepoint order corresponds to alphabetic order seldom works out.
See “Comparing and Sorting Unicode Text” on page 297 in Chapter 6.

122 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

Conditional Operator
As in C, ?: is the only trinary operator. It’s often called the conditional operator
because it works much like an if-then-else, except that, since it’s an expression
and not a statement, it can be safely embedded within other expressions and
functions calls. As a trinary operator, its two parts separate three expressions:

COND ? THEN : ELSE

If the condition COND is true, only the THEN expression is evaluated, and the value
of that expression becomes the value of the entire expression. Otherwise, only
the ELSE expression is evaluated, and its value becomes the value of the entire
expression.

Scalar or list context propagates downward into the second or third argument,
whichever is selected. (The first argument is always in scalar context since it’s a
conditional.)

my $a = $ok ? $b : $c; # get a scalar
my @a = $ok ? @b : @c; # get an array
my $a = $ok ? @b : @c; # get a count of an array's elements

You’ll often see the conditional operator embedded in lists of values to format
with printf, since nobody wants to replicate the whole statement just to switch
between two related values:

printf "I have %d camel%s.\n",
 $n, $n == 1 ? "" : "s";

Conveniently, the precedence of ?: is higher than a comma but lower than most
operators you’d use inside (such as == in this example), so you don’t usually have
to parenthesize anything. But you can add parentheses for clarity if you like. For
conditional operators nested within the THEN parts of other conditional operators,
we suggest that you put in line breaks and indent as if they were ordinary if
statements:

$leapyear =
 $year % 4 == 0
 ? $year % 100 == 0
 ? $year % 400 == 0
 ? 1
 : 0
 : 1
 : 0;

For conditionals nested within the ELSE parts of earlier conditionals, you can do
a similar thing:

$leapyear =
 $year % 4

Conditional Operator | 123

www.it-ebooks.info

http://www.it-ebooks.info/

 ? 0
 : $year % 100
 ? 1
 : $year % 400
 ? 0
 : 1;

but it’s usually better to line up all the COND and THEN parts vertically:

$leapyear =
 $year % 4 ? 0 :
 $year % 100 ? 1 :
 $year % 400 ? 0 : 1;

Lining up the question marks and colons can make sense of even fairly cluttered
structures:

printf "Yes, I like my %s book!\n",
 $i18n eq "french" ? "chameau" :
 $i18n eq "german" ? "Kamel" :
 $i18n eq "japanese" ? "\x{99F1}\x{99DD}" :
 "camel"

With the utf8 pragma, you don’t even have to escape the Unicode characters:

use utf8;
printf "Yes, I like my %s book!\n",
 $i18n eq "french" ? "chameau" :
 $i18n eq "german" ? "Kamel" :
 $i18n eq "japanese" ? " " :
 "camel"

You can assign to the conditional operator11 if both the second and third argu-
ments are legal lvalues (meaning that you can assign to them), and both are
scalars or both are lists (otherwise, Perl won’t know which context to supply to
the right side of the assignment):

($a_or_b ? $a : $b) = $c; # sets either $a or $b to have the value of $c

Bear in mind that the conditional operator binds more tightly than the various
assignment operators. Usually this is what you want (see the $leapyear assign-
ments above, for example), but you can’t have it the other way without using
parentheses. Using embedded assignments without parentheses will get you into
trouble, and you might not get a parse error because the conditional operator
can be parsed as an lvalue. For example, you might write this:

$a % 2 ? $a += 10 : $a += 2 # WRONG

But that would be parsed like this:

11. This is not necessarily guaranteed to contribute to the readability of your program. But it can be used to
create some cool entries in an Obfuscated Perl contest.

124 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

(($a % 2) ? ($a += 10) : $a) += 2

Assignment Operators
Perl recognizes the C assignment operators, as well as providing some of its own.
There are quite a few of them:

= **= += *= &= <<= &&=
 –= /= |= >>= ||=
 .= %= ^= //=
 x=

Each operator requires a target lvalue (typically a variable or array element) on
the left side and an expression on the right side. For the simple assignment op-
erator:

TARGET = EXPR

the value of the EXPR is stored into the variable or location designated by TARGET.
For the other operators, Perl evaluates the expression:

TARGET OP= EXPR

as if it were written:

TARGET = TARGET OP EXPR

That’s a handy mental rule, but it’s misleading in two ways. First, assignment
operators always parse at the precedence level of ordinary assignment, regardless
of the precedence that OP would have by itself. Second, TARGET is evaluated only
once. Usually that doesn’t matter unless there are side effects, such as an au-
toincrement:

$var[$a++] += $value; # $a is incremented once
$var[$a++] = $var[$a++] + $value; # $a is incremented twice

Unlike in C, the assignment operator produces a valid lvalue. Modifying an as-
signment is equivalent to doing the assignment and then modifying the variable
to which it was assigned. This is useful for modifying a copy of something, like
this:

($tmp = $global) += $constant;

which is the equivalent of:

$tmp = $global + $constant;

Likewise:

($a += 2) *= 3;

is equivalent to:

Assignment Operators | 125

www.it-ebooks.info

http://www.it-ebooks.info/

$a += 2;
$a *= 3;

That’s not terribly useful, but here’s an idiom you see frequently:

(my $new = $old) =~ s/foo/bar/g;

That can also be written like this in v5.14 or later, using the /r modifier to return
a copy of the changed version instead of acting on the variable that =~ binds to:

my $new = ($old =~ s/foo/bar/gr);
my $new = $old =~ s/foo/bar/gr;

In all cases, the value of the assignment is the new value of the variable. Since
assignment operators associate right to left, this can be used to assign many vari-
ables the same value, as in:

$a = $b = $c = 0;

which assigns 0 to $c, and the result of that (still 0) to $b, and the result of that
(still 0) to $a.

List assignment may be done only with the plain assignment operator, =. In list
context, list assignment returns the list of new values just as scalar assignment
does. In scalar context, list assignment returns the number of values that were
available on the right side of the assignment, as mentioned in Chapter 2. This
makes it useful for testing functions that return a null list when unsuccessful (or
no longer successful), as in:

while (my ($key, $value) = each %gloss) { ... }

next unless my ($dev, $ino, $mode) = stat $file;

Comma Operators
Binary “,” is the comma operator. In scalar context it evaluates its left argument
in void context, throws that value away, then evaluates its right argument in
scalar context and returns that value. This is just like C’s comma operator. For
example:

$a = (1, 3);

assigns 3 to $a. Do not confuse the scalar context use with the list context use. In
list context, a comma is just the list argument separator, and it inserts both its
arguments into the LIST. It does not throw any values away.

For example, if you change the previous example to:

@a = (1, 3);

you are constructing a two-element list, while:

126 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

atan2(1, 3);

is calling the function atan2 with two arguments.

The => digraph is mostly just a synonym for the comma operator. It’s useful for
documenting arguments that come in pairs. It also forces any identifier to its
immediate left to be interpreted as a string. This autoquoting works only on
identifiers, not on numeric literals.

List Operators (Rightward)
The right side of a list operator governs all the list operator’s arguments, which
are comma separated, so the precedence of a list operator is lower than a comma
if you’re looking to the right. Once a list operator starts chewing up comma-
separated arguments, the only things that will stop it are tokens that stop the
entire expression (like semicolons or statement modifiers), or tokens that stop
the current subexpression (like right parentheses or brackets), or the low prece-
dence logical operators we’ll talk about next.

Logical and, or, not, and xor
As lower precedence alternatives to &&, ||, and !, Perl provides the and, or, and
not operators. The behavior of these operators is identical—in particular, and and
or short circuit like their counterparts, which makes them useful not only for
logical expressions but also for control flow.

Since the precedence of these operators is much lower than the ones borrowed
from C, you can safely use them after a list operator without the need for paren-
theses:

unlink "alpha", "beta", "gamma"
 or gripe(), next LINE;

With the C-style operators you’d have to write it like this:

unlink("alpha", "beta", "gamma")
 || (gripe(), next LINE);

But you can’t just up and replace all instances of || with or. Suppose you change
this:

$xyz = $x || $y || $z;

to this:

$xyz = $x or $y or $z; # WRONG

Logical and, or, not, and xor | 127

www.it-ebooks.info

http://www.it-ebooks.info/

That wouldn’t do the same thing at all! The precedence of the assignment is higher
than or but lower than ||, so it would always assign $x to $xyz and then do the
ors. To get the same effect as ||, you’d have to write:

$xyz = ($x or $y or $z);

The moral of the story is that you still must learn precedence no matter which
variety of logical operators you use. We suggest you use parentheses for any such
construct that might confuse the reader, even if you’re not confused.12

There is also a logical xor operator that has no exact counterpart in C or Perl,
since the only other exclusive OR operator (^) works on bits. The xor operator
can’t short circuit since both sides must be evaluated. The best equivalent for $a
xor $b is perhaps !$a != !$b. One could also write !$a ^ !$b or even $a ? !
$b : !!$b, of course. The point is that both $a and $b have to evaluate to true or
false in a Boolean context, and the existing bitwise operator doesn’t provide a
Boolean context without help.

C Operators Missing from Perl
Here is what C has that Perl doesn’t:

unary &
The address-of operator. Perl’s \ operator (for taking a reference) fills the
same ecological niche, however:

$ref_to_var = \$var;

But Perl references are much safer than C pointers.

unary *
The dereference-address operator. Since Perl doesn’t have addresses, it doesn’t
need to dereference addresses. It does have references, though, so Perl’s
variable prefix characters serve as dereference operators and indicate type
as well: $, @, %, and &. Oddly enough, there actually is a * dereference operator,
but since * is the sigil indicating a typeglob, you wouldn’t use it the same way.

(TYPE)

The typecasting operator. Nobody likes to be typecast anyway.

12. Unless, of course, your intent is to force the reader to learn precedence, a position for which we have some
sympathy.

128 | Chapter 3: Unary and Binary Operators

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 4

Statements and Declarations

A Perl program consists of a sequence of declarations and statements. A declara-
tion may be placed anywhere a statement may be placed, but its primary effect
occurs at compile time. A few declarations do double duty as ordinary state-
ments, but most are totally transparent at runtime. After compilation, the main
sequence of statements is executed just once.

In this chapter we cover statements before declarations, but we’d just like to men-
tion a few of the more important declarations up front.

Unlike many programming languages, Perl does not (by default) require variables
to be explicitly declared; they spring into existence upon their first use, whether
you’ve declared them or not. However, if you prefer, you may declare your vari-
ables using a declarator such as my, our, or state in front of the variable name
wherever it’s first mentioned, and then the compiler can be pretty sure that your
variable name isn’t a typo when you mention it again later.

If you try to use a value from a variable that’s never had a value assigned to it, it’s
quietly treated as 0 when used as a number, as "" (the null string) when used as
a string, or simply as false when used as a logical value. If you prefer to be warned
about using undefined values as though they were real strings or numbers, the
use warnings declaration will take care of that.

Similarly, you can use the use strict declaration to require yourself to declare all
your variables in advance. If you use this, any unrecognized variable name will
be treated as a syntax error. (Saying use v5.12 or greater implicitly sets strict,
but we recommend use v5.14 so that the examples in this book compile and
work.) For more on these declarations, see the section “Pragmas” on page 164
at the end of this chapter.

129

www.it-ebooks.info

http://www.it-ebooks.info/

Simple Statements
A simple statement is an expression evaluated for its side effects. Every simple
statement must end in a semicolon, unless it is the final statement in a block. In
that case, the semicolon is optional—Perl knows that you must be done with the
statement since you’ve finished the block. But put the semicolon in anyway if it’s
at the end of a multiline block, because you might eventually add another line.

Even though operators like eval {}, do {}, and sub {} all look like compound
statements, they really aren’t. True, they allow multiple statements on the inside,
but that doesn’t count. From the outside, those operators are just terms in an
expression, and thus they need an explicit semicolon if used as the last item in a
statement.

Any simple statement may optionally be followed by a single modifier, just before
the terminating semicolon (or block ending). The possible modifiers are:

if EXPR
unless EXPR
while EXPR
until EXPR
for LIST
when EXPR

The if and unless modifiers work pretty much as they do in English:

$trash–>take("out") if $you_love_me;
shutup() unless $you_want_me_to_leave;

The while and until modifiers evaluate repeatedly. As you might expect, a
while modifier keeps executing the expression as long as its expression remains
true, and an until modifier keeps executing only as long as it remains false:

$expression++ while –e "$file$expression";
kiss("me") until $I_die;

The for modifier (also spelled foreach if you’re trying to wear out your keyboard)
evaluates once for each element in its LIST, with $_ aliased to the current element:

s/java/perl/ for @resumes;
say "field: $_" foreach split /:/, $dataline;

The while and until modifiers have the usual while-loop semantics (conditional
evaluated first), except when applied to a do BLOCK (see Chapter 27), in which case
the block executes once before the conditional is evaluated. This allows you to
write loops, like this:

130 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

do {
 $line = <STDIN>;
 ...
} until $line eq ".\n";

Note that the loop-control operators described later will not work in this con-
struct, since modifiers don’t take loop labels. You can always place an extra block
around it to terminate early, or inside it to iterate early, as described later in the
section “Bare Blocks as Loops” on page 147. Or you could write a real loop (see
next section) with multiple loop controls inside.

The when modifier is an experimental feature available if you say use v5.14 (or
greater). Its pattern-matching semantics are equivalent to those of the when
statement, so see “The when Statement and Modifier” on page 137 later in this
chapter.

Compound Statements
A sequence of statements within a scope1 is called a block. Sometimes the scope
is the entire file, such as a required file or the file containing your main program.
Sometimes the scope is a string being evaluated with eval. But, generally, a block
is surrounded by braces ({}). When we say scope, we mean any of these three.
When we mean a block with braces, we’ll use the term BLOCK.

Compound statements are built out of expressions and BLOCKs. Expressions are
built out of terms and operators. In our syntax descriptions, we’ll use the word
EXPR to indicate a place where you can use any scalar expression. To indicate an
expression evaluated in list context, we’ll say LIST.

The following statements may be used to control conditional and repeated exe-
cution of BLOCKs. (The LABEL portion is optional.)

if (EXPR) BLOCK
if (EXPR) BLOCK else BLOCK
if (EXPR) BLOCK elsif (EXPR) BLOCK ...
if (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

unless (EXPR) BLOCK
unless (EXPR) BLOCK else BLOCK
unless (EXPR) BLOCK elsif (EXPR) BLOCK ...
unless (EXPR) BLOCK elsif (EXPR) BLOCK ... else BLOCK

given (EXPR) BLOCK

1. Scopes and namespaces are described in the section “Names” on page 60 in Chapter 2.

Compound Statements | 131

www.it-ebooks.info

http://www.it-ebooks.info/

LABEL while (EXPR) BLOCK
LABEL while (EXPR) BLOCK continue BLOCK

LABEL until (EXPR) BLOCK
LABEL until (EXPR) BLOCK continue BLOCK

LABEL for (EXPR; EXPR; EXPR) BLOCK

LABEL foreach (LIST) BLOCK
LABEL foreach (LIST) BLOCK continue BLOCK
LABEL foreach VAR (LIST) BLOCK
LABEL foreach VAR (LIST) BLOCK continue BLOCK

LABEL BLOCK
LABEL BLOCK continue BLOCK

Note that unlike in C and Java, these are defined in terms of BLOCKs, not state-
ments. This means that the braces are required—no dangling statements al-
lowed. If you want to write conditionals without braces, there are several ways
to do so. The following all do the same thing:

unless (open(FOO, '<', $foo)) { die "Can't open $foo: $!" }
if (!open(FOO, '<', $foo)) { die "Can't open $foo: $!" }

die "Can't open $foo: $!" unless open(FOO, '<', $foo);
die "Can't open $foo: $!" if !open(FOO, '<', $foo);

open(FOO, '<', $foo) || die "Can't open $foo: $!";
open(FOO, '<', $foo) or die "Can't open $foo: $!";

Under most circumstances, we tend to prefer the last pair. These forms come with
less eye-clutter than the others, especially the “or die” version. With the || form,
you need to get used to using parentheses religiously, but with the or version, it
doesn’t usually matter so much if you forget.

But the main reason we like the last versions better is because of how they pull
the important part of the statement right up to the front of the line where you’ll
see it first. The error handling is shoved off to the side so that you don’t have to
pay attention to it unless you want to.2 If you tab all your “or die” checks over
to the same column on the right each time, it’s even easier to read:

chdir($dir) or die "chdir $dir: $!";
open(FOO, '<', $file) or die "open $file: $!";
@lines = <FOO> or die "$file is empty?";
close(FOO) or die "close $file: $!";

2. (Like this footnote.)

132 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

if and unless Statements
The if statement is straightforward. Because BLOCKs are always bounded by
braces, there is never any ambiguity regarding which particular if an else or
elsif goes with. In any given sequence of if/elsif/else BLOCKs, only the first one
whose condition evaluates to true is executed. If none of them is true, then the
else BLOCK, if there is one, is executed. It’s usually a good idea to put an else at
the end of a chain of elsifs to guard against a missed case.

If you use unless in place of if, the sense of its test is reversed. That is:

unless ($x == 1) ...

is equivalent to:

if ($x != 1) ...

or even to the unsightly:

if (!($x == 1)) ...

The scope of a variable declared in the controlling condition extends from its
declaration through the rest of that conditional only, including any elsifs and
the final else clause if present, but not beyond:

if ((my $color = <STDIN>) =~ /red/i) {
 $value = 0xFF0000;
}
elsif ($color =~ /green/i) {
 $value = 0x00FF00;
}
elsif ($color =~ /blue/i) {
 $value = 0x0000FF;
}
else {
 warn "unknown RGB component '$color', using black instead\n";
 $value = 0x000000;
}

After the else, the $color variable is no longer in scope. If you want the scope to
extend further, declare the variable beforehand.

The given Statement
In the previous example, we kept talking about $color. Linguists call this a
topic. In v5.10 or later, an alternative to the if structure is available, the given
statement, which functions linguistically as a topicalizer. It works by setting
$_ to the current topic. You can then use when statements to examine the topic for
various values or patterns.

The given Statement | 133

www.it-ebooks.info

http://www.it-ebooks.info/

This feature is enabled when you use a version of Perl that is at least v5.10:

use v5.12; # at least v5.12, load default features

or when you specifically request the “switch” feature:

use feature "switch"; # just get the switch feature

Either of those adds several new keywords to the Perl language: given, when, break,
continue, and default. Here is one way to recode the previous example using the
new feature:

use v5.10;

my $value;
given (<STDIN>) {
 when (/red/i) { $value = 0xFF0000 }
 when (/green/i) { $value = 0x00FF00 }
 when (/blue/i) { $value = 0x0000FF; }
 default {
 warn "unknown RGB component '$_', using black instead\n";
 $value = 0x000000;
 }
}

In fact, in v5.10 you had to write it that way since given couldn’t return values. In
v5.14 or later, you can return values, and with the statement modifier form of
when, you may even write it this way:

use v5.14;

my $value = do {
 given (<STDIN>) {
 0xFF0000 when /red/i;
 0x00FF00 when /green/i;
 0x0000FF when /blue/i;
 warn "unknown RGB component '$_', using black instead\n";
 0x000000;
 }
};

The arguments to given and when are in scalar context; given binds its argument
to the $_ variable to set the topic of its BLOCK. The when uses its argument to pick
what kind of pattern match you want done by looking at the type of the argument.
The semantics of when are a superset of smartmatching. If the argument appears
to be a Boolean expression, it is evaluated directly. If not, it is passed off to the
smartmatch operator to be interpreted as $_ ~~ EXPR. This may seem complicated,
but it really isn’t because the vast majority of switches are going to be of the form:

134 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

use v5.14;

my $n = somefunc();

given ($n) {
 when (0) { say "zero" }
 when (1) { say "one" }
 when ([3..7]) { say "many" }
 when (/^\d+$/) { say "lots" }
 default { say "unwholesome" }
}

In other words, the when args will usually be something that invokes smartmatch-
ing (or that you can pretend is invoking smartmatching).

Here is a longer example of given:

use feature ":5.10";

given ($n) {

match if !defined($n)
 when (undef) {
 say '$n is undefined';
 }

match if $n eq "foo"
 when ("foo") {
 say '$n is the string "foo"';
 }

match if $n ~~ [1,3,5,7,9]
 when ([1,3,5,7,9]) {
 say '$n is an odd digit';
 continue; # Fall through!!
 }

match if $n < 100
 when ($_ < 100) {
 say '$n is numerically less than 100';
 }

match if complicated_check($n)
 when (\&complicated_check) {
 say 'a complicated check for $n is true';
 }

match if no other cases match
 default {
 die q(I don't know what to do with $n);
 }
}

The given Statement | 135

www.it-ebooks.info

http://www.it-ebooks.info/

given(EXPR) assign the value of EXPR to a lexically scoped copy of $_, not a dy-
namically scoped alias the way a foreach without my does. That makes it similar
to a do block:

do { my $_ = EXPR; ... }

except that a successful when (or any explicit break) knows how to break out of
the block. Since it’s lexically scoped, you can’t use given to localize a dynamic
value of $_ as you could with an old-style foreach.3

You can use the break keyword to break out of the enclosing given block. Every
when block is implicitly ended with a break.

You can use the continue keyword to fall through from one case to the start of
the next statement, which might or might not be another when:

given($foo) {
 when (/x/) { say '$foo contains an x'; continue }
 say "I always get here.";
 when (/y/) { say '$foo contains a y' }
 default { say '$foo does not contain a y' }
}

When a given statement is also a valid expression (for example, when it’s the last
statement of a block), it evaluates to:

• An empty list as soon as an explicit break is encountered.

• The value of the last evaluated expression of the successful when/default
clause, if there happens to be one.

• The value of the last evaluated expression of the given block if no condition
is true.

The last expression is evaluated in the context that was applied to the given block.

Note that, unlike if and unless, a failed when statement always evaluates to an
empty list.

my $price = do {
 given ($item) {
 when (["pear", "apple"]) { 1 }
 break when "vote"; # My vote cannot be bought
 1e10 when /Mona Lisa/;
 "unknown";
 }
};

3. This omission is to be construed as a feature, since dynamically scoped $_ is terribly error-prone as soon
as you have two different pieces of code fighting over the current topic.

136 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

Note that we must use the do block there because given is recognized only as a
statement, and it would be illegal after an assignment. (We might make the do
brackets optional in some future version.)

The when Statement and Modifier
Most of the power of a given comes from the implicit smartmatching that various
data types imply. By default, when(EXPR) is treated as an implicit smartmatch of
$_; that is, $_ ~~ EXPR. (See Chapter 3 for more details on smartmatching.) How-
ever, if the EXPR argument to when is one of the 10 exceptional forms listed below,
it is evaluated directly for a Boolean result, and no smartmatching occurs:

1. A user-defined subroutine call or a method invocation.

2. A regular expression match in the form of /REGEX/, $foo =~ /REGEX/, or $foo
=~ EXPR.

3. A smartmatch that uses an explicit ~~ operator, such as EXPR ~~ EXPR. (You
might, for instance, want to use an explicit smartmatch against $_ when you
need to reverse the default polymorphism of when’s built-in smartmatching.)

4. A relational operator such as $_ < 10 or $x eq "abc" that returns a Boolean
result. This includes the six numeric comparisons (<, >, <=, >=, ==, and !=),
and the six string comparisons (lt, gt, le, ge, eq, and ne).

5. The three built-in functions defined, exists, and eof.

6. A negated expression, whether !EXPR or not(EXPR), or a logical exclusive OR,
EXPR1 xor EXPR2. (The bitwise versions [~ and ^] are not included.) Negated
regular expressions also fall in this category, whichever way you write
them: !/REGEX/, $foo !~ /REGEX/, or $foo !~ EXPR.

7. A file test operator (apart from –s, –M, –A, and –C, as these return numbers,
not Booleans).

8. The .. and ... flip-flop operators. (Note that the ... infix operator is com-
pletely different from the ... elliptical statement, which is recognized only
where a statement is expected.)

In these first eight cases, the value of EXPR is used directly as a Boolean, so no
smartmatching is done. You may think of when as a smartsmartmatch.4 To make
it even smartsmarter, Perl applies these tests recursively to the operands of logical
operators (that is, “and” and “or”) to decide whether to use smartmatching, as
follows:

4. It may also be useful to think of Booleans as part of smartmatching because, in Perl 6, they actually are,
and you might have to switch mindsets from time to time.

The given Statement | 137

www.it-ebooks.info

http://www.it-ebooks.info/

1. For EXPR1&&EXPR2 or EXPR1 and EXPR2, the test is applied recursively to both
EXPR1 and EXPR2. Only if both operands also pass the test will the expression
be treated as Boolean. Otherwise, smartmatching is used.

2. For EXPR1||EXPR2 or EXPR1 or EXPR2, the test is applied recursively to EXPR1
only (which might itself be a higher-precedence AND operator, for example,
and thus subject to the previous rule), not to EXPR2. If EXPR1 is to use smart-
matching, then EXPR2 also does so, no matter what EXPR2 contains. But if
EXPR2 does not get to use smartmatching, then the second argument will not
get to either. This is quite different from the && case just described, so be
careful. (Note that EXPR1//EXPR2 is always considered Boolean because of the
implied defined function on the left of the // operator.)

All those rules make things appear more complicated than they really are. They’re
there because Perl 5 has no built-in Boolean type.5 The goal is for them to do
what you mean. For example:

when (/^\d+$/ && $_ < 75) { ... }

will be treated as a Boolean match because the rules recognize both sides of the
conjunction as Boolean matches.

Also:

when ([qw(foo bar)] && /baz/) { ... }

will use smartmatching because only the second operand looks like a Boolean.
The first does not, so smartmatching wins here—or maybe everyone loses, unless
you were expecting to smartmatch with the result of the right side, which is going
to be 1 or "". Your given probably did not supply one of those.

Remember that order is important to disjunctions. If you say:

when ([qw(foo bar)] || /^baz/) { ... }

it will use smartmatching based on the first operand. However:

when (/^baz/ || [qw(foo bar)]) { ... }

has the (Boolean) regex first, which forces both operands to be treated as Boolean
—and, again, everyone loses because the second argument (an array ref) is always
true, so it doesn’t do what you expect.

Boolean operators based on constants are still going to be optimized away. Don’t
be tempted to write:

when ("foo" or "bar") { ... }

5. At least, not yet. Future versions of Perl may add a Boolean type, in which case these complex rules will
fall naturally out of smartmatching.

138 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

This will optimize down to "foo", so "bar" will never be considered (even though
the rules say to use a smartmatch on "foo"). For an alternation like this, an array
ref will work, because this will instigate smartmatching, which has its own
“match any of” semantics:

when (['foo', 'bar']) { ... }

This is how you write a case with multiple “labels”, since there’s no equivalent in
Perl to C’s fall-through semantics.

default behaves exactly like when(1 == 1), which is to say, it always matches.
Because cases are evaluated in order, it must come last; like when, it does an
implicit break, so you will never reach any subsequent code.

As an aid to the semantics of smartmatching, if you use a literal array or hash as
the argument to given, it is turned into a reference, so as not to lose any infor-
mation. So given(@foo) is the same as given(\@foo), for example. If you really
want to match the length of @foo, you need to say given(scalar @foo) instead.

We still consider some of the darker corners of given and when to be experimental,
but please be assured that in practice most of your switch statements are likely
to be based on simple string or number matches, and these will always work the
way you expect.

Loop Statements
All loop statements have an optional LABEL in their formal syntax. (You can put
a label on any statement, but it has a special meaning to a loop.6) If present, the
label consists of an identifier followed by a colon. It’s customary to make the
label uppercase both to stand out visually and to avoid potential confusion with
reserved words. (Perl won’t get confused if you use a label that already has a
meaning like if or open, but your readers might.)

while and until Statements
The while statement repeatedly executes the block as long as EXPR is true. If the
word while is replaced by the word until, the sense of the test is reversed; that is,
it executes the block only as long as EXPR remains false. The conditional is still
tested before the first iteration, though.

6. Prior to v5.14, you couldn’t put a label on a package statement.

Loop Statements | 139

www.it-ebooks.info

http://www.it-ebooks.info/

The while or until statement can have an optional extra block: continue. This
block is executed every time the block is continued, either by falling off the end
of the first block or by an explicit next (a loop-control operator that goes to the
next iteration). The continue block is not heavily used in practice, but it’s in here
so we can define the three-part loop rigorously in the next section.

Unlike the foreach loop we’ll see in a moment, a while loop has no official “loop
variable”.7 You may, however, declare variables explicitly. A variable declared in
the test condition of a while or until statement is visible only in the block or
blocks governed by that test. It is not part of the surrounding scope. For example:

while (my $line = <STDIN>) {
 $line = lc $line;
}
continue {
 print $line; # still visible
}
$line now out of scope here

Here, the scope of $line extends from its declaration in the control expression
throughout the rest of the loop construct, including the continue block, but not
beyond. If you want the scope to extend further, declare the variable before the
loop.

Three-Part Loops
The three-part loop8 has three semicolon-separated expressions within its paren-
theses. These three expressions are interpreted respectively as the initialization,
the condition, and the reinitialization of the loop. The parentheses around them
and the two semicolons between them are required, but the expressions them-
selves are optional. The initializer and reinitializer do nothing if omitted. The
condition, if omitted, is considered to have a true value. (The values of the ini-
tializer and reinitializer don’t matter since they are evaluated only for their side
effects.)

The three-part loop can be defined in terms of the corresponding while loop,
relocating its three expressions. When you say this:

7. A consequence of this is that a while never implicitly localizes any variables in its test condition. This can
have “interesting” consequences when while loops are used in conjunction with operators that do
implicitly know about global variables such as $_. In particular, see the section “Line Input (Angle)
Operator” on page 88 in Chapter 2 for how implicit assignment to the global $_ can occur in certain
while loops, along with examples of how to deal with the problem.

8. Also known as for loops, but that’s confusing since Perl has for loops that are not three-part loops, so we
avoid that term.

140 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

LABEL:
 for (my $i = 1; $i<= 10; $i++) {
 ...
 }

it gets rearranged internally to work like this:

{
 my $i = 1;
 LABEL:
 while ($i<= 10) {
 ...
 }
 continue {
 $i++;
 }
}

(except that there’s not really an outer block; we just put one there to show how
the scope of the my is limited).

If you want to iterate through two variables simultaneously, just separate the
parallel expressions with commas:

my $i;
my $bit;
for ($i = 0, $bit = 0; $i < 32; $i++, $bit <<= 1) {
 say "Bit $i is set" if $mask & $bit;
}
the values in $i and $bit persist past the loop

Or to declare those variables to be visible only inside the loop:

for (my ($i, $bit) = (0, 1); $i< 32; $i++, $bit <<= 1) {
 say "Bit $i is set" if $mask & $bit;
}
loop's versions of $i and $bit now out of scope

Besides the normal looping through array indices, the three-part loop can lend
itself to many other interesting applications. It doesn’t even need an explicit loop
variable. Here’s one example that avoids the problem you get when you explicitly
test for end-of-file on an interactive file descriptor, causing your program to ap-
pear to hang:

$on_a_tty = –t STDIN && –t STDOUT;
sub prompt { print "yes? " if $on_a_tty }
for (prompt(); <STDIN>; prompt()) {
 # do something
}

Another traditional use of the three-part loop is the “infinite loop”. Since all three
expressions are optional, and the default condition is true, when you write:

Loop Statements | 141

www.it-ebooks.info

http://www.it-ebooks.info/

for (;;) {
 ...
}

it is the same as writing:

while (1) {
 ...
}

If the notion of infinite loops bothers you, we should point out that you can always
fall out of the loop at any point with an explicit loop-control operator such as
last. Of course, if you’re writing the code to control a nuclear cruise missile, you
may not actually need an explicit loop exit. The loop will be terminated auto-
matically at the appropriate moment.9

foreach Loops
This loop iterates over a list of values by setting the control variable (VAR) to each
successive element of the list:

for my VAR (LIST) {
 ...
}

If “my VAR” is omitted, the global $_ is used. You can omit the my, but only when
use strict is turned off, so don’t.

For historical reasons, the foreach keyword is a synonym for the for keyword, so
you can use for and foreach interchangeably, whichever you think is more read-
able in a given situation. We tend to prefer for because we are lazy and because
it is more readable, especially with the my. (Don’t worry—Perl can easily distin-
guish for (@ARGV) from for ($i=0; $i<$#ARGV; $i++) because the latter contains
semicolons.) Here are some examples:

$sum = 0;
for my $value (@array) { $sum += $value }

for my $count (10,9,8,7,6,5,4,3,2,1,"BOOM") { # do a countdown
 say $count;
 sleep(1);
}

for (reverse "BOOM", 1 .. 10) { # same thing
 say;
 sleep(1);
}

9. That is, the fallout from the loop tends to occur automatically.

142 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

for my $field (split /:/, $data) { # any LIST expression
 say "Field contains: '$field'";
}

for my $key (sort keys %hash) {
 say "$key => $hash{$key}";
}

That last one is the canonical way to print out the values of a hash in sorted order.
See the keys and sort entries in Chapter 27 for more elaborate examples.

There is no way to tell where you are in the list. You may compare adjacent ele-
ments by remembering the previous one in a variable, but sometimes you just
have to break down and write a three-part loop with subscripts. That’s why we
have two different loops, after all.

If LIST consists of assignable values (meaning variables, generally, not enumerated
constants), you can modify each of those variables by modifying VAR inside the
loop. That’s because the loop variable becomes an implicit alias for each item in
the list that you’re looping over. Not only can you modify a single array in place,
you can also modify multiple arrays and hashes in a single list:

for my $pay (@salaries) { # grant 8% raises
 $pay *= 1.08;
}

for (@christmas, @easter) { # change menu
 s/ham/turkey/;
}
s/ham/turkey/ for @christmas, @easter; # same thing

for ($scalar, @array, values %hash) {
 s/^\s+//; # strip leading whitespace
 s/\s+$//; # strip trailing whitespace
}

The loop variable is valid only from within the dynamic or lexical scope of the
loop and will be implicitly lexical if the variable was previously declared with
my. This renders it invisible to any function defined outside the lexical scope of
the variable, even if called from within that loop. However, if no lexical decla-
ration is in scope, the loop variable will be a localized (dynamically scoped) global
variable; this allows functions called from within the loop to access that variable.
In either case, any previous value the localized variable had before the loop will
be restored automatically upon loop exit.

If you prefer, you may explicitly declare which kind of variable (lexical or global)
to use. This makes it easier for maintainers of your code to know what’s really

Loop Statements | 143

www.it-ebooks.info

http://www.it-ebooks.info/

going on; otherwise, they’ll need to search back up through enclosing scopes for
a previous declaration to figure out which kind of variable it is:

for my $i (1 .. 10) { ... } # $i always lexical
for our $Tick (1 .. 10) { ... } # $Tick always global

When a declaration accompanies the loop variable, the shorter for spelling is
preferred over foreach, since it reads better in English.

Here’s how a C or Java programmer might first think to code up a particular
algorithm in Perl:

for ($i = 0; $i< @ary1; $i++) {
 for ($j = 0; $j< @ary2; $j++) {
 if ($ary1[$i] > $ary2[$j]) {
 last; # Can't go to outer loop. :–(
 }
 $ary1[$i] += $ary2[$j];
 }
 # this is where that last takes me
}

But here’s how a veteran Perl programmer might do it:

WID: for my $this (@ary1) {
 JET: for my $that (@ary2) {
 next WID if $this > $that;
 $this += $that;
 }
}

See how much easier that was in idiomatic Perl? It’s cleaner, safer, and faster. It’s
cleaner because it’s less noisy. It’s safer because if code gets added between the
inner and outer loops later on, the new code won’t be accidentally executed,
since next (explained below) explicitly iterates the outer loop rather than merely
breaking out of the inner one. And it’s faster than the equivalent three-part loop,
since the elements are accessed directly instead of through subscripting.

But write it however you like. TMTOWTDI.

Like the while statement, the foreach statement can also take a continue block.
This lets you execute a bit of code at the bottom of each loop iteration no matter
whether you got there in the normal course of events or through a next.

Speaking of which, now we can finally say it: next is next.

Loop Control
We mentioned that you can put a LABEL on a loop to give it a name. The loop’s
LABEL identifies the loop for the loop-control operators next, last, and redo. The

144 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

LABEL names the loop as a whole, not just the top of the loop. Hence, a loop-control
operator referring to the loop doesn’t actually “go to” the loop label itself. As far
as the computer is concerned, the label could just as easily have been placed at
the end of the loop. But people like things labeled at the top, for some reason.

Loops are typically named for the item the loop is processing on each iteration.
This interacts nicely with the loop-control operators, which are designed to read
like English when used with an appropriate label and a statement modifier. The
archetypal loop works on lines, so the archetypal loop label is LINE:, and the
archetypal loop-control operator is something like this:

next LINE if /^#/; # discard comments

The syntax for the loop-control operators is:

last LABEL
next LABEL
redo LABEL

The LABEL is optional; if omitted, the operator refers to the innermost enclosing
loop. But if you want to jump past more than one level, you must use a LABEL to
name the loop you want to affect. That LABEL does not have to be in your lexical
scope, though it probably ought to be. But, in fact, the LABEL can be anywhere
in your dynamic scope. If this forces you to jump out of an eval or subroutine,
Perl issues a warning (upon request).

Just as you may have as many return operators in a function as you like, you may
have as many loop-control operators in a loop as you like. This is not to be
considered wicked or even uncool. During the early days of structured program-
ming, some people insisted that loops and subroutines have only one entry and
one exit. The one-entry notion is still a good idea, but the one-exit notion has
led people to write a lot of unnatural code. Much of programming consists of
traversing decision trees. A decision tree naturally starts with a single trunk but
ends with many leaves. Write your code with the number of loop exits (and
function returns) that is natural to the problem you’re trying to solve. If you’ve
declared your variables with reasonable scopes, everything gets automatically
cleaned up at the appropriate moment, no matter how you leave the block.

The last operator immediately exits the loop in question. The continue block, if
any, is not executed. The following example bombs out of the loop on the first
blank line:

LINE: while (<STDIN>) {
 last LINE if /^$/; # exit when done with mail header
 ...
}

Loop Statements | 145

www.it-ebooks.info

http://www.it-ebooks.info/

The next operator skips the rest of the current iteration of the loop and starts the
next one. If there is a continue clause on the loop, it is executed just before the
condition is reevaluated, just like the third component of a three-part for loop.
Thus, it can be used to increment a loop variable, even when a particular iteration
of the loop has been interrupted by a next:

LINE: while (<STDIN>) {
 next LINE if /^#/; # skip comments
 next LINE if /^$/; # skip blank lines
 ...
} continue {
 $count++;
}

The redo operator restarts the loop block without evaluating the conditional
again. The continue block, if any, is not executed. This operator is often used by
programs that want to fib to themselves about what was just input. Suppose you
were processing a file that sometimes had a backslash at the end of a line to
continue the record on the next line. Here’s how you could use redo for that:

while (<>) {
 chomp;
 if (s/\\$//) {
 $_ .= <>;
 redo unless eof; # don't read past each file's eof
 }
 # now process $_
}

which is the customary Perl shorthand for the more explicitly (and tediously)
written version:

LINE: while (defined($line = <ARGV>)) {
 chomp($line);
 if ($line =~ s/\\$//) {
 $line .= <ARGV>;
 redo LINE unless eof(ARGV);
 }
 # now process $line
}

Here’s an example from a real program that uses all three loop-control operators.
Although this particular strategy of parsing command-line arguments is less
common now that we have the Getopt::* modules bundled with Perl,10 it’s still
a nice illustration of the use of loop-control operators on named, nested loops:

10. See Mastering Perl for a comparison of the main command-line argument parsing modules.

146 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/9780596527242
http://www.it-ebooks.info/

ARG: while (@ARGV && $ARGV[0] =~ s/^–(?=.)//) {
 OPT: for (shift @ARGV) {
 m/^$/ && do { next ARG };
 m/^–$/ && do { last ARG };
 s/^d// && do { $Debug_Level++; redo OPT };
 s/^l// && do { $Generate_Listing++; redo OPT };
 s/^i(.*)// && do { $In_Place = $1 || ".bak"; next ARG };
 say_usage("Unknown option: $_");
 }
}

One more point about loop-control operators. You may have noticed that we are
not calling them “statements”. That’s because they aren’t statements—although
like any expression, they can be used as statements. You can almost think of
them as unary operators that just happen to cause a change in control flow. So
you can use them anywhere it makes sense to use them in an expression. In fact,
you can even use them where it doesn’t make sense. One sometimes sees this
coding error:

open FILE, '<', $file
 or warn "Can't open $file: $!\n", next FILE; # WRONG

The intent is fine, but the next FILE is being parsed as one of the arguments to
warn, which is a list operator. So the next executes before the warn gets a chance
to emit the warning. In this case, it’s easily fixed by turning the warn list operator
into the warn function call with some suitably situated parentheses:

open FILE, '<', $file
 or warn("Can't open $file: $!\n"), next FILE; # okay

However, you might find it easier to read this:

unless (open FILE, '<', $file) {
 warn "Can't open $file: $!\n";
 next FILE;
}

Bare Blocks as Loops
A BLOCK by itself (labelled or not) is semantically equivalent to a loop that executes
once. Thus, you can use last to leave the block or redo to restart the block.11 Note
that this is not true of the blocks in eval {}, sub {}, or, much to everyone’s sur-
prise, do {}. These three are not loop blocks because they’re not BLOCKs by them-
selves; the keyword in front makes them mere terms in an expression that just
happen to include a code block. Since they’re not loop blocks, they cannot be

11. For reasons that may (or may not) become clear upon reflection, a next also exits the once-through block.
There is a slight difference, however: a next will execute a continue block, but a last won’t.

Loop Statements | 147

www.it-ebooks.info

http://www.it-ebooks.info/

given a label to apply loop controls to. Loop controls may only be used on true
loops, just as a return may only be used within a subroutine (well, or an eval).

Loop controls don’t work in an if or unless, either, since those aren’t loops. But
you can always introduce an extra set of braces to give yourself a bare block,
which does count as a loop:

if (/pattern/) {{
 last if /alpha/;
 last if /beta/;
 last if /gamma/;
 # do something here only if still in if()
}}

Here’s how a block can be used to let loop-control operators work with a do {}
construct. To next or redo a do, put a bare block inside:

do {{
 next if $x == $y;
 # do something here
}} until $x++ > $z;

For last, you have to be more elaborate:

{
 do {
 last if $x = $y ** 2;
 # do something here
 } while $x++ <= $z;
}

And if you want both loop controls available, you’ll have to put a label on those
blocks so you can tell them apart:

DO_LAST: {
 do {
DO_NEXT: {
 next DO_NEXT if $x == $y;
 last DO_LAST if $x = $y ** 2;
 # do something here
 }
 } while $x++ <= $z;
 }

But certainly by that point (if not before), you’re better off using an ordinary
infinite loop with last at the end:

for (;;) {
 next if $x == $y;
 last if $x = $y ** 2;
 # do something here
 last unless $x++ <= $z;
}

148 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

Loopy Topicalizers
Perl has more than one topicalizer; in addition to given, you can also use a fore
ach loop as a topicalizer. For example, here’s one way to count how many times a
particular string occurs in an array:

use v5.10.1;
my $count = 0;
for (@array) {
 when ("FNORD") { ++$count }
}
print "\@array contains $count copies of 'FNORD'\n";

Or in a more recent version:

use v5.14;
my $count = 0;
for (@array) {
 ++$count when "FNORD";
}
print "\@array contains $count copies of 'FNORD'\n";

At the end of all when blocks inside a foreach loop, there is an implicit break,
which, since you’re in a loop, is equivalent to a next. You can override that with
an explicit last if you’re only interested in the first match.

A when only works if the topic is in $_, so you can’t specify a loop variable, or if
you do, it must be $_:

for my $_ (@answers) {
 say "Life, the Universe, and Everything!" when 42;
}

The goto Operator
Although not for the faint of heart (nor for the pure of heart), Perl does support
a goto operator. There are three forms: goto LABEL, goto EXPR, and goto &NAME.

The goto LABEL form finds the statement labeled with LABEL and resumes execution
there. It can’t be used to jump into any construct that requires initialization, such
as a subroutine or a foreach loop. It also can’t be used to jump into a construct
that has been optimized away (see Chapter 16). It can be used to go almost any-
where else within the current block or any block in your dynamic scope (that is,
a block you were called from). You can even goto out of subroutines, but it’s
usually better to use some other construct. The author of Perl has never felt the
need to use the labeled form of goto in Perl (except to test that it works).

The goto Operator | 149

www.it-ebooks.info

http://www.it-ebooks.info/

The goto EXPR form is just a generalization of goto LABEL. It expects the expression
to produce a label name, whose location obviously has to be resolved dynamically
by the interpreter. This allows for computed gotos per FORTRAN, but isn’t
necessarily recommended if you’re optimizing for maintainability:

goto(("FOO", "BAR", "GLARCH")[$i]); # hope 0 <= i < 3

@loop_label = qw/FOO BAR GLARCH/;
goto $loop_label[rand @loop_label]; # random teleport

In almost all cases like this, it’s usually a far, far better idea to use the structured
control-flow mechanisms of next, last, or redo instead of resorting to a goto. For
certain applications, a hash of references to functions or the catch-and-throw
pair of eval and die for exception processing can also be prudent approaches.

The goto &NAME form is highly magical and sufficiently removed from the ordinary
goto to exempt its users from the opprobrium to which goto users are customarily
subjected. It substitutes a call to the named subroutine for the currently running
subroutine. This behavior is used by AUTOLOAD subroutines to load another sub-
routine and then pretend that the other subroutine was called in the first place.
After the goto, not even caller will be able to tell that this routine was called first.
The autouse, AutoLoader, and SelfLoader modules all use this strategy to define
functions the first time they’re called, and then to jump right to them without
anyone ever knowing the functions weren’t there all along. It is not particularly
lightweight, so don’t think of it as a tailcall optimization.

Paleolithic Perl Case Structures
During its first 20 years of existence, Perl had no official switch or case statement.
Prior to the appearance of given in the v5.10 release, people would craft their own
case structures using a bare block or a once-through foreach loop. Here’s one
example:

SWITCH: {
 if (/^abc/) { $abc = 1; last SWITCH }
 if (/^def/) { $def = 1; last SWITCH }
 if (/^xyz/) { $xyz = 1; last SWITCH }
 $nothing = 1;
}

and here’s another:

SWITCH: {
 /^abc/ && do { $abc = 1; last SWITCH };
 /^def/ && do { $def = 1; last SWITCH };
 /^xyz/ && do { $xyz = 1; last SWITCH };

150 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

 $nothing = 1;
}

or even just:

if (/^abc/) { $abc = 1 }
elsif (/^def/) { $def = 1 }
elsif (/^xyz/) { $xyz = 1 }
else { $nothing = 1 }

In this next example, notice how the last operators conveniently ignore the do
{} blocks, which aren’t loops, and exit the main loop instead:

for ($very_nasty_long_name[$i++][$j++]–>method()) {
 /this pattern/ and do { push @flags, "–e"; last };
 /that one/ and do { push @flags, "–h"; last };
 /something else/ and do { last };
 die "unknown value: '$_'";
}

You’ll see that idiom from time to time in older Perl code, since for was the only
way to write a decent topicalizer until given showed up.

Regardless of which topicalizer you use, specifying the value only once on re-
peated compares is much easier to type and, therefore, harder to mistype. It
avoids possible side effects from evaluating the expression again.

Cascading use of the ?: operator can also work for simple cases. Here we again
use a for for its aliasing property to make repeated comparisons more legible:

for ($user_color_preference) {
 $value = /red/ ? 0xFF0000 :
 /green/ ? 0x00FF00 :
 /blue/ ? 0x0000FF :
 0x000000 ; # black if all fail
}

For many situations, though, it’s better to build yourself a hash and quickly index
into it to pull the answer out. Unlike the cascading conditionals we just looked
at, a hash scales to an unlimited number of entries, and takes no more time to
look up the first one than the last. You can also add cases at run time. The dis-
advantage is that you can only do an exact lookup, not a pattern match. If you
have a hash like this:

%color_map = (
 azure => 0xF0FFFF,
 chartreuse => 0x7FFF00,
 lavender => 0xE6E6FA,
 magenta => 0xFF00FF,
 turquoise => 0x40E0D0,
);

Paleolithic Perl Case Structures | 151

www.it-ebooks.info

http://www.it-ebooks.info/

then exact string lookups run quickly, and you can still supply a default:

$value = $color_map{ lc $user_color_preference } || 0x000000;

Even multiway branching statements, with each case involving complicated
chunks of code, can be turned into fast hash lookups. You just need to use a hash
of references to functions, which are a first-class data type in Perl. See the section
“Hashes of Functions” on page 381 in Chapter 9 for how to handle those.

All that being said, case structures are not always the best tool in your toolbox.
The most extensible way to look up polymorphic behaviors is by using normal
object dispatch instead. See Chapter 12 now if you can’t wait.

One more horrific case structure you might see is this:

goto $data;
ABC: $foo++; goto end;
DEF: $bar++; goto end;
XYZ: $baz++; goto end;
end:

Yes, it works, but…it’s…kinda…slow, and if none of the labels matches, it will go
looking through your whole program for the missing label, and then probably
blow up, if you’re lucky. There are better ways to blow up, and the next section
is about one of them.

The Ellipsis Statement
Beginning with v5.12, Perl accepts a bare ellipsis, “...”, as a stub—that is, a place-
holder for code that you haven’t implemented yet. Do not confuse this ... state-
ment with the binary flip-flop ... operator. Perl doesn’t usually confuse them
because Perl can tell when it is expecting statements or operators most of the
time—but see below.

When Perl parses an ellipsis statement, it accepts it silently. Later, though, if you
try to execute it, Perl loudly throws an exception with the text Unimplemented:

sub unimplemented { ... }
eval { unimplemented() };
if ($@ eq "Unimplemented") {
 say "Caught an Unimplemented exception!";
}

You may use the elliptical statement only as a complete statement (though a
statement modifier is allowed). These examples are all legal examples of the el-
lipsis statement:

152 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

{ ... }
sub foo { ... }
...;
eval { ... };
... unless defined &dispatcher;
sub somemeth {
 my $self = shift;
 ...;
}
$x = do {
 my $n;
 ...;
 say "Hurrah!";
 $n;
};

However, ... cannot stand in for an expression that is part of a larger statement,
since ... is also the three-dot version of the flip-flop operator (see “Range Oper-
ators” on page 120 in Chapter 3). Hence, the following are all considered syntax
errors:

print ...; # WRONG
open(my $fh, ">", "/dev/passwd") or ...; # WRONG
if ($condition && ...) { say "Howdy" }; # WRONG

There are times when Perl can’t distinguish an expression from a statement. For
example, a bare block and an anonymous hash composer look the same unless
there’s something else inside the braces to give Perl the necessary hint:

@transformed = map { ... } @input; # WRONG: syntax error

One workaround is to use a ; inside your block to tell Perl that the { ... } is a
block, not an anonymous hash composer:

@transformed = map {; ... } @input; # ; disambiguates ellipsis

@transformed = map { ...; } @input; # ; disambiguates ellipsis

Folks colloquially refer to this bit of punctuation as the “yada-yada”, but you can
call it by its technical name “ellipsis” when you wish to impress the impression-
able. Perl does not yet accept the Unicode version, U+2026 HORIZONTAL ELLIPSIS,
as an alias for ..., but maybe someday…

Global Declarations
Subroutine and format declarations are global declarations. No matter where you
place them, what they declare is global (it’s local to a package, but packages are
global to the program, so everything in a package is visible from anywhere). A
global declaration can be put anywhere a statement can, but it has no effect on

Global Declarations | 153

www.it-ebooks.info

http://www.it-ebooks.info/

the execution of the primary sequence of statements—the declarations take effect
at compile time.

This means you can’t conditionally declare subroutines or formats by hiding them
from the compiler inside a runtime conditional like an if, since only the inter-
preter pays attention to those conditions. Subroutine and format declarations
(and use and no declarations) are seen by the compiler no matter where they occur.

Global declarations are typically put at the beginning or the end of your program,
or off in some other file. However, if you’re declaring any lexically scoped vari-
ables (see the next section), you’ll want to make sure your format or subroutine
definition falls within the scope of the variable declarations—if you expect it to
be able to access those private variables.

Note that we sneakily switched from talking about declarations to definitions.
Sometimes it helps to split the definition of the subroutine from its declaration.
The only syntactic difference between the two is that the definition supplies a
BLOCK containing the code to be executed, while the declaration doesn’t. (A sub-
routine definition acts as its own declaration if no declaration has been seen.)
Splitting the definition from the declaration allows you to put the subroutine
declaration at the front of the file and the definition at the end (with your lexically
scoped variable declarations happily in the middle):

sub count (@); # Compiler now knows how to call count().
my $x; # Compiler now knows about lexical variable.
$x = count(3,2,1); # Compiler can validate function call.
sub count (@) { @_ } # Compiler now knows what count() means.

As this example shows, subroutines don’t actually have to be defined before calls
to them can be compiled (indeed, the definition can even by delayed until first
use, if you use autoloading), but declaring subroutines helps the compiler in
various ways and gives you more options in how you can call them.

Declaring a subroutine allows it to be used without parentheses, as if it were a
built-in operator, from that point forward in the compilation. (We used paren-
theses to call count in the last example, but we didn’t actually need to.) You can
declare a subroutine without defining it just by saying:

sub myname;
$me = myname $0 or die "can't get myname";

A bare declaration like that declares the function to be a list operator, not a unary
operator, so be careful to use or there instead of ||. The || operator binds too
tightly to use after list operators, though you can always use parentheses around
the list operator’s arguments to turn the list operator back into something that

154 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

behaves more like a function call. Alternatively, you can use the prototype ($)
to turn the subroutine into a unary operator:

sub myname ($);
$me = myname $0 || die "can't get myname";

That now parses as you’d expect, but you still ought to get in the habit of using
parentheses in that situation. For more on prototypes, see Chapter 7.

You do need to define the subroutine at some point, or you’ll get an error at
runtime indicating that you’ve called an undefined subroutine. Other than defin-
ing the subroutine yourself, there are several ways to pull in definitions from
elsewhere.

You can load definitions from other files with a simple require statement; this
was the best way to load files in Perl 4, but there are two problems with it. First,
the other file will typically insert subroutine names into a package (a symbol
table) of its own choosing, not into your package. Second, a require happens at
runtime, so it occurs too late to serve as a declaration in the file invoking the
require. There are times, however, when delayed loading is what you want.

A more useful way to pull in declarations and definitions is with the use decla-
ration, which effectively requires the module at compile time (because use counts
as a BEGIN block) and then lets you import some of the module’s declarations into
your own program. Thus, use can be considered a kind of global declaration in
that it imports names at compile time into your own (global) package just as if
you’d declared them yourself. See the section “Symbol Tables” on page 389 in
Chapter 10 for low-level mechanics on how importation works between packages;
Chapter 11, for how to set up a module’s imports and exports; and Chapter 16 for
an explanation of BEGIN and its cousins, CHECK, UNITCHECK, INIT, and END, which
are also global declarations of a sort because they’re dealt with at compile time
and can have global effects.

Scoped Declarations
Like global declarations, lexically scoped declarations have an effect at the time
of compilation. Unlike global declarations, lexically scoped declarations only
apply from the point of the declaration through the end of the innermost en-
closing scope (block, file, or eval—whichever comes first). That’s why we call
them lexically scoped, though perhaps “textually scoped” would be more accu-
rate, since lexical scoping has little to do with lexicons. But computer scientists
the world over know what “lexically scoped” means, so we perpetuate the usage
here.

Scoped Declarations | 155

www.it-ebooks.info

http://www.it-ebooks.info/

Perl also supports dynamically scoped declarations. A dynamic scope also extends
to the end of the innermost enclosing block, but in this case, “enclosing” is de-
fined dynamically at runtime rather than textually at compile time. To put it
another way, blocks nest dynamically by invoking other blocks, not by including
them. This nesting of dynamic scopes may correlate somewhat to the nesting of
lexical scopes, but the two are generally not identical, especially when any sub-
routines have been invoked.

We mentioned that some aspects of use could be considered global declarations,
but other aspects of use are lexically scoped. In particular, use not only imports
package symbols, it also implements various magical compiler hints, known as
pragmas (or if you’re into classical Greek, pragmata). Most pragmas are lexically
scoped, including the strict pragma we mention from time to time. See the later
section “Pragmas” on page 164. (Hence, if it is implicitly turned on by use
v5.14 at the top of your file, it’s on for the whole rest of the file, even if you switch
packages.)

A package declaration, oddly enough, is itself lexically scoped, despite the fact
that a package is a global entity. But a package declaration merely declares the
identity of the default package for the rest of the enclosing block or, if you use
the optional BLOCK after the package NAMESPACE, then in that specific block. Un-
declared identifiers used in variable names12 are looked up in that package. In a
sense, a package is never declared at all, but springs into existence when you refer
to something that belongs to that package. It’s all very Perlish.

Scoped Variable Declarations
Most of the rest of this chapter is about using global variables. Or, rather, it’s about
not using global variables. There are various declarations that help you not use
global variables—or, at least, not use them foolishly.

We already mentioned the package declaration, which was introduced into Perl
long ago to allow globals to be split up into separate packages. This works pretty
well for certain kinds of variables. Packages are used by libraries, modules, and
classes to store their interface data (and some of their semiprivate data) to avoid
conflicting with variables and functions of the same name in your main program
or in other modules. If you see someone write $Some::stuff,13 he’s using the
$stuff scalar variable from the package Some. See Chapter 10.

12. Also unqualified names of subroutines, filehandles, directory handles, and formats.

13. Or the archaic $Some'stuff, which probably shouldn’t be encouraged outside of Perl poetry.

156 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

If this were all there were to the matter, Perl programs would quickly become
unwieldy as they got longer. Fortunately, Perl’s three scoping declarators make
it easy to create completely private variables (using my or state), or to give selective
access to global ones (using our). There is also a pseudodeclarator to provide
temporary values to global variables (using local). These declarators are placed
in front of the variable in question:

my $nose;
our $House;
state $troopers = 0;
local $TV_channel;

If more than one variable is to be declared, the list must be placed in parentheses:

my ($nose, @eyes, %teeth);
our ($House, @Autos, %Kids);
state ($name, $rank, $serno);
local (*Spouse, $phone{HOME});

The my, state, and our declarators may only declare simple scalar, array, or hash
variables, while state may only initialize simple scalar variables (although this
may contain a reference to anything else you’d like), not arrays or hashes. Since
local is not a true declarator, the constraints are somewhat more relaxed: you
may also localize, with or without initialization, entire typeglobs and individual
elements or slices of arrays and hashes. Each of these modifiers offers a different
sort of “confinement” to the variables they modify. To oversimplify slightly:
our confines names to a scope, local confines values to a scope, and my confines
both names and values to a scope. (And state is just like my, but it defines the
scope a bit differently.) Each of these constructs may be assigned to, though they
differ in what they actually do with the values since they have different mecha-
nisms for storing values. They also differ somewhat if you don’t (as we didn’t
above) assign any values to them: my and local cause the variables in question to
start out with values of undef or (), as appropriate; our, on the other hand, leaves
the current value of its associated global unchanged. And state, the oddball,
starts with whatever value it had the last time we were here.

Syntactically, my, our, state, and local are simply modifiers (like adjectives) on
an lvalue expression. When you assign to an lvalue modified by a declarator, it
doesn’t change whether the lvalue is viewed as a scalar or a list. To determine
how the assignment will work, just pretend that the declarator isn’t there. So
either of:

my ($foo) = <STDIN>;
my @array = <STDIN>;

supplies list context to the righthand side, while this supplies scalar context:

Scoped Declarations | 157

www.it-ebooks.info

http://www.it-ebooks.info/

my $foo = <STDIN>;

Declarators bind more tightly (with higher precedence) than the comma does.
The following example erroneously declares only one variable, not two, because
the list following the declarator is not enclosed in parentheses:

my $foo, $bar = 1; # WRONG

This has the same effect as:

my $foo;
$bar = 1;

Under strict, you will get an error from that since $bar is not declared.

In general, it’s best to declare a variable in the smallest possible scope that suits
it. Since variables declared in a control-flow statement are visible only in the block
governed by that statement, their visibility is reduced. It reads better in English
this way, too:

sub check_warehouse {
 for my $widget (our @Current_Inventory) {
 say "I have a $widget in stock today.";
 }
}

By far the most frequently seen declarator is my, which declares lexically scoped
variables for which both the names and values are stored in the current scope’s
temporary scratchpad; these may not be accessed from outside the lexical scope.
Always use my unless you know why you want one of the others. Use state if you
want the same degree of privacy but you also want the value to persist from call
to call.

Closely related is the our declaration, which is also persistent, and also enters a
lexically scoped name in the current scope, but implements its persistence by
storing its value in a global variable that anyone else can access if they wish. In
other words, it’s a global variable masquerading as a lexical.

In addition to global scoping and lexical scoping, we also have what is known as
dynamic scoping, implemented by local, which despite the word “local” really
deals with global variables and has nothing to do with the local scratchpad. (It
would be more aptly named temp, since it temporarily changes the value of an
existing variable. You might even see temp in Perl 5 programs someday, if the
keyword is borrowed back from Perl 6.)

The newly declared variable (or value, in the case of local) does not show up
until the statement after the statement containing the declaration. Thus, you
could mirror a variable this way:

158 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

my $x = $x;

That initializes the new inner $x with the current value $x, whether the current
meaning of $x is global or lexical.

Declaring a lexical variable name hides any previously declared lexical of the same
name, whether declared in that scope or an outer scope (although you’ll get a
warning if you have those enabled). It also hides any unqualified global variable
of the same name, but you can always get to the global variable by explicitly
qualifying it with the name of the package the global is in, for example, $Packag
eName::varname.

Lexically Scoped Variables: my
To help you avoid the maintenance headaches of global variables, Perl provides
lexically scoped variables, often called lexicals for short. Unlike globals, lexicals
guarantee you privacy. Assuming you don’t hand out references to these private
variables that would let them be fiddled with indirectly, you can be certain that
every possible access to these private variables is restricted to code within one
discrete and easily identifiable section of your program. That’s why we picked
the keyword my, after all.

A statement sequence may contain declarations of lexically scoped variables. Such
declarations tend to be placed at the front of the statement sequence, but this is
not a requirement; you may simply decorate the first use of a variable with a my
declarator wherever it occurs (as long as it’s in the outermost scope the variable
is used). In addition to declaring variable names at compile time, the declarations
act like ordinary runtime statements: each of them is executed within the se-
quence of statements as if it were an ordinary statement without the declarator:

my $name = "fred";
my @stuff = ("car", "house", "club");
my ($vehicle, $home, $tool) = @stuff;

These lexical variables are totally hidden from the world outside their immedi-
ately enclosing scope. Unlike the dynamic scoping effects of local (see below),
lexicals are hidden from any subroutine called from their scope. This is true even
if the same subroutine is called from itself or elsewhere—each instance of the
subroutine gets its own “scratchpad” of lexical variables. Subroutines defined in
the scope of a lexical variable, however, can see the variable just like any inner
scope would.

Scoped Declarations | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike block scopes, file scopes don’t nest; there’s no “enclosing” going on, at least
not textually. If you load code from a separate file with do, require, or use, the
code in that file cannot access your lexicals, nor can you access lexicals from that
file.

However, any scope within a file (or even the file itself) is fair game. It’s often
useful to have scopes larger than subroutine definitions, because this lets you
share private variables among a limited set of subroutines. This is one way to
create variables that a C programmer would think of as “file static”:

{
 my $state = 0;

 sub on { $state = 1 }
 sub off { $state = 0 }
 sub toggle { $state = !$state }
}

The eval STRING operator also works as a nested scope, since the code in the
eval can see its caller’s lexicals (as long as the names aren’t hidden by identical
declarations within the eval’s own scope). Anonymous subroutines can likewise
access any lexical variables from their enclosing scopes; if they do so, they’re
what are known as closures.14 Combining those two notions, if a block evals a
string that creates an anonymous subroutine, the subroutine becomes a closure
with full access to the lexicals of both the eval and the block, even after the
eval and the block have exited. See the section “Closures” on page 355 in Chap-
ter 8.

Persistent Lexically Scoped Variables: state
A state variable is a lexically scoped variable, just like my. The only difference is
that state variables will never be reinitialized, unlike my variables that are reini-
tialized each time their enclosing block is entered. This is usually so that a func-
tion can have a private variable that retains its old value between calls to that
function.

state variables are enabled only when the use feature "state" pragma is in
effect. This will be automatically included if you ask to use a version of Perl that’s
v5.10 or later:

use v5.14;
sub next_count {

14. As a mnemonic, note the common element between “enclosing scope” and “closure”. (The actual definition
of closure comes from a mathematical notion concerning the completeness of sets of values and operations
on those values.)

160 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

 state $counter = 0; # first time through, only
 return ++$counter;
}

Unlike my variables, state variables are currently restricted to scalars; they cannot
be arrays or hashes. This may sound like a bigger restriction than it actually is,
because you can always store a reference to an array or hash in a state variable:

use v5.14;
state $bag = { };
state $vector = [];

...
unless ($bag–>{$item}) { $bag–>{$item} = 1 }
...
push @$vector, $item;

Lexically Scoped Global Declarations: our
In the old days before use strict, Perl programs would simply access global vari-
ables directly. A better way to access globals nowadays is by the our declaration.
This declaration is lexically scoped in that it applies only through the end of the
current scope. However, unlike the lexically scoped my or the dynamically scoped
local, our does not isolate anything to the current lexical or dynamic scope. In-
stead, it provides “permission” in the current lexical scope to access a variable
of the declared name in the current package. Since it declares a lexical name, it
hides any previous lexicals of the same name. In this respect, our variables act
just like my variables.

If you place an our declaration outside any brace-delimited block, it lasts through
the end of the current compilation unit. Often, though, people put it just inside
the top of a subroutine definition to indicate that they’re accessing a global vari-
able:

sub check_warehouse {
 our @Current_Inventory;
 my $widget;
 foreach $widget (@Current_Inventory) {
 say "I have a $widget in stock today.";
 }
}

Since global variables are longer in life and broader in visibility than private vari-
ables, we like to use longer and flashier names for them than for temporary vari-
ables. This practice alone, if studiously followed, can do nearly as much as use
strict can toward discouraging the overuse of global variables, especially in the
less prestidigitatorial typists.

Scoped Declarations | 161

www.it-ebooks.info

http://www.it-ebooks.info/

Repeated our declarations do not meaningfully nest. Every nested my produces a
new variable, and every nested local a new value. But every time you use our,
you’re talking about the same global variable, irrespective of nesting. When you
assign to an our variable, the effects of that assignment persist after the scope of
the declaration. That’s because our never creates values; it just exposes a limited
form of access to the global, which lives forever:

our $PROGRAM_NAME = "waiter";
{
 our $PROGRAM_NAME = "server";
 # Code called here sees "server".
 ...
}
Code executed here still sees "server".

Contrast this with what happens under my or local, where, after the block, the
outer variable or value becomes visible again:

my $i = 10;
{
 my $i = 99;
 ...
}
Code compiled here sees outer 10 variable.

local $PROGRAM_NAME = "waiter";
{
 local $PROGRAM_NAME = "server";
 # Code called here sees "server".
 ...
}
Code executed here sees restored "waiter" value.

It usually only makes sense to assign to an our declaration once, probably at the
very top of the program or module, or, more rarely, when you preface the our
with a local of its own:

{
 local our @Current_Inventory = qw(bananas);
 check_warehouse(); # no, we haven't no bananas :–)
}

(But why not just pass it as an argument in this case?)

Dynamically Scoped Variables: local
Using a local operator on a global variable gives it a temporary value each time
local is executed, but it does not affect that variable’s global visibility. When the
program reaches the end of that dynamic scope, this temporary value is discarded

162 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

and the original value is restored. But it’s always still a global variable that just
happens to hold a temporary value while that block is executing. If you call some
other function while your global contains the temporary value and that function
accesses that global variable, it sees the temporary value, not the original one. In
other words, that other function is in your dynamic scope, even though it’s pre-
sumably not in your lexical scope.15

This process is called dynamic scoping because the current value of the global
variable depends on your dynamic context; that is, it depends on which of your
parents in the call chain might have called local. Whoever did so last before
calling you controls which value you will see.

If you have a local that looks like this:

{
 local $var = $newvalue;
 some_func();
 ...
}

you can think of it purely in terms of runtime assignments:

{
 $oldvalue = $var;
 $var = $newvalue;
 some_func();
 ...
}
continue {
 $var = $oldvalue;
}

The difference is that with local the value is restored no matter how you exit the
block, even if you prematurely return from that scope.

As with my, you can initialize a local with a copy of the same global variable. Any
changes to that variable during the execution of a subroutine (and any others
called from within it, which of course can still see the dynamically scoped global)
will be thrown away when the subroutine returns. You’d certainly better com-
ment what you are doing, though:

WARNING: Changes are temporary to this dynamic scope.
local $Some_Global = $Some_Global;

15. That’s why lexical scopes are sometimes called static scopes: to contrast them with dynamic scopes and
emphasize their compile-time determinability. Don’t confuse this use of the term with how static is used
in C or C++. The term is heavily overloaded, which is why we avoid it.

Scoped Declarations | 163

www.it-ebooks.info

http://www.it-ebooks.info/

A global variable then is still completely visible throughout your whole program,
no matter whether it was explicitly declared with our or just allowed to spring
into existence, or whether it’s holding a local value destined to be discarded
when the scope exits. In tiny programs, this isn’t so bad, but for large ones, you’ll
quickly lose track of where in the code all these global variables are being used.
You can forbid accidental use of globals, if you want, through the use strict
'vars' pragma, described in the next section.

Although both my and local confer some degree of protection, by and large you
should prefer my over local. Sometimes, though, you have to use local so you can
temporarily change the value of an existing global variable, like those listed in
Chapter 25. Only alphanumeric identifiers may be lexically scoped, and many of
those special variables aren’t strictly alphanumeric. You also need to use local
to make temporary changes to a package’s symbol table, as shown in the section
“Symbol Tables” on page 389 in Chapter 10. Finally, you can use local on a single
element or a whole slice of an array or a hash. This even works if the array or
hash happens to be a lexical variable, layering local’s dynamic scoping behavior
on top of those lexicals. We won’t talk much more about the semantics of
local here. See the local entry in Chapter 27 for more information.

Pragmas
Many programming languages allow you to give hints to the compiler. In Perl,
these hints are conveyed to the compiler with the use declaration. Some pragmas
are:

use warnings;
use strict;
use integer;
use bytes;
use constant pi => (4 * atan2(1,1));

Perl pragmas are all described in Chapter 29, but right now we’ll just talk specif-
ically about a couple that are most useful with the material covered in this chap-
ter.

Although a few pragmas are global declarations that affect global variables or the
current package, most are lexically scoped declarations whose effects are con-
strained to last only until the end of the enclosing block, file, or eval (whichever
comes first). A lexically scoped pragma can be countermanded in an inner scope
with a no declaration, which works just like use but in reverse.

164 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

Controlling Warnings
To show how this works, we’ll manipulate the warnings pragma to tell Perl whether
to issue warnings for questionable practices:

use warnings; # or explicitly enable warnings
...
{
 no warnings; # Disable warnings through end of block.
 ...
}
Warnings are automatically enabled again here.

Once warnings are enabled, Perl complains about variables used only once, vari-
able declarations that mask other declarations in the same scope, improper con-
versions of strings into numbers, using undefined values as legitimate strings or
numbers, trying to write to files you only opened read-only (or didn’t open at
all), and many other conditions documented in perldiag.

The warnings pragma is the preferred way to control warnings. Old programs
could only use the –w command-line switch or modify the global $^W variable:

{
 local $^W = 0;
 ...
}

It’s much better to use the use warnings and no warnings pragmas. A pragma is
better because it happens at compile time, because it’s a lexical declaration and
therefore cannot affect code it wasn’t intended to affect, and because (although
we haven’t shown you in these simple examples) it affords fine-grained control
over discrete classes of warnings. For more about the warnings pragma, including
how to convert merely noisy warnings into fatal errors, and how to override the
pragma to turn on warnings globally even if a module says not to, see “warn-
ings” on page 1039 in Chapter 29.

Controlling the Use of Globals
Another commonly seen declaration is the strict pragma, which has several
functions, one of which is to control the use of global variables. Normally, Perl
lets you create new globals (or, all too often, step on old globals) just by men-
tioning them. No variable declarations are necessary—by default, that is. Because
unbridled use of globals can make large programs or modules painful to main-
tain, you may sometimes wish to discourage their accidental use. As an aid to
preventing such accidents, you can say:

Pragmas | 165

www.it-ebooks.info

http://perldoc.perl.org/perldiag.html
http://www.it-ebooks.info/

use v5.14; # Turn on strict implicitly.
use strict "vars"; # Turn on strict explicitly.

This means that any variable mentioned from here to the end of the enclosing
scope must refer either to a lexical variable declared with my, state, or our, or to
an explicitly allowed global. If it’s not one of those, a compilation error results.
A global is explicitly allowed if one of the following is true:

• It’s one of Perl’s program-wide special variables (see Chapter 25).

• It’s fully qualified with its package name (see Chapter 10).

• It’s imported into the current package (see Chapter 11).

• It’s masquerading as a lexically scoped variable via an our declaration. (This
is the main reason we added our declarations to Perl.)

Of course, there’s always the fifth alternative—if the pragma proves burdensome,
simply countermand it within an inner block using:

no strict "vars";

You can also turn on strict checking of symbolic dereferences and accidental use
of barewords with this pragma. Normally, people just say:

use strict;

to enable all three strictures—if they haven’t already implicitly enabled them via
use v5.14 or some such. See the “strict” pragma entry in Chapter 29 for more
information.

166 | Chapter 4: Statements and Declarations

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 5

Pattern Matching

Perl’s built-in support for pattern matching lets you search large amounts of data
conveniently and efficiently. Whether you run a huge commercial portal site
scanning every newsfeed in existence for interesting tidbits, a government orga-
nization dedicated to figuring out human demographics (or the human genome),
or an educational institution just trying to get some dynamic information up on
your website, Perl is the tool of choice, in part because of its database connec-
tions, but largely because of its pattern-matching capabilities. If you take “text”
in the widest possible sense, perhaps 90% of what you do is 90% text processing.
That’s really what Perl is all about and always has been about—in fact, it’s even
part of Perl’s name: Practical Extraction and Report Language. Perl’s patterns
provide a powerful way to scan through mountains of mere data and extract
useful information from it.

You specify a pattern by creating a regular expression (or regex), and Perl’s regular
expression engine (the “Engine”, for the rest of this chapter) then takes that
expression and determines whether (and how) the pattern matches your data.
While most of your data will probably be text strings, there’s nothing stopping
you from using regexes to search and replace any byte sequence, even what you’d
normally think of as “binary” data. To Perl, bytes are just characters that happen
to have an ordinal value less than 256. (More on that in Chapter 6.)

If you’re acquainted with regular expressions from some other venue, we should
warn you that regular expressions are a bit different in Perl. First, they aren’t
entirely “regular” in the theoretical sense of the word, which means they can do
much more than the traditional regular expressions taught in computer science
classes. Second, they are used so often in Perl that they have their own special
variables, operators, and quoting conventions, which are tightly integrated into
the language, not just loosely bolted on like any other library. Programmers new
to Perl often look in vain for functions like these:

167

www.it-ebooks.info

http://www.it-ebooks.info/

match($string, $pattern);
subst($string, $pattern, $replacement);

But matching and substituting are such fundamental tasks in Perl that they merit
one-letter operators: m/PATTERN/ and s/PATTERN/REPLACEMENT/ (m// and s///, for
short). Not only are they syntactically brief, they’re also parsed like double-
quoted strings rather than ordinary operators; nevertheless, they operate like
operators, so we’ll call them that. Throughout this chapter, you’ll see these oper-
ators used to match patterns against a string. If some portion of the string fits the
pattern, we say that the match is successful. There are lots of cool things you can
do with a successful pattern match. In particular, if you are using s///, a suc-
cessful match causes the matched portion of the string to be replaced with what-
ever you specified as the REPLACEMENT.

This chapter is all about how to build and use patterns. Perl’s regular expressions
are potent, packing a lot of meaning into a small space. They can therefore be
daunting if you try to intuit the meaning of a long pattern as a whole. But if you
can break it up into its parts, and if you know how the Engine interprets those
parts, you can understand any regular expression. It’s not unusual to see a hun-
dred-line C or Java program expressed with a one-line regular expression in Perl.
That regex may be a little harder to understand than any single line out of the
longer program; on the other hand, the regex will likely be much easier to un-
derstand than the longer program taken as a whole. You just have to keep these
things in perspective.

The Regular Expression Bestiary
Before we dive into the rules for interpreting regular expressions, let’s see what
some patterns look like. Most characters in a regular expression simply match
themselves. If you string several characters in a row, they must match in order,
just as you’d expect. So if you write the pattern match:

/Frodo/

you can be sure that the pattern won’t match unless the string contains the sub-
string “Frodo” somewhere. (A substring is just a part of a string.) The match could
be anywhere in the string, just as long as those five characters occur somewhere,
next to each other and in that order.

Other characters don’t match themselves but “misbehave” in some way. We call
these metacharacters. (All metacharacters are naughty in their own right, but
some are so bad that they also cause other nearby characters to misbehave as
well.)

168 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Here are the miscreants:

\ | () [{ ^ $ * + ? .

Metacharacters are actually very useful and have special meanings inside pat-
terns; we’ll tell you all those meanings as we go along. But we do want to reassure
you that you can always match any of these 12 characters literally by putting a
backslash in front of each. For example, backslash is itself a metacharacter, so
to match a literal backslash, you’d backslash the backslash: \\.

You see, backslash is one of those characters that makes other characters misbe-
have. It just works out that when you make a misbehaving metacharacter mis-
behave, it ends up behaving—a double negative, as it were. So backslashing a
character to get it to be taken literally works, but only on punctuational charac-
ters; backslashing an (ordinarily well-behaved) alphanumeric character does the
opposite: it turns the literal character into something special. Whenever you see
such a two-character sequence:

\b \D \t \3 \s

you’ll know that the sequence is a metasymbol that matches something strange.
For instance, \b matches a word boundary, while \t matches an ordinary tab
character. Notice that a tab is one character wide, while a word boundary is zero
characters wide because it’s the spot between two characters. So we call \b a
zero-width assertion. Still, \t and \b are alike in that they both assert something
about a particular spot in the string. Whenever you assert something in a regular
expression, you’re just claiming that that particular something has to be true in
order for the pattern to match.

Most pieces of a regular expression are some sort of assertion, including the or-
dinary characters that simply assert that they match themselves. To be precise,
they also assert that the next thing will match one character later in the string,
which is why we talk about the tab character being “one character wide”. Some
assertions (like \t) eat up some of the string as they match, and others (like \b)
don’t. But we usually reserve the term “assertion” for the zero-width assertions.
To avoid confusion, we’ll call the thing with width an atom. (If you’re a physicist,
you can think of nonzero-width atoms as massive, in contrast to the zero-width
assertions, which are massless like photons.)

You’ll also see some metacharacters that aren’t assertions; rather, they’re structural
(just as braces and semicolons define the structure of ordinary Perl code but don’t
really do anything). These structural metacharacters are in some ways the most
important ones, because the crucial first step in learning to read regular expres-

The Regular Expression Bestiary | 169

www.it-ebooks.info

http://www.it-ebooks.info/

sions is to teach your eyes to pick out the structural metacharacters. Once you’ve
learned that, reading regular expressions is a breeze.1

One such structural metacharacter is the vertical bar, which indicates alternation:

/Frodo|Pippin|Merry|Sam/

That means that any of those strings can trigger a match; this is covered in
“Alternation” on page 231 later in this chapter. And in the section “Grouping and
Capturing” on page 221 before that, we’ll show you how to use parentheses
around portions of your pattern to do grouping:

/(Frodo|Drogo|Bilbo) Baggins/

or even:

/(Frod|Drog|Bilb)o Baggins/

Another thing you’ll see are what we call quantifiers, which say how many of the
previous thing should match in a row. Quantifiers look like this:

* + ? *? *+ {3} {2,5}

You’ll never see them in isolation like that, though. Quantifiers only make sense
when attached to atoms—that is, to assertions that have width.2 Quantifiers
attach to the previous atom only, which in human terms means they normally
quantify only one character. If you want to match three copies of “bar” in a row,
you need to group the individual characters of “bar” into a single “molecule” with
parentheses, like this:

/(bar){3}/

That will match “barbarbar”. If you’d said /bar{3}/, that would match “barrr”—
which might qualify you as Scottish but disqualify you as barbarbaric. (Then
again, maybe not. Some of our favorite metacharacters are Scottish.) For more
on quantifiers, see “Quantifiers” on page 214 later in this chapter.

Now that you’ve seen a few of the beasties that inhabit regular expressions, you’re
probably anxious to start taming them. However, before we discuss regular ex-
pressions in earnest, we need to backtrack a little and talk about the pattern-
matching operators that make use of regular expressions. (And if you happen to
spot a few more regex beasties along the way, just leave a decent tip for the tour
guide.)

1. Admittedly, a stiff breeze at times, but not something that will blow you away.

2. Quantifiers are a bit like the statement modifiers in Chapter 4, which can only attach to a single statement.
Attaching a quantifier to a zero-width assertion would be like trying to attach a while modifier to a
declaration—either of which makes about as much sense as asking your local apothecary for a pound of
photons. Apothecaries only deal in atoms and such.

170 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern-Matching Operators
Zoologically speaking, Perl’s pattern-matching operators function as a kind of
cage for regular expressions, to keep them from getting out. This is by design; if
we were to let the regex beasties wander throughout the language, Perl would be
a total jungle. The world needs its jungles, of course—they’re the engines of
biodiversity, after all—but jungles should stay where they belong. Similarly, de-
spite being the engines of combinatorial diversity, regular expressions should
stay inside pattern-match operators where they belong. It’s a jungle in there.

As if regular expressions weren’t powerful enough, the m// and s/// operators
also provide the (likewise confined) power of double-quote interpolation. Since
patterns are parsed like double-quoted strings, all the normal double-quote con-
ventions will work, including variable interpolation (unless you use single quotes
as the delimiter) and special characters indicated with backslash escapes. (See
the section “Specific Characters” on page 199 later in this chapter.) These are
applied before the string is interpreted as a regular expression. (This is one of the
few places in the Perl language where a string undergoes more than one pass of
processing.) The first pass is not quite normal double-quote interpolation in that
it knows what it should interpolate and what it should pass on to the regular
expression parser. So, for instance, any $ immediately followed by a vertical bar,
closing parenthesis, or the end of the string will be treated not as a variable in-
terpolation, but as the traditional regex assertion meaning end-of-line. So if you
say:

$foo = "bar";
/foo/;

the double-quote interpolation pass knows that those two $ signs are functioning
differently. It does the interpolation of $foo, then hands this to the regular ex-
pression parser:

/bar$/;

Another consequence of this two-pass parsing is that the ordinary Perl tokener
finds the end of the regular expression first, just as if it were looking for the
terminating delimiter of an ordinary string. Only after it has found the end of the
string (and done any variable interpolation) is the pattern treated as a regular
expression. Among other things, this means you can’t “hide” the terminating
delimiter of a pattern inside a regex construct (such as a bracketed character class
or a regex comment, which we haven’t covered yet). Perl will see the delimiter
wherever it is and terminate the pattern at that point.

Pattern-Matching Operators | 171

www.it-ebooks.info

http://www.it-ebooks.info/

You should also know that interpolating variables whose values keep changing
into a pattern slows down the pattern matcher, in case it has to recompile the
pattern. See the section “Variable Interpolation” on page 234 later in this chapter.
You can crudely suppress recompilation with the old /o modifier, but it’s nor-
mally better to factor out the changing bits using the qr// construct, so that only
the parts requiring recompilation have to be recompiled.

The tr/// transliteration operator does not interpolate variables; it doesn’t even
use regular expressions! (In fact, it probably doesn’t belong in this chapter at all,
but we couldn’t think of a better place to put it.) It does share one feature with
m// and s///, however: it binds to variables using the =~ and !~ operators.

The =~ and !~ operators, described in Chapter 3, bind the scalar expression on
their lefthand side to one of three quote-like operators on their right: m// for
matching a pattern, s/// for substituting some string for a substring matched by
a pattern, and tr/// (or its synonym, y///) for transliterating one set of characters
to another set. (You may write m// as //, without the m, if slashes are used for the
delimiter.) If the righthand side of =~ or !~ is none of these three, it still counts
as a m// matching operation, but there’ll be no place to put any trailing modifiers
(see the next section, “Pattern Modifiers” on page 175), and you’ll have to handle
your own quoting:

say "matches" if $somestring =~ $somepattern;

Really, there’s little reason not to spell it out explicitly:

say "matches" if $somestring =~ m/$somepattern/;

When used for a matching operation, =~ and !~ are sometimes pronounced
“matches” and “doesn’t match”, respectively (although “contains” and “doesn’t
contain” might cause less confusion).

Apart from the m// and s/// operators, regular expressions show up in two other
places in Perl. The first argument to the split function is a special match operator
specifying what not to return when breaking a string into multiple substrings. See
the description and examples for split in Chapter 27. The qr// (“quote regex”)
operator also specifies a pattern via a regex, but it doesn’t try to match anything
(unlike m//, which does). Instead, the compiled form of the regex is returned for
future use. See “Variable Interpolation” on page 234 for more information.

You apply one of the m//, s///, or tr/// operators to a particular string with the
=~ binding operator (which isn’t a real operator, just a kind of topicalizer, lin-
guistically speaking). Here are some examples:

172 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$haystack =~ m/needle/ # match a simple pattern
$haystack =~ /needle/ # same thing

$italiano =~ s/butter/olive oil/ # a healthy substitution

$rotate13 =~ tr/a–zA–Z/n–za–mN–ZA–M/ # easy encryption (to break)

Without a binding operator, $_ is implicitly used as the “topic”:

/new life/ and # search in $_ and (if found)
 /new civilizations/ # boldly search $_ again

s/sugar/aspartame/ # substitute a substitute into $_

tr/ATCG/TAGC/ # complement the DNA stranded in $_

Because s/// and tr/// change the scalar to which they’re applied, you may only
use them on valid lvalues:3

"onshore" =~ s/on/off/; # WRONG: compile–time error

However, m// works on the result of any scalar expression:

if ((lc $magic_hat–>fetch_contents–>as_string) =~ /rabbit/) {
 say "Nyaa, what's up doc?";
}
else {
 say "That trick never works!";
}

But you have to be a wee bit careful since =~ and !~ have rather high precedence
—in our previous example, the parentheses are necessary around the left
term.4 The !~ binding operator works like =~, but it negates the logical result of
the operation:

if ($song !~ /words/) {
 say qq/"$song" appears to be a song without words./;
}

Since m//, s///, and tr/// are quote operators, you may pick your own delimiters.
These work in the same way as the quoting operators q//, qq//, qr//, and qw//
(see the section “Pick Your Own Quotes” on page 70 in Chapter 2).

$path =~ s#/tmp#/var/tmp/scratch#;

if ($dir =~ m[/bin]) {
 say "No binary directories please.";
}

3. Unless you use the /r modifier to return the mutated result as an rvalue.

4. Without the parentheses, the lower-precedence lc would have applied to the whole pattern match instead
of just the method call on the magic hat object.

Pattern-Matching Operators | 173

www.it-ebooks.info

http://www.it-ebooks.info/

When using paired delimiters with s/// or tr///, if the first part is one of the
four customary ASCII bracketing pairs (angle, round, square, or curly), you may
choose different delimiters for the second part than you chose for the first:

s(egg)<larva>;
s{larva}{pupa};
s[pupa]/imago/;

Whitespace is allowed in front of the opening delimiters:

s (egg) <larva>;
s {larva} {pupa};
s [pupa] /imago/;

Each time a pattern successfully matches, it sets the $`, $&, and $' variables to the
text left of the match, the whole match, and the text right of the match. This is
useful for pulling apart strings into their components:

"hot cross buns" =~ /cross/;
say "Matched: <$`> $& <$'>"; # Matched: <hot > cross < buns>
say "Left: <$`>"; # Left: <hot >
say "Match: <$&>"; # Match: <cross>
say "Right: <$'>"; # Right: < buns>

For better granularity and efficiency, use parentheses to capture the particular
portions that you want to keep around. Each pair of parentheses captures the
substring corresponding to the subpattern in the parentheses. The pairs of paren-
theses are numbered from left to right by the positions of the left parentheses;
the substrings corresponding to those subpatterns are available after the match
in the numbered variables, $1, $2, $3, and so on:5

$_ = "Bilbo Baggins's birthday is September 22";
/(.*)'s birthday is (.*)/;
say "Person: $1";
say "Date: $2";

$`, $&, $', and the numbered variables are global variables implicitly localized to
the enclosing dynamic scope. They last until the next successful pattern match
or the end of the current scope, whichever comes first. More on this later, in a
different scope.

Once Perl sees that you need one of $`, $&, or $' anywhere in the program, it
provides them for every pattern match. This will slow down your program a bit.
Perl uses a similar mechanism to produce $1, $2, and so on, so you also pay a
price for each pattern that contains capturing parentheses. (See “Grouping
Without Capturing” on page 229, later in this chapter, to avoid the cost of cap-
turing while still retaining the grouping behavior.) But if you never use $`, $&, or

5. Not $0, though, which holds the name of your program.

174 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$', then patterns without capturing parentheses will not be penalized. So it’s usu-
ally best to avoid $`, $&, and $' if you can, especially in library modules. But if
you must use them once (and some algorithms really appreciate their conve-
nience), then use them at will because you’ve already paid the price. $& is not so
costly as the other two in recent versions of Perl.

A better alternative is the /p match modifier, discussed below. It preserves the
string matched so that the ${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} variables
contain what $`, $&, and $' would contain, but does so without penalizing the
entire program.

Pattern Modifiers
We’ll discuss the individual pattern-matching operators in a moment, but first
we’d like to mention another thing they all have in common, modifiers.

Immediately following the final delimiter of an m//, s///, qr//, y///, or tr///
operator, you may optionally place one or more single-letter modifiers, in any
order. For clarity, modifiers are usually written as “the /i modifier” and pro-
nounced “the slash eye modifier”, even though the final delimiter might be
something other than a slash. (Sometimes people say “flag” or “option” to mean
“modifier”; that’s okay, too.)

Some modifiers change the behavior of the individual operator, so we’ll describe
those in detail later. Others change how the regex is interpreted, so we’ll talk
about them here. The m//, s///, and qr// operators6 all accept the following
modifiers after their final delimiter; see Table 5-1.

Table 5-1. Regular expression modifiers

Modifier Meaning

/i Ignore alphabetic case distinctions (case-insensitive).

/s Let . also match newline.

/m Let ^ and $ also match next to embedded \n.

/x Ignore (most) whitespace and permit comments in pattern.

/o Compile pattern once only.

/p Preserve ${^PREMATCH}, ${^MATCH}, and ${^POSTMATCH} variables.

/d Dual ASCII–Unicode mode charset behavior (old default).

/a ASCII charset behavior.

6. The tr/// operator does not take regexes, so these modifiers do not apply.

Pattern-Matching Operators | 175

www.it-ebooks.info

http://www.it-ebooks.info/

Modifier Meaning

/u Unicode charset behavior (new default).

/l The runtime locale’s charset behavior (default under use locale).

The /i modifier says to match a character in any possible case variation; that is,
to match case-insensitively, a process also known as casefolding. This means to
match not just uppercase and lowercase, but also titlecase characters (not used
in English). Case-insensitive matching is also needed for when characters have
several variants that are in the same case, like the two lowercase Greek sigmas:
the lowercase of capital “Σ” is normally “σ”, but becomes “ς” at the end of a word.
For example, the Greek word Σίσυφος (“Sisyphus” to the rest of us) has all three
sigmas in it.

Because case-insensitive matching is done according to character, not according
to language,7 it can match things whose capitalization would be considered
wrong in one or another language. So /perl/i would not only match “perl” but
also strings like “proPErly” or “perLiter”, which aren’t really correct English.
Similarly, Greek /σίσυφος/i would match not just “ΣΊΣΥΦΟΣ” and “Σίσυφος”, but
also the malformed “ςίσυφοσ”, with its outer two lowercase sigmas swapped.

That’s because even though we’ve labelled our strings as being English or Greek,
Perl doesn’t really know that. It just applies its case-insensitive matching in a
language-ignorant way. Because all case variants of the same letter share the same
casefold, they all match.

Because Perl supports only 8-bit locales, locale-matching codepoints below 256
use the current locale map for determining casefolds, but larger codepoints use
Unicode rules. Case-insensitive matches under locales cannot cross the 255/256
border, and other restrictions may apply.

The /s and /m modifiers don’t involve anything kinky. Rather, they affect how Perl
treats matches against a string that contains newlines. But they aren’t about
whether your string actually contains newlines; they’re about whether Perl
should assume that your string contains a single line (/s) or multiple lines (/m),
because certain metacharacters work differently depending on whether they’re
expected to behave in a line-oriented fashion.

Ordinarily, the metacharacter “.” matches any one character except a newline,
because its traditional meaning is to match characters within a line. With /s,
however, the “.” metacharacter can also match a newline, because you’ve told

7. Well, almost. But we really prefer not to discuss the Turkıc İ problem, so let’s just say we didn’t.

176 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Perl to ignore the fact that the string might contain multiple newlines. If you want
the “not a newline” behavior under /s, just use \N, which means the same thing
as [^\n] but is easier to type.

The /m modifier, on the other hand, changes the interpretation of the ^ and $
metacharacters by letting them match next to newlines within the string instead
of just at the ends of the string. (/m can disable optimizations that assume you
are matching a single line, so don’t just sprinkle it everywhere.) See the examples
in the section “Positions” on page 217 later in this chapter.

The /p modifier preserves the text of the match itself in the special ${^MATCH}
variable, any text before the match in ${^PREMATCH}, and any text after the match
in ${^POSTMATCH}.

The now largely obsolete /o modifier controls pattern recompilation. These days
you need patterns more than 10k in length before this modifier has any beneficial
effect, so it’s something of a relic. In case you bump into it in old code, here’s
how it works anyway.

Unless the delimiters chosen are single quotes (m'PATTERN', s'PATTERN'REPLACE
MENT', or qr'PATTERN'), any variables in the pattern are normally interpolated
every time the pattern operator is evaluated. At worst, this may cause the pattern
to be recompiled; at best, it costs a string comparison to see if recompilation is
needed. If you want such a pattern to be compiled once and only once, use
the /o modifier. This prevents expensive runtime recompilations; it’s useful when
the value you are interpolating won’t change during execution. However, men-
tioning /o constitutes a promise that you won’t change the variables in the pattern.
If you do change them, Perl won’t even notice. For better control over recompi-
lation, use the qr// regex quoting operator. See “Variable Interpola-
tion” on page 234 later in this chapter for details.

The /x is the expressive modifier: it allows you to exploit whitespace and expla-
natory comments in order to expand your pattern’s legibility, even extending the
pattern across newline boundaries.

Er, that is to say, /x modifies the meaning of the whitespace characters (and the
character): instead of letting them do self-matching as ordinary characters do,
it turns them into metacharacters that, oddly, now behave as whitespace (and
comment characters) should. Hence, /x allows spaces, tabs, and newlines for
formatting, just like regular Perl code. It also allows the # character, not normally
special in a pattern, to introduce a comment that extends through the end of the

Pattern-Matching Operators | 177

www.it-ebooks.info

http://www.it-ebooks.info/

current line within the pattern string.8 If you want to match a real whitespace
character (or the # character), then you’ll have to put it into a bracketed character
class, escape it with a backslash, or encode it using an octal or hex escape. (But
whitespace is normally matched with a \s* or \s+ sequence, so the situation
doesn’t arise often in practice.)

Taken together, these features go a long way toward making traditional regular
expressions a readable language. In the spirit of TMTOWTDI, there’s now more
than one way to write a given regular expression. In fact, there’s more than two
ways:

m/\w+:(\s+\w+)\s*\d+/; # A word, colon, space, word, space, digits.

m/\w+: (\s+ \w+) \s* \d+/x; # A word, colon, space, word, space, digits.

m{
 \w+: # Match a word and a colon.
 (# (begin capture group)
 \s+ # Match one or more spaces.
 \w+ # Match another word.
) # (end capture group)
 \s* # Match zero or more spaces.
 \d+ # Match some digits
}x;

We’ll explain those new metasymbols later in the chapter. (This section was sup-
posed to be about pattern modifiers, but we’ve let it get out of hand in our
excitement about /x. Ah well.) Here’s a regular expression that finds duplicate
words in paragraphs, stolen right out of Perl Cookbook. It uses the /x and /i
modifiers, as well as the /g modifier described later.

Find duplicate words in paragraphs, possibly spanning line boundaries.
Use /x for space and comments, /i to match both 'is'
in "Is is this ok?", and use /g to find all dups.
$/ = ""; # "paragrep" mode
while (<>) {
 while (m{
 \b # start at a word boundary
 (\w\S+) # find a wordish chunk
 (
 \s+ # separated by some whitespace
 \1 # and that chunk again
) + # repeat ad lib
 \b # until another word boundary
 }xig
)

8. Be careful not to include the pattern delimiter in the comment—because of its “find the end first” rule,
Perl has no way of knowing you didn’t intend to terminate the pattern at that point.

178 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/0596003137
http://www.it-ebooks.info/

 {
 say "dup word '$1' at paragraph $.";
 }
}

When run on this chapter, it produces warnings like this:

dup word 'that' at paragraph 150

As it happens, we know that that particular instance was intentional.

The /u modifier enables Unicode semantics for pattern matching. It is automat-
ically set if the pattern is internally encoded in UTF-8 or was compiled within
the scope of a use feature "unicode_strings" pragma (unless also compiled in
the scope of the old use locale or the use bytes pragmas, both of which are
mildly deprecated).

Under /u, codepoints 128–255 (that is, between 128 and 255, inclusive) take on
their ISO-8859-1 (Latin-1) meanings, which are the same as Unicode’s.
Without /u, \w on a non-UTF-8 string matches precisely [A–Za–z0–9_] and noth-
ing more. With a /u, using \w on a non-UTF-8 string also matches all Latin-1
word characters in 128–255; namely the MICRO SIGN µ, the two ordinal indicators
ª and º, and the 62 Latin letters. (On UTF-8 strings, \w always matches all those
anyway.)

The /a modifier changes \d, \s, \w, and the POSIX character classes to match
codepoints within the ASCII range only.9 These sequences normally match Uni-
code codepoints, not just ASCII. Under /a, \d means only the 10 ASCII digits
“0” to “9”, \s means only the 5 ASCII whitespace characters [\f\n\r\t], and
\w means only the 63 ASCII word characters [A–Za–z0–9_]. (This also affects \b
and \B, since they’re defined in terms of \w transitions.) Similarly, all POSIX classes
like [[:print:]] match ASCII characters only under /a.

In one regard, /a acts more like /u than you might think: it does not guarantee
that ASCII characters match ASCII alone. For example, under Unicode case-
folding rules, “S”, “s”, and “ſ” (U+017F LATIN SMALL LETTER LONG S) all match each
other case-insensitively, as do “K”, “k”, and the U+212A KELVIN SIGN, “K”. You can
disable this fancy Unicode casefolding by doubling up the modifier, making
it /aa.

The /l modifier uses the current locale’s rules when pattern matching. By “current
locale”, we mean the one in effect when the match is executed, not whichever
locale may have been in effect during its compilation. On systems that support

9. When we talk about ASCII in this platform, anyone still running on EBCDIC should make the appropriate
changes in her head as she reads. Perl’s online documentation discusses EBCDIC ports in more details.

Pattern-Matching Operators | 179

www.it-ebooks.info

http://www.it-ebooks.info/

it, the current locale can be changed using the setlocale function from the POSIX
module. This modifier is the default for patterns compiled within the scope of a
"use locale" pragma.

Perl supports single-byte locales only, not multibyte ones. This means that code-
points above 255 are treated as Unicode no matter what locale may be in effect.
Under Unicode rules, case-insensitive matches can cross the single-byte bound-
ary between 255 and 256, but these are necessarily disallowed under /l.

That’s because under locales, the assignment of codepoints to characters is not
the same as under Unicode (except for true ISO-8859-1). Therefore, the locale
character 255 cannot caselessly match the character at 376, U+0178 LATIN CAPI-

TAL LETTER Y WITH DIAERESIS (Ÿ), because 255 might not be U+00FF LATIN SMALL

LETTER Y (ÿ) in the current locale. Perl has no way of knowing whether that char-
acter even exists in the locale, much less what its codepoint might be.

The /u modifier is the default if you’ve explicitly asked Perl to use the v5.14 feature
set. If you haven’t, your existing code will work as before, just as though you’d
used a /d modifier on each pattern (or /l under use locale). This ensures back-
ward compatibility while also providing a cleaner way to do things in the future.
Traditional Perl pattern-matching behavior is dualistic; hence the name /d, which
could also stand for “it depends”. Under /d, Perl matches according to the plat-
form’s native character set rules unless there is something else indicating Unicode
rules should be used. Such things include:

• Either the target string or the pattern itself is internally encoded in UTF-8

• Any codepoints above 255

• Properties specified using \p{PROP} or \P{PROP}

• Named characters, aliases, or sequences specified using \N{NAME}, or by code-
point using \N{U+HEXDIGITS}

In the absence of any declaration forcing /u, /a, or /l semantics, dual mode, /d,
will be assumed. Patterns under /d still might have Unicode behavior—or they
might not. Historically, this mixture of ASCII and Unicode semantics has caused
no end of confusion, so it’s no longer the default when you use v5.14. Or you
can change to the more intuitive Unicode mode explicitly. Unicode strings can
be enabled with any of:

use feature "unicode_strings";
use feature ":5.14";
use v5.14;
use 5.14.0;

180 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Unicode strings can also be turned on using command-line options correspond-
ing to the four pragmas given above:

% perl –Mfeature=unicode_strings more arguments
% perl –Mfeature=:5.14 more arguments
% perl –M5.014 more arguments
% perl –M5.14.0 more arguments

Because the –E command-line option means to use the current release’s feature
set, this also enables Unicode strings (in v5.14+):

% perl –E code to eval

As with most pragmas, you can also disable features on a per-scope basis, so this
pragma:

no feature "unicode_strings";

disables any Unicode character-set semantics that may be declared in a surround-
ing lexical scope.

To make it easier to control regex behavior without adding the same pattern
modifiers each time, you may now use the re pragma to set or clear default flags
in a lexical scope.

set default modifiers for all patterns
use re "/msx"; # patterns in scope have those modifiers added

now rescind a few for an inner scope
{
 no re "/ms"; # patterns in scope have those modifiers subtracted
 ...
}

This is especially useful with the pattern modifiers related to charset behavior:

use re "/u"; # Unicode mode
use re "/d"; # dual ASCII–Unicode mode
use re "/l"; # 8–bit locale mode
use re "/a"; # ASCII mode, plus Unicode casefolding
use re "/aa"; # ASCIIer mode, without Unicode casefolding

With these declarations you don’t have to repeat yourself to get consistent se-
mantics, or even consistently wrong semantics.

The m// Operator (Matching)
m/PATTERN/modifiers
 /PATTERN/modifiers
 ?PATTERN?modifiers (deprecated)

 EXPR =~ m/PATTERN/modifiers

Pattern-Matching Operators | 181

www.it-ebooks.info

http://www.it-ebooks.info/

 EXPR =~ /PATTERN/modifiers
 EXPR =~ ?PATTERN?modifiers (deprecated)

The m// operator searches the string in the scalar EXPR for PATTERN. If / or ? is the
delimiter, the initial m is optional. Both ? and ' have special meanings as delim-
iters: the first is a once-only match; the second suppresses variable interpolation
and the six translation escapes (\U and company, described later).

If PATTERN evaluates to a null string, either because you specified it that way us-
ing // or because an interpolated variable evaluated to the empty string, the last
successfully executed regular expression not hidden within an inner block (or
within a split, grep, or map) is used instead.

In scalar context, the operator returns true (1) if successful, false ("") otherwise.
This form is usually seen in Boolean context:

if ($shire =~ m/Baggins/) { ... } # search for Baggins in $shire
if ($shire =~ /Baggins/) { ... } # search for Baggins in $shire

if (m#Baggins#) { ... } # search right here in $_
if (/Baggins/) { ... } # search right here in $_

Used in list context, m// returns a list of substrings matched by the capturing
parentheses in the pattern (that is, $1, $2, $3, and so on), as described later under
“Grouping and Capturing” on page 221. The numbered variables are still set
even when the list is returned. If the match fails in list context, a null list is
returned. If the match succeeds in list context but there were no capturing paren-
theses (nor /g), a list value of (1) is returned. Since it returns a null list on failure,
this form of m// can also be used in Boolean context, but only when participating
indirectly via a list assignment:

if (($key,$value) = /(\w+): (.*)/) { ... }

Valid modifiers for m// (in whatever guise) are shown in Table 5-2.

Table 5-2. m// modifiers

Modifier Meaning

/i Ignore alphabetic case.

/m Let ^ and $ also match next to embedded \n.

/s Let . also match newline.

/x Ignore (most) whitespace and permit comments in pattern.

/o Compile pattern once only.

/p Preserve the matched string.

/d Dual ASCII–Unicode mode charset behavior (old default).

182 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Modifier Meaning

/u Unicode charset behavior (new default).

/a ASCII charset behavior.

/l The runtime locale’s charset behavior (default under use locale).

/g Globally find all matches.

/cg Allow continued search after failed /g match.

Most of these modifiers apply to the pattern and were described earlier. The last
two change the behavior of the match operation itself. The /g modifier specifies
global matching—that is, matching as many times as possible within the string.
How it behaves depends on context. In list context, m//g returns a list of all
matches found. Here we find all the places someone mentioned “perl”, “Perl”,
“PERL”, and so on:

if (@perls = $paragraph =~ /perl/gi) {
 printf "Perl mentioned %d times.\n", scalar @perls;
}

If there are no capturing parentheses within the /g pattern, then the complete
matches are returned. If there are capturing parentheses, then only the strings
captured are returned. Imagine a string like:

$string = "password=xyzzy verbose=9 score=0";

Also imagine you want to use that to initialize a hash, like this:

%hash = (password => "xyzzy", verbose => 9, score => 0);

Except, of course, you don’t have a list—you have a string. To get the correspond-
ing list, you can use the m//g operator in list context to capture all of the key/value
pairs from the string:

%hash = $string =~ /(\w+)=(\w+)/g;

The (\w+) sequence captures an alphanumeric word. See the upcoming section
“Grouping and Capturing” on page 221.

Used in scalar context, the /g modifier indicates a progressive match, which makes
Perl start the next match on the same variable at a position just past where the
last one stopped. The \G assertion represents that position in the string; see
“Positions” on page 217, later in this chapter, for a description of \G. If you use
the /c (for “continue”) modifier in addition to /g, then when the /g runs out, the
failed match doesn’t reset the position pointer.

If a ? is the delimiter, as in m?PATTERN? (or ?PATTERN?, but the version without the
m is deprecated), this works just like a normal /PATTERN/ search, except that it

Pattern-Matching Operators | 183

www.it-ebooks.info

http://www.it-ebooks.info/

matches only once between calls to the reset operator. This can be a convenient
optimization when you want to match only the first occurrence of the pattern
during the run of the program, not all occurrences. The operator runs the search
every time you call it, up until it finally matches something, after which it turns
itself off, returning false until you explicitly turn it back on with reset. Perl keeps
track of the match state for you.

The m?? operator is most useful when an ordinary pattern match would find the
last rather than the first occurrence:

open(DICT, "/usr/dict/words") or die "Can't open words: $!\n";
while (<DICT>) {
 $first = $1 if m? (^ neur .*) ?x;
 $last = $1 if m/ (^ neur .*) /x;
}
say $first; # prints "neurad"
say $last; # prints "neurypnology"

The reset operator will reset only those instances of ?? compiled in the same
package as the call to reset. Saying m?? is equivalent to saying ??.

The s/// Operator (Substitution)
s/PATTERN/REPLACEMENT/modifiers

 LVALUE =~ s/PATTERN/REPLACEMENT/modifiers
 RVALUE =~ s/PATTERN/REPLACEMENT/rmodifiers

This operator searches a string for PATTERN and, if found, replaces the matched
substring with the REPLACEMENT text. If PATTERN is a null string, the last successfully
executed regular expression is used instead.

$lotr = $hobbit; # Just copy The Hobbit
$lotr =~ s/Bilbo/Frodo/g; # and write a sequel the easy way.

If the /r modifier is used, the return value of an s/// operation is the result string,
and the target string is left unchanged. Without the /r modifier, the return value
of an s/// operation (in scalar and list context alike) is the number of times it
succeeded—which can be more than once if used with the /g modifier, as de-
scribed earlier. On failure, since it substituted zero times, it returns false (""),
which is numerically equivalent to 0.10

if ($lotr =~ s/Bilbo/Frodo/) { say "Successfully wrote sequel." }
$change_count = $lotr =~ s/Bilbo/Frodo/g;

10. As with the m// operator and many of the more traditional operators described in Chapter 3, this is the
special false value that can be safely used as the number. This is because, unlike a normal null string, this
one is exempt from numeric warnings if implicitly converted to a number.

184 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Normally, everything matched by the PATTERN is discarded on each substitution,
but you can “keep” part of that by including \K in your pattern:

$tales_of_Rohan =~ s/Éo\Kmer/wyn/g; # rewriting history

The replacement portion is treated as a double-quoted string. You may use any
of the dynamically scoped pattern variables described earlier ($`, $&, $', $1, $2,
and so on) in the replacement string, as well as any other double-quote gizmos
you care to employ. For instance, here’s an example that finds all the strings
“revision”, “version”, or “release”, and replaces each with its capitalized equiv-
alent, using the \u escape in the replacement portion:

s/revision|version|release/\u$&/g; # Use | to mean "or" in a pattern

All scalar variables expand in double-quote context, not just these strange ones.
Suppose you had a %Names hash that mapped revision numbers to internal project
names; for example, $Names{"3.0"} might be code named “Isengard”. You could
use s/// to find version numbers and replace them with their corresponding
project names:

s/version ([0–9.]+)/the $Names{$1} release/g;

In the replacement string, $1 returns what the first (and only) pair of parentheses
captured. (You could use also \1 as you would in the pattern, but that usage is
deprecated in the replacement. In an ordinary double-quoted string, \1 means a
Control-A.)

Both PATTERN and REPLACEMENT are subject to variable interpolation, but a PAT
TERN is interpolated each time the s/// operator is evaluated as a whole, while the
REPLACEMENT is interpolated every time the pattern matches. (The PATTERN can
match multiple times in one evaluation if you use the /g modifier.)

As before, most of the modifiers in Table 5-3 alter the behavior of the regex; they’re
the same as in m// and qr//. The last three alter the substitution operator itself.

Table 5-3. s/// modifiers

Modifier Meaning

/i Ignore alphabetic case (when matching).

/m Let ^ and $ also match next to embedded \n.

/s Let . also match newline.

/x Ignore (most) whitespace and permit comments in pattern.

/o Compile pattern once only.

/p Preserve the matched string.

/d Dual ASCII–Unicode mode charset behavior (old default).

Pattern-Matching Operators | 185

www.it-ebooks.info

http://www.it-ebooks.info/

Modifier Meaning

/u Unicode charset behavior (new default).

/a ASCII charset behavior.

/l The runtime locale’s charset behavior (default under use locale).

/g Replace globally; that is, all occurrences.

/r Return substitution and leave the original string untouched.

/e Evaluate the right side as an expression.

The /g modifier is used with s/// to replace every match of PATTERN with the
REPLACEMENT value, not just the first one found. A s///g operator acts as a global
search and replace, making all the changes at once, even in scalar context (unlike
m//g, which is progressive).

The /r (nondestructive) modifier applies the substitution to a new copy of the
string, which now no longer needs to be a variable. It returns the copy whether
or not a substitution occurred; the original string always remains unchanged:

say "Déagol's ring!" =~ s/D/Sm/r; # prints "Sméagol's ring!"

The copy will always be a plain string, even if the input is an object or a tied
variable. This modifier first appeared in production release v5.14.

The /e modifier treats the REPLACEMENT as a chunk of Perl code rather than as an
interpolated string. The result of executing that code is used as the replacement
string. For example, s/([0–9]+)/sprintf("%#x", $1)/ge would convert all num-
bers into hexadecimal, changing, for example, 2581 into 0xb23. Or suppose that,
in our earlier example, you weren’t sure that you had names for all the versions,
so you wanted to leave any others unchanged. With a little creative /x formatting,
you could say:

s{
 version
 \s+
 (
 [0–9.]+
)
}{
 $Names{$1}
 ? "the $Names{$1} release"
 : $&
}xge;

The righthand side of your s///e (or, in this case, the lowerhand side) is syntax
checked and compiled at compile time along with the rest of your program. Any
syntax error is detected during compilation, and runtime exceptions are left un-

186 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

caught. Each additional /e after the first one (like /ee, /eee, and so on) is equiv-
alent to calling eval STRING on the result of the code, once per extra /e. This
evaluates the result of the code expression and traps exceptions in the special
$@ variable. See “Programmatic Patterns” on page 251, later in this chapter, for
more details.

Modifying strings en passant

Sometimes you want a new, modified string without clobbering the old one upon
which the new one was based. Instead of writing:

$lotr = $hobbit;
$lotr =~ s/Bilbo/Frodo/g;

you can combine these into one statement. Due to precedence, parentheses are
required around the assignment, as they are with most combinations applying
=~ to an expression.

($lotr = $hobbit) =~ s/Bilbo/Frodo/g;

Without the parentheses around the assignment, you’d only change $hobbit and
get the number of replacements stored into $lotr, which would make a rather
dull sequel.

And, yes, in newer code you can just use /r instead:

$lotr = $hobbit =~ s/Bilbo/Frodo/gr;

But many Perlfolk still use the older idiom.

Modifying arrays en masse

You can’t use a s/// operator directly on an array. For that, you need a loop. By a
lucky coincidence, the aliasing behavior of for/foreach, combined with its use of
$_ as the default loop variable, yields the standard Perl idiom to search and replace
each element in an array:

for (@chapters) { s/Bilbo/Frodo/g } # Do substitutions chapter by chapter.
s/Bilbo/Frodo/g for @chapters; # Same thing.

As with a simple scalar variable, you can combine the substitution with an as-
signment if you’d like to keep the original values around, too:

@oldhues = ("bluebird", "bluegrass", "bluefish", "the blues");
for (@newhues = @oldhues) { s/blue/red/ }
say "@newhues"; # prints: redbird redgrass redfish the reds

Another way to do the same thing is to combine the /r substitution modifier (new
to v5.14) with a map operation:

@newhues = map { s/blue/red/r } @oldhues;

Pattern-Matching Operators | 187

www.it-ebooks.info

http://www.it-ebooks.info/

The idiomatic way to perform repeated substitutes on the same variable is to use
a once-through loop. For example, here’s how to canonicalize whitespace in a
variable:

for ($string) {
 s/^\s+//; # discard leading whitespace
 s/\s+$//; # discard trailing whitespace
 s/\s+/ /g; # collapse internal whitespace
}

which just happens to produce the same result as:

$string = join(" ", split " ", $string);

You can also use such a loop with an assignment, as we did in the array case:

for ($newshow = $oldshow) {
 s/Fred/Homer/g;
 s/Wilma/Marge/g;
 s/Pebbles/Lisa/g;
 s/Dino/Bart/g;
}

When a global substitution just isn’t global enough

Occasionally, you can’t just use a /g to get all the changes to occur, either because
the substitutions overlap or have to happen right to left, or because you need the
length of $` to change between matches. You can usually do what you want by
calling s/// repeatedly. However, you want the loop to stop when the s/// finally
fails, so you have to put it into the conditional, which leaves nothing to do in the
main part of the loop. So we just write a 1, which is a rather boring thing to do,
but bored is the best you can hope for sometimes. Here are some examples that
use a few more of those odd regex beasties that keep popping up:

put commas in the right places in an integer
1 while s/(\d)(\d\d\d)(?!\d)/$1,$2/;

expand tabs to 8–column spacing
1 while s/\t+/" " x (length($&)*8 – length($`)%8)/e;

remove (nested (even deeply nested (like this))) remarks
1 while s/\([^()]*\)//g;

remove duplicate words (and triplicate (and quadruplicate...))
1 while s/\b(\w+) \1\b/$1/gi;

188 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

That last one needs a loop because otherwise it would turn this:

Paris in THE THE THE THE spring.

into this:

Paris in THE THE spring.

which might cause someone who knows a little French to picture Paris sitting in
an artesian well emitting iced tea, since “thé” is French for “tea”. A Parisian is
never fooled, of course.

The tr/// Operator (Transliteration)
tr/SEARCHLIST/REPLACEMENTLIST/cdsr

 LVALUE =~ tr/SEARCHLIST/REPLACEMENTLIST/cds
 RVALUE =~ tr/SEARCHLIST/REPLACEMENTLIST/cdsr
 RVALUE =~ tr/SEARCHLIST//c

For sed devotees, y/// is provided as a synonym for tr///. This is why you can’t
call a function named y, any more than you can call a function named q or m. In
all other respects, y/// is identical to tr///, and we won’t mention it again.

This operator might not appear to fit into a chapter on pattern matching since it
doesn’t use patterns. This operator scans a string, character by character, and
replaces each occurrence of a character found in SEARCHLIST (which is not a reg-
ular expression) with the corresponding character from REPLACEMENTLIST (which
is not a replacement string). It looks a bit like m// and s///, though, and you can
even use the =~ or !~ binding operators on it, so we describe it here. (qr// and
split are pattern-matching operators, but you don’t use the binding operators on
them, so they’re elsewhere in the book. Go figure.)

Transliteration returns the number of characters replaced or deleted. If no string
is specified via the =~ or !~ operator, the $_ string is altered. The SEARCHLIST and
REPLACEMENTLIST may define ranges of sequential characters with a dash:

$message =~ tr/A–Za–z/N–ZA–Mn–za–m/; # rot13 encryption.

Note that a range like A–Z assumes a linear character set like ASCII. But each
character set has its own ideas of how characters are ordered and thus of which
characters fall in a particular range. A sound principle is to use only ranges that
begin from and end at either alphabetics of equal case (a–e, A–E), or digits (0–4).
Anything else is suspect. When in doubt, spell out the character sets in full:
ABCDE. Even something as easy as [A–E] fails, but [ABCDE] works because the Latin
small capital letters’ codepoints are scattered all over the place; see Table 5-4.

Pattern-Matching Operators | 189

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-4. Small capitals and their codepoints

Glyph Code Category Script Name

A U+1D00 GC=Ll SC=Latin LATIN LETTER SMALL CAPITAL A

B U+0299 GC=Ll SC=Latin LATIN LETTER SMALL CAPITAL B

C U+1D04 GC=Ll SC=Latin LATIN LETTER SMALL CAPITAL C

D U+1D05 GC=Ll SC=Latin LATIN LETTER SMALL CAPITAL D

E U+1D07 GC=Ll SC=Latin LATIN LETTER SMALL CAPITAL E

The SEARCHLIST and REPLACEMENTLIST are not variable interpolated as double-
quoted strings; you may, however, use those backslash sequences that map to a
specific character, such as \n or \015.

Table 5-5 lists the modifiers applicable to the tr/// operator. They’re completely
different from those you apply to m//, s///, or qr//, even if some look the same.

Table 5-5. tr/// modifiers

Modifier Meaning

/c Complement SEARCHLIST.

/d Delete found but unreplaced characters.

/s Squash duplicate replaced characters.

/r Return transliteration and leave the original string untouched.

If the /r modifier is used, the transliteration is on a new copy of the string, which
is returned. It need not be an LVALUE.

say "Drogo" =~ tr/Dg/Fd/r; # Drogo –> Frodo

If the /c modifier is specified, the character set in SEARCHLIST is complemented;
that is, the effective search list consists of all the characters not in SEARCHLIST. In
the case of Unicode, this can represent a lot of characters, but since they’re stored
logically, not physically, you don’t need to worry about running out of memory.

The /d modifier turns tr/// into what might be called the “transobliteration”
operator: any characters specified by SEARCHLIST but not given a replacement in
REPLACEMENTLIST are deleted. (This is slightly more flexible than the –d behavior
of some tr(1) programs, which delete anything they find in SEARCHLIST, period.)

If the /s modifier is specified, sequences of characters converted to the same
character are squashed down to a single instance of the character.

190 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

If the /d modifier is used, REPLACEMENTLIST is always interpreted exactly as speci-
fied. Otherwise, if REPLACEMENTLIST is shorter than SEARCHLIST, the final character
is replicated until it is long enough. If REPLACEMENTLIST is null, the SEARCHLIST is
replicated, which is surprisingly useful if you just want to count characters, not
change them. It’s also useful for squashing characters using /s. If you’re only
counting characters, you may use any RVALUE, not just an LVALUE.

tr/aeiou/!/; # change any vowel into !
tr{/\\\r\n\b\f. }{_}; # change strange chars into an underscore

$count = ($para =~ tr/\n//); # count the newlines in $para
$count = tr/0–9//; # count the digits in $_

tr/@$%*//d; # delete any of those

change en passant
($HOST = $host) =~ tr/a–z/A–Z/;

same end result, but as an rvalue
$HOST = ($host =~ tr/a–z/A–Z/r);

$pathname =~ tr/a–zA–Z/_/cs; # change all but ASCII alphas
 # to single underbar

If the same character occurs more than once in SEARCHLIST, only the first is used.
Therefore, this:

tr/AAA/XYZ/

will change any single character A to an X (in $_).

Although variables aren’t interpolated into tr///, you can still get the same effect
by using eval EXPR:

$count = eval "tr/$oldlist/$newlist/";
die if $@; # propagates exception from illegal eval contents

One more note: if you want to change your text to uppercase or lowercase, don’t
use tr///. Use the \U or \L sequences in a double-quoted string (or the equivalent
uc and lc functions) since they will pay attention to locale or Unicode information
and tr/a–z/A–Z/ won’t. Additionally, in Unicode strings, the \u sequence and its
corresponding ucfirst function understand the notion of titlecase, which for
some characters may be distinct from simply converting to uppercase.

Pattern-Matching Operators | 191

www.it-ebooks.info

http://www.it-ebooks.info/

The \F sequence corresponds to the fc function; see the fc description in Chap-
ter 27. New to v5.16, these are used for simple case-insensitive comparisons, as in
"\F$a" eq "\F$b" or the equivalent fc($a) eq fc($b). The /i modifier has always
used casefolding internally for case-insensitive matching; \F and fc now provide
easier access. See also “Comparing and Sorting Unicode Text” on page 297 in
Chapter 6.

Metacharacters and Metasymbols
Now that we’ve admired all the fancy cages, we can go back to looking at the
critters in the cages—those funny-looking symbols you put inside the patterns.
By now you’ll have cottoned to the fact that these symbols aren’t regular Perl
code like function calls or arithmetic operators. Regular expressions are their
own little language nestled inside of Perl. (There’s a bit of the jungle in all of us.)

For all their power and expressivity, patterns in Perl recognize the same 12 tradi-
tional metacharacters (the Dirty Dozen, as it were) found in many other regular
expression packages:

\ | () [{ ^ $ * + ? .

Some of those bend the rules, making otherwise normal characters that follow
them special. We don’t like to call the longer sequences “characters”, so when
they make longer sequences, we call them metasymbols (or sometimes just “sym-
bols”). But at the top level, those 12 metacharacters are all you (and Perl) need
to think about. Everything else proceeds from there.

Some simple metacharacters stand by themselves, like . and ^ and $. They don’t
directly affect anything around them. Some metacharacters work like prefix
operators, governing what follows them, like \. Others work like postfix opera-
tors, governing what immediately precedes them, like *, +, and ?. One meta-
character, |, acts like an infix operator, standing between the operands it governs.
There are even bracketing metacharacters that work like circumfix operators,
governing something contained inside them, like (...) and [...]. Parentheses
are particularly important, because they specify the bounds of | on the inside,
and of *, +, and ? on the outside.

If you learn only one of the 12 metacharacters, choose the backslash. (Er…and
the parentheses.) That’s because backslash disables the others. When a backslash
precedes a nonalphanumeric character in a Perl pattern, it always makes that
next character a literal. If you need to match one of the 12 metacharacters in a
pattern literally, you write them with a backslash in front. Thus, \. matches a
real dot, \$ a real dollar sign, \\ a real backslash, and so on. This is known as

192 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

“escaping” the metacharacter, or “quoting it”, or sometimes just “backslashing”
it. (Of course, you already know that backslash is used to suppress variable in-
terpolation in double-quoted strings.)

Although a backslash turns a metacharacter into a literal character, its effect upon
a following alphanumeric character goes the other direction. It takes something
that was regular and makes it special. That is, together they make a metasymbol.
An alphabetical list of these metasymbols can be found below in Table 5-3.

Metasymbol Tables
In the following tables, the Atomic column says “yes” if the given metasymbol is
quantifiable (if it can match something with width, more or less). Also, we’ve
used “...” to represent “something else”. (Please see the later discussion to find
out what “...” means, if it is not clear from the one-line gloss in the table.)

Table 5-6 shows the basic traditional metasymbols. The first four of these are the
structural metasymbols we mentioned earlier, while the last three are simple
metacharacters. The . metacharacter is an example of an atom because it matches
something with width (the width of a character, in this case); ̂ and $ are examples
of assertions, because they match something of zero width, and because they are
only evaluated to see whether they’re true.

Table 5-6. General regex metacharacters

Symbol Atomic Meaning

\... Varies (De)meta next (non)alphanumeric character
alphanumeric character (maybe)

...|... No Alternation (match one or the other)

(...) Yes Grouping (treat as a unit)

[...] Yes Character class (match one character from a set)

^ No True at beginning of string (or after any newline, maybe)

. Yes Match one character (except newline, normally)

$ No True at end of string (or before any newline, maybe)

The quantifiers, which are further described in their own section, indicate how
many times the preceding atom (that is, single character or grouping) should
match. These are listed in Table 5-7.

Metacharacters and Metasymbols | 193

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-7. Regex quantifiers

Maximal Minimal Possessive Allowed Range

{MIN,MAX} {MIN,MAX}? {MIN,MAX}?+ Must occur at least MIN times but no more
than MAX times

{MIN,} {MIN,}? {MIN,}?+ Must occur at least MIN times

{COUNT} {COUNT}? {COUNT}?+ Must match exactly COUNT times

* *? *+ 0 or more times (same as {0,})

+ +? ++ 1 or more times (same as {1,})

? ?? ?+ 0 or 1 time (same as {0,1})

A minimal quantifier tries to match as few characters as possible within its allowed
range. A maximal quantifier tries to match as many characters as possible within
its allowed range.

For instance, .+ is guaranteed to match at least one character of the string, but it
will match all of them given the opportunity. The opportunities are discussed
later in this chapter in “The Little Engine That /Could(n’t)?/” on page 241.

A possessive quantifier is just like a maximal one, except under backtracking,
during which it never gives up anything it’s already grabbed, whereas minimal
and maximal quantifiers can change how much they match during backtracking.

You’ll note that quantifiers may never be quantified. Things like ?? and ++ are
quantifiers in their own right, respectively minimal and possessive, not a normal
one-character quantifier that has itself been quantified. One can only quantify a
thing marked atomic, and the quantifiers are not atoms.

We wanted to provide an extensible syntax for new kinds of metasymbols. Given
that we only had a dozen metacharacters to work with, we chose a formerly illegal
regex sequence to use for arbitrary syntactic extensions. Except for the last one,
these metasymbols are all of the form (?KEY...); that is, a (balanced) parenthesis
followed by a question mark, followed by a KEY and the rest of the subpattern.
The KEY character indicates which particular regex extension it is. See Table 5-8
for a list of these. Most of them behave structurally since they’re based on paren-
theses, but they also have additional meanings. Again, only atoms may be quan-
tified because they represent something that’s really there (potentially).

194 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Table 5-8. Extended regex sequences

Extension Atomic Meaning

(?#...) No Comment, discard.

(?:...) Yes Noncapturing group.

(?>...) Yes Possessive group, no capturing or backtracking.

(?adlupimsx–imsx) No Enable/disable pattern modifiers.

(?^alupimsx) No Reset and enable pattern modifiers.

(?adlupimsx–imsx:...) Yes Group-only parentheses plus enable/disable mod-
ifiers.

(?^alupimsx:...) Yes Group-only parentheses plus reset and enable
modifiers.

(?=...) No True if lookahead assertion succeeds.

(?!...) No True if lookahead assertion fails.

(?<=...) No True if lookbehind assertion succeeds.

(?<!...) No True if lookbehind assertion fails.

(?|...|...|...) Yes Branch reset for numbered groups.

(?<NAME>...) Yes Named capture group; also (?'NAME'...). See
\k<NAME> below.

(?{...}) No Execute embedded Perl code.

(??{...}) Yes Match regex from embedded Perl code.

(?NUMBER) Yes Call the independent subexpression in group NUM
BER; also (?+NUMBER), (?–NUMBER), (?0), and (?R).
Make sure not to use an ampersand here.

(?&NAME) Yes Recurse on group NAME; make sure you do use an
ampersand here. Also (?P>NAME).

(?(COND)...|...) Yes Match with if-then-else pattern.

(?(COND)...) Yes Match with if-then pattern.

(?(DEFINE)...) No Define named groups for later “regex subroutine”
invocation as (?&NAME).

(*VERB) No Backtracking control verb; also (*VERB:NAME).

Backtracking control verbs are still highly experimental and so are not discussed
here. Nevertheless, you may run into them from time to time if you’re meddling
in the affairs of wizards. So please check the perlre manpage if you see any of these:

Metacharacters and Metasymbols | 195

www.it-ebooks.info

http://perldoc.perl.org/perlre.html
http://www.it-ebooks.info/

(*ACCEPT)
(*COMMIT)
(*FAIL) (*F)
(*MARK:NAME) (*:NAME)
(*PRUNE) (*PRUNE:NAME)
(*SKIP) (*SKIP:NAME)
(*THEN) (*THEN:NAME)

Or just run like heck.

And, finally, Table 5-9 shows all of your favorite alphanumeric metasymbols.
(Symbols that are processed by the variable interpolation pass are marked with
a dash in the Atomic column, since the Engine never even sees them.)

Table 5-9. Alphanumeric regex metasymbols

Symbol Atomic Meaning

\0 Yes Match character number zero (U+0000, NULL, NUL).

\ NNN Yes Match the character given in octal, up to \377.

\ n Yes Match nth capture group (decimal).

\a Yes Match the alert character (ALERT, BEL).

\A No True at the beginning of a string.

\b Yes Match the backspace char (BACKSPACE, BS) (only in char class).

\b No True at word boundary.

\B No True when not at word boundary.

\c X Yes Match the control character Control-X (\cZ, \c[, etc.).

\C Yes Match one byte (C char) even in UTF-8 (dangerous!).

\d Yes Match any digit character.

\D Yes Match any nondigit character.

\e Yes Match the escape character (ESCAPE, ESC, not backslash).

\E — End case (\F, \L, \U) or quotemeta (\Q) translation.

\f Yes Match the form feed character (FORM FEED, FF).

\F — Foldcase (not lowercase) until \E.a

\g{GROUP} Yes Match the named or numbered capture group.

\G No True at end-of-match position of prior m//g.

\h Yes Match any horizontal whitespace character.

\H Yes Match any character except horizontal whitespace.

\k<GROUP> Yes Match the named capture group; also \k'NAME'.

\K No Keep text to the left of \K out of match.

196 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Symbol Atomic Meaning

\l — Lowercase (not foldcase) next character only.

\L — Lowercase (not foldcase) until \E.

\n Yes Match the newline character (usually LINE FEED, LF).

\N Yes Match any character except newline.

\N{NAME} Yes Match the named character, alias, or sequence, like
\N{greek:Sigma} for “Σ”.

\o{NNNN} Yes Match the character give in octal.

\p{PROP} Yes Match any character with the named property.

\P{PROP} Yes Match any character without the named property.

\Q — Quote (de-meta) metacharacters until \E.

\r Yes Match the return character (usually CARRIAGE RETURN, CR).

\R Yes Match any linebreak grapheme (not in char classes).

\s Yes Match any whitespace character.

\S Yes Match any nonwhitespace character.

\t Yes Match the tab character (CHARACTER TABULATION, HT).

\u — Titlecase (not uppercase) next character only.

\U — Uppercase (not titlecase) until \E.

\v Yes Match any vertical whitespace character.

\V Yes Match any character except vertical whitespace.

\w Yes Match any “word” character (alphabetics, digits, combining
marks, and connector punctuation).

\W Yes Match any nonword character.

\x{abcd} Yes Match the character given in hexadecimal.

\X Yes Match grapheme (not in char classes).

\z No True at end of string only.

\Z No True at end of string or before optional newline.
a \F and the corresponding fc function are new to v5.16.

The braces are optional on \p and \P if the property name is one character. The
braces are optional on \x if the hexadecimal number is two digits or less. Leaving
the braces off \N means a non-newline instead of a named character. The braces
are optional on \g if the referenced capture group is numeric (but please use them
anyway).

Metacharacters and Metasymbols | 197

www.it-ebooks.info

http://www.it-ebooks.info/

The \R matches either a CARRIAGE RETURN followed by a LINE FEED (possessively), or
else any one vertical whitespace character. It is equivalent to (?>\r\n|\v). The
possessive group means that "\r\n" =~ /\R\n/ can never match; once it’s seen the
two-character CRLF, it will never later change that to just the CARRIAGE RETURN

alone, even if something later in the pattern needs the LINE FEED for the overall
pattern to succeed.

Only metasymbols with “Match the…” or “Match any…” descriptions may be
used within character classes (square brackets), and then only if they match one
character, so \R and \X are not allowed. That is, character classes can only match
one character at a time, so they are limited to containing specific sets of single
characters; within them you may only use metasymbols that describe other spe-
cific sets of single characters, or that describe specific individual characters. Of
course, these metasymbols may also be used outside character classes, along with
all the other nonclassificatory metasymbols. But note that \b is two entirely dif-
ferent beasties: it’s the backspace character inside a character class, but a word
boundary assertion outside.

The \K (mnemonic: “Keep” what you’ve already matched) does not match any-
thing. Rather, it tells the engine to reset anything it’s treasuring up as part of the
match proper, like the $& or ${^MATCH} variables, or of the lefthand side of a sub-
stitution. See the examples in the s/// operator.

There is some amount of overlap between the characters that a pattern can match
and the characters an ordinary double-quoted string can interpolate. Since
regexes undergo two passes, it is sometimes ambiguous which pass should pro-
cess a given character. When there is ambiguity, the variable interpolation pass
defers the interpretation of such characters to the regular expression parser.

But the variable interpolation pass can only defer to the regex parser when it
knows it is parsing a regex. You can specify regular expressions as ordinary dou-
ble-quoted strings, but then you must follow normal double-quote rules. Any of
the previous metasymbols that happen to map to actual characters will still work,
even though they’re not being deferred to the regex parser. But you can’t use any
of the other metasymbols in ordinary double quotes (or indeed in any double-
quote context such as `...`, qq(...), qx(...), or an interpolative here docu-
ment). If you want your string to be parsed as a regular expression without doing
any matching (yet), you should be using the qr// (quote regex) operator.

On the other hand, the case and quotemeta translation escapes (\U and friends)
must be processed during the variable interpolation pass because the very purpose
of those metasymbols is to influence how variables are interpolated. If you sup-
press variable interpolation with single quotes, you won’t get the translation

198 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

escapes either. Neither variables nor translation escapes (\U, etc.) are expanded
in any single-quoted string, nor in single-quoted m'...' or qr'...' operators.
Even when you do interpolation, these translation escapes are ignored if they
show up as the result of variable interpolation, since by then it’s too late to influ-
ence variable interpolation.

Although the transliteration operator doesn’t take regular expressions, any meta-
symbol we’ve discussed that matches a single specific character also works in a
tr/// operation. The rest do not (except for backslash, which continues to work
in the backward way it always works).

Specific Characters
As mentioned before, everything that’s not special in a pattern matches itself. That
means an /a/ matches an “a”, an /=/ matches an “=”, and so on. Some characters,
though, aren’t very easy to type in—and even if you manage that, they’ll just
mess up your screen formatting. (If you’re lucky. Control characters are notori-
ous for being out-of-control.) To fix that, regexes recognize the double-quotish
character aliases listed in Table 5-10.

Table 5-10. Double-quotish character aliases

Escape Meaning

\0 Null character (NUL, NULL)

\a Alarm (BEL, ALERT)

\e Escape (ESC, ESCAPE)

\f Form feed (FF, FORM FEED)

\n Newline (LF, LINE FEED)

\r Return (CR, CARRIAGE RETURN)

\t Tab (HT, HORIZONTAL TAB)

Just as in double-quoted strings, patterns also honor the following five metasym-
bols:

\cX

A named ASCII control character, like \cC for Control-C, \cZ for Control-Z,
\c[for ESC, and \c? for DEL. The resulting ordinal must be 0–31 or 127.

\NNN

A character specified using its two- or three-digit octal code. The leading 0
is optional, except for values less than 010 (8 decimal) since (unlike in double-
quoted strings) the single-digit versions are always considered to be

Metacharacters and Metasymbols | 199

www.it-ebooks.info

http://www.it-ebooks.info/

references to strings captured by that numbered capture group within a pat-
tern. Multiple digits are interpreted as the nth reference if you’ve captured
at least n substrings earlier in the pattern (where n is considered as a decimal
number). Otherwise, they are interpreted as a character specified in octal.

\x{HEXDIGITS}

A codepoint (character number) specified as one or two hex digits ([0–9a–
fA–F]), as in \x1B. The one-digit form is usable only if the character following
it is not a hex digit. If braces are used, you may use as many digits as you’d
like. For example, \x{262f} matches a Unicode U+262F YIN YANG (☯).

\N{NAME}

A named character, alias, or sequence, such as \N{GREEK SMALL LETTER EPSI
LON}, \N{greek:epsilon}, or \N{epsilon}. This requires the charnames
pragma described in Chapter 29, which also determines which flavors of
those names you may use (":full" corresponding to the first style just
shown, and ":short" corresponding to the other two).

You may also specify the character using the \N{U+NUMBER} notation. For ex-
ample, \N{U+263B} means ☻, the BLACK SMILING FACE character. This usage does
not require the charnames pragma.

A list of all Unicode character names can be found in your closest Unicode
standards document, or generated by iterating through charnames::via
code(N) for N running from 0 through 0x10_FFFF, remembering to skip the
surrogates.

\o{NUMBER}

A character specified using its octal code. Unlike the ambiguous \NNN nota-
tion, this can be any number of octal digits and will never be confused for
a capture reference.

Wildcard Metasymbols
Three special metasymbols serve as generic wildcards, each of them matching
“any” character (for certain values of “any”). These are the dot (“.”), \C, and
\X. None of these may be used in a bracketed character class. You can’t use the dot
there because it would match (nearly) any character in existence, so it’s some-
thing of a universal character class in its own right. If you’re going to include or
exclude everything, there’s not much point in having a bracketed character class.
The special wildcards \C and \X have special structural meanings that don’t map
well to the notion of choosing a single Unicode character, which is the level at
which bracketed character classes work.

200 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

The dot metacharacter matches any one character other than a newline. (And
with the /s modifier, it matches that, too. In which case use \N to match a non-
newline.) Like any of the dozen special characters in a pattern, to match a dot
literally, you must escape it with a backslash. For example, this checks whether
a filename ends with a dot followed by a one-character extension:

if ($pathname =~ /\.(.)\z/s) {
 say "Ends in $1";
}

The first dot, the escaped one, is the literal character, and the second says “match
any character”. The \z says to match only at the end of the string, and the /s
modifier lets the dot match a newline as well. (Yes, using a newline as a file
extension Isn’t Very Nice, but that doesn’t mean it can’t happen.)

The dot metacharacter is most often used with a quantifier. A .* matches a max-
imal number of characters, while a .*? matches a minimal number of characters.
But it’s also sometimes used without a quantifier for its width: /(..):(..):
(..)/ matches three colon-separated fields, each of which is two characters long.

Do not confuse characters with bytes. Back in the day, dot only matched a single
byte, but now it matches Unicode characters, many of which cannot be encoded
in a single byte:

use charnames qw[:full];
$BWV[887] = "G\N{MUSIC SHARP SIGN} minor";
my ($note, $black, $mode) = $BWV[887] =~ /^([A–G])(.)\s+(\S+)/;
say "That's lookin' sharp!" if $black eq chr 0x266f; # ♯

The \X metasymbol matches a character in a more extended sense. It matches a
string of one or more Unicode characters known as a “grapheme cluster”. It’s
meant to grab several characters in a row that together represent a single glyph
to the user. Typically it’s a base character followed by combining diacritics like
cedillas or diaereses that combine with that base character to form one logical
unit. It can also be any Unicode linebreak sequence including "\r\n", and, be-
cause one doesn’t apply marks to linebreaks, it can even be a lone mark at the
start of the string or line.

Perl’s original \X worked mostly like (?\PM\pM*)>, but that doesn’t work out so
well, so Unicode refined its notion of grapheme clusters. The exact definition is
complicated, but this is close enough:

(?> \R
 | \p{Grapheme_Base} \p{Grapheme_Extend}*
 | \p{Grapheme_Extend}
)

Metacharacters and Metasymbols | 201

www.it-ebooks.info

http://www.it-ebooks.info/

The point is that \X matches one user-visible character (grapheme), even if it takes
several programmer-visible characters (codepoints) to do so. The length of the
string matched by /\X/ could exceed one character if the \R in the pseudoexpan-
sion above matched a CRLF pair, or if a grapheme base character were followed
by one or more grapheme extend characters.11 The possessive group means \X
can’t change its mind once it’s found a base character with any extend characters
after it. For example, /\X.\z/ can never match “cafe\x{301}”, where U+0301 is
COMBINING ACUTE ACCENT, because \X cannot be backtracked into.

If you are using Unicode and really want to get at a single byte instead of a single
character, you could use the \C metasymbol. This will always match one byte
(specifically, one C language char type), even if this gets you out of sync with your
Unicode character stream. See the appropriate warnings about doing this in
Chapter 6. This is probably the wrong way to go about it, though. Instead, you
should probably decode the string as bytes (that is, characters whose codepoints
are under 256) using the Encode module.

Character Classes
In a pattern match, you may match any character that has—or that does not have
—a particular property. There are four ways to specify character classes. You
may specify a character class in the traditional way, using square brackets and
enumerating the possible characters, or you may use any of three mnemonic
shortcuts: classic Perl classes like \w, using properties like \p{word}, or using
legacy POSIX classes like [:word:]. Each of these shortcuts matches only one
character from its set. Quantify them to match larger expanses, such as \d+ to
match one or more digits. (An easy mistake is to think that \w matches a word.
Use \w+ to match a word — provided by “word” you mean a programming lan-
guage identifier with underscores and digits and such, not an English-language
word.)

Bracketed Character Classes
An enumerated list of characters in square brackets is called a bracketed character
class and matches any one of the characters in the list. For example, [aeiouy]
matches a letter that can be a vowel in English. To match a right square bracket,
either backslash it or place it first in the list.

11. Usually combining marks; currently the only nonmark grapheme extend characters are ZERO WIDTH NON-
JOINER, ZERO WIDTH JOINER, HALFWIDTH KATAKANA VOICED SOUND MARK, and HALFWIDTH KATAKANA SEMI-VOICED

SOUND MARK.

202 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Character ranges may be indicated using a hyphen12 and the a–z notation. Mul-
tiple ranges may be combined; for example, [0–9a–fA–F] matches one hex “digit”.
You may use a backslash to protect a hyphen that would otherwise be interpreted
as a range separator, or just put it at the beginning or end of the class (a practice
which is arguably less readable but more traditional).

A caret (or circumflex, or hat, or up arrow) at the front of the bracketed character
class inverts the class, causing it to match any single character not in the list. (To
match a caret, either don’t put it first or, better, escape it with a backslash.) For
example, [^aeiouy] matches any character that isn’t a vowel. Be careful with char-
acter class negation, though, because the universe of characters is expanding. For
example, that bracketed character class matches consonants—and also matches
spaces, newlines, and anything (including vowels) in Cyrillic, Greek, or nearly
any other script, not to mention every ideograph in Chinese, Japanese, and
Korean. And someday maybe even Cirth and Tengwar. (Linear B and Etruscan,
for sure.) So it might be better to specify your consonants explicitly, such as
[cbdfghjklmnpqrstvwxyz], or [b–df–hj–np–tv–z] for short. (This also solves the
issue of “y” needing to be in two places at once, which a set complement would
preclude.)

Normal character metasymbols that represent a specific character are allowed,
such as \n, \t, \cX, \xNN, \NNN (meaning the octal number, not the backreference),
\p{YESPROP}, and \N{NAME}. Additionally, you may use \b within a character class
to mean a backspace, just as it does in a double-quoted string. Normally, in a
pattern match, it means a word boundary. But zero-width assertions don’t make
any sense in character classes, so here \b returns to its normal meaning in strings.
Any single character can be used as the endpoint of a range, whether used as a
literal, a classic backslash escape like \t, as its hex or octal codepoint, or using
named characters.

A character class also allows any metasymbol representing a specific set of char-
acters, including negated classes like \P{NOPROP}, \N, \S, and \D, as well as pre-
defined character classes described later in the chapter (classic, Unicode, or
POSIX). But don’t try to use any of these as endpoints of a range—that doesn’t
make sense, so the “–” will be interpreted literally. It also doesn’t make sense to
use something that could be more than one character long. That rules out \R
since that can match both a carriage return and a line feed, \X since that can match
multiple codepoints in a row, or certain named sequences via \N{NAME} that ex-
pand to multiple codepoints.

12. Actually, by U+002D, HYPHEN-MINUS not by U+2010, HYPHEN.

Character Classes | 203

www.it-ebooks.info

http://www.it-ebooks.info/

All other metasymbols lose their special meaning inside square brackets. In par-
ticular, you can’t use any of the three generic wildcards: “.”, \X, or \C. The first
often surprises people, but it doesn’t make much sense to use the universal char-
acter class within a restricted one, and you often want to match a literal dot as
part of a character class—when you’re matching filenames, for instance. It’s also
meaningless to specify quantifiers, assertions, or alternation inside a bracketed
character class, since the characters are interpreted individually. For example,
[fee|fie|foe|foo] means the same thing as [feio|].

A bracketed character class normally matches only one character. For this reason,
Unicode names sequences cannot be (usefully) used in bracketed character
classes in v5.14. These look like named characters, but are really several charac-
ters long. For example, LATIN CAPITAL LETTER A WITH MACRON AND GRAVE can be
used in the \N{...} construct, but that actually expands into U+0100 followed
by U+0300. Inside brackets, that named sequence would look like
[\x{100}\x{300}], which is unlikely to be what you want.

However, under /i, a bracketed character class can sometimes match more than
one character. This is because under full casefolding, a single character in the
string can match several in the pattern, or vice versa. For example, this is true:

"SS" =~ /^[\xDF]$/iu

That’s because the casefold of U+00DF is “ss”, and the casefold of “SS” is also
“ss”. Since the casefolds are the same, the match succeeds. However, full case-
folding is downgraded to simple casefolding under inverted character classes
such as [^\xDF], because this would otherwise lead to logical contradictions. This
is the only time Perl ever uses simple casefolding; normally, all casefolding and
casemapping in Perl is full, not simple.

Classic Perl Character Class Shortcuts
Since the beginning, Perl has provided a number of character class shortcuts.
These are listed in Table 5-11. All of them are backslashed alphabetic metasym-
bols, and, in each case, the uppercase version is the negation of the lowercase
version.

These match much more than you might think, because they normally work on
the full Unicode range not on ASCII alone (and for negated classes, even beyond
Unicode). In any case, the normal meanings are a superset of the old ASCII or
locale meanings. For explanations of the properties and the legacy POSIX forms,
see “POSIX-Style Character Classes” on page 210 later in this chapter. To keep
the old ASCII meanings, you can always use re "/a" for that scope, or put a /a
or two on an individual pattern.

204 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Ta
bl

e
5-

11
. C

la
ss

ic
 c

ha
ra

ct
er

 c
la

ss
es

Sy
m

bo
l

M
ea

ni
ng

No
rm

al
 Pr

op
er

ty
/a

 Pr
op

er
ty

/a
 En

um
er

at
ed

Le
ga

cy
 [
:P
OS
IX
:]

\d
D

ig
it

\p
{X
_P
OS
IX
_D
ig
it
}

\p
{P
OS
IX
_D
ig
it
}

[0
–9
]

[:
di
gi
t:
]

\D
N

on
di

gi
t

\P
{X
_P
OS
IX
_D
ig
it
}

\P
{P
OS
IX
_D
ig
it
}

[^
0–
9]

[:
^d
ig
it
:]

\w
W

or
d

ch
ar

ac
te

r
\p
{X
_P
OS
IX
_W
or
d}

\p
{P
OS
IX
_W
or
d}

[_
A–
Za
–z
0–
9]

[:
wo
rd
:]

\W
N

on
-(

w
or

d
ch

ar
ac

te
r)

\P
{X
_P
OS
IX
_W
or
d}

\P
{P
OS
IX
_W
or
d}

[^
_A
–Z
a–
z0
–9
]

[:
^w
or
d:
]

\s
W

hi
te

sp
ac

e
\p
{X
_P
er
l_
Sp
ac
e}

\p
{P
er
l_
Sp
ac
e}

[\
t\
n\
f\
r
]

[:
sp
ac
e:
]

a

\S
N

on
w

hi
te

sp
ac

e
\P
{X
_P
er
l_
Sp
ac
e}

\P
{P
er
l_
Sp
ac
e}

[^
\t
\n
\f
\r
]

[:
^s
pa
ce
:]

\h
H

or
iz

on
ta

l w
hi

te
sp

ac
e

ch
ar

ac
te

r
\p
{H
or
iz
_S
pa
ce
}

\p
{H
or
iz
_S
pa
ce
}

M
an

y
[:
bl
an
k:
]

\H
N

on
-(

H
or

iz
on

ta
l w

hi
te

sp
ac

e
ch

ar
ac

te
r)

\P
{H
or
iz
_S
pa
ce
}

\P
{H
or
iz
_S
pa
ce
}

M
an

y
[:
^b
la
nk
:]

\v
Ve

rt
ic

al
 w

hi
te

sp
ac

e
ch

ar
ac

te
r

\p
{V
er
t_
Sp
ac
e}

\p
{V
er
t_
Sp
ac
e}

M
an

y
—

\V
N

on
-(

Ve
rt

ic
al

 w
hi

te
sp

ac
e

ch
ar

ac
te

r)
\P
{V
er
t_
Sp
ac
e}

\P
{V
er
t_
Sp
ac
e}

M
an

y
—

a
B

ut
 w

ith
ou

t V
TA

B.

Character Classes | 205

www.it-ebooks.info

http://www.it-ebooks.info/

(Yes, we know most words don’t have numbers or underscores in them; \w is for
matching “words” in the sense of tokens in a typical programming language. Or
Perl, for that matter.)

These metasymbols may be used either outside or inside square brackets—that
is, either standalone or as part of a constructed bracketed character class:

if ($var =~ /\D/) { warn "contains a nondigit" }
if ($var =~ /[^\w\s.]/) { warn "contains non–(word, space, dot)" }

Most of these have definitions that follow the Unicode Standard. Although Perl
uses Unicode internally, many old programs exist that don’t realize this, which
can lead to surprises. So the traditional character class abbreviations in Perl all
suffer from a sort of multiple-personality disorder in which sometimes they mean
one thing and sometimes another. Under the /u flag, that dual mode goes away,
and strings are always given Unicode semantics. Since this is the path toward
sanity, it is the default under use v5.14 or better. (The unicode_strings feature
also sets this default.)

For traditional reasons, \s is not the same as [\h\v], because \v includes \cK, the
rarely used vertical tab character. That is why Perl’s \s isn’t exactly equal to Uni-
code’s \p{Whitespace} property.

If you use legacy locales (because of use locale or use re "/l"), then you get the
locale’s sense of these for codepoints below 256, but still get the normal sense
for codepoints of 256 and above.

On codepoints larger that 255, Perl normally switches to a purely character inter-
pretation. That means a codepoint like U+0389, GREEK CAPITAL LETTER OMEGA, is
always a \w character.

However, under the /a or /aa modifiers, it no longer is. Usually, one uses these
ASCII-only modifiers to enforce an ASCII-only interpretation of old patterns that
were designed before Unicode existed. Instead of putting a /a on every pattern
that needs it, you can use the following lexically scoped pragma, and the /a will
be automatically assumed:

use re "/a";

This rules out, for example, certain whitespace characters. It also means that the
non-ASCII letters from ISO-8859-1 will no longer count as letters for \w charac-
ters.

206 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Character Properties
Character properties are available using \p{PROP} and its set complement,
\P{PROP}. For the seven major Unicode General Category properties of just one
letter, the braces on the \p and \P are optional. So you may write \pL for any letter
or \pN for any number, but you must use braces for anything longer, like \p{Lm}
or \p{Nl}.

Most properties are directly defined in the Unicode Standard, but some, usually
composites built out of the standard properties, are peculiar to Perl. For example
Nl and Mn are standard Unicode General Categories representing letter-numbers
and nonspacing combining marks, while Perl_Space is of Perl’s own devising.

Properties may be used by themselves or combined in a constructed character
class:

if ($var =~ /^\p{alpha}+$/) { say "all alphabetic" }
if ($var =~ s/[^\pL\N]//g) { say "deleted all nonalphanumerics" }

There are a great many properties, and some of those commonly used ones each
cover more characters than many people imagine. For example, the alpha and
word properties each cover over 100,000 characters, with word necessarily being
the larger of the two as it is a proper superset of alpha.

The current list of properties supported by your release of Perl can be found in
the perluniprops manpage, including how many characters each property
matches. Perl closely tracks the Unicode Standard, so as new properties are added
to Unicode, they are also added to Perl. For official Unicode properties, see UAX
#44: Unicode Character Database, plus the Compatibility Properties from An-
nex C of UTS #18: Unicode Regular Expressions. As if all those weren’t enough,
you can even define your own properties; see Chapter 6 for how to do that.

Among the most commonly used properties are the Unicode General Categories.
Table 5-12 shows all seven one-character categories, including their long forms
and meanings.

Table 5-12. Unicode General Categories (major)

Short Property Long Property Meaning

C Other Crazy control codes and such

L Letter Letters and ideographs

M Mark Combining marks

N Number Numbers

P Punctuation Punctuation marks

Character Classes | 207

www.it-ebooks.info

http://perldoc.perl.org/perluniprops.html
http://www.it-ebooks.info/

Short Property Long Property Meaning

S Symbol Symbols, signs, and sigils

Z Separator Separators (Zeparators?)

Each of those seven is really an alias for all two-character General Categories that
start with that letter. Table 5-13 gives the complete (and closed) set of all General
Categories. All characters, even those currently unassigned, belong to exactly
one of the following General Categories.

Table 5-13. Unicode General Categories (all)

Short
Name

Long Name Meaning

Cc Control The C0 and C1 control codes from ASCII and
Latin-1

Cf Format Invisible characters for fancy text

Cn Unassigned Codepoints not yet assigned a character

Co Private Use Make up your own meanings for these

Cs Surrogate noncharacters reserved for UTF-16

Ll Lowercase_Letter Minuscule letters

Lm Modifier_Letter Superscript letters and spacing diacritics

Lo Other_Letter Unicameral letters and ideographs

Lt Titlecase_Letter Initial-only capitals, like the first word of a
sentence

Lu Uppercase_Letter Majuscule letters, capitals used in all-cap text

Mc Spacing_Mark Little combining pieces that take up a print
column

Me Enclosing_Mark Combining marks that surround another
character

Mn Nonspacing_Mark Little combining pieces that don’t take up a
print column

Nd Decimal_Number A digit meaning 0–9 for use in bigendian
base10 numbers

Nl Letter_Number Letters serving as numbers, like Roman
numerals

No Other_Number Any other sort of number, like fractions

Pc Connector_Punctuation Joining punctuation an like underscore

208 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Short
Name

Long Name Meaning

Pd Dash_Punctuation Any sort of dash or hyphen (but not minus)

Pe Close_Punctuation Punctuation like closing brackets

Pf Final_Punctuation Punctuation like right quotation marks

Pi Initial_Punctuation Punctuation like left quotation marks

Po Other_Punctuation All other punctuation

Ps Open_Punctuation Punctuation like opening brackets

Sc Currency_Symbol Symbols used with currency

Sk Modifier_Symbol Mostly diacritics

Sm Math_Symbol Symbols used with math

So Other_Symbol All other symbols

Zl Line_Separator Just U+2028

Zp Paragraph_Separator Just U+2029

Zs Space_Separator All other noncontrol whitespace

All standard Unicode properties are actually composed of two parts, as in
\p{NAME=VALUE}. All one-part properties are therefore additions to official Unicode
properties. Boolean properties whose values are true can always be abbreviated
as one-part properties, which allows you to write \p{Lowercase} for \p{Lower
case=True}. Other types of properties besides Boolean properties take string, nu-
meric, or enumerated values. Perl also provides one-part aliases for all general
category, script, and block properties, plus the level-one recommendations from
Unicode Technical Standard #18 on Regular Expressions (version 13, from
2008-08), such as \p{Any}.

For example, \p{Armenian}, \p{IsArmenian}, and \p{Script=Armenian} all repre-
sent the same property, as do \p{Lu}, \p{GC=Lu}, \p{Uppercase_Letter}, and
\p{General_Category=Uppercase_Letter}. Other examples of binary properties
(those whose values are implicitly true) include \p{Whitespace}, \p{Alpha
betic}, \p{Math}, and \p{Dash}. Examples of properties that aren’t binary prop-
erties include \p{Bidi_Class=Right_to_Left}, \p{Word_Break=A_Letter}, and
\p{Numeric_Value=10}. The perluniprops manpage lists all properties and their
aliases that Perl supports, both standard Unicode properties and the Perl specials,
too.

The result is undefined if you try to match a non-Unicode codepoint (that is, one
above 0x10FFFF) against a Unicode property. Currently, a warning is raised by

Character Classes | 209

www.it-ebooks.info

http://perldoc.perl.org/perluniprops.html
http://www.it-ebooks.info/

default and the match will fail. In some cases, this is counterintuitive, as both
these fail:

chr(0x110000) =~ \p{ahex=true} # false
chr(0x110000) =~ \p{ahex=false} # false!

chr(0x110000) =~ \P{ahex=true} # true
chr(0x110000) =~ \P{ahex=false} # true!

User-defined properties can behave however they please, though. See the “Build-
ing Character” section in 15.

POSIX-Style Character Classes
Unlike Perl’s other character class shortcuts, the legacy POSIX-style character-
class syntax notation, [:CLASS:], is available for use only when constructing other
character classes—that is, inside an additional pair of square brackets. For ex-
ample, /[.,[:alpha:][:digit:]]/ will search for one character that is either a
literal dot (because it’s in a bracketed character class), a comma, an alphabetic
character, or a digit. All may be used as character properties of the same name;
for example, [.,\p{alpha}\p{digit}].

Except for “punct”, explained immediately below, the POSIX character class names
can be used as properties with \p{} or \P{} with the same meanings. This has
two advantages: it is easier to type because you don’t need to surround them
with extra brackets; and, perhaps more importantly, because as properties their
definitions are no longer affected by charset modifiers—they always match as
Unicode. In contrast, using the [[:...:]] notation, the POSIX classes are affected
by modifier flags.

The \p{punct} property differs from the [[:punct:]] POSIX class in that
\p{punct} never matches nonpunctuation, but [[:punct:]] (and
\p{POSIX_Punct} and \p{X_POSIX_Punct}) will. This is because Unicode splits
what POSIX considers punctuation into two categories: Punctuation and Sym-
bols. Unlike \p{punct}, the others just mentioned also will match the characters
shown in Table 5-14.

Table 5-14. ASCII symbols that count as punctuation

Glyph Code Category Script Name

$ U+0024 GC=Sc SC=Common DOLLAR SIGN

+ U+002B GC=Sm SC=Common PLUS SIGN

< U+003C GC=Sm SC=Common LESS-THAN SIGN

= U+003D GC=Sm SC=Common EQUALS SIGN

210 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Glyph Code Category Script Name

> U+003E GC=Sm SC=Common GREATER-THAN SIGN

^ U+005E GC=Sk SC=Common CIRCUMFLEX ACCENT

` U+0060 GC=Sk SC=Common GRAVE ACCENT

| U+007C GC=Sm SC=Common VERTICAL LINE

~ U+007E GC=Sm SC=Common TILDE

Another way to think of it is that [[:punct:]] matches all characters that Unicode
considers punctuation (unless Unicode rules are not in effect), plus those nine
characters in the ASCII range that Unicode considers symbols.

The second column in Table 5-15 shows the POSIX classes available as of v5.14.

Table 5-15. POSIX character classes

Class Normal Meaning With /a⁂

alnum Any alphanumeric character; that is, any
alpha or digit. This includes many non-
letters; see next entry. Equivalent to
\p{X_POSIX_Alnum}.

Only [A–Za–z0–9]. Equivalent
to \p{POSIX_Alnum}.⁂

alpha Any alphabetic character at all, including
all letters plus any nonletter character with
the property Other_Alphabetic, like Ro-
man numerals, circled letter symbols, and
the Greek combining iota mark. Equiva-
lent to \p{X_POSIX_Alpha}.

Only the 52 ASCII characters
[A–Za–z]. Equivalent to
\p{POSIX_Alpha}.⁂

ascii Any character with an ordinal value of 0–
127. Equivalent to \p{ASCII}.

Any character with an ordinal
value of 0–127. Equivalent to
\p{ASCII}.⁂

blank Any horizontal whitespace. Equivalent to
\p{X_POSIX_Blank}, \p{HorizSpace}, or \h.

Only a space or a tab. Equiva-
lent to \p{POSIX_Blank}.

cntrl Any character with the property Control.
Usually characters that don’t produce out-
put as such, but instead control the termi-
nal somehow; for example, newline, form
feed, and backspace are all control charac-
ters. This set currently includes any char-
acter with an ordinal value of 0–31, or 127–
159. Equivalent to \p{X_POSIX_Cntrl}.

Any character with an ordinal
value of 0–31, or 127. Equiva-
lent to \p{POSIX_Cntrl}.

Character Classes | 211

www.it-ebooks.info

http://www.it-ebooks.info/

Class Normal Meaning With /a⁂

digit Any character with the Digit property.
More formally, characters with the prop-
erty Numeric_Type=Decimal occurring con-
tiguous ranges of 10 characters and whose
ascending numeric values range from 0 to
9 (Numeric_Value=0..9). Equivalent to
\p{X_POSIX_Digit} or \d.

The 10 characters “0” through
“9”. Equivalent to
\p{POSIX_Digit}, or \d un-
der /a.

graph Any non-Whitespace character whose Gen-
eral Category is neither Control, Surro
gate, nor Unassigned. Equivalent to
\p{X_POSIX_Graph}.

The ASCII character set minus
whitespace and control, so any
character whose ordinal is 33–
126. Equivalent to
\p{POSIX_Graph}.⁂

lower Any lowercase character, not necessarily
letters only. Includes all codepoints of
General Category Lowercase_Letter, plus
those with the property Other_Lowercase.
Equivalent to \p{X_POSIX_Lower} or \p{Low
ercase}. Under /i, also matches any char-
acter with GC=LC, an abbreviation for any of
GC=Lu, GC=Lt, and GC=Ll.

Only the 26 ASCII lowercase
letters [a–z]. Under /i, also in-
cludes [A–Z]. Equivalent to
\p{POSIX_Lower}.⁂

print Any graph or non-cntrl blank character.
Equivalent to \p{X_POSIX_Print}.

Any graph or non-cntrl blank
character. Equivalent to
\p{POSIX_Print}.⁂

punct Any character whose General Category is
Punctuation, plus those nine ASCII char-
acters in the Symbol General Category.
Equivalent to \p{X_POSIX_Punct} or \pP.

Any ASCII character whose
General Category is either
Punctuation or Symbol.
Equivalent to
\p{POSIX_Punct}.

space Any character with the Whitespace prop-
erty, including tab, line feed, vertical tab,
form feed, carriage return, space, non-
breaking space, next line, thin space, hair
space, the Unicode paragraph separator,
and a whole lot more. Equivalent to
\p{X_POSIX_Space}, [\v\h], or [\s\cK]; \s
alone is instead equivalent to
\p{X_Perl_Space}, which is missing \cK,
the vertical tab.

Any ASCII Whitespace charac-
ter, so tab, line feed, vertical
tab, form feed, carriage return,
and space. Equivalent to
\p{POSIX_Space}; \s alone is
missing the vertical tab.

upper Any uppercase (but not titlecase) character,
not necessarily letters only. Includes all
codepoints of General Category Upper

Only the 26 uppercase ASCII
letters [A–Z]. Under /i, also in-

212 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Class Normal Meaning With /a⁂

case_Letter plus those with the property
Other_Uppercase. Under /i, also includes
any character sharing a casefold with any
uppercase character. Equivalent to
\p{X_POSIX_Upper} or \p{Uppercase}.

cludes [a–z]. Equivalent to
\p{POSIX_Upper}.⁂

word Any character that is an alnum or whose
General Category is Mark or Connector_Punc
tuation. Equivalent to \p{X_POSIX_Word} or
\w. Note that Unicode identifiers, includ-
ing Perl’s, follow their own rules: the first
character has the ID_Start property, and
subsequent characters have the ID_Con
tinue property. (Perl also allows Connec
tor_Punctuation at the start.)

Any ASCII letter, digit, or un-
derscore. Equivalent to
\p{POSIX_Word}, or to \w un-
der /a.⁂

xdi

git

Any hexadecimal digit, either narrow AS-
CII characters or the corresponding full-
width characters. Equivalent to
\p{X_POSIX_XDigit}, \p{Hex_Digit}, or
\p{hex}.

Any hexadecimal digit in the
ASCII range. Equivalent to [0–
9A–Fa–f], \p{POSIX_XDigit},
\p{ASCII_Hex_Digit}, or
\p{ahex}.

Anything in the above table marked with ⁂ can also match certain non-ASCII
characters under /ai. This presently means:

ſ U+017F GC=Ll SC=Latin LATIN SMALL LETTER LONG S
K U+212A GC=Lu SC=Latin KELVIN SIGN

because the first casefolds to a normal lowercase s, and the second to a normal
lowercase k. You can suppress this by doubling the /a to make /aai.

You can negate the POSIX character classes by prefixing the class name with a ^
following the [:. (This is a Perl extension.) See Table 5-16.

Table 5-16. POSIX character classes and their Perl equivalents

POSIX Classic

[^:digit:] \D

[^:space:] \S

[^:word:] \W

The brackets are part of the POSIX-style [::] construct, not part of the whole
character class. This leads to writing patterns like /^[[:lower:][:digit:]]+$/ to

Character Classes | 213

www.it-ebooks.info

http://www.it-ebooks.info/

match a string consisting entirely of lowercase characters or digits (plus an op-
tional trailing newline). In particular, this does not work:

42 =~ /^[:digit:]$/ # WRONG

That’s because it’s not inside a character class. Rather, it is a character class, the
one representing the characters “:”, “i”, “t”, “g”, and “d”. Perl doesn’t care that you
specified “:” twice.

Here’s what you need instead:

42 =~ /^[[:digit:]]+$/

The POSIX character classes [.cc.] and [=cc=] are recognized but produce an
error indicating they are not supported.

Quantifiers
Unless you say otherwise, each item in a regular expression matches just once.
With a pattern like /nop/, each of those characters must match, each right after
the other. Words like “panoply” or “xenophobia” are fine, because where the
match occurs doesn’t matter.

If you wanted to match both “xenophobia” and “Snoopy”, you couldn’t use
the /nop/ pattern, since that requires just one “o” between the “n” and the “p”,
and Snoopy has two. This is where quantifiers come in handy: they say how many
times something may match, instead of the default of matching just once. Quan-
tifiers in a regular expression are like loops in a program; in fact, if you think of
a regex as a program, then they are loops. Some loops are exact, like “repeat this
match only five times” ({5}). Others give both lower and upper bounds on the
match count, like “repeat this match at least twice but no more than four times”
({2,4}). Others have no closed upper bound at all, like “match this at least twice,
but as many times as you’d like” ({2,}).

Table 5-17 shows the quantifiers that Perl recognizes in a pattern.

Table 5-17. Regex quantifiers compared

Maximal Minimal Possessive Allowed Range

{MIN,MAX} {MIN,MAX}? {MIN,MAX}?+ Must occur at least MIN times but no more
than MAX times

{MIN,} {MIN,}? {MIN,}?+ Must occur at least MIN times

{COUNT} {COUNT}? {COUNT}?+ Must match exactly COUNT times

* *? *+ 0 or more times (same as {0,})

+ +? ++ 1 or more times (same as {1,})

214 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Maximal Minimal Possessive Allowed Range

? ?? ?+ 0 or 1 time (same as {0,1})

Something with a * or a ? doesn’t actually have to match. That’s because it can
match 0 times and still be considered a success. A + may often be a better fit, since
it has to be there at least once.

Don’t be confused by the use of “exactly” in the previous table. It refers only to
the repeat count, not the overall string. For example, $n =~ /\d{3}/ doesn’t say
“is this string exactly three digits long?” It asks whether there’s any point within
$n at which three digits occur in a row. Strings like “101 Morris Street” test true,
but so do strings like “95472” or “1–800–555–1212”. All contain three digits at
one or more points, which is all you asked about. See the section “Positions” later
in this chapter for how to use positional assertions (as in /^\d{3}$/) to nail this
down.

Given the opportunity to match something a variable number of times, maximal
quantifiers will elect to maximize the repeat count. So when we say “as many
times as you’d like”, the greedy quantifier interprets this to mean “as many times
as you can possibly get away with”, constrained only by the requirement that
this not cause specifications later in the match to fail. If a pattern contains two
open-ended quantifiers, then obviously both cannot consume the entire string:
characters used by one part of the match are no longer available to a later part.
Each quantifier is greedy at the expense of those that follow it, reading the pattern
left to right.

That’s the traditional behavior of quantifiers in regular expressions. However, Perl
permits you to reform the behavior of its quantifiers: by placing a ? after that
quantifier, you change it from maximal to minimal. That doesn’t mean that a
minimal quantifier will always match the smallest number of repetitions allowed
by its range any more than a maximal quantifier must always match the greatest
number allowed in its range. The overall match must still succeed, and the min-
imal match will take as much as it needs to succeed, and no more. (Minimal
quantifiers value contentment over greed.)

For example, in the match:

"exasperate" =~ /e(.*)e/ # $1 now "xasperat"

Quantifiers | 215

www.it-ebooks.info

http://www.it-ebooks.info/

the .* matches “xasperat”, the longest possible string for it to match. (It also stores
that value in $1, as described in the section “Grouping and Captur-
ing” on page 221, later in the chapter.) Although a shorter match was available,
a greedy match doesn’t care. Given two choices at the same starting point, it
always returns the longer of the two.

Contrast this with this:

"exasperate" =~ /e(.*?)e/ # $1 now "xasp"

Here, the minimal matching version, .*?, is used. Adding the ? to * makes *? take
on the opposite behavior: now given two choices at the same starting point, it
always returns the shorter of the two.

Although you could read *? as saying to match zero or more of something but
preferring zero, that doesn’t mean it will always match zero characters. If it did
so here, for example, and left $1 set to "", then the second “e” wouldn’t be found,
since it doesn’t immediately follow the first one.

You might also wonder why, in minimally matching /e(.*?)e/, Perl didn’t stick
“rat” into $1. After all, “rat” also falls between two es, and it is shorter than
“xasp”. In Perl, the minimal/maximal choice applies only when selecting the
shortest or longest from among several matches that all have the same starting
point. If two possible matches exist, but these start at different offsets in the
string, then their lengths don’t matter—nor does it matter whether you’ve used
a minimal quantifier or a maximal one. The earliest of several valid matches
always wins out over all latecomers. It’s only when multiple possible matches
start at the same point that you use minimal or maximal matching to break the
tie. If the starting points differ, there’s no tie to break. Perl’s matching is normally
leftmost longest; with minimal matching, it becomes leftmost shortest. But the
“leftmost” part never varies and is the dominant criterion.13

There are two ways to defeat the leftward leanings of the pattern matcher. First,
you can use an earlier greedy quantifier (typically .*) to try to slurp earlier parts
of the string. In searching for a match for a greedy quantifier, it tries for the longest
match first, which effectively searches the rest of the string right to left:

"exasperate" =~ /.*e(.*?)e/ # $1 now "rat"

But be careful with that, since the overall match now includes the entire string
up to that point.

13. Not all regex engines work this way. Some believe in overall greed, in which the longest match always wins,
even if it shows up later. Perl isn’t that way. You might say that eagerness holds priority over greed (or
thrift). For a more formal discussion of this principle and many others, see the section “The Little Engine
That /Could(n’t)?/” on page 241.

216 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

The second way to defeat leftmostness is to use positional assertions, discussed
in the next section.

Just as you can change any maximal quantifier to a minimal one by adding a ?
afterwards, you can also change any maximal quantifier to a possessive one by
adding a + afterwards. Possessive matches are a way to control backtracking. Both
minimal and maximal quantifiers always try all possible combinations looking
for a match. A possessive quantifier will never be backtracked into trying to find
another possibility, which can improve performance tremendously.

This isn’t often a problem with simple matches, but as soon as you have multiple
and especially nested quantifiers, it can matter a great deal. It won’t usually
change the overall success of a match, but it can make it fail much, much faster.
For example:

("a" x 20 . "b") =~ /(a*a*a*a*a*a*a*a*a*a*a*a*)*[^Bb]$/

will fail—eventually. The regex engine is hard at work, futilely trying all possible
combinations of allocating as to star groups. It doesn’t realize it’s doomed to fail.
By changing one or more of those variable * quantifiers to an invariant *+ quan-
tifier, you can make it fail a lot faster. In this case, changing the last, other star
from maximal to possessive gains a couple orders of magnitude in performance,
which is nothing to laugh at.

Sure, this is a contrived example, but when building complex patterns, this sort
of thing can crop up before you know. It turns out that possessive quantifiers
work exactly like the nonbacktracking groups we’ll meet later. The possessive
match a*+ is the same as (?>a*). Possessive groups are a bit more flexible than
possessive quantifiers, because you can group together more things as a unit that
will be invisible to backtracking. But possessive quantifiers are a lot easier to type,
and they are often all you need to avoid catastrophic backtracking.

Positions
Some regex constructs represent positions in the string to be matched, which is a
location just to the left or right of a real character. These metasymbols are ex-
amples of zero-width assertions because they do not correspond to actual char-
acters in the string. We often just call them “assertions”. (They’re also known as
“anchors” because they tie some part of the pattern to a particular position, while
the rest of the pattern is free to drift with the tide.)

You can always manipulate positions in a string without using patterns. The built-
in substr function lets you extract and assign to substrings, measured from the
beginning of the string, the end of the string, or from a particular numeric offset.

Positions | 217

www.it-ebooks.info

http://www.it-ebooks.info/

This might be all you need if you were working with fixed-length records, for
instance. Patterns are only necessary when a numeric offset isn’t sufficient. But,
most of the time, substr isn’t sufficient—or at least not sufficiently convenient,
compared to patterns.

Beginnings: The \A and ^ Assertions
The \A assertion matches only at the beginning of the string, no matter what. In
contrast, though, the ̂ assertion always matches at the beginning of string; it can
also match with the more traditional meaning of beginning of line: if the pattern
uses the /m modifier and the string has embedded newlines, ^ also matches any-
where inside the string immediately following a newline character:

/\Abar/ # Matches "bar" and "barstool"
/^bar/ # Matches "bar" and "barstool"
/^bar/m # Matches "bar" and "barstool" and "sand\nbar"

Used in conjunction with /g, the /m modifier lets ̂ match many times in the same
string:

s/^\s+//gm; # Trim leading whitespace on each line
$total++ while /^./mg; # Count nonblank lines

Endings: The \z, \Z, and $ Assertions
The \z metasymbol matches at the end of the string, no matter what’s inside. \Z
matches right before the newline at the end of the string if there is a newline, or
at the end if there isn’t. The $ metacharacter usually means the same as \Z. How-
ever, if the /m modifier was specified and the string has embedded newlines, then
$ can also match anywhere inside the string right in front of a newline:

/bot\z/ # Matches "robot"
/bot\Z/ # Matches "robot" and "abbot\n"
/bot$/ # Matches "robot" and "abbot\n"
/bot$/m # Matches "robot" and "abbot\n" and "robot\nrules"

/^robot$/ # Matches "robot" and "robot\n"
/^robot$/m # Matches "robot" and "robot\n" and "this\nrobot\n"
/\Arobot\Z/ # Matches "robot" and "robot\n"
/\Arobot\z/ # Matches only "robot" — but why didn’t you use eq?

As with ^, the /m modifier lets $ match many times in the same string when used
with /g. (These examples assume that you’ve read a multiline record into $_,
perhaps by setting $/ to "" before reading.)

s/\s*$//gm; # Trim trailing whitespace on each line in paragraph

while (/^([^:]+):\s*(.*)/gm) { # get mail header

218 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

 $headers{$1} = $2;
}

In “Variable Interpolation” on page 234, later in this chapter, we’ll discuss how
you can interpolate variables into patterns: if $foo is “bc”, then /a$foo/ is equiv-
alent to /abc/. Here, the $ does not match the end of the string. For a $ to match
the end of the string, it must be at the end of the pattern or immediately be
followed by a vertical bar or closing parenthesis.

Boundaries: The \b and \B Assertions
The \b assertion matches at any word boundary, defined as the position between
a \w character and a \W character, in either order. If the order is \W\w, it’s a begin-
ning-of-word boundary, and if the order is \w\W, it’s an end-of-word boundary.
(The ends of the string count as \W characters here.) The \B assertion matches any
position that is not a word boundary—that is, the middle of either \w\w or \W\W.

/\bis\b/ # matches "what it is" and "that is it"
/\Bis\B/ # matches "thistle" and "artist"
/\bis\B/ # matches "istanbul" and "so—isn't that butter?"
/\Bis\b/ # matches "confutatis" and "metropolis near you"

Because \W includes all punctuation characters (except the underscore), there are
\b boundaries in the middle of strings like “isn't”, “booktech@oreilly.com”,
“M.I.T.”, and “key/value”.

Inside a bracketed character class ([\b]), a \b represents a backspace rather than
a word boundary.

Progressive Matching
When used with the /g modifier, the pos function allows you to read or set the
offset where the next progressive match will start:

$burglar = "Bilbo Baggins";
while ($burglar =~ /b/gi) {
 printf "Found a B at %d\n", pos($burglar)–1;
}

(We subtract one from the position because that was the length of the string we
were looking for, and pos is always the position just past the match.)

The code above prints:

Found a B at 0
Found a B at 3
Found a B at 6

Positions | 219

www.it-ebooks.info

http://www.it-ebooks.info/

After a failure, the match position normally resets back to the start. If you also
apply the /c (for “continue”) modifier, then when the /g runs out, the failed match
doesn’t reset the position pointer. This lets you continue your search past that
point without starting over at the very beginning.

$burglar = "Bilbo Baggins";
while ($burglar =~ /b/gci) { # ADD /c
 printf "Found a B at %d\n", pos($burglar)–1;
}
while ($burglar =~ /i/gi) {
 printf "Found an I at %d\n", pos($burglar)–1;
}

Besides the three Bs it found earlier, Perl now reports finding an i at position 10.
Without the /c, the second loop’s match would have restarted from the beginning
and found another i at position 1 first.

Where You Left Off: The \G Assertion
Whenever you start thinking in terms of the pos function, it’s tempting to start
carving your string up with substr, but this is rarely the right thing to do. More
often, if you started with pattern matching, you should continue with pattern
matching. However, if you’re looking for a positional assertion, you’re probably
looking for \G.

The \G assertion represents within the pattern the same point that pos represents
outside of it. When you’re progressively matching a string with the /g modifier
(or you’ve used the pos function to directly select the starting point), you can use
\G to specify the position just after the previous match. That is, it matches the
location immediately before whatever character would be identified by pos. This
allows you to remember where you left off:

($recipe = <<'DISH') =~ s/^\s+//gm;
 Preheat oven to 451 deg. Fahrenheit.
 Mix 1 ml. dilithium with 3 oz. NaCl and
 stir in 4 anchovies. Glaze with 1 g.
 mercury. Heat for 4 hours and let cool
 for 3 seconds. Serves 10 aliens.
DISH

$recipe =~ /\d+ /g;
$recipe =~ /\G(\w+)/; # $1 is now "deg"
$recipe =~ /\d+ /g;
$recipe =~ /\G(\w+)/; # $1 is now "ml"
$recipe =~ /\d+ /g;
$recipe =~ /\G(\w+)/; # $1 is now "oz"

220 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

The \G metasymbol is often used in a loop, as we demonstrate in our next example.
We “pause” after every digit sequence, and, at that position, we test whether
there’s an abbreviation. If so, we grab the next two words. Otherwise, we just
grab the next word:

pos($recipe) = 0; # Just to be safe, reset \G to 0
while ($recipe =~ /(\d+) /g) {
 my $amount = $1;
 if ($recipe =~ / \G (\w{0,3}) \. \s+ (\w+) /x) { # abbrev. + word
 say "$amount $1 of $2";
 } else {
 $recipe =~ / \G (\w+) /x; # just a word
 say "$amount $1";
 }
}

That produces:

451 deg of Fahrenheit
1 ml of dilithium
3 oz of NaCl
4 anchovies
1 g of mercury
4 hours
3 seconds
10 aliens

Grouping and Capturing
Patterns allow you to group portions of your pattern together into subpatterns
and to remember the strings matched by those subpatterns. We call the first
behavior grouping and the second one capturing. It is also possible to group
without capturing. More on that later.

Capturing
To capture a substring for later use, put parentheses around the subpattern that
matches it. The first pair of parentheses stores its substring in $1, the second pair
in $2, and so on. You may use as many parentheses as you like; Perl just keeps
defining more numbered variables for you to represent these captured strings.

Some examples:

/(\d)(\d)/ # Match two digits, capturing them into $1 and $2
/(\d+)/ # Match one or more digits, capturing them all into $1
/(\d)+/ # Match a digit one or more times, capturing the last into $1

Grouping and Capturing | 221

www.it-ebooks.info

http://www.it-ebooks.info/

Note the difference between the second and third patterns. The second form is
usually what you want. The third form does not create multiple variables for
multiple digits. Parentheses are numbered when the pattern is compiled, not
when it is matched.

Captured strings are often called group references because they refer back to parts
of the captured text. Historical pattern-matching engines restricted group refer-
ences to backreferences only, but Perl allows references to any group, whether back,
forward, or the one you’re in the middle of solving.

There are actually two ways to get at these capture groups. The numbered vari-
ables you’ve seen are how you get at backreferences outside of a pattern, but that
doesn’t work inside the pattern. You have to use backreference notation, so either
\1, \2, \g{1}, \g{2}, \k<some_group>, \k<other_group>, etc.

You can’t use $1 for a group reference within the pattern because that would al-
ready have been interpolated as an ordinary variable back when the regex was
compiled. So we use the traditional \1 group reference notation inside patterns.
For two- and three-digit backreference numbers, there is some ambiguity with
octal character notation, but that is neatly solved by considering how many cap-
tured patterns are available. For instance, if Perl sees a \11 metasymbol, it’s
equivalent to $11 only if there are at least 11 substrings captured earlier in the
pattern. Otherwise, it’s equivalent to \011—that is, a tab character. To avoid this
ambiguity, refer to a capture group by its number using \g{NUMBER}, and to an
octal character by number using \o{OCTNUM}. So \g{11} is always the 11th capture
group, and \o{11} is always the character whose codepoint is octal 11. An even
better idea than racking up 11 capture groups is to use named groups, described
below.

So to find doubled words like “the the” or “had had”, you might use this pattern:

/\b(\w+) \1\b/i

But most often you’ll be using the $1 form, because you’ll usually apply a pattern
and then do something with the substrings. Suppose you have some text (a mail
header) that looks like this:

From: gnat@perl.com
To: camelot@oreilly.com
Date: Mon, 17 Jul 2011 09:00:00 –1000
Subject: Eye of the needle

and you want to construct a hash that maps the text before each colon to the text
afterward. If you were looping through this text line by line (say, because you
were reading it from a file), you could do that as follows:

222 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

while (<>) {
 /^(.*?): (.*)$/; # Pre–colon text into $1, post–colon into $2
 $fields{$1} = $2;
}

Like $`, $&, and $', these numbered variables are dynamically scoped through
the end of the enclosing block or eval string, or to the next successful pattern
match, whichever comes first. You can use them in the righthand side (the re-
placement part) of a substitute, too:

s/^(\S+) (\S+)/$2 $1/; # Swap first two words

Groupings can nest and, when they do, the groupings are counted by the location
of the left parenthesis. So given the string “Primula Brandybuck”, the pattern:

/^((\w+) (\w+))$/

would capture “Primula Brandybuck” into $1, “Primula” into $2, and “Brandy
buck” into $3. This is depicted in Figure 5-1.

Figure 5-1. Creating group references with parentheses

As we mentioned earlier, not all group references need to be backreferences. You
are allowed to refer to any group the pattern knows about, even if you haven’t
quite gotten around to filling it out yet. This is only useful if you’re in some
repetition where you’ll revisit the same group ref again. The first time you en-
counter these non-backref group references, they fail because they haven’t hap-
pened yet. But by the time the later visit happens, that group has something more
interesting in it.

Here are the three types of references to capture groups. The first is a traditional
backreference, because it has already been completed by the time it is first
needed:

"foofoobar" =~ /^(foo)\1bar$/ # backref

This, though, is a forward reference:

"foofoobar" =~ /^((\3bar)|(foo))+$/ # forwref

Grouping and Capturing | 223

www.it-ebooks.info

http://www.it-ebooks.info/

We haven’t even begun the third group the first time through the + quantifiers’
repetitions, so \3 fails and we skip to the other alternative, which fills in the third
group with the string’s first “foo”. On the next repetition of the + quantifier, \3
contains “foo”, and we finish up with bar and we’re done.

This third example is neither a backreference nor a forward reference, because it’s
within the very group it’s referring to, making it something of a circumref:

"foofoobar" =~ /^(\1bar|(foo))+/ # circumref

Patterns with captures are often used in list context to populate a list of values,
since the pattern is smart enough to return the captured substrings as a list:

($first, $last) = /^(\w+) (\w+)$/;
($full, $first, $last) = /^((\w+) (\w+))$/;

With the /g modifier, a pattern can return multiple substrings from multiple
matches, all in one list. Suppose you had the mail header we saw earlier all in
one string (in $_, say). You could do the same thing as our line-by-line loop, but
with one statement:

%fields = /^(.*?): (.*)$/gm;

The pattern matches four times; each time it matches, it finds two substrings.
The /gm match returns all of these as a flat list of eight strings, which the list
assignment to %fields will conveniently interpret as four key/value pairs, thus
restoring harmony to the universe.

Several other special variables deal with text captured in pattern matches. $& con-
tains the entire matched string, $` everything to the left of the match, $' every-
thing to the right. $+ contains the contents of the last capture group.

$_ = "Speak, friend, and enter.";
m[(<.*?>) (.*?) (</.*?>)]x; # A tag, then chars, then an end tag
say "prematch: $`"; # Speak,
say "match: $&"; # friend
say "postmatch: $'"; # , and enter.
say "lastmatch: $+"; #

For more explanation of these magical Elvish variables (and for a way to write
them in English), see Chapter 25.

The @– (@LAST_MATCH_START) array holds the offsets of the beginnings of any sub-
matches, and @+ (@LAST_MATCH_END) holds the offsets of the ends:

#!/usr/bin/perl
$alphabet = "abcdefghijklmnopqrstuvwxyz";
$alphabet =~ /(hi).*(stu)/;

say "The entire match began at $–[0] and ended at $+[0]";

224 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

say "The first match began at $–[1] and ended at $+[1]";
say "The second match began at $–[2] and ended at $+[2]";

If you really want to match a literal parenthesis character instead of having it
interpreted as a metacharacter, backslash it:

/\(e.g., .*?\)/

This matches a parenthesized example (e.g., this statement). But since dot is a
wildcard, this also matches any parenthetical statement with the first letter e and
third letter g (ergo, this statement, too).

Numbered capture groups are inherently fragile. Imagine you use something like
this to match a sequence of duplicated words:

$dupword = qr/ \b (?: (\w+) (?: \s+ \1)+) \b /xi;

If you embed that in a larger pattern that itself has capture groups earlier than
where your duplicate word pattern appears, then that \1 will be wrong. For ex-
ample, this won’t work:

$quoted = qr{ (["']) $dupword \1 }x;

because $dupword should be using \2 there if it’s going to wind up embedded in
$quoted. But you can’t do that because while $dupword is being compiled, there’s
not yet a second capture group to refer back to, so it won’t even compile.

A solution that works in this situation is to use relatively numbered capture
groups. To access them, you need to use the \g{NUMBER} notation, which is a
numbered reference that refers to capture group NUMBER. When NUMBER is positive,
it’s the same as \NUMBER. But when NUMBER is negative, it’s that many previous
capture groups earlier. So \g{–1} is the last capture group, \g{–2} is the second
to the last one, etc.

A better definition then for the duplicate-word pattern, defined in a way that
allows it to be more freely embedded in a larger pattern, is:

$dupword = qr/ \b (?: (\w+) (?: \s+ \g{–1})+) \b /xi;

Here’s a simple program for finding duplicate word sequences paragraph by para-
graph in the input stream:

#!/usr/bin/env perl
use v5.14;

my $dupword = qr{ \b (?: (\w+) (?: \s+ \g{–1})+) \b }xi;
my $quoted = qr{ (["']) $dupword \1 }x;
$/ = q(); # cross paragraphs

while (<>) {
 while (/$quoted/pg) {

Grouping and Capturing | 225

www.it-ebooks.info

http://www.it-ebooks.info/

 printf "%s %d: %s\n", $ARGV, $., ${^MATCH};
 }
} continue {
 close ARGV if eof;
}

Although that program works fine by itself, there’s still a serious issue. If
$quoted is used in a still larger pattern, its use of \1 will become wrong. Yet it can’t
know how many to count back, because it shouldn’t have to know how many
the unrelated pattern in $dupword has used.

Named capture groups

The only way to resolve the last conundrum requires a new strategy, one that
doesn’t use numbered capture groups at all. For this (and much more) were
named capture groups invented. To declare a named capture group inside your
pattern, use (?<NAME>...). This is still a capture group just like a regular paren-
thesized grouping, but its name is NAME.

Or, rather, its name is also NAME, because a named capture group is still a numbered
one, too, just as though it sat in the same spot but without a name. This is the
same way that named groups behave with respect to numbered ones in the most
commonly used regular expression libraries for Java and Python. However, it’s
different from how named groups work in the .NET Framework like C♯, where
named captures are assigned numbers only after all numbered groups. (And in
that other weird language Perl 6, a capture is given a number for its name only if
it has no other name. Go figure.)

To refer back to a named capture group in the same pattern, the way you used to
use \1 or \g{1} with numbered groups, use \k<NAME>. We can now address the
somewhat problematic definition with $quoted in the previous problem to enable
its use in larger patterns:

$quoted = qr{ (?<quote> ["']) $dupword \k<quote> }x;

That’s fine for within the pattern, but just as group \1 during pattern matching
is accessible as $1 afterwards, you will sometimes want to access named capture
groups’ contents after the pattern has run. That’s what the built-in hash variable
%+ is for. Its keys are whatever names you’ve given your capture groups, and the
values are what those groups have captured. So given the previous definition of
$quoted and of $dupword, you could pull out all the quoted duplicate word se-
quences this way:

say $+{quote} while /$quoted/g;

Here’s another example:

226 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$word = "bookkeeper";
$word =~ s/ (?<letter> \p{alpha}) \k<letter> /$+{letter}/gix;
$word is now "bokeper"

(We used the /x modifier just so we could put some whitespace into the pattern
to make it easier to read. Nobodylikesreadingthiskindofthing.)

If you happen to have more than one group by the same NAME in the same pattern,
then %+ holds only the last string captured, but each entry in the %– hash holds a
reference to an array of them. Given several groups of the same NAME, use @{$–
{NAME}} for all of them, $–{NAME}[0] for the first, $–{NAME}[1] for the next, and so
on, up to $–{NAME}[–1] for the last one.

Imagine you wanted to match either a name then a number, or a number then a
name. If you had used numbered capture groups, you would have a problem
knowing which was which:

/ (\d+) \s+ (\pL+) | (\pL+) \s+ (\d+) /x

Because now you don’t know which branch was taken, you don’t know whether
to grab $1 and $2 or $3 and $4. Here’s where the (?|...) branch-reset construct
comes in handy:

m{
 (?| (\d+) \s+ (\pL+) # these are $1 and $2
 | (\pL+) \s+ (\d+) # and so is this pair!
)
}x

At each alternative, group numbers reset back to whatever they were when the
branch-reset was entered. This way, no matter which half matches, you know
the data is in $1 and $2.

That’s okay for simpler patterns, but using named capture groups will work out
better in the long run, and for more complex patterns. By giving them names like
this:

m{
 (?<name> \pL+) \s+ (?<number> \d+)
 |
 (?<number> \d+) \s+ (?<name> \pL+)
}x

it now doesn’t matter which branch of the alternation was taken. Access the con-
tents of the match groups after the match like so:

$+{name}
$+{number}

However, without the alternation, both captures will be loaded twice:

Grouping and Capturing | 227

www.it-ebooks.info

http://www.it-ebooks.info/

m{
 (?<name> \pL+) \s+ (?<number> \d+)
 \W+
 (?<number> \d+) \s+ (?<name> \pL+)
}x

So, if the pattern matches, there will be two values each for both the <name> and
<number> groups. When you have the same named group loaded more than once,
the previous contents in the %+ variable are overwritten, just like assigning to a
scalar more than once. However, the %– variable holds an array of values for each
name in the hash, so this time new contents are pushed onto the end of the
anonymous array associated with the named key.

Because the values in %– are array references not strings the way they are in %+,
you could get at the entire set of matches like this:

@{ $–{name} }
@{ $–{number} }

or at individual scalars like this:

$–{name}[0]
$–{name}[1]
$–{number}[0]
$–{number}[1]

Which makes $+{name} the same as $–{name}[–1]. It’s also the same as $–{name}
[$#{$–{name}}], but that’s getting a mite punctual.

Speaking of which, if you don’t much like having variables whose names are single
punctuation marks, the standard Tie:Hash::NamedCapture module lets you use
whatever name you’d like for these two built-in hashes. Pass an extra argument
of all => 1 if you want the version that acts like the %– variable; otherwise, the
tied hash acts like the %+ variable.

use Tie::Hash::NamedCapture;
tie my %last_captured, "Tie::Hash::NamedCapture";
tie my %all_captured, "Tie::Hash::NamedCapture", all => 1;

Now access your named captures through those variables, just as you did with
$+ and %+, but using your own names.

$last_captured{name}
$last_captured{number}

@{ $all_captured{name} }
@{ $all_captured{number} }

$all_captured{name}[0]
$all_captured{name}[1]

228 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$all_captured{number}[0]
$all_captured{number}[1]

These uses of named captures should already have you convinced to prefer them
over numbered groups in all but the simplest of patterns (and some would say
even then). But named captures really start to shine when you write recursive
patterns and grammars, described in the upcoming section “Fancy Pat-
terns” on page 247.

Grouping Without Capturing
Bare parentheses both group and capture. But sometimes you don’t want that.
Sometimes you just want to group portions of the pattern without capturing the
string for later use. An extended form of parentheses, the (?:PATTERN) notation,
will do that.

There are at least three reasons you might want to group without capturing:

1. To quantify something.

2. To limit the scope of interior alternation; for example, /^cat|cow|dog$/ needs
to be /^(?:cat|cow|dog)$/ so that the cat doesn’t run away with the ^.

3. To limit the scope of an embedded pattern modifier to a particular subpattern,
such as in /foo(?–i:Case_Matters)bar/i. (See the next section, “Scoped Pat-
tern Modifiers” on page 230.)

In addition, it’s more efficient to suppress the capture of something you’re not
going to use. On the minus side, the notation is a little noisier, visually speaking.

In a pattern, a left parenthesis immediately followed by a question mark denotes
a regex extension. The current regular expression bestiary is relatively fixed—we
don’t dare create a new metacharacter for fear of breaking old Perl programs.
Instead, the extension syntax is used to add new features to the bestiary.

In the remainder of this chapter we’ll see many more regex extensions, all of which
group without capturing, as well as doing something else. The (?:PATTERN) ex-
tension is just special in that it does nothing else. So if you say:

@fields = split(/\b(?:a|b|c)\b/)

it’s like:

@fields = split(/\b(a|b|c)\b/)

but doesn’t spit out extra fields. (The split operator is a bit like m//g in that it
will emit extra fields for all the captured substrings within the pattern. Ordinarily,
split only returns what it didn’t match. For more on split, see Chapter 27.)

Grouping and Capturing | 229

www.it-ebooks.info

http://www.it-ebooks.info/

Scoped Pattern Modifiers
You may lexically scope the /i, /m, /s, /x, /d, /u, /a, /l, and /p modifiers within
a portion of your pattern by inserting them (without the slash) between the ?
and : of the grouping notation. If you say:

/Harry (?i:s) Truman/

it matches both “Harry S Truman” and “Harry s Truman”, whereas:

/Harry (?x: [A–Z] \.? \s)?Truman/

matches both “Harry S Truman” and “Harry S. Truman”, as well as “Harry Tru
man”; and:

/Harry (?ix: [A–Z] \.? \s)?Truman/

matches all five, by combining the /i and /x within the group.

You can also subtract modifiers from a scope with a minus sign:

/Harry (?x–i: [A–Z] \.? \s)?Truman/i

This matches any capitalization of the name—but if the middle initial is provided,
it must be capitalized, since the /i applied to the overall pattern is suspended
inside the scope.

When subtracting, you may only subtract /i, /m, /s, or /x. The other modi-
fiers /d, /u, /a, /l, and /p modifiers may only be added.

By omitting both colon and PATTERN, you can export modifier settings to an outer
group, turning it into a scope. That is, you can selectively turn modifiers on and
off for the grouping construct one level outside the modifiers’ parentheses, like
so:

/(?i)foo/ # Equivalent to /foo/i
/foo((?–i)bar)/i # "bar" must be lower case
/foo((?x–i) bar)/ # Enables /x and disables /i for "bar"

Note that the second and third examples create capture groups. If that wasn’t what
you wanted, then you should have been using (?–i:bar) and (?x–i: bar), re-
spectively.

Setting modifiers on a portion of your pattern is particularly useful when you
want “.” to match newlines in part of your pattern but not in the rest of it. Set-
ting /s on the whole pattern doesn’t help you there (unless you use \N to match
non-newlines).

230 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Alternation
Inside a pattern or subpattern, use the | metacharacter to specify a set of possi-
bilities, any one of which could match. For instance:

/Gandalf|Saruman|Radagast/

matches Gandalf or Saruman or Radagast. The alternation extends only as far as
the innermost enclosing parentheses (whether capturing or not):

/prob|n|r|l|ate/ # Match prob, n, r, l, or ate
/pro(b|n|r|l)ate/ # Match probate, pronate, prorate, or prolate
/pro(?:b|n|r|l)ate/ # Match probate, pronate, prorate, or prolate

The second and third forms match the same strings, but the second form captures
the variant character in $1 and the third form does not.

At any given position, the Engine tries to match the first alternative, and then the
second, and so on. The relative length of the alternatives does not matter, which
means that in this pattern:

/(Sam|Samwise)/

$1 will never be set to Samwise, no matter what string it’s matched against, because
Sam will always match first. When you have overlapping matches like this, put the
longer ones at the beginning.

But the ordering of the alternatives only matters at a given position. The outer
loop of the Engine does left-to-right matching, so the following always matches
the first Sam:

"'Sam I am,' said Samwise" =~ /(Samwise|Sam)/; # $1 eq "Sam"

To force right-to-left scanning, use greedy quantifiers:

"'Sam I am,' said Samwise" =~ /.*(Samwise|Sam)/; # $1 eq "Samwise"

You can defeat left-to-right (or right-to-left) matching by including any of the
various positional assertions we saw earlier, such as \G, ^, and $. Here we anchor
the pattern to the end of the string:

"'Sam I am,' said Samwise" =~ /(Samwise|Sam)$/; # $1 eq "Samwise"

Notice how we’ve factored the $ out of the alternation (since we already had a
handy pair of parentheses to put it after), but in the absence of such parentheses,
you could also distribute the assertions to any or all of the individual alternatives,
depending on how you want them to match. This little program displays lines
that begin with either a _ _DATA_ _ or _ _END_ _ token:

#!/usr/bin/perl
while (<>) {

Alternation | 231

www.it-ebooks.info

http://www.it-ebooks.info/

 print if /^_ _DATA_ _|^_ _END_ _/;
}

But be careful with that. Remember that the first and last alternatives (before the
first | and after the last one) tend to gobble up the other elements of the regular
expression on either side, out to the ends of the expression, unless there are
enclosing parentheses. A common mistake is to ask for:

/^cat|dog|cow$/

when you really mean:

/^(cat|dog|cow)$/

The first matches “cat” at the beginning of the string, or “dog” anywhere, or
“cow” at the end of the string. The second matches any string consisting solely of
“cat” or “dog” or “cow”. It also captures $1, which you may not want. Suppress
that with one of:

/^cat$|^dog$|^cow$/
/^(?:cat|dog|cow)$/

An alternative can be empty, in which case it always matches.

/com(pound|)/; # Matches "compound" or "com"
/com(pound(s|)|)/; # Matches "compounds", "compound", or "com"

This is much like using the ? quantifier, which matches 0 times or 1 time:

/com(pound)?/; # Matches "compound" or "com"
/com(pound(s?))?/; # Matches "compounds", "compound", or "com"
/com(pounds?)?/; # Same, but doesn't use $2

There is one difference, though. When you apply the ? to a subpattern that cap-
tures into a numbered variable, that variable will be undefined if there’s no string
to go there. If you used an empty alternative, it would still be false, but it would
be a defined null string instead.

Staying in Control
As any good manager knows, you shouldn’t micromanage your employees. Just
tell them what you want, and let them figure out the best way of doing it. Simi-
larly, it’s often best to think of a regular expression as a kind of specification:
“Here’s what I want; go find a string that fits the bill.”

On the other hand, the best managers also understand the job their employees
are trying to do. The same is true of pattern matching in Perl. The more thor-
oughly you understand how Perl goes about the task of matching any particular

232 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

pattern, the more wisely you’ll be able to make use of Perl’s pattern-matching
capabilities.

One of the most important things to understand about Perl’s pattern matching is
when not to use it.

Letting Perl Do the Work
When people of a certain temperament first learn regular expressions, they’re
often tempted to see everything as a problem in pattern matching. And while
that may even be true in the larger sense, pattern matching is about more than
just evaluating regular expressions. It’s partly about looking for your car keys
where you dropped them, not just under the streetlamp where you can see better.
In real life, we all know that it’s a lot more efficient to look in the right places
than the wrong ones.

Similarly, you should use Perl’s control flow to decide which patterns to execute
and which ones to skip. A regular expression is pretty smart, but it’s smart like
a horse. It can get distracted if it sees too much at once. So sometimes you have
to put blinders onto it. For example, you’ll recall our earlier example of alterna-
tion:

/Gandalf|Saruman|Radagast/

That works as advertised, but not as well as it might, because it searches every
position in the string for every name before it moves on to the next position.
Astute readers of The Lord of the Rings will recall that, of the three wizards named
above, Gandalf is mentioned much more frequently than Saruman, and Saruman
is mentioned much more frequently than Radagast. So it’s generally more effi-
cient to use Perl’s logical operators to do the alternation:

/Gandalf/ || /Saruman/ || /Radagast/

This is yet another way of defeating the “leftmost” policy of the Engine. It only
searches for Saruman if Gandalf is nowhere to be seen. And it only searches for
Radagast if Saruman is also absent.

Not only does this change the order in which things are searched, it sometimes
allows the regular expression optimizer to work better. It’s generally easier to
optimize searching for a single string than for several strings simultaneously.
Similarly, anchored searches can often be optimized if they’re not too compli-
cated.

You don’t have to limit your control of the control flow to the || operator. Often
you can control things at the statement level. You should always think about
weeding out the common cases first. Suppose you’re writing a loop to process a

Staying in Control | 233

www.it-ebooks.info

http://www.it-ebooks.info/

configuration file. Many configuration files are mostly comments. It’s often best
to discard comments and blank lines early before doing any heavy-duty process-
ing, even if the heavy-duty processing would throw out the comments and blank
lines in the course of things:

while (<CONF>) {
 next if /^#/;
 next if /^\s*(#|$)/;
 chomp;
 munchabunch($_);
}

Even if you’re not trying to be efficient, you often need to alternate ordinary Perl
expressions with regular expressions simply because you want to take some ac-
tion that is not possible (or very difficult) from within the regular expression,
such as printing things out. Here’s a useful number classifier:

warn "has nondigits" if /\D/;
warn "not a natural number" unless /^\d+$/; # rejects –3
warn "not an integer" unless /^–?\d+$/; # rejects +3
warn "not an integer" unless /^[+–]?\d+$/;
warn "not a decimal number" unless /^–?\d+\.?\d*$/; # rejects .2
warn "not a decimal number" unless /^–?(?:\d+(?:\.\d*)?|\.\d+)$/;
warn "not a C float"
 unless /^([+–]?)(?=\d|\.\d)\d*(\.\d*)?([Ee]([+–]?\d+))?$/;

We could stretch this section out a lot longer, but really, that sort of thing is what
this whole book is about. You’ll see many more examples of the interplay of Perl
code and pattern matching as we go along. In particular, see the later sec-
tion“Programmatic Patterns” on page 251. (It’s okay to read the intervening ma-
terial first, of course.)

Variable Interpolation
Using Perl’s control-flow mechanisms to control pattern matching has its limits.
The main difficulty is that it’s an “all or nothing” approach—either you run the
pattern, or you don’t. Sometimes you know the general outlines of the pattern
you want, but you’d like to have the capability of parameterizing it. Variable
interpolation provides that capability, much like parameterizing a subroutine lets
you have more influence over its behavior than just deciding whether to call it
or not. (More about subroutines in the next chapter.)

One nice use of interpolation is to provide a little abstraction, along with a little
readability. With regular expressions you may certainly write things concisely:

if ($num =~ /^[–+]?\d+\.?\d*$/) { ... }

But what you mean is more apparent when you write:

234 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$sign = '[–+]?';
$digits = '\d+';
$decimal = '\.?';
$more_digits = '\d*';
$number = "$sign$digits$decimal$more_digits";
...
if ($num =~ /^$number$/o) { ... }

We’ll cover this use of interpolation more under “Generated pat-
terns” on page 252 later in this chapter. We’ll just point out that we used the /o
modifier to suppress recompilation because we don’t expect $number to change
its value over the course of the program. This is no longer necessary because Perl
has gotten smarter about such things, but you may see it in older code.

Another cute trick is to turn your tests inside out and use the variable string to
pattern match against a set of known strings:

chomp($answer = <STDIN>);
if ("SEND" =~ /^\Q$answer/i) { say "Action is send" }
elsif ("STOP" =~ /^\Q$answer/i) { say "Action is stop" }
elsif ("ABORT" =~ /^\Q$answer/i) { say "Action is abort" }
elsif ("LIST" =~ /^\Q$answer/i) { say "Action is list" }
elsif ("EDIT" =~ /^\Q$answer/i) { say "Action is edit" }

This lets your user perform the “send” action by typing any of S, SE, SEN, or
SEND (in any mixture of upper- and lowercase). To “stop”, he’d have to type at least
ST (or St, or sT, or st).

When backslashes happen

When you think of double-quote interpolation, you usually think of both variable
and backslash interpolation. But as we mentioned earlier, for regular expressions
there are two passes, and the interpolation pass defers most of the backslash
interpretation to the regular expression parser (which we discuss later). Ordi-
narily, you don’t notice the difference because Perl takes pains to hide the dif-
ference.

It’s actually fairly important that the regex parser handle the backslashes, because
only the regex parser knows which \b means a word boundary and which \b
means a backspace. Or suppose you’re searching for tab characters in a pattern
with a /x modifier:

($col1, $col2) = /(.*?) \t+ (.*?)/x;

If Perl didn’t defer the interpretation of \t to the regex parser, the \t would have
turned into whitespace, which the regex parser would have ignorantly ignored
because of the /x. But Perl is not so ignoble, or tricky.

Staying in Control | 235

www.it-ebooks.info

http://www.it-ebooks.info/

You can trick yourself, though. Suppose you abstracted out the column separator
like this:

$colsep = "\t+"; # (double quotes)
($col1, $col2) = /(.*?) $colsep (.*?)/x;

Now you’ve just blown it because the \t turns into a real tab before it gets to the
regex parser, which will think you said /(.*?)+(.*?)/ after it discards the white-
space. Oops. To fix, avoid /x, or use single quotes. Or better, use qr//. (See the
next section.)

The only double-quote escapes that are processed as such are named characters
and the six translation escapes: \N{CHARNAME}, \U, \u, \L, \l, \F, \Q, and \E. If you
ever look into the inner workings of the Perl regular expression compiler, you’ll
find code for handling escapes like \t for tab, \n for newline, and so on. But you
won’t find code for those six translation escapes. (We only listed them in Ta-
ble 5-3 because people expect to find them there.) If you somehow manage to
sneak any of them into the pattern without going through double-quotish eval-
uation, they won’t be recognized. If you sneak a named character in, it will gen-
erate an error because the charmap that was active when the string was created
needs to be the one to resolve what codepoint a name goes to. (This is because
Perl allows you to create custom character name aliases, so it isn’t always the
standard set. See “charnames” on page 1008 in Chapter 29.)

How could they find their way in? Well, you can defeat interpolation by using
single quotes as your pattern delimiter. In m'...', qr'...', and s'...'...', the
single quotes suppress variable interpolation and the processing of translation
escapes, just as they would in a single-quoted string. Saying m'\ufrodo' won’t find
a capitalized version of poor frodo. However, since the “normal” backslash char-
acters aren’t really processed on that level anyway, m'\t\d' still matches a real
tab followed by any digit.

Another way to defeat interpolation is through interpolation itself. If you say:

$var = '\U';
/${var}frodo/;

poor frodo remains uncapitalized. Perl won’t redo the interpolation pass for you
just because you interpolated something that looks like it might want to be re-
interpolated. You can’t expect that to work any more than you’d expect this
double interpolation to work:

$hobbit = "Frodo";
$var = '$hobbit'; # (single quotes)
/$var/; # means m'$hobbit', not m'Frodo'.

236 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s another example that shows how most backslashes are interpreted by the
regex parser, not by variable interpolation. Imagine you have a simple little grep-
style program written in Perl:14

#!/usr/bin/perl
$pattern = shift;
while (<>) {
 print if /$pattern/;
}

If you name that program pgrep and call it this way:

% pgrep '\t\d' *.c

then you’ll find that it prints out all lines of all your C source files in which a digit
follows a tab. You didn’t have to do anything special to get Perl to realize that
\t was a tab. If Perl’s patterns were just double-quote interpolated, you would
have; fortunately, they aren’t. They’re recognized directly by the regex parser.

The real grep program has a –i switch that turns off case-sensitive matching. You
don’t have to add such a switch to your pgrep program; it can already handle that
without modification. You just pass it a slightly fancier pattern, with an embed-
ded /i modifier:

% pgrep '(?i)ring' LotR*.pod

That now searches for any of “Ring”, “ring”, “RING”, and so on. You don’t see this
feature too much in literal patterns, since you can always just write /ring/i. But
for patterns passed in on the command line, in web search forms, or embedded
in configuration files, it can be a lifesaver. (Speaking of rings.)

The qr/PATTERN/modifiers quote regex operator

Variables that interpolate into patterns necessarily do so at runtime, not compile
time. This used to noticeably slow down execution because Perl had to check
whether you’d changed the contents of the variable; if so, it would have to re-
compile the regular expression. These days, Perl is a lot smarter, and you’d need
to be interpolating patterns that were more than 10k longer before you noticed
any benefit from the nearly extinct /o option, which tells Perl to interpolate and
compile only once:

print if /$pattern/o;

14. If you didn’t know what a grep program was before, you will now. No system should be without grep—
we believe grep is the most useful small program ever invented. (It logically follows that we don’t believe
Perl is a small program.)

Staying in Control | 237

www.it-ebooks.info

http://www.it-ebooks.info/

Although that works fine in our pgrep program, in the general case, it doesn’t.
Imagine you have a slew of patterns, and you want to match each of them in a
loop, perhaps like this:

for my $item (@data) {
 for my $pat (@patterns) {
 if ($item =~ /$pat/) { ... }
 }
}

You couldn’t write /$pat/o because the meaning of $pat varies each time through
the inner loop.

The solution to this is the qr/PATTERN/msixpodual operator, which is usually just
pronounced qr//, for obvious reasons. This operator quotes—and compiles—its
PATTERN as a regular expression. PATTERN is interpolated the same way as in
m/PATTERN/. If ' is used as the delimiter, no interpolation of variables (or the seven
translation escapes) is done. The operator returns a special value that may be
used instead of the equivalent literal in a corresponding pattern match or sub-
stitute. For example:

$regex = qr/my.STRING/is;
s/$regex/something else/;

is equivalent to:

s/my.STRING/something else/is;

So for our nested loop problem above, preprocess your pattern first using a sep-
arate loop:

@regexes = ();
for my $pat (@patterns) {
 push @regexes, qr/$pat/;
}

or all at once using Perl’s map operator:

@regexes = map { qr/$_/ } @patterns;

And then change the loop to use those precompiled regexes:

for my $item (@data) {
 foreach $re (@regexes) {
 if ($item =~ /$re/) { ... }
 }
}

Now when you run the match, Perl doesn’t have to create a compiled regular
expression on each if test, because it sees that it already has one.

238 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

The result of a qr// may even be interpolated into a larger match, as though it
were a simple string:

$regex = qr/$pattern/;
$string =~ /foo${regex}bar/; # interpolate into larger patterns

This time, Perl does recompile the pattern, but you could always chain several
qr// operators together into one.

The reason this works is because the qr// operator returns a special kind of object
that has a stringification overload as described in Chapter 13. If you print out the
return value, you’ll see the equivalent string:

use v5.14;
$re = qr/my.STRING/is;
say $re; # prints (?^usi:my.STRING) in v5.14

The ^ says to start with the default option set. The /u is there because the
“unicode_strings” feature is in scope, because you said use v5.14. The /s
and /i modifiers were enabled in the pattern because they were supplied to
qr//. The /x and /m are not mentioned because they are already disabled in the
default environment specified by the caret at the start, which says to start over
with the original modifiers, not the current ones.

Anytime you interpolate strings of unknown provenance into a pattern, you
should be prepared to handle any exceptions thrown by the regex compiler, in
case someone fed you a string containing untamable beasties:

$re = qr/$pat/is; # might escape and eat you
$re = eval { qr/$pat/is } || warn ... # caught it in an outer cage

For more on the eval operator, see Chapter 27.

The Regex Compiler
After the variable interpolation pass has had its way with the string, the regex
parser finally gets a shot at trying to understand your regular expression. There’s
not actually a great deal that can go wrong at this point, apart from messing up
the parentheses or using a sequence of metacharacters that doesn’t mean any-
thing. The parser does a recursive-descent analysis of your regular expression
and, if it parses, turns it into a form suitable for interpretation by the Engine (see
the next section). Most of the interesting stuff that goes on in the parser involves
optimizing your regular expression to run as fast as possible. We’re not going to
explain that part. It’s a trade secret. (Rumors that looking at the regular expres-
sion code will drive you insane are greatly exaggerated. We hope.)

Staying in Control | 239

www.it-ebooks.info

http://www.it-ebooks.info/

But you might like to know what the parser actually thought of your regular
expression, and if you ask it politely, it will tell you. By saying use re "debug",
you can examine how the regex parser processes your pattern. (You can also see
the same information by using the –Dr command-line switch, which is available
to you if your Perl was compiled with the –DDEBUGGING flag during installation.)

#!/usr/bin/perl
use re "debug";
"Smeagol" =~ /^Sm(.*)[aeiou]l$/;

The output is below. You can see that prior to execution Perl compiles the regex
and assigns meaning to the components of the pattern: BOL for the beginning of
line (^), REG_ANY for the dot, and so on:

Compiling REx "^Sm(.*)[aeiou]l$"
Final program:
 1: BOL (2)
 2: EXACT <Sm> (4)
 4: OPEN1 (6)
 6: STAR (8)
 7: REG_ANY (0)
 8: CLOSE1 (10)
 10: ANYOF[aeiou][] (21)
 21: EXACT <l> (23)
 23: EOL (24)
 24: END (0)
anchored "Sm" at 0 floating "l"$ at 3..2147483647 (checking anchored)
anchored(BOL) minlen 4

Some of the lines summarize the conclusions of the regex optimizer. It knows that
the string must start with “Sm”, and that therefore there’s no reason to do the
ordinary left-to-right scan. It knows that the string must end with an “l”, so it
can reject out of hand any string that doesn’t. It knows that the string must be
at least four characters long, so it can ignore any string shorter than that right off
the bat. It also knows what the rarest character in each constant string is, which
can help in searching “studied” strings. (See the study entry in Chapter 27.)

It then goes on to trace how it executes the pattern:

Guessing start of match in sv for REx "^Sm(.*)[aeiou]l$" against "Smeagol"
Guessed: match at offset 0
Matching REx "^Sm(.*)[aeiou]l$" against "Smeagol"
 0 <> <Smeagol> | 1:BOL(2)
 0 <> <Smeagol> | 2:EXACT <Sm>(4)
 2 <Sm> <eagol> | 4:OPEN1(6)
 2 <Sm> <eagol> | 6:STAR(8)
 REG_ANY can match 5 times
 out of 2147483647...
 7 <Smeagol> <> | 8: CLOSE1(10)
 7 <Smeagol> <> | 10: ANYOF[aeiou][](21)

240 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

 failed...
 6 <Smeago> <l> | 8: CLOSE1(10)
 6 <Smeago> <l> | 10: ANYOF[aeiou][](21)
 failed...
 5 <Smeag> | 8: CLOSE1(10)
 5 <Smeag> | 10: ANYOF[aeiou][](21)
 6 <Smeago> <l> | 21: EXACT <l>(23)
 7 <Smeagol> <> | 23: EOL(24)
 7 <Smeagol> <> | 24: END(0)
Match successful!
Freeing REx: "^Sm(.*)[aeiou]l$"

If you follow the stream of whitespace down the middle of Smeagol, you can ac-
tually see how the Engine overshoots to let the .* be as greedy as possible, then
backtracks on that until it finds a way for the rest of the pattern to match. But
that’s what the next section is about.

The Little Engine That /Could(n’t)?/
And now we’d like to tell you the story of the Little Regex Engine that says, “I
think I can. I think I can. I think I can.”

In this section, we lay out the rules used by Perl’s regular expression engine to
match your pattern against a string. The Engine is extremely persistent and hard-
working. It’s quite capable of working even after you think it should quit. The
Engine doesn’t give up until it’s certain there’s no way to match the pattern
against the string. The Rules below explain how the Engine “thinks it can” for
as long as possible, until it knows it can or can’t. The problem for our Engine is
that its task is not merely to pull a train over a hill. It has to search a (potentially)
very complicated space of possibilities, keeping track of where it has been and
where it hasn’t.

The Engine uses a nondeterministic finite-state automaton (NFA, not to be con-
fused with NFL, a nondeterministic football league) to find a match. That just
means that it keeps track of what it has tried and what it hasn’t, and when some-
thing doesn’t pan out, it backs up and tries something else. This is known as
backtracking. (Er, sorry—we didn’t invent that term. Really.) The Engine is capable
of trying a million subpatterns at one spot, then giving up on all those, backing
up to within one choice of the beginning, and trying the million subpatterns again
at a different spot. The Engine is not terribly intelligent—just persistent, and
thorough. If you’re cagey, you can give the Engine an efficient pattern that doesn’t
let it do a lot of silly backtracking.

When someone trots out a phrase like “Regexes choose the leftmost, longest
match”, that means that Perl generally prefers the leftmost match over the longest

Staying in Control | 241

www.it-ebooks.info

http://www.it-ebooks.info/

match. But the Engine doesn’t realize it’s “preferring” anything, and it’s not really
thinking at all, just gutting it out. The overall preferences are an emergent be-
havior resulting from many individual and unrelated choices. Here are those
choices:15

Rule 1
The Engine tries to match as far left in the string as it can, such that the entire
regular expression matches under Rule 2.

The Engine starts just before the first character and tries to match the entire
pattern starting there. The entire pattern matches if and only if the Engine
reaches the end of the pattern before it runs off the end of the string. If it
matches, it quits immediately—it doesn’t keep looking for a “better” match,
even though the pattern might match in many different ways.

If it is unable to match the pattern at the first position in the string, it admits
temporary defeat and moves to the next position in the string, between the
first and second characters, and tries all the possibilities again. If it succeeds,
it stops. If it fails, it continues on down the string. The pattern match as a
whole doesn’t fail until it has tried to match the entire regular expression at
every position in the string, including after the last character.

A string of n characters actually provides n + 1 positions to match at. That’s
because the beginnings and the ends of matches are between the characters
of the string (or at either end). This rule sometimes surprises people when
they write a pattern like /x*/ that can match zero or more “x” characters. If
you try that pattern on a string like “fox”, it won’t find the “x”. Instead, it will
immediately match the null string before the “f” and never look further. If
you want it to match one or more x characters, you need to use /x+/ instead.
See the quantifiers under Rule 5.

A corollary to this rule is that any pattern matching the null string is guar-
anteed to match at the leftmost position in the string (in the absence of any
zero-width assertions to the contrary).

Rule 2
When the Engine encounters a set of alternatives (separated by | symbols),
either at the top level or at the current grouping level, it tries them left to
right, stopping on the first successful match that allows successful comple-
tion of the entire pattern.

15. Some of these choices may be skipped if the regex optimizer has any say, which is equivalent to the Little
Engine simply jumping through the hill via quantum tunnelling. But for this discussion we’re pretending
the optimizer doesn’t exist.

242 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

A set of alternatives matches a string if any of the alternatives match under
Rule 3. If none of the alternatives matches, it backtracks to the rule that
invoked this rule, which is usually Rule 1, but could be Rule 4 or 6, if we’re
within a group. That rule will then look for a new position at which to apply
Rule 2.

If there’s only one alternative, then either it matches or it doesn’t, and Rule 2
still applies. (There’s no such thing as zero alternatives because a null string
always matches.)

Rule 3
Any particular alternative matches if every item listed in the alternative
matches sequentially according to Rules 4 and 5 (such that the entire regular
expression can be satisfied).

An item consists of either an assertion, which is covered in Rule 4, or a
quantified atom, covered by Rule 5. Items that have choices on how to match
are given a “pecking order” from left to right. If the items cannot be matched
in order, the Engine backtracks to the next alternative under Rule 2.

Items that must be matched sequentially aren’t separated in the regular ex-
pression by anything syntactic—they’re merely juxtaposed in the order they
must match. When you ask to match /^foo/, you’re actually asking for four
items to be matched one after the other. The first is a zero-width assertion,
matched under Rule 4, and the other three are ordinary characters that must
match themselves, one after the other, under Rule 5.

The left-to-right pecking order means that in a pattern like:

/x*y*/

x* gets to pick one way to match, and then y* tries all its ways. If that fails,
then x* gets to pick its second choice and make y* try all of its ways again.
And so on. The items to the right “vary faster”, to borrow a phrase from
multidimensional arrays.

Rule 4
If an assertion does not match at the current position, the Engine backtracks
to Rule 3 and retries higher-pecking-order items with different choices.

Some assertions are fancier than others. Perl supports many regex extensions,
some of which are zero-width assertions. For example, the positive look-
ahead (?=...) and the negative lookahead (?!...) don’t actually match any
characters but merely assert that the regular expression represented by ...

Staying in Control | 243

www.it-ebooks.info

http://www.it-ebooks.info/

would (or would not) match at this point, were we to attempt it, hypothet-
ically speaking.16

Rule 5
A quantified atom matches only if the atom itself matches some number of
times that is allowed by the quantifier. (The atom itself is matched according
to Rule 6.)

Different quantifiers require different numbers of matches, and most of them
allow a range of numbers of matches. Multiple matches must all match in
a row; that is, they must be adjacent within the string. An unquantified atom
is assumed to have a quantifier requiring exactly one match (that is, /x/ is
the same as /x{1}/). If no match can be found at the current position for any
allowed quantity of the atom in question, the Engine backtracks to Rule 3
and retries higher-pecking-order items with different choices.

The quantifiers are *, +, ?, *?, +?, ??, *+, ++, ?+, and the various brace forms.
If you use the {COUNT} form, then there is no choice, and the atom must match
exactly that number of times or not at all. Otherwise, the atom can match
over a range of quantities, and the Engine keeps track of all the choices so
that it can backtrack if necessary. But then the question arises as to which
of these choices to try first. One could start with the maximal number of
matches and work down, or the minimal number of matches and work up.

The traditional quantifiers (without a trailing question mark) specify
greedy matching; that is, they attempt to match as many characters as pos-
sible. To find the greediest match, the Engine has to be a little bit careful.
Bad guesses are potentially rather expensive, so the Engine doesn’t actually
count down from the maximum value, which after all could be Very Large
and cause millions of bad guesses. What the Engine actually does is a little
bit smarter: it first counts up to find out how many matching atoms (in a
row) are really there in the string, and then it uses that actual maximum as
its first choice. (It also remembers all the shorter choices in case the longest
one doesn’t pan out.) It then (at long last) tries to match the rest of the
pattern, assuming the longest choice to be the best. If the longest choice fails
to produce a match for the rest of the pattern, it backtracks and tries the
next longest.

If you say /.*foo/, for example, it will try to match the maximal number of
“any” characters (represented by the dot) clear out to the end of the line

16. In actual fact, the Engine does attempt it. The Engine goes back to Rule 2 to test the subpattern, and then
wipes out any record of how much string was eaten, returning only the success or failure of the subpattern
as the value of the assertion. (It does, however, remember any captured substrings.)

244 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

before it ever tries looking for “foo”; and then when the “foo” doesn’t match
there (and it can’t, because there’s not enough room for it at the end of the
string), the Engine will back off one character at a time until it finds a
“foo”. If there is more than one “foo” in the line, it’ll stop on the last one,
since that will really be the first one it encounters as it backtracks. When the
entire pattern succeeds using some particular length of .*, the Engine knows
it can throw away all the other shorter choices for .* (the ones it would have
used had the current “foo” not panned out).

By placing a question mark after any greedy quantifier, you turn it into a
frugal quantifier that chooses the smallest quantity for the first try. So if you
say /.*?foo/, the .*? first tries to match 0 characters, then 1 character, then
2, and so on, until it can match the “foo”. Instead of backtracking backward,
it backtracks forward, so to speak, and ends up finding the first “foo” on
the line instead of the last.

Rule 6
Each atom matches according to the designated semantics of its type. If the
atom doesn’t match (or does match, but doesn’t allow a match of the rest
of the pattern), the Engine backtracks to Rule 5 and tries the next choice for
the atom’s quantity.

Atoms match according to the following types:

• A regular expression in parentheses, (...), matches whatever the regular
expression (represented by ...) matches according to Rule 2. Parenthe-
ses therefore serve as a grouping operator for quantification. Bare paren-
theses also have the side effect of capturing the matched substring for
later use in a group reference, often known as a backreference. This side
effect can be suppressed by using (?:...) instead, which has only the
grouping semantics—it doesn’t store anything in $1, $2, and so on.
Other forms of parenthetical atoms (and assertions) are possible—see
the rest of this chapter.

• A dot matches any character, except maybe newline.

• A list of characters in square brackets (a bracketed character class)
matches any one of the characters specified by the list.

• A backslashed letter matches an abstract sequence, typically either a
particular character or one of a set of characters, as listed in Table 5-3.

• Any other backslashed character matches that character.

• Any character not mentioned above matches itself.

That all sounds rather complicated, but the upshot of it is that, for each set of
choices given by a quantifier or alternation, the Engine has a knob it can twiddle.

Staying in Control | 245

www.it-ebooks.info

http://www.it-ebooks.info/

It will twiddle those knobs until the entire pattern matches. The Rules just say
in which order the Engine is allowed to twiddle those knobs. Saying the Engine
prefers the leftmost match merely means it twiddles the start position knob the
slowest. And backtracking is just the process of untwiddling the knob you just
twiddled in order to try twiddling a knob higher in the pecking order—that is,
one that varies slower.

Here’s a more concrete example. This program detects when two consecutive
words share a common ending and beginning:

$a = "nobody";
$b = "bodysnatcher";
if ("$a $b" =~ /^(\w+)(\w+) \2(\w+)$/) {
 say "$2 overlaps in $1–$2–$3";
}

This prints:

body overlaps in no–body–snatcher

You might think that $1 would first grab up all of “nobody” due to greediness.
And, in fact, it does—at first. But once it’s done so, there aren’t any further
characters to put in $2, which needs characters put into it because of the + quan-
tifier. So the Engine backs up and $1 begrudgingly gives up one character to $2.
This time the space character matches successfully, but then it sees \2, which
represents a measly “y”. The next character in the string is not a “y”, but a “b”.
This makes the Engine back up character by character all the way, eventually
forcing $1 to surrender the body to $2. Habeas corpus, as it were.

Actually, that won’t quite work out if the overlap is itself the product of a doubling,
as in the two words “rococo” and “cocoon”. The algorithm above would have
decided that the overlapping string, $2, must be just “co” rather than “coco”. But
we don’t want a “rocococoon”; we want a “rococoon”. Here’s one of those places
you can outsmart the Engine. Adding a minimal matching quantifier to the $1
part gives the much better pattern /^(\w+?)(\w+) \2(\w+)$/, which does exactly
what we want.

For a much more detailed discussion of the pros and cons of various kinds of
regular expression engines, see Jeffrey Friedl’s book, Mastering Regular Expres-
sions. Perl’s regular expression Engine works very well for many of the everyday
problems you want to solve with Perl, and it even works okay for those not-so-
everyday problems—if you give it a little respect and understanding.

246 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124
http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124
http://www.it-ebooks.info/

Fancy Patterns

Lookaround Assertions
Sometimes you just need to sneak a peek. There are four regex extensions that
help you do just that, and we call them lookaround assertions because they let
you scout around in a hypothetical sort of way, without committing to matching
any characters. What these assertions assert is that some pattern would (or would
not) match if we were to try it. The Engine works it all out for us by actually
trying to match the hypothetical pattern, and then pretending that it didn’t match
(if it did).

When the Engine peeks ahead from its current position in the string, we call it
a lookahead assertion. If it peeks backward, we call it a lookbehind assertion. The
lookahead patterns can be any regular expression, but the lookbehind patterns
may only be fixed width, since they have to know from where to start the hypo-
thetical match.

While these four extensions are all zero-width assertions, and hence do not con-
sume characters (at least, not officially), you can in fact capture substrings within
them if you supply extra levels of capturing parentheses.

(?=PATTERN) (positive lookahead)
When the Engine encounters (?=PATTERN), it looks ahead in the string to
ensure that PATTERN occurs. If you’ll recall, in our earlier duplicate word re-
mover, we had to write a loop because the pattern ate too much each time
through:

$_ = "Paris in THE THE THE THE spring.";

remove duplicate words (and triplicate (and quadruplicate...))
1 while s/\b(\w+) \1\b/$1/gi;

Whenever you hear the phrase “ate too much”, you should always think
“lookahead assertion” (well, almost always). By peeking ahead instead of
gobbling up the second word, you can write a one-pass duplicate word re-
mover like this:

s/ \b(\w+) \s (?= \1\b) //gxi;

Of course, this isn’t quite right, since it will mess up valid phrases like “The
clothes you DON DON't fit.”

Lookahead assertions can be used to implement overlapping matches. For
example,

Fancy Patterns | 247

www.it-ebooks.info

http://www.it-ebooks.info/

"0123456789" =~ /(\d{3})/g

returns only three strings: 012, 345, and 678. By wrapping the capture group
with a lookahead assertion:

"0123456789" =~ /(?:(\d{3}))/g

you now retrieve all of 012, 123, 234, 345, 456, 567, 678, and 789. This works
because this tricky assertion does a stealthy sneakahead to run up and grab
what’s there and stuff its capture group with it, but being a lookahead, it
reneges and doesn’t technically consume any of it. When the engine sees
that it should try again because of the /g, it steps one character past where
last it tried.

(?!PATTERN) (negative lookahead)
When the Engine encounters (?!PATTERN), it looks ahead in the string to
ensure that PATTERN does not occur. To fix our previous example, we can add
a negative lookahead assertion after the positive assertion to weed out the
case of contractions:

s/ \b(\w+) \s (?= \1\b (?! '\w))//xgi;

That final \w is necessary to avoid confusing contractions with words at the
ends of single-quoted strings. We can take this one step further, since earlier
in this chapter we intentionally used “that that particular”, and we’d like
our program to not “fix” that for us. So we can add an alternative to the
negative lookahead in order to pre-unfix that “that” (thereby demonstrating
that any pair of parentheses can be used to group alternatives):

s/ \b(\w+) \s (?= \1\b (?! '\w | \s particular))//gix;

Now we know that that particular phrase is safe. Unfortunately, the Gettys-
burg Address is still broken. So we add another exception:

s/ \b(\w+) \s (?= \1\b (?! '\w | \s particular | \s nation))//igx;

This is just starting to get out of hand. So let’s do an Official List of Excep-
tions, using a cute interpolation trick with the $" variable to separate the
alternatives with the | character:

@thatthat = qw(particular nation);
local $" = '|';
s/ \b(\w+) \s (?= \1\b (?! '\w | \s (?: @thatthat)))//xig;

(?<=PATTERN) (positive lookbehind)
When the Engine encounters (?<= PATTERN), it looks backward in the string
to ensure that PATTERN already occurred.

248 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

Our example still has a problem. Although it now lets Honest Abe say things
like “that that nation”, it also allows “Paris, in the the nation of
France”. We can add a positive lookbehind assertion in front of our exception
list to make sure that we apply our @thatthat exceptions only to a real “that
that”.

s/ \b(\w+) \s (?= \1\b (?! '\w | (?<= that) \s (?: @thatthat)))//ixg;

Yes, it’s getting terribly complicated, but that’s why this section is called
“Fancy Patterns”, after all. If you need to complicate the pattern any more
than we’ve done so far, judicious use of comments and qr// will help keep
you sane. Or at least saner.

Or consider using \K to lie to the Engine about where the official match
started. The preceding pattern will then function as a kind of lookbehind to
the official part of the pattern, but it will be scanned for left to right. This is
especially useful if you find yourself wanting a variable-width lookbehind,
which is something the Engine can’t. Or at least won’t.

(?<!PATTERN) (negative lookbehind)
When the Engine encounters (?<! PATTERN), it looks backward in the string
to ensure that PATTERN did not occur.

Let’s go for a really simple example this time. How about the easy version of
that old spelling rule, “I before E except after C”? In Perl, you spell it:

s/(?<!c)ei/ie/g

You’ll have to weigh for yourself whether you want to handle any of the
exceptions. (For example, “weird” is spelled weird, especially when you spell
it “wierd”.)

Possessive Groups
As described in “The Little Engine That /Could(n’t)?/” on page 241, the Engine
often backtracks as it proceeds through the pattern. You can block the Engine
from backtracking back through a particular set of choices by creating a non-
backtracking subpattern. A possessive group looks like (?>PATTERN), and it works
exactly like a simple noncapturing group (?:PATTERN), except that once PATTERN
has found a match, it suppresses backtracking on any of the quantifiers or alter-
natives inside the subpattern. (Hence, it is meaningless to use this on a PATTERN
that doesn’t contain quantifiers or alternatives.) The only way to get it to change
its mind is to backtrack to something before the subpattern and reenter the sub-
pattern from the left.

Fancy Patterns | 249

www.it-ebooks.info

http://www.it-ebooks.info/

It’s like going into a car dealership. After a certain amount of haggling over the
price, you deliver an ultimatum: “Here’s my best offer; take it or leave it.” If they
don’t take it, you don’t go back to haggling again. Instead, you backtrack clear
out the door. Maybe you go to another dealership and start haggling again.
You’re allowed to haggle again, but only because you reentered the nonback-
tracking pattern again in a different context.

For devotees of Prolog or SNOBOL, you can think of this as a scoped cut or fence
operator.

Consider how in "aaab" =~ /(?:a*)ab/, the a* first matches three as, but then
gives up one of them because the last a is needed later. The subgroup sacrifices
some of what it wants in order for the whole match to succeed. (Which is like
letting the car salesman talk you into giving him more of your money because
you’re afraid to walk away from the deal.) In contrast, the subpattern in "aaab"
=~ /(?>a*)ab/ will never give up what it grabs, even though this behavior causes
the whole match to fail. (As the song says, you have to know when to hold ’em,
when to fold ’em, and when to walk away.)

Although (?> PATTERN) is useful for changing the behavior of a pattern, it’s mostly
used for speeding up the failure of certain matches that you know will fail anyway
(unless they succeed outright). The Engine can take a spectacularly long time to
fail, particularly with nested quantifiers. The following pattern will succeed al-
most instantly:

$_ = "aab";
/a*[Bb]/;

But success is not the problem. Failure is. If you remove that final “b” from the
string, the pattern will probably run for many, many years before failing. Many,
many millennia. Actually, billions and billions of years.17 You can see by inspec-
tion that the pattern can’t succeed if there’s no “b” on the end of the string, but
the regex optimizer is not smart enough (as of this writing) to figure out
that /[Bb]/ will never match some other way. But if you give it a hint, you can get
it to fail quickly while still letting it succeed where it can:

/(?>a*)[Bb]/;

For a (hopefully) more realistic example, imagine a program that’s supposed to
read in a paragraph at a time and show just the lines that are continued, where

17. Actually, it’s more on the order of septillions and septillions. We don’t know exactly how long it would
take. We didn’t care to wait around watching it not fail. In any event, your computer is likely to crash
before the heat death of the universe, and this regular expression takes longer than either of those.

250 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

continuation lines are specified with trailing backslashes. Here’s a sample from
Perl’s Makefile that uses this line-continuation convention:

Files to be built with variable substitution before miniperl
is available.
sh = Makefile.SH cflags.SH config_h.SH makeaperl.SH makedepend.SH \
 makedir.SH myconfig.SH writemain.SH

You could write your simple program this way:

#!/usr/bin/perl –00p
while (/((.+) ((?<=\\) \n .*)+) /gx) {
 say "GOT $.: $1\n";
}

That works, but it’s really quite slow. That’s because the Engine backtracks a
character at a time from the end of the line, shrinking what’s in $1. This is point-
less. And writing it without the extraneous captures doesn’t help much. Using:

(.+(?:(?<=\\)\n.*)+)

for a pattern is somewhat faster, but not much. This is where a nonbacktracking
subpattern helps a lot. The pattern:

((?>.+)(?:(?<=\\)\n.*)+)

does the same thing, but more than an order of magnitude faster because it doesn’t
waste time backtracking in search of something that isn’t there.

You’ll never get a success with (?>...) that you wouldn’t get with (?:...), or even
a simple (...). But if you’re going to fail, it’s best to fail quickly and get on with
your life.

By the way, since our example contains only a single quantifier, (?>.+) may be
more succinctly written as .++.

Programmatic Patterns
Most Perl programs tend to follow an imperative (also called procedural) pro-
gramming style, like a series of discrete commands laid out in a readily observable
order: “Preheat oven, mix, glaze, heat, cool, serve to aliens.” Sometimes into this
mix you toss a few dollops of functional programming (“use a little more glaze
than you think you need, even after taking this into account, recursively”), or
sprinkle it with bits of object-oriented techniques (“but please hold the anchovy
objects”). Often it’s a combination of all of these.

But the regular expression Engine takes a completely different approach to prob-
lem solving, more of a declarative approach. You describe goals in the language
of regular expressions, and the Engine implements whatever logic is needed to

Fancy Patterns | 251

www.it-ebooks.info

http://www.it-ebooks.info/

solve your goals. Logic programming languages (such as Prolog) don’t always
get as much exposure as the other three styles, but they’re more common than
you’d think. Perl couldn’t even be built without make(1) or yacc(1), both of which
could be considered—if not purely declarative languages—at least hybrids that
blend imperative and logic programming together.

You can do this sort of thing in Perl, too, by blending goal declarations and im-
perative code together more miscibly than we’ve done so far, drawing upon the
strengths of both. You can programmatically build up the string you’ll eventually
present to the regex Engine, in a sense creating a program that writes a new
program on the fly.

You can also supply ordinary Perl expressions as the replacement part of s/// via
the /e modifier. This allows you to dynamically generate the replacement string
by executing a bit of code every time the pattern matches.

Even more elaborately, you can interject bits of code wherever you’d like in the
middle of a pattern using the (?{ CODE }) extension, and that code will be exe-
cuted every time the Engine encounters that code as it advances and recedes in
its intricate backtracking dance.

Finally, you can use s///ee or (??{ CODE }) to add another level of indirection:
the results of executing those code snippets will themselves be reevaluated for
further use, creating bits of program and pattern on the fly, just in time.

Generated patterns

It has been said18 that programs that write programs are the happiest programs
in the world. In Jeffrey Friedl’s book Mastering Regular Expressions, the final tour
de force demonstrates how to write a program that produces a regular expression
to determine whether a string conforms to the RFC 822 standard; that is, whether
it contains a standards-compliant, valid mail header. The pattern produced is
several thousand characters long, and it's about as easy to read as a crash dump
in pure binary. But Perl’s pattern matcher doesn’t care about that; it just compiles
up the pattern without a hitch and, even more interestingly, executes the match
very quickly—much more quickly, in fact, than many short patterns with com-
plex backtracking requirements.

That’s a very complicated example. Earlier we showed you a very simple example
of the same technique when we built up a $number pattern out of its components
(see the earlier section “Variable Interpolation” on page 234). But to show you the

18. By Andrew Hume, the famous Unix philosopher.

252 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/regular-expressions/0596528124
http://www.it-ebooks.info/

power of this programmatic approach to producing a pattern, let’s work out a
problem of medium complexity.

Suppose you wanted to pull out all the words with a certain vowel‒consonant
sequence; for example, “audio” and “eerie” both follow a VVCVV pattern. Al-
though describing what counts as a consonant or a vowel is easy, you wouldn’t
ever want to type that in more than once. Even for our simple VVCVV case, you’d
need to type in a pattern that looked something like this:

^[aeiouy][aeiouy][cbdfghjklmnpqrstvwxzy][aeiouy][aeiouy]$

A more general-purpose program would accept a string like “VVCVV” and pro-
grammatically generate that pattern for you. For even more flexibility, it could
accept a word like “audio” as input and use that as a template to infer “VVCVV”
and, from that, the long pattern above. It sounds complicated, but it really isn’t
because we’ll let the program generate the pattern for us. Here’s a simple
cvmap program that does all of that:

#!/usr/bin/perl
$vowels = "aeiouy";
$cons = "cbdfghjklmnpqrstvwxzy";
%map = (C => $cons, V => $vowels); # init map for C and V

for $class ($vowels, $cons) { # now for each type
 for (split //, $class) { # get each letter of that type
 $map{$_} .= $class; # and map the letter back to the type
 }
}

for $char (split //, shift) { # for each letter in template word
 $pat .= "[$map{$char}]"; # add appropriate character class
}

$re = qr/^${pat}$/i; # compile the pattern
say "REGEX is $re\n"; # debugging output
@ARGV = ("/usr/share/dict/words") # pick a default dictionary
 if –t && !@ARGV;

while (<>) { # and now blaze through the input
 print if /$re/; # printing any line that matches
}

The %map variable holds all the interesting bits. Its keys are each letter of the al-
phabet, and the corresponding value is all the letters of its type. We throw in C
and V, too, so you can specify either “VVCVV” or “audio”, and still get out
“eerie”. Each character in the argument supplied to the program is used to pull
out the right character class to add to the pattern. Once the pattern is created

Fancy Patterns | 253

www.it-ebooks.info

http://www.it-ebooks.info/

and compiled up with qr//, the match (even a very long one) will run quickly.
Here’s what you might get if you run this program on “fortuitously”:

% cvmap fortuitously /usr/dict/words
 REGEX is (?i–xsm:^[cbdfghjklmnpqrstvwxzy][aeiouy][cbdfghjklmnpqrstvw
 xzy][cbdfghjklmnpqrstvwxzy][aeiouy][aeiouy][cbdfghjklmnpqrstvwxzy][a
 eiouy][aeiouy][cbdfghjklmnpqrstvwxzy][cbdfghjklmnpqrstvwxzy][aeiouyc
 bdfghjklmnpqrstvwxzy]$)
 carriageable
 circuitously
 fortuitously
 languorously
 marriageable
 milquetoasts
 sesquiquarta
 sesquiquinta
 villainously

Looking at that REGEX, you can see just how much villainous typing you saved by
programming languorously, albeit circuitously.

Substitution evaluations

When the /e modifier (“e” is for expression evaluation) is used on an s/PAT
TERN/CODE/e expression, the replacement portion is interpreted as a Perl expres-
sion, not just as a double-quoted string. It’s like an embedded do { CODE }. Even
though it looks like a string, it’s really just a code block that gets compiled at the
same time as the rest of your program, long before the substitution actually hap-
pens.

You can use the /e modifier to build replacement strings with fancier logic than
double-quote interpolation allows. This shows the difference:

s/(\d+)/$1 * 2/; # Replaces "42" with "42 * 2"
s/(\d+)/$1 * 2/e; # Replaces "42" with "84"

And this converts Celsius temperatures into Fahrenheit:

$_ = "Preheat oven to 233C.\n";
s/\b(\d+\.?\d*)C\b/int($1 * 1.8 + 32) . "F"/e; # convert to 451F

Applications of this technique are limitless. Here’s a filter that modifies its files in
place (like an editor) by adding 100 to every number that starts a line (and that
is followed by a colon, which we only peek at but don’t actually match or replace):

% perl –pi –e 's/^(\d+)(?=:)/100 + $1/e' filename

Now and then you want to do more than just use the string you matched in
another computation. Sometimes you want that string to be a computation,
whose own evaluation you’ll use for the replacement value. Each additional /e

254 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

modifier after the first wraps an eval around the code to execute. The following
two lines do the same thing, but the first one is easier to read:

s/PATTERN/CODE/ee
s/PATTERN/eval(CODE)/e

You could use this technique to replace mentions of simple scalar variables with
their values:

s/(\$\w+)/$1/eeg; # Interpolate most scalars' values

Because it’s really an eval, the /ee even finds lexical variables. A slightly more
elaborate example calculates a replacement for simple arithmetical expressions
on (nonnegative) integers:

$_ = "I have 4 + 19 dollars and 8/2 cents.\n";
s{ (
 \d+ \s* # find an integer
 [+*/–] # and an arithmetical operator
 \s* \d+ # and another integer
)
}{ $1 }eegx; # then expand $1 and run that code
print; # "I have 23 dollars and 4 cents."

Like any other eval STRING, compile-time errors (like syntax problems) and run-
time exceptions (like dividing by zero) are trapped. If so, the $@ ($EVAL_ERROR)
variable says what went wrong.

Match-time code evaluation

In most programs that use regular expressions, the surrounding program’s run-
time control structure drives the logical execution flow. You write if or while
loops, or make function or method calls, that wind up calling a pattern-matching
operation now and then. Even with s///e, it’s the substitution operator that is in
control, executing the replacement code only after a successful match.

With code subpatterns, the normal relationship between regular expression and
program code is inverted. As the Engine is applying its Rules to your pattern at
match time, it may come across a regex extension of the form (?{ CODE }). When
triggered, this subpattern doesn’t do any matching or any looking about. It’s a
zero-width assertion that always “succeeds”, evaluated only for its side effects.
Whenever the Engine needs to progress over the code subpattern as it executes
the pattern, it runs that code.

"glyph" =~ /.+ (?{ say "hi" }) ./x; # Prints "hi" twice.

As the Engine tries to match glyph against this pattern, it first lets the .+ eat up
all five letters. Then it prints “hi”. When it finds that final dot, all five letters have
been eaten, so it needs to backtrack back to the .+ and make it give up one of the

Fancy Patterns | 255

www.it-ebooks.info

http://www.it-ebooks.info/

letters. Then it moves forward through the pattern again, stopping to print “hi”
again before assigning h to the final dot and completing the match successfully.

The braces around the CODE fragment are intended to remind you that it is a block
of Perl code, and it certainly behaves like a block in the lexical sense. That is, if
you use my to declare a lexically scoped variable in it, it is private to the block. But
if you use local to localize a dynamically scoped variable, it may not do what you
expect. A (?{ CODE }) subpattern creates an implicit dynamic scope that is valid
throughout the rest of the pattern, until it either succeeds or backtracks through
the code subpattern. One way to think of it is that the block doesn’t actually
return when it gets to the end. Instead, it makes an invisible recursive call to the
Engine to try to match the rest of the pattern. Only when that recursive call is
finished does it return from the block, delocalizing the localized variables.19 In
the next example, we initialize $i to 0 by including a code subpattern at the
beginning of the pattern. Then, we match any number of characters with .*—
but we place another code subpattern in between the . and the * so we can count
how many times . matches.

$_ = "lothlorien";
m/ (?{ $i = 0 }) # Set $i to 0
 (. (?{ $i++ }))* # Update $i, even after backtracking
 lori # Forces a backtrack
 /x;

The Engine merrily goes along, setting $i to 0 and letting the .* gobble up all 10
characters in the string. When it encounters the literal lori in the pattern, it
backtracks and gives up those four characters from the .*. After the match, $i
will still be 10.

If you wanted $i to reflect how many characters the .* actually ended up with,
you could make use of the dynamic scope within the pattern:

19. People who are familiar with recursive descent parsers may find this behavior confusing because such
compilers return from a recursive function call whenever they figure something out. The Engine doesn’t
do that—when it figures something out, it goes deeper into recursion (even when exiting a parenthetical
group!). A recursive descent parser is at a minimum of recursion when it succeeds at the end, but the
Engine is at a local maximum of recursion when it succeeds at the end of the pattern. You might find it
helpful to dangle the pattern from its left end and think of it as a skinny representation of a call graph
tree. If you can get that picture into your head, the dynamic scoping of local variables will make more
sense. (And if you can’t, you’re no worse off than before.)

256 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$_ = "lothlorien";
m/ (?{ $i = 0 })
 (. (?{ local $i = $i + 1; }))* # Update $i, backtracking–safe.
 lori
 (?{ $result = $i }) # Copy to non–local()ized location.
 /x;

Here we use local to ensure that $i contains the number of characters matched
by .*, regardless of backtracking. $i will be forgotten after the regular expression
ends, so the code subpattern, (?{ $result = $i }), ensures that the count will
live on in $result.

The special variable $^R (described in Chapter 25) holds the result of the last
(?{ CODE }) that was executed as part of a successful match.

You can use a (?{ CODE }) extension as the COND of a (?(COND)IFTRUE|IFFALSE). If
you do this, $^R will not be set, and you may omit the parentheses around the
conditional:

"glyph" =~ /.+(?(?{ $foo{bar} gt "symbol" }).|signet)./;

Here we test whether $foo{bar} is greater than symbol. If so, we include . in the
pattern; if not, we include signet in the pattern. Stretched out a bit, it might be
construed as more readable:

"glyph" =~ m{
 .+ # some anythings
 (?(?{ # if
 $foo{bar} gt "symbol" # this is true
 })
 . # match another anything
 | # else
 signet # match signet
)
 . # and one more anything
}x;

When use re "eval" is in effect, a regex is allowed to contain (?{ CODE }) sub-
patterns even if the regular expression interpolates variables:

/(.*?) (?{length($1) < 3 && warn}) $suffix/; # Error without
 # use re "eval"

This is normally disallowed since it is a potential security risk. Even though the
pattern above may be innocuous because $suffix is innocuous, the regex parser
can’t tell which parts of the string were interpolated and which ones weren’t, so
it just disallows code subpatterns entirely if there were any interpolations.

If the pattern is obtained from tainted data, even use re "eval" won’t allow the
pattern match to proceed.

Fancy Patterns | 257

www.it-ebooks.info

http://www.it-ebooks.info/

When use re "taint" is in effect and a tainted string is the target of a regex, the
captured subpatterns (either in the numbered variables or in the list of values
returned by m// in list context) are tainted. This is useful when regex operations
on tainted data are meant not to extract safe substrings, but merely to perform
other transformations. See Chapter 20 for more on tainting. For the purpose of
this pragma, precompiled regular expressions (usually obtained from qr//) are
not considered to be interpolated:

/foo${pat}bar/

This is allowed if $pat is a precompiled regular expression, even if $pat contains
(?{ CODE }) subpatterns.

Earlier we showed you a bit of what use re 'debug' prints out. A more primitive
debugging solution is to use (?{ CODE }) subpatterns to print out what’s been
matched so far during the match:

"abcdef" =~ / .+ (?{say "Matched so far: $&"}) bcdef $/x;

This prints:

Matched so far: abcdef
Matched so far: abcde
Matched so far: abcd
Matched so far: abc
Matched so far: ab
Matched so far: a

showing the .+ grabbing all the letters and giving them up one by one as the
Engine backtracks.

Match-time pattern interpolation

You can build parts of your pattern from within the pattern itself. The
(??{ CODE }) extension allows you to insert code that evaluates to a valid pattern.
It’s like saying /$pattern/, except that you can generate $pattern at runtime—
more specifically, at match time. For instance:

/\w (??{ if ($threshold > 1) { "red" } else { "blue" } }) \d/x;

This is equivalent to /\wred\d/ if $threshold is greater than 1, and /\wblue\d/
otherwise.

You can include group references inside the evaluated code to derive patterns from
just-matched substrings (even if they will later become unmatched through
backtracking). For instance, this matches all strings that read the same backward
as forward (known as palindromedaries, phrases with a hump in the middle):

/^ (.+) .? (??{quotemeta reverse $1}) $/xi;

258 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

You can balance parentheses like so:

$text =~ /(\(+) (.*?) (??{ "\)" x length $1 })/x;

This matches strings of the form (shazam!) and (((shazam!))), sticking shazam!
into $2. Unfortunately, it doesn’t notice whether the parentheses in the middle are
balanced. For that we need recursion.

Fortunately, you can do recursive patterns, too. One way is to have a compiled
pattern that uses (??{ CODE }) to refer to itself. Recursive matching is pretty ir-
regular, as regular expressions go. Any text on regular expressions will tell you
that a standard regex can’t match nested parentheses correctly. And that’s cor-
rect. It’s also correct that Perl’s regexes aren’t standard. The following pat-
tern20 matches a set of nested parentheses, however deep they go:

$np = qr{
 \(
 (?:
 (?> [^()]+) # Non–parens without backtracking
 |
 (??{ $np }) # Group with matching parens
)*
 \)
 }x;

You could use it like this to match a function call:

$funpat = qr/\w+$np/;
"myfunfun(1,(2*(3+4)),5)" =~ /^$funpat$/; # Matches!

Conditional interpolation

The (?(COND)IFTRUE|IFFALSE) regex extension is similar to Perl’s ?: operator. If
COND is true, the IFTRUE pattern is used; otherwise, the IFFALSE pattern is used.
The COND can be a group reference (expressed as a bare integer, without the \ or
$), a lookaround assertion, or a code subpattern. (See the sections “Lookaround
Assertions” on page 247 and “Match-time code evaluation” on page 255, earlier
in this chapter.)

If the COND is an integer, it is treated as a group reference. For instance, consider:

#!/usr/bin/perl
$x = "Perl is free.";
$y = 'ManagerWare costs $99.95.';

foreach ($x, $y) {
 /^(\w+) (?:is|(costs)) (?(2)(\$\d+)|\w+)/; # Either (\$\d+) or \w+

20. Note that you can’t declare the variable in the same statement in which you’re going to use it. You can
always declare it earlier, of course.

Fancy Patterns | 259

www.it-ebooks.info

http://www.it-ebooks.info/

 if ($3) {
 say "$1 costs money."; # ManagerWare costs money.
 } else {
 say "$1 doesn't cost money."; # Perl doesn't cost money.
 }
}

Here, the COND is (2), which is true if a second group reference exists. If that’s the
case, (\$\d+) is included in the pattern at that point (creating the $3 capture
variable); otherwise, \w+ is used.

If the COND is a lookaround or code subpattern, the truth of the assertion is used
to determine whether to include IFTRUE or IFFALSE:

/[ATGC]+(?(?<=AA)G|C)$/;

This uses a lookbehind assertion as the COND to match a DNA sequence that ends
in either AAG, or some other base combination and C.

You can omit the |IFFALSE alternative. If you do, the IFTRUE pattern will be in-
cluded in the pattern as usual if the COND is true; but if the condition isn’t true,
the Engine will move on to the next portion of the pattern.

Recursive Patterns
When you reference a capture group from within the pattern, whatever was ac-
tually captured by that group is what gets used for the backreference.

/\b (\p{alpha}+) \s+ \1 \b /x # numbered backref
/\b (\p{alpha}+) \s+ \g{1} \b /x # alternate syntax
/\b (\p{alpha}+) \s+ \g{–1} \b /x # relative backref
/\b (?<word> \p{alpha}+) \s+ \k<word> \b /x # named backref

Those four examples all use backreferences to match the same word twice in a
row. But sometimes you want to match two different words with the same pat-
tern.

For that, a different syntax is used: (?NUMBER) calls back into the pattern of a
numbered group, whereas (?&NAME) does so for a named group. (The latter is
reminiscent of the & form of subroutine calls.)

/\b (\p{alpha}+) \s+ (?–1) \b /x # "call" numbered group
/\b (?<word> \p{alpha}+) \s+ (?&word) \b /x # "call" named group

With the NUMBER form, a leading minus sign counts groups right to left from the
current location, so –1 means to call the previous group; you don’t have to know
the absolute position of it. On the other hand, if the number has a plus sign in
front, (?+NUMBER), you count forward that many groups to the right of where you
are.

260 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

You are even allowed to call a group that you’re already in the middle of, causing
the matching engine to recurse on itself. This is a normal thing to want to do.
Here’s one way to match balanced parentheses:

/ (\((?: [^()]++ | (?1))*+ \))/x

Because the entire pattern is enclosed by capture parentheses, you can omit them
altogether and use (?0) to call “group zero”, which means the whole pattern:

/ \((?: [^()]++ | (?0))*+ \) /x

That works fine here, but it may not do what you expect when you write a qr//
that gets used in some other pattern. In that case, you should stick with a rela-
tively numbered group. Here we define a regex that matches an identifier fol-
lowed by balanced parentheses:

$funcall = qr/\w+ (\((?: [^()]++ | (?–1))*+ \))/x

Then we call it like this:

while (<>) {
 say $1 if /^ \s* ($funcall) \s* ; \s* $/x;
}

This conveniently leaves only the desired result in $1. The subrule is an example
of Position Independent Code: it doesn’t care about its absolute position in the
overall scheme of things.

Numbered groups are okay for simple patterns, but for anything more compli-
cated, you’ll find named groups to be more readable:

$funcall = qr/\w+ (?<paren> \((?: [^()]++ | (?&paren))*+ \))/x
while (<>) {
 say $+{func} if /^ \s* (?<func> $funcall) \s* ; \s* $/x;
}

In fact, named groups are the only way to retain sanity as you scale up the size of
your parsing problem.

Note that a subcall does not return its captures to the outer pattern; it only returns
its final match position. Often this is what you want because it controls side
effects, but sometimes you’ll want to keep around pieces of whatever it is you’re
parsing. More on that in just a moment.

Speaking of parsing, you may by now have realized that you have almost every-
thing you need for real parsing. By real parsing we don’t mean the simple state
machines that NFAs and DFAs are good for, but actual recursive descent parsing.
With the features explained in this section and the next, a Perl pattern becomes
fully equivalent to a recursive descent parser. With just a few more bells and

Fancy Patterns | 261

www.it-ebooks.info

http://www.it-ebooks.info/

whistles, you’ll be able to easily write full grammars that look a lot like a yacc file
or a grammar in Backus–Naur Form.

Grammatical Patterns
Grammars work by parsing subpatterns recursively. Since capture groups can
work as subpatterns, they can be used as productions in a grammar. What you
haven’t seen yet is a way to define all your productions separate from calling
them.

Obviously, if we’re just using a capture group as a subpattern, it doesn’t matter
whether it has actually been used to match anything yet. In fact, when you’re
writing a grammar, you generally don’t want your subpatterns called the first time
you define them; you’d just like to define them all and then start using them later.
What you really want is a way to wall off a part of your pattern for definitions
alone, not for execution.

The (?(DEFINE)...) block does just that. Technically, it’s really just a conditional,
like the (?(COND)...) conditional we saw earlier. Here, the condition is DEFINE,
which turns out to always be false.21 So anything you put in a DEFINE block is
guaranteed not to be executed.

The smart-aleck in the class will now point out that the compiler is free to discard
any unused code in a conditional that is always false. The teacher will point out,
however, that this policy applies only to executable code, not to declarations.
And it happens that groups within the DEFINE block are considered declarative,
so they are not thrown away. They remain quite callable as subpatterns from
elsewhere within the same pattern.

So that’s where we’ll put our grammar. You can put your DEFINE block anywhere
you’d like, but usually people put it either before the main pattern or afterwards.
Within the block, the order of definition doesn’t matter either. So all your pat-
terns end up looking pretty much like this:

qr{
 (?&abstract_description_of_what_is_being_matched)

 (?(DEFINE)
 (?<abstract_description_of_what_is_being_matched>
 (?&component1)
 (?&component2)
 (?&component3)
 ...

21. Yes, it’s a hack, but it’s a neat hack. Otherwise, we’d be forced to use a postfix {0} quantifier as Ruby does,
to the detriment of readability.

262 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

)
 (?<component1> ...)
 (?<component2> ...)
 (?<component3> ...)
 ...
)
 }x;

The only executable portion of that pattern is the part outside the DEFINE block,
which calls the top rule that calls all the others.

This starts to look like not just a conventional grammar, but also a conventional
program. Unlike the left-to-right processing of a normal pattern, this one now
has the general form of top-down programming, full of subroutines calling each
other iteratively and recursively. The importance of this development model
cannot be overstated, because giving good names to your abstractions is the sin-
gle most important thing you can do toward making your pattern matching easy
to develop, debug, and maintain. It’s no different from normal programming that
way.

And it’s easy to recognize where you are missing an abstraction; if you’re repeating
yourself somewhere, that repeated functionality probably needs to be factored
out and named. And if you give it a memorable name that tells what it’s for, this
helps you organize and maintain your code. If you later want to modify that code,
you only have to do so in one place; subroutine calls were the original code-reuse
paradigm. Subpatterns are just subroutine calls in disguise.

This style of pattern matching is completely addictive, once you get the hang of
it: nontrivial patterns will stop looking like classic regular expressions and start
looking like their powerful cousins, grammars. You will no longer put up with
having to write:

/\b(?=(?=[\p{Alphabetic}\p{Digit}])\X)(?:(?=[\p{Alphabetic}\p{Digit}])\X
|['\x{2019}]|(?=[^\x{2014}])\p{dash})+(?!(?=[\p{Alphabetic}\p{Digit}])\X|)/

Instead, here’s how you’ll prefer to write it, as a grammatical pattern for pulling
words out:

$word_rx = qr{ (?&one_word)
 (?(DEFINE)
 (?<a_letter> (?= [\p{Alphabetic}\p{Digit}]) \X)
 (?<some_letters> (?: (?&a_letter) | (?&tick) | (?&dash)) +)
 (?<tick> ['\N{RIGHT SINGLE QUOTATION MARK}])
 (?<dash> (?= [^\N{EM DASH}]) \p{dash})
 (?<one_word>
 \b
 (?= (?&a_letter))
 (?&some_letters)
 (?! (?&a_letter)

Fancy Patterns | 263

www.it-ebooks.info

http://www.it-ebooks.info/

 | (?&dash)
)
)
) # end define block
}x;

The top-level pattern merely calls the one_word regex subroutine, which does all
the work. You could use that pattern to print out all words in a file, one per line,
like this:

while (/($word_rx)/) {
 say $1;
}

As those examples show, sometimes you can write a grammatical pattern as an
old-fashioned, ungrammatical one that doesn’t have any regex subroutines in it.
But you really don’t want to do that because it’s too hard to read, write, debug,
and maintain a complicated pattern all jammed together like that. But beyond
that, you just get a lot more power with grammars. Many interesting problems
lie beyond the reach of classic regexes. Let’s look at an example of something
easily matched by Perl patterns but which no classic regex could ever solve. (Two
such examples, as it turns out, one balanced and the other mirrored.)

This book is itself written in pod, Perl’s lightweight documentation system. You
can read more about it in Chapter 23, but in some ways pod looks a bit like any
other SGML-derived markup language. It has tags and pointy brackets. And just
like most other markup languages, these tags can nest in a way that completely
defeats any attempt to search or manipulate them using a simple-minded, old-
school regex tool like the venerable grep. That’s because they’re nested structures,
which means your searches and manipulators on these also need to have nested
structure. And nesting is something that your textbook regular expressions just
don’t do. Fortunately for you, Perl’s regexes are not textbook, so they can be
used to parse fancy markup languages like XML and HTML. And pod.

Pod tags always begin with a single capital letter immediately followed by one or
more opening left-angle brackets. That much is easy. The hard part is finding the
closer, the right-angle bracket (or brackets) to end the tag. And there are two
ways to do that, depending on whether the opener is followed by whitespace.

X<stuff> # balanced style
X<< stuff >> # mirrored style

Without whitespace, you are dealing with a balanced tag, where the number of
close brackets must balance the number of open brackets seen before, including
any brackets in the “stuff”.

264 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

With whitespace, your tag is not balanced but mirrored: it ends when you come
to whitespace followed by the same number of closing brackets as there were
opening ones. Within that, you may have whatever you like for angle brackets,
whether open or close, and they do not have to nest because they are not counted.

Here are a few of the hairier examples in actual use in this book:

B<–0xR<HHH...>>
C<<< >>= >>>
C<0..(2Y<R<BITS>>)–1>
C<< BZ<><touch> SZ<><BZ<><–t> IZ<><time>> IZ<><file> >>
C<(?E<lt>!...)>
C<< !grep { !R<CODE>–>($_) } keys R<HASH> >>
C<<< <HANDLE>, <<END >>>
C<(?(R<COND>)R<IFTRUE>|R<IFFALSE>)>
C<<< << R<EXPR> >>>
C<s/R<PATTERN>/R<REPLACEMENT>/>
I<Santa MarE<iacute>a>
X<<< < (left angle bracket);<< (left–shift) operator:@leftleft >>>

Here is the start of a grammar to do this:

podtag:: capital either
capital:: uppercase_letter
either:: < balanced | mirrored >

These translate directly into subpatterns:

(?<podtag> (?&capital) (?&either))
(?<capital> \p{uppercase_letter})
(?<either> (?&balanced) | (?&mirrored))

A balanced angle group is just text surrounded by properly nested angle brackets,
such as with B<–0xR<HHHH>>. Balanced things we already know how to do, because
it works just like the earlier problem to find balanced parentheses.

(?<balanced> < ([^<>]++ | (?&balanced))* >)

That brings us to the last piece of our grammar, the mirrored tag. Mirrored tags
are the ones that look like C<<< << R<EXPR> >>>. We have to look for as many
closing brackets as we saw opening ones, but we don’t need to worry about
counting opening and closing brackets in between there. Well, almost.

(?<mirrored> (?<open> <{2,}+) \s++
 \s+
 (?: (?&podtag) | \p{Any}) *?
 \s+
 \s++ (??{ ">" x length $MATCH{open} })
)

Fancy Patterns | 265

www.it-ebooks.info

http://www.it-ebooks.info/

The start of <mirrored> grabs up two or more open brackets, possessively, and
stores them in the <open> group so we can later use them as a backreference when
we need to count them. Note that we are merely using <open> as a named capture,
not a named subrule, since a named rule would hide its internal captures.

The middle part pulls in the tag contents. Here we have to be careful, because
those guts can contain other pod tags, and those tags may be of the balanced sort.
But if it’s anything else but a mirrored tag, it doesn’t count. We use the
\p{Any}, which is Unicode-speak for what Perl calls (?s:.); in other words, match
any character at all, even a newline.22

The last line interpolates the result of that expression to generate as many closing
angle brackets as we’d seen at line 1.

Here then is the whole program.

#!/usr/bin/env perl
demo–podtags–core
use v5.14;
use strict;
use warnings;
use open qw(:std :utf8); # an all–UTF–8 workflow
use warnings FATAL => "utf8"; # in case there are input encoding errors
use re "/x"; # always want legible patterns
our %MATCH; *MATCH = \%+; # alias %MATCH to %+ for legibility

my $RX = qr{
 (?(DEFINE)
 (?<podtag> (?&capital) (?&either))
 (?<capital> \p{upper})
 (?<either> (?&mirrored) | (?&balanced))
 (?<balanced> < (?&contents) >)
 (?<contents> (?: (?&podtag) | (?&unangle))*)
 (?<unangle> [^<>]++)
 (?<mirrored> (?<open> <{2,}+) \s++
 \s+
 (?: (?&podtag) | \p{Any}) *?
 \s+
 \s++ (??{ ">" x length $MATCH{open} })
)
)
};

@ARGV = glob("*.pod") if @ARGV == 0 && –t STDIN;
die "usage: $0 [pods]\n" if @ARGV == 0 && –t STDIN;

22. This isn’t technically true. At higher levels of conformance than Perl provides, \p{Any} could match locale-
specific linguistic elements like digraphs and trigraphs.

266 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

$/ = ""; # paragraph mode, since tags can cross \n but not \n\n
$| = 1; # faster output for the impatient

while (<>) {
 while (/ (?<TAG> (?&podtag)) $RX /g) {
 say $MATCH{TAG};
 }
}

A few things to notice. To print out our match, we had to explicitly save it into
something in our own scope, the group named <TAG>. Sure, we could have used
$& or ${^MATCH} or such, but the point is that anything that was saved in capture
groups within the call to <podtag> is lost upon its return.

So while you can use this technique to validate input, it has its points of frustra-
tion when it comes to pulling out the pieces you that you’ve just worked so hard
to parse. While you could pepper your code with (?{ CODE }) inserts to do
something to save pieces of the parse on the way through, that gets tedious fast.
A better solution is to use the helper module described in the next section.

Grammars

Damian Conway’s Regexp::Grammars CPAN module was designed to address this,
and quite a bit more. It makes writing grammars in Perl even easier than what
we went through in the previous example. This module is a truly fantastic tool,
and it is much too fancy for us to explain here; look to its manpage for details.
But this should whet your appetite.

Regexp::Grammars is really a grammar compiler, much in the way that yacc is.
Except instead of spitting out a C program the way yacc does, Regexp::Gram
mars spits out a pattern that you can use just as you would any other pattern. It
does this using a trick we’ll talk about in the next section: it overloads the qr//
operator and rewrites the pattern you give it into a different one that does the
dirty work.

Here we’ve rewritten the previous program to use Damian’s module.

#!/usr/bin/env perl
demo–podtags–grammar
use v5.14;
use strict;
use warnings;
use open qw(:std :utf8); # an all–UTF–8 workflow
use warnings FATAL => "utf8"; # in case there are input encoding errors
use re "/x"; # always want legible patterns

my $podtag = do { use Regexp::Grammars; qr{
 <podtag>

Fancy Patterns | 267

www.it-ebooks.info

http://www.it-ebooks.info/

 <token: podtag> <capital> <either>
 <token: capital> \p{upper}
 <token: either> <mirrored> | <balanced>
 <token: balanced> \< <contents> \>
 <token: contents> (?: <[podtag]> | <[unangle]>) *
 <token: unangle> [^<>]++
 <token: mirrored> <open=(\< {2,})>
 \s+
 (?: <podtag> | \p{Any}) *?
 \s+
 </open>
 }xms;
};

@ARGV = glob("*.pod") if @ARGV == 0 && –t STDIN;
die "usage: $0 [pods]\n" if @ARGV == 0 && –t STDIN;

$/ = ""; # paragraph mode, since tags can cross \n but not \n\n
$| = 1; # faster output for the impatient

while (<>) {
 while (/$podtag/g) {
 say $/{podtag}{capital},
 $/{podtag}{either}{""};
 }
}

This program parses the same input as the previous one; the grammar looks
almost the same. But it's better in many ways. It was easier to write, and we think
it’s easier to read, too. It also does things the other version could not do. Look
at the <mirrored> subroutine. Here we use a feature of Regexp::Grammars that
allows us to capture the opening left-angle brackets to the group named
<open>, then implicitly match the corresponding number of closing right-angle
brackets just by saying </open>.

Perhaps more important, our pattern match and output statement are a bit dif-
ferent. The match is simpler, and the print is fancier. The hash variable named
%/ holds the nested data structure created by any successful match of a grammar
regex.

What you don’t see here with just this printout is that the %/ variable is structured.
It exactly matches the parse taken. Suppose you feed the program input like “Left
C<B<nested>> an I<< N<inside>un>tag >> gets X<indexed> right”. After the
parse, we’ll use the Data::Dump module to show you what you’ll find in %/.

268 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

use Data::Dump; # from CPAN
do the match, then
dd \%/; # pass ref to results hash

And you’ll get this output:

{
 "" => "C<B<nested>>",
 "podtag" => {
 "" => "C<B<nested>>",
 "capital" => "C",
 "either" => {
 "" => "<B<nested>>",
 "balanced" => {
 "" => "<B<nested>>",
 "contents" => {
 "" => "B<nested>",
 "podtag" => [
 {
 "" => "B<nested>",
 "capital" => "B",
 "either" => {
 "" => "<nested>",
 "balanced" => {
 "" => "<nested>",
 "contents" => { "" => "nested", "unangle" => ["nested"] },
 },
 },
 },
],
 },
 },
 },
 },
}
{
 "" => "I<< N<inside>un>tag >>",
 "podtag" => {
 "" => "I<< N<inside>un>tag >>",
 "capital" => "I",
 "either" => {
 "" => "<< N<inside>un>tag >>",
 "mirrored" => {
 "" => "<< N<inside>un>tag >>",
 "open" => "<<",
 "podtag" => {
 "" => "N<inside>",
 "capital" => "N",
 "either" => {
 "" => "<inside>",
 "balanced" => {
 "" => "<inside>",

Fancy Patterns | 269

www.it-ebooks.info

http://www.it-ebooks.info/

 "contents" => { "" => "inside", "unangle" => ["inside"] },
 },
 },
 },
 },
 },
 },
}

As you see, inside the hash is essentially a trace of every production the grammar
executed in running the parse, including nested tags. Regexp::Grammars is a lot
more sophisticated than we can show here. Plus, once you’ve gone to so much
trouble to set up your grammars, your grammars can even share each other’s
regex subroutines if you’d like. That’s a lot more sharing than you get in the
simpler grammars shown in the previous section, which had none at all. It’s
worth taking a serious look at if you have complicated parsing to do.

Defining Your Own Assertions
You can’t (easily: see next section) change how Perl’s Engine works, but if you’re
sufficiently warped, you can change how it sees your pattern. Since Perl interprets
your pattern similarly to double-quoted strings, you can use the wonder of over-
loaded string constants to see to it that text sequences of your choosing are au-
tomatically translated into other text sequences.

In the example below, we specify two transformations to occur when Perl en-
counters a pattern. First, we define \tag so that, when it appears in a pattern, it’s
automatically translated to (?:<.*?>), which matches most HTML and XML
tags. Second, we “redefine” the \w metasymbol so that it handles only English
letters.

We’ll define a package called Tagger that hides the overloading from our main
program. Once we do that, we’ll be able to say:

use Tagger;
$_ = "<I>camel</I>";
say "Tagged camel found" if /\tag\w+\tag/;

Here’s Tagger.pm, couched in the form of a Perl module (see Chapter 11):

package Tagger;
use overload;

sub import { overload::constant "qr" => \&convert }

sub convert {
 my $re = shift;
 $re =~ s/ \\tag /<.*?>/xg;

270 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://www.it-ebooks.info/

 $re =~ s/ \\w /[A–Za–z]/xg;
 return $re;
}

1;

The Tagger module is handed the pattern immediately before interpolation, so
you can bypass the overloading by bypassing interpolation, as follows:

$re = '\tag\w+\tag'; # This string begins with \t, a tab
print if /$re/; # Matches a tab, followed by an "a"...

If you wanted the interpolated variable to be customized, call the convert function
directly:

$re = '\tag\w+\tag'; # This string begins with \t, a tab
$re = Tagger::convert $re; # expand \tag and \w
print if /$re/; # $re becomes <.*?>[A–Za–z]+<.*?>

Now if you’re still wondering what those sub thingies are in the Tagger module,
you’ll find out soon enough because that’s what Chapter 6 is all about.

Alternate Engines
Starting with v5.10, you can even swap out Perl’s entire regex engine and replace
it with an alternate pattern-matching library. The underlying mechanics that
make this possible are documented in the perlreapi manpage. It’s pretty tough
reading, meant for seriously hardcore hackers only.

But you may be in luck. Thanks to CPAN, Perl plug-ins for the alternate regex
engine of your choice may already exist. When you use these, you write your
patterns normally and, come time to execute them, the alternate engine takes
charge. Table 5-18 shows some CPAN modules that let you use other languages’
regex engines in your Perl code (as they exist on CPAN in autumn 2011). There
may be more by the time you read this, so look around.

Table 5-18. Alternate regex engines

Module Description Version Updated Current Maintainer

re::engine::LPEG The LPEG
regex engine

0.05 2010-07-09 François Perrad

re::engine::RE2 Russ Cox’s
RE2 regex
engine

0.08 2011-04-22 David Leadbeater

re::engine::Plugin General API
for writing
custom

0.09 2011-04-05 Vincent Pit

Fancy Patterns | 271

www.it-ebooks.info

http://perldoc.perl.org/perlreapi.html
http://www.it-ebooks.info/

Module Description Version Updated Current Maintainer
regex en-
gines

re::engine::Plan9 Regexes from
Plan9!

0.16 2010-03-31 Ævar Arnfjörð
Bjarmason

re::engine::Oniguruma Ruby’s Oni-
guruma
regex engine

0.05 2011-07-10

re::engine::Lua Lua’s regex
engine

0.06 2008-12-20 François Perrad

re::engine::PCRE Phil Hazel’s
Perl-Com-
patible
RegEx en-
gine

0.17 2011-Jan-29 Ævar Arnfjörð
Bjarmason

(Notice anything about those authors? More than two-thirds of them have names
you can’t even talk about in ASCII. Welcome to the global 21st century!)

One engine of special note is Russ Cox’s RE2 library. It’s a C and C++ library
that’s used in the Go programming language, among many other places. The
interesting thing is that it maintains a high level Perl compatibility, including
good UTF-8 support, while avoiding the potential pitfalls of catastrophic back-
tracking. It does this because unlike Perl, whose engine is a recursive backtracker,
RE2 uses a hybrid NFA/DFA approach that never gets bogged down in patho-
logical cases.

This can be critical in time-sensitive applications where you want to let users
provide their own pattern, but you cannot risk letting their search take forever.
First written for Google’s Code Search, where time is of the essence, RE2 is also
used via its Perl interface at http://grep.cpan.me. This site lets you enter a search
pattern that runs over everything in CPAN.

Once you’ve installed re::engine::RE2,23 using it is as easy as putting a use
re::engine::RE2 in the lexical scope whose regexes you want to use RE2’s engine
instead of the native Perl one. That’s all.

Here’s an example of the kind of place where RE2 blows the socks off any recursive
backtracker. First, timings running regular Perl:

23. See the directions in Chapter 19 if you don’t already know how.

272 | Chapter 5: Pattern Matching

www.it-ebooks.info

http://codesearch.google.com
http://grep.cpan.me
http://www.it-ebooks.info/

% time perl -E 'say (("a" x 17) =~ /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 1.564u 0.005s 0:01.57
% time perl -E 'say (("a" x 23) =~ /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 17.757u 0.025s 0:17.84
% time perl -E 'say (("a" x 29) =~ /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
>/dev/null
 127.965u 0.180s 2:09.20

Now again but using the RE2 engine instead:

% time perl –Mre::engine::RE2 –E 'say (("a" x 500) =~
 /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
 /dev/null
 0.004u 0.002s 0:00.00
% time perl –Mre::engine::RE2 –E 'say (("a" x 5000) =~
 /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
 /dev/null
 0.004u 0.002s 0:00.00
% time perl –Mre::engine::RE2 –E 'say (("a" x 50000) =~
 /a*a*a*a*a*a*a*a*a*a*[Bb]/i || 0)'
 /dev/null
 0.004u 0.002s 0:00.00

As you see, with RE2, the run time no longer grows proportionately to the input
size, but only to the regex size. When your input string is as large as all of CPAN,
this can matter a great deal. Yes, it’s something of a contrived demo, but patterns
that show the same sort of issue come up surprisingly frequently.

You can configure re::engine::RE2 to use RE2 for patterns it can handle and to
fall back to native Perl for those it can’t, which makes it 100% compatible. Or,
if you’re providing an external service, you can configure it to use only RE2
without a fallback, and that way never risk falling into a denial-of-service situa-
tion in your server.

For more about the design of RE2 and about finite automata in general, see Russ
Cox’s three-paper series “Regular Expression Matching Can Be Simple and Fast”,
“Regular Expression Matching: The Virtual Machine Approach”, and “Regular
Expression Matching in the Wild”.

Fancy Patterns | 273

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 6

Unicode

If you’ve never heard of Unicode, you must have been living on a desert island
with nothing but a manual typewriter for the last 20 years. Unicode celebrated
its 20th birthday back in early 2010. Even if you have heard of it, you may not
really know what it is, or how to work with it. This is not something to be em-
barrassed about; the fact of the matter is that everyone is still learning about
Unicode, including its inventors. Although we can’t hope to cover all the nuanced
intricacies of Unicode in this chapter or even this book, we can certainly get you
started using Unicode in Perl.

Working with Unicode these days isn’t an option: it’s a necessity. The majority of
the Web is in Unicode,1 and many large corpora are 100% Unicode. Because web
browsers do their best to make do with whatever character set web servers give
them, you probably haven’t noticed how much Unicode is really out there now.
Programming languages without solid Unicode support are decades behind the
curve, as are programs written in those languages. They might have worked okay
in the 1980s, even the 1990s, but today we need the real thing.

So how did we get here?

Computers store characters as numbers. In the early days these were small inte-
gers, 5, 6, 7, or 8 bits long. EBCDIC used 8 bits and was based on punch cards.
ASCII used up only 7 bits, leaving precisely 1 bit in each byte for other purposes
—many, many other purposes, all contradictory, as it turned out.

So, in those days, pretty much everyone in western lands confused characters with
small numbers in the range 0 to 127, or 0 to 255. Even though that’s more char-
acters than you likely have keys on your keyboard, it really wasn’t very many,

1. In the UTF-8 encoding of Unicode, to be precise.

275

www.it-ebooks.info

http://www.it-ebooks.info/

and people in different parts of the world had their own ideas of which particular
character each of those numbers represented.

That might be enough to send off a telegram in simple English, but it isn’t enough
to handle all the characters needed by the Latin, Greek, and Cyrillic alphabets,
let alone the many Asian ones. The Asians were forced to develop various mu-
tually incompatible 16-bit codes. It was extremely difficult, and often impossible,
to include text from several alphabets in the same text document, since the same
number meant one letter in one alphabet but a different letter in a different al-
phabet.

Historically, people made up character sets to reflect what they needed to do in
the context of their own culture. Since people of all cultures are naturally lazy,
they’ve tended to include only the symbols they needed, excluding the ones they
didn’t need. That worked fine as long as we were all isolationists communicating
only with other people of our own culture. But now that we’re starting to use the
Internet for cross-cultural communication, we’re running into problems with the
exclusive approach. It’s hard enough to figure out how to use an American key-
board to type basic Latin characters with accent marks on them, let alone some
of the more exotic characters.

So along came the idea of Unicode: a single system of characters that everyone
can use interchangeably for nearly every textual purpose. Unicode covers not just
all modern writing systems plus most of the ancient ones we know much about,
it also includes specialist characters used in typesetting, mathematics, linguistics,
and many other fields, including even the emoticons used on cell phones. See
Table 6-1.

Table 6-1. Sample Unicode characters

Latin Letters Å ǽ ç ð é ffi ï İ ñ ø œ š ſ ß ȝ þ

Greek Letters α ᾁ β Γ γ Δ δ ϝ θ λ Ξ ξ π Σ σ ς φ χ Ψ Ώ ᾦ

Cyrillic Letters а Б б д ж з И и к Л с т У у Ф ф Ш ь Э Ю я

Math Letters

Math Symbols ÷ × ± ≤ ≠ ≈ ≣ ∅ ∈ ∛ ∆ Ω ⊆ ∞ ∫ ∂ ∴ ℵ₀

Currency Symbols ¢ $ £ ₤ € ₡ ₢ ₣ ƒ ₧ ₩ ¥
Dots . ⋅ · ∘ ◦ • ¨ ‥ … ⋯ ⋱ ⋰ ⋮
Dashes - - ⁃ – − ‒ ― —

Quotation Marks ‘ “ ‘ ’ “ ” ‹ › « » 「 」

276 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

As you can see, some of those look rather similar. Unicode distinguishes charac-
ters not by how they look, but what they do. It’s a semantic code, really, and only
secondarily a glyph code, and that's only because representing glyphs is a part of
its semantics. Unlike ASCII, which is just a small set of characters with few
properties defined for those characters, Unicode is much more than that. It’s too
easy to think of Unicode as just an overgrown form of ASCII, with a bunch more
characters. But Unicode is more than just more characters—it’s also all the rules
for categorizing and handling that bunch of characters.

Along with the characters and properties, Unicode also defines how to deal with
casemapping and casefolding; combining characters; grapheme clusters; nor-
malization forms; collation; character properties for use in pattern matching,
including character names, categories, and scripts; numeric equivalences (e.g.,
telling you that U+216B, “Ⅻ”, has the value 12); print widths; bidirectionality;
rules for word- and linebreaking; and glyph variations. Just to name a few…

Perl first introduced tentative support for Unicode in v5.6, although it wasn’t until
v5.8 that we finally managed to resolve the important I/O issues. By v5.12, most
of the remaining kinks were worked out, and as of v5.14 Perl—coincident with
v6.0 of the Unicode Standard—you should be able to use Unicode and Perl to-
gether seamlessly. Mostly. Well, better than other languages do it, anyway.

What we mean is that we’ve made the easy things easy without forbidding the
possibility of tackling hard things, too. The first easy thing to notice is that Perl
lets your strings contain characters of arbitrarily large ordinal values. ASCII limits
characters to 7-bit ordinals, Latin-1 to 8-bit ordinals, and Unicode to 21-bit or-
dinals.2 But Perl’s characters are not limited to such tiny numbers. Currently, Perl’s
characters are limited to 64 bits on 64-bit machines, but that’s still
18,446,744,073,708,437,504 more codepoints than Unicode itself provides.
(Well, we did say “arbitrarily large”, and that’s pretty arbitrary.)

In Unicode, every character has its own unique number, called its codepoint.
That’s why it’s called Unicode: a unique, universal code for every different char-
acter. For example, the character named LATIN CAPITAL LETTER A has the character
number 65 decimal, 0x41 hex. This is often written U+0041; the “U+” prefix is
a convention that says it’s not just any old number, but a number that represents
a Unicode codepoint.

If you’ve ever mistaken an “l” for a “1”, an “O” for a “0”, or a “,” for a “.”, you
know how easy it is for a human to get characters mixed up. You also know that
the computer is never fooled. It doesn’t matter what the character might look

2. Strictly speaking, they’re only 20.087463 bits, since Unicode has only 0x110000 codepoints, not 0x200000.

Unicode | 277

www.it-ebooks.info

http://www.it-ebooks.info/

like in one or another font. All that matters is what it does. For example, the
characters shown in Table 6-2 usually all look mostly alike in most fonts.

Table 6-2. Unicode confusables for capital A

Glyph Code Category Script Name

A U+00041 Lu Latin LATIN CAPITAL LETTER A

A U+0FF21 Lu Latin FULLWIDTH LATIN CAPITAL LETTER A

Α U+00391 Lu Greek GREEK CAPITAL LETTER ALPHA

А U+00410 Lu Cyrillic CYRILLIC CAPITAL LETTER A

A U+1D5A0 Lu Common MATHEMATICAL SANS-SERIF CAPITAL A

A U+1D670 Lu Common MATHEMATICAL MONOSPACE CAPITAL A

The first column in the table is the glyph for the character. You can use Unicode
literals like those in your own code only if you’ve said use utf8 in the current
lexical scope. Most mainstream editors and windowing systems will have various
ways of entering such characters, though they may not be turned on by default,
so a little research may be in order—if you’re not too lazy. But hey, that’s okay,
too: if you don’t know how to type in a character, you can always find one some-
where else, grab it with your mouse, and paste it in.

Outside of looking at it, the glyph is in some ways the least useful aspect of a
character, because you cannot know how or even whether it will display in any-
one else’s font but your own. A glyph may look okay to you, but never trust your
eyes—trust the numbers. The second column is the standard Unicode notation
for a character’s numeric code. Here are some ways of talking about codepoints
in Perl:

if (ord($somechar) == 0x0391) { }
$alpha = "\x{391}";
$alpha = "\N{U+391}";
$alpha = chr(0x391);

After the codepoint comes two of the codepoints’ most important properties: its
General Category property, listed as CATEGORY, and its Script property, listed as
SCRIPT. Codepoint properties are most often used as named character classes in
patterns, where a \p{PROPERTY} matches any codepoint with that property, and
\P{PROPERTY} matches any codepoint without that property.

/^\p{GC=Lu}+$/ # all capital letters
/^\p{script=Greek}+$/ # it's greek to me
/[\P{script=Latin}\P{script=Common}]/ # not intersection

278 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

The last one is true for strings that contain any codepoint that’s either non-Latin
or non-Common. Because case, whitespace, and underscore don’t count in
property names, you can format them however you like. So if you think it’s more
readable to write \p{gc=modifier_letter} in all lowercase and \P{SC=INHER
ITED} in all uppercase, go right ahead: Perl won’t care. Or do the opposite, if you
like it that way.

Besides two-part properties like those above, Perl also provides one-element
aliases for all general categories and scripts, so you can just use \p{Lu} and
\p{Greek} if you’d like. For example, if you wanted to make sure your string only
had Latin and Greek characters in it, you could do this:

$mylang = qr/[\p{Latin}\p{Greek}\p{Common}\p{Inherited}]/;
if ($string =~ /\A$mylang+\z/) { ... }

We added Common for things that are common to more than one script, like
digits and punctuation, and Inherited for things like combining marks (usually
diacritics) that take on the script of whatever base codepoint they’re attached to.
Combining codepoints are completely unlike anything in ASCII, so they’re
something that ASCII-speakers first coming to Unicode may find confusing. Per-
haps the nearest concept in ASCII is overstriking using backspace, except that in
Unicode combining codepoints automatically apply to the previous codepoint,
so no backspace is necessary. We talk all about them in the upcoming section
“Graphemes and Normalization” on page 290.

You’ll note that we’ve started differentiating the term “codepoint” from the term
“character” in this chapter. In other places (including other chapters in this
book), they are often used interchangeably, and character is also used sometimes
to mean “grapheme”, but here we need to be just a bit more precise. A codepoint
is specifically one of the individual integers that make up the string when seen
as a list of integers, while a character can fuzzily mean either codepoint or a
grapheme in its human context. More generally, you should be aware that people
might mean three or four different things when they say “character”.

The last field in our table is the character’s name. Er, the codepoint’s name. To
specify the names of codepoints in your code, you first have to load them in with
the charnames module, after which you may refer to them using \N{...} like this:

use charnames qw(:full);

$alpha = "\N{GREEK CAPITAL LETTER ALPHA}";
$alpha_code = ord "\N{GREEK CAPITAL LETTER ALPHA}";
if ($string =~ /\N{GREEK CAPITAL LETTER ALPHA}/) { ... }

Talking about codepoints by name is a lot better than talking about them by
number. It makes your code more understandable.

Unicode | 279

www.it-ebooks.info

http://www.it-ebooks.info/

For other nifty things you can do with \N{...}, see “charnames” on page 1008 in
Chapter 29.

Show, Don’t Tell
If a picture is worth a thousand words, putting the actual characters you want
into your program has to be worth at least fifty or so. So you’ll want to start off
by telling Perl that your source code really is in Unicode characters, not just in
bytes.3 You don’t have to do this, but it makes some things easier if you can enter
real Unicode into your source.

So far, Perl assumes every source unit is in ASCII unless you tell it otherwise
(though, arguably, the default should change to Unicode someday). You can
always specify Unicode codepoints through the circumlocutions we mentioned
above, but literals will be treated as separate bytes. If Perl sees a literal UTF-8
character, it won’t realize it should treat it as one logical character, and it will
show up as one, two, three, or even four separate Perl characters, all with ordinals
under 256. You don’t want that to happen, so use these declarations:

use v5.14; # includes the unicode_strings feature
use utf8; # handles UTF–8 literals

The first makes sure that codepoints with ordinals in the tricky range of 128–255
are treated as Unicode strings, while the second tells the Perl compiler that this
entire source file is in the UTF-8 encoding of Unicode. Under the utf8 pragma,
you can now use Unicode in your string and regex literals.

my $dwarf = "Þórinn Eikinskjaldi";
my $search = "búsqueda";
my $measure = "Ångström";
my $how = "à contre–cœur";
my $motto = " ";

That’s a lot easier to read, although maybe not as easy to type as writing:

use charnames qw(:full);

my $dwarf = "\N{LATIN CAPITAL LETTER THORN}\N{LATIN SMALL LETTER
 O WITH ACUTE}rinn Eikinskjaldi";
my $search = "b\N{LATIN SMALL LETTER U WITH ACUTE}squeda";
my $measure = "A\N{COMBINING RING ABOVE}ngstro\N{COMBINING DIAERESIS}m";
my $how = "\N{LATIN SMALL LETTER A WITH GRAVE} contre–c\N{LATIN
 SMALL LIGATURE OE}ur";
my $motto = "\N{FAMILY} \N{GROWING HEART} \N{DROMEDARY CAMEL}";

3. You may prefer to call them “octets”; that’s okay, but we think the two words are pretty much synonymous
these days, so we’ll stick with the blue-collar word.

280 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

Which in turn are both preferable to putting secret magic numbers in code, like
this:

my $dwarf = "\x{DE}\x{F3}rinn Eikinskjaldi";
my $search = "b\x{FA}squeda";
my $measure = "\x{C5}ngstr\x{F6}m";
my $how = "\x{E0} contre–c\x{153}ur";
my $motto = "\x{1F46A} \x{1F497} \x{1F42A}";

But that’s not all. Under utf8, you can now use Unicode in Perl identifiers.

a few character sets
my @IsO = qw(Latin1 Latin2 Latin15);
my @μsoft = qw(cp852 cp1251 cp1252);
my @ = qw(koi8–f koi8–u koi8–r);

whether to include answers that return no results
my $INCLUÍR_NINGUNOS = 0;

whether diacritics matter
my $SI_IMPORTAN_MARCAS_DIACRÍTICAS = 0;

think of << as the "hasta" operator :)
my @ciudades_españolas = ordenar_a_la_española(<<'LA_ÚLTIMA' =~ /\S.*\S/g);
.....
.....
LA_ÚLTIMA

my $déjà_imprimée; # le nom d'une ville

Greek hypermegas
my @ὑπέρμεγας = ();

Ok, now we’re just showing off :–)
my ($input);

In practice, if you’re using non-English names for your identifiers, you’ll probably
want your comments in the corresponding language. All this makes it easier for
people all over the world to write Perl in their own language, instead of forcing
them all to learn English.

Currently, you should limit Unicode identifiers to private variables only. This is
because of how global variables are stored, and also because of how module
names map to the local filesystem. The first of these restrictions is expected to
be removed in the near future, although the second one is still a matter for re-
search.

Show, Don’t Tell | 281

www.it-ebooks.info

http://www.it-ebooks.info/

Getting at Unicode Data
Internally, Perl keeps all codepoints in a format that’s compatible with Unicode,
meaning that the bottom 21 bits are the same as Unicode’s, just as Unicode’s
bottom 8 bits are the same as Latin-1’s. How these codepoints are actually stored
internally is not something average Perl users should ever have to worry about.

However, as soon as you have to interact with the outside world, you are going to
have to interpret the input data being fed to you and, in turn, generate output
data that’s in a format the receiving program finds palatable. Characters inside
Perl have been decoded from their external format into abstract characters, but
when you need to emit those characters, you’ll have to encode them into whatever
format is expected of you. If you forget to do this, you’re liable to generate mut-
terings about “wide character” or “Malformed UTF-8 character”.

Perl has two main ways to mark the encoding of an entire stream, plus various
shortcuts to make this even easier. If your stream is already opened, you can set
its encoding by passing a second argument to the binmode function:

binmode(STDIN, ":encoding(CP1252)")
 || die "can't binmode to cp1252: $!";
binmode STDOUT, ":encoding(UTF–8)"
 || die "can't binmode to UTF–8: $!";

If you haven’t opened the file yet, then you can use the mode argument in a call
to open to specify the encoding right there.

open(OUTPUT, "> :raw :encoding(UTF–16LE) :crlf", $filename)
 or die "can't open $filename: $!";
print OUTPUT for @stuff;
close(OUTPUT) or die "couldn't close $filename: $!";

On input, the :crlf layer translates \n into \r\n; on output, it does the opposite.
This layer is enabled by default under Windows when opening files in “text”
mode, but you must specify it explicitly on Unix if you want that behavior. See
the PerlIO manpage for more about I/O layers.

But \n and \r\n aren’t the only possible line terminators under Unicode. Currently,
Unicode recognizes eight different linebreak sequences—these seven codepoints
plus the two-codepoint \r\n grapheme:

U+000A LINE FEED (LF)
U+000B LINE TABULATION
U+000C FORM FEED (FF)
U+000D CARRIAGE RETURN (CR)
U+0085 NEXT LINE (NEL)
U+2028 LINE SEPARATOR
U+2029 PARAGRAPH SEPARATOR

282 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

There is no special layer for handling Unicode linebreak sequences generically,
but if you can afford to read the entire file into memory, it is easy to convert them
all into newlines:

$complete_file =~ s/\R/\n/g;

Or split them into a list of lines, all without their line terminator:

@lines = split(/\R/, $complete_file);

The open pragma can be used to set the encoding on all newly opened filehandles.
For example, to say that any open without a specified encoding will default to
UTF-8, as will STDIN, STDOUT, and STDERR:

use open qw(:encoding(UTF–8) :std);

If you just want your standard streams set to UTF-8 instead of binary, you can
use the –CS command-line option on a per-execution basis, or you can set the
PERL_UNICODE environment variable to “S”. If you set them to “D”, then all handles
that are not opened with an encoding layer default to UTF-8 text instead of binary
byte data. See 19.

Using either the –C command-line option or the PERL_UNICODE environment vari-
able makes calling binmode even on Unix programs necessary for binary streams,
something normally only Windows users—or people writing portable programs
—have to do. It will break existing Unix programs that assume if they say noth-
ing, they get binary not text. But it will unbreak existing programs that don’t
know to decode their UTF-8 text.

Ranked from highest to lowest (such that anything occurring higher in the list
always overrides any settings from something that comes lower down), the
precedence of the various mechanisms to set the stream encoding is as follows:

1. Explicitly calling binmode on an already-open filehandle.

2. Including a layer in the second out of three or more arguments to open.

3. The open pragma.

4. The –C command-line switch.

5. The PERL_UNICODE environment variable.

One exception to all this is the DATA handle. It isn’t covered either by the use
utf8 or the open pragmas, so you’ll still need to set its encoding yourself:

binmode(DATA, ":encoding(UTF–8)");

Because of the way the utf8 and UTF–8 encoding layers are implemented, they do
not normally throw exceptions on malformed input. Add this to your code to
make them do so:

Getting at Unicode Data | 283

www.it-ebooks.info

http://www.it-ebooks.info/

use warnings FATAL => "utf8";

As of v5.14, Perl has three subwarnings that are part of the “utf8” warning group,
which you may at times wish to distinguish. These are:

nonchar
Unicode sets aside 66 codepoints as noncharacter codepoints. These all have
the Unassigned (Cn) General Category, and they will never be assigned.
They may not be used in open interchange so that code can mix them in
with character data as internal sentinels, and they will always be distin-
guishable from that data. The noncharacter codepoints are the 32 from
U+FDD0 to U+FDEF, and 34 codepoints comprising the last two codepoints
from each plane (whose hex codes therefore end with FFFE or FFFF). Under
some circumstances you may wish to permit these codepoints, such as be-
tween two cooperating processes that are using them for shared sentinels.
If so, you would want to say:

no warnings "nonchar";

surrogate
These codepoints are reserved for use by UTF-16. There is really never any
reason to enable these, and no conformant processes can interchange them
because UTF-16 agents would be unable to process them (though UTF-8
and UTF-32 agents could do so, were they so inclined).

non_unicode
The maximum Unicode codepoint is U+10FFFF, but Perl knows how to
accept codepoints up to the maximum permissible unsigned number avail-
able on the platform. Depending on various settings and the phase of the
moon, Perl may warn (using the warning category “non_unicode”, which
is a subcategory of “utf8”) if an attempt is made to operate on or output
codes larger than normal. For example, “uc(0x11_0000)” will generate this
warning, returning the input parameter as its result, as the uppercase of
every non-Unicode codepoint is the codepoint itself.

Of those, the non-Unicode codepoints are by far the most useful, and you quite
probably want to allow them for your own internal use.

no warnings "non_unicode";

Here is just one possible use for them. What this does for ASCII:

tr[\x00–\x7F][\x80–\xFF];

this does for Unicode:

tr[\x{00_0000}–\x{10_FFFF}][\x{20_0000}–\x{30_FFFF}];

284 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

That is, they remap all codepoints from the legal range of their respective character
sets into an illegal range. Why would you do that? It’s one way to mark text that
you never want to match again. Just make sure to put them back when you’re
done.

The Encode Module
The standard Encode module is most often used implicitly, not explicitly. It’s
loaded automatically whenever you pass an :encoding(ENC) argument to bin
mode or to open.

However, you’ll sometimes find yourself with a bit of encoded data that didn’t
come from a stream whose encoding you’ve set, so you’ll have to decode it man-
ually before you can work with it. These encoded strings might come from any-
where outside your program, like an environment variable, a program argument,
a CGI parameter, or a database field. Alas, you’ll even seen “text” files where
some lines have one encoding but other lines have different encodings. You are
guaranteed to see mojibake.

In all these situations, you’ll need to turn to the Encode module to manage en-
coding and decoding more explicitly. The functions you’ll most often use from
it are, surprise, encode and decode. If you have raw external data that’s still in some
encoded form stored as bytes, call decode to turn that into abstract internal char-
acters. On the flip side, if you have abstract internal characters and you want to
convert them to some particular encoding scheme, you call encode.

use Encode qw(encode decode);
$chars = decode("shiftjis", $bytes);
$bytes = encode("MIME–Header–ISO_2022_JP", $chars);

For example, if you knew for sure that your terminal encoding was set to UTF-8,
you could decode @ARGV this way:

this works just like perl –CA
if (grep /\P{ASCII}/ => @ARGV) {
 @ARGV = map { decode("UTF–8", $_) } @ARGV;
}

For people who don’t run an all-UTF-8 environment, it’s not a good idea to assume
the terminal is always in UTF-8. It may be in a locale encoding. Although the
standard Encode module doesn’t support locale-sensitive operations, the CPAN
Encode::Locale module does. Use it like this:

Getting at Unicode Data | 285

www.it-ebooks.info

http://www.it-ebooks.info/

use Encode;
use Encode::Locale;

use "locale" as an arg to encode/decode
@ARGV = map { decode(locale => $_) } @ARGV;

or as a stream for binmode or open
binmode $some_fh, ":encoding(locale)";

binmode STDIN, ":encoding(console_in)" if –t STDIN;
binmode STDOUT, ":encoding(console_out)" if –t STDOUT;
binmode STDERR, ":encoding(console_out)" if –t STDERR;

Databases are one area where you may have to deal with manual encoding and
decoding. It depends on the database system. With simple DBM files, the un-
derlying library expects bytes not codepoint strings, so you cannot directly use
regular Unicode text on DBM files. If you try, you will get a Wide character in
subroutine exception. To store a Unicode key-data pair in a %dbhash DBM hash,
encode them to UTF-8 first:

use Encode qw(encode decode);

assuming $uni_key and $uni_value are abstract Unicode strings

$enc_key = encode("UTF–8", $uni_key);
$enc_value = encode("UTF–8", $uni_value);
$dbhash{$enc_key} = $enc_value;

The reciprocal action to retrieve a Unicode value, therefore, requires first encoding
the key before you use it, then decoding the value returned after you fetch it:

use DB_File;
use Encode qw(encode decode);

tie %dbhash, "DB_File", "pathname";

$uni_key holds a normal Perl string (abstract Unicode)
$enc_key = encode("UTF–8", $uni_key);

$enc_value = $dbhash{$enc_key};
$uni_value = decode("UTF–8", $enc_key);

Now you can work with the returned $uni_value as with any other Perl string.
Before that, it just has bytes, which are nothing but integers under 256 stored in
string form. (And those integers are very much not Unicode codepoints.)

Alternately, starting with v5.8.4, you can use the standard DBM_Filter module to
transparently handle the encoding and decoding for you.

286 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

use DB_File;
use DBM_Filter;

use Encode qw(encode decode);

$dbobj = tie %dbhash, "DB_File", "pathname";
$dbobj–>Filter_Value("utf8");

$uni_key holds a normal Perl string (abstract Unicode)
$uni_value = $dbhash{$uni_key};

A Case of Mistaken Identity
If you only know ASCII, nearly all your assumptions about how text behaves with
respect to case will be invalid in Unicode. In ASCII, there are uppercase letters
and lowercase letters, but in Unicode, there is also a third sort of case, called
titlecase. This isn’t something we make much use of in English, but it does occur
in various other writing systems derived from Latin or Greek.

Usually titlecase is the same as uppercase, but not always. It’s used when only the
first letter should be capitalized but not the rest. Some Unicode codepoints look
like two letters printed side by side, but they are really just one codepoint. When
used on a word that’s supposed to have only its first part capitalized but not the
rest, the titlecase version only capitalizes the appropriate part. These mostly exist
to support legacy encodings, and today it is more common to use codepoints
whose titlecase map produces two separate codepoints, one each in uppercase
and lowercase. Here’s an example of one of the legacy characters:

use v5.14;
use charnames qw(:full);
my $beast = "\N{LATIN SMALL LETTER DZ}ur";
say for $beast, ucfirst($beast), uc($beast);

That prints out “dzur”, “Dzur”, and “DZUR”, each of which is only three code-
points long.

Some letters have no case, and some nonletters do have case. Lettercase is com-
paratively rare in the world’s writing systems. Only eight out of Unicode v6.0’s
nearly 100 supported scripts have cased characters in them: Armenian, Coptic,
Cyrillic, Deseret, Georgian, Glagolitic, Greek, and Latin scripts, plus some from
Common and Inherited. None of the rest do.

A Case of Mistaken Identity | 287

www.it-ebooks.info

http://www.it-ebooks.info/

A string can change length when casemapped. Under simple casemapping, the
casemap of a string is always the same length as the original, but under full case-
mapping, it need not be. For example, the uppercase of “tschüß” is “TSCHÜSS”,
one character longer.

Different strings in one case can map to the same string in another case. Both
lowercase Greek sigmas, “σ” and “ς”, have the same uppercase form, “Σ”, and that’s
just a simple example. To address all these variations sanely (or less insanely), a
fourth casemap called foldcase is required for case-insensitive comparisons.
Strings with the same foldcase are by definition case-insensitive equivalent.

Perl has always supported case-insensitive matching using the /i pattern modifier,
which compares their casefolds. Starting with v5.16, the fc function is supported
directly, allowing you to compare the foldcase of two string to decide whether
they are case variants of each other. Before v5.16, you can get the fc function
from the Unicode::CaseFold CPAN module.

Check your copy of the perlfunc manpage and your release notes in perldelta to
see whether this feature exists yet in your release. If so, it will probably have an
interpolated translation escape called \F that works like \L and \U, but for foldcase
instead.

Another un-ASCII surprise is that casemapping is not guaranteed to be a re-
versible operation. For example, lc(" ") is " ", but uc(" ") is “SS” and lc("SS")
is “ss”, which is not at all where we started from. It doesn’t take exotic two-
character combinations to show that you cannot guarantee a round trip back to
where you started. Remember our Greek sigmas: “σ” is the normal form, but
“ς” is used at the end of the word, and both of those have the same uppercase
form, “Σ”. The round trip fails in that lc(uc("ς")) does not bring you back to the
“ς” you started with, but only to “σ”.

Not all cased characters change when casemapped. In Unicode, just because
something is (say) lowercase doesn’t mean that it even has a casemap for upper-
case or titlecase. For example, uc("McKinley") is “McKINLEY”, because that MODI-

FIER LETTER SMALL C is lowercase but doesn’t change case when casemapped—it
wouldn’t look right. Similarly, the small capitals are actually lowercase letters
because they all fit within the x-height of the font. In “BOULDER CAMERA”, the first
letter of each word is in uppercase and the rest in lowercase.

Not all characters considered lowercase are even letters. Case is a property distinct
from the General Categories. Roman numerals are cased numbers—for example,
“Ⅷ” vs “viii”. There are even letters that are considered lowercase but are
GC=Lm not GC=Ll.

288 | Chapter 6: Unicode

www.it-ebooks.info

http://perldoc.perl.org/perlfunc.html
http://perldoc.perl.org/perldelta.html
http://www.it-ebooks.info/

The typical ASCII strategy of putting a word into “headline” case using
ucfirst(lc($s)) is not guaranteed to work correctly in Unicode, because title-
casing the lowercase version is not always the same as titlecasing the original.
This is also true of the other combinations. The correct way is to titlecase the
first letter by itself and lowercase the remainder, either by calling the functions
explicitly or with a regex substitution:

$tc = ucfirst(substr($s, 0, 1)) . lc(substr($s, 1));

s/(\w)(\w*)/\u$1\L$2/g;

Apart from the General Categories, Unicode has quite a few other properties re-
lated to lettercase. Table 6-3 shows the ones available in Unicode v6.0. They’re all
binary properties, so you can just use their one-element form if you’d like. So
instead of saying \p{CWCM=Yes} and \p{CWCM=No}, you can write \p{CWCM} for any
codepoint that has that property, and \P{CWCM} for any codepoint that lacks it.

Table 6-3. Case-related properties

Short Long

Cased Cased

Lower Lowercase

Title Titlecase

Upper Uppercase

CWL Changes_When_Lowercased

CWT Changes_When_Titlecased

CWU Changes_When_Uppercased

CWCM Changes_When_Casemapped

CWCF Changes_When_Casefolded

CWKCF Changes_When_NFKC_Casefolded

CI Case_Ignorable

SD Soft_Dotted

The Lower and Upper properties match all codepoints with the appropriate prop-
erty, not letters alone. There are currently no nonletter titlecase codepoints, so
Title is (for now) the same as gc=Lt. However, under /i, all three of them are the
same as the Cased property, which is not letter-specific. Using gc=Lt case-insen-
sitively is only the same as Case_Letter.

A Case of Mistaken Identity | 289

www.it-ebooks.info

http://www.it-ebooks.info/

Graphemes and Normalization
We already mentioned characters like LATIN SMALL LETTER DZ that occupy one
codepoint but that may look like two characters to the end user. The opposite
situation also exists and is much more common. That is, a single user-visible
character (a grapheme) can require more than a single codepoint to represent.
Think of a letter plus one or more diacritics, like both és in “résumé”. Those
might each be one codepoint, or two. It’s even possible that one é of them is a
letter codepoint but the other is a letter followed by a combining mark. By design,
you can never tell the difference just by looking at them because they are con-
sidered canonically equivalent. This has serious ramifications for almost all text
handling, and it very nearly contradicts what we said earlier about glyphs not
being important. In this particular sense they are the most important.

Combining characters are used to change an “n” into an “ñ”, a “c” into a “ç”, an
“o” into an “ô”, or a “u” into a “ǘ”. The first three transformations require one
combining mark, while the last one requires two combining marks. In fact,
there’s no limit to these. You can keep piling them on as long as you’d like, and
you can create things people have never seen before.

All this requires quite a bit of serious rethinking and rewriting of all kinds of
software. Just think about what the font system has to do. (No, giving up is not
a valid option.) Your own programs that process text may need serious over-
hauling. Even something as simple in concept as reversing a string goes awry,
because if you reverse by codepoint instead of grapheme, you’ll move the com-
bining characters from one base to another. Niño, María, and François become
õniN, áiraM, and sio̧cnarF.

Consider a grapheme made up of a base alphabetic codepoint, A, followed by
two combining marks, call them X and Y. Does the order those marks get applied
matter? Are AXY and AYX the same? Sometimes they are, sometimes they aren’t.
With a grapheme like “ ” it doesn’t matter, since one mark goes on the top and
the other on the bottom. Since it doesn’t matter, your program needs to treat a
grapheme that shows up as a LATIN LETTER SMALL O followed by a COMBINING OGO-

NEK and then a COMBINING MACRON the same way as it treats one where the com-
bining marks come in the opposite order. But with something where both marks
go on the same part of the letter, order does matter. More on that in a moment.

It gets harder. Unicode has certain characters that are precomposed to allow round
trip translation from legacy character sets to Unicode and back. Latin has around
500 of these, and Greek has around 250. There are lots more, too.

290 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

For example, an “é” could be codepoint U+00E9, a LATIN LETTER SMALL E WITH

ACUTE. That’s just a single codepoint. But here’s the thing: it needs to be treated
just as you would if the grapheme showed up as a LATIN LETTER SMALL E followed
by a COMBINING ACUTE ACCENT.

With graphemes that logically have more than one mark, you could have even
more variation, as some of them may start with one or another precomposed
character that already has a mark built right into it, and then adds the other one.

To help cope with all this, Unicode has a well-defined procedure called normal-
ization. Per the Unicode Glossary at http://unicode.org/glossary/, normalization
“removes alternate representations of equivalent sequences from textual data, to
convert the data into a form that can be binary-compared for equivalence.” In
other words, it gives a single, unique identity to each semantic entity that needs
one, so all the one-to-many mappings go away.

Here are the four Unicode normalization forms:

• Normalization Form D (NFD) is formed by canonical decomposition.

• Normalization Form C (NFC) is formed by canonical decomposition fol-
lowed by canonical composition.

• Normalization Form KD (NFKD) is formed by compatibility decomposition.

• Normalization Form KC (NFKC) is formed by compatibility decomposition
followed by canonical composition.

Normally you want to use the canonical forms, because normalizing to the com-
patibility forms loses information. For example, NFKD("™") returns the regular,
two-character string “TM”. This may be want you want in searching and related
applications, but canonical decomposition normally works better than compat-
ibility decomposition for most applications.

Unless you normalize it yourself, a string does not necessarily show up to your
program in either NFD or NFC; there are strings that are in neither. Consider
something like “ȭ”, which is just a letter Latin small letter “o” with a tilde and a
macron (as opposed to a macron and tilde) over it. That particular grapheme
takes anywhere from 1–3 codepoints, depending on normalization: "\x{22D}" in
NFC, "\x{6F}\x{303}\x{304}" in NFD, or "\x{F5}\x{304}", which is neither.
Table 6-4 shows seven variants of a Latin small letter “o” with a tilde and some-
times a macron.

Graphemes and Normalization | 291

www.it-ebooks.info

http://unicode.org/glossary/
http://www.it-ebooks.info/

Table 6-4. Canonical conundra

N Glyph NFC? NFD? Literal Codepoints

1 õ ✓ ─ "\x{F5}" LATIN SMALL LETTER O WITH TILDE

2 õ ─ ✓ "o\x{303}" LATIN SMALL LETTER O, COMBINING TILDE

3 ȭ ✓ ─ "\x{22D}" LATIN SMALL LETTER O WITH TILDE AND

MACRON

4 ȭ ─ ─ "\x{F5}\x{304}" LATIN SMALL LETTER O WITH TILDE, COM-

BINING MACRON

5 ȭ ─ ✓ "o\x{303}\x{304}" LATIN SMALL LETTER O, COMBINING TILDE,
COMBINING MACRON

6 ─ ✓ "o\x{304}\x{303}" LATIN SMALL LETTER O, COMBINING MAC-

RON, COMBINING TILDE

7 ✓ ─ "\x{14D}\x{303}" LATIN SMALL LETTER O WITH MACRON,
COMBINING TILDE

In Perl, the standard Unicode::Normalize module handles normalization func-
tions for you. A good rule of thumb is to run all Unicode input through NFD as
the first thing you do to it, and all Unicode output through NFC as the last thing
you do with it. In other words, like this:

use v5.14;
use strict;
use warnings;
use warnings FATAL => "utf8"; # throw encoding error exceptions
use open qw(:std :utf8);

use Unicode::Normalize qw(NFD NFC);

while (my $line = <>) {
 $line = NFD($line);
 ...
} continue {
 print NFC($line);
}

That reads in UTF-8 input and automatically decodes it, throwing an exception
if there is a problem with malformed UTF-8. The first thing it does inside the
loop is normalize the input string into its canonically decomposed form. In other
words, it breaks apart all precomposed characters completely, to the delight of
reductionists everywhere. It also reorders all marks that attach to different points
on the base codepoint4 into a reliable ordering.

4. The fancy term is that they are reordered according to their canonical combining classes.

292 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

Unless you normalize, you cannot even begin to deal with combining character
issues. Consider the different graphemes we presented in Table 6-4.

• Number 4 is in neither NFC nor NFD. These things happen.

• Assuming you enforce NFD, 1 turns into 2, both 3 and 4 turn into 5, and 7
turns into 6.

• Assuming you enforce NFC, 2 turns into 1, both 4 and 5 turn into 3, and 6
turns into 7.

• That means that by normalizing to either NFD or NFC, you can do a simple
eq to get 1–2, 3–5, and 6–7 to each respectively test equal to one another.

• Notice, however, that it’s three different sets. ☹

One piece of good news is that Perl patterns have pretty good support for
graphemes, provided you know how to use it. A \X in a regex matches a single
user-visible character, which in Unicode-speak is called a grapheme cluster.5

Not all grapheme clusters are a base codepoint plus zero or more combining
codepoints, but most are. One extremely common two-character grapheme that
has no combining characters is "\r\n", commonly called CRLF. \X matches a
CRLF as a single grapheme cluster because it is just one user-perceived character.
Japanese also has two grapheme extenders that are not combining marks, HALF-

WIDTH KATAKANA VOICED SOUND MARK and HALFWIDTH KATAKANA SEMI-VOICED SOUND

MARK.

But, for the most part, you can think of a grapheme cluster as a base character
(\p{Grapheme_Base}) with any number of combining characters variation selec-
tors, Japanese voice marks, or zero-width joiners or nonjoiners
(\p{Grapheme_Extend}*) immediately following it, with an exception made for the
CRLF pair.

Actually, you can probably just think of a grapheme cluster as a grapheme.6

A \X in a Perl pattern matches any of those seven cases above indiscriminately,
and it doesn’t even need them in canonical form. Yes, but now what? This is
where it stops being easy. Because if you want to know about more the grapheme
than that it is a grapheme, you have to be moderately clever with your pattern
matching. NFD is assumed and required for the following to work:

5. Very technically speaking, Perl’s \X matches what the Unicode Standard refers to as an extended grapheme
cluster. Standards writers apparently get paid by the word.

6. That’s what we do. We aren’t getting paid by the word.

Graphemes and Normalization | 293

www.it-ebooks.info

http://www.it-ebooks.info/

• /^o/ reports that all seven start with an “o”.

• /^o\x{COMBINING TILDE}/ reports that 1–5 start with an “o” and a tilde, but
that misses 6 and 7.

• You’d need /^o\pM*?\x{COMBINING TILDE}/ to get all seven matching.

And here is a stab at a solution to match a complete character, with various issues
still unresolved, like whether to use \p{Grapheme_Extend} instead of \pM and
\p{Grapheme_Base} (were there any) instead of \PM:

$o_tilde_rx = qr{ o \pM *? \x{COMBINING TILDE} \pM* }x;

For a much easier approach to accent-insensitive strings comparisons, see the next
section, “Comparing and Sorting Unicode Text” on page 297.

The only thing in the Perl core that knows about graphemes is \X in a pattern.
Built-in functions like substr, length, index, rindex, and pos access strings at the
granularity of the codepoint, not of the grapheme. So \X is your hammer, and all
of Unicode starts to look like nails. A lot of nails.

Imagine reversing “crème brûlée” codepoint by codepoint. Assuming normaliza-
tion to NFD, you’d end up with when you really want “eélûrb
emèrc”. Instead, use \X to extract a list of graphemes, then reverse that.

use v5.14;
use utf8;
my $cb = "crème brûlée";
my $bc = join("" => reverse($cb =~ /\X/g));
say $bc; # "eélûrb emèrc"

Assuming $cb below is always “crème brûlée”, contrast operating on codepoints
compared with operating on graphemes:

my $char_length = length($cb); # 15 or 12
my $graph_count = 0;
$graph_count++ while $cb =~ /\X/g; # 12

You could pull out the first bit this way:

my $piece = substr($cb, 0, 5); # "crèm" or "crème"
my($piece) = $cb =~ /(\X{5})/; # "crème"

And change the last bit this way:

substr($cb, –6) = "fraîche"; # "crème brfraîche" or "crème fraîche"
$cb =~ s/\X{6}$/fraîche/; # "crème brûlée"

While this inserts “ bien”:

substr($cb, 5, 0) = " bien"; # "crèm biene brûlée" or "crème bien brûlée"
$cb =~ s/^\X{5}\K/ bien/; # "crème bien brûlée"

294 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

Notice how the codepoint-based approach is unreliable. The first answer is when
the string is in NFD, and the second in NFC. You might think keeping or putting
it in NFC will somehow solve all your problems, but it won’t. For one thing,
there are infinitely more graphemes without a precomposed form than those that
have one, so NFC by no means guarantees you won’t have any combining marks.

Furthermore, NFC is actually harder to work with, which is why we recommend
always normalizing to NFD on input. Consider how you’d spot a word with two
es in it, like “crème” and “brûlée”. The simplest and only reliable way to do it:

/ e .*? e /x

will work only in NFD, not NFC. And while you might think that if you could
instead guarantee NFC, that you could write:

/ [eéè] .*? [eéè] /x

But that breaks when the crêpes show up. Adding an ê only appears to help,
because pretty soon you end up with crazy things like this:

/ [èéêëēĕėęḙḛḝ] [èéêëēĕėęḙḛḝ] /x # two e's in a row

which won’t work if someone gives you an underlined e, since there is no pre-
composed character for that. If (but only if) your strings are in NFD, then this
always works:

/ (?: (?=e) \X){2} /x

This provides a reliable and nondestructive way to do accent-insensitive match-
ing: match a grapheme with \X and impose a restriction that it must be one that
starts with the grapheme base character you’re looking for. The only sort of thing
you can’t get at this way by first running everything through NFD (or maybe
NFKD) are the letters that don’t decompose, because they are considered letters
in their own right.

So, for example, you won’t find any os in “smørrebrød”, because LATIN SMALL LET-

TER O WITH STROKE has no decomposition that separates out the os. And while you
would find two os in the decomposition of “Ævar Arnfjörð Bjarmason”, you
wouldn’t find any es or ds, because LATIN CAPITAL LETTER AE doesn’t break up into
an a plus an e, and LATIN SMALL LETTER ETH doesn’t ever turn into a d.

Not under decomposition, at least. However, a comparison using a collator object
from Unicode::Collate set to check only the primary strength would indeed find
all three of those. In the following section, “Comparing and Sorting Unicode
Text” on page 297, we show you how to do that.

Having to recast Perl’s built-in string functions in terms of \X every time is a bit
clunky. An alternate approach is to use the Unicode::GCString CPAN module.

Graphemes and Normalization | 295

www.it-ebooks.info

http://www.it-ebooks.info/

Regular Perl strings are always codepoint oriented, but this object-oriented mod-
ule lets you access Unicode Grapheme Cluster Strings as graphemes instead.
Here’s how you’d use its methods to manipulate a string of graphemes in the
same ways we did earlier:

my $gs = Unicode::GCString("crème brûlée");

say $gs–>length();
say $gs–>substr(0,5);
$gs–>substr(–6, 6, "fraîche");
$gs–>substr(5, 0, " bien");

Now normalization forms don’t matter anymore, so the length method returns
an answer in graphemes, the substr method operates on graphemes, and you can
even use index and rindex method to search for literal substrings, getting back
integer offsets in graphemes, not codepoints.

Possibly this module’s most useful method is columns. Imagine you wanted to
print out some menu items like this:

crème brûlée £5.00
trifle £4.00
toffee ice cream £4.00

How do you get everything to line up? Even assuming your are using a fixed-
width font, you can’t use:

printf("%–25s £%.2f\n", $item, $price);

because Perl will assume every codepoint is exactly one column, which just isn’t
true.

The columns method tells you how many print columns a string would occupy if
printed. Often this is the same as a string’s length in graphemes, but often it is
not. Unicode considers some characters to be “wide” in that they take up two
columns when printed. These are so common in East Asian scripts that Unicode
has properties like East_Asian_Width=Wide and East_Asian_Width=Full, indicat-
ing characters that take up two print columns.

Other characters take up none at all, and not just because they’re combining
marks: they might be control or format characters. Plus, some combining marks
are considered spacing marks, which actually do take up print columns. About
the only thing you can generally rely on is that in a fixed-width font, each char-
acter’s width will be some integer multiple of the width of a column.

One approach, then, for printing a string padded to a certain width would be
something along these lines:

296 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

sub pad {
 my($s, $width) = @_;
 my $gs = Unicode::GCString–>new($s);
 return $gs . (" " x ($width – $gs–>columns));
}

printf("%s £%.2f\n", pad($item, 25), $price);

Now your columns will align even if your strings have formatting characters,
combining marks, or wide characters in them.

Interesting and useful as it is, the Unicode::GCString is really just a helper module
for a larger module that tackles a much harder problem: the Unicode::Line
Break module from CPAN. This module implements the Unicode Line Breaking
Algorithm from UAX#14. It’s what you have to use if you want to format your
Unicode text into paragraphs like the Unix fmt(1) program of the Text::Autofor
mat module. The unifmt program from the CPAN Unicode::Tussle suite is an
example of this. It does the Right Thing even in the face of East Asian wide
characters, tabs, combining characters, and invisible formatting codes.

Comparing and Sorting Unicode Text
When you use Perl’s built-in sort or cmp operators, strings are not compared al-
phabetically. Instead, the numeric codepoint of each character in one string is
compared with the numeric codepoint of the corresponding character in the
other string. This doesn’t work so well on text where some letters are shared
between languages and other letters are peculiar to each language. It’s not just
letters that have misordered codepoints—numbers and other supposedly con-
tiguous sequences can do that, too, because some were added to the character
sets when they were small, and others were added after the character sets grew,
like Topsy. For instance, squares and cubes were added to Latin-1 early on. No-
tice how they sort early, too:

use v5.14;
use utf8;
my @exes = qw(x⁷ x⁰ x⁸ x³ x⁶ x⁵ x⁴ x² x⁹ x¹);
@exes = sort @exes;
say "@exes";

prints: x² x³ x¹ x⁰ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹

Because codepoint order does not correspond to alphabetic order, your data will
come out in an order that, while not exactly random, isn’t what someone looking
for a lexicographic sort wants. The default sort is good mostly for providing fast
access to an ordering that will be the same every time, even though it isn’t usefully

Comparing and Sorting Unicode Text | 297

www.it-ebooks.info

http://www.it-ebooks.info/

alphabetic. It’s just deterministic. Sometimes that’s good enough, but other
times…

Enter the standard Unicode::Collate module, which implements the Unicode
Collation Algorithm (UCA), a highly customizable, multilevel sort specifically
designed for Unicode data. The module has a lot of fancy features, but often you
can just call its default sort method:

use v5.14;
use utf8;
use Unicode::Collate;
my @exes = qw(x⁷ x⁰ x⁸ x³ x⁶ x⁵ x⁴ x² x⁹ x¹);
@exes = Unicode::Collate–>new–>sort(@exes);
say "@exes";

prints: x⁰ x¹ x² x³ x⁴ x⁵ x⁶ x⁷ x⁸ x⁹

By default, the module provides an alphanumeric sort. To a first approximation,
it’s like first throwing out all nonalphanumerics and then sorting whatever’s left
case-insensitively, not according to numeric codepoint order, but in sequential
order of the alphabetics in the string. This is the kind of sort that dictionaries
use, which is why it’s sometimes called a dictionary sort or a lexicographic sort.

Before everyone got used to computers that didn’t understand how to sort text,
this was how everything was expected to be sorted, and often still is. A book title
with a comma after the first word should not suddenly hare off to a completely
different place than the same title without the comma. Commas shouldn’t mat-
ter, at least not unless everything else is tried. Commas are not part of any natural
sequence like an alphabet or the integers.

Consider what happens with Perl’s built-in sort (which is the same as the default
string sort found in the shell command and most programming languages):

% perl –e 'print sort <>' little–reds
Little Red Mushrooms
Little Red Riding Hood
Little Red Tent
Little Red, More Blue
Little, Red Rider

What kind of nonsense is that? “More” should come before “Mushrooms”, “Rider”,
and “Riding” should go together, and “Tent” should go at the end. Even on pure
ASCII, that isn’t an alphabetic sort; this is:

298 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

% perl –MUnicode::Collate –e '
 print for Unicode::Collate–>new–>sort(<>)' little–reds
Little Red, More Blue
Little Red Mushrooms
Little, Red Rider
Little Red Riding Hood
Little Red Tent

We think you’ll like Unicode’s sort so much that you’ll want to keep a little script
around to sort your regular text. This one assumes UTF-8 input and produces
UTF-8 output:

#!/usr/bin/perl
use warnings;
use open qw(:std :utf8);
use warnings qw(FATAL utf8);
use Unicode::Collate;
print for Unicode::Collate–>new–>sort(<>);

A more featureful version of that program can be found in the ucsort program,
part of the CPAN Unicode::Tussle suite.

Most people find that, left to its defaults, the module’s sort produces aesthetically
pleasing results. It already knows how to order letters and numbers, plus all the
weirdnesses of Unicode that mess up ASCII sorts, like letters that aren’t numer-
ically close to each other needing to sort together, all the fancy Unicode casing
rules, canonically equivalent strings, and quite a bit more.

Plus, if it isn’t quite to your liking, its potential for customization is unbounded.
Here’s a simple tweak that works well on English-language book or movie titles.
This time we’ll sort uppercase before lowercase, remove leading articles before
sorting, and zero-pad numbers on the left so that 101 Dalmations sorts after 7
Brides for 7 Brothers.7

my $collator = Unicode::Collate–>new(
 ––upper_before_lower => 1,
 ––preprocess => {
 local $_ = shift;
 s/^ (?: The | An?) \h+ //x; # strip articles
 s/ (\d+) / sprintf "%020d", $1 /g;
 return $_;
 };
);

We’ve already shown how an alphabetic sort looks better than a codepoint sort
on ASCII. On non-ASCII Unicode, it’s even more dramatic. Even if you are “only”

7. The padding is needed because although Unicode knows an individual numeric codepoint’s numeric
value, it doesn’t know that “9” should come before “10”—unless you do something like this.

Comparing and Sorting Unicode Text | 299

www.it-ebooks.info

http://www.it-ebooks.info/

using English, you still need to deal with more than ASCII. What if your data has
a 10¢ stamp or a £5 note? Even in purely English text you encounter curly quotes,
fancy dashes, and all kinds of specialists symbols that ASCII doesn’t handle. Even
if we’re only talking about words such as you’d find in the English dictionary,
that doesn’t let you off the hook. Here are just a few of the non-ASCII entries
from the Oxford English Dictionary, sorted (column-major) with the UCA in de-
fault mode:

Allerød fête Niçoise smørrebrød

après-ski feuilleté piñon soirée

Bokmål flügelhorn plaçage tapénade

brassière Gödelian prêt-à-porter vicuña

caña jalapeño Provençal vis-à-vis

crème Madrileño quinceañera Zuñi

crêpe Möbius Ragnarök α-ketoisovaleric acid

désœuvrement Mohorovičić discontinuity résumé (α-)lipoic acid

Fabergé moiré Schrödinger (β-)nornicotine

façade naïve Shijō ψ-ionone

You don’t want to see what happens if you sort those next to similar words that
are only in ASCII. It is not a pretty picture. And that’s just Latin text. Consider
these figures from Greek mythology, sorted using the default codepoint sort:

Δύσις Άσβολος Διόνυσος Φάντασος Μεγαλήσιος

Ασβετος Αγχίσης Έσπερίς Ἄγδιστις Τελεσφόρος

Ασωπός Λάχεσις Ἓσπερος Ἀστραῖος Χρυσόθεμις

Θράσος Νέμεσις Εύνοστος Ασκληπιός Ἀριστόδημος

Ιάσιος Περσεύς Ήφαιστος Ἥφαιστος Ἀριστόμαχος

Νέσσος Άδραστος Ηωσφόρος Ἀρισταῖος Λαιστρυγόνες

Πέρσης Άλκηστις Θρασκίας Ἀσκάλαφος

Πίστις Αίγισθος Πάσσαλος Βορυσθενίς

Χρύσος Αργέστης Πρόφασις Ἑσπερίδες

Even if you can’t read the Greek alphabet, you can tell how seriously broken
sorting by codepoint is: just scan down the first letter in each column. See how
they jump around? Under a default UCA sort, they now come right:

300 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

Ἄγδιστις Ασβετος Ἑσπερίδες Ιάσιος Πίστις

Αγχίσης Άσβολος Έσπερίς Λαιστρυγόνες Πρόφασις

Άδραστος Ἀσκάλαφος Ἓσπερος Λάχεσις Τελεσφόρος

Αίγισθος Ασκληπιός Εύνοστος Μεγαλήσιος Φάντασος

Άλκηστις Ἀστραῖος Ἥφαιστος Νέμεσις Χρυσόθεμις

Αργέστης Ασωπός Ήφαιστος Νέσσος Χρύσος

Ἀρισταῖος Βορυσθενίς Ηωσφόρος Πάσσαλος

Ἀριστόδημος Διόνυσος Θρασκίας Περσεύς

Ἀριστόμαχος Δύσις Θράσος Πέρσης

Convinced? Let’s first look at how the UCA really works, and then how to con-
figure it a bit.

The Unicode Collation Algorithm is a multilevel sort. You’ve seen these before.
Imagine you were writing your comparison function to pass to the built-in
sort that looked like this:

@collated_text = sort {

 primary($a) <=> primary($b)
 ||
 secondary($a) <=> secondary($b)
 ||
 tertiary($a) <=> tertiary($b)
 ||
 quaternary($a) <=> quaternary($b)

} @random_text;

That’s a multilevel sort, and at a certain level of simplification, that’s pretty much
what the UCA is doing. Each of those four functions returns a number that rep-
resents the sort weight at that strength. Only when primary strengths differ does
it fall through to compare secondary strengths, and so on down the levels.

This is a little bit of a simplification, but it works essentially this way:

Primary strength: compare letters
Compare whether the basic letters8 are the same. Ignore nonletters at this
stage; just skip ahead until you find a letter. If the letters aren’t the same for
the same relative position, there is an established dictionary order about
what goes first.

8. And digits, and a few things you might not realize are letters; just pretend we said all those things when
we say letter here.

Comparing and Sorting Unicode Text | 301

www.it-ebooks.info

http://www.it-ebooks.info/

If you are a user of the Latin alphabet sorting Latin text, this will be in the
order of the abcs you learned in school, so “Fred” comes before “freedom”,
as does “free beer”. The reason it put “free beer” in front of “freedom” is
because the fifth letter in the first string is “b”, and that comes before the fifth
letter in the second string, which is “d”. See how that works? That’s dictionary
order. We aren’t doing a field sort here.

Secondary strength: compare diacritics
If the letters are the same, then check whether the diacritics (technically, the
combining marks; diacritics and marks mostly overlap, but not completely)
are the same. By default we resolve ties by looking at the diacritics reading
left to right, but this can be flipped to do so right to left, as is needed in
French. (The classic demo is that normal LTR tie-breaking order sorts cote
< coté < côte < côté, whereas the French RTL tie-breaking order for dia-
critics sorts cote < côte < coté < côté; in other words, the middle two
words exchange positions in French ordering. It has to do with their inflec-
tional morphology, which is tail-based.)

Tertiary strength: compare case
If the letters and the diacritics are the same, then check whether the case is
the same. By default, lowercase precedes uppercase, but this is easy to flip
using the upper_before_lower => 1 option when you construct your collator
object.

Quaternary strength: compare everything else
If the letters, the diacritics, and the case are all the same for a given position,
now you go back and reconsider any nonletters, like punctuation and sym-
bols and whitespace, that you temporarily ignored at earlier levels. Here,
everything counts.

You don’t have to do all those if you don’t want. You can, for example, tell it to use
only the primary strength, which only considers basic letters and absolutely
nothing else.

That’s how you do an “accent-insensitive” string comparison, using your collator
object’s eq method.

Normalization won’t always help you enough. For example, you can’t use it to get
“o”, “õ”, and “ø” to look the same, because LATIN SMALL LETTER O WITH STROKE has
no decomposition to something with an “o” in it. On the other hand, when com-
paring whether letters are the same, Unicode::Collate does count “o”, “õ”, and
“ø” as the same letter—normally. Not in Swedish or Hungarian, though.

Similarly, with “d” and “ð” — you can’t decompose LATIN SMALL LETTER ETH to
anything with a “d” in it, but the UCA treats them as the same letter. Er, except

302 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

in Icelandic (the “is” locale), where “d” and “ð” are now different letters in their
own right.

If you wanted your collator object to ignore case but consider accents for level one
ties, you’d set it to do only the first two stages and skip the rest by passing the
constructor an option pair of level => 2.

Here’s the full syntax for all the optional configuration parameters in the con-
structor as of its v0.81 release:

$Collator = Unicode::Collate–>new(
 UCA_Version => $UCA_Version,
 alternate => $alternate, # alias for 'variable'
 backwards => $levelNumber, # or \@levelNumbers
 entry => $element,
 hangul_terminator => $term_primary_weight,
 ignoreName => qr/$ignoreName/,
 ignoreChar => qr/$ignoreChar/,
 ignore_level2 => $bool,
 katakana_before_hiragana => $bool,
 level => $collationLevel,
 normalization => $normalization_form,
 overrideCJK => \&overrideCJK,
 overrideHangul => \&overrideHangul,
 preprocess => \&preprocess,
 rearrange => \@charList,
 rewrite => \&rewrite,
 suppress => \@charList,
 table => $filename,
 undefName => qr/$undefName/,
 undefChar => qr/$undefChar/,
 upper_before_lower => $bool,
 variable => $variable,
);

Consult the module’s manpage for the sort of arguments its constructor accepts.
Although the module is bundled with Perl, it is also available as a dual-lived
CPAN module. That way it can get updated independently from the Perl core.
The version released with Perl v5.14 shipped with v0.73 of Unicode::Collate, so
it’s obviously been updated since then. You don’t have to have a cutting-edge
release of Perl to run the latest version of the module. It supports Perl releases
dating back to v5.6, and has built-in forwards compatibility with later Unicode
releases via its UCA_Version constructor argument.

Using the UCA with Perl’s sort
In real code, the sort built-in is usually called in one of two ways. Either it’s called
with no sort routine at all, or it’s called with a block argument that serves as the

Comparing and Sorting Unicode Text | 303

www.it-ebooks.info

http://www.it-ebooks.info/

custom comparison function. The Unicode::Collate’s sort method is a fine sub-
stitute for the first flavor, but not the second. For that, you’d use a different
method from your collator object, called getSortKey.

Suppose you have a program that uses the built-in sort, like this:

@srecs = sort {
 $b–>{AGE} <=> $a–>{AGE}
 ||
 $a–>{NAME} cmp $b–>{NAME}
} @recs;

But then you decide you want the text to sort alphabetically on your NAME fields,
not just by numeric codepoints. To do this, just ask the collator object to give
you back the binary sort key for each text string you will eventually wish to sort.
Unlike the regular text, if you pass this binary sort key to the cmp operator, it will
magically sort in the order you want.

The block you pass to sort now looks like this:

my $collator = Unicode::Collate–>new();
for my $rec (@recs) {
 $rec–>{NAME_key} = $collator–>getSortKey($rec–>{NAME});
}
@srecs = sort {
 $b–>{AGE} <=> $a–>{AGE}
 ||
 $a–>{NAME_key} cmp $b–>{NAME_key}
} @recs;

You can pass the constructor any optional arguments to do anything special, in-
cluding preprocessing.

Another thing you can do with collator objects is use them to do simple accent-
and case-insensitive matching. It makes sense; if you have the ability to tell when
things are ordered, you also have the ability to tell when they are equivalent in a
given ordering. So you just have to pick the right ordering semantics. For exam-
ple, if you set the collation level to 1, it only considers whether things are the
same letter, diacritics and case notwithstanding. Your collator object has meth-
ods on it like eq, substr, and index to help with this. (You have to set it not to
normalize, though, because otherwise your codepoint offsets will be wrong.)
Here’s an example:

use v5.14;
use utf8;
use Unicode::Collate;
my $Collator = Unicode::Collate–>new(
 level => 1,
 normalization => undef,

304 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

);

my $full = "Gabriel García Márquez";
for my $sub (qw[MAR CIA]) {
 if (my($pos,$len) = $Collator–>index($full, $sub)) {
 my $match = substr($full, $pos, $len);
 say "Found match of literal ‹$sub› in ‹$full› as ‹$match›";
 }
}

When run, that prints out:

Found match of literal ‹MAR› in ‹Gabriel García Márquez› as ‹Már›
Found match of literal ‹CIA› in ‹Gabriel García Márquez› as ‹cía›

Please don’t tell the CIA.

Locale Sorting
Although the default UCA works well for English and a lot of other languages—
including Irish Gaelic, Indonesian, Italian, Georgian, Dutch, Portuguese, and
German (except in phonebooks!)—it needs some modification to work the way
speakers of many other languages expect their alphabets to sort. Or nonalpha-
bets, as the case may be.

For example, the Nordic languages place some of their letters with diacritics after
z instead of next to the regular letters. Even Spanish does things a little differently:
the ñ isn’t considered a regular n with a tilde on it the way ã and õ are in Portuguese.
Instead, it’s its own letter (named eñe, of course) that falls after n and before o in
the Spanish alphabet. That means these words should sort in this order in Span-
ish: radio, ráfaga, ranúnculo, raña, rápido, rastrillo. Notice how ranúnculo comes
before raña instead of after it.

The way to address locale-specific sorting of Unicode data is to use the Uni
code::Collate::Locale module. It’s part of the Unicode::Collate distribution, so
it comes standard with v5.14 and is included with its companion module if you
separately install either from CPAN.

The only difference in the two modules’ APIs is that the Unicode::Collate
::Locale takes an extra parameter to the constructor: the locale. As of this writ-
ing, 70 different locales are supported, including variants like German phone-
book (umlauted vowels collate as though they were the regular vowel plus an e
following them), traditional Spanish (ch and ll count as graphemes with their
own ordering in the alphabet), Japanese, and five different ways of sorting
Chinese.

Using these locales is really easy:

Comparing and Sorting Unicode Text | 305

www.it-ebooks.info

http://www.it-ebooks.info/

use Unicode::Collate::Locale;

$coll = Unicode::Collate::Locale–>new(locale => "fr");

@french_text = $coll–>sort(@french_text);

Because Unicode::Collate::Locale is a subclass of Unicode::Collate, its con-
structor accepts the same optional arguments that its superclass’s does, and its
objects support the same methods, so you can use these objects for locale-sen-
sitive searches the same way as before. Here we select the “German phonebook”
locale, where (for example) ae and ä count as the same letter. You can just compare
them outright like this:

state $coll = new Unicode::Collate::Locale::
 locale => "de_ _phonebook",
 ;

if ($coll–>eq($a, $b)) { ... }

And here’s a way to search:

use Unicode::Collate::Locale;
my $Collator = new Unicode::Collate::Locale::
 locale => "de_ _phonebook",
 level => 1,
 normalization => undef,
 ;

my $full = "Ich müß Perl studieren.";
my $sub = "MUESS";
if (my ($pos,$len) = $Collator–>index($full, $sub)) {
 my $match = substr($full, $pos, $len);
 say "Found match of literal ‹$sub› in ‹$full› as ‹$match›";
}

When run, that says:

Found match of literal ‹MUESS› in ‹Ich müß Perl studieren.› as ‹müß›

More Goodies
One thing to always be aware of is that, by default, the Perl shortcuts like \w, \s,
and even \d match many Unicode characters based on particular character prop-
erties. These are described in Table 5-6, and are intended to match the formal
definitions given in Annex C: Compatibility Properties from Unicode Technical
Standard #18, “Unicode Regular Expressions”, version 13, from August 2008.

If you are used to matching (\d+) to grab a whole number and use it like a number,
that will not always work correctly with Unicode data. As of Unicode v6.0, 420

306 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

codepoints are matched by \d. If you don’t want that, you may specify /\d/a
or /(?a:\d)/, or you may use the more particular property, \p{POSIX_Digit}.

However, if you mean to match any run of decimal digits in any one script and
need to use that match as a number in Perl, the Unicode::UCD module’s num func-
tion will help you do that.

use v5.14;
use utf8;
use Unicode::UCD qw(num);
my $num;
if ("४५६७" =~ /(\d+)/) {
 $num = num($1);
 printf "Your number is %d\n", $num;
 # Your number is 4567
}

Although regexes can ask whether a character has some property, they can’t tell
you what properties the character has (at least, not without testing all of them).
And sometimes you really do want to know that. For example, suppose you want
to know what Script a codepoint has been assigned, or what its General Category
is. To do that, you use the same Unicode::UCD module again. Here is a program
to print out useful properties you can use in pattern matching.

use v5.14;
use utf8;
use warnings;

use Unicode::UCD qw(charinfo);
use Unicode::Normalize qw(NFD);

uncomment next line for decomposed forms
my $mystery = ## NFD
 "४५६७";

for my $chr (split //, $mystery) {
 my $ci = charinfo(ord $chr);
 print "U+", $$ci{code};
 printf ' \N{%s}'."\n\t", $$ci{name};
 print " gc=", $$ci{category};
 print " script=", $$ci{script};
 print " BC=", $$ci{bidi};
 print " mirrored=", $$ci{bidi};
 print " ccc=", $$ci{combining};
 print " nv=", $$ci{numeric};
 print "\n";
}

When run, that program prints out:

More Goodies | 307

www.it-ebooks.info

http://www.it-ebooks.info/

U+096D \N{DEVANAGARI DIGIT SEVEN} gc=Nd script=Devanagari
 BC=L mirrored=L ccc=0 nv=7
U+00BE \N{VULGAR FRACTION THREE QUARTERS} gc=No script=Common A
 BC=ON mirrored=ON ccc=0 nv=3/4
U+00E7 \N{LATIN SMALL LETTER C WITH CEDILLA} gc=Ll script=Latin
 BC=L mirrored=L ccc=0 nv=
U+1F6F \N{GREEK CAPITAL LETTER OMEGA WITH DASIA AND PERISPOMENI}
 gc=Lu script=Greek BC=L mirrored=L ccc=0 nv=

However, if you remove the comment blocking NFD from running, you get:

U+096D \N{DEVANAGARI DIGIT SEVEN} gc=Nd script=Devanagari
 BC=L mirrored=L ccc=0 nv=7
U+00BE \N{VULGAR FRACTION THREE QUARTERS} gc=No script=Common
 BC=ON mirrored=ON ccc=0 nv=3/4
U+0063 \N{LATIN SMALL LETTER C} gc=Ll script=Latin
 BC=L mirrored=L ccc=0 nv=
U+0327 \N{COMBINING CEDILLA} gc=Mn script=Inherited
 BC=NSM mirrored=NSM ccc=202 nv=
U+03A9 \N{GREEK CAPITAL LETTER OMEGA} gc=Lu script=Greek
 BC=L mirrored=L ccc=0 nv=
U+0314 \N{COMBINING REVERSED COMMA ABOVE} gc=Mn script=Inherited
 BC=NSM mirrored=NSM ccc=230 nv=
U+0342 \N{COMBINING GREEK PERISPOMENI} gc=Mn script=Inherited
 BC=NSM mirrored=NSM ccc=230 nv=

Custom Regex Boundaries
A \b for a word boundary and \B for a non-(word boundary) both rely on your
current definition of \w (meaning that they change right along with \w if you
switch to ASCII semantics with the /a or /aa modifier).

If those aren’t quite the kind of boundaries you’re looking for, you can always
write your own boundary assertions based on arbitrary edge conditions, like
script boundaries. Here is the definition of \b:

(?(?<= \w) # if there is a word character to the left
 (?! \w) # then there must be no word character to the right
 | (?= \w) # else there must be a word character to the right
)

And here is the definition of \B:

(?(?<= \w) # if there is a word character to the left
 (?= \w) # then there must be a word character to the right
 | (?! \w) # else there must be no word character to the right
)

Now that you know exactly how word boundaries and nonboundaries work, you
can craft your own boundaries by swapping in your own condition wherever you
see \w in the patterns above. You just need to be careful to specify a fixed-width

308 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

condition so that it can be used in a lookbehind. That means you can’t use things
like \X or \R, which are variable width. The easiest way to do that is to use a
property or other character class. For example, you could use \p{Greek} for char-
acters in the Greek script—but best add Inherited so you don’t miss the com-
bining characters, so use [\p{Greek}\p{Inherited}] instead.

For example, this might provide regex subroutines suitable for that kind of work:

(?(DEFINE)
 (?<greeklish> [\p{Greek}\p{Inherited}])
 (?<ungreeklish> [^\p{Greek}\p{Inherited}])
 (?<greek_boundary>
 (?(?<= (?&greeklish))
 (?! (?&greeklish))
 | (?= (?&greeklish))
)
)
 (?<greek_nonboundary>
 (?(?<= (?&greeklish))
 (?= (?&greeklish))
 | (?! (?&greeklish))
)
)
)

For character classes that are the result of adding, subtracting, negating, and in-
tersecting existing Unicode properties, like the <greeklish> regex subroutine is
above, you might prefer to implement these as custom properties. Custom prop-
erties look just like normal properties. For example:

sub IsGreeklish {
 return <<'END';
+utf8::IsGreek
+utf8::IsInherited
END
}

Now you may use \p{IsGreeklish} and \P{IsGreeklish} in patterns compiled in
the same package as that subroutine. See the next section for how to put these
together.

Building Character
To define your own property, you need to write a subroutine with the name of the
property you want (see Chapter 7). For security reasons, this subroutine’s (un-
qualified) name must begin with either Is or In. The subroutine should be de-
fined in the package that needs the property (see Chapter 10), which means that
if you want to use it in multiple packages, you’ll either have to import it from a

More Goodies | 309

www.it-ebooks.info

http://www.it-ebooks.info/

module (see Chapter 11), or inherit it as a class method from the package in which
it is defined (see Chapter 12).

Once you’ve got that all settled, the subroutine should return data in the same
format as the files in PATH_TO_PERLLIB/unicode/Is directory. That is, just return a
list of characters or character ranges in hexadecimal, one per line. If there is a
range, the two numbers are separated by a tab. Suppose you wanted a property
that would be true if your character is in the range of either of the Japanese
syllabaries, known as hiragana and katakana (together they’re known as kana).
You can just put in the two ranges like this:

sub InKana {
 return <<'END';
3040 309F
30A0 30FF
END
}

Alternatively, you could define it in terms of existing property names:

sub InKana {
 return <<'END';
+utf8::InHiragana
+utf8::InKatakana
END
}

You can also do set subtraction using a “–” prefix. Suppose you only wanted the
actual characters, not just the block ranges of characters. You could weed out all
the undefined ones like this:

sub IsKana {
 return <<'END';
+utf8::InHiragana
+utf8::InKatakana
–utf8::IsCn
END
}

You can also start with a complemented character set using the “!” prefix:

sub IsNotKana {
 return <<'END';
!utf8::InHiragana
–utf8::InKatakana
+utf8::IsCn
END
}

Intersection, specified with the “&" prefix, is useful for getting the common char-
acters matched by two (or more) classes.

310 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

sub IsGraecoRomanTitle {<<'END_OF_SET'}
+utf8::IsLatin
+utf8::IsGreek
&utf8::IsTitle
END_OF_SET

sub IsGreekTitle {<<'END_OF_SET'}
+main::IsGraecoRomanTitle
–utf8::IsLatin
END_OF_SET

It’s important to remember not to use “&” for the first set; that would be inter-
secting with nothing, resulting in an empty set.

Perl itself uses exactly the same tricks to define the meanings of its “classic” char-
acter classes (like \w) when you include them in your own custom character classes
(like [–.\w\s]). You might think that the more complicated you get with your
rules, the slower they will run. But, in fact, once Perl has calculated the bit pattern
for a particular 64-bit swatch of your property, it caches it so it never has to
recalculate the pattern again. (It does it in 64-bit swatches so that it doesn’t even
have to decode your UTF-8 to do its lookups.) Thus, all character classes, built-
in or custom, run at essentially the same speed (fast) once they get going.

For a different take on customization just by changing the syntax of square-
bracketed character classes, check out the CPAN Unicode::Regex::Set module.

Together with custom names, custom properties can make even private-use code-
points manageable without having to resort to ugly numbers. For example, Uni-
code hasn’t yet incorporated Tengwar (an elvish script) into its official repertoire
(although it’s on the roadmap—there are, after all, many maps of Middle Earth).
That doesn’t stop font designers from creating beautiful and useful Tengwar
fonts. Although some fonts do use the block of codepoints that Unicode has
reserved for eventually putting Tengwar into, most use codepoints from a private
use area. Either way, however, those codepoints do not yet have assigned names
or properties.

This is no barrier to Perl, because it’s easy to create your own names for characters
and properties. One existing Tengwar module in Perl provides for named char-
acters like:

TENGWAR LETTER TINCO TENGWAR DIGIT ZERO
TENGWAR LETTER PARMA TENGWAR DIGIT ONE
TENGWAR LETTER CALMA TENGWAR DIGIT TWO
TENGWAR LETTER QUESSE TENGWAR DIGIT THREE

More Goodies | 311

www.it-ebooks.info

http://www.it-ebooks.info/

This lets you write things like:

if ($elvish =~ /\N{TENGWAR LETTER SILME NUQUERNA}/) {...}

without a hitch. You can even use charnames::viacode on a Tengwar codepoint
to get back its custom name. Even better, it provides Tengwar character prop-
erties like:

In_Tengwar In_Tengwar_Numerals
In_Tengwar_Consonants Is_Tengwar_Decimal
In_Tengwar_Vowels Is_Tengwar_Duodecimal
In_Tengwar_Alphabetics In_Tengwar_Marks
In_Tengwar_Punctuation In_Tengwar_Alphanumerics

which leads to Perl code that looks like:

print "W" if /\p{In_Tengwar_Alphanumerics}/;
print "A" if /\p{In_Tengwar_Alphabetics}/;
print "C" if /\p{In_Tengwar_Consonants}/;
print "V" if /\p{In_Tengwar_Vowels}/;

or even:

$TENGWAR_GRAPHEME = qr{
 (?>
 (?= \p{In_Tengwar}) \P{In_Tengwar_Marks}
 \p{In_Tengwar_Marks} *
) | \p{In_Tengwar_Marks}
}x;

Trying to write that sort of code without being able to name your abstractions,
both characters and properties, is a bit like trying to program a computer with
only numeric memory addresses and no variable names. Sure, you can do it if
you want to badly enough, but it won’t fit in smoothly with existing facilities,
and it probably won’t be readable or maintainable. By letting you craft your own
special-purpose language even for such custom applications as private use areas,
Perl helps you write code that’s simple and clear.

312 | Chapter 6: Unicode

www.it-ebooks.info

http://www.it-ebooks.info/

References
Perl closely tracks the published Unicode Standard wherever possible. That Stan-
dard includes various annexes and technical reports. Some of those applicable
to material discussed in this chapter include:

UAX #44: Unicode Character Database

UTS #18: Unicode Regular Expressions

UAX #15: Unicode Normalization Forms

UTS #10: Unicode Collation Algorithm

UAX #29: Unicode Text Segmentation

UAX #14: Unicode Line Breaking Algorithm

UAX #11: East Asian Width

References | 313

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 7

Subroutines

Like many languages, Perl provides for user-defined subroutines.1 These subrou-
tines may be defined anywhere in the main program, loaded in from other files
via the do, require, or use keywords, or generated at runtime using eval. You can
even load them at runtime with the mechanism described in the section “Auto-
loading” on page 397 in Chapter 10. You can call a subroutine indirectly, using a
variable containing either its name or a reference to the routine, or through an
object, letting the object determine which subroutine should really be called. You
can generate anonymous subroutines, accessible only through references, and if
you want, use these to clone new, nearly identical functions via closures (which
are covered in the section by that name in Chapter 8).

Syntax
To declare a named subroutine without defining it, use one of these forms:

sub NAME
sub NAME PROTO
sub NAME ATTRS
sub NAME PROTO ATTRS

To declare and define a named subroutine, add a BLOCK:

sub NAME BLOCK
sub NAME PROTO BLOCK
sub NAME ATTRS BLOCK
sub NAME PROTO ATTRS BLOCK

1. We’ll also call them functions, but functions are the same thing as subroutines in Perl. Sometimes we’ll
even call them methods, which are defined the same way, but called differently.

315

www.it-ebooks.info

http://www.it-ebooks.info/

To create an anonymous subroutine or closure, leave out the NAME:

sub BLOCK
sub PROTO BLOCK
sub ATTRS BLOCK
sub PROTO ATTRS BLOCK

PROTO and ATTRS stand for the prototype and attributes, each of which is discussed
in its own section later in this chapter. They’re not so important—the NAME and
the BLOCK are the essential parts, even when they’re missing.

For the forms without a NAME, you still have to provide some way of calling the
subroutine. So be sure to save the return value since this form of sub declaration
is not only compiled at compile time as you would expect, but also produces a
runtime return value:

$subref = sub BLOCK;

To import subroutines defined in another module, say:

use MODULE qw(NAME1 NAME2 NAME3 ...);

To call subroutines directly, say:

NAME(LIST) # & is optional with parentheses.
NAME LIST # Parens optional if sub predeclared/imported.
&NAME # Exposes current @_ to that subroutine,
 # (and circumvents prototypes).

To call subroutines indirectly (by name or by reference), use any of these:

&$subref(LIST) # The & is not optional on indirect call
$subref–>(LIST) # (unless using infix notation).
&$subref # Exposes current @_ to that subroutine.

The official name of a subroutine includes the & prefix. A subroutine may be
called using the prefix, but the & is usually optional, and so are the parentheses
if the subroutine has been predeclared. However, the & is not optional when you’re
just naming the subroutine, such as when it’s used as an argument to defined or
undef, or when you want to generate a reference to a named subroutine by saying
$subref = \&name. Nor is the & optional when you want to make an indirect sub-
routine call using the &$subref() or &{$subref}() constructs. However, the more
convenient $subref–>() notation does not require it. See Chapter 8 for more about
references to subroutines.

Perl doesn’t force a particular capitalization style on your subroutine names.
However, one loosely held convention is that functions called indirectly by Perl’s
runtime system (like BEGIN, UNITCHECK, CHECK, INIT, END, AUTOLOAD, DESTROY, and
all the functions mentioned in Chapter 14) are in all capitals, so you might want

316 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

to avoid using that style. (But subroutines used for constant values are custom-
arily named with all caps, too. That’s okay. We hope…)

Semantics
Before you get too worked up over all that syntax, just remember that the normal
way to define a simple subroutine ends up looking like this:

sub razzle {
 print "Ok, you've been razzled.\n";
}

and the normal way to call it is simply:

razzle();

In this case, we ignored inputs (arguments) and outputs (return values). But the
Perl model for passing data into and out of a subroutine is really quite simple:
all function parameters are passed as one single, flat list of scalars, and multiple
return values are likewise returned to the caller as one single, flat list of scalars.
As with any LIST, any arrays or hashes passed in these lists will interpolate their
values into the flattened list, losing their identities—but there are several ways
to get around this, and the automatic list interpolation is frequently quite useful.
Both parameter lists and return lists may contain as many or as few scalar ele-
ments as you’d like (though you may put constraints on the parameter list by
using prototypes). Indeed, Perl is designed around this notion of variadic func-
tions (those taking any number of arguments), unlike C, where they’re sort of
grudgingly kludged in so that you can call printf(3).

Now, if you’re going to design a language around the notion of passing varying
numbers of arbitrary arguments, you’d better make it easy to process those ar-
bitrary lists of arguments. Any arguments passed to a Perl routine come in as the
array @_. If you call a function with two arguments, they are accessible inside the
function as the first two elements of that array: $_[0] and $_[1]. Since @_ is just
a regular array with an irregular name, you can do anything to it you’d normally
do to an array.2 The array @_ is a local array, but its values are aliases to the actual
scalar parameters. (This is known as pass-by-reference semantics.) Thus, you can
modify the actual parameters if you modify the corresponding element of @_.
(This is rarely done, however, since it’s so easy to return interesting values in
Perl.)

2. This is an area where Perl is more orthogonal than the typical programming language.

Semantics | 317

www.it-ebooks.info

http://www.it-ebooks.info/

The return value of the subroutine (or of any other block, for that matter) is the
value of the last expression evaluated. Or, you may use an explicit return state-
ment to specify the return value and exit the subroutine from any point in the
subroutine. Either way, as the subroutine is called in a scalar or list context, so
also is the final expression of the routine evaluated in that same scalar or list
context.

Tricks with Parameter Lists
Perl does not yet have named formal parameters, but in practice all you do is copy
the values of @_ to a my list, which serves nicely for a list of formal parameters.
(Not coincidentally, copying the values changes the pass-by-reference semantics
into pass by value, which is how people usually expect parameters to work any-
way, even if they don’t know the fancy computer science terms for it.) Here’s a
typical example:

sub maysetenv {
 my($key, $value) = @_;
 $ENV{$key} = $value unless $ENV{$key};
}

But you aren’t required to name your parameters, which is the whole point of the
@_ array. For example, to calculate a maximum, you can just iterate over @_ directly:

sub max {
 my $max = shift(@_);
 for my $item (@_) {
 $max = $item if $max < $item;
 }
 return $max;
}

$bestday = max($mon,$tue,$wed,$thu,$fri);

Positional parameters work well for functions with short argument lists, but as
the number of parameters increases, it becomes awkward to remember which
argument does what, make some of them optional, or have default values. A more
flexible approach that addresses all these issues has the caller supply arguments
using pairs of parameter names and values. The first element of each pair is the
argument name; the second, its value. This makes for self-documenting code
because you can see the parameters’ intended meanings without having to read
the full function definition. Even better, programmers using your function no
longer have to remember the argument order, and they can leave unspecified any
extraneous, unused arguments. We strongly recommend this style of using
named parameters.

318 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

The trick is to assign the @_ argument list to a hash.

configuration(PASSWORD => "xyzzy", VERBOSE => 9, SCORE => 0);

sub configuration {
 my %options = @_;
 print "Maximum verbosity.\n" if $options{VERBOSE} == 9;
}

To show you how flexible this is, here is an example from Perl Cookbook’s recipe
on “Passing by Named Parameter” from its “Subroutines” chapter.

thefunc(INCREMENT => "20s", START => "+5m", FINISH => "+30m");
thefunc(START => "+5m", FINISH => "+30m");
thefunc(FINISH => "+30m");
thefunc(START => "+5m", INCREMENT => "15s");

Then, in the subroutine, create a hash loaded up with default values plus the array
of named pairs.

sub thefunc {
 my %args = (
 INCREMENT => "10s",
 FINISH => 0,
 START => 0,
 @_, # actual args override defaults
);
 if ($args{INCREMENT} =~ /m$/) { ... }
 ...
}

By giving each argument value a name and then assigning @_ to the %args hash,
you no longer have to remember any required ordering, and you can omit
whichever of them you please to have them assume some default value.

On the other hand, here’s an example of not naming your formal arguments so
that you can modify your actual arguments:

upcase_in($v1, $v2); # this changes $v1 and $v2
sub upcase_in {
 for (@_) { $_ = uc($_) }
}

You aren’t allowed to modify constants in this way, of course. If an argument were
actually a scalar literal like "hobbit" or read-only scalar variable like $1, and you
tried to change it, Perl would raise an exception (presumably fatal, possibly ca-
reer-threatening). For example, this won’t work:

upcase_in("frederick");

Semantics | 319

www.it-ebooks.info

http://www.it-ebooks.info/

It would be much safer if the upcase_in function were written to return a copy of
its parameters instead of changing them in place:

($v3, $v4) = upcase($v1, $v2);
sub upcase {
 my @parms = map { uc } @_;
 # Check whether we were called in list context.
 return wantarray ? @parms : $parms[0];
}

Notice how this (unprototyped) function doesn’t care whether it was passed real
scalars or arrays. Perl will smash everything into one big, long, flat @_ parameter
list. This is one of the places where Perl’s simple argument-passing style shines.
The upcase function will work perfectly well without changing the upcase defi-
nition, even if we feed it things like this:

@newlist = upcase(@list1, @list2);
@newlist = upcase(split /:/, $var);

Do not, however, be tempted to do this:

(@a, @b) = upcase(@list1, @list2); # WRONG

Why not? Because, like the flat incoming parameter list in @_, the return list is
also flat. So this stores everything in @a and empties out @b by storing the null list
there. See the later section “Passing References” on page 324 for alternatives.

Error Indications
If you want your function to return in such a way that the caller will realize there’s
been an error, the most natural way to do this in Perl is to use a bare return
statement without an argument. That way when the function is used in scalar
context, the caller gets undef; when used in list context, the caller gets a null list.

Under extraordinary circumstances, you might choose to raise an exception to
indicate an error. Use this measure sparingly, though; otherwise, your whole
program will be littered with exception handlers. For example, failing to open a
file in a generic file-opening function is hardly an exceptional event. However,
ignoring that failure might well be. The wantarray built-in returns undef if your
function was called in void context, so you can tell if you’re being ignored:

if ($something_went_awry) {
 return if defined wantarray; # good, not void context.
 die "Pay attention to my error, you danglesocket!!!\n";
 }

320 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

Scoping Issues
Subroutines may be called recursively because each call gets its own argument
array, even when the routine calls itself. If a subroutine is called using the & form,
the argument list is optional. If the & is used but the argument list is omitted,
something special happens: the @_ array of the calling routine is supplied im-
plicitly. This is an efficiency mechanism that new users may wish to avoid.

&foo(1,2,3); # pass three arguments
foo(1,2,3); # the same

foo(); # pass a null list
&foo(); # the same

&foo; # foo() gets current args, like foo(@_), but faster!
foo; # like foo() if sub foo predeclared, else bareword "foo"

Not only does the & form make the argument list optional, but it also disables any
prototype checking on the arguments you do provide. This is partly for historical
reasons and partly to provide a convenient way to cheat if you know what you’re
doing. See the section “Prototypes” on page 326 later in this chapter.

Variables you access from inside a function that haven’t been declared private to
that function are not necessarily global variables; they still follow the normal
block-scoping rules of Perl. As explained in the “Names” section of Chapter 2,
this means they look first in the surrounding lexical scope (or scopes) for reso-
lution, then on to the single package scope. From the viewpoint of a subroutine,
then, any my or state variables from an enclosing lexical scope are still perfectly
visible.

For example, the bumpx function below has access to the file-scoped $x lexical
variable because the scope where the my was declared—the file itself—hasn’t been
closed off before the subroutine is defined:

top of file
my $x = 10; # declare and initialize variable
sub bumpx { $x++ } # function can see outer lexical variable

C and C++ programmers would probably think of $x as a “file static” variable.
It’s private as far as functions in other files are concerned, but global from the
perspective of functions declared after the my. C programmers who come to Perl
looking for what they would call “static variables” for files or functions find no
such keyword in Perl. Perl programmers generally avoid the word “static” be-
cause static systems are dead and boring, and because the word is so muddled
in historical usage.

Semantics | 321

www.it-ebooks.info

http://www.it-ebooks.info/

Although Perl doesn’t include the word “static” in its lexicon, Perl programmers
have no problem creating variables that are private to a function and persist
across function calls using the similar concept of state variables, explained below.
But that’s not the only way to do it. Perl’s richer scoping primitives combine with
automatic memory management in ways that someone looking for a “static”
keyword might never think of trying.

Lexical variables don’t get automatically garbage collected just because their scope
has exited; they wait to get recycled until they’re no longer used, which is much
more important. To create private variables that aren’t automatically reset across
function calls, enclose the whole function in an extra block and put both the
my declaration and the function definition within that block. You can even put
more than one function there for shared access to an otherwise private variable:

{
 my $counter = 0;
 sub next_counter { return ++$counter }
 sub prev_counter { return ––$counter }
}

As always, access to the lexical variable is limited to code within the same lexical
scope. The names of the two functions, on the other hand, are globally accessible
(within the package), and, since they were defined inside $counter’s scope, they
can still access that variable even though no one else can.

If this function is loaded via require or use, then this is probably just fine. If it’s
all in the main program, you’ll need to make sure any runtime assignment to
my is executed early enough, either by putting the whole block before your main
program or, alternatively, by placing a BEGIN or INIT block around it to make sure
it gets executed before your program starts:

BEGIN {
 my @scale = ("A" .. "G");
 my $note = –1;
 sub next_pitch { return $scale[($note += 1) %= @scale] };
}

The BEGIN doesn’t affect the subroutine definition, nor does it affect the persistence
of any lexicals used by the subroutine. It’s just there to ensure the variables get
initialized before the subroutine is ever called. For more on declaring private and
global variables, see the sections “my” on page 897, “state” on page 957, and
“our” on page 911, respectively, in Chapter 27. The BEGIN and INIT constructs
are explained in Chapter 16.

322 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

To make it easier to keep a variable’s declaration close to its use, the “state” feature
allows for a variant of the my keyword. To enable them, declare that you’re using
a version of Perl that’s at least v5.10.

Now you can use the state keyword to declare a lexical variable that will be
initialized only the first time through:

use v5.14;

sub bumpx {
 state $x = 10; # init only 1st time through
 return $x++;
}

That function will now behave just like the previous one, returning first 10, then
11, then 12, and so on. Here’s a function that has a persistent, private hash for
keeping track of how many times something has been seen:

sub seen_count {
 state %count;
 my $item = shift();
 return ++$count{$item};
}

Unlike other variable declarations, initialization of state variables is restricted to
simple scalar variables only. You can still use arrays and hashes as state variables,
but you can’t magically initialize them the way you can with scalars. This isn’t
actually the limitation it might appear to be, because you can always store a
reference to the type you want, and that is a scalar. For example, instead of:

can't use state %hash = (....)
my %hash = (
 READY => 1,
 WILLING => 1,
 ABLE => 1,
);

as a state variable, you would use:

state $hashref = {
 READY => 1,
 WILLING => 1,
 ABLE => 1,
};

Semantics | 323

www.it-ebooks.info

http://www.it-ebooks.info/

To implement the next_pitch function described above using state variables,
you’d do this:

sub next_pitch {
 state $scale = ["A" .. "G"];
 state $note = –1;
 return $scale–>[($note += 1) %= @$scale];
}

The main point with state variables is that you don’t have to use a BEGIN (or
UNITCHECK) block to make sure the initialization happens before the function is
called.

Finally, when we say that a state variable is initialized only once, we don’t mean
to imply that state variables in separate closures are the same variables. They
aren’t, so each gets its own initialization. This is how state variables differ from
static variables in other languages.

For example, in both versions of the code below, $epoch is a lexical that’s private
to the closure that’s returned. However, in timer_then, it’s initialized before that
closure is returned, while in timer_now, initialization of $epoch is delayed until
the closure that’s returned is first called:

sub timer_then {
 my $epoch = time();
 return sub {
 ...
 };
}

sub timer_now {
 return sub {
 state $epoch = time();
 ...
 };
}

Passing References
If you want to pass more than one array or hash into or out of a function, and
you want them to maintain their integrity, then you’ll need to use an explicit
pass-by-reference mechanism. Before you do that, you need to understand ref-
erences as detailed in Chapter 8. This section may not make much sense to you
otherwise. But, hey, you can always look at the pictures…

Here are a few simple examples. First, let’s define a function that expects a refer-
ence to an array. When the array is large, it’s much faster to pass it in as a single
reference than a long list of values:

324 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

$total = sum (\@a);

sub sum {
 my ($aref) = @_;
 my ($total) = 0;
 for (@$aref) { $total += $_ }
 return $total;
}

Let’s pass in several arrays to a function and have it pop each of them, returning
a new list of all their former last elements:

@tailings = popmany (\@a, \@b, \@c, \@d);

sub popmany {
 my @retlist = ();
 for my $aref (@_) {
 push @retlist, pop @$aref;
 }
 return @retlist;
}

Here’s how you might write a function that does a kind of set intersection by
returning a list of keys occurring in all the hashes passed to it:

@common = inter(\%foo, \%bar, \%joe);
sub inter {
 my %seen;
 for my $href (@_) {
 while (my $k = each %$href) {
 $seen{$k}++;
 }
 }
 return grep { $seen{$_} == @_ } keys %seen;
}

So far, we’re just using the normal list return mechanism. What happens if you
want to pass or return a hash? Well, if you’re only using one of them, or you
don’t mind them concatenating, then the normal calling convention is okay,
although a little expensive.

As we explained earlier, where people get into trouble is here:

(@a, @b) = func(@c, @d);

or here:

(%a, %b) = func(%c, %d);

That syntax simply won’t work. It just sets @a or %a and clears @b or %b. Plus, the
function doesn’t get two separate arrays or hashes as arguments: it gets one long
list in @_, as always.

Passing References | 325

www.it-ebooks.info

http://www.it-ebooks.info/

You may want to arrange for your functions to use references for both input and
output. Here’s a function that takes two array references as arguments and re-
turns the two array references ordered by the number of elements they have in
them:

($aref, $bref) = func(\@c, \@d);
print "@$aref has more than @$bref\n";
sub func {
 my ($cref, $dref) = @_;
 if (@$cref > @$dref) {
 return ($cref, $dref);
 } else {
 return ($dref, $cref);
 }
}

For passing filehandles or directory handles into or out of functions, see the
sections “Handle References” and “Symbol Table References” in Chapter 8.

Prototypes
Perl lets you define your own functions to be called like Perl’s built-in functions.
Consider push(@array, $item), which must tacitly receive a reference to @array,
not just the list values held in @array, so that the array can be modified. Proto-
types let you declare subroutines to take arguments just like many of the built-
ins―that is, with certain constraints on the number and types of arguments. We
call them “prototypes”, but they work more like automatic templates for the
calling context than like what C or Java programmers would think of as proto-
types. With these templates, Perl will automatically add implicit backslashes, or
calls to scalar, or whatever else it takes to get things to show up in a way that
matches the template. For instance, if you declare:

sub mypush (+@);

then mypush takes arguments exactly like push does. For this to work, the decla-
ration of the function to be called must be visible at compile time. The prototype
only affects the interpretation of function calls when the & character is omitted.
In other words, if you call it like a built-in function, it behaves like a built-in
function. If you call it like an old-fashioned subroutine, then it behaves like an
old-fashioned subroutine. The & suppresses prototype checks and associated
contextual effects.

326 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

Because prototypes are taken into consideration only at compile time, it naturally
falls out that they have no influence on subroutine references like \&foo or on
indirect subroutine calls like &{$subref} or $subref–>(). Method calls are not
influenced by prototypes, either. That’s because the actual function to be called
is indeterminate at compile time, depending as it does on inheritance, which is
dynamically determined in Perl.

Since the intent is primarily to let you define subroutines that work like built-in
functions, Table 7-1 gives some prototypes you might use to emulate the corre-
sponding built-ins.

Table 7-1. Prototypes to emulate built-ins

Declared As Called As

sub mylink ($$) mylink $old, $new

sub myreverse (@) myreverse $a,$b,$c

sub myjoin ($@) myjoin ":",$a,$b,$c

sub mypop (;+) mypop @array

sub mysplice (+;$$@) mysplice @array,@array,0,@pushme

sub mykeys (+) mykeys %{$hashref}

sub mypipe (**) mypipe READHANDLE, WRITEHANDLE

sub myindex ($$;$) myindex &getstring, "substr"

 myindex &getstring, "substr", $start

sub mysyswrite (*$;$$) mysyswrite OUTF, $buf

 mysyswrite OUTF, $buf, length($buf)–$off, $off

sub myopen (*;$@) myopen HANDLE

 myopen HANDLE, $name

 myopen HANDLE, "–|", @cmd

sub mysin (_) mysyn $a

 mysyn

sub mygrep (&@) mygrep { /foo/ } $a,$b,$c

sub myrand ($) myrand 42

sub mytime () mytime

Any backslashed prototype character (shown between parentheses in the left col-
umn above) represents an actual argument (exemplified in the right column),
which absolutely must start with that character. Just as the first argument to

Prototypes | 327

www.it-ebooks.info

http://www.it-ebooks.info/

keys must start with % or $, so too must the first argument to mykeys. The special
+ prototype takes care of this for you as a shortcut for \[@%].3

You can use the backslash group notation, \[], to specify more than one allowed
backslashed argument type. For example:

sub myref (\[$@%&*])

allows calling myref as any of these, where Perl will arrange that the function
receives a reference to the indicated argument:

myref $var
myref @array
myref %hash
myref &sub
myref *glob

A semicolon separates mandatory arguments from optional arguments. (It would
be redundant before @ or %, since lists can be null.) Unbackslashed prototype
characters have special meanings. Any unbackslashed @ or % eats all the rest of
the actual arguments and forces list context. (It’s equivalent to LIST in a syntax
description.) An argument represented by $ has scalar context forced on it. An
& requires a reference to a named or anonymous subroutine.

As the last character of a prototype, or just before a semicolon, you can use _ in
place of $. If this argument is not provided, the current $_ variable will be used
instead. For example:

sub mymkdir(_;$) {
 my $dirname = shift();
 my $mask = @_ ? shift() : 0777;
 my $mode = $mask &~ umask();
 ...
}

mymkdir($path, 01750);
mymkdir($path);
mymkdir(); # passes in $_

The + prototype is a special alternative to $ that acts like \[@%] when passed a
literal array or hash variable, but it will otherwise force scalar context on the
argument. This is useful for functions that take for an argument not only a literal
array (or hash) but also a reference to one:

3. The prototype for the hash operators have changed over the years. In v5.8 it was \%, in v5.12 it was \[@%],
and in v5.14 it’s +.

328 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

sub mypush (+@) {
 my $aref = shift;
 die "Not an array or arrayref" unless ref($aref) eq "ARRAY";
 push @$aref, @_;
}

When using the + prototype, your function should always test that the argument
is of an acceptable type. (We’ve intentionally written this in a way that doesn’t
work on objects because doing so would encourage violation of the object’s en-
capsulation.)

A * allows the subroutine to accept anything in that slot that would be accepted
by a built-in as a filehandle: a bare name, a constant, a scalar expression, a type-
glob, or a reference to a typeglob. The value will be available to the subroutine
either as a simple scalar or (in the latter two cases) as a reference to the typeglob.
If you wish to always convert such arguments to a typeglob reference, use Sym
bol::qualify_to_ref as follows:

use Symbol "qualify_to_ref";

sub myfileno (*) {
 my $fh = qualify_to_ref(shift, caller);
 ...
}

Note how the last three examples in the table are treated specially by the parser.
mygrep is parsed as a true list operator, myrand is parsed as a true unary operator
with unary precedence the same as rand, and mytime is truly argumentless, just
like time.

That is, if you say:

mytime +2;

you’ll get mytime() + 2, not mytime(2), which is how it would be parsed without
the prototype, or with a unary prototype.

The mygrep example also illustrates how & is treated specially when it is the first
argument. Ordinarily, an & prototype would demand an argument like \&foo or
sub{}. When it is the first argument, however, you can leave off the sub of your
anonymous subroutine and just pass a bare block in the “indirect object” slot
(with no comma after it). So one nifty thing about the & prototype is that you can
generate new syntax with it, provided the & is in the initial position:

sub try (&$) {
 my ($try, $catch) = @_;
 eval { &$try };
 if ($@) {
 local $_ = $@;

Prototypes | 329

www.it-ebooks.info

http://www.it-ebooks.info/

 &$catch;
 }
}
sub catch (&) { $_[0] }

try {
 die "phooey";
} # not the end of the function call!
catch {
 /phooey/ && print "unphooey\n";
};

This prints “unphooey”. What happens is that try is called with two arguments:
the anonymous function {die "phooey";} and the return value of the catch func-
tion, which in this case is nothing but its own argument―the entire block of yet
another anonymous function. Within try, the first function argument is called
while protected within an eval block to trap anything that blows up. If something
does blow up, the second function is called with a local version of the global $_
variable set to the raised exception.4 If this all sounds like pure gobbledygook,
you’ll have to read about die and eval in Chapter 27, and then go check out
anonymous functions and closures in Chapter 8. On the other hand, if it intrigues
you, you might check out the Try::Tiny module on CPAN, which uses this to
implement elaborately structured exception handling with try, catch, and
finally clauses.

Here’s a reimplementation of the grep BLOCK operator5 (the built-in one is more
efficient, of course):

sub mygrep (&@) {
 my $coderef = shift;
 my @result;
 for my $_ (@_) {
 push(@result, $_) if &$coderef;
 }
 return @result;
}

Some folks would prefer to see full alphanumeric prototypes. Alphanumerics have
been intentionally left out of prototypes for the express purpose of someday
adding named, formal parameters. (Maybe.) The current mechanism’s main goal
is to let module writers enforce a certain amount of compile-time checking on
module users.

4. Yes, there are still unresolved issues having to do with the visibility of @_. We’re ignoring that question for
the moment.

5. It’s not possible to reimplement the grep EXPR form.

330 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

The built-in function prototype retrieves the prototype of user-defined and built-
in functions; see Chapter 27. To change a function’s prototype on the fly, use the
set_prototype function from the standard Scalar::Util module. For example, if
you wanted the NFD and NFC functions from Unicode::Normalize to act like they
have a prototype of “_”, you could do this:

use Unicode::Normalize qw(NFD NFC);

BEGIN {
 use Scalar::Util "set_prototype";
 set_prototype(\&NFD => "_");
 set_prototype(\&NFC => "_");
}

Inlining Constant Functions
Functions prototyped with (), meaning that they take no arguments at all, are
parsed like the time built-in. More interestingly, the compiler treats such functions
as potential candidates for inlining. If the result of that function, after Perl’s op-
timization and constant-folding pass, is either a constant or a lexically scoped
scalar with no other references, then that value will be used in place of calls to
that function. Calls made using &NAME are never inlined, however, just as they are
not subject to any other prototype effects. (See the constant pragma in Chap-
ter 29 for an easy way to declare such constants.)

Both versions of these functions to compute π will be inlined by the compiler:

sub pi () { 3.14159 } # Not exact, but close
sub PI () { 4 * atan2(1, 1) } # As good as it gets

In fact, all of the following functions are inlined because Perl can determine ev-
erything at compile time:

sub FLAG_FOO () { 1 << 8 }
sub FLAG_BAR () { 1 << 9 }
sub FLAG_MASK () { FLAG_FOO | FLAG_BAR }

sub OPT_GLARCH () { (0x1B58 & FLAG_MASK) == 0 }
sub GLARCH_VAL () {
 if (OPT_GLARCH) { return 23 }
 else { return 42 }
}

sub N () { int(GLARCH_VAL) / 3 }
BEGIN { # compiler runs this block at compile time
 my $prod = 1; # persistent, private variable
 for (1 .. N) { $prod *= $_ }
 sub NFACT () { $prod }
}

Prototypes | 331

www.it-ebooks.info

http://www.it-ebooks.info/

In the last example, the NFACT function is inlined because it has a void prototype
and the variable it returns is not changed by that function; furthermore, it can’t
be changed by anyone else since it’s in a lexical scope. So the compiler replaces
uses of NFACT with that value, which was precomputed at compile time because
of the surrounding BEGIN.

If you redefine a subroutine that was eligible for inlining, you’ll get a mandatory
warning. (You can use this warning to tell whether the compiler inlined a par-
ticular subroutine.) The warning is considered severe enough not to be optional,
because previously compiled invocations of the function will still use the old
value of the function. If you need to redefine the subroutine, ensure that it isn’t
inlined either by dropping the () prototype (which changes calling semantics, so
beware) or by thwarting the inlining mechanism in some other way, such as:

sub not_inlined () {
 return 23 if $$;
}

See Chapter 16 for more about what happens during the compilation and execu-
tion phases of your program’s life.

Care with Prototypes
It’s probably best to put prototypes on new functions, not retrofit prototypes onto
older ones. These are context templates, not ANSI C prototypes, so you must be
especially careful about silently imposing a different context. Suppose, for ex-
ample, you decide that a function should take just one parameter, like this:

sub func ($) {
 my $n = shift;
 print "you gave me $n\n";
}

That makes it a unary operator (like the rand built-in) and changes how the com-
piler determines the function’s arguments. With the new prototype, the function
consumes just one scalar-context argument instead of many arguments in list
context. If someone has been calling it with an array or list expression, even if
that array or list contained just a single element, where before it worked, now
you’ve got something completely different:

func @foo; # counts @foo elements
func split /:/; # counts number of fields returned
func "a", "b", "c"; # passes "a" only, discards "b" and "c"
func("a", "b", "c"); # suddenly, a compiler error!

332 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

You’ve just supplied an implicit scalar in front of the argument list, which can
be more than a bit surprising. The old @foo that used to hold one thing doesn’t
get passed in. Instead, 1 (the number of elements in @foo) is now passed to
func. And the split, being called in scalar context, scribbles all over your @_
parameter list. In the third example, because func has been prototyped as a unary
operator, only “a” is passed in; then the return value from func is discarded as
the comma operator goes on to evaluate the next two items and return “c.” In
the final example, the user now gets a syntax error at compile time on code that
used to compile and run just fine.

If you’re writing new code and would like a unary operator that takes only a scalar
variable, not any old scalar expression, you could prototype it to take a scalar
reference:

sub func (\$) {
 my $nref = shift;
 print "you gave me $$nref\n";
}

Now the compiler won’t let anything by that doesn’t start with a dollar sign:

func @foo; # compiler error, saw @, want $
func split/:/; # compiler error, saw function, want $
func $s; # this one is ok –– got real $ symbol
func $a[3]; # and this one
func $h{stuff}[–1]; # or even this
func 2+5; # scalar expr still a compiler error
func ${ \(2+5) }; # ok, but is the cure worse than the disease?

If you aren’t careful, you can get yourself into trouble with prototypes. But if you
are careful, you can do a lot of neat things with them. This is all very powerful,
of course, and should only be used in moderation to make the world a better
place.

Prototypes of Built-in Functions
For reference, Table 7-2 lists the actual prototypes of the overridable built-ins as
of v5.14.

Prototypes | 333

www.it-ebooks.info

http://www.it-ebooks.info/

Table 7-2. Prototypes for built-in functions

Prototype Keywords

() and, break, continue, dump, endgrent, endhostent, endnetent, endpro
toent, endpwent, endservent, fork, getgrent, gethostent, getlogin, get
netent, getppid, getprotoent, getpwent, getservent, or, setgrent, setp
went, time, times, wait, wantarray

(_) abs, alarm, chr, chroot, cos, exp, fc, hex, int, lc, lcfirst, length, log,
oct, ord, quotemeta, readlink, readpipe, ref, rmdir, sin, sqrt, uc,
ucfirst

(;$) caller, chdir, exit, getpgrp, gmtime, localtime, rand, reset, sleep,
srand, umask,

(;*) close, eof, getc, readline, select, tell, write

(;+) pop, shift

(@) chmod, chown, die, kill, reverse, unlink, utime, warn

(_;$) mkdir

(;$$) setpgrp

($) getgrgid, getgrnam, gethostbyname, getnetbyname, getprotobyname, get
protobynumber, getpwnam, getpwuid, sethostent, setnetent, setpro
toent, setservent

(*) closedir, fileno, getpeername, getsockname, lstat, readdir, rewind
dir, stat, telldir

(+) each, keys, values

(\$) lock

(\%) dbmclose

(\[$@%*]) tied, untie

($;$) bless, unpack

(*;$) binmode

(*;$@) open

(+;$$@) splice

($$) atan2, crypt, gethostbyaddr, getnetbyaddr, getpriority, getservby
name, getservbyport, link, msgget, rename, semop, symlink, truncate,
waitpid

($@) formline, join, pack, sprintf, syscall

(+@) push, unshift

(*$) bind, connect, flock, listen, opendir, seekdir, shutdown

(**) accept, pipe

334 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

Prototype Keywords

($$;$) index, rindex

($$;$$) substr

(*$;$$) syswrite

(\[$@%*]$@) tie

($$$) msgctl, msgsnd, semget, setpriority, shmctl, shmget, vec

(*$$) fcntl, getsockopt, ioctl, seek, sysseek

(\%$$) dbmopen

(*$$;$) send, sysopen

(*\$$;$) read, sysread

($$$$) semctl, shmread, shmwrite

(*$$$) setsockopt, socket

(*\$$$) recv

($$$$$) msgrcv

(**$$$) socketpair

Subroutine Attributes
A subroutine declaration or definition may have a list of attributes associated with
it. If such an attribute list is present, it is broken up at whitespace or colon
boundaries and treated as though a use attributes had been seen. See the
attributes pragma in Chapter 29 for internal details. There are two standard
attributes for subroutines: method and lvalue.

The method Attribute
The method attribute can be used by itself:

sub afunc : method { ... }

Currently, this only has the effect of marking the subroutine so as not to trigger
the “Ambiguous call resolved as CORE::%s” warning. (We may make it mean
more someday.)

The attribute system is user-extensible, letting you create your own attribute
names. These new attributes must be valid as simple identifier names (without
any punctuation other than the “_” character). They may have a parameter list
appended, which is currently only checked for whether its parentheses nest
properly.

Subroutine Attributes | 335

www.it-ebooks.info

http://www.it-ebooks.info/

Here are examples of valid syntax (even though the attributes are unknown):

sub fnord (&\%) : switch(10,foo(7,3)) : expensive;
sub plugh () : Ugly('\(") :Bad;
sub xyzzy : _5x5 { ... }

Here are examples of invalid syntax:

sub fnord : switch(10,foo(); # ()–string not balanced
sub snoid : Ugly("("); # ()–string not balanced
sub xyzzy : 5x5; # "5x5" not a valid identifier
sub plugh : Y2::north; # "Y2::north" not a simple identifier
sub snurt : foo + bar; # "+" not a colon or space

The attribute list is passed as a list of constant strings to the code that associates
them with the subroutine. Exactly how this works (or doesn’t) is highly experi-
mental. Check attributes(3) for current details on attribute lists and their manip-
ulation.

The lvalue Attribute
It is possible to return a modifiable scalar value from a subroutine, but only if
you declare the subroutine to return an lvalue:

my $val;
sub canmod : lvalue {
 $val;
}
sub nomod {
 $val;
}

canmod() = 5; # Assigns to $val.
nomod() = 5; # ERROR

If you’re passing parameters to an lvalued subroutine, you’ll usually want paren-
theses to disambiguate what’s being assigned:

canmod $x = 5; # assigns 5 to $x first!
canmod 42 = 5; # can't change a constant; compile–time error
canmod($x) = 5; # this is ok
canmod(42) = 5; # and so is this

If you want to be sneaky, you can get around this in the particular case of a sub-
routine that takes one argument. Declaring the function with a prototype of
($) causes the function to be parsed with the precedence of a named unary op-
erator. Since named unaries have higher precedence than assignment, you no
longer need the parentheses. (Whether this is desirable or not is left up to the
style police.)

336 | Chapter 7: Subroutines

www.it-ebooks.info

http://www.it-ebooks.info/

You don’t have to be sneaky in the particular case of a subroutine that allows zero
arguments (that is, with a () prototype). Without ambiguity, you can say this:

canmod = 5;

That works because no valid term begins with =. Similarly, lvalued method calls
can omit the parentheses when you don’t pass any arguments:

$obj–>canmod = 5;

We promise not to break those two constructs in future versions of Perl 5. They’re
handy when you want to wrap object attributes in method calls (so that they can
be inherited like method calls but accessed like variables).

The scalar or list context of both the lvalue subroutine and the righthand side of
an assignment to that subroutine is determined as if the subroutine call were
replaced by a scalar. For example, consider:

data(2,3) = get_data(3,4);

Both subroutines here are called in scalar context, while in:

(data(2,3)) = get_data(3,4);

and in:

(data(2),data(3)) = get_data(3,4);

all the subroutines are called in list context.

The current implementation does not allow arrays and hashes to be returned
from lvalue subroutines directly. You can always return a reference instead.

Subroutine Attributes | 337

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 8

References

For both practical and philosophical reasons, Perl has always been biased in favor
of flat, linear data structures. And for many problems, this is just what you want.

Suppose you wanted to build a simple table (two-dimensional array) showing
vital statistics—age, eye color, and weight—for a group of people. You could do
this by first creating an array for each individual:

@john = (47, "brown", 186);
@mary = (23, "hazel", 128);
@bill = (35, "blue", 157);

You could then construct a single, additional array consisting of the names of the
other arrays:

@vitals = ("john", "mary", "bill");

To change John’s eyes to “red” after a night on the town, we want a way to change
the contents of the @john array given only the simple string “john”. This is the
basic problem of indirection, which various languages solve in various ways. In
C, the most common form of indirection is the pointer, which lets one variable
hold the memory address of another variable. In Perl, the most common form of
indirection is the reference.

What Is a Reference?
In our example, $vitals[0] has the value “john”. That is, it contains a string that
happens to be the name of another (global) variable. We say that the first variable
refers to the second, and this sort of reference is called a symbolic reference, since
Perl has to look up @john in a symbol table to find it. (You might think of symbolic
references as analogous to symbolic links in the filesystem.) We’ll talk about
symbolic references later in this chapter.

339

www.it-ebooks.info

http://www.it-ebooks.info/

The other kind of reference is a hard reference, and this is what most Perl pro-
grammers use to accomplish their indirections (if not their indiscretions). We
call them hard references not because they’re difficult, but because they’re real
and solid. If you like, think of hard references as real references and symbolic
references as fake references. It’s like the difference between true friendship and
mere name-dropping. When we don’t specify which type of reference we mean,
it’s a hard reference. Figure 8-1 depicts a variable named $bar referring to the
contents of a scalar named $foo, which has the value “bot”.

Figure 8-1. A hard reference and a symbolic reference

Unlike a symbolic reference, a real reference refers not to the name of another
variable (which is just a container for a value) but to an actual value itself, some
internal glob of data. There’s no good word for that thing, but when we have to,
we’ll call it a referent. Suppose, for example, that you create a hard reference to a
lexically scoped array named @array. This hard reference, and the referent it refers
to, will continue to exist even after @array goes out of scope. A referent is only
destroyed when all the references to it are eliminated.

A referent doesn’t really have a name of its own, apart from the references to it. To
put it another way, every Perl variable name lives in some kind of symbol table,
holding one hard reference to its underlying (otherwise nameless) referent. That
referent might be simple, like a number or string, or complex, like an array or
hash. Either way, there’s still exactly one reference from the variable to its value.
You might create additional hard references to the same referent but, if so, the
variable doesn’t know (or care) about them.1

A symbolic reference is just a string that happens to name something in a package
symbol table. It’s not so much a distinct type as it is something you do with a
string. But a hard reference is a different beast entirely. It is the third of the three

1. If you’re curious, you can determine the underlying refcount with the Devel::Peek module, bundled with
Perl.

340 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

kinds of fundamental scalar data types―the other two being strings and
numbers. A hard reference doesn’t know something’s name just to refer to it, and
it’s actually completely normal for there to be no name to use in the first place.
Such totally nameless referents are called anonymous; we discuss them in
“Anonymous Data” on page 342, later in this chapter.

To reference a value, in the terminology of this chapter, is to create a hard reference
to it. (There’s a special operator for this creative act.) The reference so created is
simply a scalar, which behaves in all familiar contexts just like any other scalar.
To dereference this scalar means to use the reference to get at the referent. Both
referencing and dereferencing occur only when you invoke certain explicit mech-
anisms; implicit referencing or dereferencing never occurs in Perl 5. Well, almost
never.2

A function call can use implicit pass-by-reference semantics—if it has a prototype
declaring it that way. If so, the caller of the function doesn’t explicitly pass a
reference, although you still have to dereference it explicitly within the function.
See the section “Prototypes” on page 326 in Chapter 7. And to be perfectly honest,
there’s also some behind-the-scenes dereferencing happening when you use cer-
tain kinds of filehandles, but that’s for backward compatibility and is transparent
to the casual user. Two built-in functions, bless and lock, each take a reference
for their argument but implicitly dereference it to work their magic on what lies
behind. Finally, as of the v5.14 release, built-in functions that specifically operate
on arrays and hashes3 now accept a reference to the correct type and dereference
it as needed. But those confessions aside, the basic principle still holds that Perl
isn’t interested in muddling your levels of indirection.

A reference can point to any data structure. Since references are scalars, you can
store them in arrays and hashes, and thus build arrays of arrays, arrays of hashes,
hashes of arrays, arrays of hashes and functions, and so on. There are examples
of these in Chapter 9.

Keep in mind, though, that Perl arrays and hashes are internally one-dimensional.
That is, their elements can hold only scalar values (strings, numbers, and refer-
ences). When we use a phrase like “array of arrays”, we really mean “array of
references to arrays”, just as when we say “hash of functions”, we really mean
“hash of references to subroutines”. But since references are the only way to
implement such structures in Perl, it follows that the shorter, less accurate phrase

2. And in Perl 6, it’s almost always, just to keep you confused.

3. keys, values, each, pop, push, shift, unshift, and splice.

What Is a Reference? | 341

www.it-ebooks.info

http://www.it-ebooks.info/

is not so inaccurate as to be false; therefore, it should not be totally despised,
unless you’re into that sort of thing.

Creating References
There are several ways to create references, most of which we will describe before
explaining how to use (dereference) the resulting references.

The Backslash Operator
You can create a reference to any named variable or subroutine with a backslash.
(You may also use it on an anonymous scalar value like 7 or "camel", although
you won’t often need to.) This operator works like the & (address-of) operator in
C—at least at first glance.

Here are some examples:

$scalarref = \$foo;
$constref = \186_282.42;
$arrayref = \@ARGV;
$hashref = \%ENV;
$coderef = \&handler;
$globref = *STDOUT;

The backslash operator can do more than produce a single reference. It will gen-
erate a whole list of references if applied to a list. See the upcoming section“Other
Tricks You Can Do with Hard References” on page 353 for details.

Anonymous Data
In the examples just shown, the backslash operator merely makes a duplicate of
a reference that is already held in a variable name—with one exception. The
186_282.42 isn’t referenced by a named variable—it’s just a value. It’s one of those
anonymous referents we mentioned earlier. Anonymous referents are accessed
only through references. This one happens to be a number, but you can create
anonymous arrays, hashes, and subroutines as well.

The anonymous array composer

You can create a reference to an anonymous array with square brackets:

$arrayref = [1, 2, ["a", "b", "c", "d"]];

Here we’ve composed an anonymous array of three elements, whose final element
is a reference to an anonymous array of four elements (depicted in Figure 8-2).

342 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

(The multidimensional syntax described later can be used to access this. For
example, $arrayref–>[2][1] would have the value “b”.)

Figure 8-2. A reference to an array, whose third element is itself an array reference

We now have one way to represent the table at the beginning of the chapter:

$table = [["john", 47, "brown", 186],
 ["mary", 23, "hazel", 128],
 ["bill", 35, "blue", 157]];

Square brackets work like this only where the Perl parser is expecting a term in
an expression. They should not be confused with the brackets in an expression
like $array[6]—although the mnemonic association with arrays is intentional.
Inside a quoted string, square brackets don’t compose anonymous arrays; in-
stead, they become literal characters in the string. (Square brackets do still work
for subscripting in strings, or you wouldn’t be able to print string values like
"VAL=$array[6]\n". And to be totally honest, you can in fact sneak anonymous
array composers into strings, but only when embedded in a larger expression
that is being interpolated. We’ll talk about this cool feature later in the chapter
because it involves dereferencing as well as referencing.)

The anonymous hash composer

You can create a reference to an anonymous hash with braces:

$hashref = {
 "Adam" => "Eve",
 "Clyde" => $bonnie,
 "Antony" => "Cleo" . "patra",
};

For the values (but not the keys) of the hash, you can freely mix other anonymous
array, hash, and subroutine composers to produce as complicated a structure as
you like.

We now have another way to represent the table at the beginning of the chapter:

Creating References | 343

www.it-ebooks.info

http://www.it-ebooks.info/

$table = {
 "john" => [47, "brown", 186],
 "mary" => [23, "hazel", 128],
 "bill" => [35, "blue", 157],
};

That’s a hash of arrays. Choosing the best data structure is a tricky business, and
the next chapter is devoted to it. But, as a teaser, we could even use a hash of
hashes for our table:

$table = {
 "john" => { age => 47,
 eyes => "brown",
 weight => 186,
 },
 "mary" => { age => 23,
 eyes => "hazel",
 weight => 128,
 },
 "bill" => { age => 35,
 eyes => "blue",
 weight => 157,
 },
 };

As with square brackets, braces work like this only where the Perl parser is ex-
pecting a term in an expression. They should not be confused with the braces in
an expression like $hash{key}—although the mnemonic association with hashes
is (again) intentional. The same caveats apply to the use of braces within strings.

There is one additional caveat that didn’t apply to square brackets. Since braces
are also used for several other things (including blocks), you may occasionally
have to disambiguate braces at the beginning of a statement by putting a + or a
return in front, so that Perl realizes the opening brace isn’t starting a block. For
example, if you want a function to make a new hash and return a reference to it,
you have these options:

sub hashem { { @_ } } # Silently WRONG — returns @_.
sub hashem { +{ @_ } } # Ok.
sub hashem { return { @_ } } # Ok.

The anonymous subroutine composer

You can create a reference to an anonymous subroutine by using sub without a
subroutine name:

$coderef = sub { print "Boink!\n" }; # Now &$coderef prints "Boink!"

Note the presence of the semicolon, required here to terminate the expression. (It
isn’t required after the more common usage of sub NAME {} that declares and

344 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

defines a named subroutine.) A nameless sub {} is not so much a declaration as
it is an operator—like do {} or eval {}—except that the code inside isn’t executed
immediately. Instead, it just generates a reference to the code, which in our
example is stored in $coderef. However, no matter how many times you execute
the line shown above, $coderef will still refer to the same anonymous subroutine.4

Object Constructors
Subroutines can also return references. That may sound trite, but sometimes you
are supposed to use a subroutine to create a reference rather than creating the
reference yourself. In particular, special subroutines called constructors create and
return references to objects. An object is simply a special kind of reference that
happens to know which class it’s associated with, and constructors know how
to create that association. They do so by taking an ordinary referent and turning
it into an object with the bless operator, so we can speak of an object as a blessed
reference. There’s nothing religious going on here; since a class acts as a user-
defined type, blessing a referent simply makes it a user-defined type in addition
to a built-in one. Constructors are often named new—especially by C++ and Java
programmers—but they can be named anything in Perl.

Constructors can be called in any of these ways:

$objref = Doggie::–>new(Tail => "short", Ears => "long"); #1
$objref = new Doggie:: Tail => "short", Ears => "long"; #2
$objref = Doggie–>new(Tail => "short", Ears => "long"); #3
$objref = new Doggie Tail => "short", Ears => "long"; #4

The first and second invocations are the same. They both call a function named
new that is supplied by the Doggie module. The third and fourth invocations are
the same as the first two, but are slightly more ambiguous: the parser will get
confused if you define your own subroutine named Doggie. (Which is why people
typically stick with lowercase names for subroutines and uppercase for modules.)
The fourth invocation can also get confused if you’ve defined your own new sub-
routine and don’t happen to have done either a require or a use of the Doggie
module, either of which has the effect of declaring the module. Always declare
your modules if you want to use #4. (And watch out for stray Doggie subroutines.)

See Chapter 12 for a discussion of Perl objects.

4. But even though there’s only one anonymous subroutine, there may be several copies of the lexical variables
in use by the subroutine, depending on when the subroutine reference was generated. These are discussed
later in the section “Closures” on page 355.

Creating References | 345

www.it-ebooks.info

http://www.it-ebooks.info/

Handle References
References to filehandles or directory handles can be created by referencing the
typeglob of the same name:

splutter(*STDOUT);

sub splutter {
 my $fh = shift;
 say $fh "her um well a hmmm";
}

$rec = get_rec(*STDIN);
sub get_rec {
 my $fh = shift;
 return scalar <$fh>;
}

If you’re passing around filehandles, you can also use the bare typeglob to do so:
in the example above, you could have used *STDOUT or *STDIN instead of
*STDOUT and *STDIN.

Although you can usually use typeglob and references to typeglobs interchange-
ably, there are a few places where you can’t. Simple typeglobs can’t be blessed
into objectdom, and typeglob references can’t be passed back out of the scope
of a localized typeglob.

When generating new filehandles, older code would often do something like this
to open a list of files:

for $file (@names) {
 local *FH;
 open(*FH, $file) || next;
 $handle{$file} = *FH;
}

That still works, but it’s often preferable to let an undefined variable autovivify
an anonymous typeglob:

for $file (@names) {
 my $fh;
 open($fh, $file) || next;
 $handle{$file} = $fh;
}

Anytime you have a variable that contains a filehandle instead of a bareword
handle, you have an indirect filehandles. It doesn’t matter whether you use
strings, typeglobs, references to typeglobs, or one of the more exotic I/O objects.
You just use a scalar that—one way or another—gets interpreted as a filehandle.
For most purposes, you can use either a typeglob or a typeglob reference almost

346 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

indiscriminately. As we admitted earlier, there is some implicit dereferencing
magic going on here.

Symbol Table References
In unusual circumstances, you might not know what type of reference you need
when your program is written. A reference can be created by using a special
syntax, affectionately known as the *foo{THING} syntax. *foo{THING} returns a
reference to the THING slot in *foo, which is the symbol table entry holding the
values of $foo, @foo, %foo, and friends.

$scalarref = *foo{SCALAR}; # Same as \$foo
$arrayref = *ARGV{ARRAY}; # Same as \@ARGV
$hashref = *ENV{HASH}; # Same as \%ENV
$coderef = *handler{CODE}; # Same as \&handler
$globref = *foo{GLOB}; # Same as *foo
$ioref = *STDIN{IO}; # Er...
$formatref = *foo{FORMAT}; # More er...

All of these are self-explanatory except for the last two. *foo{FORMAT} is how to
get at the object that was declared using the format statement. There isn’t much
you can do with one of those that’s very interesting.

On the other hand, *STDIN{IO} yields the actual internal IO::Handle object that
the typeglob contains; that is, the part of the typeglob that the various I/O func-
tions are actually interested in. For compatibility with old versions of Perl,
*foo{FILEHANDLE} was once a synonym for the hipper *foo{IO} notation, but that
use is now deprecated.

In theory, you can use a *HANDLE{IO} anywhere you’d use a *HANDLE or a *HAN
DLE, such as for passing handles into or out of subroutines, or storing them in
larger data structures. (In practice, there are still some wrinkles to be ironed out.)
The advantage of them is that they access only the real I/O object you want, not
the whole typeglob, so you run no risk of clobbering more than you want to
through a typeglob assignment (although if you always assign to a scalar variable
instead of to a typeglob, you’ll be okay). One disadvantage is that there’s no way
to autovivify one as of yet:5

splutter(*STDOUT); splutter(*STDOUT{IO});

sub splutter {
 my $fh = shift; print $fh "her um well a hmmm\n";
}

5. Currently, open my $fh autovivifies a typeglob instead of an IO::Handle object, but someday we may fix
that, so you shouldn’t rely on the typeglobbedess of what open currently autovivifies.

Creating References | 347

www.it-ebooks.info

http://www.it-ebooks.info/

Both invocations of splutter print “her um well a hmmm”.

The *foo{THING} thing returns undef if that particular THING hasn’t been seen by
the compiler yet, except when THING is SCALAR. It so happens that *foo{SCALAR}
returns a reference to an anonymous scalar even if $foo hasn’t been seen yet. (Perl
always adds a scalar to any typeglob as an optimization to save a bit of code
elsewhere. But don’t depend on it to stay that way in future releases.)

Implicit Creation of References
You’ve seen some sly references to autovivifying, which is our final method for
creating references—though it’s not really a method at all. References of an ap-
propriate type simply spring into existence if you dereference them in an lvalue
context that assumes they exist. This is extremely useful and is also What You
Expect. This topic is covered later in this chapter, where we’ll discuss how to
dereference all of the references we’ve created so far. Oh, hey, we’re already there.

Using Hard References
Just as there are numerous ways to create references, there are also several ways
to use, or dereference, a reference. There is just one overriding principle: Perl does
no implicit referencing or dereferencing.6 When a scalar is holding a reference, it
always behaves like a simple scalar. It doesn’t magically start being an array or
hash or subroutine; you have to tell it explicitly to do so, by dereferencing it.

Using a Variable As a Variable Name
When you encounter a scalar like $foo, you should be thinking “the scalar value
of foo.” That is, there’s a foo entry in the symbol table, and the $ funny character,
known as a sigil, is a way of looking at whatever scalar value might be inside. If
what’s inside is a reference, you can look inside that (dereferencing $foo) by
prepending another sigil. Or, looking at it the other way around, you can replace
the literal foo in $foo with a scalar variable that points to the actual referent. This
is true of any variable type, so not only is $$foo the scalar value of whatever
$foo refers to, but @$bar is the array value of whatever $bar refers to, %$glarch is
the hash value of whatever $glarch refers to, and so on. The upshot is that you
can put an extra sigil on the front of any simple scalar variable to dereference it:

6. We already confessed that this was a small fib. We’re not about to do so again.

348 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

$foo = "three humps";
$scalarref = \$foo; # $scalarref is now a reference to $foo
$camel_model = $$scalarref; # $camel_model is now "three humps"

Here are some other dereferences:

$bar = $$scalarref;

push(@$arrayref, $filename);
$$arrayref[0] = "January"; # Set the first element of @$arrayref
@$arrayref[4..6] = qw/May June July/; # Set several elements of @$arrayref

%$hashref = (KEY => "RING", BIRD => "SING"); # Initialize whole hash
$$hashref{KEY} = "VALUE"; # Set one key/value pair
@$hashref{"KEY1","KEY2"} = ("VAL1","VAL2"); # Set two more pairs

&$coderef(1,2,3);

say $handleref "output";

This form of dereferencing can only make use of a simple scalar variable (one
without a subscript). That is, dereferencing happens before (or binds tighter than)
any array or hash lookups. Let’s use some braces to clarify what we mean: an
expression like $$arrayref[0] is equivalent to ${$arrayref}[0] and means the
first element of the array referred to by $arrayref. That is not at all the same as
${$arrayref[0]}, which is dereferencing the first element of the (probably non-
existent) array named @arrayref. Likewise, $$hashref{KEY} is the same as ${$hash
ref}{KEY}, and has nothing to do with ${$hashref{KEY}}, which would be deref-
erencing an entry in the (probably nonexistent) hash named %hashref. You will
be miserable until you understand this.

You can achieve multiple levels of referencing and dereferencing by concatenating
the appropriate sigils. The following prints “howdy”:

$refrefref = \\\"howdy";
print $$$$refrefref;

You can think of the dollar signs as operating right to left. But the beginning of
the chain must still be a simple, unsubscripted scalar variable. There is, however,
a way to get fancier, which we already sneakily used earlier, and which we’ll
explain in the next section.

Using a BLOCK As a Variable Name
Not only can you dereference a simple variable name, you can also dereference
the contents of a BLOCK. Anywhere you’d put an alphanumeric identifier as part
of a variable or subroutine name, you can replace the identifier with a BLOCK

Using Hard References | 349

www.it-ebooks.info

http://www.it-ebooks.info/

returning a reference of the correct type. In other words, the earlier examples
could all be disambiguated like this:

$bar = ${$scalarref};
push(@{$arrayref}, $filename);
${$arrayref}[0] = "January";
@{$arrayref}[4..6] = qw/May June July/;
${$hashref}{"KEY"} = "VALUE";
@{$hashref}{"KEY1","KEY2"} = ("VAL1","VAL2");
&{$coderef}(1,2,3);

not to mention:

$refrefref = \\\"howdy";
print ${${${$refrefref}}};

Admittedly, it’s silly to use the braces in these simple cases, but the BLOCK can
contain any arbitrary expression. In particular, it can contain subscripted ex-
pressions. In the following example, $dispatch{$index} is assumed to contain a
reference to a subroutine (sometimes called a “coderef”). The example invokes
the subroutine with three arguments:

&{ $dispatch{$index} }(1, 2, 3);

Here, the BLOCK is necessary. Without that outer pair of braces, Perl would have
treated $dispatch as the coderef instead of $dispatch{$index}.

Using the Arrow Operator
For references to arrays, hashes, or subroutines, a third method of dereferencing
involves the use of the –> infix operator. This form of syntactic sugar makes it
easier to get at individual array or hash elements, or to call a subroutine indirectly.

The type of the dereference is determined by the right operand―that is, by what
follows directly after the arrow. If the next thing after the arrow is a bracket or
brace, the left operand is treated as a reference to an array or a hash, respectively,
to be subscripted by the expression on the right. If the next thing is a left paren-
thesis, the left operand is treated as a reference to a subroutine, to be called with
whatever parameters you supply in the parentheses on the right.

Each of these next trios is equivalent, corresponding to the three notations we’ve
introduced. (We’ve inserted some spaces to line up equivalent elements.)

$ $arrayref [2] = "Dorian"; #1
${ $arrayref }[2] = "Dorian"; #2
 $arrayref–>[2] = "Dorian"; #3

$ $hashref {KEY} = "F#major"; #1
${ $hashref }{KEY} = "F#major"; #2

350 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

 $hashref–>{KEY} = "F#major"; #3

& $coderef (Presto => 192); #1
&{ $coderef }(Presto => 192); #2
 $coderef–>(Presto => 192); #3

You can see that the initial sigil is missing from the third notation in each trio.
The sigil is guessed at by Perl, which is why it can’t be used to dereference com-
plete arrays, complete hashes, or slices of either. As long as you stick with scalar
values, though, you can use any expression to the left of the –>, including another
dereference, because multiple arrow operators associate left to right:

print $array[3]–>{"English"}–>[0];

You can deduce from this expression that the fourth element of @array is intended
to be a hash reference, and the value of the “English” entry in that hash is in-
tended to be an array reference.

Note that $array[3] and $array–>[3] are not the same. The first is talking about
the fourth element of @array, while the second one is talking about the fourth
element of the (possibly anonymous) array whose reference is contained in
$array.

Suppose now that $array[3] is undefined. The following statement is still legal:

$array[3]–>{"English"}–>[0] = "January";

This is one of those cases mentioned earlier in which references spring into ex-
istence (or “autovivify”) when used as an lvalue (that is, when a value is being
assigned to it). If $array[3] was undefined, it’s automatically defined as a hash
reference so that we can set a value for $array[3]–>{"English"} in it. Once that’s
done, $array[3]–>{"English"} is automatically defined as an array reference so
that we can assign something to the first element in that array. Note that rvalues
are a little different: print $array[3]–>{"English"}–>[0] only defines
$array[3] and $array[3]–>{"English"}, not $array[3]–>{"English"}–>[0], since
the final element is not an lvalue. (The fact that it defines the first two at all in
an rvalue context could be considered a bug. We may fix that someday.)

The arrow is optional between brackets or braces, or between a closing bracket
or brace and a parenthesis for an indirect function call. So you can shrink the
previous code down to:

$dispatch{$index}(1, 2, 3);
$array[3]{"English"}[0] = "January";

In the case of ordinary arrays, this gives you multidimensional arrays that are just
like C’s array:

$answer[$x][$y][$z] += 42;

Using Hard References | 351

www.it-ebooks.info

http://www.it-ebooks.info/

Well, okay, not entirely like C’s arrays. For one thing, C doesn’t know how to grow
its arrays on demand, while Perl does. Also, some constructs that are similar in
the two languages parse differently. In Perl, the following two statements do the
same thing:

$listref–>[2][2] = "hello"; # Pretty clear
$$listref[2][2] = "hello"; # A bit confusing

This second of these statements may disconcert the C programmer, who is ac-
customed to using *a[i] to mean “what’s pointed to by the ith element of a”. But
in Perl, the five characters ($ @ * % &) effectively bind more tightly than braces
or brackets.7 Therefore, it is $$listref and not $listref[2] that is taken to be a
reference to an array. If you want the C behavior, either you have to write $
{$listref[2]} to force the $listref[2] to get evaluated before the leading $ deref-
erencer, or you have to use the –> notation:

$listref[2]–>[$greeting] = "hello";

Using Object Methods
If a reference happens to be a reference to an object, then the class that defines
that object probably provides methods to access the innards of the object, and
you should generally stick to those methods if you’re merely using the class (as
opposed to implementing it). In other words, be nice and don’t treat an object
like a regular reference, even though Perl lets you when you really need to. Perl
does not enforce encapsulation. We are not totalitarians here. We do expect some
basic civility, however.

In return for this civility, you get complete orthogonality between objects and
data structures. Any data structure can behave as an object when you want it
to―or not, when you don’t.

Pseudohashes
A pseudohash used to be a way to treat an array as though it were a hash so you
could fake an ordered hash. Pseudohashes were an experiment that turned out
to be not such a great idea, so they have been removed from Perl as of v5.10, but
some people are stuck on even earlier versions, so we’ll leave in a note, even
though you shouldn’t use them. If you used them, you should have used the
fields module’s phash and new functions.

7. But not because of operator precedence. The sigils in Perl are not operators in that sense. Perl’s grammar
simply prohibits anything more complicated than a simple variable or block from following the initial sigil.

352 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

The fields::phash interface is no longer available as of v5.10, although
fields::new still works. Nonetheless, you should consider using restricted hashes
from the standard Hash::Util module instead.

Other Tricks You Can Do with Hard References
As mentioned earlier, the backslash operator is usually used on a single referent
to generate a single reference, but it doesn’t have to be. When used on a list of
referents, it produces a list of corresponding references. The second line of the
following example does the same thing as the first line, since the backslash is
automatically distributed throughout the whole list:

@reflist = (\$s, \@a, \%h, \&f); # List of four references
@reflist = \($s, @a %h, &f); # Same thing

If a parenthesized list contains exactly one array or hash, then all of its values are
interpolated, and references to each are returned:

@reflist = \(@x); # Interpolate array, then get refs
@reflist = map { \$_ } @x; # Same thing

This also occurs when there are internal parentheses:

@reflist = \(@x, (@y)); # But only single aggregates expand
@reflist = (\@x, map { \$_ } @y); # Same thing

If you try this with a hash, the result will contain references to the values (as you’d
expect), but also references to copies of the keys (as you might not expect).

Since array and hash slices are really just lists, you can backslash a slice of either
of these to get a list of references. Each of the next three lines does exactly the
same thing:

@envrefs = \@ENV{"HOME", "TERM"}; # Backslashing a slice
@envrefs = \($ENV{HOME}, $ENV{TERM}); # Backslashing a list
@envrefs = (\$ENV{HOME}, \$ENV{TERM}); # A list of two references

Since functions can return lists, you can apply a backslash to them. If you have
more than one function to call, first interpolate each function’s return values into
a larger list, and then backslash the whole thing:

@reflist = \fx();
@reflist = map { \$_ } fx(); # Same thing

@reflist = \(fx(), fy(), fz());
@reflist = (\fx(), \fy(), \fz()); # Same thing
@reflist = map { \$_ } fx(), fy(), fz(); # Same thing

Using Hard References | 353

www.it-ebooks.info

http://www.it-ebooks.info/

The backslash operator always supplies list context to its operand, so those func-
tions are all called in list context. If the backslash is itself in scalar context, you’ll
end up with a reference to the last value of the list returned by the function:

@reflist = \localtime(); # Ref to each of nine time elements
$lastref = \localtime(); # Ref to whether it's daylight savings time

In this regard, the backslash behaves like the named Perl list operators, such as
print, reverse, and sort, which always supply list context on their right no matter
what might be happening on their left. As with named list operators, use an
explicit scalar to force what follows into scalar context:

$dateref = \scalar localtime(); # \"Tue Oct 18 07:23:50 2011"

You can use the ref operator to determine what a reference is pointing to. Think
of ref as a “typeof” operator that returns true if its argument is a reference and
false otherwise. The value returned depends on the type of thing referenced.
Built-in types include SCALAR, ARRAY, HASH, CODE, GLOB, REF, VSTRING, IO, LVALUE,
FORMAT, and REGEXP, plus the classes version, Regexp, and IO::Handle. Here we use
the ref operator to check subroutine arguments:

sub sum {
 my $arrayref = shift;
 warn "Not an array reference" if ref($arrayref) ne "ARRAY";
 return eval join("+", @$arrayref);
 }

 say sum([1..100]); # 5050, by Euler's trick

If you use a hard reference in a string context, it’ll be converted to a string con-
taining both the type and the address: SCALAR(0x1fc0e). (The reverse conversion
cannot be done since reference count information is lost during stringification—
and also because it would be dangerous to let programs access a memory address
named by an arbitrary string.)

You can use the bless operator to associate a referent with a package functioning
as an object class. When you do this, ref returns the class name instead of the
internal type. An object reference used in a string context returns a string with
the external and internal types, as well as the address in memory: MyType
=HASH(0x20d10) or IO::Handle=IO(0x186904). See Chapter 12 for more details
about objects.

Since the way in which you dereference something always indicates what sort of
referent you’re looking for, a typeglob can be used the same way a reference can,
despite the fact that a typeglob contains multiple referents of various types. So
${*main::foo} and ${\$main::foo} both access the same scalar variable, although
the latter is more efficient.

354 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s a trick for interpolating the return value of a subroutine call into a string:

say "My sub returned @{[mysub(1,2,3)]} that time.";

It works like this. At compile time, when the @{...} is seen within the double-
quoted string, it’s parsed as a block that returns a reference. Within the block,
there are square brackets that create a reference to an anonymous array from
whatever is in the brackets. So at runtime, mysub(1,2,3) is called in list context,
and the results are loaded into an anonymous array, a reference to which is then
returned within the block. That array reference is then immediately dereferenced
by the surrounding @{...}, and the array value is interpolated into the double-
quoted string just as an ordinary array would be. This chicanery is also useful for
arbitrary expressions, such as:

say "We need @{ [$n + 5] } widgets!";

Be careful though: square brackets supply list context to their expression. In this
case it doesn’t matter, although the earlier call to mysub might care. When it does
matter, use an explicit scalar to force the context:

say "mysub returns @{ [scalar mysub(1,2,3)] } now.";

Closures
Earlier we talked about creating anonymous subroutines with a nameless sub
{}. You can think of those subroutines as defined at runtime, which means that
they have a time of generation as well as a location of definition. Some variables
might be in scope when the subroutine is created, and different variables might
be in scope when the subroutine is called.

Forgetting about subroutines for a moment, consider a reference that refers to a
lexical variable:

{
 my $critter = "camel";
 $critterref = \$critter;
}

The value of $$critterref will remain “camel” even though $critter disappears
after the closing curly brace. But $critterref could just as well have referred to
a subroutine that refers to $critter:

{
 my $critter = "camel";
 $critterref = sub { return $critter };
}

Using Hard References | 355

www.it-ebooks.info

http://www.it-ebooks.info/

This is a closure, which is a notion out of the functional programming world of
LISP and Scheme.8 It means that when you define an anonymous function in a
particular lexical scope at a particular moment, it pretends to run in that scope
even when later called from outside that scope. (A purist would say it doesn’t
have to pretend—it actually does run in that scope.)

In other words, you are guaranteed to get the same copy of a lexical variable each
time, even if other instances of that lexical variable have been created before or
since for other instances of that closure. This gives you a way to set values used
in a subroutine when you define it, not just when you call it.

You can also think of closures as a way to write a subroutine template without
using eval. The lexical variables act as parameters for filling in the template, which
is useful for setting up little bits of code to run later. These are commonly
called callbacks in event-based programming, where you associate a bit of code
with a keypress, mouse click, window exposure, and so on. When used as call-
backs, closures do exactly what you expect, even if you don’t know the first thing
about functional programming. (Note that this closure business only applies to
my variables. Global variables work as they’ve always worked, since they’re neither
created nor destroyed the way lexical variables are.)

Another use for closures is within function generators; that is, functions that create
and return brand new functions. Here’s an example of a function generator im-
plemented with closures:

sub make_saying {
 my $salute = shift;
 my $newfunc = sub {
 my $target = shift;
 say "$salute, $target!";
 };
 return $newfunc; # Return a closure
}

$f = make_saying("Howdy"); # Create a closure
$g = make_saying("Greetings"); # Create another closure

Time passes...

$f–>("world");
$g–>("earthlings");

This prints:

Howdy, world!
Greetings, earthlings!

8. In this context, the word “functional” should not be construed as an antonym of “dysfunctional”.

356 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

Note in particular how $salute continues to refer to the actual value passed into
make_saying, despite the fact that the my $salute has gone out of scope by the time
the anonymous subroutine runs. That’s what closures are all about. Since $f and
$g hold references to functions that, when called, still need access to the distinct
versions of $salute, those versions automatically stick around. If you now over-
write $f, its version of $salute would automatically disappear. (Perl only cleans
up when you’re not looking.)

Perl doesn’t provide references to object methods (described in Chapter 12), but
you can get a similar effect using a closure. Suppose you want a reference not
just to the subroutine the method represents, but one which, when invoked,
would call that method on a particular object. You can conveniently remember
both the object and the method as lexical variables bound up inside a closure:

sub get_method_ref {
 my ($self, $methodname) = @_;
 my $methref = sub {
 # the @_ below is not the same as the one above!
 return $self–>$methodname(@_);
 };
 return $methref;
}

my $dog = new Doggie::
 Name => "Lucky",
 Legs => 3,
 Tail => "clipped";

our $wagger = get_method_ref($dog, "wag");
$wagger–>("tail"); # Calls $dog–>wag("tail").

Not only can you get Lucky to wag what’s left of his tail now, even once the lexical
$dog variable has gone out of scope and Lucky is nowhere to be seen, the global
$wagger variable can still get him to wag his tail, wherever he is.

Closures as function templates

Using a closure as a function template allows you to generate many functions that
act similarly. Suppose you want a suite of functions that generate HTML font
changes for various colors:

print "Be ", red("careful"), "with that ", green("light"), "!!!";

The red and green functions would be very similar. We’d like to name our func-
tions, but closures don’t have names since they’re just anonymous subroutines
with an attitude. To get around that, we’ll perform the cute trick of naming our
anonymous subroutines. You can bind a coderef to an existing name by assigning

Using Hard References | 357

www.it-ebooks.info

http://www.it-ebooks.info/

it to a typeglob of the name of the function you want. (See the section “Symbol
Tables” on page 389 in Chapter 10.) In this case, we’ll bind it to two different
names, one uppercase and one lowercase:

@colors = qw(red blue green yellow orange purple violet);
for my $name (@colors) {
 no strict "refs"; # Allow symbolic references
 *$name = *{uc $name} = sub { ";@_" };
}

Now you can call functions named red, RED, blue, BLUE, and so on, and the ap-
propriate closure will be invoked. This technique reduces compile time and con-
serves memory, and is less error-prone as well, since syntax checks happen during
compilation. It’s critical that any variables in the anonymous subroutine be lex-
icals in order to create a closure. That’s the reason for the my above.

This is one of the few places where giving a prototype to a closure makes sense.
If you wanted to impose scalar context on the arguments of these functions
(probably not a wise idea for this example), you could have written it this way
instead:

*$name = sub ($) { "$_[0]" };

That’s almost good enough. However, since prototype checking happens during
compile time, the runtime assignment above happens too late to be of much use.
You could fix this by putting the whole loop of assignments within a BEGIN block,
forcing it to occur during compilation. (More likely, you’d put it out in a module
that you use at compile time.) Then the prototypes will be visible during the rest
of the compilation.

Nested subroutines

If you are accustomed (from other programming languages) to using subroutines
nested within other subroutines, each with their own private variables, you’ll
have to work at it a bit in Perl. Named subroutines do not nest properly, although
anonymous ones do.9 Anyway, we can emulate nested, lexically scoped subrou-
tines using closures. Here’s an example:

sub outer {
 my $x = $_[0] + 35;
 local *inner = sub { return $x * 19 };
 return $x + inner();
}

9. To be more precise, globally named subroutines don’t nest. Unfortunately, that’s the only kind of named
subroutine declaration we have. We haven’t yet implemented lexically scoped, named subroutines
(known as my subs), but when we do, they should nest correctly.

358 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

Now, inner can only be called from within outer because of the temporary as-
signments of the closure. But when it is, it has normal access to the lexical variable
$x from the scope of outer.

This has the interesting effect of creating a function local to another function,
something not normally supported in Perl. Because local is dynamically scoped,
and because function names are global to their package, any other function that
outer called could also call the temporary version of inner. To prevent that, you’d
need an extra level of indirection:

sub outer {
 my $x = $_[0] + 35;
 my $inner = sub { return $x * 19 };
 return $x + $inner–>();
}

Symbolic References
What happens if you try to dereference a value that is not a hard reference? The
value is then treated as a symbolic reference. That is, the reference is interpreted
as a string representing the name of a global variable.

Here is how this works:

$name = "bam";
$$name = 1; # Sets $bam
$name–>[0] = 4; # Sets the first element of @bam
$name–>{X} = "Y"; # Sets the X element of %bam to Y
@$name = (); # Clears @bam
keys %$name; # Yields the keys of %bam
&$name; # Calls &bam

This is very powerful, and slightly dangerous, in that it’s possible to intend (with
the utmost sincerity) to use a hard reference, but to accidentally use a symbolic
reference instead. To protect against that, you can say:

use strict "refs";

and then only hard references will be allowed for the rest of the enclosing block.
An inner block may countermand the decree with:

no strict "refs";

It is also important to understand the difference between the following two lines
of code:

${identifier}; # Same as $identifier.
${"identifier"}; # Also $identifier, but a symbolic reference.

Symbolic References | 359

www.it-ebooks.info

http://www.it-ebooks.info/

Because the second form is quoted, it is treated as a symbolic reference and will
generate an error if use strict "refs" is in effect. Even if strict "refs" is not in
effect, it can only refer to a package variable. But the first form is identical to the
unbracketed form, and it will refer to even a lexically scoped variable if one is
declared. The next example shows this (and the next section discusses it).

Only package variables are accessible through symbolic references, because sym-
bolic references always go through the package symbol table. Since lexical vari-
ables aren’t in a package symbol table, they are therefore invisible to this mech-
anism. For example:

our $value = "global";
{
 my $value = "private";
 print "Inside, mine is ${value}, ";
 say "but ours is ${"value"}.";
}
say "Outside, ${value} is again ${"value"}.";

which prints:

Inside, mine is private, but ours is global.
Outside, global is again global.

Braces, Brackets, and Quoting
In the previous section, we pointed out that ${identifier} is not treated as a
symbolic reference. You might wonder how this interacts with reserved words,
and the short answer is that it doesn’t. Despite the fact that push is a reserved
word, these two statements print “pop on over”:

$push = "pop on ";
print "${push}over";

The reason is that, historically, this use of braces is how Unix shells have isolated
a variable name from subsequent alphanumeric text that would otherwise be
interpreted as part of the name. It’s how many people expect variable interpo-
lation to work, so we made it work the same way in Perl. But with Perl, the notion
extends further and applies to any braces used in generating references, whether
or not they’re inside quotes. This means that:

print ${push} . "over";

or even (since spaces never matter):

print ${ push } . "over";

360 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

both print “pop on over”, even though the braces are outside of double quotes.
The same rule applies to any identifier used for subscripting a hash. So instead
of writing:

$hash{ "aaa" }{ "bbb" }{ "ccc" }

you can just write:

$hash{ aaa }{ bbb }{ ccc }

or:

$hash{aaa}{bbb}{ccc}

and not worry about whether the subscripts are reserved words. So this:

$hash{ shift }

is interpreted as $hash{"shift"}. You can force interpretation as a reserved word
by adding anything that makes it more than a mere identifier:

$hash{ shift() }
$hash{ +shift }
$hash{ shift @_ }

References Don’t Work As Hash Keys
Hash keys are stored internally as strings.10 If you try to store a reference as a key
in a hash, the key value will be converted into a string:

$x{ \$a } = $a;
($key, $value) = each %x;
print $$key; # WRONG

We mentioned earlier that you can’t convert a string back to a hard reference. So
if you try to dereference $key, which contains a mere string, it won’t return a hard
dereference, but rather a symbolic dereference—and since you probably don’t
have a variable named SCALAR(0x1fc0e), you won’t accomplish what you’re at-
tempting. You might want to do something more like:

$r = \@a;
$x{ $r } = $r;

Then at least you can use the hash value, which will be a hard reference, instead
of the key, which won’t.

Although you can’t store a reference as a key, if (as in the earlier example) you use
a hard reference in a string context, it is guaranteed to produce a unique string.

10. They’re also stored externally as strings, such as when you put them into a DBM file. In fact, DBM files
require that their keys (and values) be strings.

Braces, Brackets, and Quoting | 361

www.it-ebooks.info

http://www.it-ebooks.info/

This is because the address of the reference is included as part of the resulting
string. So you can in fact use a reference as a unique hash key; you just can’t
dereference it later.

There is one special kind of hash in which you are able to use references as keys.
Through the magic11 of the Tie::RefHash module bundled with Perl, the thing we
just said you couldn’t do, you can do:

use Tie::RefHash;
tie my %h, "Tie::RefHash";
%h = (
 ["this", "here"] => "at home",
 ["that", "there"] => "elsewhere",
);
while (my($keyref, $value) = each %h) {
 say "@$keyref is $value";
}

In fact, by tying different implementations to the built-in types, you can make
scalars, hashes, and arrays behave in many of the ways we’ve said you can’t.
That’ll show us! Stupid authors…

For more about tying, see Chapter 14.

Garbage Collection, Circular References, and Weak References
High-level languages typically allow programmers not to worry about deallocat-
ing memory when they’re done using it. This automatic reclamation process is
known as garbage collection. For most purposes, Perl uses a fast and simple ref-
erence-based garbage collector.

When a block is exited, its locally scoped variables are normally freed up, but it
is possible to hide your garbage so that Perl’s garbage collector can’t find it. One
serious concern is that unreachable memory with a nonzero reference count will
normally not get freed. Therefore, circular references are a bad idea:

{ # make $a and $b point to each other
 my ($a, $b);
 $a = \$b;
 $b = \$a;
}

11. Yes, that is a technical term, as you’ll notice if you muddle through the mg.c file in the Perl source
distribution.

362 | Chapter 8: References

www.it-ebooks.info

http://www.it-ebooks.info/

or more simply:

{ # make $a point to itself
 my $a;
 $a = \$a;
}

Even though $a should be deallocated at the end of the block, it isn’t. When
building recursive data structures, you’ll have to break (or weaken; see below)
the self-reference yourself if you want to reclaim the memory before your program
(or thread) exits. (Upon exit, the memory will be reclaimed for you automatically
via a costly but complete mark-and-sweep garbage collection.) If the data struc-
ture is an object, you can use a DESTROY method to break the reference automat-
ically; see “Garbage Collection with DESTROY Methods” on page 441 in Chapter 12.

A similar situation can occur with caches—repositories of data designed for faster-
than-normal retrieval. Outside the cache there are references to data inside the
cache. The problem occurs when all of those references are deleted, but the cache
data with its internal reference remains. The existence of any reference prevents
the referent from being reclaimed by Perl, even though we want cache data to
disappear as soon as it’s no longer needed. As with circular references, we want
a reference that doesn’t affect the reference count, and therefore doesn’t delay
garbage collection.

Here’s another example, this time of an explicitly circular double-linked list:

$ring = {
 VALUE => undef,
 NEXT => undef,
 PREV => undef,
};
$ring–>{NEXT} = $ring;
$ring–>{PREV} = $ring;

The underlying hash has an underlying refcount of three, and undeffing $ring or
letting it go out of scope will only decrement that count by one, resulting in a
whole hashfull of memory irrecoverable by Perl.

To address this situation, Perl introduced the concept of weak references. A weak
reference is just like any other regular reference (meaning a “hard” reference, not
a “symbolic” one) except for two critical properties: it no longer contributes to
the reference count on its referent, and when its referent is garbage collected, the
weak reference itself becomes undefined. These properties make weak references
perfect for data structures that hold internal references to themselves. That way,
those internal references do not count toward the structure’s reference count,
but external ones still do.

Braces, Brackets, and Quoting | 363

www.it-ebooks.info

http://www.it-ebooks.info/

Although Perl supported weak reference starting in v5.6, there was no standard
weaken function to access them from Perl itself until the v5.8.1 release, when the
weaken function was first included standard with the Scalar::Util module. That
module also provides an is_weak function that reports whether its reference ar-
gument has been weakened or not.

Here’s how you would use it on the ring example just given:

use Scalar::Util qw(weaken);

$ring = {
 VALUE => undef,
 NEXT => undef,
 PREV => undef,
};
$ring–>{NEXT} = $ring;
$ring–>{PREV} = $ring;
weaken($ring–>{NEXT});
weaken($ring–>{PREV});

Weak references work like normal (hard) references as far as the ref operator is
concerned: it reports the type of referent. However, when a weak reference’s
referent gets garbage collected, the variable holding that weak reference will
suddenly become undefined, since it no longer refers to something that exists.

Copying a weak reference creates a regular reference. If you need another weak
reference, you’ll have to weaken the copy afterwards.

For a longer example of managing weak references, see Recipe 11.15, “Coping with
Circular Data Structures using Weak References,” in Perl Cookbook.

364 | Chapter 8: References

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/0596003137/references-and-records/perlckbk2-chp-11-sect-15
http://my.safaribooksonline.com/book/programming/perl/0596003137/references-and-records/perlckbk2-chp-11-sect-15
http://www.it-ebooks.info/

CHAPTER 9

Data Structures

Perl provides for free many of the data structures that you have to build yourself
in other programming languages. The stacks and queues that budding computer
scientists learn about are both just arrays in Perl. When you push and pop (or
unshift and shift) an array, it’s a stack; when you push and shift (or unshift and
pop) an array, it’s a queue. And many of the tree structures in the world are built
only to provide fast, dynamic access to a conceptually flat lookup table. Hashes,
of course, are built into Perl, and they provide fast, dynamic access to a concep-
tually flat lookup table, only without the mind-numbingly recursive data struc-
tures that are claimed to be beautiful by people whose minds have been suitably
numbed already.

But sometimes you want nested data structures because they most naturally
model the problem you’re trying to solve. So Perl lets you combine and nest arrays
and hashes to create arbitrarily complex data structures. Properly applied, they
can be used to create linked lists, binary trees, heaps, B-trees, sets, graphs, and
anything else you can devise. See Mastering Algorithms with Perl, Perl Cook-
book, the “Data Structure Cookbook” in perldsc, or CPAN, the central repository
for all such modules. But simple combinations of arrays and hashes may be all
you ever need, so they’re what we’ll talk about in this chapter.

Arrays of Arrays
There are many kinds of nested data structures. The simplest kind to build is an
array of arrays, also called a two-dimensional array or a matrix. (The obvious
generalization applies: an array of arrays of arrays is a three-dimensional array,
and so on for higher dimensions.) It’s reasonably easy to understand, and nearly
everything that applies here will also be applicable to the fancier data structures
we’ll explore in subsequent sections.

365

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/1565923987
http://my.safaribooksonline.com/book/programming/perl/0596003137
http://my.safaribooksonline.com/book/programming/perl/0596003137
http://perldoc.perl.org/perldsc.html
http://www.it-ebooks.info/

Creating and Accessing a Two-Dimensional Array
Here’s how to put together a two-dimensional array:

Assign a list of array references to an array.
@AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);

print $AoA[2][1]; # prints "marge"

The overall list is enclosed by parentheses, not brackets, because you’re assigning
a list and not a reference. If you wanted a reference to an array instead, you’d use
brackets:

Create a reference to an array of array references.
$ref_to_AoA = [
 ["fred", "barney", "pebbles", "bamm bamm", "dino",],
 ["homer", "bart", "marge", "maggie",],
 ["george", "jane", "elroy", "judy",],
];

print $ref_to_AoA–>[2][3]; # prints "judy"

Remember that there is an implied –> between every pair of adjacent braces or
brackets. Therefore, these two lines:

$AoA[2][3]
$ref_to_AoA–>[2][3]

are equivalent to these two lines:

$AoA[2]–>[3]
$ref_to_AoA–>[2]–>[3]

There is, however, no implied –> before the first pair of brackets, which is why
the dereference of $ref_to_AoA requires the initial –>. Also remember that you
can count backward from the end of an array with a negative index, so:

$AoA[0][–2]

is the next-to-last element of the first row.

Growing Your Own
Those big list assignments are well and good for creating a fixed data structure,
but what if you want to calculate each element on the fly, or otherwise build the
structure piecemeal?

366 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

Let’s read in a data structure from a file. We’ll assume that it’s a plain text file,
where each line is a row of the structure, and each line consists of elements de-
limited by whitespace. Here’s how to proceed:1

while (<>) {
 @tmp = split; # Split elements into an array.
 push @AoA, [@tmp]; # Add an anonymous array reference to @AoA.
}

Of course, you don’t need to name the temporary array, so you could also say:

while (<>) {
 push @AoA, [split];
}

If you want a reference to an array of arrays, you can do this:

while (<>) {
 push @$ref_to_AoA, [split];
}

Both of those examples add new rows to the array of arrays. What about adding
new columns? If you’re just dealing with two-dimensional arrays, it’s often easiest
to use simple assignment:2

for $x (0 .. 9) { # For each row...
 for $y (0 .. 9) { # For each column...
 $AoA[$x][$y] = func($x, $y); # ...set that cell
 }
}

for $x (0..9) { # For each row...
 $ref_to_AoA–>[$x][3] = func2($x); # ...set the fourth column
}

It doesn’t matter in what order you assign the elements, nor does it matter whether
the subscripted elements of @AoA are already there or not; Perl will gladly create
them for you, setting intervening elements to the undefined value as need be. Perl
will even create the original reference in $ref_to_AoA for you if it needs to in the
code above. If you just want to append to a row, you have to do something a bit
funnier:

Append new columns to an existing row.
push @{ $AoA[0] }, "wilma", "betty";

1. Here, as in other chapters, we omit (for clarity) the my declarations that you would ordinarily put in. In
this example, you’d normally write my @tmp = split.

2. As with the temp assignment earlier, we’ve simplified; the loops in this chapter would likely be written
for my $x in real code.

Arrays of Arrays | 367

www.it-ebooks.info

http://www.it-ebooks.info/

You might be wondering whether you could get away with skipping that deref-
erence and just write:

push $AoA[0], "wilma", "betty"; # compiler error < v5.14

We were wondering the same thing ourselves. For the longest time that wouldn’t
even compile, because the argument to push must be a real array, not just a ref-
erence to an array. Therefore, its first argument always had to begin with an @
character, but what came after the @ was somewhat negotiable.

As of v5.14, you can sometimes get away with omitting an explicit dereference when
calling certain built-in functions. Those functions are pop, push, shift, unshift,
and splice for arrays, and keys, values, and each for hashes. These no longer
require their first argument to begin with a literal @ or %. If passed a valid reference
to the appropriate type of aggregate, they dereference it as needed; unlike explicit
dereferencing, this implicit dereferencing never triggers autovivification. If
passed an invalid reference, a runtime exception is raised. Since running your
spiffy new code on older releases causes those venerable compilers to choke, you
should notify users that your code is of a new vintage by putting a use VERSION
pragma at the top of the file:

use 5.014; # no new wine in old bottles
use v5.14; # no new patches on old cloth

Access and Printing
Now let’s print the data structure. If you only want one element, this is sufficient:

print $AoA[3][2];

But if you want to print the whole thing, you can’t just say:

print @AoA; # WRONG

It’s wrong because you’ll see stringified references instead of your data. Perl never
automatically dereferences for you. Instead, you have to roll yourself a loop or
two. The following code prints the whole structure, looping through the elements
of @AoA and dereferencing each inside the print statement:

for $row (@AoA) {
 say "@$row";
}

If you want to keep track of subscripts, you might do this:

for $i (0 .. $#AoA) {
 say "row $i is: @{$AoA[$i]}";
}

368 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

or maybe even this (notice the inner loop):

for $i (0 .. $#AoA) {
 for $j (0 .. $#{$AoA[$i]}) {
 say "element $i $j is $AoA[$i][$j]";
 }
}

As you can see, things are getting a bit complicated. That’s why sometimes it’s
easier to use a temporary variable on your way through:

for $i (0 .. $#AoA) {
 $row = $AoA[$i];
 for $j (0 .. $#{$row}) {
 say "element $i $j is $row–>[$j]";
 }
}

When you get tired of writing a custom print for your data structures, you might
look at the standard Dumpvalue or Data::Dumper modules. The former is what the
Perl debugger uses, while the latter generates parsable Perl code. For example:

use v5.14; # using the + prototype, new to v5.14

sub show(+) {
 require Dumpvalue;
 state $prettily = new Dumpvalue::
 tick => q("),
 compactDump => 1, # comment these two lines out
 veryCompact => 1, # if you want a bigger dump
 ;
 dumpValue $prettily @_;
}

Assign a list of array references to an array.
my @AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);
push $AoA[0], "wilma", "betty";
show @AoA;

will print out:

0 0..3 "fred" "barney" "wilma" "betty"
1 0..2 "george" "jane" "elroy"
2 0..2 "homer" "marge" "bart"

Whereas if you comment out the two lines we said you might wish to, then it
shows you the array contents this way instead:

Arrays of Arrays | 369

www.it-ebooks.info

http://www.it-ebooks.info/

0 ARRAY(0x8031d0)
 0 "fred"
 1 "barney"
 2 "wilma"
 3 "betty"
1 ARRAY(0x803d40)
 0 "george"
 1 "jane"
 2 "elroy"
2 ARRAY(0x803e10)
 0 "homer"
 1 "marge"
 2 "bart"

A CPAN module that we like to use for displaying our data dumps is
Data::Dump. Here’s what it looks like:

use v5.14; # for push on scalars
use Data::Dump qw(dump); # CPAN module

my @AoA = (
 ["fred", "barney"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
);
push $AoA[0], "wilma", "betty";
dump \@AoA;

That produces this output:

[
 ["fred", "barney", "wilma", "betty"],
 ["george", "jane", "elroy"],
 ["homer", "marge", "bart"],
]

Slices
If you want to access a slice (part of a row) of a multidimensional array, you’re
going to have to do some fancy subscripting. The pointer arrows give us a nice
way to access a single element, but no such convenience exists for slices. You can
always use a loop to extract the elements of your slice one by one:

@part = ();
for ($y = 7; $y< 13; $y++) {
 push @part, $AoA[4][$y];
}

This particular loop could be replaced with an array slice:

@part = @{ $AoA[4] } [7..12];

370 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

If you want a two-dimensional slice, say, with $x running from 4..8 and $y from
7..12, here’s one way to do it:

@newAoA = ();
for ($startx = $x = 4; $x<= 8; $x++) {
 for ($starty = $y = 7; $y<= 12; $y++) {
 $newAoA[$x – $startx][$y – $starty] = $AoA[$x][$y];
 }
}

In this example, the individual values within our destination two-dimensional
array, @newAoA, are assigned one by one, taken from a two-dimensional subarray
of @AoA. An alternative is to create anonymous arrays, each consisting of a desired
slice of an @AoA subarray, and then put references to these anonymous arrays into
@newAoA. We would then be writing references into @newAoA (subscripted once, so
to speak) instead of subarray values into a twice-subscripted @newAoA. This
method eliminates the innermost loop:

for ($x = 4; $x<= 8; $x++) {
 push @newAoA, [@{ $AoA[$x] } [7..12]];
}

Of course, if you do this often, you should probably write a subroutine called
something like extract_rectangle. And if you do it very often with large collec-
tions of multidimensional data, you should probably use the PDL (Perl Data Lan-
guage) module, available from CPAN.

Common Mistakes
As mentioned earlier, Perl arrays and hashes are one-dimensional. In Perl, even
“multidimensional” arrays are actually one-dimensional, but the values along
that dimension are references to other arrays, which collapse many elements into
one. If you print these values out without dereferencing them, you will get the
stringified references rather than the data you want. For example, these two lines:

@AoA = ([2, 3], [4, 5, 7], [0]);
print "@AoA";

result in something like:

ARRAY(0x83c38) ARRAY(0x8b194) ARRAY(0x8b1d0)

On the other hand, this line displays 7:

print $AoA[1][2];

When constructing an array of arrays, remember to compose new references for
the subarrays. Otherwise, you will just create an array containing the element
counts of the subarrays, like this:

Arrays of Arrays | 371

www.it-ebooks.info

http://www.it-ebooks.info/

for $i (1..10) {
 @array = somefunc($i);
 $AoA[$i] = @array; # WRONG!
}

Here, @array is being accessed in scalar context, and therefore yields the count of
its elements, which is dutifully assigned to $AoA[$i]. The proper way to assign
the reference will be shown in a moment.

After making the previous mistake people realize they need to assign a reference,
so the next mistake people naturally make involves taking a reference to the same
memory location over and over again:

for $i (1..10) {
 @array = somefunc($i);
 $AoA[$i] = \@array; # WRONG AGAIN!
}

Every reference generated by the second line of the for loop is the same, namely,
a reference to the single array @array. Yes, this array changes on each pass through
the loop, but when everything is said and done, $AoA contains 10 references to the
same array, which now holds the last set of values assigned to it. print
@{$AoA[1]} will reveal the same values as print @{$AoA[2]}.

Here’s a more successful approach:

for $i (1..10) {
 @array = somefunc($i);
 $AoA[$i] = [@array]; # RIGHT!
}

The brackets around @array create a new anonymous array, into which the ele-
ments of @array are copied. We then store a reference to that new array.

A similar result—though more difficult to read—would be produced by:

for $i (1..10) {
 @array = somefunc($i);
 @{$AoA[$i]} = @array;
}

Since $AoA[$i] needs to be a new reference, the reference springs into existence.
Then, the preceding @ dereferences this new reference, with the result that the
values of @array are assigned (in list context) to the array referenced by
$AoA[$i]. You might wish to avoid this construct for clarity’s sake.

But there is a situation in which you might use it. Suppose @AoA is already an array
of references to arrays. That is, you’ve made assignments like:

$AoA[3] = \@original_array;

372 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

And now suppose that you want to change @original_array (that is, you want to
change the fourth row of $AoA) so that it refers to the elements of @array. This
code will work:

@{$AoA[3]} = @array;

In this case, the reference itself does not change, but the elements of the referenced
array do. This overwrites the values of @original_array.

Finally, the following dangerous-looking code actually works fine:

for $i (1..10) {
 my @array = somefunc($i);
 $AoA[$i] = \@array;
}

That’s because the lexically scoped my @array variable is created afresh on each
pass through the loop. So even though it looks as though you’ve stored the same
variable reference each time, you haven’t. This is a subtle distinction, but the
technique can produce more efficient code—at the risk of misleading less-en-
lightened programmers. (It’s more efficient because there’s no copy in the final
assignment.) On the other hand, if you have to copy the values anyway (which
the first assignment in the loop is doing), then you might as well use the copy
implied by the brackets and avoid the temporary variable:

for $i (1..10) {
 $AoA[$i] = [somefunc($i)];
}

In summary:

$AoA[$i] = [@array]; # Safest, sometimes fastest
$AoA[$i] = \@array; # Fast but risky, depends on my–ness of array
@{ $AoA[$i] } = @array; # A bit tricky

Once you’ve mastered arrays of arrays, you’ll want to tackle more complex data
structures. If you’re looking for C structures or Pascal records, you won’t find
any special reserved words in Perl to set these up for you. What you get instead
is a more flexible system. If your idea of a record structure is less flexible than
this, or if you’d like to provide your users with something more opaque and rigid,
then you can use the object-oriented features detailed in Chapter 12.

Perl has just two ways of organizing data: as ordered lists stored in arrays and
accessed by position, or as unordered key/value pairs stored in hashes and ac-
cessed by name. The best way to represent a record in Perl is with a hash reference,
but how you choose to organize such records will vary. You might want to keep
an ordered list of these records that you can look up by number, in which case
you’d use an array of hash references to store the records. Or, you might wish to

Arrays of Arrays | 373

www.it-ebooks.info

http://www.it-ebooks.info/

look up the records by name, in which case you’d maintain a hash of hash ref-
erences.

In the following sections, you will find code examples detailing how to compose
(from scratch), generate (from other sources), access, and display several differ-
ent data structures. We first demonstrate three straightforward combinations of
arrays and hashes, followed by a hash of functions and more irregular data struc-
tures. We end with a demonstration of how these data structures can be saved.
These examples assume that you have already familiarized yourself with the ex-
planations set forth earlier in this chapter.

Hashes of Arrays
Use a hash of arrays when you want to look up each array by a particular string
rather than merely by an index number. In our example of television characters,
instead of looking up the list of names by the zeroth show, the first show, and so
on, we’ll set it up so we can look up the cast list given the name of the show.

Because our outer data structure is a hash, we can’t order the contents, but we
can use the sort function to specify a particular output order.

Composition of a Hash of Arrays
You can create a hash of anonymous arrays as follows:

We customarily omit quotes when the keys are identifiers.
%HoA = (
 flintstones => ["fred", "barney"],
 jetsons => ["george", "jane", "elroy"],
 simpsons => ["homer", "marge", "bart"],
);

To add another array to the hash, you can simply say:

$HoA{teletubbies} = ["tinky winky", "dipsy", "laa–laa", "po"];

Generation of a Hash of Arrays
Here are some techniques for populating a hash of arrays. To read from a file with
the following format:

flintstones: fred barney wilma dino
jetsons: george jane elroy
simpsons: homer marge bart

you could use either of the following two loops:

374 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

while (<>) {
 next unless s/^(.*?):\s*//;
 $HoA{$1} = [split];
 }

 while ($line = <>) {
 ($who, $rest) = split /:\s*/, $line, 2;
 @fields = split " ", $rest;
 $HoA{$who} = [@fields];
 }

If you have a subroutine get_family that returns an array, you can use it to stuff
%HoA with either of these two loops:

for $group ("simpsons", "jetsons", "flintstones") {
 $HoA{$group} = [get_family($group)];
}

for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoA{$group} = [@members];
}

You can append new members to an existing array like so:

push @{ $HoA{flintstones} }, "wilma", "pebbles";

Access and Printing of a Hash of Arrays
You can set the first element of a particular array as follows:

$HoA{flintstones}[0] = "Fred";

To capitalize the second Simpson, apply a substitution to the appropriate array
element:

$HoA{simpsons}[1] =~ s/(\w)/\u$1/;

You can print all of the families by looping through the keys of the hash:

for $family (keys %HoA) {
 say "$family: @{ $HoA{$family} }";
}

With a little extra effort, you can add array indices as well:

for $family (keys %HoA) {
 print "$family: ";
 for $i (0 .. $#{ $HoA{$family} }) {
 print " $i = $HoA{$family}[$i]";
 }
 print "\n";
}

Hashes of Arrays | 375

www.it-ebooks.info

http://www.it-ebooks.info/

Or sort the arrays by how many elements they have:

for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
 say "$family: @{ $HoA{$family} }"
}

Or even sort the arrays by the number of elements and then order the elements
ASCIIbetically (or, to be precise, utf8ically):

Print the whole thing sorted by number of members and name.
for $family (sort { @{$HoA{$b}} <=> @{$HoA{$a}} } keys %HoA) {
 say "$family: ", join(", " => sort @{ $HoA{$family} });
}

If you have non-ASCII Unicode or even just punctuation of any sort in your family
names, then sorting by codepoint order won’t produce an alphabetic sort. In-
stead, do this:

use Unicode::Collate;
my $sorter = Unicode::Collate–>new(); # normal alphabetic sort
say "$family: ",
 join ", " => $sorter–>sort(@{ $HoA{$family} });

Arrays of Hashes
An array of hashes is useful when you have a bunch of records that you’d like to
access sequentially, and each record itself contains key/value pairs. Arrays of
hashes are used less frequently than the other structures in this chapter.

Composition of an Array of Hashes
You can create an array of anonymous hashes as follows:

@AoH = (
 {
 husband => "barney",
 wife => "betty",
 son => "bamm bamm",
 },
 {
 husband => "george",
 wife => "jane",
 son => "elroy",
 },
 {
 husband => "homer",
 wife => "marge",
 son => "bart",
 },
);

376 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

To add another hash to the array, you can simply say:

push @AoH, { husband => "fred", wife => "wilma", daughter => "pebbles" };

Generation of an Array of Hashes
Here are some techniques for populating an array of hashes. To read from a file
with the following format:

husband=fred friend=barney

you could use either of the following two loops:

while (<>) {
 $rec = {};
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec–>{$key} = $value;
 }
 push @AoH, $rec;
}

while (<>) {
 push @AoH, { split /[\s=]+/ };
}

If you have a subroutine get_next_pair that returns key/value pairs, you can use
it to stuff @AoH with either of these two loops:

while (@fields = get_next_pair()) {
 push @AoH, { @fields };
}

while (<>) {
 push @AoH, { get_next_pair($_) };
}

You can append new members to an existing hash like so:

$AoH[0]{pet} = "dino";
$AoH[2]{pet} = "santa’s little helper";

Access and Printing of an Array of Hashes
You can set a key/value pair of a particular hash as follows:

$AoH[0]{husband} = "fred";

To capitalize the husband of the second array, apply a substitution:

$AoH[1]{husband} =~ s/(\w)/\u$1/;

You can print all of the data as follows:

Arrays of Hashes | 377

www.it-ebooks.info

http://www.it-ebooks.info/

for $href (@AoH) {
 print "{ ";
 for $role (keys %$href) {
 print "$role=$href–>{$role} ";
 }
 print "}\n";
}

and with indices:

for $i (0 .. $#AoH) {
 print "$i is { ";
 for $role (keys %{ $AoH[$i] }) {
 print "$role=$AoH[$i]{$role} ";
 }
 print "}\n";
}

Hashes of Hashes
A multidimensional hash is the most flexible of Perl’s nested structures. It’s like
building up a record that itself contains other records. At each level, you index
into the hash with a string (quoted when necessary). Remember, however, that
the key/value pairs in the hash won’t come out in any particular order; you can
use the sort function to retrieve the pairs in whatever order you like.

Composition of a Hash of Hashes
You can create a hash of anonymous hashes as follows:

%HoH = (
 flintstones => {
 husband => "fred",
 pal => "barney",
 },
 jetsons => {
 husband => "george",
 wife => "jane",
 "his boy" => "elroy", # Key quotes needed.
 },
 simpsons => {
 husband => "homer",
 wife => "marge",
 kid => "bart",
 },
);

To add another anonymous hash to %HoH, you can simply say:

378 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

$HoH{ mash } = {
 captain => "pierce",
 major => "burns",
 corporal => "radar",
 };

Generation of a Hash of Hashes
Here are some techniques for populating a hash of hashes. To read from a file with
the following format:

flintstones: husband=fred pal=barney wife=wilma pet=dino

you could use either of the following two loops:

while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $HoH{$who}{$key} = $value;
 }
}

while (<>) {
 next unless s/^(.*?):\s*//;
 $who = $1;
 $rec = {};
 $HoH{$who} = $rec;
 for $field (split) {
 ($key, $value) = split /=/, $field;
 $rec–>{$key} = $value;
 }
}

If you have a subroutine get_family that returns a list of key/value pairs, you can
use it to stuff %HoH with either of these three snippets:

for $group ("simpsons", "jetsons", "flintstones") {
 $HoH{$group} = { get_family($group) };
}

for $group ("simpsons", "jetsons", "flintstones") {
 @members = get_family($group);
 $HoH{$group} = { @members };
}

sub hash_families {
 my @ret;
 for $group (@_) {
 push @ret, $group, { get_family($group) };
 }

Hashes of Hashes | 379

www.it-ebooks.info

http://www.it-ebooks.info/

 return @ret;
}
%HoH = hash_families("simpsons", "jetsons", "flintstones");

You can append new members to an existing hash like so:

%new_folks = (
 wife => "wilma",
 pet => "dino";
);
for $what (keys %new_folks) {
 $HoH{flintstones}{$what} = $new_folks{$what};
}

Access and Printing of a Hash of Hashes
You can set a key/value pair of a particular hash as follows:

$HoH{flintstones}{wife} = "wilma";

To capitalize a particular key/value pair, apply a substitution to an element:

$HoH{jetsons}{"his boy"} =~ s/(\w)/\u$1/;

You can print all the families by looping through the keys of the outer hash and
then looping through the keys of the inner hash:

for $family (keys %HoH) {
 print "$family: ";
 for $role (keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}

In very large hashes, it may be slightly faster to retrieve both keys and values at
the same time using each (which precludes sorting):

while (($family, $roles) = each %HoH) {
 print "$family: ";
 while (($role, $person) = each %$roles) {
 print "$role=$person ";
 }
 print "\n";
}

(Unfortunately, it’s the large hashes that really need to be sorted, or you’ll never
find what you’re looking for in the printout.) You can sort the families and then
the roles as follows:

380 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

for $family (sort keys %HoH) {
 print "$family: ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}

To sort the families by the number of members (instead of ASCIIbetically [or
utf8ically]), you can use keys in scalar context:

for $family (sort { keys %{$HoH{$a}} <=> keys %{$HoH{$b}} } keys %HoH) {
 print "$family: ";
 for $role (sort keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}

To sort the members of a family in some fixed order, you can assign ranks to each:

$i = 0;
for (qw(husband wife son daughter pal pet)) { $rank{$_} = ++$i }

for $family (sort { keys %{$HoH{$a}} <=> keys %{$HoH{$b}} } keys %HoH) {
 print "$family: ";
 for $role (sort { $rank{$a} <=> $rank{$b} } keys %{ $HoH{$family} }) {
 print "$role=$HoH{$family}{$role} ";
 }
 print "\n";
}

Hashes of Functions
When writing a complex application or network service in Perl, you might want
to make a large number of commands available to your users. Such a program
might have code like this to examine the user’s selection and take appropriate
action:

if ($cmd =~ /^exit$/i) { exit }
elsif ($cmd =~ /^help$/i) { show_help() }
elsif ($cmd =~ /^watch$/i) { $watch = 1 }
elsif ($cmd =~ /^mail$/i) { mail_msg($msg) }
elsif ($cmd =~ /^edit$/i) { $edited++; editmsg($msg); }
elsif ($cmd =~ /^delete$/i) { confirm_kill() }
else {
 warn "Unknown command: '$cmd'; Try 'help' next time\n";
}

Hashes of Functions | 381

www.it-ebooks.info

http://www.it-ebooks.info/

You can also store references to functions in your data structures, just as you can
store references to arrays or hashes:

%HoF = (# Compose a hash of functions
 exit => sub { exit },
 help => \&show_help,
 watch => sub { $watch = 1 },
 mail => sub { mail_msg($msg) },
 edit => sub { $edited++; editmsg($msg); },
 delete => \&confirm_kill,
);

if ($HoF{lc $cmd}) { $HoF{lc $cmd}–>() } # Call function
else { warn "Unknown command: '$cmd'; Try 'help' next time\n" }

In the second to last line, we check whether the specified command name (in
lowercase) exists in our “dispatch table”, %HoF. If so, we invoke the appropriate
command by dereferencing the hash value as a function, and then pass that
function an empty argument list. We could also have dereferenced it as
&{ $HoF{lc $cmd} }(), or, as of the v5.6 release of Perl, simply $HoF{lc $cmd}().

More Elaborate Records
So far, what we’ve seen in this chapter are simple, two-level, homogeneous data
structures: each element contains the same kind of referent as all the other ele-
ments at that level. It certainly doesn’t have to be that way. Any element can hold
any kind of scalar, which means that it could be a string, a number, or a reference
to anything at all. The reference could be an array or hash reference, or a reference
to a named or anonymous function, or an object. The only thing you can’t do is
stuff multiple referents into one scalar. If you find yourself trying to do that, it’s
a sign that you need an array or hash reference to collapse multiple values into
one.

In the sections that follow, you will find code examples designed to illustrate many
of the possible types of data you might want to store in a record, which we’ll
implement using a hash reference. The keys are uppercase strings, a convention
sometimes employed (and occasionally unemployed, but only briefly) when the
hash is being used as a specific record type.

Composition, Access, and Printing of More Elaborate Records
Here is a record with six disparate fields:

$rec = {
 TEXT => $string,
 SEQUENCE => [@old_values],

382 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

 LOOKUP => { %some_table },
 THATCODE => \&some_function,
 THISCODE => sub { $_[0] ** $_[1] },
 HANDLE => *STDOUT,
};

The TEXT field is a simple string, so you can just print it:

print $rec–>{TEXT};

SEQUENCE and LOOKUP are regular array and hash references:

print $rec–>{SEQUENCE}[0];
$last = pop @{ $rec–>{SEQUENCE} };

print $rec–>{LOOKUP}{"key"};
($first_k, $first_v) = each %{ $rec–>{LOOKUP} };

THATCODE is a named subroutine and THISCODE is an anonymous subroutine, but
they’re invoked identically:

$that_answer = $rec–>{THATCODE}–>($arg1, $arg2);
$this_answer = $rec–>{THISCODE}–>($arg1, $arg2);

With an extra pair of braces, you can treat $rec–>{HANDLE} as an indirect object:

print { $rec–>{HANDLE} } "a string\n";

If you’re using the IO::Handle module, you can even treat the handle as a regular
object:

use IO::Handle;
$rec–>{HANDLE}–>autoflush(1);
$rec–>{HANDLE}–>print("a string\n");

Composition, Access, and Printing of Even More Elaborate Records
Naturally, the fields of your data structures can themselves be arbitrarily complex
data structures in their own right:

%TV = (
 flintstones => {
 series => "flintstones",
 nights => ["monday", "thursday", "friday"],
 members => [
 { name => "fred", role => "husband", age => 36, },
 { name => "wilma", role => "wife", age => 31, },
 { name => "pebbles", role => "kid", age => 4, },
],
 },

 jetsons => {
 series => "jetsons",
 nights => ["wednesday", "saturday"],

More Elaborate Records | 383

www.it-ebooks.info

http://www.it-ebooks.info/

 members => [
 { name => "george", role => "husband", age => 41, },
 { name => "jane", role => "wife", age => 39, },
 { name => "elroy", role => "kid", age => 9, },
],
 },

 simpsons => {
 series => "simpsons",
 nights => ["monday"],
 members => [
 { name => "homer", role => "husband", age => 34, },
 { name => "marge", role => "wife", age => 37, },
 { name => "bart", role => "kid", age => 11, },
],
 },
);

Generation of a Hash of Complex Records
Because Perl is quite good at parsing complex data structures, you might just put
your data declarations in a separate file as regular Perl code, and then load them
in with the do or require built-in functions. Another popular approach is to use
a CPAN module (such as XML::Parser) to load in arbitrary data structures ex-
pressed in some other language (such as XML).

You can build data structures piecemeal:

$rec = {};
$rec–>{series} = "flintstones";
$rec–>{nights} = [find_days()];

Or read them in from a file (here, assumed to be in field=value syntax):

@members = ();
while (<>) {
 %fields = split /[\s=]+/;
 push @members, { %fields };
}
$rec–>{members} = [@members];

And fold them into larger data structures keyed by one of the subfields:

$TV{ $rec–>{series} } = $rec;

You can use extra pointer fields to avoid duplicate data. For example, you might
want a "kids" field included in a person’s record, which might be a reference to
an array containing references to the kids’ own records. By having parts of your
data structure refer to other parts, you avoid the data skew that would result
from updating the data in one place but not in another:

384 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

for $family (keys %TV) {
 my $rec = $TV{$family}; # temporary pointer
 @kids = ();
 for $person (@{$rec–>{members}}) {
 if ($person–>{role} =~ /kid|son|daughter/) {
 push @kids, $person;
 }
 }
 # $rec and $TV{$family} point to same data!
 $rec–>{kids} = [@kids];
}

The $rec–>{kids} = [@kids] assignment copies the array contents—but they
are merely references to uncopied data. This means that if you age Bart as follows:

$TV{simpsons}{kids}[0]{age}++; # increments to 12

then you’ll see the following result, because $TV{simpsons}{kids}[0] and $TV{simp
sons}{members}[2] both point to the same underlying anonymous hash table:

print $TV{simpsons}{members}[2]{age}; # also prints 12

Now to print the entire %TV structure:

for $family (keys %TV) {
 print "the $family";
 print " is on ", join (" and ", @{ $TV{$family}{nights} }), "\n";
 print "its members are:\n";
 for $who (@{ $TV{$family}{members} }) {
 print " $who–>{name} ($who–>{role}), age $who–>{age}\n";
 }
 print "children: ";
 print join (", ", map { $_–>{name} } @{ $TV{$family}{kids} });
 print "\n\n";
}

Saving Data Structures
If you want to save your data structures for use by another program later, there
are many ways to do it. The easiest way is to use Perl’s Data::Dumper module,
which turns a (possibly self-referential) data structure into a string that can be
saved externally and later reconstituted with eval or do.

use Data::Dumper;
$Data::Dumper::Purity = 1; # since %TV is self–referential
open (FILE, "> tvinfo.perldata") || die "can't open tvinfo: $!";
print FILE Data::Dumper–>Dump([\%TV], ['*TV']);
close(FILE) || die "can't close tvinfo: $!";

A separate program (or the same program) can then read in the file later:

Saving Data Structures | 385

www.it-ebooks.info

http://www.it-ebooks.info/

open (FILE, "< tvinfo.perldata") || die "can't open tvinfo: $!";
undef $/; # read in file all at once
eval <FILE>; # recreate %TV
die "can't recreate tv data from tvinfo.perldata: $@" if $@;
close(FILE) || die "can't close tvinfo: $!";
print $TV{simpsons}{members}[2]{age};

or simply:

do "tvinfo.perldata" || die "can't recreate tvinfo: $! $@";
print $TV{simpsons}{members}[2]{age};

Storable, another standard module, writes out data structures in very fast, packed
binary format. It also supports automatic file locking (provided your system im-
plements the flock function), and it even has fancy hooks so object classes can
handle their own serialization. Here’s how you might save that same structure
using Storable:

use Storable qw(lock_nstore);
lock_nstore(\%TV, "tvdata.storable");

And here’s how to restore it into a variable that will hold a reference to the retrieved
hash:

use Storable qw(lock_retrieve);
$TV_ref = lock_retrieve("tvdata.storable");

Storable also provides a dclone function that creates a “deep” copy of a multilevel
data structure, which is usually easier than writing your own version.

use Storable qw(dclone);
%TV_copy = % { dclone \%TV };

For other tricks you can do with Data::Dumper and Storable, consult their docu-
mentation.

Many other solutions are available, with storage formats ranging from packed
binary (very fast) to XML (very interoperable). YAML is a good intermediate
choice that is actually quite readable. Check out a CPAN mirror near you today!

386 | Chapter 9: Data Structures

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 10

Packages

In this chapter, we get to start having fun, because we get to start talking about
software design. If we’re going to talk about good software design, we have to
talk about Laziness, Impatience, and Hubris, the basis of good software design.

We’ve all fallen into the trap of using cut and paste when we should have defined
a higher-level abstraction, if only just a loop or subroutine.1 To be sure, some
folks have gone to the opposite extreme of defining ever-growing mounds of
higher-level abstractions when they should have used cut and paste.2 Generally,
though, most of us need to think about using more abstraction rather than less.

Caught somewhere in the middle are the people who have a balanced view of
how much abstraction is good, but who jump the gun on writing their own ab-
stractions when they should be reusing existing code.3 Whenever you’re tempted
to do any of these things, you need to sit back and think about what will do the
most good for you and your neighbor over the long haul. If you’re going to pour
your creative energies into a lump of code, why not make the world a better place
while you’re at it? (Even if you’re only aiming for the program to succeed, you
need to make sure it fits the right ecological niche.)

The first step toward ecologically sustainable programming is simply this: don’t
litter in the park. When you write a chunk of code, think about giving the code
its own namespace so that your variables and functions don’t clobber anyone
else’s, or vice versa. A namespace is a bit like your home, where you’re allowed
to be as messy as you like, so long as you keep your external interface to other
citizens moderately civil. In Perl, a namespace is called a package. Packages

1. This is a form of False Laziness.

2. This is a form of False Hubris.

3. You guessed it—this is False Impatience. But if you’re determined to reinvent the wheel, at least try to invent
a better one.

387

www.it-ebooks.info

http://www.it-ebooks.info/

provide the fundamental building block upon which the higher-level concepts of
modules and classes are constructed.

Like the notion of “home”, the notion of “package” is a bit nebulous. Packages are
independent of files. You can have many packages in a single file, or a single
package that spans several files, just as your home could be one small garret in
a larger building (if you’re a starving artist), or it could comprise several buildings
(if your name happens to be Queen Elizabeth). But the usual size of a home is
one building, and the usual size of a package is one file. Perl provides some special
help for people who want to put one package in one file, as long as you’re willing
to give the file the same name as the package and use an extension of .pm, which
is short for “perl module”. The module is the fundamental unit of reusability in
Perl. Indeed, the way you use a module is with the use command, which is a
compiler directive that controls the importation of subroutines and variables
from a module. Every example of use you’ve seen until now has been an example
of module reuse.

The Comprehensive Perl Archive Network, or CPAN, is where you should put
your modules if other people might find them useful. Perl has thrived because of
the willingness of programmers to share the fruits of their labor with the com-
munity. Naturally, CPAN is also where you can find modules that others have
thoughtfully uploaded for everyone to use. See Chapter 19 and http://www.cpan
.org for details.

The trend over the last 25 years or so has been to design computer languages that
enforce a state of paranoia. You’re expected to program every module as if it were
in a state of siege. Certainly there are some feudal cultures where this is appro-
priate, but not all cultures are like this. In Perl culture, for instance, you’re ex-
pected to stay out of someone’s home because you weren’t invited in, not because
there are bars on the windows.4

This is not a book about object-oriented methodology, and we’re not here to
convert you into a raving object-oriented zealot, even if you want to be converted.
There are already plenty of books out there for that. Perl’s philosophy of object-
oriented design fits right in with Perl’s philosophy of everything else: use object-
oriented design where it makes sense, and avoid it where it doesn’t. Your call.

In OO-speak, every object belongs to a grouping called a class. In Perl, classes
and packages and modules are all so closely related that novices can often think
of them as being interchangeable. The typical class is implemented by a module

4. But Perl provides some bars if you want them, too. See “Handling Insecure Code” on page 668 in
Chapter 20.

388 | Chapter 10: Packages

www.it-ebooks.info

http://www.cpan.org
http://www.cpan.org
http://www.it-ebooks.info/

that defines a package with the same name as the class. We’ll explain all of this
in the next few chapters.

When you use a module, you benefit from direct software reuse. With classes,
you benefit from indirect software reuse when one class uses another through
inheritance. And with classes, you get something more: a clean interface to an-
other namespace. Everything in a class is accessed indirectly, insulating the class
from the outside world.

As we mentioned in Chapter 8, object-oriented programming in Perl is imple-
mented using references whose referents know to which class they belong. In
fact, now that you know references, you know almost everything difficult about
objects. The rest of it just “lays under the fingers”, as a pianist would say. You
will need to practice a little, though.

One of your basic finger exercises consists of learning how to protect different
chunks of code from inadvertently tampering with one another's variables. Every
chunk of code belongs to a particular package, which determines what variables
and subroutines are available to it. As Perl encounters a chunk of code, it is
compiled into what we call the current package. The initial current package is
called “main”, but you can switch the current package to another one at any time
with the package declaration. The current package determines which symbol table
is used to find your variables, subroutines, I/O handles, and formats.

Symbol Tables
The contents of a package are collectively called a symbol table. Symbol tables are
stored in a hash whose name is the same as the package, but with two colons
appended. The main symbol table’s name is thus %main::. Since main also happens
to be the default package, Perl provides %:: as an abbreviation for %main::.

Likewise, the symbol table for the Red::Blue package is named %Red::Blue::. As
it happens, the main symbol table contains all other top-level symbol tables, in-
cluding itself, so %Red::Blue:: is also %main::Red::Blue::.

When we say that a symbol table “contains” another symbol table, we mean that
it contains a reference to the other symbol table. Since main is the top-level pack-
age, it contains a reference to itself, making %main:: the same as %main::main::,
and %main::main::main::, and so on, ad infinitum. It’s important to check for this
special case if you write code that traverses all symbol tables.

Inside a symbol table’s hash, each key/value pair matches a variable name to
its value. The keys are the symbol identifiers, and the values are the corresponding
typeglobs. So when you use the *NAME typeglob notation, you’re really just

Symbol Tables | 389

www.it-ebooks.info

http://www.it-ebooks.info/

accessing a value in the hash that holds the current package’s symbol table. In
fact, the following have (nearly) the same effect:

*sym = *main::variable;
*sym = $main::{"variable"};

The first is more efficient because the main symbol table is accessed at compile
time. It will also create a new typeglob by that name if none previously exists,
whereas the second form will not.

Since a package is a hash, you can look up the keys of the package and get to all
the variables of the package. Since the values of the hash are typeglobs, you can
dereference them in several ways. Try this:

foreach $symname (sort keys %main::) {
 local *sym = $main::{$symname};
 print "\$$symname is defined\n" if defined $sym;
 print "\@$symname is nonnull\n" if @sym;
 print "\%$symname is nonnull\n" if %sym;
}

Since all packages are accessible (directly or indirectly) through the main package,
you can write Perl code to visit every package variable in your program. The Perl
debugger does precisely that when you ask it to dump all your variables with the
V command. Note that if you do this, you won’t see variables declared with my
since those are independent of packages, although you will see variables declared
with our. See Chapter 18.

Earlier we said that only identifiers are stored in packages other than main. That
was a bit of a fib: you can use any string you want as the key in a symbol table
hash—it’s just that it wouldn’t be valid Perl if you tried to use a non-identifier
directly:

$!@#$% = 0; # WRONG, syntax error.
${'!@#$%'} = 1; # Ok, though unqualified.

${'main::!@#$%'} = 2; # Can qualify within the string.
print ${ $main::{'!@#$%'} } # Ok, prints 2!

Assignment to a typeglob is an aliasing operation; that is,

*dick = *richard;

causes variables, subroutines, formats, and file and directory handles accessible
via the identifier richard to also be accessible via the symbol dick. If you want to
alias only a particular variable or subroutine, assign a reference instead:

*dick = \$richard;

390 | Chapter 10: Packages

www.it-ebooks.info

http://www.it-ebooks.info/

That makes $richard and $dick the same variable, but leaves @richard and
@dick as separate arrays. Tricky, eh?

This is how the Exporter works when importing symbols from one package to
another. For example:

*SomePack::dick = \&OtherPack::richard;

imports the &richard function from package OtherPack into SomePack, making it
available as the &dick function. (The Exporter module is described in the next
chapter.) If you precede the assignment with a local, the aliasing will only last
as long as the current dynamic scope.

This mechanism may be used to retrieve a reference from a subroutine, making
the referent available as the appropriate data type:

*units = populate() ; # Assign \%newhash to the typeglob
print $units{kg}; # Prints 70; no dereferencing needed!

sub populate {
 my %newhash = (km => 10, kg => 70);
 return \%newhash;
}

Likewise, you can pass a reference into a subroutine and use it without derefer-
encing:

%units = (miles => 6, stones => 11);
fillerup(\%units); # Pass in a reference
print $units{quarts}; # Prints 4

sub fillerup {
 local *hashsym = shift; # Assign \%units to the typeglob
 $hashsym{quarts} = 4; # Affects %units; no dereferencing needed!
}

These are tricky ways to pass around references cheaply when you don’t want to
have to explicitly dereference them. Note that both techniques only work with
package variables; they would not have worked had we declared %units with my.

Another use of symbol tables is for making “constant” scalars:

*PI = \3.14159265358979;

Now you cannot alter $PI, which is probably a good thing, all in all. This isn’t the
same as a constant subroutine, which is optimized at compile time. A constant
subroutine is one prototyped to take no arguments and to return a constant
expression; see the section “Inlining Constant Functions” in Chapter 7, for de-
tails. The use constant pragma (see Chapter 29) is a convenient shorthand:

use constant PI => 3.14159;

Symbol Tables | 391

www.it-ebooks.info

http://www.it-ebooks.info/

Under the hood, this uses the subroutine slot of *PI, instead of the scalar slot
used earlier. It’s equivalent to the more compact (but less readable):

*PI = sub () { 3.14159 };

That’s a handy idiom to know anyway—assigning a sub {} to a typeglob is the
way to give a name to an anonymous subroutine at run time.

Assigning a typeglob reference to another typeglob (*sym = *oldvar) is the same
as assigning the entire typeglob, because Perl automatically dereferences the
typeglob reference for you. And when you set a typeglob to a simple string, you
get the entire typeglob named by that string, because Perl looks up the string in
the current symbol table. The following are all equivalent to one another, though
the first two compute the symbol table entry at compile time, while the last two
do so at run time:

*sym = *oldvar;
*sym = *oldvar; # autodereference
*sym = *{"oldvar"}; # explicit symbol table lookup
*sym = "oldvar"; # implicit symbol table lookup

When you make any of the following assignments, you’re replacing just one of the
references within the typeglob:

*sym = \$frodo;
*sym = \@sam;
*sym = \%merry;
*sym = \&pippin;

If you think about it sideways, the typeglob itself can be viewed as a kind of hash,
with entries for the different variable types in it. In this case, the keys are fixed,
since a typeglob can contain exactly one scalar, one array, one hash, and so on.
But you can pull out the individual references, like this:

*pkg::sym{SCALAR} # same as \$pkg::sym
*pkg::sym{ARRAY} # same as \@pkg::sym
*pkg::sym{HASH} # same as \%pkg::sym
*pkg::sym{CODE} # same as \&pkg::sym
*pkg::sym{GLOB} # same as *pkg::sym
*pkg::sym{IO} # internal file/dir handle, no direct equivalent
*pkg::sym{NAME} # "sym" (not a reference)
*pkg::sym{PACKAGE} # "pkg" (not a reference)

You can say *foo{PACKAGE} and *foo{NAME} to find out what name and package
the *foo symbol table entry comes from. This may be useful in a subroutine that
is passed typeglobs as arguments:

sub identify_typeglob {
 my $glob = shift;
 print "You gave me ", *{$glob}{PACKAGE}, "::", *{$glob}{NAME}, "\n";
}

392 | Chapter 10: Packages

www.it-ebooks.info

http://www.it-ebooks.info/

identify_typeglob(*foo);
identify_typeglob(*bar::glarch);

This prints:

You gave me main::foo
You gave me bar::glarch

The *foo{THING} notation can be used to obtain references to individual elements
of *foo. See the section “Symbol Table References” in Chapter 8 for details.

This syntax is primarily used to get at the internal filehandle or directory handle
reference, because the other internal references are already accessible in other
ways. (The old *foo{FILEHANDLE} is no longer supported to mean *foo{IO}.) But
we thought we’d generalize it because it looks kind of pretty. Sort of. You prob-
ably don’t need to remember all this unless you’re planning to write another Perl
debugger.

Qualified Names
You can refer to identifiers5 in other packages by prefixing (“qualifying”) the iden-
tifier with the package name and a double colon: $Package::Variable. If the
package name is null, the main package is assumed. That is, $::sail is equivalent
to $main::sail.6

The old package delimiter was a single quote, so in very old Perl programs you’ll
see variables like $main'sail and $somepack'horse. But the double colon is now
the preferred delimiter, in part because it’s more readable to humans, and in part
because it’s more readable to emacs macros. It also makes C++ programmers feel
like they know what was going on—as opposed to using the single quote as the
separator, which was there to make Ada programmers feel like they knew what’s
going on. Because the old-fashioned syntax is still supported for backward com-
patibility, if you try to use a string like "This is $owner's house", you’ll be ac-
cessing $owner::s; that is, the $s variable in package owner, which is probably not
what you meant. Use braces to disambiguate, as in "This is ${owner}'s house".

5. By identifiers, we mean the names used as symbol table keys for accessing scalar variables, array variables,
hash variables, subroutines, file or directory handles, and formats. Syntactically speaking, labels are also
identifiers, but they aren’t put into a particular symbol table; rather, they are attached directly to the
statements in your program. Labels cannot be package-qualified.

6. To clear up another bit of potential confusion, in a variable name like $main::sail, we use the term
“identifier” to talk about main and sail, but not main::sail together. We call that a variable name instead,
because identifiers cannot contain colons.

Qualified Names | 393

www.it-ebooks.info

http://www.it-ebooks.info/

The double colon can be used to chain together identifiers in a package name:
$Red::Blue::var. This means the $var belonging to the Red::Blue package. The
Red::Blue package has nothing to do with any Red or Blue packages that might
happen to exist. That is, a relationship between Red::Blue and Red or Blue may
have meaning to the person writing or using the program, but it means nothing
to Perl. (Well, other than the fact that, in the current implementation, the symbol
table Red::Blue happens to be stored in the symbol table Red. But the Perl language
makes no use of that directly.)

Long ago, variables beginning with an underscore were forced into the main pack-
age, but we decided it was more useful for package writers to be able to use a
leading underscore to indicate semiprivate identifiers meant for internal use by
that package only. (Truly private variables can be declared as file-scoped lexicals,
but that works best when the package and module have a one-to-one relation-
ship, which is common but not required.)

The %SIG hash (which is for trapping signals; see Chapter 15) is also special. If
you define a signal handler as a string, it’s assumed to refer to a subroutine in the
main package unless another package name is explicitly used. Use a fully qualified
signal handler name if you want to specify a particular package, or avoid strings
entirely by assigning a typeglob or a function reference instead:

$SIG{QUIT} = "Pkg::quit_catcher"; # fully qualified handler name
$SIG{QUIT} = "quit_catcher"; # implies "main::quit_catcher"
$SIG{QUIT} = *quit_catcher; # forces current package's sub
$SIG{QUIT} = \&quit_catcher; # forces current package's sub
$SIG{QUIT} = sub { print "Caught SIGQUIT\n" }; # anonymous sub

The Default Package
The default package is main, just like the top-level subroutine name in C. Unless
you say otherwise (coming up), all variables are in this package. These are the
same:

#!/usr/bin/perl

$name = 'Amelia';
$main::name = 'Amelia';

$type = 'Camel';
$main::type = 'Camel';

394 | Chapter 10: Packages

www.it-ebooks.info

http://www.it-ebooks.info/

Under strict, you have to say otherwise because that pragma doesn’t let you use
undeclared variables:

#!/usr/bin/perl

use v5.12;

$name = 'Amelia'; # compile–time error
$main::name = 'Amelia';

$type = 'Camel'; # compile–time error
$main::type = 'Camel';

Only identifiers (names starting with letters or an underscore) are stored in a
package’s symbol table. All other symbols are kept in the main package, including
the nonalphabetic variables, like $!, $?, and $_.7 In addition, when unqualified,
the identifiers STDIN, STDOUT, STDERR, ARGV, ARGVOUT, ENV, INC, and SIG are forced
to be in package main, even when used for other purposes than their built-in ones.
Don’t name your package m, s, y, tr, q, qq, qr, qw, or qx unless you’re looking for
a lot of trouble. For instance, you won’t be able to use the qualified form of an
identifier as a filehandle because it will be interpreted instead as a pattern match,
a substitution, or a transliteration.

Changing the Package
The notion of “current package” is both a compile-time and runtime concept.
Most variable name lookups happen at compile time, but runtime lookups hap-
pen when symbolic references are dereferenced, and also when new bits of code
are parsed under eval. In particular, when you eval a string, Perl knows which
package the eval was invoked in and propagates that package inward when eval-
uating the string. (You can always switch to a different package inside the eval
string, of course, since an eval string counts as a block, just like a file loaded in
with do, require, or use.)

For this reason, every package declaration must declare a complete package name.
No package name ever assumes any kind of implied “prefix”, even if (seemingly)
it is declared within the scope of some other package declaration.

Alternatively, if an eval wants to find out what package it’s in, the special symbol
_ _PACKAGE_ _ contains the current package name. Since you can treat it as a string,
you could use it in a symbolic reference to access a package variable. But if you

7. You can have a lexical $_ in v5.10, though.

Changing the Package | 395

www.it-ebooks.info

http://www.it-ebooks.info/

were doing that, chances are you should have declared the variable with our
instead so it could be accessed as if it were a lexical.

Any variable not declared with my is associated with a package—even seemingly
omnipresent variables like $_ and %SIG. Other variables use the current package,
unless they are qualified:

$name = 'Amelia'; # name in current package

$Animal::name = 'Camelia'; # name in Animal package

The package declaration changes the default package for the rest of the scope
(block, file, or eval—whichever comes first) or until another package declaration
at the same level, which supersedes the earlier one (this is a common practice):

package Animal;

$name = 'Camelia'; # $Animal::name

It’s important to note, and to repeat, that the package does not create a scope, so
it cannot hide lexical variables in the same scope:

my $type = 'Camel';

package Animal;

print "Type is $type\n"; # the lexical $type, so, "Camel"
$type = 'Ram';

package Zoo;

print "Type is $type\n"; # the lexical $type, so, "Ram"

To preferentially use the package version of a variable with the same name as a
lexical variable in the same scope, use our. Beware, though. This makes the ver-
sion for the current package the default for the rest of the scope, even if the default
package changes:

my $type = 'Camel';

package Animal;

our $type = 'Ram';
print "Type is $type\n"; # the package $type, so, "Ram"

package Zoo;

print "Type is $type\n"; # the Animal $type, so, "Ram"

In package Zoo, $type is still the $Animal::type version. The our applies for the
rest of the scope, not the rest of the package declaration. This can be slightly

396 | Chapter 10: Packages

www.it-ebooks.info

http://www.it-ebooks.info/

confusing. Remember, the package only changes the default package name; it
does not end or begin scopes. Once you change the package, all subsequent
undeclared identifiers are placed in the symbol table belonging to the current
package. That’s it.

Typically, a package declaration will be the first statement of a file meant to be
included by require or use. But again, that’s by convention. You can put a pack
age declaration anywhere you can put a statement. You could even put it at the
end of a block, in which case it would have no effect whatsoever. You can switch
into a package in more than one place; a package declaration merely selects the
symbol table to be used by the compiler for the rest of that block. This is how a
given package can span more than one file.

As of recent versions, the version of a package may be specified on the package
declaration line:

package Zoo v3.1.4;

Additionally, a bracketed form that looks more like standard blocks is available
in v5.14 and later. This limits the package’s scope to the inside of the block. We
could avoid the problem of name spillage mentioned earlier by using this feature:

my $type = 'Camel';

package Animal {
 our $type = 'Ram';
 print "Type is $type\n"; # the package $type, so, "Ram"
}

package Zoo v3.1.4 {
 print "Type is $type\n"; # the outer $type, so, "Camel"
}

Autoloading
Normally, you can’t call a subroutine that isn’t defined. However, if there is a
subroutine named AUTOLOAD in the undefined subroutine’s package (or in the case
of an object method, in the package of any of the object’s base classes), then
the AUTOLOAD subroutine is called with the same arguments that would have been
passed to the original subroutine. You can define the AUTOLOAD subroutine to
return values just like a regular subroutine, or you can make it define the routine
that didn’t exist and then call that as if it’d been there all along.

The fully qualified name of the original subroutine magically appears in the
package-global $AUTOLOAD variable, in the same package as the AUTOLOAD routine.

Autoloading | 397

www.it-ebooks.info

http://www.it-ebooks.info/

Here’s a simple example that gently warns you about undefined subroutine in-
vocations instead of exiting:

sub AUTOLOAD {
 our $AUTOLOAD;
 warn "Attempt to call $AUTOLOAD failed.\n";
}

blarg(10); # our $AUTOLOAD will be set to main::blarg
print "Still alive!\n";

Or, you can return a value on behalf of the undefined subroutine:

sub AUTOLOAD {
 our $AUTOLOAD;
 return "I see $AUTOLOAD(@_)\n";
}

print blarg(20); # prints: I see main::blarg(20)

Your AUTOLOAD subroutine might load a definition for the undefined subroutine
using eval or require, or use the glob assignment trick discussed earlier, and then
execute that subroutine using the special form of goto that can erase the stack
frame of the AUTOLOAD routine without a trace. Here we define the subroutine by
assigning a closure to the glob:

sub AUTOLOAD {
 my $name = our $AUTOLOAD;
 *$AUTOLOAD = sub { print "I see $name(@_)\n" };
 goto &$AUTOLOAD; # Restart the new routine.
}

blarg(30); # prints: I see main::blarg(30)
glarb(40); # prints: I see main::glarb(40)
blarg(50); # prints: I see main::blarg(50)

The standard AutoSplit module is used by module writers to split their modules
into separate files (with filenames ending in .al), each holding one routine. The
files are placed in the auto/ directory of your system’s Perl library, after which the
files can be autoloaded on demand by the standard AutoLoader module.

A similar approach is taken by the SelfLoader module, except that it autoloads
functions from the file’s own DATA area, which is less efficient in some ways and
more efficient in others. Autoloading of Perl functions by AutoLoader and Self
Loader is analogous to dynamic loading of compiled C functions by DynaLoader,
except that autoloading is done at the granularity of the function call, whereas
dynamic loading is done at the granularity of the complete module, and will
usually link in many C or C++ functions all at once. (Note that many Perl pro-
grammers get along just fine without the AutoSplit, AutoLoader, SelfLoader, or

398 | Chapter 10: Packages

www.it-ebooks.info

http://www.it-ebooks.info/

DynaLoader modules. You just need to know that they’re there in case you can’t get
along just fine without them.)

One can have great fun with AUTOLOAD routines that serve as wrappers to other
interfaces. For example, let’s pretend that any function that isn’t defined should
just call system with its arguments. All you’d do is this:

sub AUTOLOAD {
 my $program = our $AUTOLOAD;
 $program =~ s/.*:://; # trim package name
 system($program, @_);
}

(Congratulations, you’ve now implemented a rudimentary form of the Shell
module that comes standard with Perl.) You can call your autoloader (on Unix)
like this:

date();
who("am", "i");
ls("–l");
echo("Abadugabudabuda...");

In fact, if you predeclare the functions you want to call that way, you can pretend
they’re built-ins and omit the parentheses on the call:

sub date (;$$); # Allow zero to two arguments.
sub who (;$$$$); # Allow zero to four args.
sub ls; # Allow any number of args.
sub echo ($@); # Allow at least one arg.

date;
who "am", "i";
ls "–l";
echo "That's all, folks!";

As of v5.8, AUTOLOAD can have an :lvalue attribute.

package Chameau;
use v5.14;

sub new { bless {}, $_[0] }

sub AUTOLOAD :lvalue {
 our $AUTOLOAD;
 my $method = $AUTOLOAD =~ s/.*:://r;
 $_[0]–>{$method};
}

1;

Autoloading | 399

www.it-ebooks.info

http://www.it-ebooks.info/

With that method, you can access it or assign to it:

use v5.14;
use Chameau;

my $chameau = Chameau–>new;

$chameau–>awake = 'yes';

say $chameau–>awake;

Or, you can make the last value a symbolic reference:

package Trampeltier;

sub new { bless {}, $_[0] }
sub AUTOLOAD :lvalue { no strict 'refs'; *{$AUTOLOAD} }

1;

so you can define the method by assigning to it:

use Trampeltier;

my $trampeltier = Trampeltier–>new;

$trampeltier–>name = sub { 'Amelia' };

We’re not sure that you’d ever want to do that, though.

400 | Chapter 10: Packages

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 11

Modules

The module is the fundamental unit of code reuse in Perl. Under the hood, it’s
just a package defined in a file of the same name (with .pm on the end). In this
chapter, we’ll explore how you can use other people’s modules and create your
own.

Perl comes bundled with hundreds of useful modules, which you can find in the
lib directory of your Perl distribution, which are decided at the time you (or
someone) built perl. You can see where these directories are with the –V switch:

% perl –V
Summary of my perl5 (revision 5 version 14 subversion 1) configuration:

...
Built under darwin
Compiled at Jul 5 2011 21:43:59
@INC:
 /usr/local/perl/lib/site_perl/5.14.2/darwin–2level
 /usr/local/perl/lib/site_perl/5.14.2
 /usr/local/perl/lib/5.14.2/darwin–2level
 /usr/local/perl/lib/5.14.2
 .

You can see all of the modules that come with perl with corelist, which also comes
with perl:

% corelist –v 5.014

All standard modules also have extensive online documentation, which (horrors)
will most likely be more up to date than this book. Try the perldoc command to
read the documentation:

% perldoc Digest::MD5

401

www.it-ebooks.info

http://www.it-ebooks.info/

The Comprehensive Perl Archive Network (CPAN) contains a worldwide repos-
itory of modules contributed by the Perl community, and is discussed in Chap-
ter 19. See also http://www.cpan.org.

Loading Modules
Modules come in two flavors: traditional and object-oriented. Traditional mod-
ules define subroutines and variables for the caller to import and use. Object-
oriented modules function as class definitions and are accessed through method
calls, described in Chapter 12. Some modules do both.

Perl modules are typically included in your program by saying:

use MODULE;

This is equivalent to:

BEGIN {
 require MODULE;
 MODULE–>import();
}

This happens during the compile phase, so any code in the module runs during
the compile phase. This usually isn’t a problem since most code in modules lives
in subroutines or methods. Some modules may load additional modules, XS
code, and other code components. Since Perl handles a use when it runs into it,
any modifications to @INC need to happen before the use. You probably want the
lib pragma (see Chapter 29), which you also load with use.

If you want to load the module during the run phase, perhaps delaying its inclu-
sion until you run a subroutine that needs it, you can use require:

require MODULE;

MODULE must be a package name that translates to the module’s file. The use trans-
lates :: to / and then appends a .pm to the end. It looks for that name in @INC. If
your module is named Animal::Mammal::HoneyBadger, this will look for Animal/
Mammal/HoneyBadger.pm. Once loaded, the path where Perl found the file shows
up in %INC. Perl loads a file once. Before it tries to load a file, it looks in %INC to
see whether it is already loaded. If so, it can reuse the result.

You can load files directly with require, using the right path separator (which
may not be portable):

require FILE;
require 'Animal/Mammal/HoneyBadger.pm';

402 | Chapter 11: Modules

www.it-ebooks.info

http://www.cpan.org
http://www.it-ebooks.info/

In general, however, use is preferred over require because it looks for modules
during compilation, so you learn about any mistakes sooner.

Some modules offer additional functionality in its import list. This list becomes
the argument list for import:

use MODULE LIST;

like this:

BEGIN {
 require MODULE;
 MODULE–>import(LIST);
}

A module’s import can do whatever it likes, but most modules stick with a version
they inherit from Exporter, which we’ll talk more about later. Typically, the
import puts symbols (subroutines and variables) in the current namespace so they
are available for the rest of the compilation unit. Some modules have a default
import list.

For example, the Hash::Util module exports several symbols for special hash
action. The use pulls in the lock_keys symbol, which is then available for the rest
of the compilation unit:

use Hash::Util qw(lock_keys);

lock_keys(my %hash, qw(name location));

Even without a LIST, it might import some symbols based on the module’s default
list.1 The File::Basename module automatically imports a basename, dirname, and
fileparse:

use File::Basename;

say basename($ARGV[0]);

If you want absolutely no imports, you can supply an explicit empty list:

use MODULE ();

Sometimes you want to use a specific version (or later) of a module, usually to
avoid known issues in an earlier version or to use a newer, nonbackward-com-
patible API:

use MODULE VERSION LIST;

1. This is generally considered impolite now. Making people specify what they want helps to head off
conflicts in two different modules importing the same thing.

Loading Modules | 403

www.it-ebooks.info

http://www.it-ebooks.info/

Normally, any version greater than or equal to VERSION is fine. You can’t specify
exactly a version or a range of versions. However, the module might decide to
do something different, since it’s really the VERSION method that decides what to
do.

Unloading Modules
The opposite of use is no. Instead of calling import, it calls unimport. That method
can do whatever it likes. The syntax is the same:

no MODULE;
no MODULE LIST;
no MODULE VERSION;
no MODULE VERSION LIST;

You may only want some symbols available for a short time. For instance, the
Moose module, an object system built on top of Perl’s built-in features, imports
many convenience methods. The has method declares attributes, but once you
are done with those names, they don’t need to stick around. At the end of the
section that needs them, you can unimport them with no:

package Person;
use Moose;

has "first_name" => (is => "rw", isa => "Str");
has "last_name" => (is => "rw", isa => "Str");

sub full_name {
 my $self = shift;
 $self–>first_name . " " . $self–>last_name
}

no Moose; # keywords are removed from the Person package

To temporarily turn off a strict feature, unimport the feature that’s in the way. Use
the smallest scope possible so you don’t miss other problems:

my $value = do {
 no strict "refs";

 ${ "${{class}::name}" }; # symbolic reference
};

Similarly, you might need to temporarily turn off a type of warning, so you unim-
port that type of warning:

404 | Chapter 11: Modules

www.it-ebooks.info

http://www.it-ebooks.info/

use warnings;
{
 no warnings 'redefine';
 local *badger = sub { ... };
 ...;
}

Creating Modules
In this chapter, we’ll merely show you the code portion of a module. There’s a lot
more to creating a distribution, which we cover in Chapter 19.

Naming Modules
A good name is one of the most important parts of creating a module. Once you
choose a name and people start using your module, you have to live with that
name virtually forever as your users refuse to update their code. If you are up-
loading your module to CPAN, you want people to be able to find it easily, too.
You can read some naming guidelines at PAUSE.

Module names should be capitalized unless they’re functioning as pragmas. Prag-
mas (see Chapter 29) are in effect compiler directives (hints for the compiler), so
we reserve the lowercase pragma names for future use.

If you want to make a private module whose name should never conflict with a
module in the Standard Library or on CPAN, you can use the Local namespace.
It’s not forbidden from CPAN, but by convention it’s not used.

A Sample Module
Earlier, we said that there are two ways for a module: traditional or object-ori-
ented. We’ll show you the shortest examples of each.

An object-oriented module is the easy one to show since it doesn’t need much
infrastructure to communicate with its user. Everything happens through meth-
ods:

package Bestiary::OO 1.001;

sub new {
 my($class, @args) = @_;
 bless {}, $class;
}

sub camel { "one–hump dromedary" }
sub weight { 1024 }

Creating Modules | 405

www.it-ebooks.info

http://pause.perl.org/pause/query?ACTION=pause_namingmodules
http://www.it-ebooks.info/

more methods here

1;

A program that uses it does all its work through methods:

use v5.10;
use Bestiary::OO;

my $bestiary = Bestiary::OO–>new; # class method

say "Animal is ", $bestiary–>camel(),
 " has weight ", $bestiary–>weight();

To construct a traditional module called Bestiary, create a file called Bes-
tiary.pm that looks like this:

package Bestiary 1.001;
use parent qw(Exporter);

our @EXPORT = qw(camel); # Symbols to be exported by default
our @EXPORT_OK = qw($weight); # Symbols to be exported on request

Include your variables and functions here

sub camel { "one–hump dromedary" }

$weight = 1024;

1; # end with an expression that evaluates to true

A program can now say use Bestiary to be able to access the camel function (but
not the $weight variable), and use Bestiary qw(camel $weight) to access both the
function and the variable:

use v5.10;

use Bestiary qw(camel $weight);

say "Animal is ", camel(), " has weight $weight";

You can also create modules that dynamically load code written in C, although
we don’t cover that here.

Module Privacy and the Exporter
Perl does not automatically patrol private/public borders within its modules—
unlike languages such as C++, Java, and Ada, Perl isn’t obsessed with enforced
privacy. A Perl module would prefer that you stay out of its living room because
you weren’t invited, not because it has a shotgun.

406 | Chapter 11: Modules

www.it-ebooks.info

http://www.it-ebooks.info/

The module and its user have a contract, part of which is common law and part
of which is written. Part of the common law contract is that a module refrain
from changing any namespace it wasn’t asked to change. The written contract
for the module (that is, the documentation) may make other provisions. But then,
having read the contract, you presumably know that when you say use Redefi
neTheWorld you’re redefining the world, and you’re willing to risk the conse-
quences. The most common way to redefine worlds is to use the Exporter mod-
ule. As we’ll see later in this chapter, you can even redefine built-ins with this
module.

When you use a module, the module typically makes some variables or functions
available to your program or, more specifically, to your program’s current pack-
age. This act of exporting symbols from the module (and thus importing them
into your program) is sometimes called polluting your namespace. Most modules
use Exporter to do this; that’s why near the top most modules say something like
one of these:

use parent qw(Exporter);

require Exporter;
our @ISA = ("Exporter");

These two lines make the module inherit from the Exporter class. Inheritance is
described in the next chapter, but all you need to know is our Bestiary module
can now export symbols into other packages with lines like these:

our @EXPORT = qw($camel %wolf ram); # Export by default
our @EXPORT_OK = qw(leopard @llama $emu); # Export by request
our %EXPORT_TAGS = (# Export as group
 camelids => [qw($camel @llama)],
 critters => [qw(ram $camel %wolf)],
);

From the viewpoint of the exporting module, the @EXPORT array contains the
names of variables and functions to be exported by default: what your program
gets when it says use Bestiary. Variables and functions in @EXPORT_OK are ex-
ported only when the program specifically requests them in the use statement.
Finally, the key/value pairs in %EXPORT_TAGS allow the program to include partic-
ular groups of the symbols listed in @EXPORT and @EXPORT_OK.

From the viewpoint of the importing package, the use statement specifies a list
of symbols to import, a group named in %EXPORT_TAGS, a pattern of symbols, or
nothing at all, in which case the symbols in @EXPORT would be imported from the
module into your program.

Creating Modules | 407

www.it-ebooks.info

http://www.it-ebooks.info/

You can include any of these statements to import symbols from the Bestiary
module:

use Bestiary; # Import @EXPORT symbols
use Bestiary (); # Import nothing
use Bestiary qw(ram @llama); # Import the ram function and @llama array
use Bestiary qw(:camelids); # Import $camel and @llama
use Bestiary qw(:DEFAULT); # Import @EXPORT symbols
use Bestiary qw(/am/); # Import $camel, @llama, and ram
use Bestiary qw(/^\$/); # Import all scalars
use Bestiary qw(:critters !ram); # Import the critters, but exclude ram
use Bestiary qw(:critters !:camelids);
 # Import critters, but no camelids

Leaving a symbol off the export lists (or removing it explicitly from the import
list with the exclamation point) does not render it inaccessible to the program
using the module. The program can always access the contents of the module’s
package by fully qualifying the package name, like %Bestiary::gecko. (Because
lexical variables do not belong to packages, privacy is still possible; see “Private
Methods” on page 440 in the next chapter.)

You can say BEGIN { $Exporter::Verbose=1 } to see how the specifications are
being processed and what is actually being imported into your package.

The Exporter is itself a Perl module, and, if you’re curious, you can see the typeglob
trickery it uses to export symbols from one package into another. Inside the
Exporter module, the key function is named import, which performs the necessary
aliasing to make a symbol in one package appear to be in another. In fact, a use
Bestiary LIST statement is exactly equivalent to:

BEGIN {
 require Bestiary;
 import Bestiary LIST;
}

This means that your modules don’t have to use the Exporter. A module can do
anything it jolly well pleases when it’s used, since use just calls the ordinary
import method for the module, and you can define that method to do anything
you like.

Exporting without using Exporter’s import method

The Exporter defines a method called export_to_level, used when (for some
reason) you can’t directly call Exporter’s import method. The export_to_level
method is invoked like this:

MODULE–>export_to_level($where_to_export, @what_to_export);

408 | Chapter 11: Modules

www.it-ebooks.info

http://www.it-ebooks.info/

where $where_to_export is an integer indicating how far up the calling stack to
export your symbols, and @what_to_export is an array listing the symbols to ex-
port (usually @_).

For example, suppose our Bestiary had an import function of its own:

package Bestiary;
@ISA = qw(Exporter);
@EXPORT_OK = qw ($zoo);

sub import {
 $Bestiary::zoo = "menagerie";
}

The presence of this import function prevents Exporter’s import function from
being inherited. If you want Bestiary’s import function to behave just like
Exporter’s import function once it sets $Bestiary::zoo, you’d define it as follows:

sub import {
 $Bestiary::zoo = "menagerie";
 Bestiary–>export_to_level(1, @_);
}

This exports symbols to the package one level “above” the current package. That
is, to whatever program or module is using the Bestiary.

If this is all you need, however, you probably don’t want to inherit from
Exporter. You can import the import method:

package Bestiary;
use Exporter qw(import); # v5.8.3 and later

Version checking

If your module defines a $VERSION variable, a program using your module can
ensure that the module is sufficiently recent. For example:

use Bestiary 3.14; # The Bestiary must be version 3.14 or later
use Bestiary v1.0.4; # The Bestiary must be version 1.0.4 or later

These are converted into calls to Bestiary–>VERSION, which you inherit from
UNIVERSAL (see Chapter 12).

If you use require, you can still check the version by calling VERSION directly:

require Bestiary;
Bestiary–>VERSION('2.71828');

Now, module versions are a more complicated thing than they should be, and
some of that is inescapable history. Versions started off as whatever Perl would
find in $VERSION in the module’s package. That could be a number, a string, or the
result of an operation. For many years, there was no standardization of version

Creating Modules | 409

www.it-ebooks.info

http://www.it-ebooks.info/

strings, so people would make exotic versions like “1.23alpha”.2 These turn out
to be the same thing:

our $VERSION = 1.002003;
our $VERSION = '1.002003';
our $VERSION = v1.2.3;

use version;
our $VERSION = version–>new("v1.2.3");

That was fine for awhile, but then Perl changed its own version number scheme
between 5.005 and v5.6, just like that. Now that was a v-string, a special sort of
literal that represented a version and could contain as many dots as you liked.
These v-strings were really integers packed as characters. Next, Perl got the idea
of the version object and the version module. If you have to support truly ancient
versions of Perl (first, we’re sorry: v5.6 came out last millennium already), best
stick to simple strings.

Perl assumes that the part after the decimal point is three places, which makes
comparisons odd. So version 1.9 comes before version 1.10, even though the .9
sorts after the .1 lexicographically. Perl sees those each as 1.009 and 1.010. Do
you have to like that? No. Do you have to live with it? Yes. (But, by all means,
use the v1.9 form everywhere you can get away with it, since that will be future
compatible.)

In addition to all of that, a convention for developmental, nonreleased versions
developed. Putting a _ or –TRIAL in your version, many of the CPAN tools won’t
consider it a stable release. This lets authors upload to CPAN with the benefit of
CPAN Testers and prerelease user testing without forcing everyone else to use
the potentially broken release (see Chapter 19).

our $VERSION = '1.234_001';

The quotes are necessary there to preserve the underscore, which would otherwise
be parsed away, because the compiler permits them in numeric literals.

David Golden says more about this in "Version numbers should be boring" (http:
//www.dagolden.com/index.php/369/version-numbers-should-be-boring/).

Note that in very recent Perls you can get rid of the our declaration entirely, and
just write:

package Bestiary v1.2.3;

2. For a sampling of some of the nonsense, see the work that the CPAN:DistnameInfo module does to recognize
a version.

410 | Chapter 11: Modules

www.it-ebooks.info

http://www.dagolden.com/index.php/369/version-numbers-should-be-boring/
http://www.dagolden.com/index.php/369/version-numbers-should-be-boring/
http://www.it-ebooks.info/

Managing unknown symbols

In some situations, you may want to prevent certain symbols from being exported.
Typically, this applies to modules that have functions or constants that might
not make sense on some systems. You can prevent the Exporter from exporting
those symbols by placing them in the @EXPORT_FAIL array.

If a program tries to import any of these symbols, the Exporter gives the module
an opportunity to respond in some way before generating an error. It does this
by calling an export_fail method with a list of the failed symbols, which you
might define as follows (assuming your module uses the Carp module):

use Carp;
sub export_fail {
 my $class = shift;
 carp "Sorry, these symbols are unavailable: @_";
 return @_;
}

The Exporter provides a default export_fail method, which simply returns the
list unchanged and makes the use fail with an exception raised for each symbol.
If export_fail returns an empty list, no error is recorded and all requested sym-
bols are exported.

Tag-handling utility functions

Since the symbols listed within %EXPORT_TAGS must also appear in either @EXPORT
or @EXPORT_OK, the Exporter provides two functions to let you add those tagged
sets of symbols:

%EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

Exporter::export_tags("foo"); # add aa, bb and cc to @EXPORT
Exporter::export_ok_tags("bar"); # add aa, cc and dd to @EXPORT_OK

Specifying names that are not tags is erroneous.

Overriding Built-in Functions
Many built-in functions may be overridden, although (like knocking holes in your
walls) you should do this only occasionally and for good reason. Typically, this
might be done by a package attempting to emulate missing built-in functionality
on a non-Unix system. (Do not confuse overriding with overloading, which adds
additional object-oriented meanings to built-in operators, but doesn’t override
much of anything. See the discussion of the overload module in Chapter 13 for
more on that.)

Overriding Built-in Functions | 411

www.it-ebooks.info

http://www.it-ebooks.info/

Overriding may be done only by importing the name from a module—ordinary
predeclaration isn’t good enough. To be perfectly forthcoming, it’s the assign-
ment of a code reference to a typeglob that triggers the override, as in *open =
\&myopen. Furthermore, the assignment must occur in some other package; this
makes accidental overriding through typeglob aliasing intentionally difficult.
However, if you really want to do your own overriding, don’t despair, because
the subs pragma lets you predeclare subroutines via the import syntax, so those
names then override the built-in ones:

use subs qw(chdir chroot chmod chown);
chdir $somewhere;
sub chdir { ... }

In general, modules should not export built-in names like open or chdir as part
of their default @EXPORT list, since these names may sneak into someone else’s
namespace and change the semantics unexpectedly. If the module includes the
name in the @EXPORT_OK list instead, importers will be forced to explicitly request
that the built-in name be overridden, thus keeping everyone honest.

The original versions of the built-in functions are always accessible via the CORE
pseudopackage. Therefore, CORE::chdir will always be the version originally
compiled into Perl, even if the chdir keyword has been overridden.

Well, almost always. The foregoing mechanism for overriding built-in functions
is restricted, quite deliberately, to the package that requests the import. But there
is a more sweeping mechanism you can use when you wish to override a built-
in function everywhere, without regard to namespace boundaries. This is
achieved by defining the function in the CORE::GLOBAL pseudopackage. Below is
an example that replaces the glob operator with something that understands
regular expressions. (Note that this example does not implement everything
needed to cleanly override Perl’s built-in glob, which behaves differently de-
pending on whether it appears in a scalar or list context. Indeed, many Perl built-
ins have such context-sensitive behaviors, and any properly written override
should adequately support these. For a fully functional example of glob overrid-
ing, study the File::Glob module bundled with Perl.) Anyway, here’s the antisocial
version:

412 | Chapter 11: Modules

www.it-ebooks.info

http://www.it-ebooks.info/

*CORE::GLOBAL::glob = sub {
 my $pat = shift;
 my @got;
 local *D;
 if (opendir D, ".") {
 @got = grep /$pat/, readdir D;
 closedir D;
 }
 return @got;
 }

 package Whatever;

 print <^[a–z_]+\.pm\$>; # show all pragmas in the current directory

By overriding glob globally, this preemptively forces a new (and subversive) be-
havior for the glob operator in every namespace, without the cognizance or co-
operation of modules that own those namespaces. Naturally, this must be done
with extreme caution—if it must be done at all. And it probably mustn’t.

Our overriding philosophy is: it’s nice to be important, but it’s more important
to be nice.

Overriding Built-in Functions | 413

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 12

Objects

First of all, you need to understand packages and modules; see Chapter 10 and
Chapter 11. You also need to know about references and data structures; see
Chapter 8 and Chapter 9. It’s also helpful to understand a little about object-
oriented programming (OOP), so in the next section we’ll give you a little course
on OOL (object-oriented lingo).

Perl’s object-oriented model is probably a lot different than any you have used
from other languages. As you go through this chapter, it’s best to forget anything
you know from those languages.

Brief Refresher on Object-Oriented Lingo
An object is a data structure with a collection of behaviors. We generally speak of
the behaviors as acted out by the object directly, sometimes to the point of an-
thropomorphizing the object. For example, we might say that a rectangle
“knows” how to display itself on the screen, or that it “knows” how to compute
its own area.

Every object gets its behaviors by virtue of being an instance of a class. The class
defines methods: behaviors that apply to the class and its instances. When the
distinction matters, we refer to methods that apply only to a particular object as
instance methods, and those that apply to the entire class as class methods. But
this is only a convention—to Perl, a method is just a method, distinguished only
by the type of its first argument.

You can think of an instance method as some action performed by a particular
object, such as printing itself out, copying itself, or altering one or more of its
properties (“set this sword’s name to Andúril”). Class methods might perform
operations on many objects collectively (“display all swords”) or provide other
operations that aren’t dependent on any particular object (“from now on,

415

www.it-ebooks.info

http://www.it-ebooks.info/

whenever a new sword is forged, register its owner in this database”). Methods
that generate instances (objects) of a class are called constructor methods (“create
a sword with a gem-studded hilt and a secret inscription”). These are usually
class methods (“make me a new sword”) but can also be instance methods
(“make a copy just like this sword here”).

A class may inherit methods from parent classes, also known as base classes or
superclasses. If it does, it’s known as a derived class or a subclass. (Confusing the
issue further, some literature uses “base class” to mean a “most super” superclass.
That’s not what we mean by it.) Inheritance makes a new class that behaves just
like an existing one but also allows for altered or added behaviors not found in
its parents. When you invoke a method whose definition is not found in the class,
Perl automatically consults the parent classes for a definition. For example, a
sword class might inherit its attack method from a generic blade class. Parents
can themselves have parents, and Perl will search those classes as well when it
needs to. The blade class might in turn inherit its attack method from an even
more generic weapon class.

When the attack method is invoked on an object, the resulting behavior may
depend on whether that object is a sword or an arrow. Perhaps there wouldn’t
be any difference at all, which would be the case if both swords and arrows
inherited their attacking behavior from the generic weapon class. But if there
were a difference in behaviors, the method dispatch mechanism would always
select the attack method suitable for the object in question. The useful property
of always selecting the most appropriate behavior for a particular type of object
is known as polymorphism. It’s an important form of not caring.

You have to care about the innards of your objects when you’re implementing a
class, but when you use a class, you should be thinking of its objects as black
boxes. You can’t see what’s inside, you shouldn’t need to know how it works,
and you interact with the box only on its terms—via the methods provided by
the class. Even if you know what those methods do to the object, you should
resist the urge to fiddle around with it yourself. It’s like the remote control for
your television set: even if you know what’s going on inside it, you shouldn’t
monkey with its innards without good reason.

Perl lets you peer inside the object from outside the class when you need to. But
doing so breaks its encapsulation, the principle that all access to an object should
be through methods alone. Encapsulation decouples the published interface
(how an object should be used) from the implementation (how it actually works).
Perl does not have an explicit interface facility apart from this unwritten contract
between designer and user. Both parties are expected to exercise common sense

416 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

and common decency: the user by relying only upon the documented interface,
the designer by not breaking that interface.

Perl doesn’t force a particular style of programming on you, and it doesn’t have
the obsession with privacy that some other object-oriented languages do. Perl
does have an obsession with freedom, however, and one of the freedoms you
have as a Perl programmer is the right to select as much or as little privacy as you
like. In fact, Perl can have stronger privacy in its classes and objects than C++.
That is, Perl does not restrict you from anything, and, in particular, it doesn’t
restrict you from restricting yourself—if you’re into that kind of thing. The sec-
tions “Private Methods” on page 440 and “Closures as Objects” later in this
chapter demonstrate how you can increase your dosage of discipline.

Admittedly, there’s a lot more to objects than this, as well as a lot of ways to find
out more about object-oriented design. But that’s not our purpose here. So, on
we go.

Perl’s Object System
Perl doesn’t provide any special syntax for defining objects, classes, or methods.
Instead, it reuses existing constructs to implement these three concepts.1 Here
are some simple definitions that you may find reassuring:

An object is simply a reference…er, a referent.
Since references let individual scalars represent larger collections of data, it
shouldn’t be a surprise that references are used for all objects. Technically,
an object isn’t the reference proper—it’s really the referent that the reference
points at. This distinction is frequently blurred by Perl programmers, how-
ever, and since we feel it’s a lovely metonymy, we will perpetuate the usage
here when it suits us.2

A class is simply a package.
A package serves as a class by using the package’s subroutines to execute the
class’s methods, and by using the package’s variables to hold the class’s
global data. Often, a module is used to hold one or more classes.

A method is simply a subroutine.
You just declare subroutines in the package you’re using as the class; these
will then be used as the class’s methods. Method invocation, a new way to

1. Now there’s an example of software reuse for you!

2. We prefer linguistic vigor over mathematical rigor. Either you will agree or you won’t.

Perl’s Object System | 417

www.it-ebooks.info

http://www.it-ebooks.info/

call subroutines, passes an extra argument: the object or package used for
invoking the method.

Method Invocation
If you were to boil down all of object-oriented programming into one quintessen-
tial notion, it would be abstraction. It’s the single underlying theme you’ll find
running through all those 10-dollar words that OO enthusiasts like to bandy
about, like polymorphism and inheritance and encapsulation. We believe in
those fancy words, but we’ll address them from the practical viewpoint of what
it means to invoke methods. Methods lie at the heart of the object system because
they provide the abstraction layer needed to implement all these fancy terms.
Instead of directly accessing a piece of data sitting in an object, you invoke an
instance method. Instead of directly calling a subroutine in some package, you
invoke a class method. By interposing this level of indirection between class use
and class implementation, the program designer remains free to tinker with the
internal workings of the class, with little risk of breaking programs that use it.

Perl supports two different syntactic forms for invoking methods. One uses a
familiar style you’ve already seen elsewhere in Perl, and the second is a form you
may recognize from other programming languages. No matter which form of
method invocation is used, the subroutine constituting the method is always
passed an extra initial argument. If a class is used to invoke the method, that
argument will be the name of the class. If an object is used to invoke the method,
that argument will be the reference to the object. Whichever it is, we’ll call it the
method’s invocant. For a class method, the invocant is the name of a package. For
an instance method, the invocant is a reference that specifies an object.

In other words, the invocant is whatever the method was invoked with. Some OO
literature calls this the method’s agent or its actor. Grammatically, the invocant
is neither the subject of the action nor the receiver of that action. It’s more like
an indirect object, the beneficiary on whose behalf the action is performed—just
like the word “me” in the command, “Forge me a sword!” Semantically, you can
think of the invocant as either an invoker or an invokee, whichever fits better
into your mental apparatus. We’re not going to tell you how to think. (Well, not
about that.)

Most methods are invoked explicitly, but methods may also be invoked implicitly
when triggered by object destructors, overloaded operators, or tied variables.
Properly speaking, these are not regular subroutine calls, but rather method in-
vocations automatically triggered by Perl on behalf of an object. Destructors are

418 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

described later in this chapter, overloading is described in Chapter 13, and ties
are described in Chapter 14.

One difference between methods and regular subroutines is when their packages
are resolved—that is, how early (or late) Perl decides which code should be ex-
ecuted for the method or subroutine. A subroutine’s package is resolved during
compilation, before your program begins to run.3 In contrast, a method’s package
isn’t resolved until it is actually invoked. (Prototypes are checked at compile time,
which is why regular subroutines can use them but methods can’t.)

The reason a method’s package can’t be resolved earlier is relatively straightfor-
ward: the package is determined by the class of the invocant, and the invocant
isn’t known until the method is actually invoked. At the heart of OO is this simple
chain of logic: once the invocant is known, the invocant’s class is known, and
once the class is known, the class’s inheritance is known, and once the class’s
inheritance is known, the actual subroutine to call is known.

The logic of abstraction comes at a price. Because of the late resolution of meth-
ods, an object-oriented solution in Perl is likely to run slower than the corre-
sponding non-OO solution. For some of the fancier techniques described later,
it could be a lot slower. However, many common problems are solved not by
working faster, but by working smarter. That’s where OO shines.

Method Invocation Using the Arrow Operator
We mentioned that there are two styles of method invocation. The first style for
invoking a method looks like this:

INVOCANT–>METHOD(LIST)
INVOCANT–>METHOD

For obvious reasons, this style is usually called the arrow form of invocation. (Do
not confuse –> with =>, the “double-barrelled” arrow used as a fancy comma.)
Parentheses are required if there are any arguments. When executed, the invo-
cation first locates the subroutine determined jointly by the class of the INVO
CANT and the METHOD name, and then calls that subroutine, passing INVOCANT as its
first argument.

When INVOCANT is a reference, we say that METHOD is invoked as an instance method;
when INVOCANT is a package name, we say that METHOD is invoked as a class method.

3. More precisely, the subroutine call is resolved down to a particular typeglob, a reference to which is stuffed
into the compiled opcode tree. The meaning of that typeglob is negotiable even at runtime—this is how
AUTOLOAD can autoload a subroutine for you. Normally, however, the meaning of the typeglob is also resolved
at compile time by the definition of an appropriately named subroutine.

Method Invocation | 419

www.it-ebooks.info

http://www.it-ebooks.info/

There really is no difference between the two, other than that the package name
is more obviously associated with the class itself than with the objects of the class.
You’ll have to take our word for it that the objects also know their class. We’ll
tell you in a bit how to associate an object with a class name, but you can use
objects without knowing that.

For example, to construct an object using the class method summon and then invoke
the instance method speak on the resulting object, you might say this:

$mage = Wizard–>summon("Gandalf"); # class method
$mage–>speak("friend"); # instance method

The summon and speak methods are defined by the Wizard class—or one of the
classes from which it inherits. But you shouldn’t worry about that. Do not meddle
in the affairs of Wizards.

Since the arrow operator is left associative (see Chapter 3), you can even combine
the two statements into one:

Wizard–>summon("Gandalf")–>speak("friend");

Sometimes you want to invoke a method without knowing its name ahead of time.
You can use the arrow form of method invocation and replace the method name
with a simple scalar variable:

$method = "summon";
$mage = Wizard–>$method("Gandalf"); # Invoke Wizard–>summon

$travel = $companion eq "Shadowfax" ? "ride" : "walk";
$mage–>$travel("seven leagues"); # Invoke $mage–>ride or $mage–>walk

Although you’re using the name of the method to invoke it indirectly, this usage
is not forbidden by use strict 'refs', since all method calls are in fact looked
up symbolically at the time they’re resolved.

In our example, we stored the name of a subroutine in $travel, but you could
also store a subroutine reference. This bypasses the method lookup algorithm,
but sometimes that’s exactly what you want to do. See both the section “Private
Methods” on page 440 and the discussion of the can method in the section
“UNIVERSAL: The Ultimate Ancestor Class” on page 435. To create a reference
to a particular method being called on a particular instance, see the section
“Closures” on page 355 in Chapter 8.

420 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Method Invocation Using Indirect Objects
The second style of method invocation looks like this:

METHOD INVOCANT (LIST)
METHOD INVOCANT LIST
METHOD INVOCANT

The parentheses around LIST are optional; if omitted, the method acts as a list
operator. So you can have statements like the following, all of which use this style
of method call. Notice the lack of a semicolon after the class name or instance:

no feature "switch"; # for given forgiveness (see below)
$mage = summon Wizard "Gandalf";
$nemesis = summon Balrog home => "Moria", weapon => "whip";
move $nemesis "bridge";
speak $mage "You cannot pass";
break $staff; # safer to use: break $staff ();

The list operator syntax should be familiar to you; it’s the same style used for
passing filehandles to print or printf:

print STDERR "help!!!\n";

It’s also similar to English sentences like “Give Gollum the Preciousss”, so we call
it the indirect object form. The invocant is expected in the indirect object slot. When
you read about passing a built-in function like system or exec something in its
“indirect object slot”, this means that you’re supplying this extra, comma-less
argument in the same place you would when you invoke a method using the
indirect object syntax.

The indirect object form even permits you to specify the INVOCANT as a BLOCK that
evaluates to an object (reference) or class (package). This lets you combine those
two invocations into one statement this way:

speak { summon Wizard "Gandalf" } "friend";

Syntactic Snafus with Indirect Objects
One syntax will often be more readable than the other. The indirect object syntax
is less cluttered but suffers from several forms of syntactic ambiguity. The first
is that the LIST part of an indirect object invocation is parsed the same as any
other list operator. Thus, the parentheses of:

enchant $sword ($pips + 2) * $cost;

are assumed to surround all the arguments, regardless of what comes afterward.
It would therefore be equivalent to this:

($sword–>enchant($pips + 2)) * $cost;

Method Invocation | 421

www.it-ebooks.info

http://www.it-ebooks.info/

That’s unlikely to do what you want: enchant is only being called with $pips +
2, and the method’s return value is then multiplied by $cost. As with other list
operators, you must also be careful of the precedence of && and || versus and and
or—if you disdain parentheses.

For example, this:

name $sword $oldname || "Glamdring"; # can’t use "or" here!

becomes the intended:

$sword–>name($oldname || "Glamdring");

but this:

speak $mage "friend" && enter(); # should’ve been "and" here!

becomes the dubious:

$mage–>speak("friend" && enter());

which could be fixed by rewriting into one of these equivalent forms:

enter() if $mage–>speak("friend");
$mage–>speak("friend") && enter();
speak $mage "friend" and enter();

The second syntactic infelicity of the indirect object form is that its INVOCANT is
limited to a name, an unsubscripted scalar variable, or a block.4 As soon as the
parser sees one of these, it has its INVOCANT, so it starts looking for its LIST. So
these invocations:

move $party–>{LEADER}; # probably wrong!
move $riders[$i]; # probably wrong!

actually parse as these:

$party–>move–>{LEADER};
$riders–>move([$i]);

rather than what you probably wanted:

$party–>{LEADER}–>move;
$riders[$i]–>move;

The parser only looks a little ways ahead to find the invocant for an indirect object,
not even as far as it would look for a unary operator. This oddity does not arise
with the first notation, so you might wish to stick with the arrow as your weapon
of choice.

4. Attentive readers will recall that this is precisely the same list of syntactic items that are allowed after a
funny character to indicate a variable dereference—for example, @ary, @$aryref, or @{$aryref}.

422 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Even English has a similar issue here. Think about the command, “Throw your
cat out the window a toy mouse to play with.” If you parse that sentence too
quickly, you’ll end up throwing the cat, not the mouse (unless you notice that
the cat is already out the window). Like Perl, English has two different syntaxes
for expressing the agent: “Throw your cat the mouse” and “Throw the mouse to
your cat.” Sometimes the longer form is clearer and more natural, and sometimes
the shorter one is. At least in Perl you’re required to use braces around any com-
plicated indirect object.

Package-Quoted Classes
The final syntactic ambiguity with the indirect object style of method invocation
is that it may not be parsed as a method call at all, because the current package
may have a subroutine of the same name as the method. When using a class
method with a literal package name as the invocant, there is a way to resolve this
ambiguity while still keeping the indirect object syntax: package-quote the class-
name by appending a double colon to it.

$obj = method CLASS::; # forced to be "CLASS"–>method

This is important because the commonly seen notation:

$obj = new CLASS; # might not parse as method

will not always behave properly if the current package has a subroutine named
new or CLASS. Even if you studiously use the arrow form instead of the indirect
object form to invoke methods, this can, on rare occasion, still be a problem. At
the cost of extra punctuation noise, the CLASS:: notation guarantees how Perl
will parse your method invocation. The first two examples below do not always
parse the same way, but the second two do:

$obj = new ElvenRing; # could be new("ElvenRing")
 # or even new(ElvenRing())
$obj = ElvenRing–>new; # could be ElvenRing()–>new()

$obj = new ElvenRing::; # always "ElvenRing"–>new()
$obj = ElvenRing::–>new; # always "ElvenRing"–>new()

This package-quoting notation can be made prettier with some creative align-
ment:

$obj = new ElvenRing::
 name => "Narya",
 owner => "Gandalf",
 domain => "fire",
 stone => "ruby";

Method Invocation | 423

www.it-ebooks.info

http://www.it-ebooks.info/

Still, you may say, “Oh, ugh!” at that double colon, so we’ll tell you that you can
almost always get away with a bare class name, provided two things are true.
First, there is no subroutine of the same name as the class. (If you follow the
convention that subroutine names like new start lowercase and class names like
ElvenRing start uppercase, this is never a problem.) Second, the class has been
loaded with one of:

use ElvenRing;
require ElvenRing;

Either of these declarations ensures that Perl knows ElvenRing is a module name,
which forces any bare name like new before the class name ElvenRing to be inter-
preted as a method call, even if you happen to have declared a new subroutine of
your own in the current package. People don’t generally get into trouble with
indirect objects unless they start cramming multiple classes into the same file, in
which case Perl might not know that a particular package name was supposed
to be a class name. People who name subroutines with names that look like
ModuleNames also come to grief eventually.

This is (almost) what happened to us where we said:

no feature "switch";

Assuming you’d used the recommended use v5.14 or so, anything v5.10 or over
pulls in break as a keyword to help with the given construct. We turned off the
“switch” feature because otherwise the compiler thinks that break might be a
keyword. Adding the parentheses at the end doesn’t even help here, even though
that’s what you normally do—or should do—to make method calls safe using
this syntax. The compiler doesn’t actually know what to make of it, but it isn’t
letting it slide.

Object Construction
All objects are references, but not all references are objects. A reference won’t work
as an object unless its referent is specially marked to tell Perl to what package it
belongs. The act of marking a referent with a package name—and, therefore, its
class, since a class is just a package—is known as blessing. You can think of the
blessing as turning a reference into an object, although it’s more accurate to say
that it turns the reference into an object reference.

The bless function takes either one or two arguments. The first argument is a
reference and the second is the package to bless the referent into. If the second
argument is omitted, the current package is used.

424 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

$obj = { }; # Get reference to anonymous hash.
bless($obj); # Bless hash into current package.
bless($obj, "Critter"); # Bless hash into class Critter.

Here we’ve used a reference to an anonymous hash, which is what people usually
use as the data structure for their objects. Hashes are extremely flexible, after all.
But allow us to emphasize that you can bless a reference to anything you can
make a reference to in Perl, including scalars, arrays, subroutines, and typeglobs.
You can even bless a reference to a package’s symbol table hash if you can think
of a good reason to. (Or even if you can’t.) Object orientation in Perl is completely
orthogonal to data structure.

Once the referent has been blessed, calling the built-in ref function on its refer-
ence returns the name of the blessed class instead of the built-in type, such as
HASH. If you want the built-in type, use the reftype function from the
attributes module. See the section “attributes” on page 1002 in Chapter 29.

And that’s how to make an object. Just take a reference to something, give it a
class by blessing it into a package, and you’re done. That’s all there is to it if
you’re designing a minimal class. If you’re using a class, there’s even less to it,
because the author of a class will have hidden the bless inside a method called
a constructor, which creates and returns instances of the class. Because bless re-
turns its first argument, a typical constructor can be as simple as this:

package Critter;
sub spawn { bless {} }

Or, spelled out slightly more explicitly:

package Critter;
sub spawn {
 my $self = {}; # Reference to an empty anonymous hash
 bless $self, "Critter"; # Make that hash a Critter object
 return $self; # Return the freshly generated Critter
}

With that definition in hand, here’s how one might create a Critter object:

$pet = Critter–>spawn;

Inheritable Constructors
Like all methods, a constructor is just a subroutine, but we don’t call it as a sub-
routine. We always invoke it as a method—a class method, in this particular
case, because the invocant is a package name. Method invocations differ from
regular subroutine calls in two ways. First, they get the extra argument we dis-
cussed earlier. Second, they obey inheritance, allowing one class to use another’s
methods.

Object Construction | 425

www.it-ebooks.info

http://www.it-ebooks.info/

We’ll describe the underlying mechanics of inheritance more rigorously in the
next section, but, for now, some simple examples of its effects should help you
design your constructors. For instance, suppose we have a Spider class that in-
herits methods from the Critter class. In particular, suppose the Spider class
doesn’t have its own spawn method. The correspondences shown in Table 12-1
apply:

Table 12-1. Mapping methods to subroutines

Method Call Resulting Subroutine Call

Critter–>spawn() Critter::spawn("Critter")

Spider–>spawn() Critter::spawn("Spider")

The subroutine called is the same in both cases, but the argument differs. Note
that our spawn constructor above completely ignored its argument, which means
our Spider object was incorrectly blessed into class Critter. A better constructor
would provide the package name (passed in as the first argument) to bless:

sub spawn {
 my $class = shift; # Store the package name
 my $self = { };
 bless($self, $class); # Bless the reference into that package
 return $self;
}

Now you could use the same subroutine for both these cases:

$vermin = Critter–>spawn;
$shelob = Spider–>spawn;

And each object would be of the proper class. This even works indirectly, as in:

$type = "Spider";
$shelob = $type–>spawn; # same as "Spider"–>spawn

That’s still a class method, not an instance method, because its invocant holds a
string and not a reference.

If $type were an object instead of a class name, the previous constructor definition
wouldn’t have worked because bless needs a class name. But, for many classes,
it makes sense to use an existing object as the template from which to create
another. In these cases, you can design your constructors so that they work with
either objects or class names:

sub spawn {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant; # Object or class name
 my $self = { };

426 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

 bless($self, $class);
 return $self;
}

Initializers
Most objects maintain internal information that is indirectly manipulated by the
object’s methods. All our constructors so far have created empty hashes, but
there’s no reason to leave them empty. For instance, we could have the con-
structor accept extra arguments to store into the hash as key/value pairs. The
OO literature often refers to such data as properties, attributes, accessors, accessor
method, member data, instance data, or instance variables. The section “Instance
Variables”, later in this chapter, discusses attributes in more detail.

Imagine a Horse class with instance attributes like “name” and “color”:

$steed = Horse–>new(name => "Shadowfax", color => "white");

If the object is implemented as a hash reference, the key/value pairs can be inter-
polated directly into the hash once the invocant is removed from the argument
list:

sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $self = { @_ }; # Remaining args become attributes
 bless($self, $class); # Bestow objecthood
 return $self;
}

This time we used a method named new for the class’s constructor, which just
might lull C++ programmers into thinking they know what’s going on. But Perl
doesn’t consider “new” to be anything special; you may name your constructors
whatever you like. Any method that happens to create and return an object is a
de facto constructor. In general, we recommend that you name your constructors
whatever makes sense in the context of the problem you’re solving. For example,
constructors in the Tk module are named after the widgets they create. In the
DBI module, a constructor named connect returns a database handle object, and
another constructor named prepare is invoked as an instance method and returns
a statement handle object. But if there is no suitable context-specific constructor
name, new is perhaps not a terrible choice. Then again, maybe it’s not such a bad
thing to pick a random name to force people to read the interface contract
(meaning the class documentation) before they use its constructors.

Elaborating further, you can set up your constructor with default key/value pairs,
which the user could later override by supplying them as arguments:

Object Construction | 427

www.it-ebooks.info

http://www.it-ebooks.info/

sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $self = {
 color => "bay",
 legs => 4,
 owner => undef,
 @_, # Override previous attributes
 };
 return bless $self, $class;
}

$ed = Horse–>new; # A 4–legged bay horse
$stallion = Horse–>new(color => "black"); # A 4–legged black horse

This Horse constructor ignores its invocant’s existing attributes when used as an
instance method. You could create a second constructor designed to be called as
an instance method, and, if designed properly, you could use the values from the
invoking object as defaults for the new one:

$steed = Horse–>new(color => "dun");
$foal = $steed–>clone(owner => "EquuGen Guild, Ltd.");

sub clone {
 my $model = shift;
 my $self = $model–>new(%$model, @_);
 return $self; # Previously blessed by –>new
}

(You could also have rolled this functionality directly into new, but then the name
wouldn’t quite fit the function.)

Notice how even in the clone constructor we don’t hardcode the name of the
Horse class. We have the original object invoke its own new method, whatever that
may be. If we had written that as Horse–>new instead of $model–>new, then the
class wouldn’t have facilitated inheritance by a Zebra or Unicorn class. You
wouldn’t want to clone Pegasus and suddenly find yourself with a horse of a
different color.

Sometimes, however, you have the opposite problem: rather than trying to share
one constructor among several classes, you’re trying to have several constructors
share one class’s object. This happens whenever a constructor wants to call a
base class’s constructor to do part of the construction work. Perl doesn’t do
hierarchical construction for you. That is, Perl does not automatically call the
constructors (or the destructors) for any base classes of the class requested, so
your constructor will have to do that itself and then add any additional attributes
the derived class needs. So the situation is not unlike the clone routine, except
that instead of copying an existing object into the new object, you want to call

428 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

your base class’s constructor and then transmogrify the new base object into your
new derived object.

Class Inheritance
As with the rest of Perl’s object system, inheritance of one class by another requires
no special syntax to be added to the language. When you invoke a method for
which Perl finds no subroutine in the invocant’s package, that package’s @ISA
array5 is examined. This is how Perl implements inheritance: each element of a
given package’s @ISA array holds the name of another package, which is searched
when methods are missing. For example, the following makes the Horse class a
subclass of the Critter class. (We declare @ISA with our because it has to be a
package variable, not a lexical declared with my.)

package Horse;
our @ISA = "Critter";

You might see this with the parent pragma, which handles @ISA for you and loads
the parent class at the same time:

package Horse;
use parent qw(Critter);

The parent pragma replaces the older base pragma, which did the same thing but
threw in some fields magic if it thought the superclasses used them. If you don’t
know what that is, don’t worry about it (just use parent):

package Horse;
use base qw(Critter).

You should now be able to use a Horse class or object everywhere that a Critter
was previously used. If your new class passes this empty subclass test, you know
that Critter is a proper base class, fit for inheritance.

Suppose you have a Horse object in $steed and invoke a move method on it:

$steed–>move(10);

Because $steed is a Horse, Perl’s first choice for that method is the Horse::move
subroutine. If there isn’t one, instead of raising a runtime exception, Perl consults
the first element of @Horse::ISA, which directs it to look in the Critter package
for Critter::move. If this subroutine isn’t found either, and Critter has its own
@Critter::ISA array, then that too will be consulted for the name of an ancestral
package that might supply a move method, and so on, back up the inheritance
hierarchy until we come to a package without an @ISA.

5. Pronounced “is a”, as in “A horse is a critter.”

Class Inheritance | 429

www.it-ebooks.info

http://www.it-ebooks.info/

The situation we just described is single inheritance, where each class has only
one parent. Such inheritance is like a linked list of related packages. Perl also
supports multiple inheritance; just add more packages to the class’s @ISA. This kind
of inheritance works more like a tree data structure, because every package can
have more than one immediate parent. Some people find this to be sexier.

When you invoke a method methname on an invocant of type classname, Perl tries
six different ways to find a subroutine to use:

1. First, Perl looks in the invocant’s own package for a subroutine named class
name::methname. If that fails, inheritance kicks in, and we go to step 2.

2. Next, Perl checks for methods inherited from base classes by looking in all
parent packages listed in @classname::ISA for a parent::methname subroutine.
The search is left to right, recursive, and depth-first. The recursion assures
that grandparent classes, great-grandparent classes, great-great-grandparent
classes, and so on, are all searched.

3. If that fails, Perl looks for a subroutine named UNIVERSAL::methname.

4. At this point, Perl gives up on methname and starts looking for an AUTOLOAD.
First, it looks for a subroutine named classname::AUTOLOAD.

5. Failing that, Perl searches all parent packages listed in @classname::ISA for
any parent::AUTOLOAD subroutine. The search is again left to right, recursive,
and depth-first.

6. Finally, Perl looks for a subroutine named UNIVERSAL::AUTOLOAD.

Perl stops after the first successful attempt and invokes that subroutine. If no
subroutine is found, an exception is raised, one that you’ll see frequently:

Can't locate object method "methname" via package "classname"

If you’ve built a debugging version of Perl using the –DDEBUGGING option to your
C compiler, by using Perl’s –Do switch, you can watch it go through each of these
steps when it resolves method invocation.

We will discuss the inheritance mechanism in more detail as we go along.

Inheritance Through @ISA
If @ISA contains more than one package name, the packages are all searched in
left-to-right order by default. The search is depth-first, so if you have a Mule class
set up for inheritance this way:

package Mule;
our @ISA = ("Horse", "Donkey");

430 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Perl looks for any methods missing from Mule first in Horse (and any of its ances-
tors, like Critter) before going on to search through Donkey and its ancestors.

If a missing method is found in a base class, Perl internally caches that location
in the current class for efficiency, so the next time it has to find the method, it
doesn’t have to look as far. Changing @ISA or defining new methods invalidates
the cache and causes Perl to perform the lookup again.

When Perl searches for a method, it makes sure that you haven’t created a circular
inheritance hierarchy. This could happen if two classes inherit from one another,
even indirectly through other classes. Trying to be your own great-grandfather
is too paradoxical even for Perl, so the attempt raises an exception. However,
Perl does not consider it an error to inherit from more than one class sharing a
common ancestry, which is rather like cousins marrying. Your inheritance hier-
archy just stops looking like a tree and starts to look like a directed acyclic graph.
This doesn’t bother Perl—so long as the graph really is acyclic.

When you set @ISA, the assignment normally happens at runtime, so unless you
take precautions, code in BEGIN, CHECK, UNITCHECK, or INIT blocks won’t be able to
use the inheritance hierarchy. One precaution (or convenience) is the parent
pragma, which lets you require classes and add them to @ISA at compile time.
Here’s how you might use it:

package Mule;
use parent ("Horse", "Donkey"); # declare superclasses

This is a shorthand for:

package Mule;
BEGIN {
 our @ISA = ("Horse", "Donkey");
 require Horse;
 require Donkey;
}

Sometimes folks are surprised that including a class in @ISA doesn’t require the
appropriate module for you. That’s because Perl’s class system is largely orthog-
onal to its module system. One file can hold many classes (since they’re just
packages), and one package may be mentioned in many files. But in the most
common situation, where one package and one class and one module and one
file all end up being pretty interchangeable if you squint enough, the parent
pragma offers a declarative syntax that establishes inheritance and loads in mod-
ule files. It’s one of those convenient diagonals we keep mentioning.

See the descriptions of use parent in Chapter 29 for further details. Also see the
older base pragma, which performs extra fields magic (which has fallen out of
favor with Perl programmers).

Class Inheritance | 431

www.it-ebooks.info

http://www.it-ebooks.info/

Alternate Method Searching
With multiple inheritance, the default traversal of @INC to find the right method
might not work for you, because a method in a far away superclass might hide a
better method in a closer superclass. Consider the inheritance shown in Fig-
ure 12-1, where Mule inherits from two classes, Donkey and Horse, which both
inherit from Equine. The Equine has a color method, which Donkey inherits.
Horse provides its own color, though. Using the default traversal, you don’t know
which color you’ll get unless you know the order of the parent classes:

use parent qw(Horse Donkey); # finds Horse::Color first
use parent qw(Donkey Horse); # finds Equine::Color first

Figure 12-1. Multiple inheritance graph

As of v5.10, the traversal is configurable. In fancy terms, this is the method reso-
lution order, which you select with the mro pragma (see Chapter 29):

package Mule;
use mro 'c3';
use parent qw(Donkey Horse);

The C3 algorithm traverses @INC so it finds inherited methods that are closer in
the inheritance graph. Said another way, that means that no superclass will be
searched before one of its subclasses. Perl will not look in Equine before it looks
in Horse.

432 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

If your Perl does not support the mro pragma, you might be able to use the
MRO::Compat CPAN module.

Accessing Overridden Methods
When a class defines a method, that subroutine overrides methods of the same
name in any base classes. You have the Mule object (which is derived from class
Horse and class Donkey), and you decide to invoke your object’s breed method.
Although the parent classes have their own breed methods, the designer of the
Mule class overrode those by supplying the Mule class with its own breed method.
That means the following cross is unlikely to be productive:

$stallion = Horse–>new(gender => "male");
$molly = Mule–>new(gender => "female");
$colt = $molly–>breed($stallion);

Now, suppose that through the miracle of genetic engineering, you find some way
around a mule’s notorious sterility problem, so you want to skip over the non-
viable Mule::breed method. You could call your method as an ordinary subrou-
tine, being sure to pass the invocant explicitly:

$colt = Horse::breed($molly, $stallion);

However, this sidesteps inheritance, which is nearly always the wrong thing to do.
It’s perfectly imaginable that no Horse::breed subroutine exists because both
Horses and Donkeys derive that behavior from a common parent class called
Equine. If, on the other hand, you want to specify that Perl should start searching
for a method in a particular class, just use ordinary method invocation but qualify
the method name with the class:

$colt = $molly–>Horse::breed($stallion);

Occasionally, you’ll want a method in a derived class to act as a wrapper around
some method in a base class. The method in the derived class can itself invoke
the method in the base class, adding its own actions before or after that invoca-
tion. You could use the notation just demonstrated to specify at which class to
start the search. But in most cases of overridden methods, you don’t want to have
to know or specify which parent class’s overridden method to execute.

That’s where the SUPER pseudoclass comes in handy. It lets you invoke an over-
ridden base class method without having to specify which class defined that

Class Inheritance | 433

www.it-ebooks.info

http://www.it-ebooks.info/

method.6 The following subroutine looks in the current package’s @ISA without
making you specify particular classes:

package Mule;
our @ISA = qw(Horse Donkey);
sub kick {
 my $self = shift;
 print "The mule kicks!\n";
 $self–>SUPER::kick(@_);
}

The SUPER pseudopackage is meaningful only when used inside a method. Al-
though the implementer of a class can employ SUPER in her own code, someone
who merely uses a class’s objects cannot.

If you are using C3 method resolution order, then instead of SUPER::METHNAME you
use next::method, which is loaded by the use mro "c3" pragma. Unlike with
SUPER, with next::method, you don’t specify the method name because it figures
it out for you:

use v5.14;
package Mule;
use mro 'c3';
use parent qw(Horse Donkey);
sub kick {
 my $self = shift;
 say "The mule kicks!";
 $self–>next::method(@_);
}

Every bit of code in Perl knows what its current package is, as determined by the
last package statement. A SUPER method looks only in the @ISA of the current
package from when the call to SUPER was compiled. It doesn’t care about the class
of the invocant, nor about the package of the subroutine that was called. This
can cause problems if you try to define methods in another class by merely playing
tricks with the method name:

package Bird;
use Dragonfly;
sub Dragonfly::divebomb { shift–>SUPER::divebomb(@_) }

Unfortunately, this invokes Bird’s superclass, not Dragonfly’s. To do what you’re
trying to do, you need to explicitly switch into the appropriate package for the
compilation of SUPER as well:

6. This is not to be confused with the mechanism mentioned in Chapter 11 for overriding Perl’s built-in
functions, which aren’t object methods and so aren’t overridden by inheritance. You call overridden built-
ins via the CORE pseudopackage, not the SUPER pseudopackage.

434 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

package Bird;
use Dragonfly;
{
 package Dragonfly;
 sub divebomb { shift–>SUPER::divebomb(@_) }
}

The next::method has a similar problems because it uses the package of its
caller to figure out what class to look at. If you define a method in Donkey from
another package, next::method will break:

package main;
*Donkey::sound = sub { (shift)–>next::method(@_) };

The anonymous subroutine shows up in the stack with as _ _ANON_ _, so
next::method doesn’t know which package it is in. You can use the Sub::Name
CPAN module to make it work out, though:

use Sub::Name qw(subname);
*Donkey::sound =
 subname 'Donkey::sound' => sub { (shift)–>next::method(@_) };

As these examples illustrate, you don’t need to edit a module file just to add
methods to an existing class. Since a class is just a package, and a method just a
subroutine, all you have to do is define a function in that package as we’ve done
here, and the class suddenly has a new method. No inheritance required. Only
the package matters, and since packages are global, any package can be accessed
from anywhere in the program. (Did we mention we’re going to install a jacuzzi
in your living room next week?)

UNIVERSAL: The Ultimate Ancestor Class
If no method definition with the right name is found after searching the invocant’s
class and all its ancestor classes recursively, one more check for a method of that
name is made in the special predefined class called UNIVERSAL. This package never
appears in an @ISA, but it is always consulted when an @ISA check fails. You can
think of UNIVERSAL as the ultimate ancestor from which all classes implicitly derive,
making it work like class Object does in Java or class object in Python’s new-style
classes.

The following predefined methods are available in class UNIVERSAL, and thus in
all classes. These all work regardless of whether they are invoked as class methods
or object methods.

INVOCANT–>isa(CLASS)

The isa method returns true if INVOCANT’s class is CLASS or any class inher-
iting from CLASS. Instead of a package name, CLASS may also be one of the

Class Inheritance | 435

www.it-ebooks.info

http://www.it-ebooks.info/

built-in types, such as “HASH” or “ARRAY”. (Checking for an exact type does
not bode well for encapsulation or polymorphism, though. You should be
relying on method dispatch to give you the right method.)

use IO::Handle;
if (IO::Handle–>isa("Exporter")) {
 print "IO::Handle is an Exporter.\n";
}

$fh = IO::Handle–>new();
if ($fh–>isa("IO::Handle")) {
 print "\$fh is some sort of IOish object.\n";
}
if ($fh–>isa("GLOB")) {
 print "\$fh is really a GLOB reference.\n";
}

INVOCANT–>DOES(ROLE)

Perl v5.10 added the idea of roles, a way that a class can include external
methods without necessarily inheriting them, as isa requires. A role specifies
a set of behavior but doesn’t care how a class does it. It might inherit the
methods, mock them, delegate them, or something else.

By default, DOES is identical to isa, and you can use DOES instead of isa in all
cases. If your class does something fancy to include methods without in-
heritance, though, you’d want to define DOES to return the right answer.

Roles are a Perl 6 thing, and the truth is that Perl 5 doesn’t do anything at all
with them. The UNIVERSAL DOES method exists so cooperating classes could,
were they so included, build something where DOES matters. Perl itself doesn’t
pay any attention to it at all.

INVOCANT–>can(METHOD)

The can method returns a reference to the subroutine that would be called
if METHOD were applied to INVOCANT. If no such subroutine is found, can returns
undef.

if ($invocant–>can("copy")) {
 print "Our invocant can copy.\n";
}

This could be used to conditionally invoke a method only if one exists:

$obj–>snarl if $obj–>can("snarl");

Under multiple inheritance, this allows a method to invoke all overridden
base class methods, not just the leftmost one:

436 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

sub snarl {
 my $self = shift;
 print "Snarling: @_\n";
 my %seen;
 for my $parent (@ISA) {
 if (my $code = $parent–>can("snarl")) {
 $self–>$code(@_) unless $seen{$code}++;
 }
 }
}

We use the %seen hash to keep track of which subroutines we’ve already
called, so we can avoid calling the same subroutine more than once. This
could happen if several parent classes shared a common ancestor.

Methods that would trigger an AUTOLOAD (described in the next section) will
not be accurately reported unless the package has declared (but not defined)
the subroutines it wishes to have autoloaded.

If you are using the mro pragma, you probably want the next::can method
instead of this one.

INVOCANT–>VERSION(NEED)

The VERSION method returns the version number of INVOCANT’s class, as stored
in the package’s $VERSION variable. If the NEED argument is provided, it verifies
that the current version isn’t less than NEED and raises an exception if it is.
This is the method that use invokes to determine whether a module is suf-
ficiently recent.

use Thread 1.0; # calls Thread–>VERSION(1.0)
print "Running version ", Thread–>VERSION, " of Thread.\n";

You may supply your own VERSION method to override the method in UNI
VERSAL. However, this will cause any classes derived from your class to use
the overridden method, too. If you don’t want that to happen, you should
design your method to delegate other classes’ version requests back up to
UNIVERSAL.

The methods in UNIVERSAL are built-in Perl subroutines, which you may call if
you fully qualify them and pass two arguments, as in UNIVERSAL::isa($formobj,
"HASH"). However, this bypasses some sanity checking since $formobj could be
any value, not just a reference. You might trap that in eval:

eval { UNIVERSAL::isa($formobj, "HASH") }

This is not recommended, though, because can usually has the answer you’re
really looking for:

eval { UNIVERSAL::can($formobj, $method) }

Class Inheritance | 437

www.it-ebooks.info

http://www.it-ebooks.info/

But, if you’re worried about $formobj being an object and want to wrap it in an
eval, you might as well use it as an object anyway since the answer is the same
(you can’t call that method on $formobj):

eval { $formobj–>can($method) }

You’re free to add your own methods to class UNIVERSAL. (You should be careful,
of course; you could really mess someone up who is expecting not to find the
method name you’re defining, perhaps so that he can autoload it from some-
where else.) Here we create a copy method that objects of all classes can use if
they’ve not defined their own. We fail spectacularly if invoked on a class instead
of an object:

use Data::Dumper;
use Carp;
sub UNIVERSAL::copy {
 my $self = shift;
 if (ref $self) {
 return eval Dumper($self); # no CODE refs
 } else {
 confess "UNIVERSAL::copy can't copy class $self";
 }
}

This Data::Dumper strategy doesn’t work if the object contains any references to
subroutines, because they cannot be properly reproduced. Even if the source
were available, the lexical bindings would be lost.

Method Autoloading
Normally, when you call an undefined subroutine in a package that defines an
AUTOLOAD subroutine, the AUTOLOAD subroutine is called in lieu of raising an ex-
ception (see the section “Autoloading” on page 397 in Chapter 10). With methods,
this works a little differently. If the regular method search (through the class, its
ancestors, and finally UNIVERSAL) fails to find a match, the same sequence is run
again, this time looking for an AUTOLOAD subroutine. If found, this subroutine is
called as a method, with the package’s $AUTOLOAD variable set to the fully qualified
name of the subroutine on whose behalf AUTOLOAD was called.

You need to be a bit cautious when autoloading methods. First, the AUTOLOAD
subroutine should return immediately if it’s being called on behalf of a method
named DESTROY, unless your goal was to simulate DESTROY, which has a special
meaning to Perl (see the section “Instance Destructors” on page 440 later in this
chapter).

438 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

sub AUTOLOAD {
 return if our $AUTOLOAD =~ /::DESTROY$/;
 ...
}

Second, if the class is providing an AUTOLOAD safety net, you won’t be able to use
UNIVERSAL::can on a method name to check whether it’s safe to invoke. You have
to check for AUTOLOAD separately:

if ($obj–>can("methname") || $obj–>can("AUTOLOAD")) {
 $obj–>methname();
}

Finally, under multiple inheritance, if a class inherits from two or more classes—
each of which has an AUTOLOAD—only the leftmost will ever be triggered, since
Perl stops as soon as it finds the first AUTOLOAD.

The last two quirks are easily circumvented by declaring the subroutines in the
package whose AUTOLOAD is supposed to manage those methods. You can do this
either with individual declarations:

package Goblin;
sub kick;
sub bite;
sub scratch;

or with the subs pragma, which is more convenient if you have many methods to
declare:

package Goblin;
use subs qw(kick bite scratch);

Even though you’ve only declared these subroutines and not defined them, this
is enough for the system to think they’re real. They show up in a UNIVER
SAL::can check, and, more importantly, they show up in step 2 of the search for
a method, which will never progress to step 3, let alone step 4.

“But, but,” you exclaim, “they invoke AUTOLOAD, don’t they?” Well, yes, they do
eventually, but the mechanism is different. Having found the method stub via
step 2, Perl tries to call it. When it is discovered that the method isn’t all it was
cracked up to be, the AUTOLOAD method search kicks in again. But, this time, it
starts its search in the class containing the stub, which restricts the method search
to that class and its ancestors (and UNIVERSAL). That’s how Perl finds the correct
AUTOLOAD to run and knows to ignore AUTOLOADs from the wrong part of the original
inheritance tree.

Class Inheritance | 439

www.it-ebooks.info

http://www.it-ebooks.info/

Private Methods
There is one way to invoke a method so that Perl ignores inheritance altogether.
If instead of a literal method name you specify a simple scalar variable containing
a reference to a subroutine, then the subroutine is called immediately. In the
description of UNIVERSAL–>can in the previous section, the last example invokes
all overridden methods using the subroutine’s reference, not its name.

An intriguing aspect of this behavior is that it can be used to implement private
method calls. If you put your class in a module, you can make use of the file’s
lexical scope for privacy. First, store an anonymous subroutine in a file-scoped
lexical:

declare private method
my $secret_door = sub {
 my $self = shift;
 ...
};

Later on in the file you can use that variable as though it held a method name.
The closure will be called directly, without regard to inheritance. As with any
other method, the invocant is passed as an extra argument.

sub knock {
 my $self = shift;
 if ($self–>{knocked}++ > 5) {
 $self–>$secret_door();
 }
}

This enables the file’s own subroutines (the class methods) to invoke a method
that code outside that lexical scope cannot access.

Instance Destructors
As with any other referent in Perl, when the last reference to an object goes away,
its memory is implicitly recycled. With an object, you have the opportunity to
capture control just as this is about to happen by defining a DESTROY subroutine
in the class’s package. This method is triggered automatically at the appropriate
moment, with the about-to-be-recycled object as its only argument.

Destructors are rarely needed in Perl because memory management is handled
automatically for you. Some objects, though, may have state outside the memory
system that you’d like to attend to, such as filehandles or database connections.

package MailNotify;
sub DESTROY {
 my $self = shift;

440 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

 my $fh = $self–>{mailhandle};
 my $id = $self–>{name};
 print $fh "\n$id is signing off at " . localtime() . "\n";
 close $fh; # close pipe to mailer
}

Just as Perl uses only a single method to construct an object, even when the
constructor’s class inherits from one or more other classes, Perl also uses only
one DESTROY method per object destroyed regardless of inheritance. In other
words, Perl does not do hierarchical destruction for you. If your class overrides
a superclass’s destructor, then your DESTROY method may need to invoke the
DESTROY method for any applicable base classes:

sub DESTROY {
 my $self = shift;
 # check for an overridden destructor...
 $self–>SUPER::DESTROY if $self–>can("SUPER::DESTROY");
 # now do your own thing before or after
}

This only applies to inherited classes; an object that is simply contained within
the current object—as, for example, one value in a larger hash—will be freed
and destroyed automatically. This is one reason why containership via mere ag-
gregation (sometimes called a “has-a” relationship) is often cleaner and clearer
than inheritance (an “is-a” relationship). In other words, often you really need
to store only one object inside another directly, instead of through inheritance,
which can add unnecessary complexity. Sometimes when users reach for multi-
ple inheritance, single inheritance will suffice.

Explicitly calling DESTROY is possible but seldom needed. It might even be harmful
since running the destructor more than once on the same object could prove
unpleasant.

Garbage Collection with DESTROY Methods
As described in the section “Garbage Collection, Circular References, and Weak
References” on page 362 in Chapter 8, a variable that refers to itself (or multiple
variables that refer to one another indirectly) will not be freed until the program
(or embedded interpreter) is about to exit. If you want to reclaim the memory
any earlier, you usually have to explicitly break the reference or weaken it using
the Scalar::Util module.

With objects, an alternative solution is to create a container class that holds a
pointer to the self-referential data structure. Define a DESTROY method for the
containing object’s class that manually breaks the circularities in the self-refer-

Instance Destructors | 441

www.it-ebooks.info

http://www.it-ebooks.info/

ential structure. You can find an example of this in Recipe 13.13, “Coping with
Circular Data Structures Using Weak References” of Perl Cookbook.

When an interpreter shuts down, all its objects are destroyed, which is important
for multithreaded or embedded Perl applications. Objects are always destroyed
in a separate pass before ordinary references. This is to prevent DESTROY methods
from using references that have themselves been destroyed. (And also because
plain references are only garbage collected in embedded interpreters, since exit-
ing a process is a very fast way of reclaiming references. But exiting won’t run the
object destructors, so Perl does that first.)

Managing Instance Data
Most classes create objects that are essentially just data structures with several
internal data fields (instance variables), plus methods to manipulate them.

Perl classes inherit methods, not data, but as long as all access to the object is
through method calls anyway, this works out fine. If you want data inheritance,
you have to effect it through method inheritance. By and large, this is not a ne-
cessity in Perl, because most classes store the attributes of their object in an
anonymous hash. The object’s instance data is contained within this hash, which
serves as its own little namespace to be carved up by whatever classes do some-
thing with the object. For example, if you want an object called $city to have a
data field named elevation, you can simply access $city–>{elevation}. No dec-
larations are necessary. But method wrappers have their uses.

Suppose you want to implement a Person object. You decide to have a data field
called “name”, which by a strange coincidence you’ll store under the key name in
the anonymous hash that will serve as the object. But you don’t want users
touching the data directly. To reap the rewards of encapsulation, users need
methods to access that instance variable without lifting the veil of abstraction.

For example, you might make a pair of accessor methods:

sub get_name {
 my $self = shift;
 return $self–>{name};
}

sub set_name {
 my $self = shift;
 $self–>{name} = shift;
}

which leads to code like this:

442 | Chapter 12: Objects

www.it-ebooks.info

http://my.safaribooksonline.com/0-596-00313-7/perlckbk2-CHP-11-SECT-15
http://my.safaribooksonline.com/0-596-00313-7/perlckbk2-CHP-11-SECT-15
http://my.safaribooksonline.com/book/programming/perl/0596003137
http://www.it-ebooks.info/

$him = Person–>new();
$him–>set_name("Frodo");
$him–>set_name(ucfirst($him–>get_name));

You could even combine both methods into one:

sub name {
 my $self = shift;
 if (@_) { $self–>{name} = shift }
 return $self–>{name};
}

which would then lead to code like this:

$him = Person–>new();
$him–>name("Frodo");
$him–>name(ucfirst($him–>name));

The advantage of writing a separate function for each instance variable (which
for our Person class might be name, age, height, and so on) is that it is direct,
obvious, and flexible. The drawback is that every time you want a new class, you
end up defining one or two nearly identical methods per instance variable. This
isn’t too bad for the first few, and you’re certainly welcome to do it that way if
you’d like. But when convenience is preferred over flexibility, you might prefer
one of the techniques described in the following sections.

Note that we will be varying the implementation, not the interface. If users of
your class respect the encapsulation, you’ll be able to transparently swap one
implementation for another without the users noticing. (Family members in your
inheritance tree using your class for a subclass or superclass might not be so
forgiving, since they know you far better than strangers do.) If your users have
been peeking and poking into the private affairs of your class, the inevitable
disaster is their own fault and none of your concern. All you can do is live up to
your end of the contract by maintaining the interface. Trying to stop everyone
else in the world from ever doing something slightly wicked will take up all your
time and energy—and, in the end, fail anyway.

Dealing with family members is more challenging. If a subclass overrides a su-
perclass’s attribute accessor, should it access the same field in the hash or not?
An argument can be made either way, depending on the nature of the attribute.
For the sake of safety in the general case, each accessor can prefix the name of
the hash field with its own classname, so that subclass and superclass can both
have their own version. Several of the examples below, including the standard
Struct::Class module, use this subclass-safe strategy. You’ll see accessors resem-
bling this:

Managing Instance Data | 443

www.it-ebooks.info

http://www.it-ebooks.info/

sub name {
 my $self = shift;
 my $field = _ _PACKAGE_ _ . "::name";
 if (@_) { $self–>{$field} = shift }
 return $self–>{$field};
}

In each of the following examples, we create a simple Person class with fields name,
race, and aliases, each with an identical interface but a completely different
implementation. We’re not going to tell you which one we like the best, because
we like them all the best, depending on the occasion. And tastes differ. Some
folks prefer stewed conies; others prefer fissssh.

Generating Accessors with Autoloading
As we mentioned earlier, when you invoke a nonexistent method, Perl has two
different ways to look for an AUTOLOAD method, depending on whether you de-
clared a stub method. You can use this property to provide access to the object’s
instance data without writing a separate function for each instance. Inside the
AUTOLOAD routine, the name of the method actually invoked can be retrieved from
the $AUTOLOAD variable. Consider the following code:

use Person;
$him = Person–>new;
$him–>name("Aragorn");
$him–>race("Man");
$him–>aliases(["Strider", "Estel", "Elessar"]);
printf "%s is of the race of %s.\n", $him–>name, $him–>race;
print "His aliases are: ", join(", ", @{$him–>aliases}), ".\n";

As before, this version of the Person class implements a data structure with three
fields: name, race, and aliases:

package Person;
use Carp;

my %Fields = (
 "Person::name" => "unnamed",
 "Person::race" => "unknown",
 "Person::aliases" => [],
);

The next declaration guarantees we get our own autoloader.
use subs qw(name race aliases);

sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $self = { %Fields, @_ }; # clone like Class::Struct

444 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

 bless $self, $class;
 return $self;
}

sub AUTOLOAD {
 my $self = shift;
 # only handle instance methods, not class methods
 croak "$self not an object" unless ref($invocant);
 my $name = our $AUTOLOAD;
 return if $name =~ /::DESTROY$/;
 unless (exists $self–>{$name}) {
 croak "Can't access '$name' field in $self";
 }
 if (@_) { return $self–>{$name} = shift }
 else { return $self–>{$name} }
}

As you see, there are no methods named name, race, or aliases anywhere to be
found. The AUTOLOAD routine takes care of all that. When someone uses $him–
>name("Aragorn"), the AUTOLOAD subroutine is called with $AUTOLOAD set to “Per
son::name”. Conveniently, by leaving it fully qualified, it’s in exactly the right form
for accessing fields of the object hash. That way, if you use this class as part of a
larger class hierarchy, you don’t conflict with uses of the same name in other
classes.

Generating Accessors with Closures
Most accessor methods do essentially the same thing: they simply fetch or store
a value from that instance variable. In Perl, the most natural way to create a family
of near-duplicate functions is looping around a closure. But closures are anony-
mous functions lacking names, and methods need to be named subroutines in
the class’s package symbol table so that they can be called by name. This is no
problem—just assign the closure reference to a typeglob of the appropriate name.

package Person;

sub new {
 my $invocant = shift;
 my $self = bless({}, ref $invocant || $invocant);
 $self–>init();
 return $self;
}

sub init {
 my $self = shift;
 $self–>name("unnamed");
 $self–>race("unknown");
 $self–>aliases([]);

Managing Instance Data | 445

www.it-ebooks.info

http://www.it-ebooks.info/

}

for my $field (qw(name race aliases)) {
 my $slot = _ _PACKAGE_ _ . "::$field";
 no strict "refs"; # So symbolic ref to typeglob works.
 *$slot = sub {
 my $self = shift;
 $self–>{$field} = shift if @_;
 return $self–>{$field};
 };
}

Closures are the cleanest hand-rolled way to create a multitude of accessor meth-
ods for your instance data. It’s efficient for both the computer and you. Not only
do all the accessors share the same bit of code (they only need their own lexical
pads), but later if you decide to add another attribute, the changes required are
minimal: just add one more word to the for loop’s list, and perhaps something
to the init method.

Using Closures for Private Objects
So far, these techniques for managing instance data have offered no mechanism
for “protection” from external access. Anyone outside the class can open up the
object’s black box and poke about inside—if she doesn't mind voiding the war-
ranty. Enforced privacy tends to get in the way of people trying to get their jobs
done. Perl’s philosophy is that it’s better to encapsulate one’s data with a sign
that says:

IN CASE OF FIRE
 BREAK GLASS

You should respect such encapsulation when possible, but still have easy access
to the contents in an emergency situation, like for debugging.

But if you do want to enforce privacy, Perl isn’t about to get in your way. Perl offers
low-level building blocks that you can use to surround your class and its objects
with an impenetrable privacy shield—one stronger, in fact, than that found in
many popular object-oriented languages. Lexical scopes and the lexical variables
inside them are the key components here, and closures play a pivotal role.

In the earlier section “Private Methods” on page 440, we saw how a class can use
closures to implement methods that are invisible outside the module file. Later,
we’ll look at accessor methods that regulate class data that are so private not even
the rest of the class has unrestricted access. Those are still fairly traditional uses
of closures. The truly interesting approach is to use a closure as the very object
itself. The object’s instance variables are locked up inside a scope to which the

446 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

object alone—that is, the closure—has free access. This is a very strong form of
encapsulation; not only is it proof against external tampering, even other
methods in the same class must use the proper access methods to get at the object’s
instance data.

Here’s an example of how this might work. We’ll use closures both for the objects
themselves and for the generated accessors:

package Person;
sub new {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $data = {
 NAME => "unnamed",
 RACE => "unknown",
 ALIASES => [],
 };
 my $self = sub {
 my $field = shift;
 #############################
 ### ACCESS CHECKS GO HERE ###
 #############################
 if (@_) { $data–>{$field} = shift }
 return $data–>{$field};
 };
 bless($self, $class);
 return $self;
}
generate method names
for my $field (qw(name race aliases)) {
 no strict "refs"; # for access to the symbol table
 *$field = sub {
 my $self = shift;
 return $self–>(uc $field, @_);
 };
}

The object created and returned by the new method is no longer a hash, as it was
in other constructors we’ve looked at. It’s a closure with unique access to the
attribute data stored in the hash referred to by $data. Once the constructor call
is finished, the only access to $data (and hence to the attributes) is via the closure.

In a call like $him–>name("Bombadil")>, the invoking object stored in $self is the
closure that was blessed and returned by the constructor. There’s not a lot one
can do with a closure beyond calling it, so we do just that with $self–>(uc
$field, @_). Don’t be fooled by the arrow; this is just a regular indirect function
call, not a method invocation. The initial argument is the string “name”, and any

Managing Instance Data | 447

www.it-ebooks.info

http://www.it-ebooks.info/

remaining arguments are whatever else was passed in.7 Once we’re executing
inside the closure, the hash reference inside $data is again accessible. The closure
is then free to permit or deny access to whatever it pleases.

No one outside the closure object has unmediated access to this very private
instance data, not even other methods in the class. They could try to call the
closure the way the methods generated by the for loop do, perhaps setting an
instance variable the class never heard of. But this approach is easily blocked by
inserting various bits of code in the constructor where you see the comment about
access checks. First, we need a common preamble:

use Carp;
local $Carp::CarpLevel = 1; # Keeps croak messages short
my ($cpack, $cfile) = caller();

Now for each of the checks. The first one makes sure the specified attribute name
exists:

croak "No valid field '$field' in object"
 unless exists $data–>{$field};

This one allows access only by callers from the same file:

carp "Unmediated access denied to foreign file"
 unless $cfile eq _ _FILE_ _;

This one allows access only by callers from the same package:

carp "Unmediated access denied to foreign package ${cpack}::"
 unless $cpack eq _ _PACKAGE_ _;

And this one allows access only by callers whose classes inherit ours:

carp "Unmediated access denied to unfriendly class ${cpack}::"
 unless $cpack–>isa(_ _PACKAGE_ _);

All these checks block unmediated access only. Users of the class who politely use
the class’s designated methods are under no such restriction. Perl gives you the
tools to be just as persnickety as you want to be. Fortunately, not many people
want to be.

But some people ought to be. Persnickety is good when you’re writing flight-
control software. If you either want or ought to be one of those people, and you
prefer using working code over reinventing everything on your own, check out
Damian Conway’s Tie::SecureHash module on CPAN. It implements restricted
hashes with support for public, protected, and private persnicketations. It also
copes with the inheritance issues that we’ve ignored in the previous example.

7. Sure, the double-function call is slow, but if you wanted fast, would you really be using objects in the first
place?

448 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Damian has also written an even more ambitious module, Class::Contract, that
imposes a formal software engineering regimen over Perl’s flexible object system.
This module’s feature list reads like a checklist from a computer science profes-
sor’s software engineering textbook,8 including enforced encapsulation, static
inheritance, and design-by-contract condition checking for object-oriented Perl,
along with a declarative syntax for attribute, method, constructor, and destructor
definitions at both the object and class level, and preconditions, postconditions,
and class invariants. Whew!

New Tricks
As of v5.6, you can also declare a method to indicate that it returns an lvalue. This
is done with the lvalue subroutine attribute (not to be confused with object at-
tributes). This experimental feature allows you to treat the method as something
that would appear on the lefthand side of an equals sign:

package Critter;

sub new {
 my $class = shift;
 my $self = { pups => 0, @_ }; # Override default.
 bless $self, $class;
}

sub pups : lvalue { # We'll assign to pups() later.
 my $self = shift;
 $self–>{pups};
}

package main;
$varmint = Critter–>new(pups => 4);
$varmint–>pups *= 2; # Assign to $varmint–>pups!
$varmint–>pups =~ s/(.)/$1$1/; # Modify $varmint–>pups in place!
print $varmint–>pups; # Now we have 88 pups.

This lets you pretend $varmint–>pups is a variable while still obeying encapsula-
tion. See the section “The lvalue Attribute” on page 336 in Chapter 7.

If you’re running a threaded version of Perl and want to ensure that only one
thread can call a particular method on an object, you can use the locked and
method attributes to do that:

8. Can you guess what Damian’s job is? By the way, we highly recommend his book, Object Oriented Perl
(Manning).

Managing Instance Data | 449

www.it-ebooks.info

http://www.it-ebooks.info/

sub pups : locked method {
 ...
}

When any thread invokes the pups method on an object, Perl locks the object
before execution, preventing other threads from doing the same. See the section
“The method Attribute” on page 335 in Chapter 7.

Managing Class Data
We’ve looked at several approaches to accessing per-object data values. Some-
times, though, you want some common state shared by all objects of a class.
Instead of being an attribute of just one instance of the class, these variables are
global to the entire class, no matter which class instance (object) you use to access
them through. (C++ programmers would think of these as static member data.)
Here are some situations where class variables might come in handy:

• To keep a count of all objects ever created, or how many are still kicking
around.

• To keep a list of all objects over which you can iterate.

• To store the name or file descriptor of a log file used by a class-wide debugging
method.

• To keep collective data, like the total amount of cash dispensed by all ATMs
in a network in a given day.

• To track the last object created by a class, or the most accessed object.

• To keep a cache of in-memory objects that have already been reconstituted
from persistent memory.

• To provide an inverted lookup table so you can find an object based on the
value of one of its attributes.

The question comes down to deciding where to store the state for those shared
attributes. Perl has no particular syntactic mechanism to declare class attributes
any more than it has for instance attributes. Perl provides the developer with a
broad set of powerful but flexible features that can be uniquely crafted to the
particular demands of the situation. You can then select the mechanism that
makes the most sense for the given situation instead of having to live with some-
one else’s design decisions. Alternatively, you can live with the design decisions
someone else has packaged up and put onto CPAN. Again, TMTOWTDI.

Like anything else pertaining to a class, class data shouldn’t be accessed directly,
especially from outside the implementation of the class itself. It doesn’t say much
for encapsulation to set up carefully controlled accessor methods for instance

450 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

variables but then invite the public in to diddle your class variables directly,
such as by setting $SomeClass::Debug = 1. To establish a clear firewall between
interface and implementation, you can create accessor methods to manipulate
class data similar to those you use for instance data.

Imagine we want to keep track of the total world population of Critter objects.
We’ll store that number in a package variable, but provide a method called
population so that users of the class don’t have to know about the implementation.

Critter–>population() # Access via class name
$gollum–>population() # Access via instance

Since a class in Perl is just a package, the most natural place to store class data is
in a package variable. Here’s a simple implementation of such a class. The popu
lation method ignores its invocant and just returns the current value of the pack-
age variable, $Population. (Some programmers like to capitalize their globals.)

package Critter;
our $Population = 0;
sub population { return $Population }
sub DESTROY { $Population–– }
sub spawn {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 $Population++;
 return bless { name => shift || "anon" }, $class;
}
sub name {
 my $self = shift;
 $self–>{name} = shift if @_;
 return $self–>{name};
}

If you want to make class data methods that work like accessors for instance data,
do this:

our $Debugging = 0; # class datum
sub debug {
 shift; # intentionally ignore invocant
 $Debugging = shift if @_;
 return $Debugging;
}

Now you can set the overall debug level through the class or through any of its
instances.

Because it’s a package variable, $Debugging is globally accessible. But if you change
the our variable to my, then only code later in that same file can see it. You can go
still further—you can restrict unfettered access to class attributes even from the
rest of the class itself. Wrap the variable declaration in a block scope:

Managing Class Data | 451

www.it-ebooks.info

http://www.it-ebooks.info/

{
 my $Debugging = 0; # lexically scoped class datum
 sub debug {
 shift; # intentionally ignore invocant
 $Debugging = shift if @_;
 return $Debugging;
 }
}

Now, no one is allowed to read or write the class attributes without using the
accessor method, since only that subroutine is in the same scope as the variable
and has access to it.

If a derived class inherits these class accessors, then these still access the original
data, no matter whether the variables were declared with our or my. The data isn’t
package relative. You might look at it as methods executing in the class in which
they were originally defined, not in the class that invoked them.

For some kinds of class data, this approach works fine; for others, it doesn’t.
Suppose we create a Warg subclass of Critter. If we want to keep our populations
separate, Warg can’t inherit Critter’s population method because that method as
written always returns the value of $Critter::Population.

You’ll have to decide on a case-by-case basis whether it makes any sense for class
attributes to be package relative. If you want package-relative attributes, use the
invocant’s class to locate the package holding the class data:

sub debug {
 my $invocant = shift;
 my $class = ref($invocant) || $invocant;
 my $varname = $class . "::Debugging";
 no strict "refs"; # to access package data symbolically
 $$varname = shift if @_;
 return $$varname;
}

We temporarily rescind strict references because otherwise we couldn’t use the
fully qualified symbolic name for the package global. This is perfectly reasonable:
since all package variables by definition live in a package, there’s nothing wrong
with accessing them via that package’s symbol table.

Another approach is to make everything an object needs—even its global class
data—available via that object (or passed in as parameters). To do this, you’ll
often have to make a dedicated constructor for each class, or at least have a
dedicated initialization routine to be called by the constructor. In the constructor
or initializer, you store references to any class data directly in the object itself, so
nothing ever has to go looking for it. The accessor methods use the object to find
a reference to the data.

452 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

Rather than put the complexity of locating the class data in each method, just let
the object tell the method where the data is located. This approach only works
well when the class data accessor methods are invoked as instance methods,
because the class data could be in unreachable lexicals you couldn’t get at using
a package name.

No matter how you roll it, package-relative class data is always a bit awkward. It’s
really a lot cleaner if, when you inherit a class data accessor method, you effec-
tively inherit the state data that it’s accessing as well. See the perltoot manpage
for numerous, more elaborate approaches to creative management of class data.
You may have to hunt around for it, though.

The Moose in the Room
We’ve told you about Perl’s built-in object system, but there’s another object sys-
tem that Perl programmers like. The Moose module uses metaobject programming
to do a lot of fancy things for you. There’s a lot more to Moose than we can tell
you about in this book (and it really deserves its own book anyway), but here’s
a taste:

use v5.14;

package Stables 1.01 {
 use Moose;

 has "animals" => (
 traits => ["Array"],
 is => "rw",
 isa => "ArrayRef[Animal]",
 default => sub { [] },
 handles => {
 add_animal => "push",
 add_animals => "push",
 },
);

 sub roll_call {
 my($self) = @_;

 for my $animal ($self–>animals) {
 say "Some ", $animal–>type,
 " named ", $animal–>name,
 " is in the stable";
 }
 }

}

The Moose in the Room | 453

www.it-ebooks.info

http://perldoc.perl.org/perltoot.html
http://www.it-ebooks.info/

package Animal 1.01 {
 use Moose;

 has "name" => (
 is => "rw",
 isa => "Str",
 required => 1,
);

 has "type" => (
 is => "rw",
 isa => "Str",
 default => "animal",
);

}

my $stables = Stables–>new;

$stables–>add_animal(
 Animal–>new(name => "Mr. Ed", type => "horse")
);

$stables–>add_animals(
 Animal–>new(name => "Donkey", type => "donkey"),
 Animal–>new(name => "Lampwick", type => "donkey"),
 Animal–>new(name => "Trigger", type => "horse"),
);

$stables–>roll_call;

Moose does many things to simplify your life as a class designer. In the Stables
package, Moose provides features that would otherwise be boring work if you
had to implement them yourself. Calling has defines accessors with particular
properties.

default constructor with default arguments
There’s no explicit constructor in Stables or Animal. Moose takes care of all
that for you. If you need something special, you can still provide your own.
In Animal, the name attribute is required, but the type attribute has a default
value.

parameter checking
In the has animals line in Stables, the type of value is declared as an
ArrayRef that contains Animal objects. The default specifies what to do if
the constructor has no arguments (since required is 0). Moose will check that
anything you give to add_animals is an Animal object.

454 | Chapter 12: Objects

www.it-ebooks.info

http://www.it-ebooks.info/

traits
The traits key gives behavior to the accessor. Since the value is an array
reference, you’ll probably want to do array-like operations on it. The han
dles hash reference map the names that you want to use to the method names
the trait provides. The add_animal and add_animals methods dispatch to the
Array trait’s push.

This is just a simple example. Moose can do much more powerful and helpful
things. To learn more about Moose, start at its website.

Other modules provide Moose-like interfaces. The Mouse framework is a stripped
down version of Moose that aims to mitigate the performance issues by not in-
cluding features you probably don’t want. Moo is also a stripped down Moose
without XS prerequisites for easier deployment. The Mo framework is even smaller
than that.

Summary
That’s about all there is to it, except for everything else. Now you just need to go
off and buy a book about object-oriented design methodology and bang your
forehead with it for the next six months or so.

Summary | 455

www.it-ebooks.info

http://moose.perl.org
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 13

Overloading

Objects are cool, but sometimes they’re just a little too cool. Sometimes you would
rather they behaved a little less like objects and a little more like regular data
types. But there’s a problem: objects are referents represented by references, and
references aren’t terribly useful except as references. You can’t add references,
or print them, or (usefully) apply many of Perl’s built-in operators. The only thing
you can do is dereference them. So you find yourself writing many explicit
method invocations, like this:

print $object–>as_string;
$new_object = $subject–>add($object);

Such explicit dereferencing is in general a good thing; you should never confuse
your references with your referents, except when you want to confuse them. Now
would be one of those times. If you design your class with overloading, you can
pretend the references aren’t there and simply say:

print $object;
$new_object = $subject + $object;

When you overload one of Perl’s built-in operators, you define how it behaves
when it’s applied to objects of a particular class. A number of standard Perl
modules use overloading, such as Math::BigInt, which lets you create
Math::BigInt objects that behave just like regular integers but have no size limits.
You can add them with +, divide them with /, compare them with <=>, and print
them with print.

Note that overloading is not the same as autoloading, which is loading a missing
function or method on demand. Neither is it the same as overriding, which is
one function or method masking another. Overloading hides nothing; it adds
meaning to an operation that would have been nonsense on a mere reference.

457

www.it-ebooks.info

http://www.it-ebooks.info/

The overload Pragma
The overload pragma implements operator overloading. You provide it with a
key/value list of operators and their associated behaviors:

package MyClass;

use overload "+" => \&myadd, # coderef
 "<" => "less_than", # named method
 "abs" => sub { return @_ }; # anonymous subroutine

Now when you try to add two MyClass objects, the myadd subroutine will be called
to create the result.

When you try to compare two MyClass objects with the < operator, Perl notices
that the behavior is specified as a string and interprets the string as a method
name and not simply as a subroutine name. In the example above, the
less_than method might be supplied by the MyClass package itself or inherited
from a base class of MyClass, but the myadd subroutine must be supplied by the
current package. The anonymous subroutine for abs supplies itself even more
directly. However these routines are supplied, we’ll call them handlers.

For unary operators (those taking only one operand, like abs), the handler speci-
fied for the class is invoked whenever the operator is applied to an object of that
class.

For binary operators like + or <, the handler is invoked whenever the first operand
is an object of the class or when the second operand is an object of the class and
the first operand has no overloading behavior. That’s so you can say either:

$object + 6

or:

6 + $object

without having to worry about the order of operands. (In the second case, the
operands will be swapped when passed to the handler.) If our expression was:

$animal + $vegetable

and $animal and $vegetable were objects of different classes, both of which used
overloading, then the overloading behavior of $animal would be triggered. (We’ll
hope the animal likes vegetables.)

There is only one trinary (ternary) operator in Perl, ?:, and you can’t overload it.
Fortunately.

458 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

Overload Handlers
When an overloaded operator is, er, operated, the corresponding handler is in-
voked with three arguments. The first two arguments are the two operands. If
the operator only uses one operand, the second argument is undef.

The third argument indicates whether the first two arguments were swapped.
Even under the rules of normal arithmetic some operations, like addition or
multiplication, don’t usually care about the order of their arguments, but others,
like subtraction and division, do.1 Consider the difference between:

$object – 6

and:

6 – $object

If the first two arguments to a handler have been swapped, the third argument
will be true. Otherwise, the third argument will be false, in which case there is a
finer distinction as well: if the handler has been triggered by another handler
involving assignment (as in += using + to figure out how to add), then the third
argument is not merely false, but undef. This distinction enables some optimiza-
tions.

As an example, here is a class that lets you manipulate a bounded range of num-
bers. It overloads both + and – so that the result of adding or subtracting objects
constrains the values within the range 0 and 255:

package ClipByte;

 use overload "+" => \&clip_add,
 "–" => \&clip_sub;

 sub new {
 my $class = shift;
 my $value = shift;
 return bless \$value => $class;
 }

 sub clip_add {
 my ($x, $y) = @_;
 my ($value) = ref($x) ? $$x : $x;
 $value += ref($y) ? $$y : $y;
 $value = 255 if $value > 255;
 $value = 0 if $value < 0;

1. Your overloaded objects are not required to respect the rules of normal arithmetic, of course, but it’s usually
best not to surprise people. Oddly, many languages make the mistake of overloading + with string
concatenation, which is not commutative and only vaguely additive. For a different approach, see Perl.

Overload Handlers | 459

www.it-ebooks.info

http://www.it-ebooks.info/

 return bless \$value => ref($x);
 }

 sub clip_sub {
 my ($x, $y, $swap) = @_;
 my ($value) = (ref $x) ? $$x : $x;
 $value –= (ref $y) ? $$y : $y;
 if ($swap) { $value = –$value }
 $value = 255 if $value > 255;
 $value = 0 if $value < 0;
 return bless \$value => ref($x);
 }

 package main;

 $byte1 = ClipByte–>new(200);
 $byte2 = ClipByte–>new(100);

 $byte3 = $byte1 + $byte2; # 255
 $byte4 = $byte1 – $byte2; # 100
 $byte5 = 150 – $byte2; # 50

You’ll note that every function here is by necessity a constructor, so each one takes
care to bless its new object back into the current class, whatever that is; we assume
our class might be inherited. We also assume that if $y is a reference, it’s a reference
to an object of our own type. Instead of testing ref($y), we could have called $y–
>isa("ClipByte") if we wanted to be more thorough (and run slower).

Overloadable Operators
You can only overload certain operators, which are shown in Table 13-1. The
operators are also listed in the %overload::ops hash made available when you use
overload, though the categorization is a little different there.

Table 13-1. Overloadable operators

Category Operators

Conversion "" 0+ bool qr

Arithmetic + – * / % ** x . neg

Logical !

Bitwise & | ~ ^ ! << >>

Assignment += –= *= /= %= **= x= .= <<= >>= ++ ––

Comparison == < <= > >= != <=> lt le gt ge eq ne cmp

Mathematical atan2 cos sin exp abs log sqrt int

460 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

Category Operators

Iterative <>

Filetest –X

Dereference ${} @{} %{} &{} *{}

Matching ~~

Pseudo nomethod fallback =

Note that neg, bool, nomethod, and fallback are not actual Perl operators. The five
dereferencers, qr, "", and 0+ probably don’t seem like operators either. Neverthe-
less, they are all valid keys for the parameter list you provide to use overload.
This is not really a problem. We’ll let you in on a little secret: it’s a bit of a fib to
say that the overload pragma overloads operators. It overloads the underlying
operations, whether invoked explicitly via their “official” operators or implicitly
via some related operator. (The pseudo-operators we mentioned can only be
invoked implicitly.) In other words, overloading happens not at the syntactic
level, but at the semantic level. The point is not to look good. The point is to do
the right thing. Feel free to generalize.

Note also that = does not overload Perl’s assignment operator as you might expect.
That would not do the right thing. More on that later.

We’ll start by discussing the conversion operators, not because they’re the most
obvious (they aren’t), but because they’re the most useful. Many classes overload
nothing but stringification, specified by the "" key. (Yes, that really is two double
quotes in a row.)

Conversion operators: "", 0+, bool, qr
The first three keys let you provide behaviors for Perl’s automatic conversions
to strings, numbers, and Boolean values, respectively.

The fourth key is used whenever the object is interpolated into or used as a
regex, including when it appears as the right operand of an =~ or !~ operator.
The qr subroutine must return a compiled regex, or a ref to a compiled regex
such as the real qr returns, and any further overloading on the return value
will be ignored.

We say that stringification occurs when any nonstring variable is used as a
string. It’s what happens when you convert a variable into a string via print-
ing, interpolation, concatenation, or even by using it as a hash key. Stringi-
fication is also why you see something like SCALAR(0xba5fe0) when you try
to print an object.

Overloadable Operators | 461

www.it-ebooks.info

http://www.it-ebooks.info/

We say that numification (pronounced like mummification) occurs when a
nonnumeric variable is converted into a number in any numeric context,
such as any mathematical expression, array index, or even as an operand of
the .. range operator.

Finally, while nobody here quite has the nerve to call it boolification, you can
define how an object should be interpreted in a Boolean context (such as
if, unless, while, for, and, or, &&, ||, ?:, or the block of a grep expression)
by creating a bool handler.

Any of the three conversion operators can be autogenerated if you have any
one of them (we’ll explain autogeneration later). Your handlers can return
any value you like. Note that if the operation that triggered the conversion
is also overloaded, that overloading will occur immediately afterward.

Here’s a demonstration of "" that invokes an object’s as_string handler upon
stringification. Don’t forget to quote the quotes:

package Person;

use overload q("") => \&as_string;

sub new {
 my $class = shift;
 return bless { @_ } => $class;
}

sub as_string {
 my $self = shift;
 my ($key, $value, $result);
 while (($key, $value) = each %$self) {
 $result .= "$key => $value\n";
 }
 return $result;
}

$obj = Person–>new(height => 72, weight => 165, eyes => "brown");

print $obj;

Instead of something like Person=HASH(0xba1350), this prints (in hash order):

weight => 165
height => 72
eyes => brown

(We sincerely hope this person was not measured in kg and cm.)

Arithmetic operators: +, –, *, /, %, **, x, ., neg
These should all be familiar except for neg, which is a special overloading
key for the unary minus: the – in –123. The distinction between the neg and

462 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

– keys allows you to specify different behaviors for unary minus and binary
minus, more commonly known as subtraction.

If you overload – but not neg, and then try to use a unary minus, Perl will
emulate a neg handler for you. This is known as autogeneration, where certain
operators can be reasonably deduced from other operators (on the assump-
tion that the overloaded operators will have the same relationships as the
regular operators). Since unary minus can be expressed as a function of
binary minus (that is, –123 is equivalent to 0 – 123), Perl doesn’t force you to
overload neg when – will do. (Of course, if you’ve arbitrarily defined binary
minus to divide the second argument by the first, unary minus will be a fine
way to throw a divide-by-0 exception.)

Concatenation via the . operator can be autogenerated via the stringification
handler (see "" under “Conversion operators” above).

Logical operator: !
If a handler for ! is not specified, it can be autogenerated using the bool,
"", or 0+ handler. If you overload the ! operator, the not operator will also
trigger whatever behavior you requested. (Remember our little secret?)

You may be surprised at the absence of the other logical operators, but most
logical operators can’t be overloaded because they short circuit. They’re
really control-flow operators that need to be able to delay evaluation of some
of their arguments. That’s also the reason the ?: operator isn’t overloaded.

Bitwise operators: &, |, ~, ^, <<, >>
The ~ operator is a unary operator; all the others are binary. Here’s how we
could overload >> to do something like chop:

package ShiftString;

 use overload
 ">>" => \&right_shift,
 q("") => sub { ${ $_[0] } };

 sub new {
 my $class = shift;
 my $value = shift;
 return bless \$value => $class;
 }

 sub right_shift {
 my ($x, $y) = @_;
 my $value = $$x;
 substr($value, –$y) = "";
 return bless \$value => ref($x);
 }

Overloadable Operators | 463

www.it-ebooks.info

http://www.it-ebooks.info/

 $camel = ShiftString–>new("Camel");
 $ram = $camel >> 2;
 print $ram; # Cam

Assignment operators: +=, –=, *=, /=, %=, **=, x=, .=, <<=, >>=, ++, ––
These assignment operators might change the value of their arguments or
leave them as is. The result is assigned to the lefthand operand only if the
new value differs from the old one. This allows the same handler to be
used to overload both += and +. Although this is permitted, it is seldom
recommended, since by the semantics described later under “When an
Overload Handler Is Missing (nomethod and fallback)” on page 469, Perl
will invoke the handler for + anyway, assuming += hasn’t been overloaded
directly.

Concatenation (.=) can be autogenerated using stringification followed by
ordinary string concatenation. The ++ and –– operators can be autogenerated
from + and – (or += and –=).

Handlers implementing ++ and –– are expected to mutate (alter) their argu-
ments. If you wanted autodecrement to work on letters as well as numbers,
you could do that with a handler as follows:

package MagicDec;

 use overload
 q(––) => \&decrement,
 q("") => sub { ${ $_[0] } };

 sub new {
 my $class = shift;
 my $value = shift;
 bless \$value => $class;
 }

 sub decrement {
 my @string = reverse split(//, ${ $_[0] });
 my $i;
 for ($i = 0; $i< @string; $i++) {
 last unless $string[$i] =~ /a/i;
 $string[$i] = chr(ord($string[$i]) + 25);
 }
 $string[$i] = chr(ord($string[$i]) – 1);
 my $result = join("" => reverse @string);
 $_[0] = bless \$result => ref($_[0]);
 }

 package main;

 for $normal (qw/perl NZ Pa/) {

464 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

 $magic = MagicDec–>new($normal);
 $magic––;
 print "$normal goes to $magic\n";
 }

That prints out:

perl goes to perk
NZ goes to NY
Pa goes to Oz

exactly reversing Perl’s magical string autoincrement operator.

The ++$a operation can be autogenerated using $a += 1 or $a = $a + 1, and
$a–– using $a –= 1 or $a = $a – 1. However, this does not trigger the copying
behavior that a real ++ operator would. See the section “The Copy Con-
structor (=)” on page 468 later in this chapter.

Comparison operators: ==, <, <=, >, >=, !=, <=>, lt, le, gt, ge, eq, ne, cmp
If <=> is overloaded, it can be used to autogenerate behaviors for <, <=, >, >=,
==, and !=. Similarly, if cmp is overloaded, it can be used to autogenerate
behaviors for lt, le, gt, ge, eq, and ne.

Note that overloading cmp won’t let you sort objects as easily as you’d like,
because what will be compared are the stringified versions of the objects
instead of the objects themselves. If that was your goal, you’d want to over-
load "" as well.

Mathematical functions: atan2, cos, sin, exp, abs, log, sqrt, int
If abs is unavailable, it can be autogenerated from < or <=> combined with
either unary minus or subtraction.

An overloaded – can be used to autogenerate missing handlers for unary
minus or for the abs function, which may also be overloaded . (Yes, we know
that abs looks like a function, whereas unary minus looks like an operator,
but they aren’t all that different as far as Perl’s concerned.)

Traditionally, the Perl function int rounds toward 0 (see the int entry in
Chapter 27), and so for objects acting like floating-point types, one should
probably do the same thing to avoid surprising people.

Iterative operator: <>
The <> handler can be triggered by using either readline (when it reads from
a filehandle, as in while (<FH>)) or glob (when it is used for fileglobbing, as
in @files = <*.*>).

package LuckyDraw;

use overload
 "<>" => sub {

Overloadable Operators | 465

www.it-ebooks.info

http://www.it-ebooks.info/

 my $self = shift;
 return splice @$self, rand @$self, 1;
 };

sub new {
 my $class = shift;
 return bless [@_] => $class;
}

package main;

$lotto = new LuckyDraw 1 .. 51;

for (qw(1st 2nd 3rd 4th 5th 6th)) {
 $lucky_number = <$lotto>;
 print "The $_ lucky number is: $lucky_number.\n";
}

$lucky_number = <$lotto>;
print "\nAnd the bonus number is: $lucky_number.\n";

In California, this prints:

The 1st lucky number is: 18
The 2nd lucky number is: 11
The 3rd lucky number is: 40
The 4th lucky number is: 7
The 5th lucky number is: 51
The 6th lucky number is: 33

And the bonus number is: 5

File test operators
The key –X is used to specify a subroutine to handle all the filetest operators,
like –f, –x, and so on. See Table 3-4 in the section “Named Unary and File
Test Operators” on page 106 in Chapter 3.

It is not possible to overload any filetest operator individually. To distinguish
them, the letter following the – is passed as the second argument (that is, in
the slot that for binary operators is used to pass the second operand).

Calling an overloaded filetest operator does not affect the stat value associ-
ated with the special filehandle _. It still refers to the result of the last stat,
lstat, or unoverloaded filetest.

This overload was introduced in v5.12.

Dereference operators: ${}, @{}, %{}, &{}, *{}
Attempts to dereference scalar, array, hash, subroutine, and glob references
can be intercepted by overloading these five symbols.

466 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

The online Perl documentation for overload demonstrates how you can use
this operator to simulate your own pseudohashes. Here’s a simpler example
that implements an object as an anonymous array but permits hash refer-
encing. Don’t try to treat it as a real hash; you won’t be able to delete key/
value pairs from the object. If you want to combine array and hash notations,
use a real pseudohash (as it were).

package PsychoHash;

use overload "%{}" => \&as_hash;

sub as_hash {
 my ($x) = shift;
 return { @$x };
}

sub new {
 my $class = shift;
 return bless [@_] => $class;
}

$critter = new PsychoHash(height => 72, weight => 365, type => "camel");

print $critter–>{weight}; # prints 365

Also see Chapter 14 for a mechanism to let you redefine basic operations on
hashes, arrays, and scalars.

When overloading an operator, try not to create objects with references to
themselves. For instance:

use overload "+" => sub { bless [\$_[0], \$_[1]] };

This is asking for trouble because if you say $animal += $vegetable, the
result will make

$animal a reference to a blessed array reference whose first element is
$animal. This is a circular reference, which means that even if you destroy
$animal, its memory won’t be freed until your process (or interpreter) termi-
nates. See “Garbage Collection, Circular References, and Weak Refer-
ences” on page 362 in Chapter 8.

Smartmatching
The key ~~ allows you to override the smartmatching logic used by the ~~
operator and the given construct. See the section “Smartmatch Opera-
tor” on page 112 in Chapter 3 and “The given Statement” on page 133 in
Chapter 4.

Overloadable Operators | 467

www.it-ebooks.info

http://www.it-ebooks.info/

Unusually, the overloaded implementation of the smartmatch operator does
not get full control of the smartmatch behavior. In particular, in the follow-
ing code:

package Foo;
use overload "~~" => "match";

my $obj = Foo->new();
$obj ~~ [1,2,3];

the smartmatch does not invoke the method call like this:

$obj->match([1,2,3],0); # WRONG INVOCATION

but rather, the smartmatch distributive rule takes precedence, so $obj is
smartmatched against each array element in turn until a match is found, and
so you may therefore see between one and three of these calls instead:

$obj->match(1,0);
$obj->match(2,0);
$obj->match(3,0);

Consult Table 3-7 in Chapter 3 for details of when overloading is invoked on
the smartmatch operator.

The Copy Constructor (=)
Although it looks like a regular operator, = has a special and slightly subintuitive
meaning as an overload key. It does not overload the Perl assignment operator. It
can’t, because that operator has to be reserved for assigning references, or ev-
erything breaks.

The handler for = is used in situations where a mutator (such as ++, ––, or any of
the assignment operators) is applied to a reference that shares its object with
another reference. The = handler lets you intercept the mutator and copy the
object yourself so that the copy alone is mutated. Otherwise, you’d clobber the
original.

$copy = $original; # copies only the reference
++$copy; # changes underlying shared object

Now bear with us. Suppose that $original is a reference to an object. To make +
+$copy modify only $copy and not $original, a copy of $copy is first made, and
$copy is assigned a reference to this new object. This operation is not performed
until ++$copy is executed, so $copy coincides with $original before the increment
—but not afterward. In other words, it’s the ++ that recognizes the need for the
copy and calls out to your copy constructor.

468 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

The need for copying is recognized only by mutators such as ++ or +=, or by
nomethod, which is described later. If the operation is autogenerated via +, as in:

$copy = $original;
$copy = $copy + 1;

then no copying occurs because + doesn’t know it’s being used as a mutator.

If the copy constructor is required during the execution of some mutator, but a
handler for = was not specified, it can be autogenerated as a string copy provided
the object is a plain scalar and not something fancier.

For example, the code actually executed for the sequence:

$copy = $original;
...
++$copy;

might end up as something like this:

$copy = $original;
...
$copy = $copy–>clone(undef, "");
$copy–>incr(undef, "");

This assumes $original points to an overloaded object, ++ was overloaded with
\&incr, and = was overloaded with \&clone.

Similar behavior is triggered by $copy = $original++, which is interpreted as
$copy = $original; ++$original.

When an Overload Handler Is Missing (nomethod and fallback)
If you apply an unoverloaded operator to an object, Perl first tries to autogenerate
a behavior from other overloaded operators using the rules described earlier. If
that fails, Perl looks for an overloading behavior for nomethod and uses that if
available. That handler is to operators what an AUTOLOAD subroutine is to sub-
routines: it’s what you do when you can’t think of what else to do.

If used, the nomethod key should be followed by a reference to a handler that
accepts four arguments (not three as all the other handlers expect). The first three
arguments are no different than in any other handler; the fourth is a string cor-
responding to the operator whose handler is missing. This serves the same pur-
pose as the $AUTOLOAD variable does in AUTOLOAD subroutines.

If Perl has to look for a nomethod handler but can’t find one, an exception is raised.

When an Overload Handler Is Missing (nomethod and fallback) | 469

www.it-ebooks.info

http://www.it-ebooks.info/

If you want to prevent autogeneration from occurring, or you want a failed au-
togeneration attempt to result in no overloading at all, you can define the spe-
cial fallback overloading key. It has three useful states:

undef

If fallback is not set, or is explicitly set to undef, the sequence of overloading
events is unaffected: handlers are sought, autogeneration is attempted, and
finally the nomethod handler is invoked. If that fails, an exception is raised.

false

If fallback is set to a defined but false value (like 0), autogeneration is never
attempted. Perl will call the nomethod handler if one exists, but raise an ex-
ception otherwise.

true

This is nearly the same behavior as for undef, but no exception is raised if
an appropriate handler cannot be synthesized via autogeneration. Instead,
Perl reverts to following the unoverloaded behavior for that operator, as
though there were no use overload pragma in the class at all.

Overloading Constants
You can change how constants are interpreted by Perl with overload::constant,
which is most usefully placed in a package’s import method. (If you do this, you
should properly invoke overload::remove_constant in the package’s unimport
method so that the package can clean up after itself when you ask it to.)

Both overload::constant and overload::remove_constant expect a list of key/
value pairs. The keys should be any of integer, float, binary, q, and qr, and each
value should be the name of a subroutine, an anonymous subroutine, or a code
reference that will handle the constants.

sub import { overload::constant (integer => \&integer_handler,
 float => \&float_handler,
 binary => \&base_handler,
 q => \&string_handler,
 qr => \®ex_handler) }

Any handlers you provide for integer and float will be invoked whenever the
Perl tokener encounters a constant number. This is independent of the con
stant pragma; simple statements such as:

$year = cube(12) + 1; # integer
$pi = 3.14159265358979; # float

will trigger whatever handler you requested.

470 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

The binary key lets you intercept binary, octal, and hexadecimal constants. q
handles single-quoted strings (including strings introduced with q) and constant
substrings within qq- and qx-quoted strings and here documents. Finally, qr han-
dles constant pieces within regular expressions, as described at the end of Chap-
ter 5.

The handler will be passed three arguments. The first argument is the original
constant, in whatever form it was provided to Perl. The second argument is how
Perl actually interpreted the constant; for instance, 123_456 will appear as 123456.

The third argument is defined only for strings handled by the q and qr handlers,
and will be one of qq, q, s, or tr, depending on how the string is to be used. qq
means that the string is from an interpolated context, such as double quotes,
backticks, an m// match, or the pattern of an s/// substitution. q means that the
string is from an uninterpolated context, s means that the constant is a replace-
ment string in an s/// substitution, and tr means that it’s a component of a
tr/// or y/// expression.

The handler should return a scalar, which will be used in place of the constant.
Often, that scalar will be a reference to an overloaded object, but there’s nothing
preventing you from doing something more dastardly:

package DigitDoubler; # A module to be placed in DigitDoubler.pm
use overload;

sub import { overload::constant (integer => \&handler,
 float => \&handler) }

sub handler {
 my ($orig, $interp, $context) = @_;
 return $interp * 2; # double all constants
}

1;

Note that handler is shared by both keys, which works okay in this case. Now
when you say:

use DigitDoubler;

$trouble = 123; # trouble is now 246
$jeopardy = 3.21; # jeopardy is now 6.42

you redefine the world.

If you intercept string constants, it is recommended that you provide a concate-
nation operator (“.”) as well, since an interpolated expression like "ab$cd!!" is
merely a shortcut for the longer 'ab' . $cd . '!!'. Similarly, negative numbers

Overloading Constants | 471

www.it-ebooks.info

http://www.it-ebooks.info/

are considered negations of positive constants, so you should provide a handler
for neg when you intercept integers or floats. (We didn’t need to do that earlier
because we’re returning actual numbers, not overloaded object references.)

Note that overload::constant does not propagate into runtime compilation in-
side eval, which can be either a bug or a feature, depending on how you look at
it.

Public Overload Functions
As of the v5.6 release of Perl, the overload pragma provides the following functions
for public consumption.

overload::StrVal(OBJ)

This function returns the string value that OBJ would have in absence of
stringification overloading ("").

overload::Overloaded(OBJ)

This function returns a true value if OBJ is subject to any operator overload-
ing at all, and false otherwise.

overload::Method(OBJ, OPERATOR)

This function returns a reference to whatever code implements the over-
loading for OPERATOR when it operates on OBJ, or undef if no such overloading
exists.

Inheritance and Overloading
Inheritance interacts with overloading in two ways. The first occurs when a han-
dler is named as a string rather than provided as a code reference or anonymous
subroutine. When named as a string, the handler is interpreted as a method, and
can therefore be inherited from superclasses.

The second interaction between inheritance and overloading is that any class
derived from a overloaded class is itself subject to that overloading. In other
words, overloading is itself inherited. The set of handlers in a class is the union
of handlers of all that class’s ancestors, recursively. If a handler can be found in
several different ancestors, the handler actually used is governed by the usual
rules for method inheritance. For example, if class Alpha inherits from classes
Beta and Gamma, in that order, and class Beta overloads + with \&Beta::plus_sub,
but class Gamma overloads + with the string "plus_meth", then Beta::plus_sub will
be called when you try to apply + to an Alpha object.

472 | Chapter 13: Overloading

www.it-ebooks.info

http://www.it-ebooks.info/

Since the value of the fallback key is not a handler, its inheritance is not governed
by the rules given above. In the current implementation, the fallback value from
the first overloaded ancestor is used, but this is accidental and subject to change
without notice (well, without much notice).

Runtime Overloading
Since use statements are executed at compile time, the only way to change over-
loading during runtime is:

eval " use overload '+' => \&my_add ";

You can also say:

eval " no overload '+', '––', '<=' ";

although the use of these constructs during runtime is questionable.

Overloading Diagnostics
If your Perl was compiled with –DDEBUGGING, you can view diagnostic messages
for overloading when you run a program with the –Do switch or its equivalent.
You can also deduce which operations are overloaded using the m command of
Perl’s built-in debugger.

If you’re feeling overloaded now, maybe the next chapter will tie things back to-
gether for you.

Overloading Diagnostics | 473

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 14

Tied Variables

Some human endeavors require a disguise. Sometimes the intent is to deceive, but
more often the intent is to communicate something true at a deeper level. For
instance, many job interviewers expect you to dress up in a tie to indicate that
you’re seriously interested in fitting in, even though both of you know you’ll
never wear a tie on the job. It’s odd when you think about it: tying a piece of
cloth around your neck can magically get you a job. In Perl culture, the tie op-
erator plays a similar role: it lets you create a seemingly normal variable that,
behind the disguise, is actually a full-fledged Perl object that is expected to have
an interesting personality of its own. It’s just an odd bit of magic, like pulling
Bugs Bunny out of a hat.

Put another way, the funny characters $, @, %, or * in front of a variable name tell
Perl and its programmers a great deal—they each imply a particular set of
archetypal behaviors. You can warp those behaviors in various useful ways with
tie, by associating the variable with a class that implements a new set of behav-
iors. For instance, you can create a regular Perl hash, and then tie it to a class
that makes the hash into a database, so that when you read values from the hash,
Perl magically fetches data from an external database file, and when you set values
in the hash, Perl magically stores data in the external database file. In this case,
“magically” means “transparently doing something very complicated”. You
know the old saying: any technology sufficiently advanced is indistinguishable
from a Perl script. (Seriously, people who play with the guts of Perl use magic as
a technical term referring to any extra semantics attached to variables such as
%ENV or %SIG. Tied variables are just an extension of that.)

Perl already has built-in dbmopen and dbmclose functions that magically tie hash
variables to databases, but those functions date back to the days when Perl had
no tie. Now, tie provides a more general mechanism. In fact, Perl itself imple-
ments dbmopen and dbmclose in terms of tie.

475

www.it-ebooks.info

http://www.it-ebooks.info/

You can tie a scalar, array, hash, or filehandle (via its typeglob) to any class that
provides appropriately named methods to intercept and emulate normal accesses
to those variables. The first of those methods is invoked at the point of the tie
itself: tying a variable always invokes a constructor, which, if successful, returns
an object that Perl squirrels away where you don’t see it, down inside the “nor-
mal” variable. You can always retrieve that object later using the tied function
on the normal variable:

tie VARIABLE, CLASSNAME, LIST; # binds VARIABLE to CLASSNAME
$object = tied VARIABLE;

Those two lines are equivalent to:

$object = tie VARIABLE, CLASSNAME, LIST;

Once it’s tied, you treat the normal variable normally, but each access automati-
cally invokes methods on the underlying object; all the complexity of the class is
hidden behind those method invocations. If later you want to break the associ-
ation between the variable and the class, you can untie the variable:

untie VARIABLE;

You can almost think of tie as a funny kind of bless, except that it blesses a bare
variable instead of an object reference. It also can take extra parameters, just as
a constructor can—which is not terribly surprising, since it actually does invoke
a constructor internally, whose name depends on which type of variable you’re
tying: either TIESCALAR, TIEARRAY, TIEHASH, or TIEHANDLE.1 These constructors are
invoked as class methods with the specified CLASSNAME as their invocant, plus any
additional arguments you supplied in LIST. (The VARIABLE is not passed to the
constructor.)

These four constructors each return an object in the customary fashion. They
don’t really care whether they were invoked from tie, nor do any of the other
methods in the class, since you can always invoke them directly if you’d like. In
one sense, all the magic is in the tie, not in the class implementing the tie. It’s
just an ordinary class with funny method names, as far as the class is concerned.
(Indeed, some tied modules provide extra methods that aren’t visible through
the tied variable; these methods must be called explicitly as you would any other
object method. Such extra methods might provide services like file locking,
transaction protection, or anything else an instance method might do.)

1. Since the constructors have separate names, you could even provide a single class that implements all of
them. That would allow you to tie scalars, arrays, hashes, and filehandles all to the same class, although
this is not generally done, since it would make the other magical methods tricky to write.

476 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

So these constructors bless and return an object reference just as any other con-
structor would. That reference need not refer to the same type of variable as the
one being tied; it just has to be blessed, so that the tied variable can find its way
back to your class for succor. For instance, our long TIEARRAY example will use a
hash-based object, so it can conveniently hold additional information about the
array it’s emulating.

The tie function will not use or require a module for you—you must do that
yourself explicitly, if necessary, before calling the tie. (On the other hand, the
dbmopen function will, for backward compatibility, attempt to use one or another
DBM implementation. But you can preempt its selection with an explicit use,
provided the module you use is one of the modules in dbmopen’s list of modules
to try. See the online docs for the AnyDBM_File module for a fuller explanation.)

The methods called by a tied variable have predetermined names like FETCH and
STORE, since they’re invoked implicitly (that is, triggered by particular events) from
within the innards of Perl. These names are in ALLCAPS, a convention we often
follow for such implicitly called routines. (Other special names that follow this
convention include BEGIN, CHECK, UNITCHECK, INIT, END, DESTROY, and AUTOLOAD, not
to mention UNIVERSAL–>VERSION. In fact, nearly all of Perl’s predefined packages,
variables, and filehandles are in uppercase: STDIN, SUPER, CORE, CORE::GLOBAL,
DATA, @EXPORT, @INC, @ISA, @ARGV, and %ENV. Of course, built-in functions, opera-
tors, and pragmas go to the opposite extreme and have no capitals at all.)

The first thing we’ll cover is extremely simple: how to tie a scalar variable.

Tying Scalars
To implement a tied scalar, a class must define the following methods: TIESCA
LAR, FETCH, and STORE (and possibly UNTIE and DESTROY). When you tie a scalar
variable, Perl calls TIESCALAR. When you read the tied variable, it calls FETCH, and
when you assign a value to the variable, it calls STORE. If you’ve kept the object
returned by the initial tie (or if you retrieve it later using tied), you can access
the underlying object yourself—this does not trigger its FETCH or STORE methods.
As an object it’s not magical at all, but rather quite objective.

Perl calls UNTIE, if you’ve defined it, when it unties the variable. This gives you a
chance to do any bookkeeping or clean-up before the association disappears and
the variable is no longer special.

If a DESTROY method exists, Perl invokes it when the last reference to the tied object
disappears, just as for any other object. That happens when your program ends
or when you call untie, which eliminates the reference used by the tie. However,

Tying Scalars | 477

www.it-ebooks.info

http://www.it-ebooks.info/

untie doesn’t eliminate any outstanding references you might have stored else-
where; DESTROY is deferred until those references are gone, too.

The Tie::Scalar and Tie::StdScalar packages, both found in the standard
Tie::Scalar module, provide some simple base class definitions if you don’t want
to define all of these methods yourself. Tie::Scalar provides elemental methods
that do very little, and Tie::StdScalar provides methods that make a tied scalar
behave like a regular Perl scalar. (Which seems singularly useless, but sometimes
you just want a bit of a wrapper around the ordinary scalar semantics, for ex-
ample, to count the number of times a particular variable is set.)

Before we show you our elaborate example and complete description of all the
mechanics, here’s a taste just to whet your appetite—and to show you how easy
it really is. Here’s a complete program:

#!/usr/bin/perl
package Centsible;
sub TIESCALAR { bless \my $self, shift }
sub STORE { ${ $_[0] } = $_[1] } # do the default thing
sub FETCH { sprintf "%.02f", ${ my $self = shift } } # round value

package main;
tie $bucks, "Centsible";
$bucks = 45.00;
$bucks *= 1.0715; # tax
$bucks *= 1.0715; # and double tax!
print "That will be $bucks, please.\n";

When run, that program produces:

That will be 51.67, please.

To see the difference it makes, comment out the call to tie; then you’ll get:

That will be 51.66505125, please.

Admittedly, that’s more work than you’d normally go through to round numbers.

Scalar-Tying Methods
Now that you’ve seen a sample of what’s to come, let’s develop a more elaborate
scalar-tying class. Instead of using any canned package for the base class (espe-
cially since scalars are so simple), we’ll look at each of the four methods in turn,
building an example class named ScalarFile. Scalars tied to this class contain
regular strings, and each such variable is implicitly associated with a file where
that string is stored. (You might name your variables to remind you to which file
you’re referring.) Variables are tied to the class this way:

478 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

use ScalarFile; # load ScalarFile.pm
tie $camel, "ScalarFile", "/tmp/camel.lot";

Once the variable has been tied, its previous contents are clobbered, and the in-
ternal connection between the variable and its object overrides the variable’s
normal semantics. When you ask for the value of $camel, it now reads the contents
of /tmp/camel.lot, and when you assign a value to $camel, it writes the new contents
out to /tmp/camel.lot, obliterating any previous occupants.

The tie is on the variable, not the value, so the tied nature of a variable does not
propagate across assignment. For example, let’s say you copy a variable that’s
been tied:

$dromedary = $camel;

Instead of reading the value in the ordinary fashion from the $camel scalar vari-
able, Perl invokes the FETCH method on the associated underlying object. It’s as
though you’d written this:

$dromedary = (tied $camel)–>FETCH():

Or if you remember the object returned by tie, you could use that reference
directly, as in the following sample code:

$clot = tie $camel, "ScalarFile", "/tmp/camel.lot";
$dromedary = $camel; # through the implicit interface
$dromedary = $clot–>FETCH(); # same thing, but explicitly

If the class provides methods besides TIESCALAR, FETCH, STORE, and DESTROY, you
could use $clot to invoke them manually. However, one normally minds one’s
own business and leaves the underlying object alone, which is why you often see
the return value from tie ignored. You can still get at the object via tied if you
need it later (for example, if the class happens to document any extra methods
you need). Ignoring the returned object also eliminates certain kinds of errors,
which we’ll cover later.

Here’s the preamble of our class, which we will put into ScalarFile.pm:

package ScalarFile;
use Carp; # Propagate error messages nicely.
use strict; # Enforce some discipline on ourselves.
use warnings; # Turn on lexically scoped warnings.
use warnings::register; # Allow user to say "use warnings 'ScalarFile'".
my $count = 0; # Internal count of tied ScalarFiles.

The standard Carp module exports the carp, croak, and confess subroutines,
which we’ll use in the code later in this section. As usual, see the docs for more
about Carp.

The following methods are defined by the class.

Tying Scalars | 479

www.it-ebooks.info

http://www.it-ebooks.info/

CLASSNAME–>TIESCALAR(LIST)

The TIESCALAR method of the class is triggered whenever you tie a scalar
variable. The optional LIST contains any parameters needed to initialize the
object properly. (In our example, there is only one parameter: the name of
the file.) The method should return an object, but this doesn’t have to be a
reference to a scalar. In our example, though, it is:

sub TIESCALAR { # in ScalarFile.pm
 my $class = shift;
 my $filename = shift;
 $count++; # A file–scoped lexical, private to class
 return bless \$filename, $class;
}

Since there’s no scalar equivalent to the anonymous array and hash com-
posers, [] and {}, we merely bless a lexical variable’s referent, which effec-
tively becomes anonymous as soon as the name goes out of scope. This
works fine (you could do the same thing with arrays and hashes) as long as
the variable really is lexical. If you try this trick on a global, you might think
you’re getting away with it, until you try to create another camel.lot. Don’t
be tempted to write something like this:

sub TIESCALAR { bless \$_[1], $_[0] } # WRONG,
 # could refer to global.

A more robustly written constructor might check that the filename is acces-
sible. We check first to see whether the file is readable, since we don’t want
to clobber the existing value. (In other words, we shouldn’t assume the user
is going to write first. He might be treasuring his old Camel Lot file from a
previous run of the program.) If we can’t open or create the filename speci-
fied, we’ll indicate the error gently by returning undef and optionally print-
ing a warning via carp. (We could just croak instead—it’s a matter of taste
whether you prefer fish or frogs.) We’ll use the warnings pragma to deter-
mine whether the user is interested in our warning:

sub TIESCALAR { # in ScalarFile.pm
 my $class = shift;
 my $filename = shift;
 my $fh;
 if (–r –w $filename) {
 close $fh;
 $count++;
 return bless \$filename, $class;
 }
 carp "Can't tie $filename: $!" if warnings::enabled();
 return;
}

480 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

Given such a constructor, we can now associate the scalar $string with the
file camel.lot:

tie ($string, "ScalarFile", "camel.lot") || die;

(We’re still assuming some things we shouldn’t. In a production version of
this, we’d probably open the filehandle once and remember the filehandle
as well as the filename for the duration of the tie, keeping the handle exclu-
sively locked with flock the whole time. Otherwise, we’re open to race con-
ditions—see “Handling Timing Glitches” on page 661 in Chapter 20.)

SELF–>FETCH

This method is invoked whenever you access the tied variable (that is, read
its value). It takes no arguments beyond the object tied to the variable. In
our example, that object contains the filename.

sub FETCH {
 my $self = shift;
 confess "I am not a class method" unless ref $self;
 return unless open my $fh, $$self;
 read($fh, my $value, –s $fh); # NB: don't use –s on pipes!
 return $value;
 }

This time we’ve decided to blow up (raise an exception) if FETCH gets some-
thing other than a reference. (Either it was invoked as a class method, or
someone miscalled it as a subroutine.) There’s no other way for us to return
an error, so it’s probably the right thing to do. In fact, Perl would have raised
an exception in any event as soon as we tried to dereference $self; we’re just
being polite and using confess to spew a complete stack backtrace onto the
user’s screen. (If that can be considered polite.)

We can now see the contents of camel.lot when we say this:

tie($string, "ScalarFile", "camel.lot");
print $string;

SELF–>STORE(VALUE)

This method is run when the tied variable is set (assigned). The first argu-
ment, SELF, is as always the object associated with the variable; VALUE is
whatever was assigned to the variable. (We use the term “assigned” loosely
—any operation that modifies the variable can call STORE.)

sub STORE {
 my($self,$value) = @_;
 ref($self) || confess "not a class method";
 open(my $fh, ">", $$self) || croak "can't clobber $$self: $!";
 syswrite($fh, $value) == length $value
 || croak "can't write to $$self: $!";

Tying Scalars | 481

www.it-ebooks.info

http://www.it-ebooks.info/

 close($fh) || croak "can't close $$self: $!";
 return $value;
}

After “assigning” it, we return the new value—because that’s what assign-
ment does. If the assignment wasn’t successful, we croak out the error. Pos-
sible causes might be that we didn’t have permission to write to the associ-
ated file, or the disk filled up, or gremlins infested the disk controller. Some-
times you control the magic, and sometimes the magic controls you.

We can now write to camel.lot when we say this:

tie($string, "ScalarFile", "camel.lot");
$string = "Here is the first line of camel.lot\n";
$string .= "And here is another line, automatically appended.\n";

SELF–>UNTIE

This method is triggered by untie, and only by untie. In this example, there’s
not much use for it, so it just notes that it was called:

sub UNTIE {
 my $self = shift;
 confess "Untying!";
}

See the caution in “A Subtle Untying Trap” on page 510 later in this chapter.

SELF–>DESTROY

This method is triggered when the object associated with the tied variable is
about to be garbage collected, in case it needs to do something special to
clean up after itself. As with other classes, such a method is seldom neces-
sary, since Perl deallocates the moribund object’s memory for you auto-
matically. Here we’ll define a DESTROY method that decrements our count of
tied files:

sub DESTROY {
 my $self = shift;
 confess "This is not a class method!" unless ref $self;
 $count––;
}

We might then also supply an extra class method to retrieve the current
count. Actually, it doesn’t care whether it’s called as a class method or an
object method, but you don’t have an object anymore after the DESTROY, now
do you?

sub count {
 ### my $invocant = shift;
 $count;
}

482 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

You can call this as a class method at any time, like this:

if (ScalarFile–>count) {
 warn "Still some tied ScalarFiles sitting around somewhere...\n";
}

That’s about all there is to it. Actually, it’s more than all there is to it, since we’ve
done a few nice things here for the sake of completeness, robustness, and general
aesthetics (or lack thereof). Simpler TIESCALAR classes are certainly possible.

Magical Counter Variables
Here’s a simple Tie::Counter class, inspired by the CPAN module of the same
name. Variables tied to this class increment themselves by 1 every time they’re
used. For example:

tie my $counter, "Tie::Counter", 100;
@array = qw /Red Green Blue/;
for my $color (@array) { # Prints:
 print " $counter $color\n"; # 100 Red
} # 101 Green
 # 102 Blue

The constructor takes as an optional extra argument the first value of the counter,
which defaults to 0. Assigning to the counter will set a new value. Here’s the class:

package Tie::Counter;
sub FETCH { ++ ${ $_[0] } }
sub STORE { ${ $_[0] } = $_[1] }
sub TIESCALAR {
 my ($class, $value) = @_;
 $value = 0 unless defined $value;
 bless \$value => $class;
}
1; # if in module

See how small that is? It doesn’t take much code to put together a class like this.

Cycling Through Values
Through the magic of tie, an array can act as a scalar. The tie interface can
convert the scalar interface to the array interface. The Tie::Cycle CPAN module
uses a scalar to cycle through the values in an array. The object keeps track of a
cursor and advances it on each access. When it gets to the end, it goes back to
the start:

package Tie::Cycle;

sub TIESCALAR {

Tying Scalars | 483

www.it-ebooks.info

http://www.it-ebooks.info/

 my $class = shift;
 my $list_ref = shift;
 return unless ref $list_ref eq ref [];
 my @shallow_copy = map { $_ } @$list_ref;
 my $self = [0, scalar @shallow_copy, \@shallow_copy];
 bless $self, $class;
}

sub FETCH {
 my $self = shift;
 my $index = $$self[0]++;
 $$self[0] %= $self–>[1];
 return $self–>[2]–>[$index];
}

sub STORE {
 my $self = shift;
 my $list_ref = shift;
 return unless ref $list_ref eq ref [];
 $self = [0, scalar @$list_ref, $list_ref];
}

This is handy for giving different CSS classes to alternate rows in an HTML table
without complicating the code:

tie my $row_class, "Tie::Cycle", [qw(odd even)];

for my $item (@items) {
 print qq(<tr class="$row_class">...</tr>);
}

This makes it easy to add even more CSS classes without changing the code:

tie my $row_class, "Tie::Cycle", [qw(red green blue)];

Magically Banishing $_
This curiously exotic underscore tie class2 is used to outlaw unlocalized uses of
$_. Instead of pulling in the module with use, which invokes the class’s import
method, this module should be loaded with no to call the seldom-used unim
port method (see Chapter 11). The user says:

no underscore;

And then all uses of $_ as an unlocalized global raise an exception.

2. Curiously, the underscore came from an example in an earlier edition of this book, which then made it
into Perl Cookbook, which motivated Dan Kogai to create a CPAN module for it.

484 | Chapter 14: Tied Variables

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/0596003137
http://www.it-ebooks.info/

Here’s a little test suite for the module:

#!/usr/bin/perl
no underscore;
@tests = (
 "Assignment" => sub { $_ = "Bad" },
 "Reading" => sub { print },
 "Matching" => sub { $x = /badness/ },
 "Chop" => sub { chop },
 "Filetest" => sub { –x },
 "Nesting" => sub { for (1..3) { print } },
);

while (($name, $code) = splice(@tests, 0, 2)) {
 print "Testing $name: ";
 eval { &$code };
 print $@ ? "detected" : " missed!";
 print "\n";
}

which prints out the following:

Testing Assignment: detected
Testing Reading: detected
Testing Matching: detected
Testing Chop: detected
Testing Filetest: detected
Testing Nesting: 123 missed!

The last one was “missed” because it was properly localized by the for loop and
thus safe to access.

Here’s the curiously exotic underscore module itself. (Did we mention that it’s
curiously exotic?) It works because tied magic is effectively hidden by a local.
The module does the tie in its own initialization code so that a require also
works:

package underscore;
use warnings;
use strict;
use Carp ();
our $VERSION = sprintf "%d.%02d", q$Revision: 0.1 $ =~ /(\d+)/g;

sub TIESCALAR{
 my ($pkg, $code, $msg) = @_;
 bless [$code, $msg], $pkg;
}

sub unimport {
 my $pkg = shift;
 my $action = shift;
 no strict "refs";

Tying Scalars | 485

www.it-ebooks.info

http://www.it-ebooks.info/

 my $code = ref $action
 ? $action
 : ($action
 ? \&{ "Carp::" . $action }
 : \&Carp::croak
);
 my $msg = shift || '$_ is forbidden';
 untie $_ if tied $_;
 tie $_, _ _PACKAGE_ _, $code, $msg;
}

sub import{ untie $_ }

sub FETCH{ $_[0]–>[0]($_[0]–>[1]) }
sub STORE{ $_[0]–>[0]($_[0]–>[1]) }

1; # End of underscore

It’s hard to usefully mix calls to use and no for this class in your program because
they all happen at compile time, not runtime. You could call Underscore–
>import and Underscore–>unimport directly, just as use and no do. Normally,
though, to renege and let yourself freely use $_ again, you’d just use local on it,
which is the whole point.

Tying Arrays
A class implementing a tied array must define at least the methods TIEARRAY,
FETCH, and STORE. There are many optional methods: the ubiquitous UNTIE and
DESTROY methods, of course, but also the STORESIZE and FETCHSIZE methods used
to provide $#array and scalar(@array) access. In addition, CLEAR is triggered when
Perl needs to empty the array, and EXTEND when Perl would have preextended
allocation in a real array.

You may also define the POP, PUSH, SHIFT, UNSHIFT, SPLICE, DELETE, and EXISTS
methods if you want the corresponding Perl functions to work on the tied array.
The Tie::Array class can serve as a base class to implement the first five of those
functions in terms of FETCH and STORE. (Tie::Array’s default implementation of
DELETE and EXISTS simply calls croak.) As long as you define FETCH and STORE, it
doesn’t matter what kind of data structure your object contains.

On the other hand, the Tie::StdArray class (defined in the standard Tie::Array
module) provides a base class with default methods that assume the object con-
tains a regular array. Here’s a simple array-tying class that makes use of this.
Because it uses Tie::StdArray as its base class, it only needs to define the methods
that should be treated in a nonstandard way:

486 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

#!/usr/bin/perl
package ClockArray;
use Tie::Array;
our @ISA = "Tie::StdArray";
sub FETCH {
 my($self,$place) = @_;
 $self–>[$place % 12];
}
sub STORE {
 my($self,$place,$value) = @_;
 $self–>[$place % 12] = $value;
}

package main;
tie my @array, "ClockArray";
@array = ("a" ... "z");
print "@array\n";

When run, the program prints out “y z o p q r s t u v w x”. This class provides
an array with only a dozen slots, like hours of a clock, numbered 0 through 11.
If you ask for the 15th array index, you really get the 3rd one. Think of it as a travel
aid for people who haven’t learned how to read 24-hour clocks.

Array-Tying Methods
That’s the simple way. Now for some nitty-gritty details. To demonstrate, we’ll
implement an array whose bounds are fixed at its creation. If you try to access
anything beyond those bounds, an exception is raised. For example:

use BoundedArray;
tie @array, "BoundedArray", 2;

$array[0] = "fine";
$array[1] = "good";
$array[2] = "great";
$array[3] = "whoa"; # Prohibited; displays an error message.

The preamble code for the class is as follows:

package BoundedArray;
use Carp;
use strict;

To avoid having to define SPLICE later, we’ll inherit from the Tie::Array class:

use Tie::Array;
our @ISA = ("Tie::Array");

CLASSNAME–>TIEARRAY(LIST)

As the constructor for the class, TIEARRAY should return a blessed reference
through which the tied array will be emulated.

Tying Arrays | 487

www.it-ebooks.info

http://www.it-ebooks.info/

In this next example, just to show you that you don’t really have to return an
array reference, we’ll choose a hash reference to represent our object. A hash
works out well as a generic record type: the value in the hash’s “BOUND” key
will store the maximum bound allowed, and its “DATA” value will hold the
actual data. If someone outside the class tries to dereference the object re-
turned (doubtless thinking it an array reference), an exception is raised.

sub TIEARRAY {
 my $class = shift;
 my $bound = shift;
 confess "usage: tie(\@ary, 'BoundedArray', max_subscript)"
 if @_ || $bound =~ /\D/;
 return bless { BOUND => $bound, DATA => [] }, $class;
}

We can now say:

tie(@array, "BoundedArray", 3); # maximum allowable index is 3

to ensure that the array will never have more than four elements. Whenever
an individual element of the array is accessed or stored, FETCH and STORE will
be called just as they were for scalars, but with an extra index argument.

SELF–>FETCH(INDEX)

This method is run whenever an individual element in the tied array is ac-
cessed. It receives one argument after the object: the index of the value we’re
trying to fetch.

sub FETCH {
 my ($self, $index) = @_;
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 return $self–>{DATA}[$index];
}

SELF–>STORE(INDEX, VALUE)

This method is invoked whenever an element in the tied array is set. It takes
two arguments after the object: the index at which we’re trying to store
something and the value we’re trying to put there. For example:

sub STORE {
 my($self, $index, $value) = @_;
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 return $self–>{DATA}[$index] = $value;
}

488 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

SELF–>UNTIE

This method is triggered by untie. We don’t need it for this example. See the
caution in “A Subtle Untying Trap” on page 510 later in this chapter.

SELF–>DESTROY

Perl calls this method when the tied variable needs to be destroyed and its
memory reclaimed. This is almost never needed in a language with garbage
collection, so for this example we’ll just leave it out.

SELF–>FETCHSIZE

The FETCHSIZE method should return the total number of items in the tied
array associated with SELF. It’s equivalent to scalar(@array), which is usually
equal to $#array + 1.

sub FETCHSIZE {
 my $self = shift;
 return scalar @{$self–>{DATA}};
}

SELF–>STORESIZE(COUNT)

This method sets the total number of items in the tied array associated with
SELF to be COUNT. If the array shrinks, you should remove entries beyond
COUNT. If the array grows, you should make sure the new positions are un-
defined. For our BoundedArray class, we also ensure that the array doesn’t
grow beyond the limit initially set.

sub STORESIZE {
 my ($self, $count) = @_;
 if ($count > $self–>{BOUND}) {
 confess "Array OOB: $count > $self–>{BOUND}";
 }
 $#{$self–>{DATA}} = $count;
}

SELF–>EXTEND(COUNT)

Perl uses the EXTEND method to indicate that the array is likely to expand to
hold COUNT entries. That way you can allocate memory in one big chunk
instead of in many successive calls later on. Since our BoundedArrays have
fixed upper bounds, we won’t define this method.

SELF–>EXISTS(INDEX)

This method verifies that the element at INDEX exists in the tied array. For
our BoundedArray, we just employ Perl’s built-in exists after verifying that
it’s not an attempt to look past the fixed upper bound.

sub EXISTS {
 my ($self, $index) = @_;
 if ($index > $self–>{BOUND}) {

Tying Arrays | 489

www.it-ebooks.info

http://www.it-ebooks.info/

 confess "Array OOB: $index > $self–>{BOUND}";
 }
 exists $self–>{DATA}[$index];
}

SELF–>DELETE(INDEX)

The DELETE method removes the element at INDEX from the tied array SELF.
For our BoundedArray class, the method looks nearly identical to EXISTS, but
this is not the norm.

sub DELETE {
 my ($self, $index) = @_;
 print STDERR "deleting!\n";
 if ($index > $self–>{BOUND}) {
 confess "Array OOB: $index > $self–>{BOUND}";
 }
 delete $self–>{DATA}[$index];
}

SELF–>CLEAR

This method is called whenever the array has to be emptied. That happens
when the array is set to a list of new values (or an empty list), but not when
it’s provided to the undef function. Since a cleared BoundedArray always sat-
isfies the upper bound, we don’t need to check anything here:

sub CLEAR {
 my $self = shift;
 $self–>{DATA} = [];
}

If you set the array to a list, CLEAR will trigger but won’t see the list values. So
if you violate the upper bound like so:

tie(@array, "BoundedArray", 2);
@array = (1, 2, 3, 4);

the CLEAR method will still return successfully. The exception will only be
raised on the subsequent STORE. The assignment triggers one CLEAR and four
STOREs.

SELF–>PUSH(LIST)

This method appends the elements of LIST to the array. Here’s how it might
look for our BoundedArray class:

sub PUSH {
 my $self = shift;
 if (@_ + $#{$self–>{DATA}} > $self–>{BOUND}) {
 confess "Attempt to push too many elements";
 }
 push @{$self–>{DATA}}, @_;
}

490 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

SELF–>UNSHIFT(LIST)

This method prepends the elements of LIST to the array. For our BoundedAr
ray class, the subroutine would be similar to PUSH.

SELF–>POP

The POP method removes the last element of the array and returns it. For
BoundedArray, it’s a one-liner:

sub POP { my $self = shift; pop @{$self–>{DATA}} }

SELF–>SHIFT

The SHIFT method removes the first element of the array and returns it. For
BoundedArray, it’s similar to POP.

SELF–>SPLICE(OFFSET, LENGTH, LIST)

This method lets you splice the SELF array. To mimic Perl’s built-in splice,
OFFSET should be optional and default to zero, with negative values counting
back from the end of the array. LENGTH should also be optional, defaulting
to the rest of the array. LIST can be empty. If it’s properly mimicking the built-
in, the method will return a list of the original LENGTH elements at OFFSET
(that is, the list of elements to be replaced by LIST).

Since splicing is a somewhat complicated operation, we won’t define it at all;
we’ll just use the SPLICE subroutine from the Tie::Array module that we got
for free when we inherited from Tie::Array. This way we define SPLICE in
terms of other BoundedArray methods so the bounds checking will still occur.

That completes our BoundedArray class. It warps the semantics of arrays just a
little. But we can do better—and in much less space.

Notational Convenience
One of the nice things about variables is that they interpolate. One of the not-so-
nice things about functions is that they don’t. You can use a tied array to make
a function that can be interpolated. Suppose you want to interpolate random
integers in a string. You can just say:

#!/usr/bin/perl
package RandInterp;
sub TIEARRAY { bless \my $self };
sub FETCH { int rand $_[1] };

package main;
tie @rand, "RandInterp";
for (1,10,100,1000) {
 print "A random integer less than $_ would be $rand[$_]\n";
}
$rand[32] = 5; # Will this reformat our system disk?

Tying Arrays | 491

www.it-ebooks.info

http://www.it-ebooks.info/

When run, this prints:

A random integer less than 1 would be 0
A random integer less than 10 would be 3
A random integer less than 100 would be 46
A random integer less than 1000 would be 755
Can't locate object method "STORE" via package "RandInterp" at foo line 10.

As you can see, it’s no big deal that we didn’t even implement STORE. It just blows
up like normal.

Tying Hashes
A class implementing a tied hash should define eight methods. TIEHASH constructs
new objects. FETCH and STORE access the key/value pairs. EXISTS reports whether
a key is present in the hash, and DELETE removes a key along with its associated
value.3 CLEAR empties the hash by deleting all key/value pairs. FIRSTKEY and NEXT
KEY iterate over the key/value pairs when you call keys, values, or each. And, as
usual, if you want to perform particular actions when the object is deallocated,
you may define a DESTROY method. (If this seems like a lot of methods, you didn’t
read the last section on arrays attentively. In any event, feel free to inherit the
default methods from the standard Tie::Hash module, redefining only the inter-
esting ones. Again, Tie::StdHash assumes the implementation is also a hash.)

For example, suppose you want to create a hash where every time you assign a
value to a key, instead of overwriting the previous contents, the new value is
appended to an array of values. That way when you say:

$h{$k} = "one";
$h{$k} = "two";

It really does:

push @{ $h{$k} }, "one";
push @{ $h{$k} }, "two";

That’s not a very complicated idea, so you should be able to use a pretty simple
module. Using Tie::StdHash as a base class, it is. Here’s a Tie::AppendHash that
does just that:

package Tie::AppendHash;
use Tie::Hash;
our @ISA = ("Tie::StdHash");
sub STORE {

3. Remember that Perl distinguishes between a key not existing in the hash and a key existing in the hash
but having a corresponding value of undef. The two possibilities can be tested with exists and defined,
respectively.

492 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

 my ($self, $key, $value) = @_;
 push @{$self–>{key}}, $value;
}
1;

Hash-Tying Methods
Here’s an example of an interesting tied-hash class: it gives you a hash representing
a particular user’s dot files (that is, files whose names begin with a period, which
is a naming convention for initialization files under Unix). You index into the
hash with the name of the file (minus the period) and get back that dot file’s
contents. For example:

use DotFiles;
tie %dot, "DotFiles";
if ($dot{profile} =~ /MANPATH/ ||
 $dot{login} =~ /MANPATH/ ||
 $dot{cshrc} =~ /MANPATH/) {
 print "you seem to set your MANPATH\n";
}

Here’s another way to use our tied class:

Third argument is the name of a user whose dot files we will tie to.
tie %him, "DotFiles", "daemon";
foreach $f (keys %him) {
 printf "daemon dot file %s is size %d\n", $f, length $him{$f};
}

In our DotFiles example we implement the object as a regular hash containing
several important fields, of which only the {CONTENTS} field will contain what the
user thinks of as the hash. Table 14-1 gives the object’s actual fields.

Table 14-1. Object fields in DotFiles

Field Contents

USER Whose dot files this object represents

HOME Where those dot files live

CLOBBER Whether we are allowed to change or remove those dot files

CONTENTS The hash of dot file names and content mappings

Here’s the start of DotFiles.pm:

package DotFiles;
use Carp;
sub whowasi { (caller(1))[3] . "()" }
my $DEBUG = 0;
sub debug { $DEBUG = @_ ? shift : 1 }

Tying Hashes | 493

www.it-ebooks.info

http://www.it-ebooks.info/

For our example we want to be able to turn on debugging output to help in tracing
during development, so we set up $DEBUG. We also keep one convenience function
around internally to help print out warnings: whowasi returns the name of the
function that called the current function (whowasi’s “grandparent” function).

Here are the methods for the DotFiles tied hash:

CLASSNAME–>TIEHASH(LIST)

Here’s the DotFiles constructor:

sub TIEHASH {
 my $self = shift;
 my $user = shift || $>;
 my $dotdir = shift || "";

 croak "usage: @{[&whowasi]} [USER [DOTDIR]]" if @_;

 $user = getpwuid($user) if $user =~ /^\d+$/;
 my $dir = (getpwnam($user))[7]
 || croak "@{ [&whowasi] }: no user $user";
 $dir .= "/$dotdir" if $dotdir;

 my $node = {
 USER => $user,
 HOME => $dir,
 CONTENTS => {},
 CLOBBER => 0,
 };

 opendir(DIR, $dir)
 || croak "@{[&whowasi]}: can't opendir $dir: $!";
 for my $dot (grep /^\./ && –f "$dir/$_", readdir(DIR)) {
 $dot =~ s/^\.//;
 $node–>{CONTENTS}{$dot} = undef;
 }
 closedir DIR;

 return bless $node, $self;
 }

It’s probably worth mentioning that if you’re going to apply file tests to the
values returned by the above readdir, you’d better prepend the directory in
question (as we do). Otherwise, since no chdir was done, you’d likely be
testing the wrong file.

494 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

SELF–>FETCH(KEY)

This method implements reading an element from the tied hash. It takes one
argument after the object: the key whose value we’re trying to fetch. The
key is a string, and you can do anything you like with it (consistent with its
being a string).

Here’s the fetch for our DotFiles example:

sub FETCH {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 my $dir = $self–>{HOME};
 my $file = "$dir/.$dot";

 unless (exists $self–>{CONTENTS}–>{$dot} || –f $file) {
 carp "@{[&whowasi]}: no $dot file" if $DEBUG;
 return undef;
 }

 # Implement a cache.
 if (defined $self–>{CONTENTS}–>{$dot}) {
 return $self–>{CONTENTS}–>{$dot};
 } else {
 return $self–>{CONTENTS}–>{$dot} = `cat $dir/.$dot`;
 }
}

We cheated a little by running the Unix cat(1) command, but it would be
more portable (and more efficient) to open the file ourselves. On the other
hand, since dot files are a Unixy concept, we’re not that concerned. Or
shouldn’t be. Or something…

SELF–>STORE(KEY, VALUE)

This method does the dirty work whenever an element in the tied hash is
set (written). It takes two arguments after the object: the key under which
we’re storing the new value and the value itself.

For our DotFiles example, we won’t let users overwrite a file without first
invoking the clobber method on the original object returned by tie:

sub STORE {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 my $value = shift;
 my $file = $self–>{HOME} . "/.$dot";

 croak "@{[&whowasi]}: $file not clobberable"
 unless $self–>{CLOBBER};

Tying Hashes | 495

www.it-ebooks.info

http://www.it-ebooks.info/

 open(F, "> $file") || croak "can't open $file: $!";
 print F $value;
 close(F) || croak "can't close $file: $!";
}

If someone wants to clobber something, she can say:

$ob = tie %daemon_dots, "daemon";
$ob–>clobber(1);
$daemon_dots{signature} = "A true daemon\n";

But they could alternatively set {CLOBBER} with tied:

tie %daemon_dots, "DotFiles", "daemon";
tied(%daemon_dots)–>clobber(1);

or as one statement:

(tie %daemon_dots, "DotFiles", "daemon")–>clobber(1);

The clobber method is simply:

sub clobber {
 my $self = shift;
 $self–>{CLOBBER} = @_ ? shift : 1;
}

SELF–>DELETE(KEY)

This method handles requests to remove an element from the hash. If your
emulated hash uses a real hash somewhere, you can just call the real
delete. Again, we’ll be careful to check whether the user really wants to
clobber files:

sub DELETE {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 my $file = $self–>{HOME} . "/.$dot";
 croak "@{[&whowasi]}: won't remove file $file"
 unless $self–>{CLOBBER};
 delete $self–>{CONTENTS}–>{$dot};
 unlink($file)|| carp "@{[&whowasi]}: can't unlink $file: $!";
}

SELF–>CLEAR

This method is run when the whole hash needs to be cleared, usually by
assigning the empty list to it. In our example, that would remove all the
user’s dot files! It’s such a dangerous thing that we’ll require CLOBBER to be
set higher than 1 before this can happen:

496 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

sub CLEAR {
 carp &whowasi if $DEBUG;
 my $self = shift;
 croak "@{[&whowasi]}: won't remove all dotfiles for $self–>{USER}"
 unless $self–>{CLOBBER} > 1;
 for my $dot (keys %{$self–>{CONTENTS}}) {
 $self–>DELETE($dot);
 }
}

SELF–>EXISTS(KEY)

This method runs when the user invokes the exists function on a particular
hash. In our example, we’ll look at the {CONTENTS} hash element to find the
answer:

sub EXISTS {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $dot = shift;
 return exists $self–>{CONTENTS}–>{$dot};
}

SELF–>FIRSTKEY

This method is called when the user begins to iterate through the hash, such
as with a keys, values, or each call. By calling keys in scalar context, we reset
its internal state to ensure that the next each used in the return statement
will get the first key.

sub FIRSTKEY {
 carp &whowasi if $DEBUG;
 my $self = shift;
 my $temp = keys %{$self–>{CONTENTS}};
 return scalar each %{$self–>{CONTENTS}};
}

SELF–>NEXTKEY(PREVKEY)

This method is the iterator for a keys, values, or each function. PREVKEY is
the last key accessed, which Perl knows to supply. This is useful if the
NEXTKEY method needs to know its previous state to calculate the next state.

For our example, we are using a real hash to represent the tied hash’s data,
except that this hash is stored in the hash’s CONTENTS field instead of in the
hash itself. So we can just rely on Perl’s each iterator:

sub NEXTKEY {
 carp &whowasi if $DEBUG;
 my $self = shift;
 return scalar each %{ $self–>{CONTENTS} }
}

Tying Hashes | 497

www.it-ebooks.info

http://www.it-ebooks.info/

SELF–>UNTIE

This method is triggered by untie. We don’t need it for this example. See the
caution in “A Subtle Untying Trap” on page 510 later in this chapter.

SELF–>DESTROY

This method is triggered when a tied hash’s object is about to be deallocated.
You don’t really need it except for debugging and extra cleanup. Here’s a
very simple version:

sub DESTROY {
 carp &whowasi if $DEBUG;
}

Now that we’ve given you all those methods, your homework is to go back and
find the places we interpolated @{[&whowasi]} and replace them with a simple
tied scalar named $whowasi that does the same thing.

Tying Filehandles
A class implementing a tied filehandle should define the following methods:
TIEHANDLE and at least one of PRINT, PRINTF, WRITE, READLINE, GETC, and READ. The
class can also provide a DESTROY method, as well as BINMODE, OPEN, CLOSE, EOF,
FILENO, SEEK, TELL, READ, and WRITE methods to enable the corresponding Perl
built-ins for the tied filehandle. (Well, that isn’t quite true: WRITE corresponds to
syswrite and has nothing to do with Perl’s built-in write function for printing
with format declarations.)

Tied filehandles are especially useful when Perl is embedded in another program
(such as Apache or vi) and output to STDOUT or STDERR needs to be redirected in
some special way.

But filehandles don’t actually have to be tied to a file at all. You can use output
statements to build up an in-memory data structure and input statements to read
them back in. Here’s an easy way to reverse a sequence of print and printf
statements without reversing the individual lines:

package ReversePrint 0.01 {
 use strict;
 sub TIEHANDLE {
 my $class = shift;
 bless [], $class;
 }
 sub PRINT {
 my $self = shift;
 push @$self, join("" => @_);
 }
 sub PRINTF {

498 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

 my $self = shift;
 my $fmt = shift;
 push @$self, sprintf($fmt, @_);
 }
 sub READLINE {
 my $self = shift;
 pop @$self;
 }
}

my $m = "––MORE––\n";
tie *REV, "ReversePrint";

Do some prints and printfs.
print REV "The fox is now dead.$m";

printf REV <<"END", int rand 10000000;
The quick brown fox jumps
over the lazy dog %d times!
END

print REV <<"END";
The quick brown fox jumps
over the lazy dog.
END

Now read back from the same handle.
print while <REV>;

This prints:

The quick brown fox jumps
over the lazy dog.
The quick brown fox jumps
over the lazy dog 3179357 times!
The fox is now dead.––MORE––

Filehandle-Tying Methods
For our extended example, we’ll create a filehandle that uppercases strings that
are printed to it. Just for kicks, we’ll begin the file with <SHOUT> when it’s opened
and end with </SHOUT> when it’s closed. That way we can rant in well-formed
XML.

Here’s the top of our Shout.pm file that will implement the class:

package Shout;
use Carp; # So we can croak our errors

We’ll now list the method definitions in Shout.pm.

Tying Filehandles | 499

www.it-ebooks.info

http://www.it-ebooks.info/

CLASSNAME–>TIEHANDLE(LIST)

This is the constructor for the class, which as usual should return a blessed
reference.

sub TIEHANDLE {
 my $class = shift;
 my $form = shift;
 open(my $self, $form, @_) || croak "can't open $form@_: $!";
 if ($form =~ />/) {
 print $self "<SHOUT>\n";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 return bless $self, $class; # $self is a glob ref
}

Here we open a new filehandle according to the mode and filename passed
to the tie operator, write <SHOUT> to the file, and return a blessed reference
to it. There’s a lot of stuff going on in that open statement, but we’ll just
point out that, in addition to the usual “open or die” idiom, the my $self
furnishes an undefined scalar to open, which knows to autovivify it into a
typeglob. The fact that it’s a typeglob is also significant, because not only
does the typeglob contain the real I/O object of the file, it also contains
various other handy data structures that come along for free, like a scalar
($$$self), an array (@$$self), and a hash (%$$self). (We won’t mention the
subroutine, &$$self.)

The $form is the filename-or-mode argument. If it’s a filename, @_ is empty,
so it behaves as a two-argument open. Otherwise, $form is the mode for the
rest of the arguments.

After the open, we test to see whether we should write the beginning tag. If
so, we do. And right away we use one of those glob data structures we
mentioned. That $$self–>{WRITING} is an example of using the glob to store
interesting information. In this case, we remember whether we did the be-
ginning tag so we know whether to do the corresponding end tag. We’re
using the %$$self hash, so we can give the field a decent name. We could
have used the scalar as $$$self, but that wouldn’t be self-documenting. (Or
it would only be self-documenting, depending on how you look at it.)

SELF–>PRINT(LIST)

This method implements a print to the tied handle. The LIST is whatever
was passed to print. Our method below uppercases each element of LIST:

sub PRINT {
 my $self = shift;
 print $self map {uc} @_;
 }

500 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

SELF–>READLINE

This method supplies the data when the filehandle is read from the angle
operator (<FH>) or readline. The method should return undef when there is
no more data.

sub READLINE {
 my $self = shift;
 return <$self>;
}

Here we simply return <$self> so that the method will behave appropriately
depending on whether it was called in scalar or list context.

SELF–>GETC

This method runs whenever getc is used on the tied filehandle.

sub GETC {
 my $self = shift;
 return getc($self);
}

Like several of the methods in our Shout class, the GETC method simply calls
its corresponding Perl built-in and returns the result.

SELF–>OPEN(LIST)

Our TIEHANDLE method itself opens a file, but a program using the Shout class
that calls open afterward triggers this method.

sub OPEN {
 my $self = shift;
 my $form = shift;
 my $name = "$form@_";
 $self–>CLOSE;
 open($self, $form, @_) || croak "can't reopen $name: $!";
 if ($form =~ />/) {
 (print $self "<SHOUT>\n") || croak "can't start print: $!";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 else {
 $$self–>{WRITING} = 0; # Remember not to do end tag
 }
 return 1;
}

We invoke our own CLOSE method to explicitly close the file in case the user
didn’t bother to. Then we open a new file with whatever filename was
specified in the open and shout at it.

Tying Filehandles | 501

www.it-ebooks.info

http://www.it-ebooks.info/

SELF–>CLOSE

This method deals with the request to close the handle. Here we seek to the
end of the file and, if that was successful, print </SHOUT> before using Perl’s
built-in close.

sub CLOSE {
 my $self = shift;
 if ($$self–>{WRITING}) {
 $self–>SEEK(0, 2) || return;
 $self–>PRINT("</SHOUT>\n") || return;
 }
 return close $self;
}

SELF–>SEEK(LIST)

When you seek on a tied filehandle, the SEEK method gets called.

sub SEEK {
 my $self = shift;
 my ($offset, $whence) = @_;
 return seek($self, $offset, $whence);
}

SELF–>TELL

This method is invoked when tell is used on the tied handle.

sub TELL {
 my $self = shift;
 return tell $self;
}

SELF–>PRINTF(LIST)

This method is run whenever printf is used on the tied handle. The LIST
will contain the format and the items to be printed.

sub PRINTF {
 my $self = shift;
 my $template = shift;
 return $self–>PRINT(sprintf $template, @_);
}

Here we use sprintf to generate the formatted string and pass it to PRINT for
uppercasing. There’s nothing that requires you to use the built-in sprintf
function, though. You could interpret the percent escapes to suit your own
purpose.

SELF–>READ(LIST)

This method responds when the handle is read using read or sysread. Note
that we modify the first argument of LIST “in-place”, mimicking read’s ability
to fill in the scalar passed in as its second argument.

502 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

sub READ {
 my ($self, undef, $length, $offset) = @_;
 my $bufref = \$_[1];
 return read($self, $$bufref, $length, $offset);
}

SELF–>WRITE(LIST)

This method gets invoked when the handle is written to with syswrite. Here
we uppercase the string to be written.

sub WRITE {
 my $self = shift;
 my $string = uc(shift);
 my $length = shift || length $string;
 my $offset = shift || 0;
 return syswrite $self, $string, $length, $offset;
}

SELF–>EOF

This method returns a Boolean value when a filehandle tied to the Shout
class is tested for its end-of-file status using eof.

sub EOF {
 my $self = shift;
 return eof $self;
}

SELF–>BINMODE(IOLAYER)

This method specifies the I/O layer to be used on the filehandle. If none is
specified, it puts the tied filehandle into binary mode (the :raw layer) for
filesystems that distinguish between text and binary files.

sub BINMODE {
 my $self = shift;
 my $disc = shift || ":raw";
 return binmode $self, $disc;
}

That’s how you’d write it, but it’s actually useless in our case because the
open already wrote on the handle. So in our case we should probably make
it say:

sub BINMODE { croak("Too late to use binmode") }

SELF–>FILENO

This method should return the file descriptor (fileno) associated with the
tied filehandle by the operating system.

Tying Filehandles | 503

www.it-ebooks.info

http://www.it-ebooks.info/

sub FILENO {
 my $self = shift;
 return fileno $self;
}

SELF–>UNTIE

This method is triggered by untie. We don’t need it for this example. See the
caution in “A Subtle Untying Trap” on page 510 later in this chapter.

SELF–>DESTROY

As with the other types of ties, this method is triggered when the tied object
is about to be destroyed. This is useful for letting the object clean up after
itself. Here we make sure that the file is closed, in case the program forgot
to call close. We could just say close $self, but it’s better to invoke the
CLOSE method of the class. That way if the designer of the class decides to
change how files are closed, this DESTROY method won’t have to be modified.

sub DESTROY {
 my $self = shift;
 $self–>CLOSE; # Close the file using Shout's CLOSE method.
}

Here’s a demonstration of our Shout class:

#!/usr/bin/perl
use Shout;
tie(*FOO, Shout::, ">filename");
print FOO "hello\n"; # Prints HELLO.
seek FOO, 0, 0; # Rewind to beginning.
@lines = <FOO>; # Calls the READLINE method.
close FOO; # Close file explicitly.
open(FOO, "+<", "filename"); # Reopen FOO, calling OPEN.
seek(FOO, 8, 0); # Skip the "<SHOUT>\n".
sysread(FOO, $inbuf, 5); # Read 5 bytes from FOO into $inbuf.
print "found $inbuf\n"; # Should print "hello".
seek(FOO, –5, 1); # Back up over the "hello".
syswrite(FOO, "ciao!\n", 6); # Write 6 bytes into FOO.
untie(*FOO); # Calls the CLOSE method implicitly.

After running this, the file contains:

<SHOUT>
CIAO!
</SHOUT>

Here are some more strange and wonderful things to do with that internal glob.
We use the same hash as before but with new keys PATHNAME and DEBUG. First, we
install a stringify overloading so that printing one of our objects reveals the path-
name (see Chapter 13):

504 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

This is just so totally cool!
use overload q("") => sub { $_[0]–>pathname };

This is the stub to put in each function you want to trace.
sub trace {
 my $self = shift;
 local $Carp::CarpLevel = 1;
 Carp::cluck("\ntrace magical method") if $self–>debug;
}

Overload handler to print out our path.
sub pathname {
 my $self = shift;
 confess "i am not a class method" unless ref $self;
 $$self–>{PATHNAME} = shift if @_;
 return $$self–>{PATHNAME};
}
Dual moded.
sub debug {
 my $self = shift;
 my $var = ref $self ? \$$self–>{DEBUG} : \our $Debug;
 $$var = shift if @_;
 return ref $self ? $$self–>{DEBUG} || $Debug : $Debug;
}

And then we call trace on entry to all our ordinary methods like this:

sub GETC { $_[0]–>trace; # NEW
 my($self) = @_;
 getc($self);
}

And also set the pathname in TIEHANDLE and OPEN:

sub TIEHANDLE {
 my $class = shift;
 my $form = shift;
 my $name = "$form@_"; # NEW
 open(my $self, $form, @_) || croak "can't open $name: $!";
 if ($form =~ />/) {
 print $self "<SHOUT>\n";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 bless $self, $class; # $fh is a glob ref
 $self–>pathname($name); # NEW
 return $self;
}

sub OPEN { $_[0]–>trace; # NEW
 my $self = shift;
 my $form = shift;
 my $name = "$form@_";
 $self–>CLOSE;

Tying Filehandles | 505

www.it-ebooks.info

http://www.it-ebooks.info/

 open($self, $form, @_) || croak "can't reopen $name: $!";
 $self–>pathname($name); # NEW
 if ($form =~ />/) {
 (print $self "<SHOUT>\n") || croak "can't start print: $!";
 $$self–>{WRITING} = 1; # Remember to do end tag
 }
 else {
 $$self–>{WRITING} = 0; # Remember not to do end tag
 }
 return 1;
}

Somewhere, we also have to call $self–>debug(1) to turn debugging on. When
we do that, all our Carp::cluck calls will produce meaningful messages. Here’s
one that we get while doing the reopen above. It shows us three deep in method
calls, as we’re closing down the old file in preparation for opening the new one:

trace magical method at foo line 87
 Shout::SEEK('>filename', '>filename', 0, 2) called at foo line 81
 Shout::CLOSE('>filename') called at foo line 65
 Shout::OPEN('>filename', '+<', 'filename') called at foo line 141

Creative Filehandles
You can tie the same filehandle to both the input and the output of a two-ended
pipe. Suppose you wanted to run the bc(1) (arbitrary precision calculator) pro-
gram this way:

use Tie::Open2;

tie *CALC, "Tie::Open2", "bc –l";
$sum = 2;
for (1 .. 7) {
 print CALC "$sum * $sum\n";
 $sum = <CALC>;
 print "$_: $sum";
 chomp $sum;
}
close CALC;

One would expect it to print this:

1: 4
2: 16
3: 256
4: 65536
5: 4294967296
6: 18446744073709551616
7: 340282366920938463463374607431768211456

506 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

One’s expectations would be correct if one had the bc(1) program on one’s com-
puter, and one also had Tie::Open2 defined as follows. This time we’ll use a
blessed array for our internal object. It contains our two actual filehandles for
reading and writing. (The dirty work of opening a double-ended pipe is done by
IPC::Open2; we’re just doing the fun part.)

package Tie::Open2;
use strict;
use Carp;
use Tie::Handle; # do not inherit from this!
use IPC::Open2;

sub TIEHANDLE {
 my ($class, @cmd) = @_;
 no warnings "once";
 my @fhpair = \do { local(*RDR, *WTR) };
 bless $_, "Tie::StdHandle" for @fhpair;
 bless(\@fhpair => $class)–>OPEN(@cmd) || die;
 return \@fhpair;
}

sub OPEN {
 my ($self, @cmd) = @_;
 $self–>CLOSE if grep {defined} @{ $self–>FILENO };
 open2(@$self, @cmd);
}

sub FILENO {
 my $self = shift;
 [map { fileno $self–>[$_] } 0,1];
}

for my $outmeth (qw(PRINT PRINTF WRITE)) {
 no strict "refs";
 *$outmeth = sub {
 my $self = shift;
 $self–>[1]–>$outmeth(@_);
 };
}
for my $inmeth (qw(READ READLINE GETC)) {
 no strict "refs";
 *$inmeth = sub {
 my $self = shift;
 $self–>[0]–>$inmeth(@_);
 };
}
for my $doppelmeth (qw(BINMODE CLOSE EOF)) {
 no strict "refs";
 *$doppelmeth = sub {
 my $self = shift;

Tying Filehandles | 507

www.it-ebooks.info

http://www.it-ebooks.info/

 $self–>[0]–>$doppelmeth(@_) && $self–>[1]–>$doppelmeth(@_);
 };
}
for my $deadmeth (qw(SEEK TELL)) {
 no strict "refs";
 *$deadmeth = sub {
 croak("can't $deadmeth a pipe");
 };
}
1;

The final four loops are just incredibly snazzy, in our opinion. For an explanation
of what’s going on, look back at the section “Closures as Function Templates”
in Chapter 8.

Here’s an even wackier set of classes. The package names should give you a clue
as to what they do.

use strict;
package Tie::DevNull;

 sub TIEHANDLE {
 my $class = shift;
 my $fh = local *FH;
 bless \$fh, $class;
 }
 for (qw(READ READLINE GETC PRINT PRINTF WRITE)) {
 no strict "refs";
 *$_ = sub { return };
 }

package Tie::DevRandom;

 sub READLINE { rand() . "\n" }
 sub TIEHANDLE {
 my $class = shift;
 my $fh = local *FH;
 bless \$fh, $class;
 }

 sub FETCH { rand() }
 sub TIESCALAR {
 my $class = shift;
 bless \my $self, $class;
 }

package Tie::Tee;

 sub TIEHANDLE {
 my $class = shift;
 my @handles;

508 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

 for my $path (@_) {
 open(my $fh, ">$path") || die "can't write $path";
 push @handles, $fh;
 }
 bless \@handles, $class;
 }

 sub PRINT {
 my $self = shift;
 my $ok = 0;
 for my $fh (@$self) {
 $ok += print $fh @_;
 }
 return $ok == @$self;
 }

The Tie::Tee class emulates the standard Unix tee(1) program, which sends one
stream of output to multiple different destinations. The Tie::DevNull class em-
ulates the null device, /dev/null on Unix systems. And the Tie::DevRandom class
produces random numbers either as a handle or as a scalar, depending on
whether you call TIEHANDLE or TIESCALAR! Here’s how you call them:

package main;

tie *SCATTER, "Tie::Tee", qw(tmp1 – tmp2 >tmp3 tmp4);
tie *RANDOM, "Tie::DevRandom";
tie *NULL, "Tie::DevNull";
tie my $randy, "Tie::DevRandom";

for my $i (1..10) {
 my $line = <RANDOM>;
 chomp $line;
 for my $fh (*NULL, *SCATTER) {
 print $fh "$i: $line $randy\n";
 }
}

This produces something like the following on your screen:

1: 0.124115571686165 0.20872819474074
2: 0.156618299751194 0.678171662366353
3: 0.799749050426126 0.300184963960792
4: 0.599474551447884 0.213935286029916
5: 0.700232143543861 0.800773751296671
6: 0.201203608274334 0.0654303290639575
7: 0.605381294683365 0.718162304090487
8: 0.452976481105495 0.574026269121667
9: 0.736819876983848 0.391737610662044
10: 0.518606540417331 0.381805078272308

Tying Filehandles | 509

www.it-ebooks.info

http://www.it-ebooks.info/

But that’s not all! It wrote to your screen because of the – in the *SCATTER tie above.
But that line also told it to create files tmp1, tmp2, and tmp4, as well as to append
to file tmp3. (We also wrote to the *NULL filehandle in the loop, though of course
that didn’t show up anywhere interesting—unless you’re interested in black
holes.)

A Subtle Untying Trap
If you intend to make use of the object returned from tie or tied, and the class
defines a destructor, there is a subtle trap you must guard against. Consider this
(admittedly contrived) example of a class that uses a file to log all values assigned
to a scalar:

package Remember;

sub TIESCALAR {
 my $class = shift;
 my $filename = shift;
 open(my $handle, ">", $filename)
 || die "Cannot open $filename: $!\n";
 print $handle "The Start\n";
 bless {FH => $handle, VALUE => 0}, $class;
}

sub FETCH {
 my $self = shift;
 return $self–>{VALUE};
}

sub STORE {
 my $self = shift;
 my $value = shift;
 my $handle = $self–>{FH};
 print $handle "$value\n";
 $self–>{VALUE} = $value;
}

sub DESTROY {
 my $self = shift;
 my $handle = $self–>{FH};
 print $handle "The End\n";
 close $handle;
}

1;

510 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example that makes use of our Remember class:

use strict;
use Remember;

my $fred;
$x = tie $fred, "Remember", "camel.log";
$fred = 1;
$fred = 4;
$fred = 5;
untie $fred;
system "cat camel.log";

This is the output when it is executed:

The Start
1
4
5
The End

So far, so good. Let’s add an extra method to the Remember class that allows com-
ments in the file—say, something like this:

sub comment {
 my $self = shift;
 my $message = shift;
 print { $self–>{FH} } $handle $message, "\n";
}

And here is the previous example, modified to use the comment method:

use strict;
use Remember;

my ($fred, $x);
$x = tie $fred, "Remember", "camel.log";
$fred = 1;
$fred = 4;
comment $x "changing...";
$fred = 5;
untie $fred;
system "cat camel.log";

Now the file will be empty, which probably wasn’t what you intended. Here’s why.
Tying a variable associates it with the object returned by the constructor. This
object normally has only one reference: the one hidden behind the tied variable
itself. Calling “untie” breaks the association and eliminates that reference. Since
there are no remaining references to the object, the DESTROY method is triggered.

A Subtle Untying Trap | 511

www.it-ebooks.info

http://www.it-ebooks.info/

However, in the example above we stored a second reference to the object tied to
$x. That means that after the untie there will still be a valid reference to the object.
DESTROY won’t get triggered, and the file won’t get flushed and closed. That’s why
there was no output: the filehandle’s buffer was still in memory. It won’t hit the
disk until the program exits.

To detect this, you could use the –w command-line flag, or include the use warn
ings "untie" pragma in the current lexical scope. Either technique would identify
a call to untie while there were still references to the tied object remaining. If so,
Perl prints this warning:

untie attempted while 1 inner references still exist

To get the program to work properly and silence the warning, eliminate any extra
references to the tied object before calling untie. You can do that explicitly:

undef $x;
untie $fred;

Often, though, you can solve the problem simply by making sure your variables
go out of scope at the appropriate time.

Tie Modules on CPAN
Before you get all inspired to write your own tie module, you should check to see
whether someone’s already done it. There are lots of tie modules on CPAN, with
more every day. (Well, every month, anyway.) Table 14-2 lists some of them.

Table 14-2. Tie modules on CPAN

Module Description

IO::WrapTie Wraps tied objects in an IO::Handle interface.

MLDBM Transparently stores complex data values, not just flat strings,
in a DBM file.

Tie::Cache::LRU Implements a least-recently used cache.

Tie::Const Provides constant scalars and hashes.

Tie::Counter Enchants a scalar variable to increment upon each access.

Tie::CPHash Implements a case-preserving but case-insensitive hash.

Tie::Cycle Cycles through a list of values via a scalar.

Tie::DBI Ties hashes to DBI relational databases.

Tie::Dict Ties a hash to an RPC dict server.

Tie::DictFile Ties a hash to a local dictionary file.

512 | Chapter 14: Tied Variables

www.it-ebooks.info

http://www.it-ebooks.info/

Module Description

Tie::DNS Ties interface to Net::DNS.

Tie::EncryptedHash Hashes (and objects based on hashes) with encrypting fields.

Tie::FileLRUCache Implements a lightweight, filesystem-based, persistent LRU
cache.

Tie::FlipFlop Implements a tie that alternates between two values.

Tie::HashDefaults Lets a hash have default values.

Tie::HashHistory Tracks history of all changes to a hash.

Tie::iCal Ties iCal files to Perl hashes.

Tie::IxHash Provides ordered associative arrays for Perl.

Tie::LDAP Implements an interface to an LDAP database.

Tie::Persistent Provides persistent data structures via tie.

Tie::Pick Randomly picks (and removes) an element from a set.

Tie::RDBM Ties hashes to relational databases.

Tie::STDERR Sends output of your STDERR to another process such as a
mailer.

Tie::Syslog Ties a filehandle to automatically syslog its output.

Tie::TextDir Ties a directory of files.

Tie::Toggle False and true, alternately, ad infinitum.

Tie::TZ Ties $TZ, setting %ENV and calling tzset(3).

Tie::VecArray Provides an array interface to a bit vector.

Tie::Watch Places watch points on Perl variables.

Win32::TieRegistry Provides powerful and easy ways to manipulate a Microsoft
Windows registry.

Tie Modules on CPAN | 513

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART III

Perl as Technology

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 15

Interprocess Communication

Computer processes have almost as many ways of communicating as people do.
The difficulties of interprocess communication should not be underestimated. It
doesn’t do you any good to listen for verbal cues when your friend is only using
body language. Likewise, two processes can communicate only when they agree
on the means of communication, and on the conventions built on top of that. As
with any kind of communication, the conventions to be agreed upon range from
lexical to pragmatic: everything from which lingo you’ll use up to whose turn it
is to talk. These conventions are necessary because it’s very difficult to commu-
nicate bare semantics in the absence of context.

In our lingo, interprocess communication is usually pronounced IPC. The IPC
facilities of Perl range from the very simple to the very complex. Which facility
you should use depends on the complexity of the information to be communi-
cated. The simplest kind of information is almost no information at all: just the
awareness that a particular event has happened at a particular point in time. In
Perl, these events are communicated via a signal mechanism modelled on the
Unix signal system.

At the other extreme, the socket facilities of Perl allow you to communicate with
any other process on the Internet using any mutually supported protocol you
like. Naturally, this freedom comes at a price: you have to go through a number
of steps to set up the connections and make sure you’re talking the same language
as the process on the other end. This may in turn require you to adhere to any
number of other strange customs, depending on local conventions. To be pro-
tocoligorically correct, you might even be required to speak a language like XML,
Java, or Perl. Horrors.

Sandwiched in between are some facilities intended primarily for communicating
with processes on the same machine. These include good old-fashioned files,
pipes, FIFOs, and the various System V IPC syscalls. Support for these facilities

517

www.it-ebooks.info

http://www.it-ebooks.info/

varies across platforms; modern Unix systems (including Apple’s Mac OS X)
should support all of them, and, except for signals and SysV IPC, most of the rest
are supported on any recent Microsoft operating systems, including pipes, fork-
ing, file locking, and sockets.1

More information about porting in general can be found in the standard Perl
documentation set (in whatever format your system displays it) under perlport.
Microsoft-specific information can be found under perlwin32 and perlfork, which
are installed even on non-Microsoft systems. For textbooks, we suggest the fol-
lowing:

• Perl Cookbook, Second Edition, by Tom Christiansen and Nathan Torkington
(O'Reilly), Chapters 16 through 18.

• Advanced Programming in the UNIX Environment, by W. Richard Stevens
(Addison-Wesley).

• TCP/IP Illustrated, by W. Richard Stevens, Volumes I–III (Addison-Wesley).

Signals
Perl uses a simple signal-handling model: the %SIG hash contains references (either
symbolic or hard) to user-defined signal handlers. Certain events cause the op-
erating system to deliver a signal to the affected process. The handler corre-
sponding to that event is called with one argument containing the name of the
signal that triggered it. To send a signal to another process, use the kill function.
Think of it as sending a one-bit piece of information to the other process.2 If that
process has installed a signal handler for that signal, it can execute code when it
receives the signal. But there’s no way for the sending process to get any sort of
return value, other than knowing that the signal was legally sent. The sender
receives no feedback saying what, if anything, the receiving process did with the
signal.

We’ve classified this facility as a form of IPC, but, in fact, signals can come from
various sources, not just other processes. A signal might also come from your
own process, or it might be generated when the user at the keyboard types a
particular sequence like Control-C or Control-Z, or it might be manufactured by
the kernel when a special event transpires, such as when a child process exits, or
when your process runs out of stack space or hits a file size or memory limit. But

1. Well, except for AF_UNIX sockets.

2. Actually, it’s more like five or six bits, depending on how many signals your OS defines, and on whether
the other process makes use of the fact that you didn’t send a different signal.

518 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://perldoc.perl.org/perlport.html
http://perldoc.perl.org/perlwin32.html
http://perldoc.perl.org/perlfork.html
http://my.safaribooksonline.com/book/programming/perl/0596003137
http://my.safaribooksonline.com/book/programming/unix/0201433079
http://www.it-ebooks.info/

your own process can’t easily distinguish among these cases. A signal is like a
package that arrives mysteriously on your doorstep with no return address. You’d
best open it carefully.

Since entries in the %SIG array can be hard references, it’s common practice to use
anonymous functions for simple signal handlers:

$SIG{INT} = sub { die "\nOutta here!\n" };
$SIG{ALRM} = sub { die "Your alarm clock went off" };

Or, you could create a named function and assign its name or reference to the
appropriate slot in the hash. For example, to intercept interrupt and quit signals
(often bound to Control-C and Control-\ on your keyboard), set up a handler
like this:

sub catch_zap {
 my $signame = shift();
 our $shucks++;
 die "Somebody sent me a SIG$signame!";
}
$shucks = 0;
$SIG{INT} = "catch_zap"; # always means &main::catch_zap
$SIG{INT} = \&catch_zap; # best strategy
$SIG{QUIT} = \&catch_zap; # catch another, too

Notice how all we do in the signal handler is set a global variable and then raise
an exception with die. This was important back before Perl had safe signals be-
cause on most systems the C library is not reentrant, and signals were delivered
asynchronously. This could cause core dumps in even the best behaving of Perl
code. Under safe signals, the problem goes away.

An even easier way to trap signals is to use the sigtrap pragma to install simple,
default signal handlers:

use sigtrap qw(die INT QUIT);
use sigtrap qw(die untrapped normal–signals
 stack–trace any error–signals);

The pragma is useful when you don’t want to bother writing your own handler,
but you still want to catch dangerous signals and perform an orderly shutdown.
By default, some of these signals are so fatal to your process that your program
will just stop in its tracks when it receives one. Unfortunately, that means that
any END functions for at-exit handling and DESTROY methods for object finalization
are not called. But they are called on ordinary Perl exceptions (such as when you
call die), so you can use this pragma to painlessly convert the signals into excep-
tions. Even though you aren’t dealing with the signals yourself, your program
still behaves correctly. See the description of use sigtrap in Chapter 29 for many
more features of this pragma.

Signals | 519

www.it-ebooks.info

http://www.it-ebooks.info/

You may also set the %SIG handler to either of the strings “IGNORE” or “DEFAULT”,
in which case Perl will try to discard the signal or allow the default action for that
signal to occur (though some signals can be neither trapped nor ignored, such as
the KILL and STOP signals; see signal(3), if you have it, for a list of signals available
on your system and their default behaviors).

The operating system thinks of signals as numbers rather than names, but Perl,
like most people, prefers symbolic names to magic numbers. To find the names
of the signals, list out the keys of the %SIG hash, or use the kill –l command if you
have one on your system. You can also use Perl’s standard Config module to
determine your operating system’s mapping between signal names and signal
numbers. See Config(3) for an example of this.

Because %SIG is a global hash, assignments to it affect your entire program. It’s
often more considerate to the rest of your program to confine your signal catching
to a restricted scope. Do this with a local signal handler assignment, which goes
out of effect once the enclosing block is exited. (But remember that local values
are visible in functions called from within that block.)

{
 local $SIG{INT} = "IGNORE";
 ... # Do whatever you want here, ignoring all SIGINTs.
 fn(); # SIGINTs ignored inside fn() too!
 ... # And here.
} # Block exit restores previous $SIG{INT} value.

fn(); # SIGINTs not ignored inside fn() (presumably).

Signalling Process Groups
Processes (under Unix, at least) are organized into process groups, generally cor-
responding to an entire job. For example, when you fire off a single shell com-
mand that consists of a series of filter commands that pipe data from one to the
other, those processes (and their child processes) all belong to the same process
group. That process group has a number corresponding to the process number
of the process group leader. If you send a signal to a positive process number, it
just sends the signal to the process. But if you send a signal to a negative number,
it sends that signal to every process whose process group number is the corre-
sponding positive number—that is, the process number of the process group
leader. (Conveniently for the process group leader, the process group ID is just
$$.)

Suppose your program wants to send a hang-up signal to all child processes it
started directly, plus any grandchildren started by those children, plus any
great-grandchildren started by those grandchildren, and so on. To do this, your

520 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

program first calls setpgrp(0,0) to become the leader of a new process group, and
any processes it creates will be part of the new group. It doesn’t matter whether
these processes were started manually via fork, automatically via piped opens, or
as backgrounded jobs with system("cmd &"). Even if those processes had children
of their own, sending a hang-up signal to your entire process group will find them
all (except for processes that have set their own process group or changed their
saved or effective UID so that it no longer matches your real or effective UID, to
give themselves diplomatic immunity to your signals).

{
 local $SIG{HUP} = "IGNORE"; # exempt myself
 kill(HUP, –$$); # signal my own process group
}

Another interesting signal is signal number 0. This doesn’t actually affect the
target process, but instead checks that it’s alive and hasn’t changed its UIDs.
That is, it checks whether it’s legal to send a signal, without actually sending one.

unless (kill 0 => $kid_pid) {
 warn "something wicked happened to $kid_pid";
}

Signal number 0 is the only signal that works the same under Microsoft ports of
Perl as it does in Unix. On Microsoft systems, kill does not actually deliver a
signal. Instead, it forces the target process to exit with the status indicated by the
signal number. This may be fixed someday. The magic 0 signal, however, still
behaves in the standard, nondestructive fashion.

Reaping Zombies
When a process exits, its parent is sent a CHLD signal by the kernel, and the process
becomes a zombie3 until the parent calls wait or waitpid. If you start another
process in Perl using anything except fork, Perl takes care of reaping your zombied
children; but if you use a raw fork, you’re expected to clean up after yourself. On
many but not all kernels, a simple hack for autoreaping zombies is to set
$SIG{CHLD} to "IGNORE". A more flexible (but tedious) approach is to reap them
yourself. Because more than one child may have died before you get around to
dealing with them, you must gather your zombies in a loop until there aren’t any
more:

use POSIX ":sys_wait_h";
sub REAPER { 1 until waitpid(–1, WNOHANG) == –1 }

3. Yes, that really is the technical term.

Signals | 521

www.it-ebooks.info

http://www.it-ebooks.info/

To run this code as needed, you can either set a CHLD signal handler for it:

$SIG{CHLD} = \&REAPER;

or, if you’re running in a loop, just arrange to call the reaper every so often.

Timing Out Slow Operations
A common use for signals is to impose time limits on long-running operations.
If you’re on a Unix system (or any other POSIX-conforming system that supports
the ALRM signal), you can ask the kernel to send your process an ALRM at some point
in the future:

use Fcntl ":flock";
eval {
 local $SIG{ALRM} = sub { die "alarm clock restart" };
 alarm 10; # schedule alarm in 10 seconds
 eval {
 flock(FH, LOCK_EX) # a blocking, exclusive lock
 || die "can't flock: $!";
 };
 alarm 0; # cancel the alarm
};
alarm 0; # race condition protection
die if $@ && $@ !~ /alarm clock restart/; # reraise

If the alarm hits while you’re waiting for the lock, and you simply catch the signal
and return, you’ll go right back into the flock because Perl automatically restarts
syscalls where it can. The only way out is to raise an exception through die and
then let eval catch it. (This works because the exception winds up calling the C
library’s longjmp(3) function, which is what really gets you out of the restarting
syscall.)

The nested exception trap is included because calling flock would raise an ex-
ception if flock is not implemented on your platform, and you need to make sure
to clear the alarm anyway. The second alarm 0 is provided in case the signal comes
in after running the flock but before getting to the first alarm 0. Without the
second alarm, you would risk a tiny race condition—but size doesn’t matter in
race conditions; they either exist or they don’t. And we prefer that they don’t.

Blocking Signals
Now and then, you’d like to delay receipt of a signal during some critical section
of code. You don’t want to blindly ignore the signal, but what you’re doing is
too important to interrupt. Perl’s %SIG hash doesn’t implement signal blocking,
but the POSIX module does, through its interface to the sigprocmask(2) syscall:

522 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

use POSIX qw(:signal_h);
$sigset = POSIX::SigSet–>new;
$blockset = POSIX::SigSet–>new(SIGINT, SIGQUIT, SIGCHLD);
sigprocmask(SIG_BLOCK, $blockset, $sigset)
 || die "Could not block INT,QUIT,CHLD signals: $!\n";

Once the three signals are all blocked, you can do whatever you want without fear
of being bothered. When you’re done with your critical section, unblock the
signals by restoring the old signal mask:

sigprocmask(SIG_SETMASK, $sigset)
 || die "Could not restore INT,QUIT,CHLD signals: $!\n";

If any of the three signals came in while blocked, they are delivered immediately.
If two or more different signals are pending, the order of delivery is not defined.
Additionally, no distinction is made between having received a particular signal
once while blocked and having received it many times.4 For example, if nine child
processes exited while you were blocking CHLD signals, your handler (if you had
one) would still be called only once after you unblocked. That’s why, when you
reap zombies, you should always loop until they’re all gone.

Signal Safety
Before v5.8, Perl attempted to treat signals like an interrupt and handle them
immediately, no matter what state the interpreter was in. This was inherently
unreliable because of reentrancy issues. Perl’s own memory could become cor-
rupted and your process could crash, or worse.

Today, when a signal arrives for your process, Perl just marks a bit that says it’s
pending. Then at the next safe point in the interpreter loop, all pending signals
are processed. This is all safe and orderly and reliable, but it is not necessarily
timely. Some of Perl’s opcodes can take a long time to execute, such as calling
sort on an extremely large list.

To get Perl to return to handling (or mishandling) signals the old, unreliable way,
set your PERL_SIGNALS environment variable to “unsafe”. You had best read the
section on “Deferred Signals” in the perlipc manpage first, though.

Files
Perhaps you’ve never thought about files as an IPC mechanism before, but they
shoulder the lion’s share of interprocess communication—far more than all other

4. Traditionally, that is. Countable signals may be implemented on some real-time systems according to the
latest specs, but we haven’t seen these yet.

Files | 523

www.it-ebooks.info

http://perldoc.perl.org/perlipc.html
http://www.it-ebooks.info/

means combined. When one process deposits its precious data in a file and an-
other process later retrieves that data, those processes have communicated. Files
offer something unique among all forms of IPC covered here: like a papyrus scroll
unearthed after millennia buried in the desert, a file can be unearthed and read
long after its writer’s personal end.5 Factoring in persistence with comparative
ease of use, it’s no wonder that files remain popular.

Using files to transmit information from the dead past to some unknown future
poses few surprises. You write the file to some permanent medium like a disk,
and that’s about it. (You might tell a web server where to find it, if it contains
HTML.) The interesting challenge is when all parties are still alive and trying to
communicate with one another. Without some agreement about whose turn it
is to have their say, reliable communication is impossible; agreement may be
achieved through file locking, which is covered in the next section. In the section
after that, we discuss the special relationship that exists between a parent process
and its children, which allows related parties to exchange information through
inherited access to the same files.

Files certainly have their limitations when it comes to things like remote access,
synchronization, reliability, and session management. Other sections of this
chapter cover various IPC mechanisms invented to address such limitations.

File Locking
In a multitasking environment, you need to be careful not to collide with other
processes that are trying to use the same file you’re using. As long as all processes
are just reading, there’s no problem; however, as soon as even one process needs
to write to the file, complete chaos ensues unless some sort of locking mechanism
acts as traffic cop.

Never use the mere existence of a filename (that is, –e $file) as a locking indi-
cation, because a race condition exists between the test for existence of that
filename and whatever you plan to do with it (like create it, open it, or unlink it).
See the section “Handling Race Conditions” on page 663 in Chapter 20 for more
about this.

Perl’s portable locking interface is the flock(HANDLE,FLAGS) function, described in
Chapter 27. Perl maximizes portability by using only the simplest and most
widespread locking features found on the broadest range of platforms. These
semantics are simple enough that they can be emulated on most systems, in-
cluding those that don’t support the traditional syscall of that name, such as

5. Presuming that a process can have a personal end.

524 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

System V or Windows NT. (If you’re running a Microsoft system earlier than
NT, though, you’re probably out of luck, as you would be if you’re running a
system from Apple before Mac OS X.)

Locks come in two varieties: shared (the LOCK_SH flag) and exclusive (the
LOCK_EX flag). Despite the suggestive sound of “exclusive”, processes aren’t required
to obey locks on files. That is, flock only implements advisory locking, which
means that locking a file does not stop another process from reading or even
writing to the file. Requesting an exclusive lock is just a way for a process to let
the operating system suspend it until all current lockers, whether shared or ex-
clusive, are finished with it. Similarly, when a process asks for a shared lock, it
is just suspending itself until there is no exclusive locker. Only when all parties
use the file-locking mechanism can a contended file be accessed safely.

Therefore, flock is a blocking operation by default. That is, if you can’t get the
lock you want immediately, the operating system suspends your process until
you can. Here’s how to get a blocking, shared lock, typically used for reading a
file:

use Fcntl qw(:DEFAULT :flock);
open(FH, "< filename") || die "can't open filename: $!";
flock(FH, LOCK_SH) || die "can't lock filename: $!";
now read from FH

You can try to acquire a lock in a nonblocking fashion by including the LOCK_NB
flag in the flock request. If you can’t be given the lock right away, the function
fails and immediately returns false. Here’s an example:

flock(FH, LOCK_SH | LOCK_NB)
 || die "can't lock filename: $!";

You may wish to do something besides raising an exception as we did here, but
you certainly don’t dare do any I/O on the file. If you are refused a lock, you
shouldn’t access the file until you can get the lock. Who knows what scrambled
state you might find the file in? The main purpose of the nonblocking mode is
to let you go off and do something else while you wait. But it can also be useful
for producing friendlier interactions by warning users that it might take a while
to get the lock (so they don’t feel abandoned):

use Fcntl qw(:DEFAULT :flock);
open(FH, "< filename") || die "can't open filename: $!";
unless (flock(FH, LOCK_SH | LOCK_NB)) {
 local $| = 1;
 print "Waiting for lock on filename...";
 flock(FH, LOCK_SH) || die "can't lock filename: $!";
 print "got it.\n"
}
now read from FH

Files | 525

www.it-ebooks.info

http://www.it-ebooks.info/

Some people will be tempted to put that nonblocking lock into a loop. The main
problem with nonblocking mode is that, by the time you get back to checking
again, someone else may have grabbed the lock because you abandoned your
place in line. Sometimes you just have to get in line and wait. If you’re lucky there
will be some magazines to read.

Locks are on filehandles, not on filenames.6 When you close the file, the lock
dissolves automatically, whether you close the file explicitly by calling close or
implicitly by reopening the handle or by exiting your process.

To get an exclusive lock, typically used for writing, you have to be more careful.
You cannot use a regular open for this; if you use an open mode of <, it will fail
on files that don’t exist yet, and if you use >, it will clobber any files that do.
Instead, use sysopen on the file so it can be locked before getting overwritten.
Once you’ve safely opened the file for writing but haven’t yet touched it, suc-
cessfully acquire the exclusive lock and only then truncate the file. Now you may
overwrite it with the new data.

use Fcntl qw(:DEFAULT :flock);
 sysopen(FH, "filename", O_WRONLY | O_CREAT)
 || die "can't open filename: $!";
 flock(FH, LOCK_EX)
 || die "can't lock filename: $!";
 truncate(FH, 0)
 || die "can't truncate filename: $!";
 # now write to FH

If you want to modify the contents of a file in place, use sysopen again. This time
you ask for both read and write access, creating the file if needed. Once the file
is opened, but before you’ve done any reading or writing, get the exclusive lock
and keep it around your entire transaction. It’s often best to release the lock by
closing the file because that guarantees all buffers are written before the lock is
released.

An update involves reading in old values and writing out new ones. You must do
both operations under a single exclusive lock, lest another process read the (im-
minently incorrect) value after (or even before) you do, but before you write.
(We’ll revisit this situation when we cover shared memory later in this chapter.)

6. Actually, locks aren’t on filehandles—they’re on the file descriptors associated with the filehandles since
the operating system doesn’t know about filehandles. That means that all our die messages about failing
to get a lock on filenames are technically inaccurate. But error messages of the form “I can’t get a lock on
the file represented by the file descriptor associated with the filehandle originally opened to the path
filename, although by now filename may represent a different file entirely than our handle does” would
just confuse the user (not to mention the reader).

526 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

use Fcntl qw(:DEFAULT :flock);

sysopen(FH, "counterfile", O_RDWR | O_CREAT)
 || die "can't open counterfile: $!";
flock(FH, LOCK_EX)
 || die "can't write–lock counterfile: $!";
$counter = <FH> || 0; # first time would be undef
seek(FH, 0, 0)
 || die "can't rewind counterfile : $!";
print FH $counter+1, "\n"
 || die "can't write counterfile: $!";

next line technically superfluous in this program, but
a good idea in the general case
truncate(FH, tell(FH))
 || die "can't truncate counterfile: $!";
close(FH)
 || die "can't close counterfile: $!";

You can’t lock a file you haven’t opened yet, and you can’t have a single lock that
applies to more than one file. What you can do, though, is use a completely
separate file to act as a sort of semaphore, like a traffic light, to provide controlled
access to something else through regular shared and exclusive locks on the
semaphore file. This approach has several advantages. You can have one lockfile
that controls access to multiple files, avoiding the kind of deadlock that occurs
when one process tries to lock those files in one order while another process is
trying to lock them in a different order. You can use a semaphore file to lock an
entire directory of files. You can even control access to something that’s not even
in the filesystem, like a shared memory object or the socket upon which several
preforked servers would like to call accept.

If you have a DBM file that doesn’t provide its own explicit locking mechanism,
an auxiliary lockfile is the best way to control concurrent access by multiple
agents. Otherwise, your DBM library’s internal caching can get out of sync with
the file on disk. Before calling dbmopen or tie, open and lock the semaphore file.
If you open the database with O_RDONLY, you’ll want to use LOCK_SH for the lock.
Otherwise, use LOCK_EX for exclusive access to updating the database. (Again, this
only works if all participants agree to pay attention to the semaphore.)

use Fcntl qw(:DEFAULT :flock);
use DB_File; # demo purposes only; any db is fine

$DBNAME = "/path/to/database";
$LCK = $DBNAME . ".lockfile";

use O_RDWR if you expect to put data in the lockfile
sysopen(DBLOCK, $LCK, O_RDONLY | O_CREAT)
 || die "can't open $LCK: $!";

Files | 527

www.it-ebooks.info

http://www.it-ebooks.info/

must get lock before opening database
flock(DBLOCK, LOCK_SH)
 || die "can't LOCK_SH $LCK: $!";

tie(%hash, "DB_File", $DBNAME, O_RDWR | O_CREAT)
 || die "can't tie $DBNAME: $!";

Now you can safely do whatever you’d like with the tied %hash. When you’re done
with your database, make sure you explicitly release those resources, and in the
opposite order that you acquired them:

untie %hash; # must close database before lockfile
close DBLOCK; # safe to let go of lock now

If you have the GNU DBM library installed, you can use the standard
GDBM_File module’s implicit locking. Unless the initial tie contains the
GDBM_NOLOCK flag, the library makes sure that only one writer may open a GDBM
file at a time, and that readers and writers do not have the database open at the
same time.

Passing Filehandles
Whenever you create a child process using fork, that new process inherits all its
parent’s open filehandles. Using filehandles for interprocess communication is
easiest to illustrate by using plain files first. Understanding how this works is
essential for mastering the fancier mechanisms of pipes and sockets described
later in this chapter.

The simplest example opens a file and starts up a child process. The child then
uses the filehandle already opened for it:

open(INPUT, "< /etc/motd") || die "/etc/motd: $!";
 if ($pid = fork) { waitpid($pid,0) }
 else {
 defined($pid) || die "fork: $!";
 while (<INPUT>) { print "$.: $_" }
 exit; # don't let child fall back into main code
 }
 # INPUT handle now at EOF in parent

Once access to a file has been granted by open, it stays granted until the filehandle
is closed; changes to the file’s permissions or to the owner’s access privileges have
no effect on accessibility. Even if the process later alters its user or group IDs, or
the file has its ownership changed to a different user or group, that doesn’t affect
filehandles that are already open. Programs running under increased permissions
(like set-id programs or systems daemons) often open a file under their increased

528 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

rights and then hand off the filehandle to a child process that could not have
opened the file on its own.

Although this feature is of great convenience when used intentionally, it can also
create security issues if filehandles accidentally leak from one program to the
next. To avoid granting implicit access to all possible filehandles, Perl automat-
ically closes any filehandles it has opened (including pipes and sockets) whenever
you explicitly exec a new program or implicitly execute one through a call to a
piped open, system, or qx// (backticks). The system filehandles STDIN, STDOUT, and
STDERR are exempt from this because their main purpose is to provide commu-
nications linkage between programs. So one way of passing a filehandle to a new
program is to copy the filehandle to one of the standard filehandles:

open(INPUT, "< /etc/motd") || die "/etc/motd: $!";
 if ($pid = fork) { wait }
 else {
 defined($pid) || die "fork: $!";
 open(STDIN, "<&INPUT") || die "dup: $!";
 exec("cat", "–n") || die "exec cat: $!";
 }

If you really want the new program to gain access to a filehandle other than these
three, you can, but you have to do one of two things. When Perl opens a new file
(or pipe or socket), it checks the current setting of the $^F ($SYSTEM_FD_MAX) vari-
able. If the numeric file descriptor used by that new filehandle is greater than
$^F, the descriptor is marked as one to close. Otherwise, Perl leaves it alone, and
new programs you exec will inherit access.

It’s not always easy to predict what file descriptor your newly opened filehandle
will have, but you can temporarily set your maximum system file descriptor to
some outrageously high number for the duration of the open:

open file and mark INPUT to be left open across execs
{
 local $^F = 10_000;
 open(INPUT, "< /etc/motd") || die "/etc/motd: $!";
} # old value of $^F restored on scope exit

Now all you have to do is get the new program to pay attention to the descriptor
number of the filehandle you just opened. The cleanest solution (on systems that
support this) is to pass a special filename that equates to a file descriptor. If your
system has a directory called /dev/fd or /proc/$$/fd containing files numbered
from 0 through the maximum number of supported descriptors, you can prob-
ably use this strategy. (Many Linux operating systems have both, but only
the /proc version tends to be correctly populated. BSD and Solaris prefer /dev/fd.
You’ll have to poke around at your system to see which looks better for you.)

Files | 529

www.it-ebooks.info

http://www.it-ebooks.info/

First, open and mark your filehandle as one to be left open across execs, as shown
in the previous code, then fork it like this:

if ($pid = fork) { wait }
else {
 defined($pid) || die "fork: $!";
 $fdfile = "/dev/fd/" . fileno(INPUT);
 exec("cat", "–n", $fdfile) || die "exec cat: $!";
}

Using the fcntl syscall, you may diddle the filehandle’s close-on-exec flag man-
ually. This is convenient for those times when you didn’t realize back when you
created the filehandle that you would want to share it with your children.

use Fcntl qw/F_SETFD/;

fcntl(INPUT, F_SETFD, 0)
 || die "Can't clear close–on–exec flag on INPUT: $!\n";

You can also force a filehandle to close:

fcntl(INPUT, F_SETFD, 1)
 || die "Can't set close–on–exec flag on INPUT: $!\n";

You can also query the current status:

use Fcntl qw/F_SETFD F_GETFD/;

printf("INPUT will be %s across execs\n",
 fcntl(INPUT, F_GETFD, 1) ? "closed" : "left open");

If your system doesn’t support file descriptors named in the filesystem, and you
want to pass a filehandle other than STDIN, STDOUT, or STDERR, you can still do so,
but you’ll have to make special arrangements with that program. Common
strategies for this are to pass the descriptor number through an environment
variable or a command-line option.

If the executed program is in Perl, you can use open to convert a file descriptor
into a filehandle. Instead of specifying a filename, use “&=” followed by the de-
scriptor number.

if (($ENV{input_fdno} // "") =~ /^\d$/) {
 open(INPUT, "<&=$ENV{input_fdno}")
 || die "can't fdopen $ENV{input_fdno} for input: $!";
}

It gets even easier than that if you’re going to be running a Perl subroutine or
program that expects a filename argument. You can use the descriptor-opening
feature of Perl’s regular open function (but not sysopen or three-argument open)
to make this happen automatically. Imagine you have a simple Perl program like
this:

530 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

#!/usr/bin/perl –p
nl – number input lines
printf "%6d ", $.;

Presuming you’ve arranged for the INPUT handle to stay open across execs, you
can call that program this way:

$fdspec = "<&=" . fileno(INPUT);
system("nl", $fdspec);

or to catch the output:

@lines = `nl '$fdspec'`; # single quotes protect spec from shell

Whether or not you exec another program, if you use file descriptors inherited
across fork, there’s one small gotcha. Unlike variables copied across a fork, which
actually get duplicate but independent copies, file descriptors really are the same
in both processes. If one process reads data from the handle, the seek pointer
(file position) advances in the other process, too, and that data is no longer avail-
able to either process. If they take turns reading, they’ll leapfrog over each other
in the file. This makes intuitive sense for handles attached to serial devices, pipes,
or sockets, since those tend to be read-only devices with ephemeral data. But this
behavior may surprise you with disk files. If this is a problem, reopen any files
that need separate tracking after the fork.

The fork operator is a concept derived from Unix, which means it might not be
implemented correctly on all non-Unix/non-POSIX platforms. Notably, fork
works on Microsoft systems only if you’re running Perl v5.6 (or better) on Win-
dows 98 (or later). Although fork is implemented via multiple concurrent exe-
cution streams within the same program on these systems, these aren’t the sort
of threads where all data is shared by default; here, only file descriptors are.

Pipes
A pipe is a unidirectional I/O channel that can transfer a stream of bytes from one
process to another. Pipes come in both named and nameless varieties. You may
be more familiar with nameless pipes, so we’ll talk about those first.

Anonymous Pipes
Perl’s open function opens a pipe instead of a file when you append or prepend a
pipe symbol to the second argument to open. This turns the rest of the arguments
into a command, which will be interpreted as a process (or set of processes) that
you want to pipe a stream of data either into or out of. Here’s how to start up a
child process that you intend to write to:

Pipes | 531

www.it-ebooks.info

http://www.it-ebooks.info/

open SPOOLER, "| cat –v | lpr –h 2>/dev/null"
 || die "can't fork: $!";
 local $SIG{PIPE} = sub { die "spooler pipe broke" };
 print SPOOLER "stuff\n";
 close SPOOLER || die "bad spool: $! $?";

This example actually starts up two processes, the first of which (running cat)
we print to directly. The second process (running lpr) then receives the output of
the first process. In shell programming, this is often called a pipeline. A pipeline
can have as many processes in a row as you like, as long as the ones in the middle
know how to behave like filters; that is, they read standard input and write stan-
dard output.

Perl uses your default system shell (/bin/sh on Unix) whenever a pipe command
contains special characters that the shell cares about. If you’re only starting one
command, and you don’t need—or don’t want—to use the shell, you can use
the multiargument form of a piped open instead:

open SPOOLER, "|–", "lpr", "–h" # requires 5.6.1
 || die "can't run lpr: $!";

If you reopen your program’s standard output as a pipe to another program, any-
thing you subsequently print to STDOUT will be standard input for the new pro-
gram. So to page your program’s output,7 you’d use:

if (–t STDOUT) { # only if stdout is a terminal
 my $pager = $ENV{PAGER} || "more";
 open(STDOUT, "| $pager") || die "can't fork a pager: $!";
}
END {
 close(STDOUT) || die "can't close STDOUT: $!"
}

When you’re writing to a filehandle connected to a pipe, always explicitly close
that handle when you’re done with it. That way your main program doesn’t exit
before its offspring.

Here’s how to start up a child process that you intend to read from:

open STATUS, "netstat –an 2>/dev/null |"
 || die "can't fork: $!";
while (<STATUS>) {
 next if /^(tcp|udp)/;
 print;
}
close STATUS || die "bad netstat: $! $?";

7. That is, let them view it one screenful at a time, not set off random bird calls.

532 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

You can open a multistage pipeline for input just as you can for output. And, as
before, you can avoid the shell by using an alternate form of open:

open STATUS, "–|", "netstat", "–an" # requires 5.6.1
 || die "can't run netstat: $!";

But then you don’t get I/O redirection, wildcard expansion, or multistage pipes,
since Perl relies on your shell to do those.

You might have noticed that you can use backticks to accomplish the same effect
as opening a pipe for reading:

print grep { !/^(tcp|udp)/ } `netstat –an 2>&1`;
die "bad netstat" if $?;

While backticks are extremely handy, they have to read the whole thing into
memory at once, so it’s often more efficient to open your own piped filehandle
and process the file one line or record at a time. This gives you finer control over
the whole operation, letting you kill off the child process early if you like. You
can also be more efficient by processing the input as it’s coming in, since com-
puters can interleave various operations when two or more processes are running
at the same time. (Even on a single-CPU machine, input and output operations
can happen while the CPU is doing something else.)

Because you’re running two or more processes concurrently, disaster can strike
the child process any time between the open and the close. This means that the
parent must check the return values of both open and close. Checking the open
isn’t good enough, since that will only tell you whether the fork was successful,
and possibly whether the subsequent command was successfully launched. (It
can tell you this only in recent versions of Perl, and only if the command is exe-
cuted directly by the forked child, not via the shell.) Any disaster that happens
after that is reported from the child to the parent as a nonzero exit status. When
the close function sees that, it knows to return a false value, indicating that the
actual status value should be read from the $? ($CHILD_ERROR) variable. So check-
ing the return value of close is just as important as checking open. If you’re writing
to a pipe, you should also be prepared to handle the PIPE signal, which is sent to
you if the process on the other end dies before you’re done sending to it.

Talking to Yourself
Another approach to IPC is to make your program talk to itself, in a manner of
speaking. Actually, your process talks over pipes to a forked copy of itself. It
works much like the piped open we talked about in the last section, except that
the child process continues executing your script instead of some other com-
mand.

Pipes | 533

www.it-ebooks.info

http://www.it-ebooks.info/

To represent this to the open function, you use a pseudocommand consisting of
a minus. So the second argument to open looks like either “–|” or “|–”, depending
on whether you want to pipe from yourself or to yourself. As with an ordinary
fork command, the open function returns the child’s process ID in the parent
process but 0 in the child process. Another asymmetry is that the filehandle
named by the open is used only in the parent process. The child’s end of the pipe
is hooked to either STDIN or STDOUT as appropriate. That is, if you open a pipe to
minus with |–, you can write to the filehandle you opened, and your kid will find
this in STDIN:

if (open(TO, "|–")) {
 print TO $fromparent;
}
else {
 $tochild = <STDIN>;
 exit;
}

If you open a pipe from minus with –|, you can read from the filehandle you
opened, which will return whatever your kid writes to STDOUT:

if (open(FROM, "–|")) {
 $toparent = <FROM>;
}
else {
 print STDOUT $fromchild;
 exit;
}

One common application of this construct is to bypass the shell when you want
to open a pipe from a command. You might want to do this because you don’t
want the shell to interpret any possible metacharacters in the filenames you’re
trying to pass to the command. If you’re running v5.6.1 or later, you can use the
multiargument form of open to get the same result.

Another use of a forking open is to safely open a file or command even while
you’re running under an assumed UID or GID. The child you fork drops any
special access rights, then safely opens the file or command and acts as an inter-
mediary, passing data between its more powerful parent and the file or command
it opened. Examples can be found in the section “Accessing Commands and Files
Under Reduced Privileges” on page 657 in Chapter 20.

One creative use of a forking open is to filter your own output. Some algorithms
are much easier to implement in two separate passes than they are in just one
pass. Here’s a simple example in which we emulate the Unix tee(1) program by
sending our normal output down a pipe. The agent on the other end of the pipe
(one of our own subroutines) distributes our output to all the files specified:

534 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

tee("/tmp/foo", "/tmp/bar", "/tmp/glarch");

while (<>) {
 print "$ARGV at line $. => $_";
}
close(STDOUT) || die "can't close STDOUT: $!";

sub tee {
 my @output = @_;
 my @handles = ();
 for my $path (@output) {
 my $fh; # open will fill this in
 unless (open ($fh, ">", $path)) {
 warn "cannot write to $path: $!";
 next;
 }
 push @handles, $fh;
 }

 # reopen STDOUT in parent and return
 return if my $pid = open(STDOUT, "|–");
 die "cannot fork: $!" unless defined $pid;

 # process STDIN in child
 while (<STDIN>) {
 for my $fh (@handles) {
 print $fh $_ || die "tee output failed: $!";
 }
 }
 for my $fh (@handles) {
 close($fh) || die "tee closing failed: $!";
 }
 exit; # don't let the child return to main!
}

This technique can be applied repeatedly to push as many filters on your output
stream as you wish. Just keep calling functions that fork-open STDOUT, and have
the child read from its parent (which it sees as STDIN) and pass the massaged
output along to the next function in the stream.

Another interesting application of talking to yourself with fork-open is to capture
the output from an ill-mannered function that always splats its results to
STDOUT. Imagine if Perl only had printf and no sprintf. What you’d need would
be something that worked like backticks, but with Perl functions instead of ex-
ternal commands:

badfunc("arg"); # drat, escaped!
$string = forksub(\&badfunc, "arg"); # caught it as string
@lines = forksub(\&badfunc, "arg"); # as separate lines

Pipes | 535

www.it-ebooks.info

http://www.it-ebooks.info/

sub forksub {
 my $kidpid = open my $self, "–|";
 defined $kidpid || die "cannot fork: $!";
 shift–>(@_), exit unless $kidpid;
 local $/ unless wantarray;
 return <$self>; # closes on scope exit
}

We’re not claiming this is efficient; a tied filehandle would probably be a good
bit faster. But it’s a lot easier to code up if you’re in more of a hurry than your
computer is.

Bidirectional Communication
Although using open to connect to another command over a pipe works reason-
ably well for unidirectional communication, what about bidirectional commu-
nication? The obvious approach doesn’t actually work:

open(PROG_TO_READ_AND_WRITE, "| some program |") # WRONG!

and if you forget to enable warnings, then you’ll miss out entirely on the diagnostic
message:

Can't do bidirectional pipe at myprog line 3.

The open function doesn’t allow this because it’s rather prone to deadlock unless
you’re quite careful. But if you’re determined, you can use the standard
IPC::Open2 library module to attach two pipes to a subprocess’s STDIN and
STDOUT. There’s also an IPC::Open3 module for tridirectional I/O (allowing you to
also catch your child’s STDERR), but this requires either an awkward select loop
or the somewhat more convenient IO::Select module. But then you’ll have to
avoid Perl’s buffered input operations like <> (readline).

Here’s an example using open2:

use IPC::Open2;
local (*Reader, *Writer);
$pid = open2(*Reader, *Writer, "bc –l");
$sum = 2;
for (1 .. 5) {
 print Writer "$sum * $sum\n";
 chomp($sum = <Reader>);
}
close Writer;
close Reader;
waitpid($pid, 0);
print "sum is $sum\n";

You can also autovivify lexical filehandles:

536 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

my ($fhread, $fhwrite);
$pid = open2($fhread, $fhwrite, "cat –u –n");

The problem with this in general is that standard I/O buffering is really going to
ruin your day. Even though your output filehandle is autoflushed (the library
does this for you) so that the process on the other end will get your data in a
timely manner, you can’t usually do anything to force it to return the favor. In
this particular case, we were lucky: bc expects to operate over a pipe and knows
to flush each output line. But few commands are so designed, so this seldom
works out unless you yourself wrote the program on the other end of the double-
ended pipe. Even simple, apparently interactive programs like ftp fail here be-
cause they won’t do line buffering on a pipe. They’ll only do it on a tty device.

The IO::Pty and Expect modules from CPAN can help with this because they
provide a real tty (actually, a real pseudo-tty, but it acts like a real one). This gets
you line buffering in the other process without modifying its program.

If you split your program into several processes and want these to all have a con-
versation that goes both ways, you can’t use Perl’s high-level pipe interfaces,
because these are all unidirectional. You’ll need to use two low-level pipe func-
tion calls, each handling one direction of the conversation:

pipe(FROM_PARENT, TO_CHILD) || die "pipe: $!";
pipe(FROM_CHILD, TO_PARENT) || die "pipe: $!";
select(((select(TO_CHILD), $| = 1))[0]); # autoflush
select(((select(TO_PARENT), $| = 1))[0]); # autoflush

if ($pid = fork) {
 close FROM_PARENT; close TO_PARENT;
 print TO_CHILD "Parent Pid $$ is sending this\n";
 chomp($line = <FROM_CHILD>);
 print "Parent Pid $$ just read this: '$line'\n";
 close FROM_CHILD; close TO_CHILD;
 waitpid($pid,0);
} else {
 die "cannot fork: $!" unless defined $pid;
 close FROM_CHILD; close TO_CHILD;
 chomp($line = <FROM_PARENT>);
 print "Child Pid $$ just read this: '$line'\n";
 print TO_PARENT "Child Pid $$ is sending this\n";
 close FROM_PARENT; close TO_PARENT;
 exit;
}

On many Unix systems, you don’t actually have to make two separate pipe calls
to achieve full duplex communication between parent and child. The socket
pair syscall provides bidirectional connections between related processes on the
same machine. So instead of two pipes, you only need one socketpair.

Pipes | 537

www.it-ebooks.info

http://www.it-ebooks.info/

use Socket;
socketpair(Child, Parent, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
 || die "socketpair: $!";

or letting perl pick filehandles for you
my ($kidfh, $dadfh);
socketpair($kidfh, $dadfh, AF_UNIX, SOCK_STREAM, PF_UNSPEC)
 || die "socketpair: $!";

After the fork, the parent closes the Parent handle, then reads and writes via the
Child handle. Meanwhile, the child closes the Child handle, then reads and writes
via the Parent handle.

If you’re looking into bidirectional communications because the process you’d like
to talk to implements a standard Internet service, you should usually just skip
the middleman and use a CPAN module designed for that exact purpose. (See
the section “Sockets” on page 543 later in this chapter for a list of some of these.)

Named Pipes
A named pipe (often called a FIFO) is a mechanism for setting up a conversation
between unrelated processes on the same machine. The names in a “named” pipe
exist in the filesystem, which is just a funny way to say that you can put a special
file in the filesystem namespace that has another process behind it instead of a
disk.8 A FIFO is convenient when you want to connect a process to an unrelated
one. When you open a FIFO, your process will block until there’s a process on
the other end. So if a reader opens the FIFO first, it blocks until the writer shows
up—and vice versa.

To create a named pipe, use the POSIX mkfifo function—if you’re on a POSIX
system, that is. On Microsoft systems, you’ll instead want to look into the
Win32::Pipe module, which, despite its possible appearance to the contrary, cre-
ates named pipes. (Win32 users create anonymous pipes using pipe just like the
rest of us.)

For example, let’s say you’d like to have your .signature file produce a different
answer each time it’s read. Just make it a named pipe with a Perl program on the
other end that spits out random quips. Now every time any program (like a
mailer, newsreader, finger program, and so on) tries to read from that file, that
program will connect to your program and read in a dynamic signature.

8. You can do the same thing with Unix-domain sockets, but you can’t use open on those.

538 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

In the following example, we use the rarely seen –p file test operator to determine
whether anyone (or anything) has accidentally removed our FIFO.9 If they have,
there’s no reason to try to open it, so we treat this as a request to exit. If we’d
used a simple open function with a mode of “> $fpath”, there would have been a
tiny race condition that would have risked accidentally creating the signature as
a plain file if it disappeared between the –p test and the open. We couldn’t use a
“+< $fpath” mode, either, because opening a FIFO for read‒write is a nonblocking
open (this is only true of FIFOs). By using sysopen and omitting the O_CREAT flag,
we avoid this problem by never creating a file by accident.

use Fcntl; # for sysopen
 chdir; # go home
 $fpath = ".signature";
 $ENV{PATH} .= ":/usr/games";

 unless (–p $fpath) { # not a pipe
 if (–e _) { # but a something else
 die "$0: won't overwrite .signature\n";
 } else {
 require POSIX;
 POSIX::mkfifo($fpath, 0666) || die "can't mknod $fpath: $!";
 warn "$0: created $fpath as a named pipe\n";
 }
 }

 while (1) {
 # exit if signature file manually removed
 die "Pipe file disappeared" unless –p $fpath;
 # next line blocks until there's a reader
 sysopen(FIFO, $fpath, O_WRONLY)
 || die "can't write $fpath: $!";
 print FIFO "John Smith (smith\@host.org)\n", `fortune –s`;
 close FIFO;
 select(undef, undef, undef, 0.2); # sleep 1/5th of a second
 }

The short sleep after the close is needed to give the reader a chance to read what
was written. If we just immediately loop back up around and open the FIFO
again before our reader has finished reading the data we just sent, then no end-
of-file is seen because there’s once again a writer. We’ll both go round and round
until, during one iteration, the writer falls a little behind and the reader finally
sees that elusive end-of-file. (And we were worried about race conditions?)

9. Another use is to see whether a filehandle is connected to a pipe, named or anonymous, as in –p STDIN.

Pipes | 539

www.it-ebooks.info

http://www.it-ebooks.info/

System V IPC
Everyone hates System V IPC. It’s slower than paper tape, carves out insidious
little namespaces completely unrelated to the filesystem, uses human-hostile
numbers to name its objects, and is constantly losing track of its own mind. Every
so often, your sysadmin has to go on a search-and-destroy mission to hunt down
these lost SysV IPC objects with ipcs(1) and kill them with ipcrm(1), hopefully
before the system runs out of memory.

Despite all this pain, ancient SysV IPC still has a few valid uses. The three kinds
of IPC objects are shared memory, semaphores, and messages. For message
passing, sockets are the preferred mechanisms these days, and they’re a lot more
portable, too. For simple uses of semaphores, the filesystem tends to get used.
As for shared memory—well, now there’s a problem for you. If you have it, the
more modern mmap(2) syscall fits the bill, but the quality of the implementation
varies from system to system. It also requires a bit of care to avoid letting Perl
reallocate your strings from where mmap(2) put them.

The File::Map CPAN module makes this a lot easier. It still requires some care in
handling, but if you mess things up it just warns you instead of dumping core
with a segmentation violation.

Here’s a little program that demonstrates controlled access to a shared memory
buffer by a brood of sibling processes. SysV IPC objects can also be shared among
unrelated processes on the same computer, but then you have to figure out how
they’re going to find each other. To mediate safe access, we’ll create a semaphore
per piece.10

Every time you want to get or put a new value into the shared memory, you have
to go through the semaphore first. This can get pretty tedious, so we’ll wrap
access in an object class. IPC::Shareable goes one step further, wrapping its object
class in a tie interface.

This program runs until you interrupt it with a Control-C or equivalent:

#!/usr/bin/perl –w
use v5.6.0; # or better
use strict;
use sigtrap qw(die INT TERM HUP QUIT);
my $PROGENY = shift(@ARGV) || 3;

10. It would be more realistic to create a pair of semaphores for each bit of shared memory, one for reading
and the other for writing; in fact, that’s what the IPC::Shareable module on CPAN does. But we’re trying
to keep things simple here. It’s worth admitting, though, that with a couple of semaphores, you could
then make use of pretty much the only redeeming feature of SysV IPC: performing atomic operations on
entire sets of semaphores as one unit, which is occasionally useful.

540 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

eval { main() }; # see DESTROY below for why
die if $@ && $@ !~ /^Caught a SIG/;
print "\nDone.\n";
exit;

sub main {
 my $mem = ShMem–>alloc("Original Creation at " . localtime);
 my(@kids, $child);
 $SIG{CHLD} = "IGNORE";
 for (my $unborn = $PROGENY; $unborn > 0; $unborn––) {
 if ($child = fork) {
 print "$$ begat $child\n";
 next;
 }
 die "cannot fork: $!" unless defined $child;
 eval {
 while (1) {
 $mem–>lock();
 $mem–>poke("$$ " . localtime)
 unless $mem–>peek =~ /^$$\b/o;
 $mem–>unlock();
 }
 };
 die if $@ && $@ !~ /^Caught a SIG/;
 exit; # child death

 }
 while (1) {
 print "Buffer is ", $mem–>get, "\n";
 sleep 1;
 }
}

And here’s the ShMem package, which that program uses. You can just tack it on to
the end of the program, or put it in its own file (with a “1;” at the end) and
require it from the main program. (The two IPC modules it uses in turn are found
in the standard Perl distribution.)

package ShMem;
 use IPC::SysV qw(IPC_PRIVATE IPC_RMID IPC_CREAT S_IRWXU);
 use IPC::Semaphore;
 sub MAXBUF() { 2000 }

 sub alloc { # constructor method
 my $class = shift();
 my $value = @_ ? shift() : "";

 my $key = shmget(IPC_PRIVATE, MAXBUF, S_IRWXU) || die "shmget: $!";
 my $sem = IPC::Semaphore–>new(IPC_PRIVATE, 1, S_IRWXU | IPC_CREAT)
 or die "IPC::Semaphore–>new: $!";
 $sem–>setval(0,1) or die "sem setval: $!";

System V IPC | 541

www.it-ebooks.info

http://www.it-ebooks.info/

 my $self = bless {
 OWNER => $$,
 SHMKEY => $key,
 SEMA => $sem,
 } => $class;

 $self–>put($value);
 return $self;
 }

Now for the fetch and store methods. The get and put methods lock the buffer,
but peek and poke don’t, so the latter two should be used only while the object is
manually locked—which you have to do when you want to retrieve an old value
and store back a modified version, all under the same lock. The demo program
does this in its  while (1) loop. The entire transaction must occur under the same
lock, or the testing and setting wouldn’t be atomic and might bomb.

sub get {
 my $self = shift();
 $self–>lock;
 my $value = $self–>peek(@_);
 $self–>unlock;
 return $value;
 }
 sub peek {
 my $self = shift();
 shmread($self–>{SHMKEY}, my $buff=q(), 0, MAXBUF) || die "shmread: $!";
 substr($buff, index($buff, "\0")) = q();
 return $buff;
 }
 sub put {
 my $self = shift();
 $self–>lock;
 $self–>poke(@_);
 $self–>unlock;
 }
 sub poke {
 my($self,$msg) = @_;
 shmwrite($self–>{SHMKEY}, $msg, 0, MAXBUF) || die "shmwrite: $!";
 }
 sub lock {
 my $self = shift();
 $self–>{SEMA}–>op(0,–1,0) || die "semop: $!";
 }
 sub unlock {
 my $self = shift();
 $self–>{SEMA}–>op(0,1,0) || die "semop: $!";
 }

542 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

Finally, the class needs a destructor so that when the object goes away, we can
manually deallocate the shared memory and the semaphore stored inside the
object. Otherwise, they’ll outlive their creator, and you’ll have to resort to ipcs
and ipcrm (or a sysadmin) to get rid of them. That’s why we went through the
elaborate wrappers in the main program to convert signals into exceptions: so
that all destructors get run, SysV IPC objects get deallocated, and sysadmins get
off our case.

sub DESTROY {
 my $self = shift();
 return unless $self–>{OWNER} == $$; # avoid dup dealloc
 shmctl($self–>{SHMKEY}, IPC_RMID, 0) || warn "shmctl RMID: $!";
 $self–>{SEMA}–>remove() || warn "sema–>remove: $!";
}

Sockets
The IPC mechanisms discussed earlier all have one severe restriction: they’re de-
signed for communication between processes running on the same computer.
(Even though files can sometimes be shared across machines through mecha-
nisms like NFS, locking fails miserably on many NFS implementations, which
takes away most of the fun of concurrent access.) For general-purpose network-
ing, sockets are the way to go. Although sockets were invented under BSD, they
quickly spread to other forms of Unix, and nowadays you can find a socket in-
terface on nearly every viable operating system out there. If you don’t have sock-
ets on your machine, you’re going to have tremendous difficulty using the In-
ternet.

With sockets, you can do both virtual circuits (as TCP streams) and datagrams
(as UDP packets). You may be able to do even more, depending on your system.
But the most common sort of socket programming uses TCP over Internet-do-
main sockets, so that’s the kind we cover here. Such sockets provide reliable
connections that work a little bit like bidirectional pipes that aren’t restricted to
the local machine. The two killer apps of the Internet, email and web browsing,
both rely almost exclusively on TCP sockets.

You also use UDP heavily without knowing it. Every time your machine tries to
find a site on the Internet, it sends UDP packets to your DNS server asking it for
the actual IP address. You might use UDP yourself when you want to send and
receive datagrams. Datagrams are cheaper than TCP connections precisely be-
cause they aren’t connection-oriented; that is, they’re less like making a tele-
phone call and more like dropping a letter in the mailbox. But UDP also lacks
the reliability that TCP provides, making it more suitable for situations where you

Sockets | 543

www.it-ebooks.info

http://www.it-ebooks.info/

don’t care whether a packet or two gets folded, spindled, or mutilated. Or for
when you know that a higher-level protocol will enforce some degree of redun-
dancy or fail-softness (which is what DNS does).

Other choices are available but far less common. You can use Unix-domain sock-
ets, but they only work for local communication. Various systems support vari-
ous other non-IP-based protocols. Doubtless these are somewhat interesting to
someone somewhere, but we’ll restrain ourselves from talking about them some-
how.

The Perl functions that deal with sockets have the same names as the correspond-
ing syscalls in C, but their arguments tend to differ for two reasons: first, Perl
filehandles work differently from C file descriptors; and second, Perl already
knows the length of its strings, so you don’t need to pass that information. See
Chapter 27 for details on each socket-related syscall.

One problem with ancient socket code in Perl was that people would use hard-
coded values for constants passed into socket functions, which destroys porta-
bility. Like most syscalls, the socket-related ones quietly but politely return
undef when they fail, instead of raising an exception. It is therefore essential to
check these functions’ return values, since if you pass them garbage, they aren’t
going to be very noisy about it. If you ever see code that does anything like ex-
plicitly setting $AF_INET = 2, you know you’re in for big trouble. An immeasurably
superior approach is to use the Socket module or the even friendlier IO::Socket
module, both of which are standard. These modules provide various constants
and helper functions you’ll need for setting up clients and servers. For optimal
success, your socket programs should always start out like this (and don’t forget
to add the –T taint-checking switch to the shebang line for servers):

#!/usr/bin/perl
use v5.14;
use warnings;
use autodie;

or IO::Socket::IP from CPAN for IPv6
use IO::Socket;

As noted elsewhere, Perl is at the mercy of your C libraries for much of its system
behavior, and not all systems support all sorts of sockets. It’s probably safest to
stick with normal TCP and UDP socket operations. For example, if you want
your code to stand a chance of being portable to systems you haven’t thought of,
don’t expect there to be support for a reliable sequenced-packet protocol. Nor
should you expect to pass open file descriptors between unrelated processes over
a local Unix-domain socket. (Yes, you can really do that on many Unix machines
—see your local recvmsg(2) manpage.)

544 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

If you just want to use a standard Internet service like mail, news, domain name
service, FTP, Telnet, the Web, and so on, then instead of starting from scratch,
try using existing CPAN modules for these. Prepackaged modules designed for
these include Net::SMTP (or Mail::Mailer), Net::NNTP, Net::DNS, Net::FTP,
Net::Telnet, and the various HTTP-related modules. The libnet and libwww
module suites both comprise many individual networking modules.

In the sections that follow, we present several sample clients and servers without
a great deal of explanation of each function used, as that would mostly duplicate
the descriptions we’ve already provided in Chapter 27.

Networking Clients
Use Internet-domain sockets when you want reliable client-server communica-
tion between potentially different machines.

To create a TCP client that connects to a server somewhere, it’s usually easiest to
use the standard IO::Socket::INET module:

#!/usr/bin/env perl
use v5.14;
use warnings;
use autodie;
use IO::Socket::INET;

my $remote_host = "localhost"; # replace with real remote host
my $remote_port = "daytime"; # replace with service name or portnumber

my $socket = IO::Socket::INET–>new(
 PeerAddr => $remote_host,
 PeerPort => $remote_port,
 Type => SOCK_STREAM,
);

send something over the socket; netstuff likes CRLFs
daytime doesn't take input, but use on other servers
print $socket "Why don't you call me anymore?\r\n";

read the remote answer,
my $answer = <$socket> =~ s/\R\z//r;

say "Got answer: $answer";

and terminate the connection when we're done.
close($socket);

Sockets | 545

www.it-ebooks.info

http://www.it-ebooks.info/

A shorthand form of the call is good enough when you just have a host and port
combination to connect to, and are willing to use defaults for all other fields:

$socket = IO::Socket::INET–>new("www.yahoo.com:80")
 or die "Couldn't connect to port 80 of yahoo: $!";

For IPv6, it’s easiest if you get the IO::Socket::IP module from CPAN. If you have
a release of Perl later than v5.14, it may even be on our system already. Once
you’ve done that, all you do is change the name of the class in the code above
from IO::Socket::INET to IO::Socket::IP, and it will work for IPv6, too. That
class is an extra sockdomain method that you can test to see which flavor of IP you
got:

#!/usr/bin/env perl
use v5.14;
use warnings;
use autodie;
use IO::Socket::IP;

my $remote_host = "localhost";
my $remote_port = "daytime";

my $socket = IO::Socket::IP–>new(
 PeerAddr => $remote_host,
 PeerPort => $remote_port,
 Type => SOCK_STREAM,
);

my $familyname = ($socket–>sockdomain == AF_INET6) ? "IPv6" :
 ($socket–>sockdomain == AF_INET) ? "IPv4" :
 "unknown";

say "Connected to $remote_host:$remote_port via ", $familyname;

send something over the socket: networks like CRLFs
print $socket "Why don't you call me anymore?\r\n";

read the remote answer,
my $answer = <$socket> =~ s/\R\z//r;

say "Got answer: $answer";

and terminate the connection when we're done.
close($socket);

To connect using the basic Socket module:

use v5.14;
use warnings;
use autodie;
use Socket;

546 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

my $remote_host = "localhost";
my $remote_port = 13; # daytime service port

socket(my $socket, PF_INET, SOCK_STREAM, getprotobyname("tcp"));
my $internet_addr = inet_aton($remote_host);
my $paddr = sockaddr_in($remote_port, $internet_addr);

connect($socket, $paddr);
$socket–>autoflush(1);

print $socket "Why don't you call me anymore?\r\n";
my $answer = <$socket> =~ s/\R\z//r;

say "Answer was: ", $answer;

You may use IPv6 with the standard Socket module in v5.14, but the function calls
and API are a tiny bit different from what is shown above, which is IPv4 only.
See the Socket manpage for details.

If you want to close only your side of the connection so that the remote end gets
an end-of-file, but you can still read data coming from the server, use the shut
down syscall for a half-close:

no more writing to server
shutdown(Server, 1); # Socket::SHUT_WR constant in v5.6

Networking Servers
Here’s a corresponding server to go along with it. It’s pretty easy with the standard
IO::Socket::INET class:

use IO::Socket::INET;

$server = IO::Socket::INET–>new(LocalPort => $server_port,
 Type => SOCK_STREAM,
 Reuse => 1,
 Listen => 10) # or SOMAXCONN
 || die "Couldn't be a tcp server on port $server_port: $!\n";

while ($client = $server–>accept()) {
 # $client is the new connection
}

close($server);

You can also write that using the lower-level Socket module:

#!/usr/bin/env perl

use v5.14;

Sockets | 547

www.it-ebooks.info

http://www.it-ebooks.info/

use warnings;
use autodie;
use Socket;

my $server_port = 12345; # pick a number

make the socket
socket(my $server, PF_INET, SOCK_STREAM, getprotobyname("tcp"));

so we can restart our server quickly
setsockopt($server, SOL_SOCKET, SO_REUSEADDR, 1);

build up my socket address
my $own_addr = sockaddr_in($server_port, INADDR_ANY);
bind($server, $own_addr);

establish a queue for incoming connections
listen($server, SOMAXCONN);

accept and process connections
while (accept(my $client, $server)) {
 # do something with new client connection in $client
} continue {
 close $client;
}

close($server);

The client doesn’t need to bind to any address, but the server does. We’ve specified
its address as INADDR_ANY, which means that clients can connect from any available
network interface. If you want to sit on a particular interface (like the external
side of a gateway or firewall machine), use that interface’s real address instead.
(Clients can also do this, but they rarely need to.)

If you want to know which machine connected to you, call getpeername on the
client connection. This returns an IP address, which you’ll have to translate into
a name on your own (if you can):

use Socket;
$other_end = getpeername($client)
 || die "Couldn't identify other end: $!\n";
($port, $iaddr) = unpack_sockaddr_in($other_end);
$actual_ip = inet_ntoa($iaddr);
$claimed_hostname = gethostbyaddr($iaddr, AF_INET);

This is trivially spoofable because the owner of that IP address can set up her
reverse tables to say anything she wants. For a small measure of additional con-
fidence, translate back the other way again:

548 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

@name_lookup = gethostbyname($claimed_hostname)
 || die "Could not reverse $claimed_hostname: $!\n";
@resolved_ips = map { inet_ntoa($_) } @name_lookup[4 .. $#name_lookup];
$might_spoof = !grep { $actual_ip eq $_ } @resolved_ips;

Once a client connects to your server, your server can do I/O both to and from
that client handle. But while the server is so engaged, it can’t service any further
incoming requests from other clients. To avoid getting locked down to just one
client at a time, many servers immediately fork a clone of themselves to handle
each incoming connection. (Others fork in advance, or multiplex I/O between
several clients using the select syscall.)

REQUEST:
 while (accept(my $client => $server)) {
 if ($kidpid = fork) {
 close $client; # parent closes unused handle
 next REQUEST;
 }
 defined($kidpid) || die "cannot fork: $!";

 close $server; # child closes unused handle

 $client–>autoflush(1);

 # per–connection child code does I/O with Client handle
 $input = <$client>;
 print $client "output\n"; # or STDOUT, same thing

 open(STDIN, "<&", $client) || die "can't dup client: $!";
 open(STDOUT, ">&", $client) || die "can't dup client: $!";
 open(STDERR, ">&", $client) || die "can't dup client: $!";

 # run the calculator, just as an example
 system("bc –l"); # or whatever you'd like, so long as
 # it doesn't have shell escapes!
 print "done\n"; # still to client

 close $client;
 exit; # don't let the child back to accept!
 }

This server clones off a child with fork for each incoming request. That way it
can handle many requests at once, as long as you can create more processes. (You
might want to limit this.) Even if you don’t fork, the listen will allow up to
SOMAXCONN (usually five or more) pending connections. Each connection uses up
some resources, although not as much as a process. Forking servers have to be
careful about cleaning up after their expired children (called “zombies” in Unix-
speak) because otherwise they’d quickly fill up your process table. The REAPER

Sockets | 549

www.it-ebooks.info

http://www.it-ebooks.info/

code discussed in the earlier section “Signals” on page 518 will take care of that
for you, or you may be able to assign $SIG{CHLD} = "IGNORE".

Before running another command, we connect the standard input and output
(and error) up to the client connection. This way any command that reads from
STDIN and writes to STDOUT can also talk to the remote machine. Without the
reassignment, the command couldn’t find the client handle—which by default
gets closed across the exec boundary, anyway.

When you write a networking server, we strongly suggest that you use the –T
switch to enable taint checking even if you aren’t running setuid or setgid. This
is always a good idea for servers and any other program that runs on behalf of
someone else (like all CGI scripts), because it lessens the chances that people
from the outside will be able to compromise your system. See the section “Han-
dling Insecure Data” on page 648 in Chapter 20 for much more about all this.

One additional consideration when writing Internet programs: many protocols
specify that the line terminator should be CRLF, which can be specified various
ways: "\r\n",11 "\015\12", or "\xd\xa", or even chr(13).chr(10). Many Internet
programs will in fact accept a bare "\012" as a line terminator, but that’s because
Internet programs usually try to be liberal in what they accept and strict in what
they emit. (Now if only we could get people to do the same…)

Message Passing
As we mentioned earlier, UDP communication involves much lower overhead but
provides no reliability, since there are no promises that messages will arrive in a
proper order—or even that they will arrive at all. UDP is often said to stand for
Unreliable Datagram Protocol.

Still, UDP offers some advantages over TCP, including the ability to broadcast or
multicast to a whole bunch of destination hosts at once (usually on your local
subnet). If you find yourself getting overly concerned about reliability and start-
ing to build checks into your message system, then you probably should just use
TCP to start with. True, it costs more to set up and tear down a TCP connection,
but if you can amortize that over many messages (or one long message), it doesn’t
much matter.

11. Except on prehistoric, pre-Unix Macs that nobody we know of still uses.

550 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

Anyway, here’s an example of a UDP program. It contacts the UDP time port of
the machines given on the command line, or everybody it can find using the
universal broadcast address if no arguments were supplied.12 Not all machines
have a time server enabled, especially across firewall boundaries, but those that
do will send you back a 4-byte integer packed in network byte order that repre-
sents what time that machine thinks it is. The time returned, however, is in the
number of seconds since 1900. You have to subtract the number of seconds
between 1900 and 1970 to feed that time to the localtime or gmtime conversion
functions.

#!/usr/bin/perl
clockdrift – compare other systems' clocks with this one
without arguments, broadcast to anyone listening.
wait one–half second for an answer.

use v5.14;
use warnings;
use strict;
use Socket;

unshift(@ARGV, inet_ntoa(INADDR_BROADCAST))
 unless @ARGV;

socket(my $msgsock, PF_INET, SOCK_DGRAM, getprotobyname("udp"))
 || die "socket: $!";

Some borked machines need this. Shouldn't hurt anyone else.
setsockopt($msgsock, SOL_SOCKET, SO_BROADCAST, 1)
 || die "setsockopt: $!";

my $portno = getservbyname("time", "udp")
 || die "no udp time port";

for my $target (@ARGV) {
 print "Sending to $target:$portno\n";
 my $destpaddr = sockaddr_in($portno, inet_aton($target));
 send($msgsock, "x", 0, $destpaddr)
 || die "send: $!";
}

daytime service returns 32–bit time in seconds since 1900
my $FROM_1900_TO_EPOCH = 2_208_988_800;
my $time_fmt = "N"; # and it does so in this binary format
my $time_len = length(pack($time_fmt, 1)); # any number's fine

my $inmask = q(); # string to store the fileno bits for select
vec($inmask, fileno($msgsock), 1) = 1;

12. If that doesn’t work, run ifconfig –a to find the proper local broadcast address.

Sockets | 551

www.it-ebooks.info

http://www.it-ebooks.info/

wait only half a second for input to show up
while (select(my $outmask = $inmask, undef, undef, 0.5)) {
 defined(my $srcpaddr = recv($msgsock, my $bintime, $time_len, 0))
 || die "recv: $!";
 my($port, $ipaddr) = sockaddr_in($srcpaddr);
 my $sendhost = sprintf "%s [%s]",
 gethostbyaddr($ipaddr, AF_INET) || "UNKNOWN",
 inet_ntoa($ipaddr);
 my $delta = unpack($time_fmt, $bintime) –
 $FROM_1900_TO_EPOCH – time();
 print "Clock on $sendhost is $delta seconds ahead of this one.\n";
}

552 | Chapter 15: Interprocess Communication

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 16

Compiling

If you came here looking for a Perl compiler, you may be surprised to discover
that you already have one—your perl program (typically /usr/bin/perl) already
contains a Perl compiler. That might not be what you were thinking, and if it
wasn’t, you may be pleased to know that we do also provide code generators
(which some well-meaning folks call “compilers”), and we’ll discuss those to-
ward the end of this chapter. But first we want to talk about what we think of as
The Compiler. Inevitably there’s going to be a certain amount of low-level detail
in this chapter that some people will be interested in and some people will not.
If you find that you’re not, think of it as an opportunity to practice your speed-
reading skills.

Imagine that you’re a conductor who’s ordered the score for a large orchestral work.
When the box of music arrives, you find several dozen booklets, one for each
member of the orchestra with just his part in it. But, curiously, your master copy
with all the parts is missing. Even more curiously, the parts you do have are
written out using plain English instead of musical notation. Before you can put
together a program for performance, or even give the music to your orchestra to
play, you’ll first have to translate the prose descriptions into the normal system
of notes and bars. Then you’ll need to compile the individual parts into one giant
score so that you can get an idea of the overall program.

Similarly, when you hand the source code of your Perl script over to perl to execute,
it is no more useful to the computer than the English description of the symphony
was to the musicians. Before your program can run, Perl needs to compile1 these
English-looking directions into a special symbolic representation. Your program
still isn’t running, though, because the compiler only compiles. Like the con-
ductor’s score, even after your program has been converted to an instruction

1. Or translate, or transform, or transfigure, or transmute, or transmogrify.

553

www.it-ebooks.info

http://www.it-ebooks.info/

format suitable for interpretation, it still needs an active agent to interpret those
instructions.

The Life Cycle of a Perl Program
You can break up the life cycle of a Perl program into four distinct phases, each
with separate stages of its own. The first and the last are the most interesting and
the middle two are optional. The stages are depicted in Figure 16-1.

Figure 16-1. The life cycle of a Perl program

1. The Compilation Phase
During phase 1, the compile phase, the Perl compiler converts your program
into a data structure called a parse tree. Along with the standard parsing
techniques, Perl employs a much more powerful one: it uses BEGIN blocks
to guide further compilation. BEGIN blocks are handed off to the interpreter
to be run as soon as they are parsed, which effectively runs them in FIFO
order (first in, first out). This includes any use and no declarations; these are
really just BEGIN blocks in disguise. UNITCHECK blocks are executed as soon as
their compilation unit is finished being compiled; these are used for per-unit
initialization. Any CHECK, INIT, and END blocks are scheduled by the compiler
for delayed execution.

Lexical declarations are noted, but assignments to them are not executed.
All eval BLOCKs, s///e constructs, and noninterpolated regular expressions
are compiled here, and constant expressions are preevaluated. The compiler
is now done, unless it gets called back into service later. At the end of this
phase, the interpreter is again called up to execute any scheduled CHECK
blocks in LIFO order (last in, first out). The presence or absence of a
CHECK block determines whether we next go to phase 2 or skip over to phase
4.

554 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

2. The Code Generation Phase (optional)
CHECK blocks are installed by code generators, so this optional phase occurs
when you explicitly use one of the code generators (described later in “Code
Generators” on page 565). These convert the compiled (but not yet run)
program into either C source code or serialized Perl bytecodes—a sequence
of values expressing internal Perl instructions. If you choose to generate C
source code, it can eventually produce a file called an executable image in
native machine language.2 At this point, your program goes into suspended
animation. If you made an executable image, you can go directly to phase
4; otherwise, you need to reconstitute the freeze-dried bytecodes in phase 3.

3. The Parse Tree Reconstruction Phase (optional)
To reanimate the program, its parse tree must be reconstructed. This phase
exists only if code generation occurred and you chose to generate bytecode.
Perl must first reconstitute its parse trees from that bytecode sequence before
the program can run. Perl does not run directly from the bytecodes; that
would be slow.

4. The Execution Phase
Finally, what you’ve all been waiting for: running your program. Hence, this
is also called the run phase. The interpreter takes the parse tree (which it got
either directly from the compiler or indirectly from code generation and
subsequent parse tree reconstruction) and executes it. (Or, if you generated
an executable image file, it can be run as a standalone program since it con-
tains an embedded Perl interpreter.)

At the start of this phase, before your main program gets to run, all sched-
uled INIT blocks are executed in FIFO order. Then your main program is
run. The interpreter can call back into the compiler as needed upon en-
countering an eval STRING, a do FILE or require statement, an s///ee con-
struct, or a pattern match with an interpolated variable that is found to
contain a legal code assertion.

When your main program finishes, any delayed END blocks are finally exe-
cuted, this time in LIFO order. The very first one seen will execute last, and
then you’re done. END blocks are skipped only if you exec or your process is
blown away by an uncaught catastrophic error. Ordinary exceptions are not
considered catastrophic.

Now we’ll discuss these phases in greater detail, and in a different order.

2. Your original script is an executable file, too, but it’s not machine language, so we don’t call it an image.
An image file is called that because it’s a verbatim copy of the machine codes your CPU knows how to
execute directly.

The Life Cycle of a Perl Program | 555

www.it-ebooks.info

http://www.it-ebooks.info/

Compiling Your Code
Perl is always in one of two modes of operation: either it is compiling your pro-
gram, or it is executing it—never both at the same time. Throughout this book,
we refer to certain events as happening at compile time, or we say that “the Perl
compiler does this and that”. At other points, we mention that something else
occurs at runtime, or that “the Perl interpreter does this and that”. Although you
can get by with thinking of both the compiler and interpreter as simply “Perl”,
understanding which of these two roles Perl is playing at any given point is es-
sential to understanding why many things happen as they do. The perl executable
implements both roles: first the compiler, then the interpreter. (Other roles are
possible, too; perl is also an optimizer and a code generator. Occasionally, it’s even
a trickster—but all in good fun.)

It’s also important to understand the distinction between compile phase and
compile time, and between run phase and runtime. A typical Perl program gets
one compile phase and then one run phase. A “phase” is a large-scale concept.
But compile time and runtime are small-scale concepts. A given compile phase
does mostly compile-time stuff, but it also does some runtime stuff via BEGIN
blocks. A given run phase does mostly runtime stuff, but it can do compile-time
stuff through operators like eval STRING.

In the typical course of events, the Perl compiler reads through your entire pro-
gram source before execution starts. This is when Perl parses the declarations,
statements, and expressions to make sure they’re syntactically legal.3 If it finds
a syntax error, the compiler attempts to recover from the error so it can report
any other errors later in the source. Sometimes this works, and sometimes it
doesn’t; syntax errors have a noisy tendency to trigger a cascade of false alarms.
Perl bails out in frustration after about 10 errors.

In addition to the interpreter that processes the BEGIN blocks, the compiler pro-
cesses your program with the connivance of three notional agents. The lexer scans
for each minimal unit of meaning in your program. These are sometimes called
lexemes, but you’ll more often hear them referred to as tokens in texts about pro-
gramming languages. The lexer is sometimes called a tokener or a scanner, and
what it does is sometimes called lexing or tokenizing. The parser then tries to
make sense out of groups of these tokens by assembling them into larger con-
structs, such as expressions and statements, based on the grammar of the Perl
language. The optimizer rearranges and reduces these larger groupings into more

3. No, there’s no formal syntax diagram like a BNF, but you’re welcome to peruse the perly.y file in the Perl
source tree, which contains the yacc(1) grammar Perl uses. We recommend that you stay out of the lexer,
which has been known to induce eating disorders in lab rats.

556 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

efficient sequences. It picks its optimizations carefully, not wasting time on
marginal optimizations, because the Perl compiler has to be blazing fast when
used as a load-and-go compiler.

This doesn’t happen in independent stages but all at once with a lot of cross talk
between the agents. The lexer occasionally needs hints from the parser to know
which of several possible token types it’s looking at. (Oddly, lexical scope is one
of the things the lexical analyzer doesn’t understand, because that’s the other
meaning of “lexical”.) The optimizer also needs to keep track of what the parser
is doing, because some optimizations can’t happen until the parse has reached a
certain point, like finishing an expression, statement, block, or subroutine.

You may think it odd that the Perl compiler does all these things at once instead
of one after another. However, it’s really just the same messy process you go
through to understand natural language on the fly, while you’re listening to it or
reading it. You don’t wait until the end of a chapter to figure out what the first
sentence meant. Consider the correspondences listed in Table 16-1.

Table 16-1. Corresponding terms in computer languages and natural languages

Computer Language Natural Language

Character Letter

Token Morpheme

Term Word

Expression Phrase

Statement Sentence

Block Paragraph

File Chapter

Program Story

Assuming the parse goes well, the compiler deems your input a valid story, er,
program. If you use the –c switch when running your program, it prints out a
“syntax OK” message and exits. Otherwise, the compiler passes the fruits of its
efforts on to other agents. These “fruits” come in the form of a parse tree. Each
fruit on the tree—or node, as it’s called—represents one of Perl’s internal op-
codes, and the branches on the tree represent that tree’s historical growth pattern.
Eventually, the nodes will be strung together linearly, one after another, to in-
dicate the execution order in which the runtime system will visit those nodes.

Each opcode is the smallest unit of executable instruction that Perl can think
about. You might see an expression like $a = –($b + $c) as one statement, but

Compiling Your Code | 557

www.it-ebooks.info

http://www.it-ebooks.info/

Perl thinks of it as six separate opcodes. Laid out in a simplified format, the parse
tree for that expression would look like Figure 16-2. The numbers represent the
visitation order that the Perl runtime system will eventually follow.

Figure 16-2. Opcode visitation order of $a = −($b + $c)

Perl isn’t a one-pass compiler as some might imagine. (One-pass compilers are
great at making things easy for the computer and hard for the programmer.) It’s
really a multipass, optimizing compiler consisting of at least three different log-
ical passes that are interleaved in practice. Passes 1 and 2 run alternately as the
compiler repeatedly scurries up and down the parse tree during its construction;
pass 3 happens whenever a subroutine or file is completely parsed. Here are those
passes:

Pass 1: Bottom-up Parsing
During this pass, the parse tree is built up by the yacc(1) parser using the
tokens it’s fed from the underlying lexer (which could be considered another
logical pass in its own right). Bottom-up just means that the parser knows
about the leaves of the tree before it knows about its branches and root. It
really does figure things out from bottom to top in Figure 16-2, since we
drew the root at the top, in the idiosyncratic fashion of computer scientists
(and linguists).

As each opcode node is constructed, per-opcode sanity checks verify correct
semantics, such as the correct number and types of arguments used to call
built-in functions. As each subsection of the tree takes shape, the optimizer
considers what transformations it can apply to the entire subtree now be-
neath it. For instance, once it knows that a list of values is being fed to a
function that takes a specific number of arguments, it can throw away the

558 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

opcode that records the number of arguments for functions that take a vary-
ing number of arguments. A more important optimization, known as con-
stant folding, is described later in this section.

This pass also constructs the node visitation order used later for execution,
which is a really neat trick because the first place to visit is almost never the
top node. The compiler makes a temporary loop of opcodes, with the top
node pointing to the first opcode to visit. When the top-level opcode is
incorporated into something bigger, that loop of opcodes is broken, only to
make a bigger loop with the new top node. Eventually the loop is broken
for good when the start opcode gets poked into some other structure such
as a subroutine descriptor. The subroutine caller can still find that first op-
code despite its being way down at the bottom of the tree, as it is in Fig-
ure 16-2. There’s no need for the interpreter to recurse back down the parse
tree to figure out where to start.

Pass 2: Top-down Optimizer
A person reading a snippet of Perl code (or of English code, for that matter)
cannot determine the context without examining the surrounding lexical
elements. Sometimes you can’t decide what’s really going on until you have
more information. Don’t feel bad, though, because you’re not alone: neither
can the compiler. In this pass, the compiler descends back down the subtree
it’s just built to apply local optimizations, the most notable of which is
context propagation. The compiler marks subjacent nodes with the appro-
priate contexts (void, scalar, list, reference, or lvalue) imposed by the current
node. Unwanted opcodes are nulled out but not deleted, because it’s now
too late to reconstruct the execution order. We’ll rely on the third pass to
remove them from the provisional execution order determined by the first
pass.

Pass 3: Peephole Optimizer
Certain units of code have their own storage space in which they keep lexi-
cally scoped variables. (Such a space is called a scratchpad in Perl lingo.)
These units include eval STRINGs, subroutines, and entire files. More impor-
tantly from the standpoint of the optimizer, they each have their own entry
point, which means that while we know the execution order from here on,
we can’t know what happened before because the construct could have been
called from anywhere. So when one of these units is done being parsed, Perl
runs a peephole optimizer on that code. Unlike the previous two passes,
which walked the branch structure of the parse tree, this pass traverses the
code in linear execution order, since this is basically the last opportunity to

Compiling Your Code | 559

www.it-ebooks.info

http://www.it-ebooks.info/

do so before we cut the opcode list off from the parser. Most optimizations
were already performed in the first two passes, but some can’t be.

Assorted late-term optimizations happen here, including stitching together
the final execution order by skipping over nulled out opcodes, and recog-
nizing when various opcode juxtapositions can be reduced to something
simpler. The recognition of chained string concatenations is one important
optimization, since you’d really like to avoid copying a string back and forth
each time you add a little bit to the end. This pass doesn’t just optimize; it
also does a great deal of “real” work: trapping barewords, generating warn-
ings on questionable constructs, checking for code unlikely to be reached,
resolving pseudohash keys, and looking for subroutines called before their
prototypes had been compiled.

Pass 4: Code Generation
This pass is optional; it isn’t used in the normal scheme of things. But if any
of the three code generators—B::Bytecode, B::C, and B::CC—are invoked,
the parse tree is accessed one final time. The code generators emit either
serialized Perl bytecodes used to reconstruct the parse tree later or literal C
code representing the state of the compile-time parse tree.

Generation of C code comes in two different flavors. B::C simply reconstructs
the parse tree and runs it using the usual runops loop that Perl itself uses
during execution. B::CC produces a linearized and optimized C equivalent
of the runtime code path (which resembles a giant jump table) and executes
that instead.

During compilation, Perl optimizes your code in many, many ways. It rearranges
code to make it more efficient at execution time. It deletes code that can never
be reached during execution, like an if (0) block, or the elsifs and the else in
an if (1) block. If you use lexically typed variables declared with my ClassName
$var or our ClassName $var, and the ClassName package was set up with the
fields pragma, accesses to constant fields from the underlying pseudohash are
typo-checked at compile time and converted into array accesses instead. If you
supply the sort operator with a simple enough comparison routine, such as {$a
<=> $b} or {$b cmp $a}, this is replaced by a call to compiled C code.

Perl’s most dramatic optimization is probably the way it resolves constant expres-
sions as soon as possible. For example, consider the parse tree shown in Fig-
ure 16-2. If nodes 1 and 2 had both been literals or constant functions, nodes 1
through 4 would have been replaced by the result of that computation, which
would look something like Figure 16-3.

560 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

This is called constant folding. Constant folding isn’t limited to simple cases such
as turning 2**10 into 1024 at compile time. It also resolves function calls—both
built-ins and user-declared subroutines that meet the criteria from the section
“Inlining Constant Functions” in Chapter 7. Reminiscent of FORTRAN com-
pilers’ notorious knowledge of their own intrinsic functions, Perl also knows
which of its own built-ins to call during compilation. That’s why if you try to
take the log of 0.0 or the sqrt of a negative constant, you’ll incur a compilation
error, not a runtime error, and the interpreter is never run at all.4 Even arbitrarily
complicated expressions are resolved early, sometimes triggering the deletion of
complete blocks such as the one here:

if (2 * sin(1)/cos(1) < 3 && somefn()) { whatever() }

No code is generated for what can never be evaluated. Because the first part is
always false, neither somefn nor whatever can ever be called. (So don’t expect to
goto labels inside that block, because it won’t even exist at runtime.) If somefn
were an inlinable constant function, then even switching the evaluation order
like this:

if (somefn() && 2 * sin(1)/cos(1) < 3) { whatever() }

wouldn’t change the outcome, since the entire expression still resolves at compile
time. If whatever were inlinable, it wouldn’t be called at runtime, nor even during
compilation; its value would just be inserted as though it were a literal constant.
You would then incur a warning about a “Useless use of a constant in void con-
text”. This might surprise you if you didn’t realize it was a constant. However,
if whatever were the last statement evaluated in a function called in a nonvoid
context (as determined by the optimizer), you wouldn’t see the warning.

You can see the final result of the constructed parse tree after all optimization
stages with perl –Dx. (The –D switch requires a special debugging-enabled build
of Perl). Also see the B::Deparse module in the section “Code Development
Tools” on page 567.

Figure 16-3. Constant folding

4. Actually, we’re oversimplifying here. The interpreter does get run, because that’s how the constant folder
is implemented. But it is run immediately at compile time, similar to how BEGIN blocks are executed.

Compiling Your Code | 561

www.it-ebooks.info

http://www.it-ebooks.info/

All in all, the Perl compiler works hard (but not too hard) to optimize code so
that, come runtime, overall execution is sped up. It’s about time to get your
program running, so let’s do that now.

Executing Your Code
To the first approximation, SPARC programs only run on SPARC machines, Intel
programs only run on Intel machines, and Perl programs only run on Perl ma-
chines. A Perl machine possesses those attributes that a Perl program would find
ideal in a computer: memory that is automatically allocated and deallocated;
fundamental data types that are dynamic strings, arrays, and hashes, and have
no size limits; and systems that all behave pretty much the same way. The job of
the Perl interpreter is to make whatever computer it happens to be running on
appear to be one of these idealistic Perl machines.

This fictitious machine presents the illusion of a computer specially designed to
do nothing but run Perl programs. Each opcode produced by the compiler is a
fundamental command in this emulated instruction set. Instead of a hardware
program counter, the interpreter just keeps track of the current opcode to exe-
cute. Instead of a hardware stack pointer, the interpreter has its own virtual stack.
This stack is very important because the Perl virtual machine (which we refuse
to call a PVM) is a stack-based machine. Perl opcodes are internally called PP
codes (short for “push-pop codes”) because they manipulate the interpreter’s vir-
tual stack to find all operands, process temporary values, and store all results.

If you’ve ever programmed in Forth or PostScript, or used an HP scientific cal-
culator with RPN (“Reverse Polish Notation”) entry, you know how a stack ma-
chine works. Even if you haven’t, the concept is simple: to add 3 and 4, you do
things in the order 3 4 + instead of the more conventional 3 + 4. What this means
in terms of the stack is that you push 3 and then 4 onto the stack, and + then pops
both arguments off the stack, adds them, and pushes 7 back onto the stack, where
it will sit until you do something else with it.

Compared with the Perl compiler, the Perl interpreter is a straightforward, almost
boring program. All it does is step through the compiled opcodes, one at a time,
and dispatch them to the Perl runtime environment—that is, the Perl virtual
machine. It’s just a wad of C code, right?

Actually, it’s not boring at all. A Perl virtual machine keeps track of a great deal
of dynamic context on your behalf so that you don’t have to. Perl maintains quite
a few stacks, which you don’t have to understand, but which we’ll list here anyway
just to impress you:

562 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

operand stack
That’s the stack we already talked about.

save stack
Where localized values are saved pending restoration. Many internal routines
also localize values without your knowing it.

scope stack
The lightweight dynamic context that controls when the save stack should
be “popped”.

context stack
The heavyweight dynamic context; who called whom to get where you are
now. The caller function traverses this stack. Loop-control functions scan
this stack to find out which loop to control. When you peel back the context
stack, the scope stack gets peeled back appropriately, which restores all your
local variables from the save stack, even if you left the earlier context by
nefarious methods such as raising an exception and longjmp(3)ing out.

jumpenv stack
The stack of longjmp(3) contexts that allows us to raise exceptions or exit
expeditiously.

return stack
Where we came from when we entered this subroutine.

mark stack
Where the current variadic argument list on the operand stack starts.

recursive lexical pad stacks
Where the lexical variables and other “scratch register” storage is kept when
subroutines are called recursively.

And, of course, there’s the C stack on which all the C variables are stored. Perl
actually tries to avoid relying on C’s stack for the storage of saved values, since
longjmp(3) bypasses the proper restoration of such values.

All this is to say that the usual view of an interpreter, a program that interprets
another program, is really woefully inadequate to describe what’s going on here.
Yes, there’s some C code implementing some opcodes, but when we say “inter-
preter”, we mean something more than that, in the same way that when we say
“musician”, we mean something more than a set of DNA instructions for turning
notes into sounds. Musicians are real, live organisms and have “state”. So do
interpreters.

Executing Your Code | 563

www.it-ebooks.info

http://www.it-ebooks.info/

Specifically, all this dynamic and lexical context, along with the global symbol
tables, plus the parse trees, plus a thread of execution, is what we call an inter-
preter. As a context for execution, an interpreter really starts its existence even
before the compiler starts, and it can run in rudimentary form even as the com-
piler is building up the interpreter’s context. In fact, that’s precisely what’s hap-
pening when the compiler calls into the interpreter to execute BEGIN blocks and
such. And the interpreter can turn around and use the compiler to build itself up
further. Every time you define another subroutine or load another module, the
particular virtual Perl machine that we call an interpreter is redefining itself. You
can’t really say that either the compiler or the interpreter is in control, because
they’re cooperating to control the bootstrap process we commonly call “running
a Perl script”. It’s like bootstrapping a child’s brain. Is it the DNA doing it or is
it the neurons? A little of both, we think, with some input from external pro-
grammers.

It’s possible to run multiple interpreters in the same process; they may or may not
share parse trees, depending on whether they were started by cloning an existing
interpreter or by building a new interpreter from scratch. It’s also possible to run
multiple threads in a single interpreter, in which case they share not only parse
trees but also global symbols.

But most Perl programs use only a single Perl interpreter to execute their compiled
code. And while you can run multiple, independent Perl interpreters within one
process, the current API for this is only accessible from C. Each individual Perl
interpreter serves the role of a completely separate process, but doesn’t cost as
much to create as a whole new process does. That’s how Apache’s mod_perl
extension gets such great performance: when you launch a CGI script under
mod_perl, that script has already been compiled into Perl opcodes, eliminating
the need for recompilation—but, more importantly, eliminating the need to start
a new process, which is the real bottleneck. Apache initializes a new Perl inter-
preter in an existing process and hands that interpreter the previously compiled
code to execute. Of course, there’s much more to it than that—there always is.

Many other applications such as nvi, vim, and innd can embed Perl interpreters;
we can’t hope to list them all here. There are a number of commercial products
that don’t even advertise that they have embedded Perl engines. They just use it
internally because it gets their job done in style.

Compiler Backends
So if Apache can compile a Perl program now and execute it later, why can’t you?
Apache and other programs that contain embedded Perl interpreters have it easy

564 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

—they never store the parse tree to an external file. If you’re content with that
approach, and don’t mind using the C API to get at it, you can do the same thing.

If you don’t want to go that route, or have other needs, then there are a few options
available. Instead of feeding the opcode output from the Perl compiler immedi-
ately into a Perl interpreter, you can invoke any of several alternative backends
instead. These backends can serialize and store the compiled opcodes to an ex-
ternal file or even convert them into a couple different flavors of C code.

Please be aware that the code generators are all extremely experimental utilities
that shouldn’t be expected to work in a production environment. In fact, they
shouldn’t even be expected to work in a nonproduction environment except
maybe once in a blue moon. Now that we’ve set your expectations low enough
that any success at all will necessarily surpass them, it’s safe to tell you how the
backends work.

Some of the backend modules are code generators, like B::Bytecode, B::C, and
B::CC. Others are really code-analysis and debugging tools, like B::Deparse,
B::Lint, and B::Xref. Beyond those backends, the standard release includes sev-
eral other low-level modules of potential interest to would-be authors of Perl
code-development tools. Other backend modules can be found on CPAN, in-
cluding (as of this writing) B::Fathom, B::Graph, and B::Size.

When you’re using the Perl compiler for anything other than feeding the inter-
preter, the O module (that is, using the O.pm file) stands between the compiler
and assorted backend modules. You don’t call the backends directly; instead,
you call the middle end, which in turn calls the designated backend. So if you
had a module called B::Backend, you would invoke it on a given script this way:

% perl –MO=Backend SCRIPTNAME

Some backends take options, specified as:

% perl –MO=Backend,OPTS SCRIPTNAME

Some backends already have their own frontends to invoke their middle ends for
you so you don’t have to remember their M.O. In particular, perlcc(1) invokes
that code generator, which can be cumbersome to fire up.

Code Generators
The three current backends that convert Perl opcodes into some other format are
all emphatically experimental. (Yes, we said this before, but we don’t want you
to forget.) Even when they happen to produce output that runs correctly, the
resulting programs may take more disk space, more memory, and more CPU

Code Generators | 565

www.it-ebooks.info

http://www.it-ebooks.info/

time than they would ordinarily. This is an area of ongoing research and devel-
opment. Things will get better.

The Bytecode Generator
The B::Bytecode module writes the parse tree’s opcodes out in a platform-inde-
pendent encoding. You can take a Perl script compiled down to bytecodes and
copy that to any other machine with Perl installed on it.

The standard but currently experimental perlcc(1) command knows how to con-
vert Perl source code into a byte-compiled Perl program. All you have to do is:

% perlcc –B –o pbyscript srcscript

And now you should be able to directly “execute” the resulting pbyscript. The
start of that file looks somewhat like this:

#!/usr/bin/perl
use ByteLoader 0.03;
^C^@^E^A^C^@^@^@^A^F^@^C^@^@^@^B^F^@^C^@^@^@^C^F^@^C^@^@^@
B^@^@^@^H9^A8M–^?M–^?M–^?M–^?7M–^?M–^?M–^?M–^?6^@^@^@^A6^@
^G^D^D^@^@^@^KR^@^@^@^HS^@^@^@^HV^@M–2<W^FU^@^@^@^@X^Y@Z^@
...

There you find a small script header followed by purely binary data. This may
seem like deep magic, but its dweomer, er, dwimmer is at most a minor one. The
ByteLoader module uses a technique called a source filter to alter the source code
before Perl gets a chance to see it. A source filter is a kind of preprocessor that
applies to everything below it in the current file. Instead of being limited to sim-
plistic transformations the way macro processors like cpp(1) and m4(1) are, here
there are no constraints. Source filters have been used to augment Perl’s syntax,
to compress or encrypt source code, even to write Perl programs in Latin. E
perlibus unicode; cogito, ergo substr; carp dbm, et al. Er, caveat scriptor.

The ByteLoader module is a source filter that knows how to disassemble the se-
rialized opcodes produced by B::Bytecode to reconstruct the original parse tree.
The reconstituted Perl code is spliced into the current parse tree without using
the compiler. When the interpreter hits those opcodes, it just executes them as
though they’d been there waiting for it all along.

The C Code Generators
The remaining code generators, B::C and B::CC, both produce C code instead of
serialized Perl opcodes. The code they generate is far from readable, and if you
try to read it you’ll just go blind. It’s not something you can use to plug little
translated Perl-to-C bits into a larger C program.

566 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

The B::C module just writes out the C data structures needed to recreate the entire
Perl runtime environment. You get a dedicated interpreter with all the compiler-
built data structures preinitialized. In some senses, the code generated is like
what B::Bytecode produces. Both are a straight translation of the opcode trees
that the compiler built, but where B::Bytecode lays them out in symbolic form
to be recreated later and plugged into a running Perl interpreter, B::C lays those
opcodes down in C. When you compile this C code with your C compiler and
link in the Perl library, the resulting program won’t need a Perl interpreter in-
stalled on the target system. (It might need some shared libraries, though, if you
didn’t link everything statically.) However, this program isn’t really any different
than the regular Perl interpreter that runs your script. It’s just precompiled into
a standalone executable image.

The B::CC module, however, tries to do more than that. The beginning of the C
source file it generates looks pretty much like what B::C produced5 but, eventu-
ally, any similarity ends. In the B::C code, you have a big opcode table in C that’s
manipulated just as the interpreter would do on its own, whereas the C code
generated by B::CC is laid out in the order corresponding to the runtime flow of
your program. It even has a C function corresponding to each function in your
program. Some amount of optimization based on variable types is done; a few
benchmarks can run twice as fast as in the standard interpreter. This is the most
ambitious of the current code generators, the one that holds the greatest promise
for the future. By no coincidence, it is also the least stable of the three.

Computer science students looking for graduate thesis projects need look no fur-
ther. There are plenty of diamonds in the rough waiting to be polished off here.

Code Development Tools
The O module has many interesting Modi Operandi beyond feeding the exasper-
atingly experimental code generators. By providing relatively painless access to
the Perl compiler’s output, this module makes it easy to build other tools that
need to know everything about a Perl program.

The B::Lint module is named after lint(1), the C program verifier. It inspects
programs for questionable constructs that often trip up beginners but don’t nor-
mally trigger warnings. Call the module directly:

% perl –MO=Lint,all myprog

5. But, then, so does everything once you’ve gone blind. Didn’t we warn you not to peek?

Code Development Tools | 567

www.it-ebooks.info

http://www.it-ebooks.info/

Only a few checks are currently defined, such as using an array in an implicit
scalar context, relying on default variables, and accessing another package’s
(nominally private) identifiers that start with _. See B::Lint(3) for details. You’ll
probably find that most Perlers who lint their programs use Perl::Critic instead.
It’s a static analysis tool built on top of PPI, and it does a pretty good job.

The B::Xref module generates cross-reference listings of the declaration and use
of all variables (both global and lexically scoped), subroutines, and formats in a
program, broken down by file and subroutine. Call the module this way:

% perl –MO=Xref myprog > myprog.pxref

For instance, here’s a partial report:

Subroutine parse_argv
 Package (lexical)
 $on i113, 114
 $opt i113, 114
 %getopt_cfg i107, 113
 @cfg_args i112, 114, 116, 116
 Package Getopt::Long
 $ignorecase 101
 &GetOptions &124
 Package main
 $Options 123, 124, 141, 150, 165, 169
 %$Options 141, 150, 165, 169
 &check_read &167
 @ARGV 121, 157, 157, 162, 166, 166

This shows that the parse_argv subroutine had four lexical variables of its own;
it also accessed global identifiers from both the main package and from
Getopt::Long. The numbers are the lines where that item was used: a leading i
indicates that the item was first introduced at the following line number, and a
leading & means a subroutine was called there. Dereferences are listed separately,
which is why both $Options and %$Options are shown.

The B::Deparse is a pretty printer that can demystify Perl code and help you
understand what transformations the optimizer has taken with your code. For
example, this shows what defaults Perl uses for various constructs:

% perl –MO=Deparse –ne 'for (1 .. 10) { print if –t }'
LINE: while (defined($_ = <ARGV>)) {
 foreach $_ (1 .. 10) {
 print $_ if –t STDIN;
 }
}

The –p switch adds parentheses so you can see Perl’s idea of precedence:

568 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

% perl –MO=Deparse,–p –e 'print $a ** 3 + sqrt(2) / 10 ** –2 ** $c'
print((($a ** 3) + (1.4142135623731 / (10 ** (–(2 ** $c))))));

You can use –q to see what primitives interpolated strings are compiled into:

% perl –MO=Deparse,–q –e '"A $name and some @ARGV\n"'
'A ' . $name . ' and some ' . join($", @ARGV) . "\n";

And this shows how Perl really compiles a three-part for loop into a while loop:

% perl –MO=Deparse –e 'for ($i=0;$i<10;$i++) { $x++ }'
$i = 0;
while ($i< 10) {
 ++$x;
}
continue {
 ++$i
}

You could even call B::Deparse on a Perl bytecode file produced by perlcc –b, and
have it decompile that binary file for you. Serialized Perl opcodes may be a tad
tough to read, but strong encryption they are not.

Avant-Garde Compiler, Retro Interpreter
There’s a right time to think about everything; sometimes that time is beforehand,
and sometimes it’s after. Sometimes it’s somewhere in the middle. Perl doesn’t
presume to know when it’s the right time to think, so it gives the programmer a
number of options for telling it when to think. Other times it knows that some
sort of thinking is necessary but doesn’t have any idea what it ought to think, so
it needs ways of asking your program. Your program answers these kinds of
questions by defining subroutines with names appropriate to what Perl is trying
to find out.

Not only can the compiler call into the interpreter when it wants to be forward
thinking, but the interpreter can also call back to the compiler when it wants to
revise history. Your program can use several operators to call back into the com-
piler. Like the compiler, the interpreter can also call into named subroutines
when it wants to find things out. Because of all this give and take between the
compiler, the interpreter, and your program, you need to be aware of what things
happen when. First we’ll talk about when these named subroutines are triggered.

In Chapter 10 we saw how a package’s AUTOLOAD subroutine is triggered when an
undefined function in that package is called. In Chapter 12 we met the DESTROY
method, which is invoked when an object’s memory is about to be automatically
reclaimed by Perl. And in Chapter 14 we encountered the many functions im-
plicitly called when a tied variable is accessed.

Avant-Garde Compiler, Retro Interpreter | 569

www.it-ebooks.info

http://www.it-ebooks.info/

These subroutines all follow the convention that if a subroutine is triggered au-
tomatically by either the compiler or the interpreter, we write its name in up-
percase. Associated with the different stages of your program’s lifetime are four
other such subroutines named BEGIN, UNITCHECK, CHECK, INIT, and END. The sub
keyword is optional before their declarations. Perhaps they are better called
“blocks”, because they’re in some ways more like named blocks than real sub-
routines.

For instance, unlike regular subroutines, there’s no harm in declaring these blocks
multiple times, since Perl keeps track of when to call them, so you never have to
call them by name. (They are also unlike regular subroutines in that shift and
pop act as though you were in the main program, and so they act on @ARGV by
default, not @_.)

These five block types run in this order:

BEGIN

Runs ASAP (as soon as parsed) whenever encountered during compilation,
before compiling the rest of the file.

UNITCHECK

Runs just after the unit that defined them has been compiled. The main
program file and each module it loads are compilation units, as are string
evals, code compiled using the (?{ }) and (??{ }) constructs in a regex, calls
to do FILE and require FILE, and code after the –e switch on the command
line. This rather than INIT is what you want to use to run initialization code.

CHECK

Runs when compilation is complete but before the program starts. (CHECK
can mean “checkpoint” or “double-check” or even just “stop”.)

INIT

Runs at the beginning of execution right before the main flow of your pro-
gram starts.

END

Runs at the end of execution right after the program finishes.

If you declare more than one of these by the same name, even in separate modules,
the BEGINs all run before any CHECKs, which all run before any INITs, which all run
before any ENDs—which all run dead last, after your main program has finished.
Multiple BEGINs and INITs run in declaration order (FIFO), and the CHECKs and
ENDs run in inverse declaration order (LIFO).

This is probably easiest to see in a demo:

570 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

use v5.10;
say "start main running here";
die "main now dying here\n";
die "XXX: not reached\n";
UNITCHECK { say "1st UNITCHECK: done compiling" }
END { say "1st END: done running" }
CHECK { say "1st CHECK: done compiling" }
INIT { say "1st INIT: started running" }
END { say "2nd END: done running" }
BEGIN { say "1st BEGIN: still compiling" }
INIT { say "2nd INIT: started running" }
BEGIN { say "2nd BEGIN: still compiling" }
CHECK { say "2nd CHECK: done compiling" }
END { say "3rd END: done running" }

When run, that demo program produces this output:

1st BEGIN: still compiling
2nd BEGIN: still compiling
1st UNITCHECK: done compiling
2nd CHECK: done compiling
1st CHECK: done compiling
1st INIT: started running
2nd INIT: started running
start main running here
main now dying here
3rd END: done running
2nd END: done running
1st END: done running

Because a BEGIN block executes immediately, it can pull in subroutine declarations,
definitions, and importations before the rest of the file is even compiled. These
can alter how the compiler parses the rest of the current file, particularly if you
import subroutine definitions. At the very least, declaring a subroutine lets it be
used as a list operator, making parentheses optional. If the imported subroutine
is declared with a prototype, calls to it can be parsed like built-ins and can even
override built-ins of the same name in order to give them different semantics.
The use declaration is just a BEGIN block with an attitude.

END blocks, by contrast, are executed as late as possible: when your program exits
the Perl interpreter, even if as a result of an untrapped die or other fatal exception.
There are two situations in which an END block (or a DESTROY method) is skipped.
It isn’t run if, instead of exiting, the current process just morphs itself from one
program to another via exec. A process blown out of the water by an uncaught
signal also skips its END routines. (See the sigtrap pragma described in Chap-
ter 29 for an easy way to convert catchable signals into exceptions. For general
information on signal handling, see “Signals” on page 518 in Chapter 15.) To avoid

Avant-Garde Compiler, Retro Interpreter | 571

www.it-ebooks.info

http://www.it-ebooks.info/

all END processing, you can call POSIX::_exit, say kill –9, $$, or just exec any
innocuous program, such as /bin/true on Unix systems.

Inside an END block, $? contains the status the program is going to exit with. You
can modify $? from within the END block to change the exit value of the program.
Beware of changing $? accidentally by running another program with system or
backticks.

If you have several END blocks within a file, they execute in reverse order of their
definition. That is, the last END block defined is the first one executed when your
program finishes. This reversal enables related BEGIN and END blocks to nest the
way you’d expect, if you pair them up. For example, if the main program and a
module it loads both have their own paired BEGIN and END subroutines, like so:

BEGIN { print "main begun" }
END { print "main ended" }
use Module;

and in that module, these declarations:

BEGIN { print "module begun" }
END { print "module ended" }

then the main program knows that its BEGIN will always happen first, and its
END will always happen last. (Yes, BEGIN is really a compile-time block, but similar
arguments apply to paired INIT and END blocks at runtime.) This principle is
recursively true for any file that includes another when both have declarations
like these. This nesting property makes these blocks work well as package con-
structors and destructors. Each module can have its own set-up and tear-down
functions that Perl will call automatically. This way the programmer doesn’t have
to remember that if a particular library is used, what special initialization or clean-
up code ought to be invoked, and when. The module’s declarations assure these
events.

If you think of an eval STRING as a call back from the interpreter to the compiler,
then you might think of a BEGIN as a call forward from the compiler into the
interpreter. Both temporarily put the current activity on hold and switch modes
of operation. When we say that a BEGIN block is executed as early as possible, we
mean it’s executed just as soon as it is completely defined, even before the rest
of the containing file is parsed. BEGIN blocks are therefore executed during compile
time, never during runtime. Once a BEGIN block has run, it is immediately un-
defined and any code it used is returned to Perl’s memory pool. You couldn’t call
a BEGIN block as a subroutine even if you tried, because by the time it’s there, it’s
already gone.

572 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

Similar to BEGIN blocks, INIT blocks are run just before the Perl runtime begins
execution in “first in, first out” (FIFO) order. For example, the code generators
documented in perlcc make use of INIT blocks to initialize and resolve pointers
to XSUBs. INIT blocks are really just like BEGIN blocks, except they let the pro-
grammer distinguish construction that must happen at compile phase from con-
struction that must happen at run phase. When you’re running a script directly,
that’s not terribly important because the compiler gets invoked every time any-
way; but when compilation is separate from execution, the distinction can be
crucial. The compiler may be invoked only once, and the resulting executable
may be invoked many times.

Similar to END blocks, CHECK blocks are run just after the Perl compile phase ends
but before run phase begins, in LIFO order. CHECK blocks are useful for “winding
down” the compiler just as END blocks are useful for winding down your program.
In particular, the backends all use CHECK blocks as the hook from which to invoke
their respective code generators. All they need to do is put a CHECK block into their
own module, and it will run at the right time, so you don’t have to install a
CHECK into your program. For this reason, you’ll rarely write a CHECK block yourself,
unless you’re writing such a module.

Putting it all together, Table 16-2 lists various constructs with details on when
they compile and when they run the code represented by “...”.

Avant-Garde Compiler, Retro Interpreter | 573

www.it-ebooks.info

http://www.it-ebooks.info/

Table 16-2. What happens when

Block or Expression Compiles
During Phase

Traps Com-
pile Errors

Runs During
Phase

Traps Run Er-
rors

Call Trigger
Policy

use ... C No C No Now

no ... C No C No Now

BEGIN {...} C No C No Now

UNITCHECK {...} C No C No Late

CHECK {...} C No C No Late

INIT {...} C No R No Early

END {...} C No R No Late

eval {...} C No R Yes Inline

eval "..." R Yes R Yes Inline

foo(...) C No R No Inline

sub foo {...} C No R No Call any-
time

eval "sub

{...}"

R Yes R No Call later

s/pat/.../e C No R No Inline

s/pat/"..."/ee R Yes R Yes Inline

Now that you know the score, we hope you’ll be able to compose and perform
your Perl pieces with greater confidence.

574 | Chapter 16: Compiling

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 17

The Command-Line Interface

This chapter is about aiming Perl in the right direction before you fire it off. There
are various ways to aim Perl, but the two primary ways are through switches on
the command line and through environment variables. Switches are the more
immediate and precise way to aim a particular command. Environment variables
are more often used to set general policy.

Command Processing
It is fortunate that Perl grew up in the Unix world, because that means its invo-
cation syntax works pretty well under the command interpreters of other oper-
ating systems, too. Most command interpreters know how to deal with a list of
words as arguments and don’t care if an argument starts with a minus sign. There
are, of course, some sticky spots where you’ll get fouled up if you move from one
system to another. You can’t use single quotes under MS-DOS as you do under
Unix, for instance. And on systems like VMS, some wrapper code has to jump
through hoops to emulate Unix I/O redirection. Wildcard interpretation is a
wildcard. Once you get past those issues, however, Perl treats its switches and
arguments much the same on any operating system.

Even when you don’t have a command interpreter per se, it’s easy to execute a Perl
program from another program written in any language. Not only can the calling
program pass arguments in the ordinary way, it can also pass information via
environment variables and, if your operating system supports them, inherited
file descriptors (see “Passing Filehandles” in Chapter 15). Even exotic argument-
passing mechanisms can easily be encapsulated in a module, then brought into
your Perl program via a simple use directive.

575

www.it-ebooks.info

http://www.it-ebooks.info/

Perl parses command-line switches in the standard fashion.1 That is, it expects
any switches (words beginning with a minus) to come first on the command line.
After that usually comes the name of the script, followed by any additional ar-
guments to be passed into the script. Some of these additional arguments may
themselves look like switches, but if so, they must be processed by the script,
because Perl quits parsing switches once it sees a nonswitch, or the special “––”
switch that says, “I am the last switch.”

Perl gives you some flexibility in where you place the source code for your pro-
gram. For small, quick-and-dirty jobs, you can program Perl entirely from the
command line. For larger, more permanent jobs, you can supply a Perl script as
a separate file. Perl looks for a script to compile and run in any one of these three
ways:

1. Specified line by line via –e or –E switches on the command line. For example:

% perl –e "print 'Hello, World.'"
Hello, World.

% perl –E "say 'Howdy y\\'all!'"
Howdy y'all!

2. Contained in the file specified by the first filename on the command line.
Systems supporting the #! notation on the first line of an executable script
invoke interpreters this way on your behalf.

3. Passed in implicitly via standard input. This method works only when there
are no filename arguments; to pass arguments to a standard-input script you
must use method 2, explicitly specifying a “–” for the script name. For ex-
ample:

% echo "print qq(Hello, @ARGV.)" | perl – World
Hello, World.

With methods 2 and 3, Perl starts parsing the input file from the beginning—
unless you’ve specified a –x switch, in which case it scans for the first line starting
with #! and containing the word “perl”, and starts there instead. This is useful
for running a script embedded in a larger message. If so, you might indicate the
end of the script using the _ _END_ _ token.

Whether or not you use –x, the #! line is always examined for switches when the
line is parsed. That way, if you’re on a platform that permits only one argument
with the #! line, or worse, doesn’t even recognize the #! line as special, you can

1. Presuming you agree that Unix is both standard and fashionable.

576 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

still get consistent switch behavior no matter how Perl was invoked, even if –x
was used to find the beginning of the script.

Warning: because older versions of Unix silently chop off kernel interpretation
of the #! line after 32 characters, some switches may get to your program intact,
and others not; you could even get a “–” without its letter, if you’re not careful.
You probably want to make sure that all your switches fall either before or after
that 32-character boundary. Most switches don’t care whether they’re processed
redundantly, but getting a “–” instead of a complete switch would cause Perl to
try to read its source code from the standard input instead of from your script.
And a partial –I switch could also cause odd results. However, some switches do
care if they are processed twice, like combinations of –l and –0. Either put all
switches after the 32-character boundary (if applicable), or replace the use of –
0DIGITS with BEGIN{ $/ = "\0DIGITS"; }. Of course, if you’re not on a Unix
system, you’re guaranteed not to have this particular problem.

Parsing of #! switches starts from where “perl” is first mentioned in the line. The
sequences “–*” and “– ” are specifically ignored for the benefit of emacs users so
that, if you’re so inclined, you can say:

#!/bin/sh –– # –*– perl –*– –p
eval 'exec perl –S $0 ${1+"$@"}'
 if 0;

and Perl will see only the –p switch. The fancy “–*– perl –*–” gizmo tells emacs to
start up in Perl mode; you don’t need it if you don’t use emacs. The –S mess is
explained later under the description of that switch.

A similar trick involves the env(1) program, if you have it:

#!/usr/bin/env perl

The previous examples use a relative path to the Perl interpreter, getting whatever
version is first in the user’s path. If you want a specific version of Perl, say,
perl5.14.0, place it directly in the #! line’s path, whether with the env program, with
the –S mess, or with a regular #! processing.

If the #! line does not contain the word “perl”, the program named after the #! is
executed instead of the Perl interpreter. For example, suppose you have an or-
dinary Bourne shell script out there that says:

#!/bin/sh
echo "I am a shell script"

If you feed that file to Perl, then Perl will run /bin/sh for you. This is slightly bizarre,
but it helps people on machines that don’t recognize #!, because—by setting
their SHELL environment variable—they can tell a program (such as a mailer) that

Command Processing | 577

www.it-ebooks.info

http://www.it-ebooks.info/

their shell is /usr/bin/perl. Perl will then dispatch the program to the correct in-
terpreter for them, even though their kernel is too stupid to do so.

But back to Perl scripts that are really Perl scripts. After locating your script, Perl
compiles the entire program into an internal form (see Chapter 16). If any com-
pilation errors arise, execution does not even begin. (This is unlike the typical
shell script or command file, which might run part-way through before finding
a syntax error.) If the script is syntactically correct, it is executed. If the script
runs off the end without hitting an exit or die operator, an implicit exit(0) is
supplied by Perl to indicate successful completion to your caller. (This is unlike
the typical C program, where you’re likely to get a random exit status if your
program just terminates in the normal way.)

#! and Quoting on Non-Unix Systems
Unix’s #! technique can be simulated on other systems:

MS-DOS
Create a batch file to run your program, and codify it in ALTERNATIVE_SHE
BANG. See the dosish.h file in the top level of the Perl source distribution for
more information about this.

OS/2
Put this line:

extproc perl –S –your_switches

as the first line in *.cmd file (–S works around a bug in cmd.exe’s “extproc”
handling).

VMS
Put these lines:

% perl –mysw 'f$env("procedure")' 'p1' 'p2' 'p3' 'p4' 'p5' 'p6' 'p7' 'p8' !
$exit++ + ++$status != 0 and $exit = $status = undef;

at the top of your program, where –mysw are any command-line switches you
want to pass to Perl. You can now invoke the program directly by typing
perl program, as a DCL procedure by saying @program, or implicitly via DCL
$PATH by using just the name of the program. This incantation is a bit much
to remember, but Perl will display it for you if you type in perl "–V:start
perl". If you can’t remember that—well, that’s why you bought this book.

Windows
When using the ActiveState distribution of Perl under some variant of Mi-
crosoft’s Windows suite of operating systems (that is, Win95, Win98,

578 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

Win00,2 WinNT, but not Win3.1), the installation procedure for Perl modi-
fies the Windows Registry to associate the .pl extension with the Perl inter-
preter.

If you install another port of Perl, including the one in the Win32 directory
of the Perl distribution, then you’ll have to modify the Windows Registry
yourself.

Note that using a .pl extension means you can no longer tell the difference
between an executable Perl program and a “perl library” file. You could
use .plx for a Perl program instead to avoid this. This is less of an issue these
days, as Perl modules live in .pm files, and people don’t write as many .pl files.

Command interpreters on non-Unix systems often have extraordinarily different
ideas about quoting than Unix shells have. You’ll need to learn the special char-
acters in your command interpreter (*, \, and " are common) and how to protect
whitespace and these special characters to run one-liners via the –e switch. You
might also have to change a single % to a %%, or otherwise escape it, if that’s a
special character for your shell.

On some systems you may have to change single quotes to double quotes. But
don’t do that on Unix or Plan9 systems, or on anything running a Unix-style
shell, such as systems from the MKS Toolkit or from the Cygwin package pro-
duced by the Cygnus folks, now at Redhat. Microsoft’s new Unix emulator called
Interix is also starting to look, ahem, interixing.

For example, on Unix (including Linux and Mac OS X), use:

% perl –e 'print "Hello world\n"'

On VMS, use:

$ perl –e "print ""Hello world\n"""

or again with qq//:

$ perl –e "print qq(Hello world\n)"

And on MS-DOS et al., use:

A: perl –e "print \"Hello world\n\""

or use qq// to pick your own quotes:

A: perl –e "print qq(Hello world\n)"

The problem is that neither of those is reliable: it depends on the command in-
terpreter you’re using there. There is no general solution to all of this. It’s just a

2. Er, pardon the technical difficulties…

Command Processing | 579

www.it-ebooks.info

http://www.it-ebooks.info/

mess. If you aren’t on a Unix system but want to do command-line things, your
best bet is to acquire a better command interpreter than the one your vendor
supplied you, which shouldn’t be too hard.

Or, just write it all in Perl and forget the one-liners.

Location of Perl
Although this may seem obvious, Perl is useful only when users can find it easily.
When possible, it’s good for both /usr/bin/perl and /usr/local/bin/perl to be sym-
links to the actual binary. If that can’t be done, system administrators are strongly
encouraged to put Perl and its accompanying utilities into a directory typically
found along a user’s standard PATH, or in some other obvious and convenient
place.

In this book, we use the standard #!/usr/bin/perl notation on the first line of
the program to mean whatever particular mechanism works on your system. If
you care about running a specific version of Perl, use a specific path:

#!/usr/local/bin/perl5.14.0

If you just want to be running at least some version number but don’t mind higher
ones, place a statement like this near the top of your program:

use v5.14;

(Note: Ancient versions of Perl used numbers like “5.005” or “5.004_05”. Nowa-
days we would think of those as v5.5.0 and v5.4.5, but versions of Perl older than
v5.6.0 won’t understand that notation. The use 5.NNN form is safest to ensure
backward compatibility stretching back into the previous millennium.)

Switches
A single-character command-line switch without its own argument may always
be combined (bundled) with a switch following it.

#!/usr/bin/perl –spi.bak # same as –s –p –i.bak

Switches are also known as options or flags. Whatever you call them, here are the
ones Perl recognizes:

–– Terminates switch processing, even if the next argument starts with a minus.
It has no other effect.

–0DIGITS
Specifies the input record separator ($/) as an octal number or hexadecimal
number representing that single character’s codepoint. If no digits are

580 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

specified, the null character (that’s U+0000, Perl’s "\0") is the separator.
Other switches may precede or follow the digits. For example, if you have
a version of find(1) that can print filenames terminated by the null character,
you can say this to delete a bunch of them:

% find . –name '*.bak' –print0 | perl –n0e unlink

The special value 00 makes Perl read files in paragraph mode, equivalent to
setting the $/ variable to "". Any value 0400 or above 0777 makes Perl slurp
in whole files at once, but, by convention, the value 0777 is normally used
for this. This is equivalent to undefining the $/ variable. We use 0777 since
there is no ASCII character with that value. (Unfortunately, there is a Uni-
code character with that value, LATIN SMALL LETTER O WITH STROKE AND ACUTE,
but something tells us you won’t be delimiting your records with that. But
if you really want to, just specify its codepoint in hex: –0x1FF.)

You can also specify the separator character using hexadecimal notation: –
0xHHH…, where the “H” are valid hexadecimal digits. Unlike the octal form,
this one may be used to specify any Unicode character, even those beyond
0xFF. (This means that you cannot use the –x switch with a directory name
that consists of hexadecimal digits alone.)

–a Turns on autosplit mode, but only when used with –n or –p. An implicit
split command to the @F array is done as the first thing inside the implicit
while loop produced by the –n and –p switches. So:

% perl –ane 'print pop(@F), "\n";'

is equivalent to:

LINE: while (<>) {
 @F = split(' ');
 print pop(@F), "\n";
}

A different field separator may be specified by passing a regular expression
for split to the –F switch. For example, these two calls are equivalent:

% awk –F: '$7 && $7 !~ /^\/bin/' /etc/passwd
% perl –F: –lane 'print if $F[6] && $F[6] !~ m(^/bin)' /etc/passwd

–c Causes Perl to check the syntax of the script and then exit without executing
what it’s just compiled. Technically, it does a bit more than that: it will ex-
ecute any BEGIN, UNITCHECK, and CHECK blocks, as well as any use or no direc-
tives, since these are all considered to occur before the execution of your
program. It no longer executes any INIT or END blocks, however. The older
but rarely useful behavior may still be obtained by putting:

BEGIN { $^C = 0; exit; }

Command Processing | 581

www.it-ebooks.info

http://www.it-ebooks.info/

at the end of your main script. That’s because the $^C variable reflects the
value of the –c switch.

–C [number/list]
The –C flag controls certain of Perl’s Unicode features. The –C can be fol-
lowed either by a number or a list of option letters. The letters, their numeric
values, and effects are shown in Table 17-1; listing the letters is equal to
summing the numbers.

Table 17-1. Values for the -C switch

Letter Hex Number Meaning

I 0x1 STDIN is assumed to be in UTF-8.

O 0x2 STDOUT will be in UTF-8.

E 0x4 STDERR will be in UTF-8.

S 0x7 I + O + E

i 0x8 UTF-8 is the default PerlIO layer for input streams.

o 0x10 UTF-8 is the default PerlIO layer for output streams.

D 0x18 i + o

A 0x20 The @ARGV elements are expected to be strings encoded in
UTF-8.

L 0x40 Normally the “IOEioA” are unconditional; the L makes
them conditional on the locale environment variables (the
LC_ALL, LC_TYPE, and LANG, in order of decreasing prece-
dence)—if the variables indicate UTF-8, then the selected
“IOEioA” are in effect.

a 0x100 Set ${^UTF8CACHE} to –1 to run the UTF-8 caching code in
debugging mode. Probably meaningless unless you’re try-
ing to debug or rewrite Perl’s internals.

For example, –COE and its numeric equivalent, –C6, enable utf8ness on
both STDOUT and STDERR. Repeating letters is just redundant, not cumulative
nor toggling.

The io options mean that any subsequent open (or similar I/O operations)
in the current file scope will have the :utf8 PerlIO layer implicitly applied
to them; in other words, UTF-8 is expected from any input stream, and
UTF-8 is produced to any output stream. This is just the default, with ex-
plicit layers in open and with binmode one can manipulate streams as usual.

–C on its own (not followed by any number or option list), or the empty
string "" for the PERL_UNICODE environment variable, has the same effect as

582 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

–CSDL. In other words, the standard I/O handles and the default open layer
are utf8ified but only if the locale-related environment variables indicate a
UTF-8 locale. This behavior follows the implicit UTF-8 behavior of v5.8.0
and should not be used today.

You can use –C0 (or "0" for the PERL_UNICODE environment variable) to ex-
plicitly disable the above Unicode features.

The magic variable ${^UNICODE} reflects the numeric value of this setting.
This variable is set during Perl startup and is thereafter read-only. If you
want runtime effects, either use the open pragma or one of the three-
argument form of open or the two-argument form of binmode.

(In releases earlier than v5.8.1, the –C switch was a Win32-only switch that
enabled the use of Unicode-aware “wide system call” Win32 APIs. This
feature was practically unused, so the command-line switch was therefore
“recycled”.)

Note: since the v5.10.1 release, if the –C option is used on the #! line, it must
be specified on the command line as well. This is because the standard
streams are already set up at this point in the execution of the Perl inter-
preter. You can also use binmode to set the encoding of an I/O stream.

–d

–dt Runs the program under the Perl debugger. See Chapter 18. If t is specified,
it indicates to the debugger that threads will be used in the code being de-
bugged.

–d: MODULE[=ARG1,ARG2]

–dt: MODULE[=ARG1,ARG2]
Runs the program under the control of a debugging, profiling, or tracing
module installed as Devel::MODULE. For example, –d:DProf executes the
program using the Devel::DProf profiler. As with the –M flag, options may
be passed to the Devel::MODULE package where they will be received and in-
terpreted by the Devel::MODULE::import routine. Again, like –M, use
–d:–MODULE to call Devel::MODULE::unimport instead of import. The comma-
separated list of options must follow a = character. If t is specified, it indicates
to the debugger that threads will be used in the code being debugged.

–D LETTERS

–D NUMBERS
Sets debugging flags. (This only works if debugging is compiled into your
version of Perl as described below.) You may specify either a NUMBER that is
the sum of the bits you want or a list of LETTERS. To see how it executes your

Command Processing | 583

www.it-ebooks.info

http://www.it-ebooks.info/

script, for instance, use –D14 or –Dslt. Another useful value is –D1024 or
–Dx, which lists your compiled syntax tree. And –D512 or –Dr displays
compiled regular expressions. The numeric value is available internally as
the special variable $^D. Table 17-2 lists the assigned bit values. The numbers
below are given in hex to make them easy to read, but you must supply them
in decimal if you’re using the –NUMBER format. We strongly recommend that
the letters be used instead.

Table 17-2. -D options

Bit Letter Meaning

0x0400000 A consistency checks on internal structures (“All clear?”)

0x2000000 B dump suBroutine definitions, including special Blocks like
BEGIN

0x0200000 C Copy-on-write

0x0000020 c string–numeric conversions

0x0008000 D cleaning up once program’s all Done

0x0000100 f format processing

0x0002000 H Hash dump: usurps values

0x0080000 J show s,t,P–debug on (i.e., don’t Jump over) opcodes in
package DB::

0x0000004 l loop and context stack processing

0x1000000 M trace smart-Match resolution

0x0000080 m memory and SV allocation

0x0000010 o method and overloading resolution

0x0000040 P print Profiling info, source file input state

0x0000001 p tokenizing and parsing (with v, displays parse stack)

0x0800000 q quiet; currently suppresses only the “EXECUTING” message

0x0040000 R include Reference counts of dumped variables (e.g., when
using –Ds)

0x0000200 r regex parsing and execution

0x0000002 s stack snapshots (with v, displays all stacks)

0x0020000 T Tokenizing

0x0000008 t trace execution

0x0001000 U Unofficial, User hacking (reserved for private, unreleased
use)

0x0000800 u tainting checks on unsafe external data

584 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

Bit Letter Meaning

0x0100000 v verbose: use in conjunction with other flags

0x0004000 X scratchpad allocation (“Xratchpad”)

0x0000400 x syntax-tree dump

These flags all require a Perl executable specially built for debugging. How-
ever, because this is not the default, you won’t be able to use the –D switch
at all unless you or your sysadmin built this special debugging version of
Perl. See the INSTALL file in the Perl source directory for details, but the
short story is that you need to pass –DDEBUGGING to your C compiler
when compiling Perl itself. This flag is automatically set if you include the
–g option when Configure asks you about optimizer and debugger flags.

If you’re just trying to get a printout of each line of Perl code as it executes
(the way that sh –x provides for shell scripts), you can’t use Perl’s –D switch.
Instead, do this:

Bourne shell syntax
$ PERLDB_OPTS="NonStop=1 AutoTrace=1 frame=2" perl –dS program

csh syntax
% (setenv PERLDB_OPTS "NonStop=1 AutoTrace=1 frame=2"; perl –dS program)

See Chapter 18 for details and variations.

–e PERLCODE
May be used to enter one or more lines of script. When the –e option is given,
Perl will not look for the program’s filename in the argument list. The PERL
CODE argument is treated as if it ended with a newline, so multiple –e com-
mands may be given to build up a multiline program. (Make sure to use
semicolons where you would in a normal program stored in a file.) Just
because –e supplies a newline on each argument doesn’t imply that you must
use multiple –e switches; if your shell supports multiline quoting like sh,
ksh, or bash, you may pass a multiline script as one –e argument:

$ perl –e 'print "Howdy, ";print "@ARGV!\n";' world
Howdy, world!

With csh it’s probably better to use multiple –e switches:

% perl –e 'print "Howdy, ";' \
 –e 'print "@ARGV!\n";' world
Howdy, world!

Both implicit and explicit newlines count in the line numbering, so the sec-
ond print is on line 2 of the –e script in either case.

Command Processing | 585

www.it-ebooks.info

http://www.it-ebooks.info/

–E PERLCODE
Behaves just like –e, except it implicitly enables all optional features (in the
main compilation unit). As for the v5.14 release, those features are say,
state, switch, and unicode_strings. See the feature pragma in Chapter 29.

–f Disables executing $Config{sitelib}/sitecustomize.pl at startup.

Perl can be built so that it by default will try to execute $Config{sitelib}/site-
customize.pl at startup (in a BEGIN block). This is a hook that lets the sysadmin
customize how Perl behaves. For instance, it can be used to add entries to
the @INC array to make Perl find modules in nonstandard locations.

Perl actually inserts the following code:

BEGIN {
 do {
 local $!;
 –f "$Config{sitelib}/sitecustomize.pl";
 } && do "$Config{sitelib}/sitecustomize.pl";
}

Since it is an actual do (not a require), sitecustomize.pl doesn’t need to return
a true value. The code is run in package main, in its own lexical scope. How-
ever, if the script dies, $@ will not be set.

The value of $Config{sitelib} is also determined in C code and not read
from Config.pm, which is not loaded.

The code is executed very early. For example, any changes made to @INC will
show up in the output of perl -V. Of course, likewise END blocks will be exe-
cuted very late.

To determine at runtime if this capability has been compiled in your Perl, you
can check the value of $Config{usesitecustomize}:

% perl –V:usesitecustomize
usesitecustomize='undef';

–F PATTERN
Specifies the pattern to split on when autosplitting via the –a switch (has
no effect otherwise). The pattern may be surrounded by slashes (//), double
quotes (""), or single quotes (''). Otherwise, it will be put in single quotes
automatically. Remember that to pass quotes through a shell, you’ll have to
quote your quotes, and how you can do that depends on the shell.

–h Prints a summary of Perl’s command-line options.

–i

586 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

–i EXTENSION
Specifies that files processed by the <> construct are to be edited in place. It
does this by renaming the input file, opening the output file by the original
name, and selecting that output file as the default for calls to print,
printf, and write.3 The EXTENSION is used to modify the name of the old file
to make a backup copy. If no EXTENSION is supplied, no backup is made and
the current file is overwritten. If the EXTENSION doesn’t contain a *, then that
string is appended to the end of the current filename. If the EXTENSION does
contain one or more * characters, then each * is replaced by the filename
currently being processed. In Perl terms, you could think of this as:

($backup = $extension) =~ s/*/$file_name/g;

This lets you use a prefix for the backup file instead of—or even in addition
to—a suffix:

% perl –pi'orig_*' –e 's/foo/bar/' xyx # backup to 'orig_xyx'

You can even put backup copies of the original files into another directory
(provided that the directory already exists):

% perl –pi'old/*.orig' –e 's/foo/bar/' xyx # backup to 'old/xyx.orig'

These pairs of one-liners are equivalent:

% perl –pi –e 's/foo/bar/' xyx # overwrite current file
% perl –pi'*' –e 's/foo/bar/' xyx # overwrite current file

% perl –pi'.orig' –e 's/foo/bar/' xyx # backup to 'xyx.orig'
% perl –pi'*.orig' –e 's/foo/bar/' xyx # backup to 'xyx.orig'

From the shell, saying:

% perl –p –i.orig –e "s/foo/bar/;"

is the same as using the program:

#!/usr/bin/perl –pi.orig
s/foo/bar/;

which is convenient shorthand for the remarkably longer:

#!/usr/bin/perl
$extension = '.orig';
LINE: while (<>) {
 if ($ARGV ne $oldargv) {
 if ($extension !~ /*/) {
 $backup = $ARGV . $extension;
 }

3. Technically, this isn’t really “in place”. It’s the same filename but a different physical file.

Command Processing | 587

www.it-ebooks.info

http://www.it-ebooks.info/

 else {
 ($backup = $extension) =~ s/*/$ARGV/g;
 }
 unless (rename($ARGV, $backup)) {
 warn "cannot rename $ARGV to $backup: $!\n";
 close ARGV;
 next;
 }
 open(ARGVOUT, ">$ARGV");
 select(ARGVOUT);
 $oldargv = $ARGV;
 }
 s/foo/bar/;
}
continue {
 print; # this prints to original filename
}
select(STDOUT);

This long code is virtually identical to the simple one-liner with the –i switch,
except the –i form doesn’t need to compare $ARGV to $oldargv to know when
the filename has changed. It does, however, use ARGVOUT for the selected
filehandle and restore the old STDOUT as the default output filehandle after
the loop. Like the code above, Perl creates the backup file irrespective of
whether any output has truly changed. See the description of the eof func-
tion for examples of how to use eof without parentheses to locate the end of
each input file, in case you want to append to each file or to reset line num-
bering.

If, for a given file, Perl is unable to create the backup file as specified in the
EXTENSION, it will issue a warning to that effect and continue processing any
other remaining files listed.

You cannot use –i to create directories or to strip extensions from files. Nor
can you use it with a ~ to indicate a home directory—which is just as well,
since some folks like to use that character for their backup files:

% perl –pi~ –e 's/foo/bar/' file1 file2 file3...

Finally, the –i switch does not stop Perl from running if no filenames are
given on the command line. When this happens, no backup is made since
the original file cannot be determined, and processing proceeds from
STDIN to STDOUT as might be expected.

–I DIRECTORY
Directories specified by –I are prepended to @INC, which holds the search
path for modules. Like use lib, the –I switch implicitly adds platform-spe-
cific directories. See use lib in Chapter 29, for details.

588 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

–l

–l OCTNUM
Enables automatic line-end processing. It has two effects: first, it automati-
cally chomps the line terminator when used with –n or –p; second, it sets $\
to the value of OCTNUM so that any print statements will have a line terminator
of ASCII value OCTNUM added back on. If OCTNUM is omitted, –l sets $\ to the
current value of $/, typically newline. So to trim lines to 80 columns, say this:

% perl –lpe 'substr($_, 80) = ""'

Note that the assignment $\ = $/ is done when the switch is processed, so
the input record separator can be different from the output record separator
if the –l switch is followed by a –0 switch:

% gnufind / –print0 | perl –ln0e 'print "found $_" if –p'

This sets $\ to newline and later sets $/ to the null character. (Note that 0
would have been interpreted as part of the –l switch had it followed the –l
directly. That’s why we bundled the –n switch between them.)

–m and –M
These switches load a MODULE as if you’d executed a use, unless you specify
–MODULE instead of MODULE, in which case they invoke no. For example,
–Mstrict is like use strict, while –M–strict is like no strict.

–m MODULE
Executes use MODULE () before executing your script.

–M MODULE
Executes use MODULE before executing your script. The command is
formed by mere interpolation of the rest of the argument after the –
M, so you can use quotes to add extra code after the module name—
for example, –M‘MODULE qw(foo bar)’. If the first character after the
–M or –m is a dash (–), then the use is replaced with no. To use this to
assert a minimal version number of the running Perl, use –Mv5.14, for
example, to make sure you’re running at least v5.14 or better.

–M MODULE=ARG1,ARG2…
A little built-in syntactic sugar means you can also say –Mmod-
ule=foo,bar as a shortcut for –M‘module qw(foo bar)’. This avoids the
need to use quotes when importing symbols. The actual code generated
by –Mmodule=foo,bar is:

use module split(/,/, q{foo,bar})

Note that the = form removes the distinction between –m and –M, but
it’s better to use the uppercase form to avoid confusion.

Command Processing | 589

www.it-ebooks.info

http://www.it-ebooks.info/

You may only use the –M and –m switches from a real command-line invo-
cation of Perl, not as options picked up on the #! line. (Hey, if you’re gonna
put it in the file, why not just write the equivalent use or no instead?)

–P Removed in v5.12 due to portability concerns. Use the Text::CPP module from
CPAN instead.

–n Causes Perl to assume the following loop around your script, which makes it
iterate over filename arguments much as sed –n or awk do:

LINE:
while (<>) {
 ... # your script goes here
}

You may use LINE as a loop label from within your script, even though you
can’t see the actual label in your file.

Note that the lines are not printed by default. See –p to have lines printed.
Here is an efficient way to delete all files older than a week:

find . –mtime +7 –print | perl –nle unlink

This is faster than using the –exec switch of the find program because you
don’t have to start a process on every filename found. It does suffer from the
bug of mishandling newlines in pathnames, which you can fix if you follow
the example under –0. By an amazing coincidence, BEGIN and END blocks may
be used to capture control before or after the implicit loop, just as in awk.

–p Causes Perl to assume the following loop around your script, which makes it
iterate over filename arguments much as sed does:

LINE:
while (<>) {
 ... # your script goes here
}
continue {
 (print) || die "–p destination: $!\n";
}

You may use LINE as a loop label from within your script, even though you
can’t see the actual label in your file.

If a file named by an argument cannot be opened for some reason, Perl warns
you about it and moves on to the next file. Note that the lines are printed
automatically. An error occurring during printing is treated as fatal. By yet
another amazing coincidence, BEGIN and END blocks may be used to capture
control before or after the implicit loop, just as in awk.

590 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

–s Enables rudimentary switch parsing for switches on the command line after
the script name but before any filename arguments or a “––” switch-process-
ing terminator. Any switch found is removed from @ARGV, and a variable by
the same name as the switch is set in Perl. Switch bundling is not allowed,
because multicharacter switches are permitted.

The following script prints “true” only when the script is invoked with a
–foo switch.

#!/usr/bin/perl –s
if ($foo) { print "true\n" }

If the switch is of the form –xxx=yyy, the $xxx variable is set to whatever
follows the equals sign in that argument (“yyy” in this case). The following
script prints “true” if and only if the script is invoked with a –foo=bar switch.

#!/usr/bin/perl –s
if ($foo eq 'bar') { print "true\n" }

Do note that a switch like ––help creates the variable ${–help}, which is not
compliant with strict refs. Also, using this option on a script with warnings
enabled may generate spurious “used only once” warnings.

–S Makes Perl use the PATH environment variable to search for the script (unless
the name of the script contains directory separators).

Typically, this switch is used to help emulate #! startup on platforms that
don’t support #!. On many platforms that have a shell compatible with
Bourne or C shell, you can use this:

#!/usr/bin/perl
eval "exec /usr/bin/perl –S $0 $*"
 if $running_under_some_shell;

The system ignores the first line and feeds the script to /bin/sh, which proceeds
to try to execute the Perl script as a shell script. The shell executes the second
line as a normal shell command and thus starts up the Perl interpreter. On
some systems $0 doesn’t always contain the full pathname, so –S tells Perl to
search for the script if necessary. After Perl locates the script, it parses the
lines and ignores them because the variable $running_under_some_shell is
never true. A better construct than $* would be ${1+"$@"}, which handles
embedded spaces and such in the filenames but doesn’t work if the script is
being interpreted by csh. To start up sh instead of csh, some systems have to
replace the #! line with a line containing just a colon, which Perl will ignore
politely. Other systems can’t control that and need a totally devious construct
that will work under any of csh, sh, or perl, such as the following:

Command Processing | 591

www.it-ebooks.info

http://www.it-ebooks.info/

eval '(exit $?0)' && eval 'exec /usr/bin/perl –S $0 ${1+"$@"}'
 & eval 'exec /usr/bin/perl –S $0 $argv:q'
 if 0;

Yes, it’s ugly, but so are the systems that work4 this way.

On some platforms, the –S switch also makes Perl append suffixes to the
filename while searching for it. For example, on Win32 platforms, the .bat
and .cmd suffixes are appended if a lookup for the original name fails and the
name does not already end in one of those suffixes. If your Perl was built with
debugging enabled, you can use Perl’s –Dp switch to watch how the search
progresses.

If the filename supplied contains directory separators (even as just a relative
pathname, not an absolute one), and if the file is not found, those platforms
that implicitly append file extensions (not Unix) will do so and look for the
file with those extensions added, one by one.

On DOS-like platforms, if the script does not contain directory separators, it
will first be searched for in the current directory before being searched for in
the PATH. On Unix platforms, the script will be searched for strictly on the
PATH, due to security concerns about accidentally executing something in the
current working directory without explicitly requesting this.

–t Like –T, but taint checks will issue warnings rather than fatal errors. These
warnings can be controlled normally with no warnings qw(taint).

Note: this is not a substitute for –T! This is meant to be used only as a tem-
porary development aid while securing legacy code: for real production code
and for new secure code written from scratch, always use the real –T.

–T Forces “taint” checks to be turned on so you can test them. Ordinarily these
checks are done only when running setuid or setgid. It’s a good idea to turn
them on explicitly for programs run on another’s behalf, such as CGI pro-
grams. See Chapter 20.

For security reasons, Perl must see this option quite early; usually this means
it must appear early on the command line or in the #! line. If it’s not early
enough, Perl complains.

–u Causes Perl to dump core after compiling your script. In theory, you can then
take this core dump and turn it into an executable file by using the undump
program (not supplied). This speeds startup at the expense of some disk
space (which you can minimize by stripping the executable). If you want to
execute a portion of your script before dumping, use Perl’s dump operator

4. We use the term advisedly.

592 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

instead. Note: availability of undump is platform specific; it may not be avail-
able for a specific port of Perl. It has been superseded by the new Perl-to-C
code generator, which is much more portable (but still experimental).

–U Allows Perl to do unsafe operations. Currently the only “unsafe” operations
are unlinking directories while running as superuser, and running setuid
programs with fatal taint checks turned into warnings. Note that warnings
must be enabled to actually produce the taint-check warnings.

–v Prints the version and patch level of your Perl executable, along with a bit of
extra information.

–V Prints a summary of the major Perl configuration values and the current value
of @INC.

–V: NAME
Prints to STDOUT the value of the named configuration variable. The NAME may
contain regex characters, like “.” to match any character, or “.*” to match
any optional sequence of characters.

% perl –V:man.dir
man1dir='/usr/local/man/man1'
man3dir='/usr/local/man/man3'

% perl –V:'.*threads'
d_oldpthreads='undef'
use5005threads='define'
useithreads='undef'
usethreads='define'

If you ask for a configuration variable that doesn’t exist, its value will be
reported as “UNKNOWN”. Configuration information is available from within a
program using the Config module, although patterns are not supported for
the hash subscripts:

% perl –MConfig –le 'print $Config{man1dir}'
/usr/local/man/man1

See the Config module for more details.

–w Prints warnings about variables that are mentioned only once and scalar
values that are used before being set. Also warns about redefined subrou-
tines, and references to undefined filehandles or filehandles opened read-
only that you are attempting to write on. Also warns you if you use values
as numbers that don’t look like numbers, if you use an array as though it
were a scalar, if your subroutines recurse more than 100 deep, and innu-
merable other things. See every entry labelled “(W)” in perldiag.

Command Processing | 593

www.it-ebooks.info

http://perldoc.perl.org/perldiag.html
http://www.it-ebooks.info/

This switch just sets the global $^W variable. It has no effect on lexical warn-
ings—see the –W and –X switches for that. You can enable or disable specific
warnings via the warnings (or no warnings) pragma, described in Chapter 29.

–W Enables all warnings unconditionally and permanently throughout the pro-
gram, even if warnings were disabled locally using no warnings or $^W = 0.
This includes all files loaded via use, require, or do. Think of it as the Perl
equivalent of the lint(1) command.

–x

–x DIRECTORY
Tells Perl to extract a script that is embedded in a message. Leading garbage
will be discarded until the first line that starts with #! and contains the string
“perl”. Any meaningful switches on that line after the word “perl” will be
applied. If a directory name is specified, Perl will switch to that directory
before running the script. The –x switch controls the disposal of leading
garbage only, not trailing garbage. The script must be terminated with
_ _END_ _ or _ _DATA_ _ if there is trailing garbage to be ignored. (The script
can process any or all of the trailing garbage via the DATA filehandle if desired.
In theory, it could even seek to the beginning of the file and process the
leading garbage.)

–X Disables all warnings unconditionally and permanently, the exact opposite
of what the –W flag does.

Environment Variables
In addition to the various switches that explicitly modify Perl’s behavior, you can
set various environment variables to influence various underlying behaviors.
How you set up these environment variables is system dependent, but one trick
you should know if you use sh, ksh, or bash is that you can temporarily set an
environment variable for a single command, as if it were a funny kind of switch.
It has to be set in front of the command:

$ PATH='/bin:/usr/bin' perl myproggie

You can do something similar with a subshell in csh and tcsh:

% (setenv PATH "/bin:/usr/bin"; perl myproggie)

Otherwise, you’d typically set environment variables in some file with a name
resembling .cshrc or .profile in your home directory. Under csh and tcsh you’d say:

% setenv PATH '/bin:/usr/bin'

And under sh, ksh, and bash you’d say:

594 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

$ PATH='/bin:/usr/bin'; export PATH

Other systems will have other ways of setting these on a semipermanent basis.
Here are the environment variables Perl pays attention to:

HOME

Used if chdir is called without an argument.

LC_ALL, LC_CTYPE, LC_COLLATE, LC_NUMERIC, PERL_BADLANG
Environment variables that control how Perl handles data specific to par-
ticular natural languages. See the online docs for perllocale.

LOGDIR

Used if chdir has no argument but HOME is not set.

PATH

Used in executing subprocesses and for finding the program if the –S switch
is used.

PERL5DB

The command used to load the debugger code. The default is:

BEGIN { require "perl5db.pl" }

See Chapter 18 for more uses of this variable.

PERL5DB_THREADED

If set to a true value, indicates to the debugger that the code being debugged
uses threads.

PERL_ALLOW_NON_IFS_LSP (specific to the Win32 port)
Set to 1 to allow the use of non-IFS compatible LSPs. Perl normally searches
for an IFS-compatible LSP because this is required for its emulation of Win-
dows sockets as real filehandles. However, this may cause problems if you
have a firewall such as McAfee Guardian, which requires all applications to
use its LSP and which is not IFS-compatible, because clearly Perl will nor-
mally avoid using such an LSP.

Setting this environment variable to 1 means that Perl will simply use the
first suitable LSP enumerated in the catalog, which keeps McAfee Guard-
ian happy (and in that particular case Perl still works, too, because McAfee
Guardian’s LSP actually plays some other games that allow applications re-
quiring IFS compatibility to work).

PERL_DEBUG_MSTATS

Relevant only if Perl is compiled with the malloc included with the Perl dis-
tribution (that is, if perl –V:d_mymalloc is define). If set, this dumps out
memory statistics after execution. If set to an integer greater than one, also
dumps out memory statistics after compilation.

Environment Variables | 595

www.it-ebooks.info

http://perldoc.perl.org/perllocale.html
http://www.it-ebooks.info/

PERL_DESTRUCT_LEVEL

Relevant only if your Perl executable was built with –DDEBUGGING, this variable
controls the behavior of global destruction of objects and other references.
See “PERL_DESTRUCT_LEVEL” in perlhacktips for more information.

PERL_DL_NONLAZY

Set to one to have Perl resolve all undefined symbols when it loads a dynamic
library. The default behavior is to resolve symbols when they are used. Set-
ting this variable is useful during testing of extensions as it ensures that you
get an error on misspelled function names, even if the test suite doesn’t call
it.

PERL_ENCODING

Don’t use this. It relies on the encoding pragma, which doesn’t work.

PERL_HASH_SEED

(Since v5.8.1.) Used to randomize Perl’s internal hash function. To emulate
the pre-5.8.1 behavior, set to an integer (zero means the same order as v5.8.0).
“Pre-5.8.1” means, among other things, that hash keys will always have the
same ordering between different runs of Perl.

Most hashes return elements in the same order as v5.8.0 by default. On a
hash-by-hash basis, if pathological data is detected during a hash key inser-
tion, then that hash will switch to an alternative random hash seed.

The default behavior is to randomize, unless the PERL_HASH_SEED is set. If Perl
has been compiled with –DUSE_HASH_SEED_EXPLICIT, the default behavior is
not to randomize—unless the PERL_HASH_SEED is set.

If PERL_HASH_SEED is unset or set to a nonnumeric string, Perl uses the pseu-
dorandom seed supplied by the operating system and libraries.

Please note that the hash seed is sensitive information. Hashes are randomized
to protect against local and remote attacks against Perl code. By manually
setting a seed, this protection may be partially or completely lost.

See “Algorithmic Complexity Attacks” in perlsec and “ENVIRONMENT” in
perlrun for more information.

PERL_HASH_SEED_DEBUG

(Since v5.8.1.) Set to one to display (to STDERR) the value of the hash seed at
the beginning of execution. This, combined with PERL_HASH_SEED [see
“PERL_HASH_SEED” in perlrun] is intended to aid in debugging nondetermin-
istic behavior caused by hash randomization.

Note that the hash seed is sensitive information: by knowing it you can craft
a denial-of-service attack against Perl code, even remotely; see “Algorithmic

596 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://perldoc.perl.org/perlhacktips.html
http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/perlrun.html
http://www.it-ebooks.info/

Complexity Attacks” in perlsec for more information. Do not disclose the hash
seed to people who don’t need to know it. See also hash_seed() of Hash::Util.

PERL_MEM_LOG

If your Perl was configured with –Accflags=–DPERL_MEM_LOG, setting the en-
vironment variable PERL_MEM_LOG enables logging debug messages. The value
has the form number[m][s][t], where number is the file descriptor number
you want to write to (2 is default), and the combination of letters specifies
that you want information about (m)emory and/or (s)v, optionally with
(t)imestamps. For example PERL_MEM_LOG=1mst will log all information to
stdout. You can also write to other opened file descriptors, in a variety of
ways:

bash$ 3>foo3 PERL_MEM_LOG=3m perl ...

PERL_ROOT (specific to the VMS port)
A translation concealed rooted logical name that contains Perl and the
logical device for the @INC path on VMS only. Other logical names that
affect Perl on VMS include PERLSHR, PERL_ENV_TABLES, and SYS$TIMEZONE_
DIFFERENTIAL, but these are optional and discussed further in perlvms and
in README.vms in the Perl source distribution.

PERL_SIGNALS

In v5.8.1 and later. If set to unsafe, the pre-Perl-5.8.0 behavior (immediate but
unsafe signals) is restored. If set to safe, the safe (or deferred) signals are
used. See “Deferred Signals (Safe Signals)” in perlipc.

PERL5SHELL (Microsoft ports only)
May be set to an alternative shell that Perl must use internally for executing
commands via backticks or system. Default is cmd.exe /x/c on WinNT and
command.com /c on Win95. The value is considered to be space-separated.
Precede any character that needs to be protected (like a space or backslash)
with a backslash.

Note that Perl doesn’t use COMSPEC for this purpose because COMSPEC has a
high degree of variability among users, leading to portability concerns. Be-
sides, Perl can use a shell that may not be fit for interactive use, and setting
COMSPEC to such a shell may interfere with the proper functioning of other
programs (which usually look in COMSPEC to find a shell fit for interactive use).

PERL5LIB

A colon-separated5 list of directories in which to look for Perl library files
before looking in the standard library and the current directory. Any archi-

5. On Unix and its derivatives. On Microsoft systems, it’s semicolon-separated.

Environment Variables | 597

www.it-ebooks.info

http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/perlvms.html
http://perldoc.perl.org/perlipc.html
http://www.it-ebooks.info/

tecture-specific directories under the specified locations are automatically
included if they exist. If PERL5LIB is not defined, PERLLIB is consulted for
backward compatibility with older releases.

When running taint checks (either because the program was running setuid
or setgid, or the –T switch was used), neither of these library variables is
used. Such programs must employ an explicit lib pragma for that purpose.

PERL5OPT

Default command-line switches. Switches in this variable are taken as if they
were on every Perl command line. Only the –[DIMUdmw] switches are al-
lowed. When running taint checks (because the program was running setuid
or setgid, or the –T switch was used), this variable is ignored. If PERL5OPT
begins with –T, tainting will be enabled, causing any subsequent options to
be ignored.

PERLIO

A space- (or colon-) separated list of PerlIO layers. If Perl is built to use
PerlIO system for IO (the default), these layers affect Perl’s IO.

It is conventional to start layer names with a colon (for example, :perlio) to
emphasize their similarity to variable “attributes”. But the code that parses
layer specification strings (which is also used to decode the PERLIO envi-
ronment variable) treats the colon as a separator.

An unset or empty PERLIO is equivalent to the default set of layers for
your platform—for example, :unix:perlio on Unix-like systems, and
:unix:crlf on Windows and other DOS-like systems.

The list becomes the default for all Perl’s IO. Consequently, only built-in
layers can appear in this list, because external layers such as :encoding
(LAYER) need IO in order to load them. See the open pragma in Chapter 29 for
how to add external encodings as defaults.

It makes sense to include some layers in the PerlIO environment variable;
these are briefly summarized below.

:bytes

A pseudolayer that turns off the :utf8 flag for the layer below. It is un-
likely to be useful on its own in the global PERLIO environment variable.
You perhaps were thinking of :crlf:bytes or :perlio:bytes.

:crlf

A layer that does CRLF to "\n" translation, distinguishing “text” and
“binary” files in the manner of MS-DOS and similar operating systems.
(It currently does not mimic MS-DOS as far as treating of Control-Z as
being an end-of-file marker.)

598 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

:mmap

A layer that implements “reading” of files by using mmap to make a
(whole) file appear in the process’s address space, and then using that
as PerlIO’s “buffer”.

:perlio

This is a reimplementation of “stdio-like” buffering written as a
PerlIO “layer”. As such, it will call whatever layer is below it for its op-
erations (typically :unix).

:pop

An experimental pseudolayer that removes the topmost layer. Use with
the same care as is reserved for nitroglycerin.

:raw

A pseudolayer that manipulates other layers. Applying the :raw layer is
equivalent to calling binmode($fh). It makes the stream pass each byte
as is, without any decoding. In particular, CRLF translation and in-
tuiting :utf8 from locale environment variables are both disabled.

Unlike in the earlier versions of Perl, :raw is not just the inverse
of :crlf. Other layers that5 would affect the binary nature of the stream
are also removed or disabled.

:stdio

This layer provides PerlIO interface by wrapping the system’s ANSI C
“stdio” library calls. The layer provides both buffering and IO. Note
that :stdio layer does not do CRLF translation, even if that is the plat-
form’s normal behavior. You will need a :crlf layer above it to do that.

:unix

Low-level layer that calls read, write, lseek, etc.

:utf8

A pseudolayer that enables a flag on the layer below to tell Perl that
output should be in UTF-8, and that input should be regarded as al-
ready in valid UTF-8 form. It does not check for validity and, as such,
should be handled with caution for input. If you use this layer on input,
always enable (preferably fatal) UTF-8 warnings. Otherwise, you
should use :encoding(UTF‑8) when reading UTF-8 encoded data.

:win32

On Win32 platforms this experimental layer uses native “handle” IO
rather than a Unix-like numeric file descriptor layer. Known to be
buggy in the v5.14 release.

The default set of layers should give acceptable results on all platforms

Environment Variables | 599

www.it-ebooks.info

http://www.it-ebooks.info/

For Unix platforms, that will be the equivalent of “unix perlio” or “stdio”.
Configure is set up to prefer the “stdio” implementation if the system library
provides fast access to the buffer; otherwise, it uses the “unix perlio” im-
plementation.

On Win32, the default in the v5.14 release is “unix crlf”. Win32’s “stdio” has
several bugs—or, more charitably, misfeatures—for Perl IO that are some-
what dependent on which version and vendor supplied the C compiler. Us-
ing our own crlf layer as the buffer avoids those issues and makes things
more uniform. The crlf layer provides CRLF "\n" conversion as well as
buffering.

Perl v5.14 uses unix as the bottom layer on Win32 and so still uses the C
compiler’s numeric file descriptor routines. There is an experimental native
win32 layer, which is expected to be enhanced in the future and should even-
tually become the default under Win32.

The PERLIO environment variable is completely ignored when Perl is run in
taint mode.

PERLIO_DEBUG

If set to the name of a file or device, certain operations of PerlIO's subsystem
will be logged to that file, opened in append mode. Typical uses are this in
Unix:

% env PERLIO_DEBUG=/dev/tty perl script ...

Whereas in Win32, the approximate equivalent is:

> set PERLIO_DEBUG=CON
> perl script ...

This functionality is disabled for setuid scripts and for scripts run with –T.

PERLLIB

A colon-separated list of directories in which to look for Perl library files
before looking in the standard library and the current directory. If
PERL5LIB is defined, PERLLIB is not used.

PERL_UNICODE

Equivalent to the –C command-line switch. Note that this is not a Boolean
variable. Setting this to "1" is not the right way to “enable Unicode” (what-
ever that would mean). However, you can use "0" to “disable Unicode” (or,
alternatively, unset PERL_UNICODE in your shell before starting Perl).

Setting this variable to "AS" is generally useful in most situations involving
text not binary: it implicitly decodes @ARGV from UTF-8, and it binmodes all
three of the STDIN, STDOUT, and STDERR handles to the built-in :utf8 layer. Use

600 | Chapter 17: The Command-Line Interface

www.it-ebooks.info

http://www.it-ebooks.info/

when these are intended to be UTF-8 text, not just binary streams of bytes.
Setting this variable to "ASD" may be even more useful for some cases, but
because it also changes the default encoding of all filehandles from binary
to :utf8, it breaks many old programs that assume binary (or on Windows,
text) streams and so don’t bother to call binmode themselves. Unix programs
are notorious for this. Therefore, it is best to use the "D" setting only for
temporary runs.

Because the built-in :utf8 layer does not by default raise exceptions or even
warn of malformed UTF-8 in input streams, for correct behavior it is im-
perative that you also enable “utf8” warnings if you use the :utf8 layer on
input streams. From the command line, use –Mwarnings=utf8 for warnings,
or –Mwarnings=FATAL,utf8 for exceptions. Those correspond to use warn
ings "utf8" and use warnings FATAL => "utf8" from within the program.
See the section “Getting at Unicode Data” on page 282 in Chapter 6.

SYS$LOGIN (specific to the VMS port)
Used if chdir has no argument, and HOME and LOGDIR are not set.

Apart from these, Perl itself uses no other environment variables, except to make
them available to the program being executed and to any child processes that
program launches. Some modules, standard or otherwise, may care about other
environment variables. For example, the re pragma uses PERL_RE_TC and
PERL_RE_COLORS, the Cwd module uses PWD, and the CGI module uses the many
environment variables set by your HTTP daemon (that is, your web server) to
pass information to the CGI script.

Programs running setuid would do well to execute the following lines before
doing anything else, just to keep people honest:

$ENV{PATH} = '/bin:/usr/bin'; # or whatever you need
$ENV{SHELL} = '/bin/sh' if exists $ENV{SHELL};
delete @ENV{qw(IFS CDPATH ENV BASH_ENV)};

See Chapter 20 for details.

Environment Variables | 601

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 18

The Perl Debugger

First of all, have you tried the warnings pragma?

If you invoke Perl with the –d switch, your program will be run inside the Perl
debugger. This works like an interactive Perl environment, prompting for de-
bugger commands that let you examine source code, set breakpoints, dump out
your function-call stack, change the values of variables, and so on. Any command
not recognized by the debugger is executed directly (using eval) as Perl code in
the package of the code currently being debugged. (The debugger uses the DB
package for its own state information, to avoid trampling yours.) This is so won-
derfully convenient that people often fire up the debugger just to test out Perl
constructs interactively. In that case, it doesn’t matter what program you tell Perl
to debug, so we’ll choose one without much meaning:

% perl –de 42

In Perl, the debugger is not a program completely separate from the one being
debugged the way it usually is in a typical programming environment. Instead,
the –d flag tells the compiler to insert source information into the parse trees it’s
about to hand off to the interpreter. That means your code must first compile
correctly for the debugger to work on it. If that is successful, the interpreter
preloads a special Perl library file containing the debugger itself.

% perl –d /path/to/program

The program will halt immediately before the first runtime executable statement
(but see the next section, “Using the Debugger” on page 604, regarding compile-
time statements) and ask you to enter a debugger command. Whenever the de-
bugger halts and shows you a line of code, it displays the line that it’s about to
execute, not the one just executed.

603

www.it-ebooks.info

http://www.it-ebooks.info/

As the debugger encounters a line, it first checks for a breakpoint, prints it (if the
debugger is in trace mode), performs any actions (created with the a command
described later in “Debugger Commands” on page 606), and finally prompts
the user if a breakpoint is present or if the debugger is in single-step mode. If not,
it evaluates the line normally and continues to the next line.

Using the Debugger
The debugger prompt is something like:

DB<8>

or even:

DB<<17>>

where the number shows how many commands you’ve executed. A csh-like his-
tory mechanism allows you to access previous commands by number. For ex-
ample, !17 would repeat command number 17. The number of angle brackets
indicates the depth of the debugger. For example, you get more than one set of
brackets if you’re already at a breakpoint and then print out the result of a func-
tion call that itself also has a breakpoint.

If you want to enter a multiline command, such as a subroutine definition with
several statements, you may escape the newline that would normally end the
debugger command with a backslash. Here’s an example:

DB<1> for (1..3) { \
 cont: print "ok\n"; \
 cont: }
 ok
 ok
 ok

Let’s say you want to fire up the debugger on a little program of yours (let’s call
it camel_flea) and stop it as soon as it gets down to a function named infested.
Here’s how you’d do that:

% perl –d camel_flea
 Loading DB routines from perl5db.pl version 1.07
 Editor support available.

 Enter h or `h h' for help, or `man perldebug' for more help.

 main::(camel_flea:2): pests('bactrian', 4);
DB<1>

The debugger halts your program right before the first runtime executable state-
ment (but see below about compile-time statements) and asks you to enter a

604 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

command. Again, whenever the debugger stops to show you a line of code, it
displays the line it’s about to execute, not the one it just executed. The line dis-
played may not look exactly like it did in your source file, particularly if you’ve
run it through any kind of preprocessor.

Now, you’d like to stop as soon as your program gets to the infested function, so
you establish a breakpoint there, like so:

DB<1> b infested
DB<2> c

The debugger now continues until it hits that function, at which point it says this:

main::infested(camel_flea:8): my $bugs = int rand(3);

To look at a “window” of source code around the breakpoint, use the w command:

DB<2> w
5 }
6
7 sub infested {
8==>b my $bugs = int rand(3);
9: our $Master;
10: contaminate($Master);
11: warn "needs wash"
12 if $Master && $Master–>isa("Human");
13
14: print "got $bugs\n";

DB<2>

As you see by the ==> marker, your current line is line 8, and by the b there, you
know it has a breakpoint on it. If you had set an action, there also would have
been an a there. The line numbers with colons are breakable; the rest are not.

To see who called whom, ask for a stack backtrace using the T command:

DB<2> T
$ = main::infested called from file `Ambulation.pm' line 4
@ = Ambulation::legs(1, 2, 3, 4) called from file `camel_flea' line 5
. = main::pests('bactrian', 4) called from file `camel_flea' line 2

The initial character ($, @, or .) tells whether the function was called in a scalar,
list, or void context, respectively. There are three lines because you were three
functions deep when you ran the stack backtrace. Here’s what each line means:

• The first line says you were in the function main::infested when you ran the
stack trace. It tells you the function was called in scalar context from line 4
of the file Ambulation.pm. It also shows that it was called without any argu-
ments whatsoever, meaning it was called as &infested instead of the normal
way, as infested().

Using the Debugger | 605

www.it-ebooks.info

http://www.it-ebooks.info/

• The second line shows that the function Ambulation::legs was called in list
context from line number 5 of the camel_flea file, with those four arguments.

• The third line shows that main::pests was called in void context from line 2
of camel_flea.

If you have compile-phase executable statements, such as code from BEGIN and
CHECK blocks or use statements, these will not ordinarily be stopped by the de-
bugger, although requires and INIT blocks will, since they happen after the tran-
sition to run phase (see Chapter 16). Compile-phase statements can be traced
with the AutoTrace option set in PERLDB_OPTS.

You can exert a little control over the Perl debugger from within your Perl program
itself. You might do this, for example, to set an automatic breakpoint at a certain
subroutine whenever a particular program is run under the debugger. From your
own Perl code, however, you can transfer control back to the debugger using the
following statement, which is harmless if the debugger is not running:

$DB::single = 1;

If you set $DB::single to 2, it’s equivalent to the n command, whereas a value of
1 emulates the s command. The $DB::trace variable should be set to 1 to simulate
the t command.

Another way to debug a module is to set a breakpoint on loading:

DB<7> b load c:/perl/lib/Carp.pm
Will stop on load of `c:/perl/lib/Carp.pm'.

and then restart the debugger using the R command. For finer control, you can
use the b compile subname to stop as soon as possible after a particular subroutine
is compiled.

Debugger Commands
When you type commands into the debugger, you don’t need to terminate them
with a semicolon. Use a backslash to continue lines (but only in the debugger).

Since the debugger uses eval to execute commands, my and local settings will
disappear once the command returns. If a debugger command coincides with
some function in your own program, simply precede the function call with any-
thing that doesn’t look like a debugger command, such as a leading ; or a +.

If the output of a debugger built-in command scrolls past your screen, just precede
the command with a leading pipe symbol so it’s run through your pager:

DB<1> |h

606 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

The debugger has plenty of commands, and we divide them (somewhat arbitrar-
ily) into stepping and running, breakpoints, tracing, display, locating code, au-
tomatic command execution, and, of course, miscellaneous.

Perhaps the most important command is h, which provides help. If you type h
h at the debugger prompt, you’ll get a compact help listing designed to fit on one
screen. If you type h COMMAND, you’ll get help on that debugger command.

Stepping and Running
The debugger operates by stepping through your program line by line. The fol-
lowing commands let you control what you skip over and where you stop.

s [EXPR]

The s debugger command single-steps through the program. That is, the
debugger will execute the next line of your program until another statement
is reached, descending into subroutine calls as necessary. If the next line to
execute involves a function call, then the debugger stops at the first line
inside that function. If an EXPR is supplied that includes function calls, these
will be single-stepped, too.

n [EXPR]

The n command executes subroutine calls, without stepping through them,
until the beginning of the next statement at this same level (or higher). If an
EXPR is supplied that includes function calls, those functions will be executed
with stops before each statement.

<ENTER>

If you just hit enter at the debugger prompt, the previous n or s command is
repeated.

. The . command returns the internal debugger pointer to the line last exe-
cuted and prints out that line.

r This command continues until the currently executing subroutine returns.
It displays the return value if the PrintRet option is set, which it is by default.

Breakpoints

b

b LINE

b CONDITION

b LINE CONDITION

Debugger Commands | 607

www.it-ebooks.info

http://www.it-ebooks.info/

b SUBNAME

b SUBNAME CONDITION

b postpone SUBNAME

b postpone SUBNAME CONDITION

b compile SUBNAME

b load FILENAME

The b debugger command sets a breakpoint before LINE, telling the debugger
to stop the program at that point so that you can poke around. If LINE is
omitted, it sets a breakpoint on the line that’s about to execute. If CONDI
TION is specified, it’s evaluated each time the statement is reached: a break-
point is triggered only if CONDITION is true. Breakpoints may only be set on
lines that begin an executable statement. Note that conditions don’t use if:

b 237 $x > 30
b 237 ++$count237 < 11
b 33 /pattern/i

The b SUBNAME form sets a (possibly conditional) breakpoint before the first
line of the named subroutine. SUBNAME may be a variable containing a code
reference; if so, CONDITION is not supported.

There are several ways to set a breakpoint on code that hasn’t even been
compiled yet. The b postpone form sets a (possibly conditional) breakpoint
at the first line of SUBNAME after it is compiled.

The b compile form sets a breakpoint on the first statement to be executed
after SUBNAME is compiled. Note that, unlike the postpone form, this statement
is outside the subroutine in question because the subroutine hasn’t been
called yet, only compiled.

The b load form sets a breakpoint on the first executed line of the file. The
FILENAME should be a full pathname as found in the %INC values.

d

d LINE
This command deletes the breakpoint at LINE; if omitted, it deletes the
breakpoint on the line about to execute.

D This command deletes all breakpoints.

L This command lists all the breakpoints and actions.

c

608 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

c LINE
This command continues execution, optionally inserting a one-time-only
breakpoint at the specified LINE.

Tracing

T This command produces a stack backtrace.

t

t EXPR
This command toggles trace mode, which prints out every line in your pro-
gram as it is evaluated. See also the AutoTrace option discussed later in this
chapter. If an EXPR is provided, the debugger will trace through its execution.
See also the later section “Unattended Execution” on page 619.

W

W EXPR
This command adds EXPR as a global watch expression. (A watch expression
is an expression that will cause a breakpoint when its value changes.) If no
EXPR is provided, all watch expressions are deleted.

Display
Perl’s debugger has several commands for examining data structures while your
program is stopped at a breakpoint.

p

p EXPR
This command is the same as print DB::OUT EXPR in the current package. In
particular, since this is just Perl’s own print function, nested data structures
and objects are not shown—use the x command for that. The DB::OUT handle
prints to your terminal (or perhaps an editor window) no matter where
standard output may have been redirected.

x

x EXPR
The x command evaluates its expression in list context and displays the re-
sult, pretty printed. That is, nested data structures are printed out recur-
sively and with unviewable characters suitably encoded.

V

V PKG

Debugger Commands | 609

www.it-ebooks.info

http://www.it-ebooks.info/

V PKG VARS
This command displays all (or when you specify VARS, some) variables in
the specified PKG (defaulting to the main package) using a pretty printer.
Hashes show their keys and values, control characters are rendered legibly,
nested data structures print out in a legible fashion, and so on. This is similar
to calling the x command on each applicable variable, except that x works
with lexical variables, too. Also, here you type the identifiers without a type
specifier such as $ or @, like this:

V Pet::Camel SPOT FIDO

In place of a variable name in VARS, you can use ~PATTERN or !PATTERN to print
existing variables whose names either match or don’t match the specified
pattern.

X

X VARS
This command is the same as V CURRENTPACKAGE, where CURRENTPACKAGE is the
package into which the current line was compiled.

H

H –NUMBER
This command displays the last NUMBER commands. Only commands longer
than one character are stored in the history. (Most of them would be s or
n, otherwise.) If NUMBER is omitted, all commands are listed.

Locating Code
Inside the debugger, you can extract and display parts of your program with these
commands.

l

l LINE

l SUBNAME

l MIN+INCR

l MIN–MAX

The l command lists the next few lines of your program, or the specified
LINE if provided, or the first few lines of the SUBNAME subroutine or code
reference.

The l MIN+INCR form lists INCR+1 lines, starting at MIN. The l MIN–MAX form
lists lines MIN through MAX.

– This command lists the previous few lines of your program.

610 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

w [LINE]
Lists a window (a few lines) around the given source LINE, or the current line
if no LINE is supplied.

f FILENAME

This command lets you view a different program or eval statement. If the
FILENAME is not a full pathname as found in the values of %INC, it is interpreted
as a regular expression to find the filename you mean.

/PATTERN/

This command searches forward in the program for PATTERN; the final / is
optional. The entire PATTERN is optional, too; if omitted, it repeats the pre-
vious search.

?PATTERN?

This command searches backward for PATTERN; the final ? is optional. It re-
peats the previous search if PATTERN is omitted.

S

S PATTERN

S !PATTERN

The S command lists those subroutine names matching (or, with !, those
not matching) PATTERN. If no PATTERN is provided, all subroutines are listed.

Actions and Command Execution
From inside the debugger, you can specify actions to be taken at particular times.
You can also launch external programs.

a

a COMMAND

a LINE

a LINE COMMAND

This command sets an action to take before LINE executes, or the current line
if LINE is omitted. For example, this prints out $foo every time line 53 is
reached:

a 53 print "DB FOUND $foo\n"

If no COMMAND is specified, the action on the specified LINE is deleted. With
neither LINE nor COMMAND, the action on the current line is deleted.

A The A debugger command deletes all actions.

<

Debugger Commands | 611

www.it-ebooks.info

http://www.it-ebooks.info/

< ?

< EXPR

<< EXPR

The < EXPR form specifies a Perl expression to be evaluated before every de-
bugger prompt. You can add another expression with the << EXPR form, list
them with < ?, and delete them all with a plain <.

>

> ?

> EXPR

>> EXPR

The > commands behave just like their < cousins but are executed after the
debugger prompt instead of before.

{

{ ?

{ COMMAND

{{ COMMAND

The { debugger commands behave just like < but specify a debugger com-
mand to be executed before the debugger prompt instead of a Perl expres-
sion. A warning is issued if you appear to have accidentally entered a block
of code instead. If that’s what you really mean to do, write it with ;
{ ... } or even do { ... }.

!

! NUMBER

! –NUMBER

!PATTERN

A lone ! repeats the previous command. The NUMBER specifies which com-
mand from the history to execute; for instance, ! 3 executes the third com-
mand typed into the debugger. If a minus sign precedes the NUMBER, the
commands are counted backward: ! –3 executes the third-to-last command.
If a PATTERN (no slashes) is provided instead of a NUMBER, the last command
that began with PATTERN is executed. See also the recallCommand debugger
option.

!! CMD

This debugger command runs the external command CMD in a subprocess,
which will read from DB::IN and write to DB::OUT. See also the shellBang
debugger option. This command uses whatever shell is named in
$ENV{SHELL}, which can sometimes interfere with proper interpretation of

612 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

status, signal, and core dump information. If you want a consistent exit value
from the command, set $ENV{SHELL} to /bin/sh.

|

! NUMBER

! –NUMBER

!PATTERN

The |DBCMD command runs the debugger command DBCMD, piping DB::OUT to
$ENV{PAGER}. This is often used with commands that would otherwise pro-
duce long output, such as:

DB<1> |V main

Note that this is for debugger commands, not commands you’d type from
your shell. If you wanted to pipe the external command who through your
pager, you could do something like this:

DB<1> !!who | more

The ||PERLCMD command is like |DBCMD, but DB::OUT is temporarily selected
as well, so any commands that call print, printf, or write without a file-
handle will also be sent down the pipe. For example, if you had a function
that generated loads of output by calling print, you’d use this command
instead of the previous one to page through that output:

DB<1> sub saywho { print "Users: ", `who` }
DB<2> ||saywho()

Miscellaneous Commands
q and ^D

These commands quit the debugger. This is the recommended way to exit,
although typing exit twice sometimes works. Set the inhibit_exit option to
0 if you want to be able to step off the end of the program and remain in the
debugger anyway. You may also need to set $DB::finished to 0 if you want
to step through global destruction.

R Restart the debugger by execing a new session. The debugger tries to main-
tain your history across sessions, but some internal settings and command-
line options may be lost. The following settings are currently preserved:
history, breakpoints, actions, debugger options, and the Perl command-line
options –w, –I, and –e.

=

= ALIAS

Debugger Commands | 613

www.it-ebooks.info

http://www.it-ebooks.info/

= ALIAS VALUE

This command prints out the current value of ALIAS if no VALUE is given.
With a VALUE, it defines a new debugger command with the name ALIAS. If
both ALIAS and VALUE are omitted, all current aliases are listed. For example:

= quit q

An ALIAS should be a simple identifier and should translate to a simple
identifier as well. You can do more sophisticated aliasing by adding your
own entries to %DB::aliases directly. See the following section, “Debugger
Customization” on page 615.

man

man MANPAGE
This command calls your system’s default documentation viewer on the
given page or on the viewer itself if MANPAGE is omitted. If that viewer is
man, the current %Config information is used to invoke it. The “perl” prefix
will be automatically supplied for you when necessary; this lets you type
man debug and man op from the debugger.

On systems that do not normally have the man utility, the debugger invokes
perldoc; if you want to change that behavior, set $DB::doccmd to whatever
viewer you like. This may be set in an rc file or through direct assignment.

O

O OPTION ...

O OPTION? ...

O OPTION=VALUE ...

The O command lets you manipulate debugger options, which are listed in
“Debugger Options” on page 616 later in this chapter. The O OPTION form
sets each of the listed debugger options to 1. If a question mark follows an
OPTION, its current value is displayed.

The O OPTION=VALUE form sets the values; if VALUE has internal whitespace, it
should be quoted. For example, you could set O pager="less –MQeicsNfr"
to use less with those specific flags. You may use either single or double
quotes, but if you do, you must escape embedded instances of the same sort
of quote that you began with. You must also escape any backslash that
immediately precedes the quote but is not meant to escape the quote itself.
In other words, just follow single-quoting rules irrespective of the quote
actually used. The debugger responds by showing you the value of the op-
tion just set, always using single-quoted notation for its output:

DB<1> O OPTION='this isn\'t bad'
 OPTION = 'this isn\'t bad'

614 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

DB<2> O OPTION="She said, \"Isn't it?\""
 OPTION = 'She said, "Isn\'t it?"'

For historical reasons, the =VALUE is optional but defaults to 1 only where safe
to do so—that is, mostly for Boolean options. It is better to assign a specific
VALUE using =. The OPTION can be abbreviated, but unless you’re trying to be
intentionally cryptic, it probably should not be. Several options can be set
together. See the upcoming section “Debugger Options” on page 616 later
in the chapter for a list of these.

Debugger Customization
The debugger probably contains enough configuration hooks that you’ll never
have to modify it yourself. You may change debugger behavior from within the
debugger using its O command, from the command line via the PERLDB_OPTS en-
vironment variable, and by running any preset commands stored in rc files.

Editor Support for Debugging
The debugger’s command-line history mechanism doesn’t provide command-line
editing like many shells do: you can’t retrieve previous lines with ^p, or move to
the beginning of the line with ^a, although you can execute previous lines with
the exclamation point syntax familiar to shell users. However, if you install the
Term::ReadKey and Term::ReadLine modules from CPAN, you will have full editing
capabilities similar to what GNU readline(3) provides.

If you have emacs installed on your system, it can interact with the Perl debugger
to provide an integrated software development environment reminiscent of its
interactions with C debuggers. Perl comes with a start file for making emacs act
like a syntax-directed editor that understands (some of) Perl’s syntax. Look in
the emacs directory of the Perl source distribution. Users of vi should also look
into vim (and gvim, the mousey and windy version) for coloring of Perl keywords.

A similar setup by one of us (Tom) for interacting with any vendor-shipped vi and
the X11 window system is also available. This works similarly to the integrated
multiwindow support that emacs provides, where the debugger drives the editor.
However, at the time of this writing, its eventual location in the Perl distribution
is uncertain. But we thought you should know of the possibility.

Debugger Customization | 615

www.it-ebooks.info

http://www.it-ebooks.info/

Customizing with Init Files
You can do some customization by setting up either a .perldb or perldb.ini file
(depending on your operating system), which contains initialization code. This
init file holds Perl code, not debugger commands, and it is processed before the
PERLDB_OPTS environment variable is looked at. For instance, you could make
aliases by adding entries to the %DB::alias hash this way:

$alias{len} = 's/^len(.*)/p length($1)/';
$alias{stop} = 's/^stop (at|in)/b/';
$alias{ps} = 's/^ps\b/p scalar /';
$alias{quit} = 's/^quit(\s*)/exit/';
$alias{help} = 's/^help\s*$/|h/';

You can change options from within your init file using function calls into the
debugger’s internal API:

parse_options("NonStop=1 LineInfo=db.out AutoTrace=1 frame=2");

If your init file defines the subroutine afterinit, that function is called after
debugger initialization ends. The init file may be located in the current directory
or in the home directory. Because this file contains arbitrary Perl commands, for
security reasons, it must be owned by the superuser or the current user, and
writable by no one but its owner.

If you want to modify the debugger, copy perl5db.pl from the Perl library to an-
other name and hack it to your heart’s content. You’ll then want to set your
PERL5DB environment variable to say something like this:

BEGIN { require "myperl5db.pl" }

As a last resort, you could also use PERL5DB to customize the debugger by directly
setting internal variables or calling internal debugger functions. Be aware,
though, that any variables and functions not documented either here or in the
online perldebug, perldebguts, or DB manpages are considered to be for internal
use only and are subject to change without notice.

Debugger Options
The debugger has numerous options that you can set with the O command, either
interactively, from the environment, or from an init file.

recallCommand, ShellBang

The characters used to recall a command or spawn a shell. By default, both
are set to !.

616 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://perldoc.perl.org/perldebug.html
http://perldoc.perl.org/perldebguts.html
http://www.it-ebooks.info/

pager

Program to use for output of pager-piped commands (those beginning with
a | character). By default, $ENV{PAGER} will be used. Because the debugger
uses your current terminal characteristics for bold and underlining, if the
chosen pager does not pass escape sequences through unchanged, the out-
put of some debugger commands will not be readable when sent through
the pager.

tkRunning

Runs under the Tk module while prompting (with ReadLine).

signalLevel, warnLevel, dieLevel

Set the level of verbosity. By default, the debugger leaves your exceptions and
warnings alone because altering them can break correctly running pro-
grams.

To disable this default safe mode, set these values to something higher than
0. At a level of 1, you get backtraces upon receiving any kind of warning
(this is often annoying) or exception (this is often valuable). Unfortunately,
the debugger cannot distinguish fatal exceptions from nonfatal ones. If
dieLevel is 1, then your nonfatal exceptions are also traced and unceremo-
niously altered if they came from evaled strings or from any kind of eval
within modules you’re attempting to load. If dieLevel is 2, the debugger
doesn’t care where they came from: it usurps your exception handler and
prints out a trace, and then modifies all exceptions with its own embellish-
ments. This may perhaps be useful for some tracing purposes, but it tends
to hopelessly confuse any program that takes its exception handling seri-
ously.

The debugger will attempt to print a message when any uncaught INT, BUS,
or SEGV signal arrives. If you’re in a slow syscall (like a wait or an accept, or
a read from your keyboard or a socket) and haven’t set up your own
$SIG{INT} handler, then you won’t be able to Control-C your way back to the
debugger, because the debugger’s own $SIG{INT} handler doesn’t under-
stand that it needs to raise an exception to longjmp(3) out of slow syscalls.

AutoTrace

Sets the trace mode (similar to t command, but can be put into PERLDB_OPTS).

LineInfo

Assigns the file or pipe to print line number info to. If it is a pipe (say, |
visual_perl_db), then a short message is used. This is the mechanism used
to interact with a slave editor or visual debugger, such as the special vi or
emacs hooks, or the ddd graphical debugger.

Debugger Customization | 617

www.it-ebooks.info

http://www.it-ebooks.info/

inhibit_exit

If 0, allows stepping off the end of the program.

PrintRet

Prints return value after r command if set (default).

ornaments

Affects screen appearance of the command line (see the online docs for
Term::ReadLine). There is currently no way to disable ornaments, which can
render some output illegible on some displays or with some pagers. This is
considered a bug.

frame

Affects printing of messages on entry and exit from subroutines. If frame &
2 is false, messages are printed on entry only. (Printing on exit might be useful
if interspersed with other messages.)

If frame & 4, arguments to functions are printed, plus context and caller info.
If frame & 8, overloaded stringify and tied FETCH are enabled on the printed
arguments. If frame & 16, the return value from the subroutine is printed.

The length at which the argument list is truncated is governed by the next
option.

maxTraceLen

Length to truncate the argument list when the frame option’s bit 4 is set.

The following options affect what happens with the V, X, and x commands:

arrayDepth, hashDepth

Print only the first n elements. If n is omitted, all of the elements will be
printed.

compactDump, veryCompact

Change the style of array and hash output. If compactDump is enabled, short
arrays may be printed on one line.

globPrint

Prints contents of typeglobs.

DumpDBFiles

Displays arrays holding debugged files.

DumpPackages

Displays symbol tables of packages.

DumpReused

Displays contents of “reused” addresses.

618 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

quote, HighBit, undefPrint

Change the style of string display. The default value for quote is auto; you
can enable double-quotish or single-quotish format by setting it to " or ',
respectively. By default, characters with their high bit set are printed verba-
tim.

UsageOnly

Instead of showing the contents of a package’s variables, with this option
enabled, you get a rudimentary per-package memory usage dump based on
the total size of the strings found in package variables. Because the package
symbol table is used, lexical variables are ignored.

Unattended Execution
During startup, options are initialized from $ENV{PERLDB_OPTS}. You may place
the initialization options TTY, noTTY, ReadLine, and NonStop there.

If your init file contains:

parse_options("NonStop=1 LineInfo=tperl.out AutoTrace");

then your program will run without human intervention, putting trace informa-
tion into the file db.out. (If you interrupt it, you’d better reset LineInfo to /dev/
tty if you expect to see anything.)

The following options can be specified only at startup. To set them in your init
file, call parse_options("OPT=VAL").

TTY

The terminal to use for debugging I/O.

noTTY

If set, the debugger goes into NonStop mode and will not connect to a termi-
nal. If interrupted (or if control goes to the debugger via explicit setting of
$DB::signal or $DB::single from the Perl program), it connects to a terminal
specified in the TTY option at startup, or to a terminal found at runtime using
the Term::Rendezvous module of your choice.

This module should implement a method named new that returns an object
with two methods: IN and OUT. These should return filehandles for the de-
bugger to use as input and output. The new method should inspect an ar-
gument containing the value of $ENV{PERLDB_NOTTY} at startup, or /tmp/
perldbtty$$ otherwise. This file is not inspected for proper ownership or
wide-open write access, so security hazards are theoretically possible.

Unattended Execution | 619

www.it-ebooks.info

http://www.it-ebooks.info/

ReadLine

If false, ReadLine support in the debugger is disabled in order to debug ap-
plications that themselves use a ReadLine module.

NonStop

If set, the debugger goes into noninteractive mode until interrupted, or your
program sets $DB::signal or $DB::single.

Options can sometimes be uniquely abbreviated by the first letter, but we rec-
ommend that you always spell them out in full, for legibility and future compat-
ibility.

Here’s an example of using the PERLDB_OPTS environment variable to set options
automatically.1 It runs your program noninteractively, printing information on
each entry into a subroutine and for each line executed. Output from the de-
bugger’s trace are placed into the tperl.out file. This lets your program still use
its regular standard input and output, without the trace information getting in
the way.

$ PERLDB_OPTS="NonStop frame=1 AutoTrace LineInfo=tperl.out" perl –d myprog

If you interrupt the program, you’ll need to quickly reset to O LineInfo=/dev/
tty, or whatever makes sense on your platform. Otherwise, you won’t see the
debugger’s prompting.

Debugger Support
Perl provides special debugging hooks at both compile time and runtime for cre-
ating debugging environments such as the standard debugger. These hooks are
not to be confused with the perl –D options, which are usable only if your Perl
was built with –DDEBUGGING support.

For example, whenever you call Perl’s built-in caller function from the package
DB, the arguments that the corresponding stack frame was called with are copied
to the @DB::args array. When you invoke Perl with the –d switch, the following
additional features are enabled:

• Perl inserts the contents of $ENV{PERL5DB} (or BEGIN {require

'perl5db.pl'} if not present) before the first line of your program.

• The array @{"_<$filename"} holds the lines of $filename for all files compiled
by Perl, as well as for evaled strings that contain subroutines or are currently

1. We’re using sh shell syntax to show environment variable settings. Users of other shells should adjust
accordingly.

620 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

being executed. The $filename for evaled strings looks like (eval 34). Code
assertions in regular expressions look like (re_eval 19).

• The hash %{"_<$filename"} contains breakpoints and actions keyed by line
number. You can set individual entries as opposed to the whole hash. Perl
only cares about Boolean truth here, although the values used by perl5db.pl
have the form "$break_condition\0$action". Values in this hash are magical
in numeric context: they are zeros if the line is not breakable.

The same holds for evaluated strings that contain subroutines or are currently
being executed. The $filename for evaled strings looks like (eval 34) or
(re_eval 19).

• The scalar ${"_<$filename"} contains "_<$filename". This is also the case for
evaluated strings that contain subroutines or are currently being executed.
The $filename for evaled strings looks like (eval 34) or (re_eval 19).

• After each required file is compiled, but before it is executed, DB::post
poned(*{"_<$filename"}) is called if the subroutine DB::postponed exists.
Here, the $filename is the expanded name of the required file, as found in
the values of %INC.

• After each subroutine subname is compiled, the existence of $DB::postponed
{subname} is checked. If this key exists, DB::postponed(subname) is called if the
DB::postponed subroutine also exists.

• A hash %DB::sub is maintained, whose keys are subroutine names and whose
values have the form filename:startline–endline. filename has the form
(eval 34) for subroutines defined inside evals, or (re_eval 19) for those
within regular expression code assertions.

• When the execution of your program reaches a point that might hold a
breakpoint, the DB::DB subroutine is called if any of the variables $DB::trace,
$DB::single, or $DB::signal is true. These variables are not localizable. This
feature is disabled when executing inside DB::DB, including functions called
from it, unless $^D & (1<<30) holds true.

• When execution of the program reaches a subroutine call, a call to
&DB::sub(args) is made instead, with $DB::sub holding the name of the called
subroutine. This doesn’t happen if the subroutine was compiled in the DB
package.

Note that if &DB::sub needs external data for it to work, no subroutine call is
possible until this is done. For the standard debugger, the $DB::deep variable
(how many levels of recursion deep into the debugger you can go before a
mandatory break) gives an example of such a dependency.

Debugger Support | 621

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own Debugger
The minimal working debugger consists of one line:

sub DB::DB {}

which, since it does nothing whatsoever, can easily be defined via the PERL5DB
environment variable:

 $ PERL5DB="sub DB::DB {}" perl –d your–program

Another tiny, slightly more useful debugger could be created like this:

sub DB::DB {print ++$i; scalar <STDIN>}

This little debugger would print the sequential number of each encountered
statement and would wait for you to hit a newline before continuing.

The following debugger, small though it may appear, is really quite functional:

{
 package DB;
 sub DB {}
 sub sub {print ++$i, " $sub\n"; &$sub}
}

It prints the sequential number of the subroutine call and the name of the called
subroutine. Note that &DB::sub must be compiled from the package DB, as we’ve
done here.

If you base your new debugger on the current debugger, there are some hooks
that can help you customize it. At startup, the debugger reads your init file from
the current directory or your home directory. After the file is read, the debugger
reads the PERLDB_OPTS environment variable and parses this as the remainder of
an O ... line such as you might enter at the debugger prompt.

The debugger also maintains magical internal variables, such as @DB::dbline and
%DB::dbline, which are aliases for @{":::_<current_file"} %{"::_<cur

rent_file"}. Here, current_file is the currently selected file, either explicitly
chosen with the debugger’s f command or implicitly by flow of execution.

Some functions can help with customization. DB::parse_options(STRING) parses
a line like the O option. DB::dump_trace(SKIP[, COUNT]) skips the specified
number of frames and returns a list containing information about the calling
frames (all of them, if COUNT is missing). Each entry is a reference to a hash with
keys “context” (either ., $, or @), “sub” (subroutine name or info about eval),
“args” (undef or a reference to an array), “file”, and “line”. DB::print_trace(FH,
SKIP[, COUNT[, SHORT]]) prints formatted info about caller frames to the supplied

622 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

filehandle. The last two functions may be convenient as arguments to the de-
bugger’s < and << commands.

You don’t need to learn all that—most of us haven’t. In fact, when we need to
debug a program, we usually just insert a few print statements here and there
and rerun the program.

On our better days, we’ll even remember to turn on warnings first. That often
spotlights the problem right away, thus saving a great deal of wear and tear on
our hair (what’s left of it). But when that doesn’t work, it’s nice to know that,
waiting for you patiently behind that –d switch, there is a lovely debugger that
can do darn near anything except find your bug for you.

But if you’re going to remember one thing about customizing the debugger, per-
haps it is this: don’t limit your notion of bugs to things that make Perl unhappy.
It’s also a bug if your program makes you unhappy. Earlier, we showed you a
couple of really simple custom debuggers. In the next section, we’ll show you an
example of a different sort of custom debugger, one that may (or may not) help
you debug the bug known as “Is this thing ever gonna finish?”

Profiling Perl
As we write this, Perl comes with a profiler called Devel::DProf. However, by the
time you read this, it might be gone. Perl v5.16, which is scheduled for release
around the same time this book hits the shelves, removes this old profiler. Most
people using a profiler have moved on to another profiler, Devel::NYTProf. We’ll
tell you about Devel::DProf since it’s still in Perl, but we’ll also tell you about the
new one, which doesn’t come with Perl.

These profilers are not lightweight, and they aren’t your only options for a profiler.
CPAN also holds Devel::SmallProf, which reports the time spent in each line of
your program. That can help you figure out if you’re using some particular Perl
construct that is being surprisingly expensive. Most of the built-in functions are
pretty efficient, but it’s easy to accidentally write a regular expression whose
overhead increases exponentially with the size of the input. See also the section
“Efficiency” on page 691 in Chapter 21 for other helpful hints.

Devel::DProf
Do you want to make your program faster? Well, of course you do. But first you
should stop and ask yourself, “Do I really need to spend time making this

Profiling Perl | 623

www.it-ebooks.info

http://www.it-ebooks.info/

program faster?” Recreational optimization can be fun,2 but normally there are
better uses for your time. Sometimes you just need to plan ahead and start the
program when you’re going on a coffee break (or use it as an excuse for one). But
if your program absolutely must run faster, you should begin by profiling it. A
profiler can tell you which parts of your program take the most time to execute,
so you won’t waste time optimizing a subroutine that has an insignificant effect
on the overall execution time.

Perl comes with a profiler, the Devel::DProf module. You can use it to profile the
Perl program in mycode.pl by typing:

% perl –d:DProf mycode.pl

Even though we’ve called it a profiler—since that’s what it does—the mechanism
DProf employs is the very same one we discussed earlier in this chapter. DProf is
just a debugger that records the time Perl entered and left each subroutine.

When your profiled script terminates, DProf will dump the timing information
to a file called tmon.out. The dprofpp program that came with Perl knows how to
analyze tmon.out and produce a report. You may also use dprofpp as a frontend
for the whole process with the –p switch (described later).

Given this program:

outer();

sub outer {
 for (my $i=0; $i< 100; $i++) { inner() }
}

sub inner {
 my $total = 0;
 for (my $i=0; $i< 1000; $i++) { $total += $i }
}

inner();

the output of dprofpp is:

Total Elapsed Time = 0.537654 Seconds
 User+System Time = 0.317552 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 85.0 0.270 0.269 101 0.0027 0.0027 main::inner
 2.83 0.009 0.279 1 0.0094 0.2788 main::outer

2. Or so says Nathan Torkington, who contributed this section of the book.

624 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

Note that the percentage numbers don’t add up to 100. In fact, in this case, they’re
pretty far off, which should tip you off that you need to run the program longer.
As a general rule, the more profiling data you can collect, the better your statistical
sample. If we increase the outer loop to run 1,000 times instead of 100 times,
we’ll get more accurate results:

Total Elapsed Time = 2.875946 Seconds
 User+System Time = 2.855946 Seconds
Exclusive Times
%Time ExclSec CumulS #Calls sec/call Csec/c Name
 99.3 2.838 2.834 1001 0.0028 0.0028 main::inner
 0.14 0.004 2.828 1 0.0040 2.8280 main::outer

The first line reports how long the program took to run, from start to finish. The
second line displays the total of two different numbers: the time spent executing
your code (“user”) and the time spent in the operating system executing system
calls made by your code (“system”). (We’ll have to forgive a bit of false precision
in these numbers—the computer’s clock almost certainly does not tick every
millionth of a second. It might tick every hundredth of a second if you’re lucky.)

The “user+system” times can be changed with command-line options to dprofpp.
–r displays elapsed time, –s displays system time only, and –u displays user time
only.

The rest of the report is a breakdown of the time spent in each subroutine. The
“Exclusive Times” line indicates that when subroutine outer called subroutine
inner, the time spent in inner didn’t count toward outer’s time. To change this,
causing inner’s time to be counted toward outer’s, give the –I option to dprofpp.

For each subroutine, the following is reported: %Time, the percentage of time spent
in this subroutine call; ExclSec, the time in seconds spent in this subroutine not
including those subroutines called from it; CumulS, the time in seconds spent in
this subroutine and those called from it; #Calls, the number of calls to the sub-
routine; sec/call, the average time in seconds of each call to the subroutine not
including those called from it; Csec/c, the average time in seconds of each call to
the subroutine and those called from it.

Of those, the most useful figure is %Time, which will tell you where your time goes.
In our case, the inner subroutine takes the most time, so we should try to optimize
that subroutine or find an algorithm that will call it less. :–) Options to
dprofpp provide access to other information or vary the way the times are calcu-
lated. You can also make dprofpp run the script for you in the first place, so you
don’t have to remember the –d:DProf switch:

Profiling Perl | 625

www.it-ebooks.info

http://www.it-ebooks.info/

–p SCRIPT
Tells dprofpp that it should profile the given SCRIPT and then interpret its
profile data. See also –Q.

–Q Used with –p to tell dprofpp to quit after profiling the script, without inter-
preting the data.

–a Sorts output alphabetically by subroutine name rather than by decreasing
percentage of time.

–R Counts anonymous subroutines defined in the same package separately. The
default behavior is to count all anonymous subroutines as one, named
main::_ _ANON_ _.

–I Displays all subroutine times inclusive of child subroutine times.

–l Sorts by number of calls to the subroutines. This may help identify candi-
dates for inlining.

–O COUNT
Shows only the top COUNT subroutines. The default is 15.

–q Does not display column headers.

–T Displays the subroutine call tree to standard output. Subroutine statistics are
not displayed.

–t Displays the subroutine call tree to standard output. Subroutine statistics are
not displayed. A function called multiple (consecutive) times at the same
calling level is displayed once, with a repeat count.

–S Produces output structured by the way your subroutines call one another:

main::inner x 1 0.008s
main::outer x 1 0.467s = (0.000 + 0.468)s
 main::inner x 100 0.468s

Read this as follows: the top level of your program called inner once, and it
ran for 0.008s elapsed time; the top level called outer once, and it ran for
0.467s inclusively (0s in outer itself; 0.468s in the subroutines called from
outer), calling inner 100 times (which ran for 0.468s). Whew, got that?

Branches at the same level (for example, inner called once and outer called
once) are sorted by inclusive time.

–U Does not sort. Displays in the order found in the raw profile.

–v Sorts by average time spent in subroutines during each call. This may help
identify candidates for hand optimization by inlining subroutine bodies.

–g subroutine
Ignores subroutines except subroutine and whatever is called from it.

626 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

Other options are described in dprofpp(1), its standard manpage.

Devel::NYTProf
The Devel::NYTProf module started at the New York Times by Adam Kaplan, al-
though it’s currently maintained outside the Times now. It’s fast (written in C),
it’s powerful, and it makes nice reports. It’s the fastest statement and subroutine
profiler available, and we don’t have enough room to tell you all of the wonderful
things about it. Download it from CPAN, and then use it just like the other
debuggers:

% perl –d:NYTProf your_program

Once finished, you can inspect the results as HTML files. The first HTML file
(Figure 18-1) is the summary:

% nytprofhtml ––open

You can set various options in the NYTPROF environment variable. For instance,
you can tell the profiler when to start: right away, at the INIT phase, or at the
beginning of the END:

% env NYTPROF=start=init perl –d:NYTProf your_program

See the module documentation for more details. Now go take that coffee break.
You’ll need it for the next chapter.

Profiling Perl | 627

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 18-1. The starting page for the HTML view of NYTProf

628 | Chapter 18: The Perl Debugger

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 19

CPAN

CPAN started as a repository of Perl software and has turned into a loose collec-
tion of services built around that repository. When people say “CPAN”, they
might be talking about any one of these things since people conflate anything
that connects to this central repository.

History
Toward the end of 1993, Tim Bunce, Jarkko Hietaniemi, and Andreas König set
up the perl-packrats mailing list to discuss the idea of an archive for all the Perl
4 stuff floating around the Internet. Perl 5 development had started that year,
and one of its main features would be an extensible module system that would
allow people to extend the language without changing perl. Jared Rhine suggested
the idea of a central repository, but nothing much happened. His idea had come
from CTAN, the Comprehensive TeX Archive Network.

A couple of years later, Jarkko resurrected the idea and set up an FTP archive at
ftp://ftp.cpan.org. Soon after, Andreas König set up PAUSE, the Perl Authors Up-
load Server, to provide a way for people to contribute to this repository. The parts
that most people think of as “CPAN”, the modules, are really just two directories
that CPAN mirrors from PAUSE. There’s a lot more to CPAN though.

Other services mirrored the master CPAN site to provide quick and easy access
across the globe. There are now about 300 public mirrors across six continents.
Anyone can mirror all of CPAN to create a new public mirror, or even create a
private mirror for their own use.1

As CPAN became popular, other projects developed around it. Graham Barr
added a search interface at http://search.cpan.org. Barbie built up the idea of CPAN

1. See “How to mirror CPAN” at http://www.cpan.org/misc/how-to-mirror.html.

629

www.it-ebooks.info

http://www.ctan.org
ftp://ftp.cpan.org
http://pause.perl.org
http://search.cpan.org
http://www.cpan.org/misc/how-to-mirror.html
http://www.it-ebooks.info/

Testers to test every distribution on CPAN. David Cantrell developed CPANdeps
to combine the test results of a distribution with all of its dependencies. Moritz
Onken created a second-generation search and aggregation site with Meta-
CPAN as part of a Google Summer of Code project. There are many other services
built around the actual CPAN, which is just that central repository.

A Tour of the Repository
Most files on CPAN come from PAUSE, which provides the authors and mod-
ules directories. There’s more to CPAN than just the modules. Here’s a short tour
of the more interesting parts.

authors
This directory, mirrored from PAUSE, contains numerous subdirectories,
arranged by the author ID of the contributor under the id subdirectory. The
first level of directories is the first letter in the author ID, the second level is
the first two letters, and the final level is the full author ID. For instance, for
the author NANIS (Sinan Ünür), the path under authors is id/N/NA/NA-
NIS. Under that directory is everything Sinan has uploaded—but not re-
moved; see BackPAN.

Some authors have a directory with their full name, such as
Hugo_van_der_Sanden. The authors directory had a flatter structure when
there weren’t that many authors. As CPAN became more popular—there
are now over 9,000 registered authors—PAUSE partitioned the author
names into the three-level structure.

doc This directory is used to hold the Perl documentation, as well as various
commentary on it, but it is no longer maintained. There’s still some inter-
esting material in there, but it’s no longer the main source of Perl informa-
tion. For online documentation, use http://perldoc.perl.org for the core Perl
information or one of the Perl module sites for module documentation.

modules
Curiously, this directory is not where you find the module, but all of the
special index files that the CPAN clients use to turn a package name, such
as Mojolicious, into its path under authors—in this case, authors/id/S/SR/
SRI/Mojolicious-1.99.tar.gz (or wherever the latest Mojolicious distribution
is).

There are also subdirectories, like by-module, that organize the distributions
by name instead of author. These are symlinks into the authors directory
where the actual files are.

630 | Chapter 19: CPAN

www.it-ebooks.info

https://www.metacpan.org
https://www.metacpan.org
http://www.cpan.org/authors
http://www.cpan.org/authors/id
http://backpan.perl.org
http://perldoc.perl.org
http://www.it-ebooks.info/

There is also a by-category directory, which is not of much use these days.
Before CPAN had so many thousands of distributions, the CPAN librarians
wanted to categorize every module so you could navigate through cate-
gories2 to find the module that you’d want. Searching directly turned out to
be much more popular than roaming the virtual stacks of CPAN, so the
“Module List” fell into disrepair and went out of date quickly. Part of this
relied on authors registering and categorizing their contributions to PAUSE,
but not so many people do that anymore.

ports
This directory contains the source code and sometimes also precompiled
executable images of Perl ports to operating systems that are not directly
supported in the standard distribution, or for which compilers are merci-
lessly hard to come by. These ports are the individual efforts of their re-
spective authors, and they may not all function precisely as described in this
book. These days, few systems should require special ports. The index
document of this directory is interesting to look through anyway, because
it includes information detailing when each system vendor began shipping
Perl as part of their standard installation.

scripts
This directory contains a small collection of diverse Perl programs, largely a
hold-over from the time when people distributed standalone programs.
Authors included their programs in the scripts section by including special
pod headings in their program documentation. Alas, almost no one does
this anymore. Now people upload programs as part of a normal Perl module
distribution, commonly in the App:: namespace. CPAN is not particularly
script-friendly; it’s more module-friendly.

src This is where you will find the source code for the standard Perl distribution.
Actually, for two standard Perl distributions—one is marked maint and the
other devel. There are two tracks of Perl development. One, maint, is the one
you should use for real work. The devel branch is experimental, where the
Perl developers try out new features, new code, and other things that might
be too broken for stable use.

To know which is which, look at the version number, such as 5.14.2. The first
number is the major version, meaning Perl v5. The second number is the
minor version.3 If that minor number is even, it’s a maintenance version. So

2. Does anyone remember Yahoo! before search was the big thing?

3. This is not minor in scope. This is the number for the big releases. One way to think about this is to consider
“Perl 5” is the language, and the next number is the major release.

A Tour of the Repository | 631

www.it-ebooks.info

http://www.it-ebooks.info/

distributions with 5.10.1, 5.12.4, and 5.14.2 are stable releases because 10,
12, and 14 are even numbers. If the minor number is odd, like 5.15.3, it’s
an experimental version because 15 is odd.

There are two links in this directory that will always produce the latest ver-
sions despite the actual versions. The latest.tar.gz and maint.tar.gz point to
the most recent release in the most recent maintenance branch.4 The CPAN
maintainers discourage the use of these terms because some people don’t
understand what they point to.

Creating a MiniCPAN
You can mirror CPAN yourself, but as we write this, you’d have to sync 24,000
distributions taking up 13 GB of disk space. Since PAUSE only indexes the latest
distributions, you probably won’t need most of those distributions. For most
uses, you’ll probably only ever install the latest versions. Because of this, in 2002,
Randal Schwartz created minicpan and wrote about it in Linux Magazine.5. He
reduced his local CPAN footprint by 80%, and brian d foy coined the term
Schwartz Factor to measure that reduction.

The CPAN::Mini distribution has the tools you need. This module is not part of
the Standard Library, so you have to install it yourself (see later in this chapter).

First, set up your configuration, noting from where you want to fetch new data
and where you want to store it:

local: /Users/Amelia/MINICPAN
remote: http://cpan.example.com/

Running minicpan creates the slim repository:

% minicpan
Using config from /Users/Amelia/.minicpanrc
Updating /Users/Amelia/MINICPAN
Mirroring from http://cpan.example.com/
===
authors/01mailrc.txt.gz ... updated
modules/02packages.details.txt.gz ... updated
modules/03modlist.data.gz ... updated
authors/id/A/AA/AAR/Math–Clipper–1.01.tar.gz ... updated
authors/id/A/AA/AAR/CHECKSUMS ... updated

4. The Perl developers officially support the last two maintenance versions. If the current release is Perl v5.16,
that means v5.14 is officially supported but v5.12 has no official support. See perlpolicy for the details.

5. See http://www.stonehenge.com/merlyn/LinuxMag/col42.html.

632 | Chapter 19: CPAN

www.it-ebooks.info

http://www.cpan.org/src/latest.tar.gz
http://www.cpan.org/src/maint.tar.gz
http://perldoc.perl.org/perlpolicy.html
http://www.stonehenge.com/merlyn/LinuxMag/col42.html
http://www.it-ebooks.info/

Point your CPAN clients at this repository, and you can now install modules even
if you are on a train, plane, or automobile, in the middle of the Black Rock Desert,
or even in a power outage. Well, until your battery runs out.

You can minutely control what you sync, although you need to write your own
minicpan program to use these controls. The module_filters and path_filters
let you use regular expressions or subroutine references to note which modules
or authors to skip. A matched pattern or a subroutine that returns true makes
CPAN::Mini skip that distribution:

use CPAN::Mini;

CPAN::Mini–>update_mirror(
 remote => "http://cpan.mirrors.comintern.su",
 local => "/usr/share/mirrors/cpan",
 force => 0,
 module_filters => [qr/Acme/i],
 path_filters => [
 qr/RJBS/,
 sub { $_[0] =~ /SUNGO/ }
],
);

The CPAN Ecosystem
CPAN really is a network of services, with several steps between the person who
uploads the distribution to the person who installs it. This chapter doesn’t go
through everything out there; it merely highlights the main parts.

PAUSE
PAUSE is the gateway to CPAN for contributors. Before you can upload anything,
you need an account. It’s free and easy. One of the PAUSE administrators will
check your application, mostly as just a check against bots, and then set up the
account.

Once you have the account, you can upload your work to PAUSE. You can upload
almost anything that you like. PAUSE doesn’t care about what you are doing or
how well you do it.

When you upload a distribution, the PAUSE indexer looks through your archive
for any Perl namespaces that you might have used. There are no restrictions on
which namespaces you can use, but PAUSE keeps a list of people it thinks are
authorized to modify a namespace.

The CPAN Ecosystem | 633

www.it-ebooks.info

http://pause.perl.org
http://www.it-ebooks.info/

• The first author to use a namespace gets first-come permissions and becomes
the primary maintainer.

• The primary maintainer can assign co-maintainer permissions to another au-
thor (or many authors).

• The primary maintainer can give up that status to another author.

If you upload a distribution that uses a namespace for which you don’t have one
of these permissions, the PAUSE indexer refuses to index the module and sends
you an error. It still accepts your upload, however, and it will still show up on
CPAN. People will be able to download it. However, since the indexer did not
index it, your distribution will not show up in the database PAUSE creates. If

Figure 19-1. A map of the CPAN ecosystem

634 | Chapter 19: CPAN

www.it-ebooks.info

http://www.it-ebooks.info/

your module doesn’t show up in the database, the CPAN clients won’t know
about it and won’t be able to install it. PAUSE just skips your distribution, and
so does the world.

Searching CPAN
There are two major search sites for CPAN, and both provide similar functionality.
These two sites aggregate distribution-specific links to other CPAN projects:

• CPAN Search (http://search.cpan.org)

• MetaCPAN (https://www.metacpan.org)

Testing
Perl has a great testing culture. As soon as someone uploads a new distribution
to PAUSE, a loose confederation of machines of different shapes and sizes known
as CPAN Testers (http://testers.cpan.org) downloads, builds, and runs their test
suites. This group aims to test as many modules as possible on as many possible
platforms and versions of Perl as it can find.

This way, the solitary Perl author can develop on a single architecture and, by the
mere act of uploading, get results for other architectures and across several ver-
sions of Perl. And it’s free! Authors can get detailed instructions on making their
distribution “Testers-friendly” by reading the CPAN Testers wiki (http://wiki
.cpantesters.org).

This works out for the users of CPAN modules, too. People can inspect the test
reports to see how a particular module fares. David Cantrell’s CPANdeps (http:
//deps.cpantesters.org) presents the test reports in a matrix of platforms and Perl
versions, and also provides a summary of the test reports for all module depen-
dencies as a “probability of success” for installation.

Bug Tracking
Since Perl and CPAN aren’t a single, centralized project, there’s no one place to
report or read about bugs. Although many people report bugs directly in private
email, that doesn’t create a public record that everyone can work from, comment
on, and potentially fix. Open source can only work if it’s open access, and drop-
ping messages into a single person’s email isn’t open to the whole world to review
and inspect.

The CPAN Ecosystem | 635

www.it-ebooks.info

http://search.cpan.org
https://www.metacpan.org
http://testers.cpan.org
http://wiki.cpantesters.org
http://wiki.cpantesters.org
http://deps.cpantesters.org
http://deps.cpantesters.org
http://www.it-ebooks.info/

rt.cpan.org

CPAN, the repository of contributions from thousands of authors all working on
their own projects, has a bug tracker, too. Each distribution gets its own queue
in the Request Tracker instance at https://rt.cpan.org. This is the default way to
report a problem with a module.

Other bug tracking

Some module authors prefer to use something other than https://rt.cpan.org. Find
out what they want by looking in the distribution’s documentation. Module
authors sometimes include instructions in their module’s documentation, but
sometimes they don’t. Since files such as README and META.yml are left behind
at installation time, looking at those files at one of the CPAN Search sites might
help.

perlbug

If you need to report a bug in a module that comes with perl itself, you can use
the perlbug tool. This collects information about your platform and interpreter
so the people who diagnose the bugs have the information they’ll need to do so.
It’s really an interface that sends a specially formatted email message to
perlbug@perl.org, an address you can also mail directly if you’d like. These reports
automatically go to Perl 5 Porters. Some modules are dual-lived, living both in
the Standard Library and on CPAN, so it might be a bit tricky to figure out the
right place. Don’t let that stop you from reporting the problem, though. We’ll
sort it out.

rt.perl.org

perlbug sends its report to the Request Tracker instance at https://rt.perl.org, the
same place you’d go to read about existing bugs, including those in modules in
the Standard Library. You should also check this site if you don’t find anything
in https://rt.cpan.org.

Installing CPAN Modules
There are two major build systems people use in their CPAN distributions. One
is built around the common make tool, while the other is pure Perl.

636 | Chapter 19: CPAN

www.it-ebooks.info

https://rt.cpan.org
https://rt.cpan.org
mailto:perlbug@perl.org
https://rt.perl.org
https://rt.cpan.org
http://www.it-ebooks.info/

By Hand
People don’t often install CPAN distributions by hand since they would have to
handle all of the dependencies themselves, which is too much work. You can do
it, though, and it’s useful to know how.

When you look inside the distribution, you’ll probably find a Makefile.PL or a
Build.PL. You use them in the same way, as shown in Table 19-1.

Table 19-1. Build commands for the two major build tools

Makefile.PL Build.PL
% perl Makefile.PL
% make
% make test
% make install

% perl Build.PL
% ./Build
% ./Build test
% ./Build install

With the defaults, both build systems try to install the distribution in the library
paths you (or someone) set up when they built and installed the perl binary you
used to run the build file. You can see those directories at the end of the output
of perl –V.

You may not have permission to write into those directories, but you can install
modules in any directory you please by telling build file where to install them.
Build files change their behavior based on command-line options or environment
variables.

% perl Makefile.PL INSTALL_BASE=/some/other/directory

% perl Build.PL ––install_base /some/other/directory

You don’t have to specify the options every time if you set them in the right en-
vironment variables. Each build system has an environment variable to hold de-
fault command-line options. Here’s how you’d do it in a /bin/sh environment:

% export PERL_MM_OPT='INSTALL_BASE=/some/other/directory'
% export PERL_MB_OPT='––install_base /some/other/directory'

And here’s how to do it using a shell that expects csh syntax:

% setenv PERL_MM_OPT 'INSTALL_BASE=/some/other/directory'
% setenv PERL_MB_OPT '––install_base /some/other/directory'

No matter which method you use to tell the build file where you want everything
installed, it attaches lib/perl56 to the end of whatever path you gave. You need to
remember this for the next part.

6. This is really the default. You can change this with Configure’s –Dinstallstyle when you compile perl.

Installing CPAN Modules | 637

www.it-ebooks.info

http://www.it-ebooks.info/

If you install your modules in a different directory, you must remember to tell
your programs where to find them, either by using the –I switch:

% perl –I/some/other/directory/lib/perl5 program.pl

or by using the PERL5LIB environment variable:

% export PERL5LIB=/some/other/directory/lib/perl5
% perl program.pl

You can also use the lib pragma in your program:

use lib qw(/some/other/directory/lib/perl5);

If you don’t remember these paths, you can use the local::lib module from
CPAN (it doesn’t ship with the standard Perl distribution). Loaded by itself, it
tells you which values to use. By default, it uses subdirectories under your home
directory:

% perl –Mlocal::lib
export PERL_LOCAL_LIB_ROOT="/home/amelia";
export PERL_MB_OPT="––install_base /home/amelia/perl5";
export PERL_MM_OPT="INSTALL_BASE=/home/amelia/perl5";
export PERL5LIB="/home/amelia/perl5/lib/perl5/darwin–2level:/home/amelia/perl5/
lib/perl5";
export PATH="/Users/amelia/perl5/bin:$PATH";

Or you can specify another directory:

% perl –Mlocal::lib=/some/other/directory
export PERL_LOCAL_LIB_ROOT="/some/other/directory";
export PERL_MB_OPT="––install_base /some/other/directory";
export PERL_MM_OPT="INSTALL_BASE=/some/other/directory";
export PERL5LIB="/some/other/directory/lib/perl5/darwin–2level:/some/other/
directory/lib/perl5";
export PATH="/some/other/directory/bin:$PATH";

You must still set up this environment yourself, although simply using
local::lib in your program will set it up for you:

use local::lib;

use local::lib qw(/some/other/directory);

CPAN Clients
Most people install their modules with a client.7 There are three popular CPAN
clients, each designed to appeal to different audiences with different needs. You
don’t have to use the same one all the time or make a lifelong choice.

7. Or they use a package manager that their operating system provides.

638 | Chapter 19: CPAN

www.it-ebooks.info

http://www.it-ebooks.info/

cpan

The cpan command, which comes with the Standard Library and the CPAN.pm
module, provides a quick way to install modules. Just specify the modules you
want on the command line:

% cpan IO::Interactive AnyEvent

To install the modules in a different directory, you can configure that. With no
arguments, cpan drops you into the CPAN.pm shell:

% cpan
cpan> o conf makepl_arg INSTALL_BASE=/some/other/directory
cpan> o conf mbuild_arg "––install_base /some/other/directory"
cpan> o conf commit

You can also start the CPAN.pm shell:

% perl –MCPAN –e shell
cpan> install POE

or use it with local::lib:

% perl –MCPAN –Mlocal::lib –e shell
cpan> install Set::CrossProduct

cpanp

Perl also comes with another CPAN interface, CPANPLUS. This project wanted to
take the lessons from the development of CPAN.pm and start over:

% cpanp –i IO::Interactive AnyEvent

You can also start the CPANPLUS shell:

% perl –MCPANPLUS –e shell
CPAN Terminal> install POE

CPANPLUS uses a menu-driven configuration system, so once you enter its shell,
just follow its prompts.

cpanminus

A third popular client that you might like if you like its defaults is cpanminus, or
just cpanm. This is a minimal client that strives to do the right thing for most
people. It also uses local::lib by default. Most people like this client, and it’s a
good one to use until you need something fancier.

Installing CPAN Modules | 639

www.it-ebooks.info

http://www.it-ebooks.info/

Since cpanm wants to be easy to use, it doesn’t require you to install other modules
to use it.8 You just download it and start using it. The cpanm docs demonstrate
this using curl,9 then pipe that directory to perl to turn it into cpanm. This is the
preferred way because cpanm can pick up the configuration from the perl binary
you actually use:

% curl –L http://cpanmin.us | perl – App::cpanminus

Or you can download it, save it as cpanm, and run it. On Unix, that’s (essentially)
the same as saving the result and making it executable, although in this case it
uses /usr/bin/env to find the first perl in your path:

% cd ~/bin
% curl –LO http://xrl.us/cpanm
% chmod +x cpanm

Once you have cpanm, tell it to install modules, like this:

% cpanm HTML::Barcode

Creating CPAN Distributions
This is a short introduction for creating CPAN distributions. Entire books can be
written on this.10 Intermediate Perl, one of the O’Reilly tutorial books for Perl,
covers this topic in much more detail.

Starting Your Distribution
Since the start of CPAN long ago, best practices and standard conventions in using
CPAN have settled, so now pretty much everyone agrees on what a good distri-
bution needs to have. You don’t have to start from scratch if you use tools to
create the distribution skeleton for you.

h2xs

The canonical distribution creation tool isn’t really a distribution-creation tool.
By its name, it’s designed to convert C header files into XS files, the glue language
that connects Perl to C. It’s grown since then, even to the point that most people
use it without its main feature:

8. Some people think the Standard Library is really just a starter kit so you can run cpan or cpanp. We’ll see
how it turns out in future versions, and this is one of the topics that will liven up any dull meeting of Perl
mongers. Mention it and step back to watch the carnage.

9. curl is a command-line tool for transferring data (http://curl.haxx.se).

10. And an entire book has been written on creating CPAN modules: Sam Tregar’s Writing Perl Modules for
CPAN, published by Apress.

640 | Chapter 19: CPAN

www.it-ebooks.info

https://www.metacpan.org/module/App::cpanminus
http://my.safaribooksonline.com/book/programming/perl/0596102062
http://curl.haxx.se
http://www.apress.com/9781590590188
http://www.apress.com/9781590590188
http://www.it-ebooks.info/

% h2xs –XAn Some::Module
Defaulting to backward compatibility with perl 5.14.2

Writing Some–Module/lib/Some/Module.pm
Writing Some–Module/Makefile.PL
Writing Some–Module/README
Writing Some–Module/t/Some–Module.t
Writing Some–Module/Changes
Writing Some–Module/MANIFEST

Distribution::Cooker

Distribution::Cooker module is the least sophisticated of the distribution-cre-
ation tools, designed for the people who don’t need much.11 It cooks a directory
of templates, meaning you can design your distribution any way you like and
then replicate it. Once you get things the way you like, you don’t need to modify
the other tools’ output each time. Indeed, the best way to use this tool is to start
with another tool, modify the output until you like what you have, then design
a corresponding template.

Module::Starter

Module::Starter is the best tool for people who don’t know what they want yet.
You start with a configuration file in ${HOME}/.module-starter/config so you don’t
have to type as much:

author: Amelia Camel
email: amelia@example.com
builder: Module::Build
verbose: 1

Then, when you run module–starter, you get a basic distribution structure:

% module–starter ––module=Some::Module2
Created Some–Module
Created Some–Module/lib/Some
Created Some–Module/lib/Some/Module2.pm
Created Some–Module/t
Created Some–Module/t/pod–coverage.t
Created Some–Module/t/pod.t
Created Some–Module/t/manifest.t
Created Some–Module/t/boilerplate.t
Created Some–Module/t/00–load.t
Created Some–Module/ignore.txt
Created Some–Module/Build.PL
Created Some–Module/Changes
Created Some–Module/README

11. Distribution::Cooker only makes it into this book because one of this book’s authors wrote it and uses it.

Creating CPAN Distributions | 641

www.it-ebooks.info

http://www.it-ebooks.info/

Created Some–Module/MANIFEST
Created starter directories and files

Notice the test file Some-Module/t/boilerplate.t. That’s there to check that you
changed some of the defaults, such as the description of the module.

Dist::Zilla

Dist::Zilla is a sophisticated tools that does much more than merely create the
initial distribution. It manages the entire life cycle of your module from the mo-
ment of conception through release, testing, bug fixing, and rereleasing. It’s
much more complicated than we have time to explain, but many people like it.

Testing Your Modules
Perl’s testing culture is one of its most compelling features. We’ve already told you
about CPAN Testers, the people who test all CPAN distributions on a variety of
platforms. As an author, it’s up to you to create your own tests. We’re not going
to tell you everything involved with that, because it’s already extensively covered
in other titles such as Intermediate Perl and Perl Testing: A Developer’s Notebook.

Internal testing

If you are using either of the two standard distribution build tools, you already
have a test harness in place. You run the test target:

% make test

% ./Build test

Those both do the same thing: they look for either a test.pl file or a t/ directory.
Using a test.pl file is the old way, in which just one file holds all tests. Using a t/
subdirectory is a better approach because it can hold multiple test files, each one
ending with .t, and the test harness runs all of the subtests.

Each test file is just a Perl program, most likely using Test::More to do the work.
Here’s an example test file that loads your Math::MySum module and tests its
my_sum method:

use strict;
use warnings;
use Test::More;

BEGIN { use_ok("Math::MySum") }
can_ok("Math::MySum", "my_sum");

my($i, $j) = (1, 3);
my $string = "Amelia";

642 | Chapter 19: CPAN

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/0596102062
http://www.it-ebooks.info/

is($i + $j, Math::MySum–>my_sum($i, $j),
 "Sum of $i and $j is 4");

like($string, qr/mel/, "String has mel in it");

done_testing;

These programs output TAP (Test Anywhere Protocol), a simple format that
Larry invented and others extended.12 The TAP output for this program looks
like:

ok 1 – use Math::MySum;
ok 2 – Math::MySum–>can('my_sum')
ok 3 – Sum of 1 and 3 is 4
ok 4 – String has mel in it
1..4

You can also run tests individually using the blib module to automatically add
the build libraries to @INC:

% perl –Mblib t/failingtest.t

You can also use the prove tool:

% prove –vb t/failingtest.t

The trick with any test suite is testing all code. Since you’re the author of both the
module and its tests, you could easily pass your tests by not covering the hard
parts. To check that, the Devel::Cover module provides a cover program you can
use to measure your test coverage:

% cover –test

The cover command runs the test suite for you, collects statistics, and produces
a report:

Reading database from ./cover_db

–––––––––––––––––––––––––––– –––––– –––––– –––––– –––––– –––––– ––––––
File stmt bran cond sub time total
–––––––––––––––––––––––––––– –––––– –––––– –––––– –––––– –––––– ––––––
blib/lib/Some/Module.pm 82.9 50.0 27.3 92.3 83.0 72.7
–––––––––––––––––––––––––––– –––––– –––––– –––––– –––––– –––––– ––––––

Writing HTML output to ./cover_db/coverage.html ...
done.

12. Many other languages have embraced TAP, too. The TAP producer doesn’t have to be in the same language
as the TAP consumer.

Creating CPAN Distributions | 643

www.it-ebooks.info

http://www.it-ebooks.info/

It measures four sorts of coverage:

statement
Runs every statement.

branch
Tests each branch such as in an if with several elsif blocks, each of which
counts as a separate branch.

condition
Tests each combination of conditions whenever there are multiple possible
conditions. For instance, here’s such a condition in an if:

if ($m && $n) { ... }

That if has three testable combinations: both $m and $n can each be true;
$m can be false, in which case it doesn’t matter what $n is; $m can be true, and
$n can be either true or false. You should test each of those.

subroutine
Runs every subroutine, which is also part of testing every statement.

External testing

If you upload your distribution to PAUSE, the CPAN Testers will automatically
download it, test it, and send you the results. This is handy for testing on plat-
forms and Perl versions you don’t have. You don’t have to do anything special
for this.

That only works for public distributions, though. If you don’t plan to release your
work to CPAN, you can still do some external testing by setting up your own
CPAN Testers system and your own farm of test machines. You use the same
tools as the regular CPAN Testers, but you draw your distributions from your
private sources.

You can also integrate Perl testing into many continuous integration-testing
frameworks, such as smolder (especially made for Perl but not limited to it), Hud-
son, Jenkins, or TeamCity. Any tool that understands TAP, and there are now
several, can analyze your test output.

644 | Chapter 19: CPAN

www.it-ebooks.info

http://www.it-ebooks.info/

PART IV

Perl as Culture

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 20

Security

Whether you’re dealing with a user sitting at the keyboard typing commands or
someone sending information across the network, you need to be careful about
the data coming into your programs. The other person may, either maliciously
or accidentally, send you data that will do more harm than good. Perl provides
a special security-checking mechanism called taint mode, whose purpose is to
isolate tainted data so that you won’t use it to do something you didn’t intend
to do. For instance, if you mistakenly trust a tainted filename, you might end up
appending an entry to your password file when you thought you were appending
to a log file. The mechanism of tainting is covered in the next section, “Handling
Insecure Data” on page 648.

In multitasking environments, offstage actions by unseen actors can affect the
security of your own program. If you presume exclusive ownership of external
objects (especially files) as though yours were the only process on the system,
you expose yourself to errors substantially subtler than those that come from
directly handling data or code of dubious provenance. Perl helps you out a little
here by detecting some situations that are beyond your control; but for those that
you can control, the key is understanding which approaches are proof
against unseen meddlers. The upcoming section “Handling Timing
Glitches” on page 661 discusses these matters.

If the data you get from a stranger happens to be a bit of source code to execute,
you need to be even more careful than you would with her data. Perl provides
checks to intercept stealthy code masquerading as data so you don’t execute it
unintentionally. If you do want to execute foreign code, though, the Safe module
lets you quarantine suspect code where it can’t do any harm and might possibly
do some good. These are the topics of the section “Handling Insecure
Code” on page 668 later in this chapter.

647

www.it-ebooks.info

http://www.it-ebooks.info/

Handling Insecure Data
Perl makes it easy to program securely, even when your program is being used by
someone less trustworthy than the program itself. That is, some programs need
to grant limited privileges to their users without giving away other privileges.
Setuid and setgid programs fall into this category on Unix, as do programs run-
ning in various privileged modes on other operating systems that support such
notions. Even on systems that don’t, the same principle applies to network
servers and to any programs run by those servers (such as CGI scripts, mailing
list processors, and daemons listed in /etc/inetd.conf). All such programs require
a higher level of scrutiny than normal.

Even programs run from the command line are sometimes good candidates for
taint mode, especially if they’re meant to be run by a privileged user. Programs
that act upon untrusted data, like those that generate statistics from log files or
use LWP::* or Net::* to fetch remote data, should probably run with tainting
explicitly turned on; programs that are not prudent risk being turned into “Trojan
horses”. Since programs don’t get any kind of thrill out of risk taking, there’s no
particular reason for them not to be careful.

Compared with Unix command-line shells, which are really just frameworks for
calling other programs, Perl is easy to program securely because it’s straightfor-
ward and self-contained. Unlike most shell programming languages, which are
based on multiple, mysterious substitution passes on each line of the script, Perl
uses a more conventional evaluation scheme with fewer hidden snags. Addition-
ally, because the language has more built-in functionality, it can rely less upon
external (and possibly untrustworthy) programs to accomplish its purposes.

Under Unix, Perl’s hometown, the preferred way to compromise system security
was to cajole a privileged program into doing something it wasn’t supposed to
do. To stave off such attacks, Perl developed a unique approach for coping with
hostile environments. Perl automatically enables taint mode whenever it detects
its program running with differing real and effective user or group IDs.1 Even if
the file containing your Perl script doesn’t have the setuid or setgid bits turned
on, that script can still find itself executing in taint mode. This happens if your
script was invoked by another program that was itself running under differing
IDs. Perl programs that weren’t designed to operate under taint mode tend to
expire prematurely when caught violating safe tainting policy. This is just as well,

1. The setuid bit in Unix permissions is mode 04000, and the setgid bit is 02000; either or both may be set
to grant the user of the program some of the privileges of the owner (or owners) of the program. (These
are collectively known as set-id programs.) Other operating systems may confer special privileges on
programs in other ways, but the principle is the same.

648 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

since these are the sorts of shenanigans that were historically perpetrated on shell
scripts to compromise system security. Perl isn’t that gullible.

You can also enable taint mode explicitly with the –T command-line switch. You
should do this for daemons, servers, and any programs that run on behalf of
someone else, such as CGI scripts. Programs that can be run remotely and
anonymously by anyone on the Net are executing in the most hostile of envi-
ronments. You should not be afraid to say “No!” occasionally. Contrary to pop-
ular belief, you can exercise a great deal of prudence without dehydrating into a
wrinkled prude.

On the more security-conscious sites, running all CGI scripts under the –T flag
isn’t just a good idea: it’s the law. We’re not claiming that running in taint mode
is sufficient to make your script secure. It’s not, and it would take a whole book
just to mention everything that would. But if you aren’t executing your CGI
scripts under taint mode, you’ve needlessly abandoned the strongest protection
Perl can give you.

While in taint mode, Perl takes special precautions called taint checks to prevent
traps both obvious and subtle. Some of these checks are reasonably simple, such
as verifying that dangerous environment variables aren’t set and that directories
in your path aren’t writable by others; careful programmers have always used
checks like these. Other checks, however, are best supported by the language
itself, and it is these checks especially that contribute to making a privileged Perl
program more secure than the corresponding C program, or a Perl CGI script
more secure than one written in any language without taint checks. (Which, as
far as we know, is any language other than Perl.)

The principle is simple: you may not use data derived from outside your program
to affect something else outside your program—at least, not by accident. Any-
thing that comes from outside your program is marked as tainted, including all
command-line arguments, environment variables, and file input. Tainted data
may not be used directly or indirectly in any operation that invokes a subshell,
nor in any operation that modifies files, directories, or processes. Any variable
set within an expression that has previously referenced a tainted value becomes
tainted itself, even if it is logically impossible for the tainted value to influence
the variable. However, using a tainted variable to choose an untainted value does
not taint the result. For instance, $value is not tainted here:

my $value = $tainted ? 'Amelia' : 'Camelia'; # $value is not tainted.

or even here:

my $value = do {
 if($tainted) { 'Amelia' }

Handling Insecure Data | 649

www.it-ebooks.info

http://www.it-ebooks.info/

 else { 'Camelia' }
};

Because taintedness is associated with each scalar, some individual values in an
array or hash might be tainted and others might not. (Only the values in a hash
can be tainted, though, not the keys. More on that in a moment.)

The following code illustrates how tainting would work if you executed all these
statements in order. Statements marked “Insecure” will trigger an exception,
whereas those that are “OK” will not.

$arg = shift(@ARGV); # $arg is now tainted (due to @ARGV).
$hid = "$arg, 'bar'"; # $hid also tainted (due to $arg).
$line = <>; # Tainted (reading from external file).
$path = $ENV{PATH}; # Tainted due to %ENV, but see below.
$mine = "abc"; # Not tainted.

system "echo $mine"; # Insecure until PATH set.
system "echo $arg"; # Insecure: uses sh with tainted $arg.
system "echo", $arg; # OK once PATH set (doesn't use sh).
system "echo $hid"; # Insecure two ways: taint, PATH.

$oldpath = $ENV{PATH}; # $oldpath is tainted (due to %ENV).
$ENV{PATH} = "/bin:/usr/bin"; # (Makes it OK to execute other programs.)
$newpath = $ENV{PATH}; # $newpath is NOT tainted.

delete @ENV{qw{IFS
 CDPATH
 ENV
 BASH_ENV}}; # Makes %ENV safer.

system "echo $mine"; # OK, is secure once path is reset.
system "echo $hid"; # Insecure via tainted $hid.

open(OOF, "< $arg"); # OK (read–only opens not checked).
open(OOF, "> $arg"); # Insecure (trying to write to tainted arg).

open(OOF, "echo $arg|") # Insecure due to tainted $arg, but...
 || die "can't pipe from echo: $!";

open(OOF,"–|") # Considered OK: see below for taint
 || exec "echo", $arg # exemption on exec'ing a list.
 || die "can't exec echo: $!";

open(OOF,"–|", "echo", $arg) # Same as previous, likewise OKish.
 || die "can't pipe from echo: $!";

$shout = `echo $arg`; # Insecure via tainted $arg.
$shout = `echo abc`; # $shout is tainted due to backticks.
$shout2 = `echo $shout`; # Insecure via tainted $shout.

650 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

unlink $mine, $arg; # Insecure via tainted $arg.
umask $arg; # Insecure via tainted $arg.

exec "echo $arg"; # Insecure via tainted $arg passed to shell.
exec "echo", $arg; # Considered OK! (But see below.)
exec "sh", "–c", $arg; # Considered OK, but isn"t really!

If you try to do something insecure, you get an exception (which, unless trapped,
becomes a fatal error) such as “Insecure dependency” or “Insecure $ENV{PATH}”.
See the section “Cleaning Up Your Environment” on page 656 later in this chap-
ter.

If you pass a LIST to a system, exec, or pipe open, the arguments are not inspected
for taintedness, because with a LIST of arguments, Perl doesn’t need to invoke the
potentially dangerous shell to run the command. You can still easily write an
insecure system, exec, or pipe open using the LIST form, as demonstrated in the
final example above. These forms are exempt from checking because you are
presumed to know what you’re doing when you use them.

Sometimes, though, you can’t tell how many arguments you’re passing. If you
supply these functions with an array2 that contains just one element, then it’s just
as though you passed one string in the first place, so the shell might be used. The
solution is to pass an explicit path in the indirect-object slot:

system @args; # Won't call the shell unless @args == 1.
system { $args[0] } @args; # Bypasses shell even with one–argument list.

Detecting and Laundering Tainted Data
To test whether a scalar variable contains tainted data, you can use the following
is_tainted function. It makes use of the fact that eval STRING raises an exception
if you try to compile tainted data. It doesn’t matter that the $nada variable used
in the expression to compile will always be empty; it will still be tainted if $arg
is tainted. The outer eval BLOCK isn’t doing any compilation. It’s just there to catch
the exception raised if the inner eval is given tainted data. Since the $@ variable
is guaranteed to be nonempty after each eval if an exception was raised and empty
otherwise, we return the result of testing whether its length was zero:

sub is_tainted {
 my $arg = shift;
 my $nada = substr($arg, 0, 0); # zero–length
 local $@; # preserve caller's version
 eval { eval "# $nada" };
 return length($@) != 0;
}

2. Or a function that produces a list.

Handling Insecure Data | 651

www.it-ebooks.info

http://www.it-ebooks.info/

The Scalar::Util module, which comes with Perl, already does this for you with
tainted:

use Scalar::Util qw(tainted);

print "Tainted!" if tainted($ARGV[0]);

The Taint::Util CPAN module goes one better. It has a tainted function that
does the same thing, but it also has a taint function that will make any data
tainted:

use Taint::Util qw(tainted taint);

my $scalar = 'This is untainted'; # untainted
taint($scalar); # now tainted

This is handy for test scripts when you want to test with tainted data:

use Test::More;
use Taint::Util qw(tainted taint);

my $tainted = 'This is untainted'; # untainted
taint($tainted); # now tainted

ok(tainted($tainted), 'Data are tainted');
is(refuse_to_work($tainted), undef, 'Returns undef with tainted data');

done_testing();

But testing for taintedness only gets you so far. Usually you know perfectly well
which variables contain tainted data, you just have to clear the data’s taintedness.
The only official way to bypass the tainting mechanism is by referencing sub-
matches returned by an earlier regular expression match.3 When you write a
pattern that contains capturing parentheses, you can access the captured sub-
strings through match variables like $1, $2, and $+, or by evaluating the pattern
in list context. Either way, the presumption is that you knew what you were doing
when you wrote the pattern to weed out anything dangerous. So you need to give
it some real thought—never blindly untaint, or else you defeat the entire mech-
anism.

It’s better to verify that the variable contains only good characters than to check
whether it contains any bad characters. That’s because it’s far too easy to miss
bad characters that you never thought of. For example, here’s a test to make sure

3. An unofficial way is by storing the tainted string as the key to a hash and fetching back that key. Because
keys aren’t really full SVs (internal name scalar values), they don’t carry the taint property. This behavior
may be changed someday, so don’t rely on it. Be careful when handling keys, lest you unintentionally
untaint your data and do something unsafe with them.

652 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

$string contains nothing but “word” characters (alphabetics, numerics, and un-
derscores), hyphens, at signs, and dots:

if ($string =~ /^([–\@\w.]+)$/) {
 $string = $1; # $string now untainted.
}
else {
 die "Bad data in $string"; # Log this somewhere.
}

This renders $string fairly secure to use later in an external command,
since /\w+/ doesn’t normally match shell metacharacters, nor are those other
characters going to mean anything special to the shell.4 Had we used /(.+)/s
instead, it would have been unsafe because that pattern lets everything through.
But Perl doesn’t check for that. When untainting, be exceedingly careful with
your patterns. Laundering data by using regular expressions is the only approved
internal mechanism for untainting dirty data. And sometimes it’s the wrong ap-
proach entirely. If you’re in taint mode because you’re running set-id and not
because you intentionally turned on –T, you can reduce your risk by forking a
child of lesser privilege; see the section “Cleaning Up Your Environment” later
in this chapter.

The use re 'taint' pragma disables the implicit untainting of any pattern
matches through the end of the current lexical scope. You might use this pragma
if you just want to extract a few substrings from some potentially tainted data,
but since you aren’t being mindful of security, you’d prefer to leave the substrings
tainted to guard against unfortunate accidents later.

Imagine you’re matching something like this, where $fullpath is tainted:

($dir, $file) = $fullpath =~ m!(.*/)(.*)!s;

By default, $dir and $file would now be untainted. But you probably didn’t want
to do that so cavalierly, because you never really thought about the security is-
sues. For example, you might not be terribly happy if $file contained the string
“; rm –rf * ;”, just to name one rather egregious example. The following code
leaves the two result variables tainted if $fullpath was tainted:

{
 use re "taint";
 ($dir, $file) = $fullpath =~ m!(.*/)(.*)!s;
}

4. Unless you were using an intentionally broken locale. Perl assumes that your system’s locale definitions
are potentially compromised. Hence, when running under the locale pragma, patterns with a symbolic
character class in them, such as \w or [[:alpha:]], produce tainted results.

Handling Insecure Data | 653

www.it-ebooks.info

http://www.it-ebooks.info/

A good strategy is to leave submatches tainted by default over the whole source
file and only selectively permit untainting in nested scopes as needed:

use re "taint";
remainder of file now leaves $1 etc tainted
{
 no re "taint";
 # this block now untaints re matches
 if ($num =~ /^(\d+)$/) {
 $num = $1;
 }
}

Input from a filehandle or a directory handle is automatically tainted, except
when it comes from the special filehandle, DATA. If you want to, you can mark
other handles as trusted sources via the IO::Handle module’s untaint function:

use IO::Handle;

IO::Handle::untaint(*SOME_FH); # Either procedurally
SOME_FH–>untaint(); # or using the OO style.

Turning off tainting on an entire filehandle is a risky move. How do you really
know it’s safe? If you’re going to do this, you should at least verify that nobody
but the owner can write to the file.5 If you’re on a Unix filesystem (and one that
prudently restricts chown(2) to the superuser), the following code works:

use File::stat;
use Symbol "qualify_to_ref";
sub handle_looks_safe(*) {
 my $fh = qualify_to_ref(shift, caller);
 my $info = stat($fh);
 return unless $info;

 # owner neither superuser nor "me", whose
 # real uid is in the $< variable
 if ($info–>uid != 0 && $info–>uid != $<) {
 return 0;
 }

 # check whether group or other can write file.
 # use 066 to detect for readability also
 if ($info–>mode & 022) {
 return 0;
 }
 return 1;
}

5. Although you can untaint a directory handle, too, this function only works on a filehandle. That’s because
given a directory handle, there’s no portable way to extract its file descriptor to stat.

654 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

use IO::Handle;
SOME_FH–>untaint() if handle_looks_safe(*SOME_FH);

We called stat on the filehandle, not the filename, to avoid a dangerous race
condition. See the section “Handling Race Conditions” on page 663 later in this
chapter.

Note that this routine is only a good start. A slightly more paranoid version would
check all parent directories as well, even though you can’t reliably stat a directory
handle. But if any parent directory is world-writable, you know you’re in trouble
whether or not there are race conditions.

Perl has its own notion of which operations are dangerous, but it’s still possible
to get into trouble with other operations that don’t care whether they use tainted
values. It’s not always enough to be careful of input. Perl output functions don’t
test whether their arguments are tainted, but in some environments, this matters.
If you aren’t careful of what you output, you might just end up spitting out strings
that have unexpected meanings to whoever is processing the output. If you’re
running on a terminal, special escape and control codes could cause the viewer’s
terminal to act strangely. If you’re in a web environment and you blindly spit
back data that was given to you, you could unknowingly produce HTML tags
that would drastically alter the page’s appearance. Worse still, some markup tags
can even execute code back on the browser.

Imagine the common case of a guest book where visitors enter their own messages
to be displayed when others come calling. A malicious guest could supply un-
sightly HTML tags or put in <SCRIPT>...</SCRIPT> sequences that execute code
(like JavaScript) back in the browsers of subsequent guests.

Just as you should carefully check for only good characters when inspecting
tainted data that accesses resources on your own system, you should apply the
same care in a web environment when presenting data supplied by a user. For
example, to strip the data of any character not in the specified list of good char-
acters, try something like this:

$new_guestbook_entry =~ tr[_a–zA–Z0–9 ,./!?()@+*–][]dc;

You certainly wouldn’t use that to clean up a filename, since you probably don’t
want filenames with spaces or slashes, just for starters. But it’s enough to keep
your guest book free of sneaky HTML tags and entities. Each data-laundering
case is a little bit different, so always spend time deciding what is and isn't per-
mitted. The tainting mechanism is intended to catch stupid mistakes, not to
remove the need for thought.

Handling Insecure Data | 655

www.it-ebooks.info

http://www.it-ebooks.info/

Cleaning Up Your Environment
When you execute another program from within your Perl script, no matter how,
Perl checks to make sure your PATH environment variable is secure. Since it came
from your environment, your PATH starts out tainted; so, if you try to run another
program, Perl raises an “Insecure $ENV{PATH}” exception. When you set it to a
known, untainted value, Perl makes sure that each directory in that path is non-
writable by anyone other than the directory’s owner and group; otherwise, it
raises an “Insecure directory” exception.

You may be surprised to find that Perl cares about your PATH even when you
specify the full pathname of the command you want to execute. It’s true that
with an absolute filename, the PATH isn’t used to find the executable to run. But
there’s no reason to trust the program you’re running not to turn right around
and execute some other program and get into trouble because of the insecure
PATH. So Perl forces you to set a secure PATH before you call any program, no matter
how you say to call it.

The PATH isn’t the only environment variable that can bring grief. Because some
shells use the variables IFS, CDPATH, ENV, and BASH_ENV, Perl makes sure that those
are all either empty or untainted before it will run another command. Either set
these variables to something known to be safe or delete them from the environ-
ment altogether:

delete @ENV{qw(IFS CDPATH ENV BASH_ENV)}; # Make %ENV safer

Features convenient in a normal environment can become security concerns in a
hostile one. Even if you remember to disallow filenames containing newlines, it’s
important to understand that open accesses more than just named files. Given
appropriate ornamentation on the filename argument, one- or two-argument
calls to open can also run arbitrary external commands via pipes, fork extra copies
of the current process, duplicate file descriptors, and interpret the special file-
name “–” as an alias for standard input or output. It can also ignore leading and
trailing whitespace that might disguise such fancy arguments from your check
patterns. While it’s true that Perl’s taint checking will catch tainted arguments
used for pipe opens (unless you use a separated argument list) and any file opens
that aren’t read-only, the exception this raises is still likely to make your program
misbehave.

If you intend to use any externally derived data as part of a filename to open, at
least include an explicit mode separated by a space. It’s probably safest, though,
to use either the low-level sysopen or the three-argument form of open:

656 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Magic open—could be anything
open(FH, $file) || die "can't magic open $file: $!";

Guaranteed to be a read–only file open and not a pipe
or fork, but still groks file descriptors and "–",
and ignores whitespace at either end of name.
open(FH, "< $file") || die "can't open $file: $!";

WYSIWYG open: disables all convenience features.
open(FH, "<", $file) || die "can't open $file: $!";

Same properties as WYSIWYG 3–arg version.
require Fcntl;
sysopen(FH, $file, O_RDONLY) || die "can't sysopen $file: $!";

Even these steps aren’t quite good enough. Perl doesn’t prevent you from opening
tainted filenames for reading, so you need to be careful of what you show people.
A program that opens an arbitrary, user-supplied filename for reading—and then
reveals that file’s contents—is still a security problem. What if it’s a private letter?
What if it’s your system password file? What if it’s salary information or your
stock portfolio?

Look closely at filenames provided by a potentially hostile user6 before opening
them. For example, you might want to verify that there are no sneaky directory
components in the path. Names like “../../../../../../../etc/passwd” are notorious
tricks of this sort. You can protect yourself by making sure there are no slashes
in the pathname (assuming that’s your system’s directory separator). Another
common trick is to put newlines or semicolons into filenames that will later be
interpreted by some poor, witless command-line interpreter that can be fooled
into starting a new command in the middle of the filename. This is why taint
mode discourages uninspected external commands.

Accessing Commands and Files Under Reduced Privileges
The following discussion pertains to some nifty security facilities of Unix-like
systems. Users of other systems may safely (or rather, unsafely) skip this section.

If you’re running set-id, whenever possible, try to arrange that you do dangerous
operations with the privileges of the user, not the privileges of the program. That
is, whenever you’re going to call open, sysopen, system, backticks, and any other
file or process operations, you can protect yourself by setting your effective UID
or GID back to the real UID or GID. In Perl, you can do this for setuid scripts by

6. And on the Net, the only users you can trust not to be potentially hostile are the ones who are being
actively hostile instead.

Handling Insecure Data | 657

www.it-ebooks.info

http://www.it-ebooks.info/

saying $> = $< (or $EUID = $UID if you use English) and for setgid scripts by
saying $) = $(($EGID = $GID). If both IDs are set, you should reset both. However,
sometimes this isn’t feasible because you might still need those increased privi-
leges later in your program.

For those cases, Perl provides a reasonably safe way to open a file or pipe from
within a set-id program. First, fork a child using the special open syntax that
connects the parent and child by a pipe. In the child, reset the user and group
IDs back to their original or known safe values. You also get to modify any of the
child’s per-process attributes without affecting the parent, letting you change the
working directory, set the file creation mask, or fiddle with environment vari-
ables. No longer executing under extra privileges, the child process at last calls
open and passes whatever data it manages to access on behalf of the mundane but
demented user back up to its powerful but justly paranoid parent.

Even though system and exec don’t use the shell when you supply them with more
than one argument, the backtick operator admits no such alternative calling
convention. Using the forking technique, we easily emulate backticks without
fear of shell escapes, and with reduced (and therefore safer) privileges:

use English; # to use $UID, etc
die "Can't fork open: $!" unless defined($pid = open(FROMKID, "–|"));
if ($pid) { # parent
 while (<FROMKID>) {
 # do something
 }
 close FROMKID;
}
else {
 $EUID = $UID; # setuid(getuid())
 $EGID = $GID; # setgid(getgid()), and initgroups(2) on getgroups(2)
 chdir("/") || die "can't chdir to /: $!";
 umask(077);
 $ENV{PATH} = "/bin:/usr/bin";
 exec "myprog", "arg1", "arg2";
 die "can't exec myprog: $!";
}

This is by far the best way to call other programs from a set-id script. You make
sure never to use the shell to execute anything, and you drop your privileges
before you yourself exec the program. (But because the list forms of system,
exec, and pipe open are specifically exempted from taint checks on their argu-
ments, you must still be careful of what you pass in.)

If you don’t need to drop privileges and just want to implement backticks or a
pipe open without risking the shell intercepting your arguments, you could use
this:

658 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

open(FROMKID, "–|") || exec("myprog", "arg1", "arg2")
 || die "can't run myprog: $!";

and then just read from FROMKID in the parent. As of the v5.6.1 release of Perl, you
can write that as:

open(FROMKID, "–|", "myprog", "arg1", "arg2");

The forking technique is useful for more than just running commands from a
set-id program. It’s also good for opening files under the ID of whoever ran the
program. Suppose you had a setuid program that needed to open a file for writing.
You don’t want to run the open under your extra privileges, but you can’t perma-
nently drop them, either. So arrange for a forked copy that’s dropped its privileges
to do the open for you. When you want to write to the file, write to the child, and
it will then write to the file for you.

use English;

defined ($pid = open(SAFE_WRITER, "|–"))
 || die "Can't fork: $!";

if ($pid) {
 # you're the parent. write data to SAFE_WRITER child
 print SAFE_WRITER "@output_data\n";
 close SAFE_WRITER
 || die $! ? "Syserr closing SAFE_WRITER writer: $!"
 : "Wait status $? from SAFE_WRITER writer";
}
else {
 # you're the child, so drop extra privileges
 ($EUID, $EGID) = ($UID, $GID);

 # open the file under original user's rights
 open(FH, "> /some/file/path")
 || die "can't open /some/file/path for writing: $!";

 # copy from parent (now stdin) into the file
 while (<STDIN>) {
 print FH $_;
 }
 close(FH) || die "close failed: $!";
 exit; # Don't forget to make the SAFE_WRITER disappear.
}

Upon failing to open the file, the child prints an error message and exits. When
the parent writes to the now-defunct child’s filehandle, it triggers a broken pipe
signal (SIGPIPE), which is fatal unless trapped or ignored. See the section on “Sig-
nals” in Chapter 15.

Handling Insecure Data | 659

www.it-ebooks.info

http://www.it-ebooks.info/

Defeating Taint Checking
Taint mode is a development tool to help you find where you need to cleanse data.
It’s not a guarantee that nothing bad will happen with your program, so bad
things can still happen. It’s very easy to get around it, in fact.

The –T command-line switch forces taint checking, and you can put that on your
shebang line:

#!/usr/bin/perl –T

system 'echo', $ARGV[0];

If run from the command line with perl and no –T, it fails:

% perl echo.pl
"–T" is on the #! line, it must also be used on the command line

The crafty user can turn on taint mode but turn the normally fatal messages into
warnings. The –t switch turns on taint mode but only warns about violations.
The system still accepts tainted data:

% perl –t echo.pl Amelia
Insecure $ENV{PATH} while running with –t switch
Insecure dependency in system while running with –t switch
Insecure $ENV{PATH} while running with –t switch
Amelia

Running as setuid, where taint mode is automatically on, is similarly defeated
with –u:

% perl –t echo.pl Amelia
Insecure $ENV{PATH} while running with –t switch
Insecure dependency in system while running with –t switch
Insecure $ENV{PATH} while running with –t switch
Amelia

Similarly, the –U switch allows perl to run “unsafe” operations, but you still need
to specify –T:

% perl –TU echo.pl Amelia
Amelia

If you want the warnings back, use –w:

% perl –TU –w echo.pl Amelia
Insecure $ENV{PATH} while running with –t switch
Insecure dependency in system while running with –t switch
Insecure $ENV{PATH} while running with –t switch
Amelia

660 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Programmers can defeat taint mode by not cleansing data properly, some of which
we already showed. For instance, there’s the shortcut of simply matching every-
thing:

my $untainted = $tainted =~ m/(.*)/;

You might recognize that in code reviews, so a crafty shirker might pass the data
through a hash. Since taint applies to scalar variables, hash keys aren’t tainted.
Using a scalar variable as a hash key dumps all the magic it carries:

my (untainted) = keys %{ { $untainted => 1 } };

There’s even more to think about. For more tricksiness, see the chapter “Secure
Programming Techniques” in Mastering Perl.

Handling Timing Glitches
Sometimes your program’s behavior is exquisitely sensitive to the timing of ex-
ternal events beyond your control. This is always a concern when other programs,
particularly inimical ones, might be vying with your program for the same re-
sources (such as files or devices). In a multitasking environment, you cannot
predict the order in which processes waiting to run will be granted access to the
processor. Instruction streams among all eligible processes are interleaved, so
first one process gets some CPU, and then another process, and so on. Whose
turn it is to run, and how long they’re allowed to run, appears to be random.
With just one program that’s not a problem. However, it can be a problem when
several programs share common resources.

Thread programmers are especially sensitive to these issues. They quickly learn
not to say:

$var++ if $var == 0;

when they should say:

{
 lock($var);
 $var++ if $var == 0;
}

The former produces unpredictable results when multiple execution threads at-
tempt to run this code at the same time. If you think of files as shared objects,
and processes as threads contending for access to those shared objects, you can
see how the same issues arise. A process, after all, is really just a thread with an
attitude. Or vice versa.

Handling Timing Glitches | 661

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/9780596527242
http://www.it-ebooks.info/

Timing unpredictabilities affect both privileged and nonprivileged situations.
We’ll first describe how to cope with a long-standing bug in old Unix kernels
that affects any set-id program. Then we’ll move on to discuss race conditions
in general, how they can turn into security holes, and steps you can take to avoid
falling into these holes.

Unix Kernel Security Bugs
Beyond the obvious problems that stem from giving special privileges to inter-
preters as flexible and inscrutable as shells, older versions of Unix have a kernel
bug that makes any set-id script insecure before it ever gets to the interpreter.
The problem is not the script itself, but a race condition in what the kernel does
when it finds a set-id executable script. (The bug doesn’t exist on machines that
don’t recognize #! in the kernel.) When a kernel opens such a file to see which
interpreter to run, there’s a delay before the (now set-id) interpreter starts up and
reopens the file. That delay gives malicious entities a chance to change the file,
especially if your system supports symbolic links.

Fortunately, sometimes this kernel “feature” can be disabled. Unfortunately, there
are a couple of different ways to disable it. The system can outlaw scripts with
the set-id bits set, which doesn’t help much. Alternatively, it can ignore the set-
id bits on scripts. In the latter case, Perl can emulate the setuid and setgid mech-
anism when it notices the (otherwise useless) set-id bits on Perl scripts. It does
this via a special executable called suidperl, which is automatically invoked for
you if it’s needed.7 However, if the kernel set-id script feature isn’t disabled, Perl
will complain loudly that your setuid script is insecure. You’ll either need to
disable the kernel set-id script “feature” or put a C wrapper around the script. A
C wrapper is just a compiled program that does nothing except call your Perl
program. Compiled programs are not subject to the kernel bug that plagues set-
id scripts.

Here’s a simple wrapper, written in C:

#define REAL_FILE "/path/to/script"
main(ac, av)
 char **av;
{
 execv(REAL_FILE, av);
}

7. Needed and permitted—if Perl detects that the filesystem on which the script resides was mounted with
the nosuid option, that option will still be honored. You can’t use Perl to sneak around your sysadmin’s
security policy this way.

662 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Compile this wrapper into an executable image and then make it rather than your
script set-id. Be sure to use an absolute filename, since C isn’t smart enough to
do taint checking on your PATH.

Another possible approach is to use the experimental C code generator for the
Perl compiler. A compiled image of your script will not have the race condition
(see Chapter 16).

Vendors in recent years have finally started to provide systems free of the set-id
bug. On such systems, when the kernel gives the name of the set-id script to the
interpreter, it no longer uses a filename subject to meddling, but instead passes
a special file representing the file descriptor, like /dev/fd/3. This special file is
already opened on the script so that there can be no race condition for evil scripts
to exploit.8 Most modern versions of Unix use this approach to avoid the race
condition inherent in opening the same filename twice.

Handling Race Conditions
Which runs us right into the topic of race conditions. What are they really? Race
conditions turn up frequently in security discussions. (Although less often than
they turn up in insecure programs. Unfortunately.) That’s because they’re a fer-
tile source of subtle programming errors, and such errors can often be turned
into security exploits (the polite term for screwing up someone’s security). A race
condition exists when the result of several interrelated events depends on the
ordering of those events, but that order cannot be guaranteed due to nondeter-
ministic timing effects. Each event races to be the first one done, and the final
state of the system is anybody’s guess.

Imagine you have one process overwriting an existing file and another process
reading that same file. You can’t predict whether you read in old data, new data,
or a haphazard mixture of the two. You can’t even know whether you’ve read all
the data. The reader could have won the race to the end of the file and quit.
Meanwhile, if the writer kept going after the reader hit end-of-file, the file would
grow past where the reader stopped reading, and the reader would never know it.

Here the solution is simple: just have both parties flock the file. The reader typ-
ically requests a shared lock, and the writer typically requests an exclusive one.
So long as all parties request and respect these advisory locks, reads and writes

8. On these systems, Perl should be compiled with –DSETUID_SCRIPTS_ARE_SECURE_NOW. The
Configure program that builds Perl tries to figure this out for itself, so you should never have to specify
this explicitly.

Handling Timing Glitches | 663

www.it-ebooks.info

http://www.it-ebooks.info/

cannot be interleaved, and there’s no chance of mutilated data. See the section
on “File Locking” on page 524 in Chapter 15.

You risk a far less obvious form of race condition every time you let operations
on a filename govern subsequent operations on that file. When used on filenames
rather than filehandles, the file test operators represent something of a garden
path leading straight into a race condition. Consider this code:

if (–e $file) {
 open(FH, "<", $file)
 || die "can't open $file for reading: $!";
}
else {
 open(FH, ">", $file)
 || die "can't open $file for writing: $!";
}

The code looks just about as straightforward as it gets, but it’s still subject to races.
There’s no guarantee that the answer returned by the –e test will still be valid by
the time either open is called. In the if block, another process could have removed
the file before it could be opened, and you wouldn’t find the file you thought was
going to be there. In the else block, another process could have created the file
before the second open could get its turn to create the file, so the file that you
thought would not be there, would be. The simple open function creates new files
but overwrites existing ones. You may think you want to overwrite any existing
file, but consider that the existing file might be a newly created alias or symbolic
link to a file elsewhere on the system that you very much don’t want to overwrite.
You may think you know what a filename means at any particular instant, but
you can never really be sure as long as any other processes with access to the file’s
directory are running on the same system.

To fix this problem of overwriting, you’ll need to use sysopen, which provides
individual controls over whether to create a new file or clobber an existing one.
And we’ll ditch that –e file existence test since it serves no useful purpose here
and only increases our exposure to race conditions.

use Fcntl qw/O_WRONLY O_CREAT O_EXCL/;
open(FH, "<", $file)
 || sysopen(FH, $file, O_WRONLY | O_CREAT | O_EXCL)
 || die "can't create new file $file: $!";

Now even if the file somehow springs into existence between when open fails and
when sysopen tries to open a new file for writing, no harm is done, because with
the flags provided, sysopen will refuse to open a file that already exists.

If someone is trying to trick your program into misbehaving, there’s a good chance
he’ll go about it by having files appear and disappear when you’re not expecting.

664 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

One way to reduce the risk of deception is by promising to never operate on a
filename more than once. As soon as you have the file opened, forget about the
filename (except maybe for error messages), and operate only on the handle rep-
resenting the file. This is much safer because, even though someone could play
with your filenames, he can’t play with your filehandles. (Or if he can, it’s because
you let him—see “Passing Filehandles” on page 528 in Chapter 15.)

Earlier in this chapter, we showed a handle_looks_safe function that called
Perl’s stat function on a filehandle (not a filename) to check its ownership and
permissions. Using the filehandle is critical to correctness—if we had used the
name of the file, there would have been no guarantee that the file whose attributes
we were inspecting was the same one we just opened (or were about to open).
Some pesky evildoer could have deleted our file and quickly replaced it with a
file of nefarious design, sometime between the stat and the open. It wouldn’t
matter which was called first; there’d still be the opportunity for foul play be-
tween the two. You may think that the risk is very small because the window is
very short, but there are many cracking scripts out in the world that will be
perfectly happy to run your program thousands of times to catch it the one time
it wasn’t careful enough. A smart cracking script can even lower the priority of
your program so it gets interrupted more often than usual, just to speed things
up a little. People work hard on these things—that’s why they’re called exploits.

By calling stat on a filehandle that’s already open, we only access the filename
once and so avoid the race condition. A good strategy for avoiding races between
two events is to somehow combine both into one, making the operation
atomic.9 Since we access the file by name only once, there can’t be any race con-
dition between multiple accesses, so it doesn’t matter whether the name changes.
Even if our cracker deletes the file we opened (yes, that can happen) and puts a
different one there to trick us with, we still have a handle to the real, original file.

Temporary Files
Apart from allowing buffer overruns (which Perl scripts are virtually immune to)
and trusting untrustworthy input data (which taint mode guards against), cre-
ating temporary files improperly is one of the most frequently exploited security
holes. Fortunately, temp file attacks usually require crackers to have a valid user

9. Yes, you may still perform atomic operations in a nuclear-free zone. When Democritus gave the word
“atom” to the indivisible bits of matter, he meant literally something that could not be cut: ἀ- (not) +
-τομος (cuttable). An atomic operation is an action that can’t be interrupted (just try interrupting an atomic
bomb sometime).

Handling Timing Glitches | 665

www.it-ebooks.info

http://www.it-ebooks.info/

account on the system they’re trying to crack, which drastically reduces the
number of potential bad guys.

Careless or casual programs use temporary files in all kinds of unsafe ways, like
placing them in world-writable directories, using predictable filenames, and not
making sure the file doesn’t already exist. Whenever you find a program with
code like this:

open(TMP, "> /tmp/foo.$$")
 || die "can't open /tmp/foo.$$: $!";

you’ve just found all three of those errors at once. That program is an accident
waiting to happen.

The way the exploit plays out is that the cracker first plants a file with the same
name as the one you’ll use. Appending the PID isn’t enough for uniqueness;
surprising though it may sound, guessing PIDs really isn’t difficult.10 Now along
comes the program with the careless open call, and instead of creating a new
temporary file for its own purposes, it overwrites the cracker’s file instead.

So what harm can that do? A lot. The cracker’s file isn’t really a plain file, you see.
It’s a symbolic link (or sometimes a hard link), probably pointing to some critical
file that crackers couldn’t normally write to on their own, such as /etc/passwd.
The program thought it opened a brand new file in /tmp, but it clobbered an
existing file somewhere else instead.

Perl provides two functions that address this issue, if properly used. The first is
POSIX::tmpnam, which just returns a filename that you’re expected to open for
yourself:

Keep trying names until we get one that's brand new.
use POSIX;
do {
 $name = tmpnam();
} until sysopen(TMP, $name, O_RDWR | O_CREAT | O_EXCL, 0600);
Now do I/O using TMP handle.

The second is IO::File::new_tmpfile, which gives you back an already opened
handle:

Or else let the module do that for us.
use IO::File;
my $fh = IO::File::new_tmpfile(); # this is POSIX's tmpfile(3)
Now do I/O using $fh handle.

Neither approach is perfect, but, of the two, the first is the better approach. The
major problem with the second one is that Perl is subject to the foibles of whatever

10. Unless you’re on a system like OpenBSD, which randomizes new PID assignments.

666 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

implementation of tmpfile(3) happens to be in your system’s C library, and you
have no guarantee that this function doesn’t do something just as dangerous as
the open we’re trying to fix. (And some, sadly enough, do.) A minor problem is
that it doesn’t give you the name of the file at all. Although it’s better if you can
handle a temp file without a name—because that way you’ll never provoke a race
condition by trying to open it again—often you can’t.

The major problem with the first approach is that you have no control over the
location of the pathname as you do with the C library’s mkstemp(3) function. For
one thing, you never want to put the file on an NFS-mounted filesystem. The
O_EXCL flag is not guaranteed to work correctly under NFS, so multiple processes
that request an exclusive create at nearly the same time might all succeed. For
another, because the path returned is probably in a directory others can write to,
someone could plant a symbolic link pointing to a nonexistent file, forcing you
to create your file in a location she prefers.11 If you have any say in it, don’t put
temp files in a directory that anyone else can write to. If you must, make sure to
use the O_EXCL flag to sysopen, and try to use directories with the owner-delete-
only flag (the sticky bit) set on them.

As of v5.6.1, there is a third way. The standard File::Temp module takes into ac-
count all the difficulties we’ve mentioned. You might use the default options,
like this:

use File::Temp "tempfile";
$handle = tempfile();

Or you might specify some of the options, like this:

use File::Temp "tempfile";
($handle, $filename) = tempfile("plughXXXXXX",
 DIR => "/var/spool/adventure",
 SUFFIX = ".dat");

The File::Temp module also provides security-conscious emulations of the other
functions we’ve mentioned (though the native interface is better because it gives
you an opened filehandle, not just a filename, which is subject to race condi-
tions). See the documentation for a longer description of the options and se-
mantics of this module.

Once you have your filehandle, you can do whatever you want with it. It’s open
for both reading and writing, so you can write to the handle, seek back to the
beginning, and then, if you want, overwrite what you’d just put there or read it
back again. The thing you really, really want to avoid doing is ever opening that

11. A solution to this, which only works under some operating systems, is to call sysopen and OR in the
O_NOFOLLOW flag. This makes the function fail if the final component of the path is a symbolic link.

Handling Timing Glitches | 667

www.it-ebooks.info

http://www.it-ebooks.info/

filename again, because you can’t know for sure that it’s really the same file you
opened the first time around.12

When you launch another program from within your script, Perl normally closes
all filehandles for you to avoid another vulnerability. If you use fcntl to clear
your close-on-exec flag (as demonstrated at the end of the entry on open in
Chapter 27), other programs you call will inherit this new, open file descriptor.
On systems that support the /dev/fd/ directory, you could provide another pro-
gram with a filename that really means the file descriptor by constructing it this
way:

$virtname = "/dev/fd/" . fileno(TMP);

If you only needed to call a Perl subroutine or program that’s expecting a filename
as an argument, and you knew that subroutine or program used regular open for
it, you could pass the handle using Perl’s notation for indicating a filehandle:

$virtname = "=&" . fileno(TMP);

When that file “name” is passed with a regular Perl open of one or two arguments
(not three, which would dispel this useful magic), you gain access to the dupli-
cated descriptor. In some ways, this is more portable than passing a file
from /dev/fd/, because it works everywhere that Perl works; not all systems have
a /dev/fd/ directory. On the other hand, the special Perl open syntax for accessing
file descriptors by number works only with Perl programs, not with programs
written in other languages.

Handling Insecure Code
Taint checking is just the sort of security blanket you need if you want to catch
bogus data you ought to have caught yourself, but didn’t think to catch before
passing off to the system. It’s a bit like the optional warnings Perl can give you
—they may not indicate a real problem, but on average the pain of dealing with
the false positives is less than the pain of not dealing with the false negatives.
With tainting, the latter pain is even more insistent, because using bogus data
doesn’t just give the wrong answers; it can blow your system right out of the
water, along with your last two years of work. (And maybe your next two, if you
didn’t make good backups.) Taint mode is useful when you trust yourself to write
honest code but don’t necessarily trust whoever is feeding you data not to try to
trick you into doing something regrettable.

12. Except afterwards by doing a stat on both filehandles and comparing the first two return values of each
(the device/inode pair). But it’s too late by then, because the damage is already done. All you can do is
detect the damage and abort (and maybe sneakily send email to the system administrator).

668 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Data is one thing. It’s quite another matter when you don’t even trust the code
you’re running. What if you fetch an applet off the Net and it contains a virus, a
time bomb, or a Trojan horse? Taint checking is useless here because the data
you’re feeding the program may be fine—it’s the code that’s untrustworthy.
You’re placing yourself in the position of someone who receives a mysterious
device from a stranger, with a note that says, “Just hold this to your head and
pull the trigger.” Maybe you think it will dry your hair, but you might not think
so for very long.

In this realm, prudence is synonymous with paranoia. What you want is a system
that lets you impose a quarantine on suspicious code. The code can continue to
exist, and even perform certain functions, but you don’t let it wander around
doing just anything it feels like. In Perl, you can impose a kind of quarantine
using the Safe module.

Changing Root
Perl’s chroot works just like the chroot(2) system call. It changes the root directory,
so your program can’t access any files outside of the section of the filesystem that
you intend to use. However, only the root user gets to do this, so already that’s
a security issue:

chroot('/usr/local/apache/data');
chdir('/'); # now in /usr/local/apache/data

This doesn’t actually prevent access outside of the new root. A directory handle
opened prior to the chroot can crawl back up to the real root, even though you
can’t use a filename:

use v5.14;
use warnings;

say "Here I am";

opendir my $rootdh, '/';

chroot('/Users/Amelia');
opendir my $dh, '/'; # /Users/Amelia
say for readdir($dh);

chdir($rootdh); # oops, back to the real '/'
opendir my $dh, '.';
say for readdir($dh);

This relies on you, or someone else, allowing this situation to happen. If someone
can edit the program to insert this naughtiness, no level of Perl security is going
to help. Use any trick you can find to avoid a root user Perl program.

Handling Insecure Code | 669

www.it-ebooks.info

http://www.it-ebooks.info/

Safe Compartments
The Safe module lets you set up a sandbox, a special compartment in which all
system operations are trapped, and namespace access is carefully controlled. The
low-level, technical details of this module are in a state of flux, so here we’ll take
a more philosophical approach.

Restricting namespace access

At the most basic level, a Safe object is like a safe, except the idea is to keep the
bad people in, not out. In the Unix world, there is a syscall known as chroot(2)
that can permanently consign a process to running only in a subdirectory of the
directory structure—in its own private little hell, if you will. Once the process is
put there, there is no way for it to reach files outside, because there’s no way for
it to name files outside.13

A Safe object is a little like chroot(2), except that instead of being restricted to a
subset of the filesystem’s directory structure, it’s restricted to a subset of Perl’s
package structure, which is hierarchical just as the filesystem is.

Another way to look at it is that the Safe object is like one of those observation
rooms with one-way mirrors where the police put suspicious characters. People
on the outside can look into the room, but those inside can’t see out.

When you create a Safe object, you may give it a package name if you want. If
you don’t, a new one will be chosen for you:

use Safe;
my $sandbox = Safe–>new("Dungeon");
$Dungeon::foo = 1; # Direct access is discouraged, though.

If you fully qualify variables and functions using the package name supplied to
the new method, you can access them in that package from the outside, at least in
the current implementation.

Slightly more upward compatible might be to set things up first before creating
the Safe, as shown below. This is likely to continue working and is a handy way
to set up a Safe that has to start off with a lot of “state”. (Admittedly, $Dun
geon::foo isn’t a lot of state.)

 use Safe;
 $Dungeon::master = 'Gary Gygax'; # Still direct access, still discouraged.
 my $sandbox = Safe–>new("Dungeon");

13. Some sites do this for executing all CGI scripts using loopback, read-only mounts. It’s something of a pain
to set up, but if someone ever escapes, they’ll find there’s nowhere to go.

670 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

But Safe also provides a way to access the compartment’s globals, even if you don’t
know the name of the compartment’s package. So for maximal upward com-
patibility (though less than maximal speed), we suggest you use the reval
method:

use Safe;
my $sandbox = Safe–>new();
$sandbox–>reval(q($master = 'Gary Gygax'));

(In fact, that’s the same method you’ll use to run suspicious code.) When you pass
code into the compartment to compile and run, that code thinks that it’s really
living in the main package. What the outside world calls $Dungeon::master, the
code inside thinks of it as $main::master, $::master, or just $master (if you aren’t
running under use strict). It won’t work to say $Dungeon::master inside the
compartment because that would really access $Dungeon::Dungeon::master. By
giving the Safe object its own notion of main, variables and subroutines in the rest
of your program are protected.

To compile and run code inside the compartment, use the reval (“restricted
eval”) method, passing the code string as its argument. Just as with any other
eval STRING construct, compilation errors and runtime exceptions in reval don’t
kill your program. They just abort the reval and leave the exception in $@, so
make sure to check it after every reval call.

Using the initializations given earlier, this code will print out that “master is now
Dave Arneson”, but only after you allow print (see the next section):

$sandbox–>permit(qw(print));
$sandbox–>reval(
 q($master = 'Dave Arneson'; print "master is now $main::master\n";)
);
if ($@) {
 die "Couldn't compile code in box: $@";
}

If you just want to compile code and not run it, wrap your string in a subroutine
declaration:

$sandbox–>reval(q{
 our $master;
 sub say_master {
 print "master is now $main::master\n";
 }
}, 1);
die if $@; # check compilation

This time we passed reval a second argument, which, since it’s true, tells reval
to compile the code under the strict pragma. From within the code string you
can’t disable strictness, either, because importing and unimporting are just two

Handling Insecure Code | 671

www.it-ebooks.info

http://www.it-ebooks.info/

of the things you can’t normally do in a Safe compartment. There are a lot of
things you can’t normally do in a Safe compartment—see the next section.

Once you’ve created the say_master function in the compartment, these are pretty
much the same:

$sandbox–>reval("say_master()"); # Best way.
die if $@;

$sandbox–>varglob("say_master")–>(); # Call through anonymous glob.

Dungeon::say_master(); # Direct call, strongly discouraged.

Restricting operator access

The other important thing about a Safe object is that Perl limits the available
operations within the sandbox. (You might let your kid take a bucket and shovel
into the sandbox, but you’d probably draw the line at a bazooka.) It’s not enough
to protect just the rest of your program; you need to protect the rest of your
computer, too.

When you compile Perl code in a Safe object, either with reval or rdo (the re-
stricted version of the do FILE operator), the compiler consults a special, per-
compartment access-control list to decide whether each individual operation is
deemed safe to compile. This way you don’t have to stress out (much) worrying
about unforeseen shell escapes, opening files when you didn’t mean to, strange
code assertions in regular expressions, or most of the external access problems
folks normally fret about (or ought to).

If you want to change what’s denied or allowed, you can do that by telling the
compartment what to restrict or permit:

use v5.10;

$time = $sandbox–>reval(q(time)); # works fine

$sandbox–>deny(qw(time));
$time = $sandbox–>reval(q(time)); # fails

You can restrict entire sets of op codes, as specified in the Opcode module (see
Table 20-1), although this requires some knowledge of perl’s internals:

$sandbox–>deny(qw(:base_math));
my $time = $sandbox–>reval('log(10)'); # fails

The trick, however, is protecting Opcode so that its export tags actually are what
you expect. If you don’t trust the tags, you can specify individual opcodes, which
are also in the Opcode module’s documentation. Never trust anybody.

672 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

Table 20-1. Selected opcode tags from Opcode

Opcode Includes

:base_io Filehandle-based input and output

:dangerous A dumping ground tag for various dangerous things

:filesys Input and output

:load Load external files or get caller information

:sys_db Access to system databases, such as /etc/passwd

:subprocess Creation of child processes

The Safe module doesn’t offer complete protection against denial-of-service at-
tacks, especially when used in its more permissive modes. Denial-of-service at-
tacks consume all available system resources of some type, denying other pro-
cesses access to essential system facilities. Examples of such attacks include filling
up the kernel process table, dominating the CPU by running forever in a tight
loop, exhausting available memory, and filling up a filesystem. These problems
are very difficult to solve, especially portably. See the end of the section “Code
Masquerading As Data” on page 675, later in this chapter, for more discussion
of denial-of-service attacks.

Safe examples

Imagine you’ve got a CGI program that manages a form into which the user may
enter an arbitrary Perl expression and get back the evaluated result.14 Like all
external input, the string comes in tainted, so Perl won’t let you eval it yet—you’ll
first have to untaint it with a pattern match. The problem is that you’ll never be
able to devise a pattern that can detect all possible threats. And you don’t dare
just untaint whatever you get and send it through the built-in eval. (If you do
that, we will be tempted to break into your system and delete the script.)

That’s where reval comes in. Here’s a CGI script that processes a form with a
single form field, evaluates (in scalar context) whatever string it finds there, and
prints out the formatted result:

#!/usr/bin/perl –lTw
use strict;
use CGI::Carp "fatalsToBrowser";
use CGI qw/:standard escapeHTML/;
use Safe;

14. Please don’t laugh. We really have seen web pages that do this. Without a Safe!

Handling Insecure Code | 673

www.it-ebooks.info

http://www.it-ebooks.info/

print header(–type => "text/html;charset=UTF–8"),
 start_html("Perl Expression Results");
my $expr = param("EXPR") =~ /^([^;]+)/
 ? $1 # return the now–taintless portion
 : croak("no valid EXPR field in form");
my $answer = Safe–>new–>reval($expr);
die if $@;

print p("Result of", tt(escapeHTML($expr)),
 "is", tt(escapeHTML($answer)));

Imagine some evil user feeding you “print `cat /etc/passwd`” (or worse) as the
input string. Thanks to the restricted environment that disallows backticks, Perl
catches the problem during compilation and returns immediately. The string in
$@ is “quoted execution (``, qx) trapped by operation mask”, plus the custom-
ary trailing information identifying where the problem happened.

Because we didn’t say otherwise, the compartments we’ve been creating all used
the default set of allowable operations. How you go about declaring specific
operations permitted or forbidden isn’t important here. What is important is that
this is completely under the control of your program. And since you can create
multiple Safe objects in your program, you can confer various degrees of trust
upon various chunks of code, depending on where you got them from.

If you’d like to play around with Safe, here’s a little interactive Perl calculator. It’s
a calculator in that you can feed it numeric expressions and see their results
immediately. But it’s not limited to numbers alone. It’s more like the looping
example under eval in Chapter 27, where you can take whatever they give you,
evaluate it, and give them back the result. The difference is that the Safe version
doesn’t execute just anything you feel like. You can run this calculator interac-
tively at your terminal, typing in little bits of Perl code and checking the answers,
to get a feel for what sorts of protection Safe provides.

#!/usr/bin/perl –w
safecalc – demo program for playing with Safe
use strict;
use Safe;
my $sandbox = Safe–>new();
while (1) {
 print "Input: ";
 my $expr = <STDIN>;
 exit unless defined $expr;
 chomp($expr);
 print "$expr produces ";
 local $SIG{_ _WARN_ _} = sub { die @_ };
 my $result = $sandbox–>reval($expr, 1);
 if ($@ =~ s/at \(eval \d+\).*//) {

674 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

 printf "[%s]: %s", $@ =~
 /trapped by operation mask/
 ? "Security Violation" : "Exception", $@;
 }
 else {
 print "[Normal Result] $result\n";
 }
}

When you give it the normal algebraic expressions, it computes and returns the
result. If you try to do something such as run backticks or load a module, it
doesn’t let you:

Input: 2+2
2+2 produces [Normal Result] 4
Input: `ls –l`
`ls –l` produces [Security Violation]: 'quoted execution (``, qx)'
trapped by operation mask
Input: use LWP::Simple; getprint('http://www.perl.org')
use LWP::Simple; getprint('http://www.perl.org') produces [Security Violation]:
'require' trapped by operation mask
Input: 1/137
1/137 produces [Normal Result] 0.0072992700729927

Code Masquerading As Data
Safe compartments are available for when the really scary stuff is going down,
but that doesn’t mean you should let down your guard totally when you’re doing
the everyday stuff around home. You need to cultivate an awareness of your
surroundings and look at things from the point of view of someone wanting to
break in. You need to take proactive steps like keeping things well lit and trim-
ming the bushes where various lurking problems can hide.

Perl tries to help you in this area, too. Perl’s conventional parsing and execution
scheme avoids the pitfalls to which shell programming languages often fall prey.
There are many extremely powerful features in the language, but by design
they’re syntactically and semantically bounded in ways that keep things under
the programmer's control. With few exceptions, Perl evaluates each token only
once. Something that looks like it’s being used as a simple data variable won’t
suddenly go rooting around in your filesystem.

Unfortunately, that sort of thing can happen if you call out to the shell to run
other programs for you, because then you’re running under the shell’s rules in-
stead of Perl’s. The shell is easy to avoid, though—just use the list-argument
forms of the system, exec, or piped open functions. Although backticks don’t have
a list-argument form that is proof against the shell, you can always emulate them
as described in the section “Accessing Commands and Files Under Reduced Priv-

Handling Insecure Code | 675

www.it-ebooks.info

http://www.it-ebooks.info/

ileges” on page 657, earlier in this chapter. (While there’s no syntactic way to make
backticks take an argument list, a multiargument form of the underlying read
pipe operator is in development; but as of this writing, it isn’t quite ready for prime
time.)

When you use a variable in an expression (including when you interpolate it into
a double-quoted string), there’s No Chance that the variable will contain Perl
code that does something you aren’t intending.15 Unlike the shell, Perl never
needs defensive quotes around variables, no matter what might be in them.

$new = $old; # No quoting needed.
print "$new items\n"; # $new can't hurt you.

$phrase = "$new items\n"; # Nor here, neither.
print $phrase; # Still perfectly ok.

Perl takes a “what you see is what you get” approach. If you don’t see an extra
level of interpolation, then it doesn’t happen. It is possible to interpolate arbitrary
Perl expressions into strings, but only if you specifically ask Perl to do that. (Even
so, the contents are still subject to taint checking if you’re in taint mode.)

$phrase = "You lost @{[1 + int rand(6)]} hit points\n";

Interpolation is not recursive, however. You can’t just hide an arbitrary expression
in a string:

$count = "1 + int rand(6)"; # Some random code.
$saying = "$count hit points"; # Merely a literal.
$saying = "@{[$count]} hit points"; # Also a literal.

Both assignments to $saying would produce “1 + int rand(6) hit points”,
without evaluating the interpolated contents of $count as code. To get Perl to do
that, you have to call eval STRING explicitly:

$code = "1 + int rand(6)";
$die_roll = eval $code;
die if $@;

If $code were tainted, that eval STRING would raise its own exception. Of course,
you almost never want to evaluate random user code—but if you did, you should
look into using the Safe module. You may have heard of it.

There is one place where Perl can sometimes treat data as code; namely, when the
pattern in a qr//, m//, or s/// operator contains either of the new regular expres-
sion assertions: (?{ CODE }) or (??{ CODE }). These pose no security issues when
used as literals in pattern matches:

15. Although if you’re generating a web page, it’s possible to emit HTML tags, including JavaScript code, that
might do something that the remote browser isn’t expecting.

676 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

$cnt = $n = 0;
while ($data =~ /(\d+ (?{ $n++ }) | \w+)/gx) {
 $cnt++;
}
print "Got $cnt words, $n of which were digits.\n";

But existing code that interpolates variables into matches was written with the
assumption that the data is data, not code. The new constructs might have in-
troduced a security hole into previously secure programs. Therefore, Perl refuses
to evaluate a pattern if an interpolated string contains a code assertion, and it
raises an exception instead. If you really need that functionality, you can always
enable it with the lexically scoped use re 'eval' pragma. (You still can’t use
tainted data for an interpolated code assertion, though.)

A completely different sort of security concern that can come up with regular
expressions is denial-of-service problems. These can make your program quit too
early, run too long, or exhaust all available memory—and sometimes even dump
core, depending on the phase of the moon.

When you process user-supplied patterns, you don’t have to worry about inter-
preting random Perl code. However, the regular expression engine has its own
little compiler and interpreter, and the user-supplied pattern is capable of giving
the regular expression compiler heartburn. If an interpolated pattern is not a valid
pattern, a runtime exception is raised, which is fatal unless trapped. If you do try
to trap it, make sure to use only eval BLOCK, not eval STRING, because the extra
evaluation level of the latter would in fact allow the execution of random Perl
code. Instead, do something like this:

if (not eval { "" =~ /$match/; 1 }) {
 # (Now do whatever you want for a bad pattern.)
}
else {
 # We know pattern is at least safe to compile.
 if ($data =~ /$match/) { ... }
}

A more troubling denial-of-service problem is that given the right data and the
right search pattern, your program can appear to hang forever. That’s because
some pattern matches require exponential time to compute, and this can easily
exceed the MTBF rating on our solar system. If you’re especially lucky, these
computationally intensive patterns will also require exponential storage. If so,
your program will exhaust all available virtual memory, bog down the rest of the
system, annoy your users, and either die with an orderly “Out of memory!” error
or leave behind a really big core dump file (though perhaps not as large as the
solar system).

Handling Insecure Code | 677

www.it-ebooks.info

http://www.it-ebooks.info/

Like most denial-of-service attacks, this one is not easy to solve. If your platform
supports the alarm function, you could time out the pattern match. Unfortunately,
Perl cannot (currently) guarantee that the mere act of handling a signal won’t
ever trigger a core dump. (This is scheduled to be fixed in a future release.) You
can always try it, though, and even if the signal isn’t handled gracefully, at least
the program won’t run forever.

If your system supports per-process resource limits, you could set these in your
shell before calling the Perl program, or use the BSD::Resource module from
CPAN to do so directly from Perl. The Apache web server allows you to set time,
memory, and file size limits on CGI scripts it launches.

Finally, we hope we’ve left you with some unresolved feelings of insecurity. Re-
member, just because you’re paranoid doesn’t mean they’re not out to get you.
So you might as well enjoy it.

678 | Chapter 20: Security

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 21

Common Practices

Almost any Perl programmer will be glad to give you reams of advice on how to
program. We’re no different (in case you hadn’t noticed). In this chapter, rather
than trying to tell you about specific features of Perl, we’ll go at it from the other
direction and use a more scattergun approach to describe idiomatic Perl. Our
hope is that, by putting together various bits of things that seemingly aren’t re-
lated, you can soak up some of the feeling of what it’s like to actually “think
Perl”. After all, when you’re programming, you don’t write a bunch of expres-
sions, then a bunch of subroutines, then a bunch of objects. You have to go at
everything all at once, more or less. So this chapter is a bit like that.

There is, however, a rudimentary organization to the chapter in that we’ll start
with the negative advice and work our way toward the positive advice. We don’t
know if that will make you feel any better, but it makes us feel better. Besides,
for most of your programming career, you’ll spend your time learning what not
to do before you figure out what to do, so get used to it early.

Common Goofs for Novices
The biggest goof of all is forgetting to use warnings, which identifies many errors.
The second biggest goof is forgetting to use strict when it’s appropriate. These
two pragmas can save you hours of head-banging when your program starts
getting bigger. (And it will.) Yet another faux pas is to forget to consult the online
perlfaq. Suppose you want to find out if Perl has a round function. You might try
searching the FAQ first by searching with perldoc:

% perldoc –q round

679

www.it-ebooks.info

http://perldoc.perl.org/perlfaq.html
http://www.it-ebooks.info/

Apart from those “metagoofs”, there are several kinds of programming traps. Some
traps almost everyone falls into, and other traps you’ll fall into only if you come
from a particular culture that does things differently. We’ve separated these out
in the following sections.

Universal Blunders
• Putting a comma after the filehandle in a print statement. Although it looks

extremely regular and pretty to say:

print STDOUT, "goodbye", $adj, "world!\n"; # WRONG

this is nonetheless incorrect because of that first comma. What you want
instead is the indirect object syntax:

print STDOUT "goodbye", $adj, "world!\n"; # ok

The syntax works this way so that you can say:

print $filehandle "goodbye", $adj, "world!\n";

where $filehandle is a scalar holding the name of a filehandle at runtime.
This is distinct from:

print $notafilehandle, "goodbye", $adj, "world!\n";

where $notafilehandle is simply a string that is part of the list of things to
be printed. In that case, you might see something like GLOB(0xDEADBEEF) on
the terminal, because the output went to standard output and the filehandle
reference stringified itself.

See indirect object in the Glossary.

• Using == instead of eq and != instead of ne. The == and != operators are
numeric tests. The other two are string tests. The strings "123" and "123.00"
are equal as numbers but not equal as strings. Also, most nonnumeric strings
are numerically equal to zero, and some of them, such as "123xyz", probably
aren’t what you want in a numeric context. Unless you are dealing with
numbers, you almost always want the string-comparison operators instead.
The warnings pragma will tell you when these operators use nonnumeric data.

• Forgetting the trailing semicolon. Every statement in Perl is terminated by a
semicolon or the end of a block. Newlines aren’t statement terminators as
they are in awk, Python, or FORTRAN. Remember that Perl is like C.

A statement containing a here document is particularly prone to losing its
semicolon. It ought to look like this:

680 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

print <<"FINIS";
A foolish consistency is the hobgoblin of little minds,
adored by little statesmen and philosophers and divines.
 ––Ralph Waldo Emerson
FINIS

• Forgetting that a BLOCK requires braces. Naked statements are not BLOCKs. If
you are creating a control structure such as a while or an if that requires one
or more BLOCKs, you must use braces around each BLOCK. Remember that Perl
is not like C.

• Not saving $1, $2, and so on across regular expressions. Remember that every
successful m/atch/ or s/ubsti/tution/ will set (or clear, or mangle) your $1,
$2…variables. One way to save them right away is to evaluate the match within
list context, as in:

my ($one, $two) = /(\w+) (\w+)/;

• Not realizing that a local also changes the variable’s value as seen by other
subroutines called within the scope of the local. It’s easy to forget that
local is a runtime statement that does dynamic scoping, because there’s no
equivalent in languages like C. See the section “Scoped Declarations” in
Chapter 4. Usually you want a my anyway.

• Losing track of brace pairings. A good text editor will help you find the pairs.
Get one (or two). And it helps to have a consistent style so you know where
to expect a brace, even if people debate those positions just for the blood
sport. Tools such as Perl::Tidy can beautify code for you.

• Using loop control statements in do {} while. Although the braces in this
control structure look suspiciously like part of a loop BLOCK, they aren’t.

• Using $foo[1] when you mean $foo[0]. Perl arrays begin at zero by default.
In the olden days, Perl tried to be flexible by allowing you to set the starting
index through the $[special variable, but v5.12 deprecated that.

• Saying @foo[0] when you mean $foo[0]. The @foo[0] reference is an array
slice, meaning an array consisting of the single element $foo[0]. Sometimes
this doesn’t make any difference, as in:

print "the answer is @foo[0]\n";

but it makes a big difference for things like:

@foo[0] = <STDIN>;

which will slurp up all the rest of STDIN, assign the first line to $foo[1], and
discard everything else. This is probably not what you intended. Get into the
habit of thinking that $ means a single value, while @ means a list of values,
and you’ll do okay.

Common Goofs for Novices | 681

www.it-ebooks.info

http://www.it-ebooks.info/

• Forgetting the parentheses of a list operator like my, which makes one variable
lexical and the other global:

my $x, $y = (4, 8); # WRONG
my ($x, $y) = (4, 8); # ok

• Forgetting to select the right filehandle before setting the format variables $^,
$~, or the buffering variable $|. These variables depend on the currently se-
lected filehandle, as determined by select(FILEHANDLE). The initial filehan-
dle so selected is STDOUT. You should really be using the filehandle methods
from the IO::Handle module instead. See Chapter 25.

• Forgetting to set the encoding on every text stream you read or write. There
is no such thing as a generic “textfile”. The –C command-line option, the
PERL_UNICODE environment variable, and the open pragma can set this implic-
itly for convenience, and the binmode and open functions can set it explicitly
for precision. If you do not somehow specify the encoding either implicitly
or explicitly, you do not have text data. Encoding cannot be guessed. They
must be specified.

Frequently Ignored Advice
Practicing Perl Programmers should take note of the following:

• Remember that many operations behave differently in list context than they
do in a scalar one, or that a list and an array are not the same thing. For
instance:

($x) = (4, 5, 6); # List context; $x is set to 4
 $x = (4, 5, 6); # Scalar context; $x is set to 6

 @a = (4, 5, 6);
 $x = @a; # Scalar context; $x is set to 3 (the array length)

• Avoid barewords if you can, especially all lowercase ones. You can’t tell just
by looking at it whether a word is a function or a bareword string. By using
quotes on strings and parentheses around function call arguments, you won’t
ever get them confused. In fact, the pragma use strict at the beginning of
your program makes barewords a compile-time error—probably a good
thing.

• You can’t tell just by looking which built-in functions are unary operators
(like chop and chdir), which are list operators (like print and unlink), and
which are argumentless (like time). You’ll want to learn them by reading
Chapter 27. As always, use parentheses if you aren’t sure—or even if you aren’t
sure you’re sure. Note also that user-defined subroutines are by default list

682 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

operators, but they can be declared as unary operators with a prototype of
($) or argumentless with a prototype of ().

• People have a hard time remembering that some functions default to $_,
@ARGV, or whatever, while others do not. Take the time to learn which are
which or avoid default arguments.

• <FH> is not the name of a filehandle; it is an angle operator that does a line-
input operation on the handle. This confusion usually manifests itself when
people try to print to the angle operator:

print <FH> "hi"; # WRONG, omit angles

• Remember also that data read by the angle operator is assigned to $_ only
when the file read is the sole condition in a while loop:

while (<FH>) { } # Data assigned to $_
<FH>; # Data read and discarded!

• Don’t use = when you need =~; the two constructs are quite different:

$x = /foo/; # Searches $_ for "foo", puts result in $x
$x =~ /foo/; # Searches $x for "foo", discards result

• Use /r on your substitutions to return the result.

@new = map { s/old/new/r } @old;

• Use my for local variables whenever you can get away with it. Using local
merely gives a temporary value to a global variable, which leaves you open
to unforeseen side effects of dynamic scoping.

• Don’t use local on a module’s exported variables. If you localize an exported
variable, its exported value will not change. The local name becomes an alias
to a new value, but the external name is still an alias for the original.

C Traps
Cerebral C programmers should take note of the following:

• Curlies are required for if and while blocks.

• You must use elsif rather than “else if” or “elif”. Syntax like this:

if (expression) {
 block;
}
else if (another_expression) { # WRONG
 another_block;
}

is illegal. The else part is always a block, and a naked if is not a block. You
mustn’t expect Perl to be exactly the same as C. What you want instead is:

Common Goofs for Novices | 683

www.it-ebooks.info

http://www.it-ebooks.info/

if (expression) {
 block;
}
elsif (another_expression) {
 another_block;
}

Note also that “elif” is “file” spelled backward. Only Algol-ers would want a
keyword that was the same as another word spelled backward.

• The break and continue keywords from C become in Perl last and next,
respectively. Unlike in C, these do not work within a do {} while construct.

• For a long time Perl had no equivalent to C’s switch statement. Perl v5.10
introduced a “switch on steroids” with the fancy name given–when (since it’s
a fancier construct). See Chapter 4. It’s easy to build your own, too; see “Bare
Blocks as Loops” and “The given Statement” in Chapter 4.

• Variables begin with $, @, or % in Perl.

• Comments begin with #, not /*. Use pod for multiline comments.

• You can’t take the address of anything, although a similar operator in Perl is
the backslash, which creates a reference. You get something that looks like
an address when you stringify a reference, but you can’t really use it for any-
thing.

• ARGV must be capitalized. $ARGV[0] is C’s argv[1], and C’s argv[0] ends up in
$0. See Chapter 25.

• Syscalls such as link, unlink, and rename return true for success, not 0.

• The signal handlers in %SIG deal with signal names, not numbers.

Shell Traps
Sharp shell programmers should take note of the following:

• Variables are prefixed with $, @, or % on the left side of the assignment as well
as the right. A shellish assignment like:

camel="dromedary"; # WRONG

won’t be parsed the way you expect. You need:

$camel="dromedary"; # ok

• The loop variable of a foreach also requires a $. Although csh likes:

foreach hump (one two)
 stuff_it $hump
end

In Perl, this is written as:

684 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

foreach $hump ("one", "two") {
 stuff_it($hump);
}

• The backtick operator does variable interpolation without regard to the pres-
ence of single quotes in the command.

• The backtick operator does no translation of the return value. In Perl, you
have to trim the newline explicitly, like this:

chomp($thishost = `hostname`);

• Shells (especially csh) do several levels of substitution on each command line.
Perl does interpolation only within certain constructs such as double quotes,
backticks, angle brackets, and search patterns.

• Shells tend to interpret scripts a little bit at a time. Perl compiles the entire
program before executing it (except for BEGIN blocks, which execute before
the compilation is done).

• Program arguments are available via @ARGV, not $1, $2, and so on.

• The environment is not automatically made available as individual scalar
variables. Use the standard Env module if you want that to happen.

Python Traps
Perl and Python are both dynamic languages that share some common ancestors
and appeared within five years of each other (1987 and 1991). Perl 4 even stole
Python’s object system for Perl 5. Although the two languages are more alike
than their superficial syntax would suggest, they also see many of the same things
from different perspectives.

• Python and Perl sometimes use different words for the same concepts, and
sometimes they use the same words for different concepts; see Table 21-1.

Table 21-1. A mapping of Python to Perl jargon

Python Perl

Tuple List

List Array

Dictionary Hash

• Variables begin with $, @, or % in Perl. Using sigils like $str lets Perl keep its
nouns and its verbs separate, so you never have to worry about accidentally
overwriting some important built-in the way you do in Python if you use
str for your purposes. You can override built-ins in Perl, but never acciden-
tally the way you can in Python.

Common Goofs for Novices | 685

www.it-ebooks.info

http://www.it-ebooks.info/

• Don’t forget to use warnings so Perl notices things that in Python give you
exceptions. Otherwise in Perl you only learn about these things if you test
for them, so if you forget, you never know. See also warnings and autodie in
Chapter 27.

• Many built-in functions take default arguments or have default behavior for
their most common cases. See Chapter 27.

• Python’s methods take explicit parameter lists. In Perl, you unpack the argu-
ments to your function, which gives you great flexibility in the number and
order of the arguments your function takes. We consider this a feature, but
if you find yourself writing lots of boilerplate to unpack your function argu-
ments, you might consider the Method::Signatures module from CPAN.

• Perl knows about patterns and compiles them for you at compile time along
with the rest of your program.

• Perl’s \N{NAME} construct allows shortcuts, aliases, and custom names (which
can even be different in different lexical scopes); Python’s \N{NAME} doesn’t.

• Perl characters are abstract code points, not low-level code units as in Python.

• Perl pattern matching uses Unicode rules for case-insensitivity, but Python
uses only ASCII casefolding rules, so (for example) all three Greek sigmas
match case-insensitively in Perl.

• Perl’s casemapping functions like uc and lc follow Unicode rules, so they work
on all cased codepoints, not just on letters.

• Perl understands (potentially nested) lexical scope, and so it is completely
comfortable with full lexical closures. Python doesn’t and isn’t.

• Perl uses full Unicode casing, so the casemap of a string can be longer than
the original. Python uses only simple Unicode casing (when it bothers to use
it at all), which doesn’t give as good results on strings.

• Any subroutine that returns a blessed reference is a Perl constructor. There’s
no special name for a constructor method.

• Perl methods are just methods, and they always receive their invocant as a
bonus, initial argument. Perl as a language makes no distinction between
object methods, class methods, or static methods in the Python sense of these
things.

• Perl’s object-orientation is optional, not mandatory. Perl doesn’t enforce per-
vasive object-orientation on its built-in types unless you ask it to―not ev-
erything has methods. You might like autobox, though.

• In Perl, you call a function with arguments:

my $string = join("|", qw(Python Perl Ruby));

686 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

In Python, there’s likely a main argument with a method to do it:

new = "|".join(["Python", "Perl", "Ruby"])

• Perl pattern matches float unless you anchor your pattern explicitly, like
Python’s re.search() method but unlike its re.match(), which can only
match at the beginning of a line.

• Perl’s strings aren’t arrays of characters, so you can’t use array operators on
them. On strings you use string operators, natch.

• Except for a backslash itself or a backslashed delimiter, Perl never expands
backslash escapes in single-quoted strings, but Python does. Perl’s singled-
quoted strings like '\t' are more like Python’s raw strings like r'\t'.

• Perl uses backticks to quote literals to execute arbitrary system commands
and return their output, as in $file = `cat foo.c`.

• You don’t have to preallocate memory in Perl the way you do in Python, be-
cause arrays and other data structures grow on demand, sometimes via au-
tovivification. In Python, you have to explicitly grow your lists and explicitly
allocate new lists and dictionaries to grow them.

• Python throws exceptions for normal operations like open failures, while Perl
uses special return values, usually undef. That means if you forget to check
for that error return, you will miss it. You can use autodie to make failed
system calls raise exceptions.

• Perl does not by default throw exceptions on failed or partial numeric con-
versions from strings, nor on treating undef as a defined value. You can make
it do so with:

use warnings FATAL => q(numeric uninitialized);

• Perl lists never nest, even if you add extra parens. Use square brackets to make
nested arrays (of array references) instead.

• Perl’s range operator is inclusive on both sides, so 0..9 includes 0 and 9.

• Perl’s interactive shell is its debugger (Chapter 17), but Devel::REPL is good,
too. Calling Perl without arguments does not drop you into an interactive
read-eval-print loop as it does in Python. Use perl –de0 for that.

Ruby Traps
Matz, the creator of Ruby, stole heavily from Perl (and we think he chose a pretty
good starting point). Actually, he put a Perl and a Smalltalk in a room and let
them breed.

• There’s no irb. See the Python section.

Common Goofs for Novices | 687

www.it-ebooks.info

http://www.it-ebooks.info/

• Perl just has numbers. It doesn’t care whether they have fractional portions
or not.

• You don’t need to surround variables with {} (#{} in Ruby) to interpolate
them, unless you need to disambiguate the identifier from the string around
it:

"My favorite language is $lang"

• Perl interpolated strings don’t have to be double-quoted: they can use qq with
arbitrary delimiters. Similarly, generic uninterpolated strings don’t have to
use single quotes: they can use a q with arbitrary delimiters.

q/That's all, folks/
q(No interpolation for $100)
qq(Interpolation for $animal)

• You need to separate all Perl statements with a ;, even if they are on different
lines. The final statement in a block doesn’t need a final ;.

• The case of variable names in Perl don’t mean anything to perl.

• The sigils don’t denote variable scope, nor even type. A $ in Perl is a single
item, like $scalar, $array[0], or $hash{$key}.

• Perl compares strings with lt, le, eq, ne, ge, and gt.

• No magic blocks, but see PerlX::MethodCallWithBlock.

• Perl’s subroutine definitions are compile-phase. So:

use v5.10;
sub foo { say "Camelia" }
foo();
sub foo { say "Amelia" };
foo();

This prints Amelia twice, because the last definition is in place before the run-
phase statements execute. This also means that the call to a subroutine can
appear earlier in the file than the subroutine’s definition.

• Perl doesn’t have class variables, but people try to fake them with lexical vari-
ables.

• The range operator in Perl returns a list, but see PerlX::Range.

• The /s pattern modifier makes Perl’s . match a newline, whereas Ruby uses
the /m for the same thing. The /m in Perl makes the ^ and $ anchors match at
the beginning and end of logical lines.

• Perl flattens lists.

• Perl’s => can stand in almost anywhere you can use a comma, so you’ll often
see Perlers use the arrow to indicate direction:

688 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

rename $old => $new;

• In Perl, 0, "0", "", (), and undef are false in Boolean contexts. Basic Perl doesn’t
require a special Boolean value. You might want the boolean module.

• Perl often fakes the job of nil with an undef.

• Perl allows you to be a bit sloppier because some of the characters aren’t that
special. A ? after a variable doesn’t do anything to the variable, for instance:

my $flag = $foo? 0 :1;

Java Traps
• There is no main in Perl or, rather, no:

public static void main(String[] argv) throws IOException

• Perl allocates memory for you as you need it by growing its arrays and hashes
on demand. Autovivification means that if you assign to it, there’ll be room
for it.

• Perl doesn’t make you declare your variables in advance unless you use strict.

• In Perl, there is a difference between a thing and a reference to a thing, so you
(usually) have to explicitly dereference the latter.

• Not all functions need to be methods in Perl.

• String and numeric literals aren’t usually objects in Perl—but they can be.

• Java programmers looking to define a data structure using a class may be
surprised that Perl builds these up out of simple data declarations mixing
anonymous hashes and arrays. See Chapter 9.

• Instance data on a Perl object is (usually) just a value in the hash used for the
object, where the name of that hash field corresponds to the name of instance
data in Java.

• Privacy is optional in Perl.

• The function that a method invocation ends up calling is not determined
until runtime, and any object or class with a method by that name is just fine
by Perl. Only the interface matters.

• Perl supports operator overloading.

• Perl does not support function overloading by signature. See the Class::Mul
timethod module on CPAN.

• Perl allows multiple inheritance, although this more corresponds to multiple
interfaces in Java, since Perl classes inherit only methods, not data.

Common Goofs for Novices | 689

www.it-ebooks.info

http://www.it-ebooks.info/

• A Java char is not an abstract Unicode codepoint; it is a UTF-16 code unit,
which means it takes two of Java chars, as well as special coding, to work
outside the Basic Multilingual Plane in Java. In contrast, a Perl character is
an abstract codepoint whose underlying implementation is intentionally
hidden from the programmer. Perl code automatically works on the full range
of Unicode—and beyond.

• Unlike in Java, Perl’s string literals can have literal newlines in them. It’s still
usually better to use a “here” document, though.

• Functions typically indicate failure by returning undef, not by raising an ex-
ception. Use the autodie pragma if you like the other way.

• Perl does not use named parameters; arguments to a program show up in
each function’s @_ array. They’re typically given names right away, though.
You might check out the Methods::Signatures module from CPAN if you’d
like a more formal way to declare named parameters.

• The things Perl refers to as function prototypes work nothing at all like Java’s.

• Perl supports pass by named parameter, allowing optional arguments to be
omitted and the argument order to be freely rearranged.

• Perl’s garbage-collection system is based on reference counting, so it is possible
to write a destructor to automatically clean up resources like open file de-
scriptors, database connections, file locks, etc.

• Perl regexes don’t need extra backslashes.

• Perl has regex literals, which the compiler compiles, syntax checks at compile
time, and stores for efficiency.

• Pattern matches in Perl do not silently impose anchors on your patterns the
way Java’s match method does. Perl’s matching works more like Java’s find
method.

• A Perl pattern can have more than one capture group by the same name.

• Perl patterns can recurse.

• Java patterns need a special option to make them use Unicode casefolding for
case-insensitive matches, but Perl patterns use Unicode casefolding by de-
fault. When doing so, Perl uses full casefolding, but Java uses only simple
casefolding.

• In Java patterns, classic character classes like \w and \s are by default ASCII-
only, and it takes a special option to upgrade them to understand Unicode.
Perl patterns are Unicode-aware by default, so it instead takes a special option
to downgrade classic character classes (or POSIX classes) back to working
only on legacy ASCII.

690 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

• Java’s JNI corresponds to Perl’s XS, at least in spirit. Perl modules often have
compiled C/C++ components, but Java’s rarely do.

• Not everything needs to be rewritten in Perl; Perl makes it easy to call your
system’s native programs using backticks, system, and pipe opens.

Efficiency
While most of the work of programming may simply be getting your program
working properly, you may find yourself wanting more bang for the buck out of
your Perl program. Perl’s rich set of operators, data types, and control constructs
are not necessarily intuitive when it comes to speed and space optimization.
Many trade-offs were made during Perl’s design, and such decisions are buried
in the guts of the code. In general, the shorter and simpler your code is, the faster
it runs, but there are exceptions. This section attempts to help you make it work
just a wee bit better.

If you want it to work a lot faster, you can play with the Perl compiler backend
described in Chapter 16, or rewrite your inner loop as a C extension (which we
don’t cover in this book). However, before you do any work, you should profile
your program (see Chapter 17) to see whether there’s something simple you can
adjust first.

Note that optimizing for time may sometimes cost you in space or programmer
efficiency (indicated by conflicting hints below). Them’s the breaks. If program-
ming was easy, they wouldn’t need something as complicated as a human being
to do it, now would they?

Time Efficiency
• Use hashes instead of linear searches. For example, instead of searching

through @keywords to see whether $_ is a keyword, construct a hash with:

my %keywords;
for (@keywords) {
 $keywords{$_}++;
}

Then you can quickly tell if $_ contains a keyword by testing $keyword{$_}
for a nonzero value.

• Avoid subscripting when a foreach or list operator will do. Not only is sub-
scripting an extra operation, but if your subscript variable happens to be in
floating point because you did arithmetic, an extra conversion from floating
point back to integer is necessary. There’s often a better way to do it. Con-

Efficiency | 691

www.it-ebooks.info

http://www.it-ebooks.info/

sider using foreach, shift, and splice operations. Consider saying use inte
ger.

• Avoid goto. It scans outward from your current location for the indicated
label.

• Avoid printf when print will do.

• Avoid $& and its two buddies, $` and $'. Any occurrence in your program
causes all matches to save the searched string for possible future reference.
However, once you’ve blown it, it doesn’t hurt to have more of them. Perl
v5.10 introduced the per-match variables with the /p (see Chapter 5), so you
don’t have to either suffer or give up features.

• Avoid using eval on a string. An eval of a string (although not of a BLOCK)
forces recompilation every time through. The Perl parser is pretty fast for a
parser, but that’s not saying much. Nowadays there’s almost always a better
way to do what you want anyway. In particular, any code that uses eval
merely to construct variable names is obsolete since you can now do the same
using symbolic references directly:

no strict "refs";
$name = "variable";
$$name = 7; # Sets $variable to 7

Not that we recommend that, but if you can’t find any other way to do it,
trying this is slightly less bad than the string eval.

• Short-circuit alternation is often faster than the corresponding regex. So:

print if /one–hump/ || /two/;

is likely to be faster than:

print if /one–hump|two/;

at least for certain values of one–hump and two. This is because the optimizer
likes to hoist certain simple matching operations up into higher parts of the
syntax tree and do very fast matching with a Boyer–Moore algorithm. A
complicated pattern tends to defeat this.

• Reject common cases early with next if. As with simple regular expressions,
the optimizer likes this. And it just makes sense to avoid unnecessary work.
You can typically discard comment lines and blank lines even before you do
a split or chop:

while (<>) {
 next if /^#/;
 next if /^$/;
 chop;
 @piggies = split(/,/);

692 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

 ...
 }

• Avoid regular expressions with many quantifiers or with big {MIN,MAX} num-
bers on parenthesized expressions. Such patterns can result in exponentially
slow backtracking behavior unless the quantified subpatterns match on their
first “pass”. You can also use the (?>...) construct to force a subpattern to
either match completely or fail without backtracking.

• Try to maximize the length of any nonoptional literal strings in regular ex-
pressions. This is counterintuitive, but longer patterns often match faster
than shorter patterns. That’s because the optimizer looks for constant strings
and hands them off to a Boyer–Moore search, which benefits from longer
strings. Compile your pattern with Perl’s –Dr debugging switch to see what
Dr. Perl thinks the longest literal string is.

• Avoid expensive subroutine calls in tight loops. There is overhead associated
with calling subroutines, especially when you pass lengthy parameter lists or
return lengthy values. In order of increasing desperation, try passing values
by reference, passing values as dynamically scoped globals, inlining the sub-
routine, or rewriting the whole loop in C. (Better than all of those solutions
is if you can define the subroutine out of existence by using a smarter algo-
rithm.)

• Avoid calling the same subroutine over and over if you know that you’ll get
the same answer each time. Modules such as Memoize can help with that, or
you can construct your own cache once you have the answer (and you know
it won’t change).

• Avoid getc for anything but single-character terminal I/O. In fact, don’t use
it for that either. Use sysread.

• Avoid frequent substrs on long strings, especially if the string contains
UTF-8. It’s okay to use substr at the front of a string. For some tasks you can
keep the substr at the front by “chewing up” the string as you go with a four-
argument substr, replacing the part you grabbed with "":

while ($buffer) {
 process(substr($buffer, 0, 10, ""));
}

• If you can, use pack and unpack instead of multiple substr invocations.

• Use substr as an lvalue rather than concatenating substrings. For example, to
replace the fourth through seventh characters of $foo with the contents of the
variable $bar, don’t do this:

$foo = substr($foo,0,3) . $bar . substr($foo,7);

Efficiency | 693

www.it-ebooks.info

http://www.it-ebooks.info/

Instead, simply identify the part of the string to be replaced and assign into
it, as in:

substr($foo, 3, 4) = $bar;

But be aware that if $foo is a huge string and $bar isn’t exactly the length of
the “hole”, this can do a lot of copying, too. Perl tries to minimize that by
copying from either the front or the back, but there’s only so much it can do
if the substr is in the middle.

• Use s/// rather than concatenating substrings. This is especially true if you
can replace one constant with another of the same size. This results in an in-
place substitution.

• Use statement modifiers and equivalent and and or operators instead of full-
blown conditionals. Statement modifiers (like $ring = 0 unless $engaged)
and logical operators avoid the overhead of entering and leaving a block.
They can often be more readable, too.

• Use $foo = $a || $b || $c. This is much faster (and shorter to say) than:

if ($a) {
 $foo = $a;
}
elsif ($b) {
 $foo = $b;
}
elsif ($c) {
 $foo = $c;
}

Similarly, set default values with:

$pi ||= 3;

• Group together any tests that want the same initial string. When testing a
string for various prefixes in anything resembling a switch structure, put to-
gether all the /^a/ patterns, all the /^b/ patterns, and so on.

• Don’t test things you know won’t match. Use last or elsif to avoid falling
through to the next case in your switch statement.

• Use special operators like study, logical string operations, and pack "u" and
unpack "%" formats.

• Beware of the tail wagging the dog. Misstatements resembling (<STDIN>)
[0] can cause Perl much unnecessary work. In accordance with Unix philos-
ophy, Perl gives you enough rope to hang yourself.

• Factor operations out of loops. The Perl optimizer does not attempt to remove
invariant code from loops. It expects you to exercise some sense.

694 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

• Strings can be faster than arrays.

• Arrays can be faster than strings. It all depends on whether you’re going to
reuse the strings or arrays and which operations you’re going to perform.
Heavy modification of each element implies that arrays will be better, and
occasional modification of some elements implies that strings will be better.
But you just have to try it and see.

• my variables are faster than local variables.

• Sorting on a manufactured key array may be faster than using a fancy sort
subroutine. A given array value will usually be compared multiple times, so
if the sort subroutine has to do much recalculation, it’s better to factor out
that calculation to a separate pass before the actual sort.

• If you’re deleting characters, tr/abc//d is faster than s/[abc]//g.

• print with a comma separator may be faster than concatenating strings. For
example:

print $fullname{$name} . " has a new home directory " .
 $home{$name} . "\n";

has to glue together the two hashes and the two fixed strings before passing
them to the low-level print routines, whereas:

print $fullname{$name}, " has a new home directory ",
 $home{$name}, "\n";

doesn’t. On the other hand, depending on the values and the architecture, the
concatenation may be faster. Try it.

• Prefer join("", ...) to a series of concatenated strings. Multiple concatena-
tions may cause strings to be copied back and forth multiple times. The
join operator avoids this.

• split on a fixed string is generally faster than split on a pattern. That is, use
split(/ /, ...) rather than split(/ +/, ...) if you know there will only be
one space. However, the patterns /\s+/, /^/, //, and / / are specially opti-
mized, as is the special split on whitespace.

• Preextending an array or string can save some time. As strings and arrays
grow, Perl extends them by allocating a new copy with some room for growth
and copying in the old value. Pre-extending a string with the x operator or
an array by setting $#array can prevent this occasional overhead and reduce
memory fragmentation.

• Don’t undef long strings and arrays if they’ll be reused for the same purpose.
This helps prevent reallocation when the string or array must be reextended.

• Prefer "\0" x 8192 over unpack("x8192",()).

Efficiency | 695

www.it-ebooks.info

http://www.it-ebooks.info/

• system("mkdir ...") may be faster on multiple directories if the mkdir syscall
isn’t available.

• Avoid using eof if return values will already indicate it.

• Cache entries from files (like passwd and group files) that are apt to be reused.
It’s particularly important to cache entries from the network. For example,
to cache the return value from gethostbyaddr when you are converting nu-
meric addresses (like 204.148.40.9) to names (like “www.oreilly.com”), you
can use something like:

sub numtoname {
 local ($_) = @_;
 unless (defined $numtoname{$_}) {
 my(@a) = gethostbyaddr(pack("C4", split(/\./)),2);
 $numtoname{$_} = @a > 0 ? $a[0] : $_;
 }
 return $numtoname{$_};
}

• Avoid unnecessary syscalls. Operating system calls tend to be rather expen-
sive. So, for example, don’t call the time operator when a cached value of
$now would do. Use the special _ filehandle to avoid unnecessary stat(2) calls.
On some systems, even a minimal syscall may execute a thousand instruc-
tions.

• Avoid unnecessary system calls. The system function has to fork a subprocess
in order to execute the program you specify—or worse, execute a shell to
execute the program. This can easily execute a million instructions.

• Worry about starting subprocesses, but only if they’re frequent. Starting a
single pwd, hostname, or find process isn’t going to hurt you much—after all,
a shell starts subprocesses all day long. We do occasionally encourage the
toolbox approach, believe it or not.

• Keep track of your working directory yourself rather than calling pwd repeat-
edly. (A standard module is provided for this; see Cwd in Chapter 28.)

• Avoid shell metacharacters in commands—pass lists to system and exec
where appropriate.

• Set the sticky bit on the Perl interpreter on machines without demand paging:

% chmod +t /usr/bin/perl

• Replace system calls with nonblocking pipe opens. Read the input as it comes
in instead of waiting for the entire program to complete.

• Use asynchronous event processing (AnyEvent, Coro, POE, Gearman, and so on)
to do more than one thing at once. With modern machines, you probably
have more than one CPU, and those CPUs are probably multicore. Some of

696 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

these events might just sit there waiting for a network response, blocking
your program from doing other things. Some of these can take the place of
blocking system calls.

Space Efficiency
• Give variables the shortest scope possible so they don’t take up space when

they aren’t needed.

• Use vec for compact integer array storage if the integers are of fixed width.
(Integers of variable width can be stored in a UTF-8 string.)

• Prefer numeric values over equivalent string values; they require less memory.

• Use substr to store constant-length strings in a longer string.

• Use the Tie::SubstrHash module for very compact storage of a hash array if
the key and value lengths are fixed.

• Use _ _END_ _ and the DATA filehandle to avoid storing program data as both a
string and an array.

• Prefer each to keys where order doesn’t matter.

• Delete or undef globals that are no longer in use.

• Use some kind of DBM to store hashes on disk instead of inside the program.

• Use temp files to store arrays.

• Use pipes to offload processing to other tools. They clean up their memory
use when they exit.

• Avoid list operations and entire file slurps.

• Avoid using tr///. Each tr/// expression must store a sizable translation
table.

• Don’t unroll your loops or inline your subroutines.

• Use File::Mmap to read files if you don’t need to modify the data (and some-
times even if you do).

• Avoid recursion. Perl doesn’t have tail-call optimization since it’s a dynamic
language. You should be able to convert those to an iterative approach, which
is how languages with tail-call optimize recursion.

Efficiency | 697

www.it-ebooks.info

http://www.it-ebooks.info/

Programmer Efficiency
The half-perfect program that you can run today is better than the fully perfect
and pure program that you can run next month. Deal with some temporary ug-
liness.1 Some of these are the antithesis of our advice so far.

• Look on CPAN before you write your own code.

• Look on CPAN again. You probably missed the module you need. Ask
around.

• Use defaults.

• Use funky shortcut command-line switches like –a, –n, –p, –s, and –i.

• Use for to mean foreach.

• Run system commands with backticks.

• Use <*> and such.

• Use patterns created at runtime.

• Use *, +, and {} liberally in your patterns.

• Process whole arrays and slurp entire files.

• Use getc.

• Use $`, $&, and $'.

• Don’t check error values on open, since <HANDLE> and print HANDLE will simply
behave as no-ops when given an invalid handle.

• Don’t close your files—they’ll be closed on the next open.

• Don’t pass subroutine arguments. Use globals.

• Don’t name your subroutine parameters. You can access them directly as
$_[EXPR].

• Use whatever you think of first.

• Get someone else to do the work for you by programming half an imple-
mentation and putting it on Github.

Maintainer Efficiency
Code that you (or your friends) are going to use and work on for a long time into
the future deserves more attention. Substitute some short-term gains for much
better long-term benefits.

• Don’t use defaults.

1. This is also called “technical debt”, but it’s not always a bad thing.

698 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.github.com
http://www.it-ebooks.info/

• Use foreach to mean foreach.

• Use meaningful loop labels with next and last.

• Use meaningful variable names.

• Use meaningful subroutine names.

• Put the important thing first on the line using and, or, and statement modi-
fiers (like exit if $done).

• Close your files as soon as you’re done with them.

• Use packages, modules, and classes to hide your implementation details.

• Make a sensible API.

• Pass arguments as subroutine parameters.

• Name your subroutine parameters using my.

• Parenthesize for clarity.

• Put in lots of (useful) comments.

• Include embedded pod documentation.

• use warnings.

• use strict.

• Write tests and get good test coverage (see Chapter 19).

Porter Efficiency
• Wave a handsome tip under his nose.

• Avoid functions that aren’t implemented everywhere. You can use eval tests
to see what’s available.

• Use the Config module or the $^O variable to find out what kind of machine
you’re running on.

• Put in use v5.xx statements in to denote the Perl you need.

• Don’t use new features just to play with shiny things.

• Don’t expect native float and double to pack and unpack on foreign machines.

• Use network byte order (the “n” and “N” formats for pack) when sending
binary data over the network.

• Don’t send binary data over the network. Send ASCII. Better, send UTF-8.
Better yet, send money.

• Use standard or common formats, such as JSON or YAML, for language- or
service-agnostic data exchange.

Efficiency | 699

www.it-ebooks.info

http://www.it-ebooks.info/

• Check $] or $^V to see whether the current version supports all the features
you use.

• Don’t use $] or $^V. Use require or use with a version number.

• Put in the eval exec hack, even if you don’t use it, so your program will run
on those few systems that have Unix-like shells but don’t recognize the #!
notation.

• Put the #!/usr/bin/perl line in even if you don’t use it.

• Test for variants of Unix commands. Some find programs can’t handle the
–xdev switch, for example.

• Avoid variant Unix commands if you can do it internally. Unix commands
don’t work too well on MS-DOS or VMS.

• Put all your scripts and manpages into a single network filesystem that’s
mounted on all your machines.

• Publish your module on CPAN. You’ll get lots of feedback if it’s not portable.

• Make it easy for people to contribute to your work by using public source
control, such as Github.

User Efficiency
Making other people’s lives easier is a lot more work than making stuff easy for
you.

• Instead of making users enter data line by line, pop users into their favorite
editor.

• Better yet, use a GUI like the Perl /Tk or Wx modules, where users can control
the order of events.

• Put up something for users to read while you continue doing work.

• Use autoloading so that the program appears to run faster.

• Give the option of helpful messages at every prompt.

• Give a helpful usage message if users don’t give correct input.

• Include extended examples in the documentation, and complete example
programs in the distribution.

• Display the default action at every prompt, and maybe a few alternatives.

• Choose defaults for beginners. Allow experts to change the defaults.

• Use single-character input where it makes sense.

• Pattern the interaction after other things the user is familiar with.

700 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.github.com
http://www.it-ebooks.info/

• Make error messages clear about what needs fixing. Include all pertinent
information such as filename and error code, like this:

open(FILE, $file) || die "$0: Can’t open $file for reading: $!\n";

• Use fork && exit to detach from the terminal when the rest of the script is
just batch processing.

• Allow arguments to come from either the command line or standard input.

• Use configuration files with a simple text format. There are many modules
for this already on CPAN.

• Don’t put arbitrary limitations into your program.

• Prefer variable-length fields over fixed-length fields.

• Use text-oriented network protocols.

• Tell everyone else to use text-oriented network protocols!

• Tell everyone else to tell everyone else to use text-oriented network proto-
cols!!!

• Be vicariously lazy.

• Be nice.

Programming with Style
You’ll certainly have your own preferences in regard to formatting, but there are
some general guidelines that will make your programs easier to read, understand,
and maintain. Larry made some general recommendations in perlstyle, but they
are just recommendations. You might also like Perl Best Practices or Modern Perl.

The most important thing is to run your programs under strict and warnings
pragmas, unless you have a good reason not to. If you need to turn them off, use
no in the smallest scope possible. The sigtrap and even the diagnostics pragmas
may also be beneficial.

Regarding aesthetics of code layout, about the only thing Larry cares strongly
about is that the closing brace of a multiline BLOCK should be “outdented” to line
up with the keyword that started the construct. Beyond that, he has other pref-
erences that aren’t so strong. Examples in this book (should) all follow these
coding conventions:

• Use four-column indents.

• Put an opening brace on the same line as its preceding keyword, if possible;
otherwise, line them up vertically:

Programming with Style | 701

www.it-ebooks.info

http://perldoc.perl.org/perlstyle.html
http://onyxneon.com/books/modern_perl/
http://www.it-ebooks.info/

while ($condition) { # for short ones, align with keywords
 # do something
}

if the condition wraps, line up the braces with each other
while ($this_condition and $that_condition
 and $this_other_long_condition)
{
 # do something
}

• Put space before the opening brace of a multiline BLOCK.

• A short BLOCK may be put on one line, including braces.

• Omit the semicolon in a short, one-line BLOCK.

• Surround most operators with space.

• Surround a “complex” subscript (inside brackets) with space.

• Put blank lines between chunks of code that do different things.

• Put a newline between a closing brace and else.

• Do not put space between a function name and its opening parenthesis.

• Do not put space before a semicolon.

• Put space after each comma.

• Break long lines after an operator (but before and and or, even when spelled
&& and ||).

• Line up corresponding items vertically.

• Omit redundant punctuation so long as clarity doesn’t suffer.

Larry has his reasons for each of these things, but he doesn’t claim that everyone
else’s mind works the same as his does (or doesn’t).

Here are some other, more substantive style issues to think about:

• Just because you can do something a particular way doesn’t mean you
should do it that way. Perl is designed to give you several ways to do anything,
so consider picking the most readable one. For instance:

open(FOO,$foo) || die "Can’t open $foo: $!";

is better than:

die "Can’t open $foo: $!" unless open(FOO,$foo);

because the second way hides the main point of the statement in a modifier.
On the other hand:

print "Starting analysis\n" if $verbose;

702 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

is better than:

$verbose and print "Starting analysis\n";

since the main point isn’t whether the user typed –v or not.

• Similarly, just because an operator lets you assume default arguments doesn’t
mean that you have to make use of the defaults. The defaults are there for
lazy programmers writing one-shot programs. If you want your program to
be readable, consider supplying the argument.

• Along the same lines, just because you can omit parentheses in many places
doesn’t mean that you ought to:

return print reverse sort num values %array;
return print(reverse(sort num (values(%array))));

When in doubt, parenthesize. At the very least, it will let some poor schmuck
bounce on the % key in vi.

Even if you aren’t in doubt, consider the mental welfare of the person who
has to maintain the code after you and who will probably put parentheses in
the wrong place.

• Don’t go through silly contortions to exit a loop at the top or the bottom. Perl
provides the last operator so you can exit in the middle. You can optionally
“outdent” it to make it more visible:

LINE:
 for (;;) {
 statements;
 last LINE if $foo;
 next LINE if /^#/;
 statements;
 }

• Don’t be afraid to use loop labels—they’re there to enhance readability as well
as to allow multilevel loop breaks. See the example just given.

• Avoid using grep, map, or backticks in void context; that is, when you just
throw away their return values. Those functions all have return values, so
use them. Otherwise, use a foreach loop or the system function.

• For portability, when using features that may not be implemented on every
machine, test the construct in an eval to see whether it fails. If you know the
version or patch level of a particular feature, you can test $] ($PERL_VERSION
in the English module) to see whether the feature is there. The Config module
will also let you interrogate values determined by the Configure program
when Perl was installed.

Programming with Style | 703

www.it-ebooks.info

http://www.it-ebooks.info/

• Choose mnemonic identifiers. If you can’t remember what mnemonic means,
you’ve got a problem.

• Although short identifiers like $gotit are probably okay, use underscores to
separate words. It is generally much easier to read $var_names_like_this than
$VarNamesLikeThis, especially for nonnative speakers of English. Besides, the
same rule works for $VAR_NAMES_LIKE_THIS.

Package names are sometimes an exception to this rule. Perl informally re-
serves lowercase module names for pragmatic modules like integer and
strict. Other modules should begin with a capital letter and use mixed case,
but they should probably omit underscores due to name-length limitations
on certain primitive filesystems.

• You may find it helpful to use letter case to indicate the scope or nature of a
variable. For example:

$ALL_CAPS_HERE # constants only (beware clashes with Perl vars!)
$Some_Caps_Here # package–wide global/static
$no_caps_here # function scope my() or local() variables

For various vague reasons, function and method names seem to work best as
all lowercase. For example, $obj–>as_string().

You can use a leading underscore to indicate that a variable or function should
not be used outside the package that defined it. (Perl does not enforce this;
it’s just a form of documentation.)

• If you have a really hairy regular expression, use the /x modifier and put in
some whitespace to make it look a little less like line noise.

• Don’t use slash as a delimiter when your regular expression already has too
many slashes or backslashes.

• Don’t use quotes as delimiters when your string contains the same kind of
quote. Use the q//, qq//, or qx// pseudofunctions instead.

• Use the and and or operators to avoid having to parenthesize list operators so
much and to reduce the incidence of punctuational operators like && and
||. Call your subroutines as if they were functions or list operators to avoid
excessive ampersands and parentheses.

• Use here documents instead of repeated print statements.

• Line up corresponding things vertically, especially if they’re too long to fit on
one line anyway:

$IDX = $ST_MTIME;
$IDX = $ST_ATIME if $opt_u;
$IDX = $ST_CTIME if $opt_c;
$IDX = $ST_SIZE if $opt_s;

704 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

mkdir($tmpdir, 0700) || die "can’t mkdir $tmpdir: $!";
chdir($tmpdir) || die "can’t chdir $tmpdir: $!";
mkdir("tmp", 0777) || die "can’t mkdir $tmpdir/tmp: $!";

• That which we tell you three times is true:

Always check the return codes of system calls.

Always check the return codes of system calls.

ALWAYS CHECK THE RETURN CODES OF SYSTEM CALLS!

Error messages should go to STDERR and should say which program caused
the problem and what the failed call and its arguments were. Most impor-
tantly, for failed syscalls, messages should contain the standard system error
message for what went wrong. Here’s a simple but sufficient example:

opendir(D, $dir) || die "Can’t opendir $dir: $!";

Remember to check the return code, always.

• Line up your transliterations when it makes sense:

tr [abc]
 [xyz];

• Think about reusability. Why waste brainpower on a one-shot script when
you might want to do something like it again? Consider generalizing your
code. Consider writing a module or object class. Consider making your code
run cleanly with use strict and –w in effect. Consider giving away your code.
Consider changing your whole world view. Consider … oh, nevermind.

• Use Perl::Tidy to beautify code, and use Perl::Critic to catch possible pro-
gramming problems.

• Be consistent.

• Be nice.

Fluent Perl
We’ve touched on a few idioms in the preceding sections (not to mention the
preceding chapters), but there are many other idioms you’ll commonly see when
you read programs by accomplished Perl programmers. When we speak of id-
iomatic Perl in this context, we don’t just mean a set of arbitrary Perl expressions
with fossilized meanings. Rather, we mean Perl code that shows an understand-
ing of the flow of the language, what you can get away with when, and what that
buys you. And when to buy it.

Fluent Perl | 705

www.it-ebooks.info

http://www.it-ebooks.info/

We can’t hope to list all the idioms you might see—that would take a book as big
as this one. Maybe two. (See Perl Cookbook, for instance.) But here are some of
the important idioms, where “important” might be defined as “that which in-
duces hissy fits in people who think they already know just how computer lan-
guages ought to work”.

• Use => in place of a comma anywhere you think it improves readability:

return bless $mess => $class;

This reads, “Bless this mess into the specified class.” Just be careful not to use
it after a word that you don’t want autoquoted:

sub foo () { "FOO" }
sub bar () { "BAR" }
print foo => bar; # prints fooBAR, not FOOBAR;

Another good place to use => is near a literal comma that might get confused
visually:

join(", " => @array);

Perl provides you with more than one way to do things so that you can exercise
your ability to be creative. Exercise it!

• Use the singular pronoun to increase readability:

for (@lines) {
 $_ .= "\n";
}

The $_ variable is Perl’s version of a pronoun, and it essentially means “it”. So
the code above means “for each line, append a newline to it.” Nowadays you
might even spell that:

$_ .= "\n" for @lines;

The $_ pronoun is so important to Perl that its use is mandatory in grep and
map. Here is one way to set up a cache of common results of an expensive
function:

%cache = map { $_ => expensive($_) } @common_args;
$xval = $cache{$x} || expensive($x);

• Omit the pronoun to increase readability even further.2

• Use loop controls with statement modifiers.

2. In this section, multiple bullet items in a row all refer to the subsequent example, since some of our
examples illustrate more than one idiom.

706 | Chapter 21: Common Practices

www.it-ebooks.info

http://my.safaribooksonline.com/book/programming/perl/0596003137
http://www.it-ebooks.info/

while (<>) {
 next if /^=for\s+(index|later)/;
 $chars += length;
 $words += split;
 $lines += y/\n//;
 }

This is a fragment of code we used to do page counts for this book. When
you’re going to be doing a lot of work with the same variable, it’s often more
readable to leave out the pronouns entirely, contrary to common belief.

The fragment also demonstrates the idiomatic use of next with a statement
modifier to short circuit a loop.

The $_ variable is always the loop-control variable in grep and map, but the
program’s reference to it is often implicit:

@haslen = grep { length } @random;

Here we take a list of random scalars and only pick the ones that have a length
greater than 0.

• Use for to set the antecedent for a pronoun:

for ($episode) {
 s/fred/barney/g;
 s/wilma/betty/g;
 s/pebbles/bambam/g;
}

So what if there’s only one element in the loop? It’s a convenient way to set
up “it”―that is, $_. Linguistically, this is known as topicalization. It’s not
cheating, it’s communicating.

• Implicitly reference the plural pronoun, @_.

• Use control flow operators to set defaults:

sub bark {
 my Dog $spot = shift;
 my $quality = shift || "yapping";
 my $quantity = shift || "nonstop";
 ...
}

Here we’re implicitly using the other Perl pronoun, @_, which means “them”.
The arguments to a function always come in as “them”. The shift operator
knows to operate on @_ if you omit it, just as the ride operator at Disneyland
might call out “Next!” without specifying which queue is supposed to shift.
(There’s no point in specifying because there’s only one queue that matters.)

Fluent Perl | 707

www.it-ebooks.info

http://www.it-ebooks.info/

The || can be used to set defaults despite its origins as a Boolean operator,
since Perl returns the first true value. Perl programmers often manifest a cav-
alier attitude toward the truth; the line above would break if, for instance,
you tried to specify a quantity of 0. But as long as you never want to set either
$quality or $quantity to a false value, the idiom works great. There’s no point
in getting all superstitious and throwing in calls to defined and exists all
over the place. You just have to understand what it’s doing. As long as it
won’t accidentally be false, you’re fine.

If you think it will accidentally be false, you can use the defined-OR opera-
tor, //, instead:

use v5.10;

sub bark {
 my Dog $spot = shift;
 my $quality = shift // "yapping";
 my $quantity = shift // "nonstop";
 ...
}

• Use assignment forms of operators, including control-flow operators:

$xval = $cache{$x} ||= expensive($x);

Here we don’t initialize our cache at all. We just rely on the ||= operator to call
expensive($x) and assign it to $cache{$x} only if $cache{$x} is false.
The result of that is whatever the new value of $cache{$x} is. Again, we take
the cavalier approach toward truth in that if we cache a false value,
expensive($x) will get called again. Maybe the programmer knows that’s okay,
because expensive($x) isn’t expensive when it returns false. Or maybe the
programmer knows that expensive($x) never returns a false value at all. Or
maybe the programmer is just being sloppy. Sloppiness can be construed as
a form of creativity.

• Use loop controls as operators, not just as statements. And…

• Use commas like small semicolons:

while (<>) {
 $comments++, next if /^#/;
 $blank++, next if /^\s*$/;
 last if /^_ _END_ _/;
 $code++;
}
print "comment = $comments\nblank = $blank\ncode = $code\n";

This shows an understanding that statement modifiers modify statements,
while next is a mere operator. It also shows the comma being idiomatically
used to separate expressions much like you’d ordinarily use a semicolon.

708 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

(The difference being that the comma keeps the two expressions as part of
the same statement, under the control of the single statement modifier.)

• Use flow control to your advantage:

while (<>) {
 /^#/ and $comments++, next;
 /^\s*$/ and $blank++, next;
 /^_ _END_ _/ and last;
 $code++;
}
print "comment = $comments\nblank = $blank\ncode = $code\n";

Here’s the exact same loop again, only this time with the patterns out in front.
The perspicacious Perl programmer understands that it compiles down to
exactly the same internal codes as the previous example. The if modifier is
just a backward and (or &&) conjunction, and the unless modifier is just a
backward or (or ||) conjunction.

• Use the implicit loops provided by the –n and –p switches.

• Don’t put a semicolon at the end of a one-line block:

#!/usr/bin/perl –n
$comments++, next LINE if /#/;
$blank++, next LINE if /^\s*$/;
last LINE if /^_ _END_ _/;
$code++;

END { print "comment = $comments\nblank = $blank\ncode = $code\n" }

This is essentially the same program as before. We put an explicit LINE label
on the loop-control operators because we felt like it, but we didn’t really need
to since the implicit LINE loop supplied by –n is the innermost enclosing loop.
We used an END to get the final print statement outside the implicit main loop,
just as in awk.

• Use here docs when the printing gets ferocious.

• Use a meaningful delimiter on the here doc:

END { print <<"COUNTS" }
comment = $comments
blank = $blank
code = $code
COUNTS

Rather than using multiple prints, the fluent Perl programmer uses a multiline
string with interpolation. And despite our calling it a Common Goof earlier,
we’ve brazenly left off the trailing semicolon because it’s not necessary at the

Fluent Perl | 709

www.it-ebooks.info

http://www.it-ebooks.info/

end of the END block. (If we ever turn it into a multiline block, we’ll put the
semicolon back in.)

• Do substitutions and translations en passant on a scalar:

($new = $old) =~ s/bad/good/g;

or use the /r modifier to return the result instead:

$new = $old =~ s/bad/good/gr;

Since lvalues are lvaluable, so to speak, you’ll often see people changing a
value “in passing” while it’s being assigned. This could actually save a string
copy internally (if we ever get around to implementing the optimization):

chomp($answer = <STDIN>);

Any function that modifies an argument in place can do the en passant trick.
But wait, there’s more!

• Don’t limit yourself to changing scalars en passant:

for (@new = @old) { s/bad/good/g }

Here we copy @old into @new, changing everything in passing (not all at once,
of course—the block is executed repeatedly, one “it” at a time).

• Pass named parameters using the fancy => comma operator.

• Rely on assignment to a hash to do even/odd argument processing:

sub bark {
 my DOG $spot = shift;
 my %parm = @_;
 my $quality = $parm{QUALITY} || "yapping";
 my $quantity = $parm{QUANTITY} || "nonstop";
 ...
}

$fido–>bark(QUANTITY => "once",
 QUALITY => "woof");

Named parameters are often an affordable luxury. And with Perl, you get them
for free―if you don’t count the cost of the hash assignment.

• Repeat Boolean expressions until false.

• Use minimal matching when appropriate.

• Use the /e modifier to evaluate a replacement expression:

#!/usr/bin/perl –p
1 while s/^(.*?)(\t+)/$1 . " " x (length($2) * 4 – length($1) % 4)/e;

This program fixes any file you receive from someone who mistakenly thinks
he can redefine hardware tabs to occupy four spaces instead of eight. It makes

710 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

use of several important idioms. First, the 1 while idiom is handy when all
the work you want to do in the loop is actually done by the conditional. (Perl
is smart enough not to warn you that you’re using 1 in void context.) We have
to repeat this substitution because each time we substitute some number of
spaces in for tabs, we have to recalculate the column position of the next tab
from the beginning.

The (.*?) matches the smallest string it can up until the first tab, using the
minimal matching modifier (the question mark). In this case, we could have
used an ordinary greedy * like this: ([^\t]*). But that only works because a
tab is a single character, so we can use a negated character class to avoid
running past the first tab. In general, the minimal matcher is much more
elegant, and it doesn’t break if the next thing that must match happens to be
longer than one character.

The /e modifier does a substitution using an expression rather than a mere
string. This lets us do the calculations we need right when we need them.

• Use creative formatting and comments on complex substitutions:

#!/usr/bin/perl –p
1 while s{
 ^ # anchor to beginning
 (# start first subgroup
 .*? # match minimal number of characters
) # end first subgroup
 (# start second subgroup
 \t+ # match one or more tabs
) # end second subgroup
}
{
 my $spacelen = length($2) * 4; # account for full tabs
 $spacelen –= length($1) % 4; # account for the uneven tab
 $1 . " " x $spacelen; # make correct number of spaces
}ex;

This is probably overkill, but some people find it more impressive than the
previous one-liner. Go figure.

• Go ahead and use $` if you feel like it:

1 while s/(\t+)/" " x (length($1) * 4 – length($`) % 4)/e;

Here’s the shorter version, which uses $`, which is known to impact perfor-
mance. Except that we’re only using the length of it, so it doesn’t really count
as bad.

• Use the offsets directly from the @− (@LAST_MATCH_START) and @+

(@LAST_MATCH_END) arrays:

Fluent Perl | 711

www.it-ebooks.info

http://www.it-ebooks.info/

1 while s/\t+/" " x (($+[0] – $−[0]) * 4 – $−[0] % 4)/e;

This one’s even shorter. (If you don’t see any arrays there, try looking for array
elements instead.) See @− and @+ in Chapter 25.

• Use eval with a constant return value:

sub is_valid_pattern {
 my $pat = shift;
 return eval { "" =~ /$pat/; 1 } || 0;
}

You don’t have to use the eval {} operator to return a real value. Here we
always return 1 if it gets to the end. However, if the pattern contained in
$pat blows up, the eval catches it and returns undef to the Boolean conditional
of the || operator, which turns it into a defined 0 (just to be polite, since
undef is also false but might lead someone to believe that the is_valid_pat
tern subroutine is misbehaving, and we wouldn’t want that, now would we?).

• Use modules to do all the dirty work.

• Use object factories.

• Use callbacks.

• Use stacks to keep track of context.

• Use negative subscripts to access the end of an array or string:

use XML::Parser;

$p = XML::Parser–>new(Style => "subs");
setHandlers $p Char => sub { $out[–1] .= $_[1] };

push @out, "";

sub literal {
 $out[–1] .= "C<";
 push @out, "";
}

sub literal_ {
 my $text = pop @out;
 $out[–1] .= $text . ">";
}
...

This is a snippet from the 250-line program we used to translate the XML
version of the old Camel book back into pod format, so we could edit it for
this edition with a Real Text Editor before we translated it back to DocBook.

The first thing you’ll notice is that we rely on the XML::Parser module (from
CPAN) to parse our XML correctly, so we don’t have to figure out how. That

712 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

cuts a few thousand lines out of our program right there (presuming we’re
reimplementing in Perl everything XML::Parser does for us,3 including trans-
lation from almost any character set into UTF-8).

XML::Parser uses a high-level idiom called an object factory. In this case, it’s
a parser factory. When we create an XML::Parser object, we tell it which style
of parser interface we want, and it creates one for us. This is an excellent way
to build a testbed application when you’re not sure which kind of interface
will turn out to be the best in the long run. The subs style is just one of
XML::Parser’s interfaces. In fact, it’s one of the oldest interfaces, and it's prob-
ably not even the most popular one these days.

The setHandlers line shows a method call on the parser, not in arrow nota-
tion, but in “indirect object” notation, which lets you omit the parens on the
arguments, among other things. The line also uses the named parameter
idiom we saw earlier.

The line also shows another powerful concept, the notion of a callback. In-
stead of us calling the parser to get the next item, we tell it to call us. For
named XML tags like <literal>, this interface style will automatically call a
subroutine of that name (or the name with an underline on the end for the
corresponding end tag). But the data between tags doesn’t have a name, so
we set up a Char callback with the setHandlers method.

Next we initialize the @out array, which is a stack of outputs. We put a null
string into it to represent that we haven’t collected any text at the current tag
embedding level (0 initially).

Now is when that callback comes back in. Whenever we see text, it automat-
ically gets appended to the final element of the array via the $out[–1] idiom
in the callback. At the outer tag level, $out[–1] is the same as $out[0], so
$out[0] ends up with our whole output. (Eventually. But first we have to deal
with tags.)

Suppose we see a <literal> tag. The literal subroutine gets called, appends
some text to the current output and then pushes a new context onto the
@out stack. Now any text up until the closing tag gets appended to that new
end of the stack. When we hit the closing tag, we pop the $text we’ve collected
back off the @out stack, and append the rest of the transmogrified data to the
new (that is, the old) end of stack, the result of which is to translate the XML
string, <literal>text</literal>, into the corresponding pod string, C<text>.

The subroutines for the other tags are just the same, only different.

3. Actually, XML::Parser is just a fancy wrapper around James Clark’s expat XML parser.

Fluent Perl | 713

www.it-ebooks.info

http:
http://www.it-ebooks.info/

• Use my without assignment to create an empty array or hash.

• Split the default string on whitespace.

• Assign to lists of variables to collect however many you want.

• Use autovivification of undefined references to create them.

• Autoincrement undefined array and hash elements to create them.

• Use autoincrement of a %seen hash to determine uniqueness.

• Assign to a handy my temporary in the conditional.

• Use the autoquoting behavior of braces.

• Use an alternate quoting mechanism to interpolate double quotes.

• Use the ?: operator to switch between two arguments to a printf.

• Line up printf args with their % field:

my %seen;
while (<>) {
 my ($a, $b, $c, $d) = split;
 print unless $seen{$a}{$b}{$c}{$d}++;
}
if (my $tmp = $seen{fee}{fie}{foe}{foo}) {
 printf qq(Saw "fee fie foe foo" [sic] %d time%s.\n"),
 $tmp, $tmp == 1 ? "" : "s";
}

These nine lines are just chock full of idioms. The first line makes an empty
hash because we don’t assign anything to it. We iterate over input lines set-
ting “it”―that is, $_―implicitly, then using an argumentless split, which
splits “it” on whitespace. Then we pick off the four first words with a list
assignment, throwing any subsequent words away. Then we remember the
first four words in a four-dimensional hash, which automatically creates (if
necessary) the first three reference elements and final count element for the
autoincrement to increment. (Under warnings, the autoincrement will never
warn that you’re using undefined values, because autoincrement is an ac-
cepted way to define undefined values.) We then print out the line if we’ve
never seen a line starting with these four words before. This is because the
autoincrement is a postincrement, which, in addition to incrementing the
hash value, will return the old true value if there was one.

After the loop, we test %seen again to see whether a particular combination
of four words was seen. We make use of the fact that we can put a literal
identifier into braces and it will be autoquoted. Otherwise, we’d have to say
$seen{"fee"}{"fie"}{"foe"}{"foo"}, which is a drag―even when you’re not
running from a giant.

714 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

We assign the result of $seen{fee}{fie}{foe}{foo} to a temporary variable
even before testing it in the Boolean context provided by the if. Because
assignment returns its left value, we can still test the value to see whether it
was true. The my tells your eye that it’s a new variable, and we’re not testing
for equality but doing an assignment. It would also work fine without the
my, and an expert Perl programmer would still immediately notice that we
used one = instead of two ==. (A semiskilled Perl programmer might be fooled,
however. Pascal programmers of any skill level will foam at the mouth.)

Moving on to the printf statement, you can see the qq() form of double
quotes we used so that we could interpolate ordinary double quotes as well
as a newline. We could’ve directly interpolated $tmp there as well, since it’s
effectively a double-quoted string, but we chose to do further interpolation
via printf. Our temporary $tmp variable is now quite handy, particularly since
we don’t just want to interpolate it, but also to test it in the conditional of
a ?: operator to see whether we should pluralize the word “time”. Finally, note
that we lined up the two fields with their corresponding % markers in the
printf format. If an argument is too long to fit, you can always go to the next
line for the next argument, though we didn’t have to in this case.

Whew! Had enough? There are many more idioms we could discuss, but this
book is already sufficiently heavy. However, we’d like to talk about one more
idiomatic use of Perl: the writing of program generators.

Program Generation
Almost from the time people first figured out that they could write programs,
they started writing programs that write other programs. We often call these
program generators. (If you’re a history buff, you might know that RPG stood for
Report Program Generator long before it stood for Role-Playing Game.) Nowa-
days they’d probably be called “program factories”, but the generator people got
there first, so they got to name it.

Now anyone who has written a program generator knows that it can make your
eyes go crossed even when you’re wide awake. The problem is simply that much
of your program’s data looks like real code, but it isn’t (at least not yet). The
same text file contains both stuff that does something and similar-looking stuff
that doesn’t. Perl has various features that make it easy to mix Perl together with
other languages, textually speaking.

(Of course, these features also make it easier to write Perl in Perl, but that’s rather
to be expected by now, we should think.)

Program Generation | 715

www.it-ebooks.info

http://www.it-ebooks.info/

Generating Other Languages in Perl
Perl is (among other things) a text-processing language, and most computer lan-
guages are textual. Beyond that, Perl’s lack of arbitrary limits, together with the
various quoting and interpolation mechanisms, make it easy to visually isolate
the code of the other language you’re spitting out. For example, here is a small
chunk of s2p, the sed-to-perl translator:

print &q(<<"EOT");
: #!$bin/perl
: eval 'exec $bin/perl –S \$0 \${1+"\$@"}'
: if \$running_under_some_shell;
:
EOT

Here the enclosed text happens to be legal in two languages, Perl and sh. We’ve
used an idiom right off the bat that will preserve your sanity in the writing of a
program generator: the trick of putting a “noise” character and a tab on the front
of every quoted line, which visually isolates the enclosed code, so you can tell at
a glance that it’s not the code that is actually being executed. One variable,
$bin, is interpolated in the multiline quote in two places, and then the string is
passed through a function to strip the colon and tab.

Of course, you aren’t required to use multiline quotes. One often sees CGI scripts
containing millions of print statements, one per line. It seems a bit like driving
to church in a Formula 1 car, but hey, if it gets you there… (We will admit that
a column of print statements has its own form of visual distinctiveness.)

When you are embedding a large, multiline quote containing some other lan-
guage (such as HTML), it’s often helpful to pretend you’re programming inside-
out, enclosing Perl into the other language instead, much as you might do with
overtly everted languages such as PHP:

print <<"XML";
 <stuff>
 <nonsense>
 blah blah blah @{[scalar EXPR]} blah blah blah
 blah blah blah @{[LIST]} blah blah blah
 </nonsense>
 </stuff>
XML

You can use either of those two tricks to interpolate the values of arbitrarily com-
plicated expressions into the long string.

Some program generators don’t look much like program generators, depending
on how much of their work they hide from you. In Chapter 19 we saw how a
small Makefile.PL program could be used to write a Makefile. The Makefile can

716 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

easily be 100 times bigger than the Makefile.PL that produced it. Think how much
wear and tear that saves your fingers. Or don’t think about it—that’s the point,
after all.

Generating Perl in Other Languages
It’s easy to generate other languages in Perl, but the converse is also true. Perl can
easily be generated in other languages because it’s both concise and malleable.
You can pick your quotes not to interfere with the other language’s quoting
mechanisms. You don’t have to worry about indentation, or where you put your
line breaks, or whether to backslash your backslashes Yet Again. You aren’t
forced to define a package as a single string in advance, since you can slide into
your package’s namespace repeatedly, whenever you want to evaluate more code
in that package.

Another thing that makes it easy to write Perl in other languages (including Perl)
is the #line directive. Perl knows how to process these as special directives that
reconfigure its idea of the current filename and line number. This can be useful
in error or warning messages, especially for strings processed with eval (which,
when you think about it, is just Perl writing Perl). The syntax for this mechanism
is the one used by the C preprocessor: when Perl encounters a # symbol and the
word line, followed by a number and a filename, it sets _ _LINE_ _ to the number
and _ _FILE_ _ to the filename.4

Here are some examples that you can test by typing into perl directly. We’ve used
a Control-D to indicate end-of-file, which is typical on Unix. DOS/Windows and
VMS users can type Control-Z. If your shell uses something else, you’ll have to
use that to tell perl you’re done. Alternatively, you can always type in _ _END_ _ to
tell the compiler there’s nothing left to parse.

Here, Perl’s built-in warn function prints out the new filename and line number:

% perl
line 2000 "Odyssey"
the "#" on the previous line must be the first char on line
warn "pod bay doors"; # or die
^D
pod bay doors at Odyssey line 2001.

And here, the exception raised by die within the eval found its way into the $@
($EVAL_ERROR) variable, along with the temporary new filename and line:

4. Technically, it matches the pattern /^#\s*line\s+(\d+)\s*(?:\s"([^"]+)")?\s*$/, with $1 providing the
line number for the next line and $2 providing the optional filename specified within quotes. (A null
filename leaves _ _FILE_ _ unchanged.)

Program Generation | 717

www.it-ebooks.info

http://www.it-ebooks.info/

line 1996 "Odyssey"
eval qq{
#line 2025 "Hal"
 die "pod bay doors";
};
print "Problem with $@";
warn "I'm afraid I can’t do that";
^D
Problem with pod bay doors at Hal line 2025.
I'm afraid I can’t do that at Odyssey line 2001.

This shows how a #line directive affects only the current compilation unit (file
or eval STRING), and that when that unit is done being compiled, the previous
settings are automatically restored. This way you can set up your own messages
inside an eval STRING or do FILE without affecting the rest of your program.

One of the very first Perl preprocessors was the sed-to-perl translator, s2p. In fact,
Larry delayed the initial release of Perl in order to complete s2p and awk-to-
perl (a2p), because he thought they’d improve the acceptance of Perl. Hmm, maybe
they did.

See the online docs for more on these, as well as the find2perl translator.

Source Filters
If you can write a program to translate random stuff into Perl, then why not have
a way of invoking that translator from within Perl?

The notion of a source filter started with the idea that a script or module should
be able to decrypt itself on the fly, like this:

#!/usr/bin/perl
use MyDecryptFilter;
@*x$]`0uN&k^Zx02jZ^X{.?s!(f;9Q/^A^@~~8H]|,%@^P:q–=
...

But the idea grew from there, and now a source filter can be defined to do any
transformation on the input text you like. Put that together with the notion of
the –x switch mentioned in Chapter 17, and you have a general mechanism for
pulling any chunk of program out of a message and executing it, regardless of
whether it’s written in Perl.

Using the Filter module from CPAN, one can now even do things like program-
ming Perl in awk:

#!/usr/bin/perl
use Filter::exec "a2p"; # the awk–to–perl translator
1,30 { print $1 }

718 | Chapter 21: Common Practices

www.it-ebooks.info

http://www.it-ebooks.info/

Now that’s definitely what you might call idiomatic. But we won’t pretend for a
moment that it’s common practice.

Program Generation | 719

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 22

Portable Perl

A world with only one operating system makes portability easy and life boring.
We prefer a larger genetic pool of operating systems, as long as the ecosystem
doesn’t divide too cleanly into predators and prey. Perl runs on dozens of oper-
ating systems, and because Perl programs aren’t platform dependent, the same
program can run on all of those systems without modification.

Well, almost. Perl tries to give the programmer as many features as possible, but
if you make use of features particular to a certain operating system, you’ll nec-
essarily reduce the portability of your program to other systems. In this section
we’ll provide some guidelines for writing portable Perl code. Once you make a
decision about how portable you want to be, you’ll know where the lines are
drawn, and you can stay within them.

Looking at it another way, writing portable code is usually about willfully limiting
your available choices. Naturally, it takes discipline and sacrifice to do that, two
traits that Perl programmers might be unaccustomed to.

The perlport manpage lists the platforms that Perl no longer supports, such as
Mac OS 9 (Classic) and Windows 95, 98, ME, and NT4. Not only are they un-
supported, but the code that formerly supported them has disappeared from the
codebase. So, depending on your Perl, you may not have to support those any-
more. Supported systems with deviations or special cases get their own manpage,
as listed in Table 22-1.

Table 22-1. System-specific manpages

Manpage

perlaix perlfreebsd perlnetware perlsymbian

perlamiga perlhaiku perlopenbsd perltru64

perlbeos perlhpux perlos2 perluts

721

www.it-ebooks.info

http://perldoc.perl.org/perlport.html
http://perldoc.perl.org/perlaix.html
http://perldoc.perl.org/perlfreebsd.html
http://perldoc.perl.org/perlnetware.html
http://perldoc.perl.org/perlsymbian.html
http://perldoc.perl.org/perlamiga.html
http://perldoc.perl.org/perlhaiku.html
http://perldoc.perl.org/perlopenbsd.html
http://perldoc.perl.org/perltru64.html
http://perldoc.perl.org/perlbeos.html
http://perldoc.perl.org/perlhpux.html
http://perldoc.perl.org/perlos2.html
http://perldoc.perl.org/perluts.html
http://www.it-ebooks.info/

Manpage

perlbs2000 perlhurd perlos390 perlvmesa

perlce perlirix perlos400 perlvms

perlcygwin perllinux perlplan9 perlvos

perldgux perlmacos perlqnx perlwin32

perldos perlmacosx perlriscos

perlepoc perlmpeix perlsolaris

Not all Perl programs have to be portable. There is no reason not to use Perl to
glue Unix tools together, prototype a Macintosh application, or manage the
Windows registry. If it makes sense to sacrifice portability, go ahead.1 In general,
note that the notions of a user ID, a “home” directory, and even the state of being
logged in will exist only on multiuser platforms.2

The special $^O variable tells you what operating system your Perl was built on.
This is provided to speed up code that would otherwise have to load Config to
get the same information via $Config{osname}. Even if you’ve pulled in Config for
other reasons, it still saves you the price of a tied-hash lookup. You can also use
the Devel::AssertOS or Devel::CheckOS CPAN modules for fancier control.

To get more detailed information about the platform, you can look at the rest of
the information in the %Config hash, which is made available by the standard
Config module. For example, to check whether the platform has the lstat call,
you can check $Config{d_lstat}. See Config’s online documentation for a full
description of available variables, and see the perlport manpage for a listing of
the behavior of Perl built-in functions on different platforms. Here are the Perl
functions whose behavior varies the most across platforms (see perlport for more
details):

–X (file tests), accept, alarm, bind, binmode, chmod, chown, chroot, connect, crypt,
dbmclose, dbmopen, dump, endgrent, endhostent, endnetent, endprotoent, endp
went, endservent, exec, fcntl, fileno, flock, fork, getgrent, getgrgid, getgrnam,
gethostbyaddr, gethostbyname, gethostent, getlogin, getnetbyaddr, getnetby
name, getnetent, getpeername, getpgrp, getppid, getpriority, getprotobyname,
getprotobynumber, getprotoent, getpwent, getpwnam, getpwuid, getservbyport,

1. Not every conversation has to be cross-culturally correct. Perl tries to give you at least one way to do the
Right Thing, but it doesn’t try to force it on you rigidly. In this respect, Perl more closely resembles your
mother tongue than a nanny’s tongue.

2. Although a “user” is a bit of an odd concept now, because even a system designed for one person might
have many “users”.

722 | Chapter 22: Portable Perl

www.it-ebooks.info

http://perldoc.perl.org/perlbs2000.html
http://perldoc.perl.org/perlhurd.html
http://perldoc.perl.org/perlos390.html
http://perldoc.perl.org/perlvmesa.html
http://perldoc.perl.org/perlce.html
http://perldoc.perl.org/perlirix.html
http://perldoc.perl.org/perlos400.html
http://perldoc.perl.org/perlvms.html
http://perldoc.perl.org/perlcygwin.html
http://perldoc.perl.org/perllinux.html
http://perldoc.perl.org/perlplan9.html
http://perldoc.perl.org/perlvos.html
http://perldoc.perl.org/perldgux.html
http://perldoc.perl.org/perlmacos.html
http://perldoc.perl.org/perlqnx.html
http://perldoc.perl.org/perlwin32.html
http://perldoc.perl.org/perldos.html
http://perldoc.perl.org/perlmacosx.html
http://perldoc.perl.org/perlriscos.html
http://perldoc.perl.org/perlepoc.html
http://perldoc.perl.org/perlmpeix.html
http://perldoc.perl.org/perlsolaris.html
http://perldoc.perl.org/perlport.html
http://perldoc.perl.org/perlport.html
http://www.it-ebooks.info/

getservent, getservbyname, getsockname, getsockopt, glob, ioctl, kill, link, lis
ten, lstat, msgctl, msgget, msgrcv, msgsnd, open, pipe, qx, readlink, readpipe,
recv, select, semctl, semget, semop, send, sethostent, setgrent, setnetent,
setpgrp, setpriority, setprotoent, setpwent, setservent, setsockopt, shmctl,
shmget, shmread, shmwrite, shutdown, socket, socketpair, stat, symlink, syscall,
sysopen, system, times, truncate, umask, utime, wait, waitpid

Newlines
On most operating systems, lines in files are terminated by one or two characters
that signal the end of the line. The characters vary from system to system. Unix
traditionally uses \012 (that is, the octal 12 character in ASCII), one type of DOSish
I/O uses \015\012, and the pre-Unix Macs used to use \015. Perl uses \n to rep-
resent a “logical” newline, regardless of platform. In DOSish Perls, \n usually
means \012, but when accessing a file in “text mode”, it is translated to (or from)
\015\012, depending on whether you’re reading or writing. Unix does the same
thing on terminals in canonical mode. \015\012 is commonly referred to as CRLF.

Because DOS distinguishes between text files and binary files, DOSish Perls have
limitations when using seek and tell on a file in “text mode”. For best results,
only seek to locations obtained from tell. If you use Perl’s built-in binmode func-
tion on the filehandle, however, you can usually seek and tell with impunity.

A common misconception in socket programming is that \n will be \012 every-
where. In many common Internet protocols, \012 and \015 are specified, and the
values of Perl’s \n and \r are not reliable since they vary from system to system:

print SOCKET "Hi there, client!\015\012"; # right
print SOCKET "Hi there, client!\r\n"; # wrong

However, using \015\012 (or \cM\cJ, or \x0D\x0A, or even v13.10) can be tedious
and unsightly, as well as confusing to those maintaining the code. The Socket
module supplies some Right Things for those who want them:

use Socket qw(:DEFAULT :crlf);
print SOCKET "Hi there, client!$CRLF" # right

When reading from a socket, remember that the default input record separator
$/ is \n, which means you have to do some extra work if you’re not sure what
you’ll be seeing across the socket. Robust socket code should recognize either
\012 or \015\012 as end of line:

Newlines | 723

www.it-ebooks.info

http://www.it-ebooks.info/

use Socket qw(:DEFAULT :crlf);
local ($/) = LF; # not needed if $/ is already \012

while (<SOCKET>) {
 s/$CR?$LF/\n/; # replace LF or CRLF with logical newline
}

Similarly, code that returns text data—such as a subroutine that fetches a web
page—should often translate newlines. A single line of code will often suffice:

$data =~ s/\015?\012/\n/g;
return $data;

Endianness and Number Width
Computers store integers and floating-point numbers in different orders (big-
endian or little-endian) and different widths (32-bit and 64-bit being the most
common today). Normally, you won’t have to think about this. But if your pro-
gram sends binary data across a network connection, or onto disk to be read by
a different computer, you may need to take precautions.

Conflicting orders can make an utter mess out of numbers. If a little-endian host
(such as an Intel CPU) stores 0x12345678 (305,419,896 in decimal), a big-endian
host (such as a Motorola CPU) will read it as 0x78563412 (2,018,915,346 in
decimal). To avoid this problem in network (socket) connections, use the pack
and unpack formats n and N, which write unsigned short and long numbers in big-
endian order (also called “network” order), regardless of the platform.

You can explore the endianness of your platform by unpacking a data structure
packed in native format, such as:

say unpack("h*", pack("s2", 1, 2));
'10002000' on e.g. Intel x86 or Alpha 21064 in little–endian mode
'00100020' on e.g. Motorola 68040

To determine your endianness, you could use either of these statements:

$is_big_endian = unpack("h*", pack("s", 1)) =~ /01/;
$is_little_endian = unpack("h*", pack("s", 1)) =~ /^1/;

Even if two systems have the same endianness, there can still be problems when
transferring data between 32-bit and 64-bit platforms. There is no good solution
other than to avoid transferring or storing raw binary numbers. Either transfer
and store numbers as text instead of binary, or use modules like Data::Dumper or
Storable to do this for you. You really want to be using text-oriented protocols in
any event—they’re more robust, more maintainable, and more extensible than
binary protocols.

724 | Chapter 22: Portable Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Of course, with the advent of XML and Unicode, our definition of text is getting
more flexible. For instance, between two systems running Perl v5.6 or newer,
you can transport a sequence of integers encoded as characters in utf8 (Perl’s
version of UTF-8). If both ends are running on an architecture with 64-bit inte-
gers, you can exchange 64-bit integers. Otherwise, you’re limited to 32-bit inte-
gers. Use pack with a U* template to send, and unpack with a U* template to receive
(see Chapter 26).

Files and Filesystems
File path components are separated with / on Unix, with \ on Windows, and
with : on the old pre-Unix Macs. Some systems support neither hard links
(link) nor symbolic links (symlink, readlink, lstat). Some systems pay attention
to capitalization of filenames, some don’t, and some pay attention when creating
files but not when reading them. Different systems use different character reper-
toires.

Here are some tips for writing portable file-manipulating Perl programs:

• The File::Basename module, another platform-tolerant module bundled
with Perl, splits a pathname into its components: the base filename, the full
path to the directory, and the file suffix:

use File::Basename;

my $name = basename($ARGV[0]);
my $dir = dirname($ARGV[0]);

my($base, $dir, $suffix) = fileparse($ARGV[0], qr/\.[^.]+\z/);

• The standard File::Spec modules provide functions to move around a file
system and put path components together properly. Don’t hardcode paths,
but construct them:

use File::Spec::Functions;
chdir(updir()); # go up one directory
$file = catfile(curdir(), "temp", "file.txt");

That last line reads in ./temp/file.txt on Unix and Windows or [.temp]file.txt
on VMS, and stores the file’s contents in $file.

• The File::HomeDir module from CPAN locates special user directories by
detecting your operating system and constructing the right paths for you.

• Use the Path::Class CPAN module for an object-oriented interface to
File::Spec that easily allows reading a path from one sort of system and
translating it to an equivalent path for another system.

Files and Filesystems | 725

www.it-ebooks.info

http://www.it-ebooks.info/

• Use the File::Temp module, which comes with Perl, to create a temporary file
or a file with a name so far unused.

• Don’t use two files of the same name with different case, like test.pl and
Test.pl, since some platforms ignore capitalization. Some ignore it, but pre-
serve it anyway.

• Constrain filenames to the 8.3 convention (eight-letter names and three-letter
extensions) where possible. You can often get away with longer filenames as
long as you make sure the filenames will remain unique when shoved through
an 8.3-sized hole in the wall. (Hey, it’s gotta be easier than shoving a camel
through the eye of a needle.)

• Minimize nonalphanumeric characters in filenames. Using underscores is
often okay, but it wastes a character that could be better used for uniqueness
on 8.3 systems. (Remember, that’s why we don’t usually put underscores
into module names.)

• Normalize your filenames or avoid using non-ASCII characters. Support for
Unicode filenames varies among systems, and no common API works across
all systems. Some characters may work on some systems but fail completely
on others.

• Likewise, when using the AutoSplit module, try to constrain your subroutine
names to eight characters or less, and don’t give two subroutines the same
name with different case. If you need longer subroutine names, make the first
eight characters of each unique.

• Always use < explicitly to open a file for reading; otherwise, on systems that
allow punctuation in filenames, a file prefixed with a > character could result
in a file being wiped out, and a file prefixed with a | character could result in
a pipe open. That’s because the two-argument form of open is magical and will
interpret characters like >, <, and |, which may be the wrong thing to do.
(Except when it’s right.)

open(FILE, $existing_file) || die $!; # wrongish
open(FILE, "<$existing_file") || die $!; # righter
open(FILE, "<", $existing_file) || die $!; # righterer

• Choose your input and output encoding, and document what it is. Better yet,
give people a way to choose the encodings they want. If you don’t know what
you want, use UTF-8. Avoid UTF-16, which may have endian issues.

• Don’t assume text files will end with a newline. They should, but sometimes
people forget, especially when their text editor helps them forget.

726 | Chapter 22: Portable Perl

www.it-ebooks.info

http://www.it-ebooks.info/

System Interaction
Platforms that rely on a graphical user interface sometimes lack command lines,
so programs requiring a command-line interface might not work everywhere.
You can’t do much about this except upgrade.

Some other tips:

• Some platforms can’t delete or rename files that are in use, so remember to
close files when you are done with them. Don’t unlink or rename an open file.
Don’t tie or open a file already tied or opened; untie or close it first.

• Don’t open the same file more than once at a time for writing, since some
operating systems put mandatory locks on such files.

• Don’t depend on a specific environment variable existing in %ENV, and don’t
assume that anything in %ENV will be case-sensitive or case-preserving. Don’t
assume Unix inheritance semantics for environment variables; on some sys-
tems, they may be visible to all other processes.

• Don’t use signals or %SIG.

• Avoid filename globbing. Use opendir, readdir, and closedir instead. (As of
v5.6, basic filename globbing is much more portable than it was, but some
systems may still chafe under the Unixisms of the default interface if you try
to get fancy.)

• Don’t assume specific values of the error numbers or strings stored in $!.

Interprocess Communication (IPC)
To maximize portability, don’t try to launch new processes. That means you
should avoid system, exec, fork, pipe, ``, qx//, or open with a |.

The main problem is not the operators themselves; commands that launch ex-
ternal processes are generally supported on most platforms (though some do not
support any type of forking). Problems are more likely to arise when you invoke
external programs that have names, locations, output, or argument semantics
that vary across platforms.

One especially popular bit of Perl code is opening a pipe to sendmail so that your
programs can send mail:

open(MAIL, "|/usr/lib/sendmail –t") || die "cannot fork sendmail: $!";

This won’t work on platforms without sendmail. For a portable solution, use one
of the CPAN modules to send your mail, such as Mail::Mailer and Mail::Send
in the MailTools distribution, or Mail::Sendmail.

Interprocess Communication (IPC) | 727

www.it-ebooks.info

http://www.it-ebooks.info/

The Unix System V IPC functions (msg*(), sem*(), shm*()) are not always avail-
able, even on some Unix platforms.

The IPC::Run, IPC::System::Simple, and Capture::Tiny CPAN modules can help
manage some cross-platform issues with external commands.

External Subroutines (XS)
XS code can usually be made to work with any platform, but libraries and header
files might not be readily available, or the XS code itself might be platform spe-
cific. If the libraries and headers are portable, then it’s a reasonable guess that
the XS code can be made portable as well.

A different type of portability issue arises when writing XS code: the availability
of a C compiler on the end user’s platform. C brings with it its own portability
issues, and writing XS code will expose you to some of those. Writing in pure
Perl is an easier way to achieve portability, because Perl’s configuration process
goes through extreme agonies to hide C’s portability blemishes from you.3

Standard Modules
In general, the standard modules (modules bundled with Perl) work on all plat-
forms. Notable exceptions are the CPAN.pm module (which currently makes con-
nections to external programs that may not be available), platform-specific mod-
ules (such as ExtUtils::MM_VMS), and DBM modules.

There is no single DBM module available on all platforms. SDBM_File and the
others are generally available on all Unix and DOSish ports.

The good news is that at least one DBM module should be available, and
AnyDBM_File will use whichever module it can find. With such uncertainty, you
should use only the features common to all DBM implementations. For instance,
keep your records to no more than 1K bytes. See the AnyDBM_File module docu-
mentation for more details.

A bit fancier than DBMs is SQLite, which comes with the DBD::SQLite driver for
DBI. It’s a minimal and embeddable relational database that’s in the public domain
(so you can distribute it with your code). It runs on the common operating sys-
tems.

3. Some people on the margins of society run Perl’s Configure script as a cheap form of entertainment. People
have even been known to stage “Configure races” between competing systems and wager large sums on
them. This practice is now outlawed in most of the civilized world.

728 | Chapter 22: Portable Perl

www.it-ebooks.info

http://www.it-ebooks.info/

Dates and Times
Where possible, use the ISO-8601 standard (“YYYY-MM-DD”) to represent dates.
Strings like “1987–12–18” can be easily converted into a system-specific value with
a module like Date::Parse. A list of time and date values (such as that returned
by the built-in localtime function) can be converted to a system-specific repre-
sentation using Time::Local.

The built-in time function will always return the number of seconds since the
beginning of the “epoch”, but operating systems differ in their opinions of when
that was. On many systems, the epoch began on January 1, 1970, at 00:00:00
UTC, but on VMS it began on November 17, 1858, at 00:00:00. So for portable
times you may want to calculate an offset for the epoch:

require Time::Local;
$offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);

The value for $offset in Unix and Windows will always be 0, but on other systems
it may be some large number. $offset can then be added to a Unix time value to
get what should be the same value on any system.

A system’s representation of the time of day and the calendar date can be con-
trolled in widely different ways. Don’t assume the time zone is stored in
$ENV{TZ}. Even if it is, don’t assume that you can control the time zone through
that variable.

If you need exceedingly precise date and time control, get the DateTime module
from CPAN.

Internationalization
Don’t assume anything about the encoding or the environment. You and everyone
you know might use the same setup, but once you distribute your work you’re
likely to find a world of differences.

Use Unicode inside your program. Do any translation to and from other character
sets at your interfaces to the outside world. See Chapter 6.

Outside the world of Unicode, you should assume little about character sets and
nothing about the ord values of characters. Do not assume that the alphabetic
characters have sequential ord values. The lowercase letters may come before or
after the uppercase letters; the lowercase and uppercase may be interlaced so that
both a and A come before b; the accented and other international characters may
be interlaced so that ä comes before b.

Internationalization | 729

www.it-ebooks.info

http://www.it-ebooks.info/

Even within Unicode, most of those warnings hold. There are many sequences
of alphabetic characters in the same sequence whose codepoint order has nothing
to do with their alphabetic order.

If your program is to operate on a POSIX system (a rather large assumption),
consult the perllocale manpage for more information about POSIX locales. Lo-
cales affect character sets and encodings, and date and time formatting, among
other things. Proper use of locales will make your program a little bit more
portable, or at least more convenient and native-friendly for non-English users.
But be aware that locales and Unicode don’t mix well yet.

Style
When it is necessary to have platform-specific code, consider keeping it in one
place to ease porting to other platforms. Use the Config module and the special
variable $^O to differentiate between platforms.

Be careful in the tests you supply with your module or programs. A module’s code
may be fully portable, but its tests may well not be. This often happens when
tests spawn other processes or call external programs to aid in the testing, or
when (as noted above) the tests assume certain things about the filesystem and
paths. Be careful not to depend on a specific output style for errors, even when
checking $! for “standard” errors after a syscall. Use the Errno module instead.

Remember that good style transcends both time and culture, so for maximum
portability you must seek to understand the universal amidst the exigencies of
your existence. The coolest people are not prisoners of the latest cool fad; they
don’t have to be, because they are not worried about being “in” with respect to
their own culture, programmatically or otherwise. Fashion is a variable, but style
is a constant. 

730 | Chapter 22: Portable Perl

www.it-ebooks.info

http://perldoc.perl.org/perllocale.html
http://www.it-ebooks.info/

CHAPTER 23

Plain Old Documentation

One of the principles underlying Perl’s design is that simple things should be
simple, and hard things should be possible. Documentation should be simple.

Perl supports a simple text markup format called pod that can stand on its own
or be freely intermixed with your source code to create embedded documenta-
tion. Pod can be converted to many other formats for printing or viewing, or you
can just read it directly, because it’s plain.

Pod is not as expressive as languages like XML, , troff(1), or even HTML.
This is intentional: we sacrificed that expressiveness for simplicity and conve-
nience. Some text markup languages make authors write more markup than text,
which makes writing harder than it has to be and reading next to impossible. A
good format, like a good movie score, stays in the background without causing
distraction.

Getting programmers to write documentation is almost as hard as getting them
to wear ties. Pod was designed to be so easy to write that even a programmer
could do it—and would. We don’t claim that pod is sufficient for writing a book,
although it was sufficient for writing this one.

Pod in a Nutshell
Most document formats require the entire document to be in that format. Pod is
more forgiving: you can embed pod in any sort of file, relying on pod transla-
tors to extract the pod. Some files consist entirely of 100% pure pod. But other
files, notably Perl programs and modules, may contain dollops of pod sprinkled
about wherever the author feels like it. Perl simply skips over the pod text when
parsing the file for execution.

731

www.it-ebooks.info

http://www.it-ebooks.info/

The Perl lexer knows to begin skipping when, at a spot where it would ordinarily
find a statement, it instead encounters a line beginning with an equals sign and
an identifier, like this:

=head1 Here There Be Pods!

That text, along with all remaining text up through and including a line beginning
with =cut, will be ignored. This allows you to intermix your source code and your
documentation freely, as in:

=item snazzle

The snazzle() function will behave in the most spectacular
form that you can possibly imagine, not even excepting
cybernetic pyrotechnics.

=cut

sub snazzle {
 my $arg = shift;

}

=item razzle

The razzle() function enables autodidactic epistemology generation.

=cut

sub razzle {
 print "Epistemology generation unimplemented on this platform.\n";
}

For more examples, look at any standard or CPAN Perl module. They’re all sup-
posed to come with pod, and nearly all do, except for the ones that don’t.

Since pod is recognized by the Perl lexer and thrown out, you may also use an
appropriate pod directive to quickly comment out an arbitrarily large section of
code. Use a =for pod block to comment out one paragraph, or a =begin/=end pair
for a larger section. We’ll cover the syntax of those pod directives later. Remem-
ber, though, that in both cases you’re still in pod mode afterwards, so you need
to =cut back to the compiler:

print "got 1\n";

=for commentary
This paragraph alone is ignored by anyone except the
mythical "commentary" translator. When it's over, you're
still in pod mode, not program mode.
print "got 2\n";

732 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

=cut

ok, real program again
print "got 3\n";

=begin comment

print "got 4\n";

all of this stuff
here will be ignored
by everyone

print "got 5\n";

=end comment

=cut

print "got 6\n";

This will print out that it got 1, 3, and 6. Remember that these pod directives can’t
go just anywhere. You have to put them only where the parser is expecting to see
a new statement, not just in the middle of an expression or at other arbitrary
locations.

From the viewpoint of Perl, all pod markup is thrown out. But from the viewpoint
of pod translators, it’s the code that is thrown out. Pod translators view the re-
maining text as a sequence of paragraphs separated by blank lines.

There are three kinds of paragraphs: verbatim paragraphs, command paragraphs,
and prose paragraphs.

Verbatim Paragraphs
Verbatim paragraphs are used for literal text that you want to appear as is, such
as snippets of code. A verbatim paragraph must be indented; that is, it must begin
with a space or tab character. The translator should reproduce it exactly, typically
in a monospace font, with tabs assumed to be on eight-column boundaries. There
are no special formatting escapes, so you can’t play font games to italicize or
embolden. A < character means a literal <, and nothing else.

Command Paragraphs
All pod directives start with = followed by an identifier. This may be followed by
any amount of arbitrary text that the directive can use however it pleases. The

Pod in a Nutshell | 733

www.it-ebooks.info

http://www.it-ebooks.info/

only syntactic requirement is that the text must all be one paragraph. Currently
recognized directives (sometimes called pod commands) are:

=encoding

By default, the Pod translators assume that your Pod source is either ASCII
or Latin-1. You can change this by specifying the encoding with this com-
mand, probably to UTF-8:

=encoding uft8

=head1

=head2

The =head1, =head2,… directives produce headings at the level specified. The
rest of the text in the paragraph is treated as the heading description. These
are similar to the .SH and .SS section and subsection headers in man(7), or
to <H1>…</H1> and <H2>…</H2> tags in HTML. In fact, that’s exactly what
those translators convert these directives into for those formats.

=cut

The =cut directive indicates the end of a stretch of pod. (There might be more
pod later in the document, but if so it will be introduced with another pod
directive.)

=pod

The =pod directive does nothing beyond telling the compiler to lay off parsing
code through the next =cut. It’s useful for adding another paragraph to the
document if you’re mixing up code and pod a lot.

=over NUMBER

=item SYMBOL

=back

The =over directive starts a section specifically for the generation of a list
using the =item directive. At the end of your list, use =back to end it. The
NUMBER, if provided, hints to the formatter how many spaces to indent. Some
formatters aren’t rich enough to respect the hint, while others are too rich
to respect it, insofar as it’s difficult when working with proportional fonts
to make anything line up merely by counting spaces. (However, four spaces
is generally construed as enough room for bullets or numbers.)

The actual type of the list is indicated by the SYMBOL on the individual items.
Here is a bulleted list:

=over 4

=item *

734 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

Mithril armor

=item *

Elven cloak

=back

And a numbered list:

=over 4

=item 1.

First, speak "friend".

=item 2.

Second, enter Moria.

=back

And a named list:

=over 4

=item armor()

Description of the armor() function

=item chant()

Description of the chant() function

=back

You may nest lists of the same or different types, but some basic rules apply:
don’t use =item outside an =over/=back block; use at least one =item inside
an =over/=back block; and, perhaps most importantly, keep the type of the
items consistent within a given list. Use =item * for each item to produce a
bulleted list; =item 1., =item 2., and so on to produce a numbered list; or
use =item foo, =item bar, and so on to produce a named list. If you start
with bullets or numbers, stick with them, since formatters are allowed to
use the first =item type to decide how to format the list.

As with everything in pod, the result is only as good as the translator. Some
translators pay attention to the particular numbers (or letters, or Roman
numerals) following the =item, and others don’t. The current pod2html
translator, for instance, is quite cavalier: it strips out the sequence indicators
entirely without looking at them to infer what sequence you’re using, then

Pod in a Nutshell | 735

www.it-ebooks.info

http://www.it-ebooks.info/

wraps the entire list inside and tags so that the browser can display
it as an ordered list in HTML. This is not to be construed a feature; it may
be fixed eventually.

=for TRANSLATOR

=begin TRANSLATOR

=end TRANSLATOR

=for, =begin, and =end let you include special sections to be passed through
unaltered, but only to particular formatters. Formatters that recognize their
own names, or aliases for their names, in TRANSLATOR pay attention to that
directive; any others completely ignore them. The directive =for specifies
that just the rest of this paragraph is destined for a particular translator:

=for html
<p> This is a<flash>raw</flash> <small>HTML</small> paragraph </p>

The paired =begin and =end directives work similarly to =for, but instead of
accepting only a single paragraph, they treat all text between matched
=begin and =end as destined for a particular translator. Some examples:

=begin html

Figure 1.

=end html

=begin text

 –––––––––––––––
 | foo |
 | bar |
 –––––––––––––––

^^^^ Figure 1. ^^^^

=end text

Values of TRANSLATOR commonly accepted by formatters include roff, man,
troff, nroff, tbl, eqn, latex, tex, html, and text. Some formatters will accept
some of these as synonyms. No translator accepts comment—that’s just the
customary word for something to be ignored by everybody. Any unrecog-
nized word would serve the same purpose. While writing this book, we often
left notes for ourselves under the directive =for later.1

1. We actually created our own pod translator to convert our pod source to DocBook using a custom subclass
of Pod::PseudoPod.

736 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

Note that =begin and =end do nest, but only in the sense that the outermost
matched set causes everything in the middle to be treated as nonpod, even
if it happens to contain other =word directives. That is, as soon as any trans-
lator sees =begin foo, it will either ignore or process everything down to the
corresponding =end foo.

Flowed Text
The third type of paragraph is simply “flowed” text. That is, if a paragraph doesn’t
start with either whitespace or an equals sign, it’s taken as a plain paragraph:
regular text that’s typed in with as few frills as possible. Newlines are treated as
equivalent to spaces. It’s largely up to the translator to make it look nice, because
programmers have more important things to do. It is assumed that translators
will apply certain common heuristics—see the section “Pod Translators and
Modules” on page 740 later in this chapter.

You can do some things explicitly, however. Inside either ordinary paragraphs or
heading/item directives (but not in verbatim paragraphs) you may use special
sequences to adjust the formatting. These sequences always start with a single
capital letter followed by a left-angle bracket, and extend through the matching
(not necessarily the next) right-angle bracket. Sequences may contain other se-
quences.

Here are the sequences defined by pod:

I<text>

Italicized text, used for emphasis, book titles, names of ships, and manpage
references such as “perlpod(1)”.

B<text>

Emboldened text, used almost exclusively for command-line switches and
sometimes for names of programs.

C<text>

Literal code, probably in a fixed-width font like Courier. Not needed on
simple items that the translator should be able to infer as code, but you
should put it anyway.

S<text>

Text with nonbreaking spaces. Often surrounds other sequences.

L<name>

A cross reference (link) to a name:

L<name>

Manual page

Pod in a Nutshell | 737

www.it-ebooks.info

http://www.it-ebooks.info/

L<name/ident>

Item in manual page

L<name/"sec">

Section in other manual page

L</"sec">

Ditto

These next five are the same as those above, but the output will be only
text, with the link information hidden as in HTML:

L<text|name>

L<text|name/ident>

L<text|name/"sec">

L<text|"sec">

L<text|/"sec">

The text cannot contain the characters “/” and “|”, and it should contain
matched “<” or “>”.

F<pathname>

Used for filenames. This is traditionally the same as I.

X<entry>

An index entry of some sort. As always, it’s up to the translator what to do.
The pod specification doesn’t dictate that.

E<escape>

A named character, similar to HTML escapes:

E<lt>

A literal < (optional except in other interior sequences and when pre-
ceded by a capital letter)

E<gt>

A literal > (optional except in other interior sequences)

E<sol>

A literal / (needed in L<> only)

E<verbar>

A literal | (needed in L<> only)

E<NNN>

E<0xXXXXXX>

Character number (i.e., codepoint) NNN or 0xXXXXXX in Unicode

E<entity>

Some nonnumeric HTML entity, such as E<Agrave>

738 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

Z<>

A zero-width character. This is nice for putting in front of sequences that
might confuse something. For example, if you had a line in regular prose
that had to start with an equals, you could write that as:

Z<>=can you see

or for something with a “From” in it, so the mailer doesn’t add a greater than:

Z<>From here on out...

Most of the time, you will need but a single set of angle brackets to delimit a pod
sequence. Sometimes, however, you will want to put a < or > inside a sequence.
(This is particularly common when using a C<> sequence to provide a monospace
font for a snippet of code.) As with all things in Perl, there is more than one way
to do it. One way is to simply represent the closing bracket with an E<ENTITY>
sequence:

C<$a E<lt>=E<gt> $b>

This produces “$a <=> $b”.

A more readable, and perhaps more “plain”, way is to use an alternate set of de-
limiters that doesn’t require the angle brackets to be escaped. Doubled angle
brackets (C<< stuff >>) may be used, provided there is whitespace immediately
following the opening delimiter and immediately preceding the closing one. For
example, the following will work:

C<< $a <=> $b >>

You may use as many repeated angle brackets as you like as long as you have the
same number of them on both sides. Also, you must make sure that whitespace
immediately follows the last < of the left side and immediately precedes the first
> of the right side. So the following will also work:

C<<< $a <=> $b >>>
C<<<< $a <=> $b >>>>

All these end up spitting out $a <=> $b in a monospace font.

The extra whitespace inside on either end goes away, so you should leave white-
space on the outside if you want it. Also, the two inside chunks of extra white-
space don’t overlap, so if the first thing being quoted is >>, it isn’t taken as the
closing delimiter:

The C<< >> >> right shift operator.

This produces: “The >> right shift operator.”

Pod in a Nutshell | 739

www.it-ebooks.info

http://www.it-ebooks.info/

Note that pod sequences do nest. That means you can write “The I<Santa
MarE<iacute>a> left port already” to produce “The Santa María left port al-
ready”, or “B<touch> S<B<–t> I<time>> I<file>” to produce “touch –t time file”,
and expect this to work properly.

Pod Translators and Modules
Perl is bundled with several pod translators that convert pod documents (or the
embedded pod in other types of documents) into various formats. All should be
8-bit clean.

pod2text
Converts pod into text. Normally, this text will be 7-bit ASCII, but it will be
8-bit if it had 8-bit input, or specifically ISO-8859-1 (or Unicode) if you use
sequences like LE<uacute>thien for Lúthien or EE<auml>rendil for Eärendil.

If you have a file with pod in it, the easiest (although perhaps not the prettiest)
way to view just the formatted pod would be:

% pod2text File.pm | more

Then again, pod is supposed to be human readable without formatting.

pod2man
Converts pod into Unix manpage format suitable for viewing through
nroff(1) or creating typeset copies via troff(1). For example:

% pod2man File.pm | nroff –man | more

or:

% pod2man File.pm | troff -man -Tps -t > tmppage.ps
% ghostview tmppage.ps

and to print:

% lpr –Ppostscript tmppage.ps

pod2html
Converts pod into HTML for use with your favorite viewer (maybe that’s
lynx):

% pod2man File.pm | troff -man -Tps -t > tmppage.ps
% lynx tmppage.html

pod2latex
Converts pod into the format, which you can then typeset with that tool.

Additional translators for other formats are available on CPAN.

740 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

You should write your pod as close to plain text as you possibly can, with as few
explicit markups as you can get away with. It is up to the individual translator
to decide how things in your text should be represented. That means letting the
translator figure out how to create paired quotes, how to fill and adjust text, how
to find a smaller font for words in all capitals, etc. Since these were written to
process Perl documentation, most translators2 should also recognize unadorned
items like these and render them appropriately:

• FILEHANDLE

• $scalar

• @array

• function()

• manpage(3r)

• somebody@someplace.com

• http://foo.com/

Perl also comes with several standard modules for parsing and converting pod,
including Pod::Checker (and the associated podchecker utility) for checking the
syntax of pod documents, Pod::Find for finding pod documents in directory trees,
and Pod::Simple for creating your own pod utilities. Inside a CPAN distribution,
you can use the Test::Pod module to check the format of your documentation
and the Test::Pod::Coverage module to check that all of the interface is docu-
mented.

Note that pod translators should only look at paragraphs beginning with a pod
directive (this makes parsing easier), whereas the compiler actually knows to look
for pod escapes, even in the middle of a paragraph. This means that the following
secret stuff will be ignored by both the compiler and the translators.

$a=3;
=secret stuff
warn "Neither POD nor CODE!?"
=cut back
print "got $a\n";

You probably shouldn’t rely upon the warn being podded out forever. Not all pod
translators are well behaved in this regard, and the compiler may someday be-
come pickier.

2. If you’re designing a general-purpose pod translator, not one for Perl code, your criteria may vary.

Pod Translators and Modules | 741

www.it-ebooks.info

http://www.it-ebooks.info/

Writing Your Own Pod Tools
Pod was designed first and foremost to be easy to write. As an added benefit, pod’s
simplicity also lends itself to writing simple tools for processing pod. If you’re
looking for pod directives, just set your input record separator to paragraph mode
(perhaps with the –00 switch), and only pay attention to paragraphs that look
poddish.

For example, here’s a simple olpod program to produce a pod outline:

#!/usr/bin/perl –l00n
olpod – outline pod
next unless /^=head/;
s/^=head(\d)\s+/ " " x ($1 * 4 – 4)/e;
print $_, "\n";

If you run that on the current chapter of this book, you’ll get something like this:

Plain Old Documentation
 Pod in a Nutshell
 Verbatim Paragraphs
 Command Paragraphs
 Flowed Text
 Pod Translators and Modules
 Writing Your Own Pod Tools
 Pod Pitfalls
 Documenting Your Perl Programs

That pod outliner didn’t really pay attention to whether it was in a valid pod block
or not. Since pod and nonpod can intermingle in the same file, running general-
purpose tools to search or analyze the whole file doesn’t always make sense. But
that’s no problem given how easy it is to write tools for pod. Here’s a tool that
is aware of the difference between pod and nonpod, and produces only the pod:

#!/usr/bin/perl –00
catpod – cat out just the pods
while (<>) {
 if (! $inpod) { $inpod = /^=/ }
 if ($inpod) { $inpod = !/^=cut/; print }
} continue {
 if (eof) { close ARGV; $inpod = "" }
}

You could use that program on another Perl program or module, then pipe the
output along to another tool. For example, if you have the wc(1) program3 to
count lines, words, and characters, you could feed it catpod output to consider
only pod in its counting:

3. And if you don’t, get the Perl Power Tools version from CPAN.

742 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http:
http://www.it-ebooks.info/

% catpod MyModule.pm | wc

There are plenty of places where pod allows you to write primitive tools trivially
using plain, straightforward Perl. Now that you have catpod to use as a compo-
nent, here’s another tool to show just the indented code:

#!/usr/bin/perl –n00
podlit – print the indented literal blocks from pod input
print if /^\s/;

What would you do with that? Well, you might want to do perl –wc checks on
the code in the document, for one thing. Or maybe you want a flavor of
grep(1)4 that only looks at the code examples:

% catpod MyModule.pm | podlit | grep funcname

This tool-and-filter philosophy of interchangeable (and separately testable) parts
is a sublimely simple and powerful approach to designing reusable software
components. It’s a form of laziness to just put together a minimal solution that
gets the job done today—for certain kinds of jobs, at least.

For other tasks, though, this can even be counterproductive. Sometimes it’s more
work to write a tool from scratch, sometimes less. For those we showed you
earlier, Perl’s native text-processing prowess makes it expedient to use brute
force. But not everything works that way. As you play with pod, you might notice
that although its directives are simple to parse, its sequences can get a little dicey.
Although some, um, subcorrect translators don’t accommodate this, sequences
can nest within other sequences and can have variable-length delimiters.

Instead of coding up all that parsing code on your own, laziness looks for another
solution. The standard Pod::Simple module fits that bill. It’s especially useful for
complicated tasks, like those that require real parsing of the internal bits of the
paragraphs, conversion into alternative output formats, and so on. It’s easier to
use the module for complicated cases because the amount of code you end up
writing is smaller. It’s also better because the tricky parsing is already worked
out for you. It’s really the same principle as using catpod in a pipeline.

The Pod::Simple module takes an interesting approach to its job. It’s an object-
oriented module of a different flavor than most you’ve seen in this book. Its
primary goal isn’t so much to provide objects for direct manipulation as it is to
provide a base class upon which other classes can be built.

You create your own class and inherit from Pod::Simple (or one of its interfaces),
which provides all the methods to parse the pod. Your subclass overrides the

4. And if you don’t have grep, see previous footnote.

Writing Your Own Pod Tools | 743

www.it-ebooks.info

http://www.it-ebooks.info/

appropriate methods to turn the things the parser finds into the output you want.
You only have to override the parts that you want to change. You probably want
to start with a translator that is close to what you want. Here’s a short subclass
of Pod::Simple::Text that finds instances of the Perl documentation in L<> and
makes endnotes for each link. You have to know about the innards of the base
class, a violation of encapsulation, which we are merely demonstrating instead
of endorsing:

use v5.14;

package Local::MyText 0.01 {
 use parent "Pod::Simple::Text";
 use Data::Dumper;
 my @links;

 sub links {
 $_[0]–>{""._ _PACKAGE_ _}{links} //= [];
 }

 sub start_L {
 my($self, $link) = @_;
 push $self–>links, $link–>{to}[2];
 }

 sub end_L {
 my($self) = @_;
 my $count = @{$self–>links};
 $self–>{Thispara} .= "[" . $count . "]";
 }

 sub end_Document {
 my($self) = shift;
 while (my($index, $text) = each $self–>links) {
 $self–>{Thispara} .=
 "$index http://perldoc.perl.org/$text.html\n";
 }
 $self–>emit_par;
 }
}

1;

You could write your own version of pod2text that loads a file and invokes your
subclass, but perldoc will load an alternate formatting class with the –M switch:5

% perldoc –MLocal::MyText some_pod.pod

5. This is not the same –M switch for perl. There has to be a space between the –M and the name of the class.
Sadly, perldoc does not warn you about these sorts of problems if you get it wrong.

744 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

For this pod:

=pod

If you want to read about the Perl pod specification, see
the LZ<><perlpod> or LZ<><perlpodspec> documentation.

=cut

you get this output:

If you want to read about the Perl pod specification, see the
perlpod[1] or perlpodspec[2] documentation.

0 http://perldoc.perl.org/perlpod.html
1 http://perldoc.perl.org/perlpodspec.html

That example merely changes how the formatter interprets the pod specification.
Here’s another example that overrides the handling of the verbatim paragraphs
to reformat them with Perl::Tidy:

use v5.14;

package Local::MyTidy 0.01 {
 use parent "Pod::Simple::Text";
 use Perl::Tidy;

 sub end_Verbatim {
 my($self) = @_;
 Perl::Tidy::perltidy(
 source => \ $self–>{Thispara},
 destination => \ my $out,
 argv => [qw/–gnu/],
);
 $self–>{Thispara} = $out =~ s/^/ /gmr;
 say { $self–>{output_fh} } "", $self–>{Thispara};
 return;
 }

}

1;

This formatter turns poorly formatted code like this:

=encoding utf8

=pod

This is a regular paragraph.

#!/usr/bin/perl
for (@ARGV){

Writing Your Own Pod Tools | 745

www.it-ebooks.info

http://www.it-ebooks.info/

 my $count = 0;
 say $count++, " ", $_;
}

This is another regular paragraph.

=cut

into something like this:6

This is a regular paragraph

#!/usr/bin/perl
for (@ARGV) {
 my $count = 0;
 say $count++, " ", $_;
}

This is another regular paragraph

You may want to define new pod things. For instance, if you want to define a new
command, it’s easy to do that even if it takes a little fiddling. You have to tell
the parser that your new command is valid. In this example, a new V<> command
translates its text into a list of codepoints. Instead of seeing é, you might see
(U+00E9). It does this by setting a flag when it enters the V<> so it knows to do
something different in handle_text:

use v5.14;
package Local::MyCodePoint 0.01 {
 use parent "Pod::Simple::Text";
 use Data::Dumper;

 sub new {
 my $self = shift;
 my $new = $self–>SUPER::new;
 $new–>accept_codes("V");
 return $new;
 }
 sub handle_text {
 my($self, $text) = @_;
 $self–>{Thispara} .=
 $self–>{""._ _PACKAGE_ _}{in_V}
 ? $self–>make_codepoints($text)
 : $text;
 }
 sub make_codepoints {
 $_[1] =~ s/(.)/ sprintf "(U+%04X)", ord($1) /ger;
 }

6. The Perl::Tidy module accepts many different options, so you can adjust the knobs and dials to choose
any style decisions you like.

746 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

 sub start_V {
 my($self, $text) = @_;
 $self–>{""._ _PACKAGE_ _}{in_V} = 1;
 }
 sub end_V {
 my($self, $text) = @_;
 $self–>{""._ _PACKAGE_ _}{in_V} = 0;
 }
}

1;

With this new command, this pod:

=encoding utf8

=pod

V<À> la recherche du temps perdu

=cut

turns into this text:

(U+00C0) la recherche du temps perdu

Pod Pitfalls
Pod is fairly straightforward, but it’s still possible to flub a few things that can
confuse some translators:

• It’s really easy to leave out the trailing angle bracket.

• It’s really easy to leave out the trailing =back directive.

• It’s easy to accidentally put a blank line into the middle of a long
=for comment directive. Consider using =begin/=end instead.

• If you mistype one of the tags on a =begin/=end pair, it’ll eat the rest of your
file (podwise). Consider using =for instead.

• Pod translators require paragraphs to be separated by completely empty
lines―that is, by two or more consecutive newline (\n) characters. If you have
a line with spaces or tabs on it, it will not be treated as a blank line. This can
cause two or more paragraphs to be treated as one.

• The meaning of a “link” is not defined by pod, and it’s up to each translator
to decide what to do with it. (If you’re starting to get the idea that most
decisions have been deferred to the translators, not pod, you’re right.) Trans-
lators will often add wording around a L<> link, so that “L<foo(1)>” becomes
“the foo(1) manpage”, for example. So you shouldn’t write things like “the

Pod Pitfalls | 747

www.it-ebooks.info

http://www.it-ebooks.info/

L<foo> manpage” if you want the translated document to read sensibly; that
would end up saying “the the foo(1) manpage manpage”.

If you need total control of the text used for a link, use the form L<show this
text|foo> instead.

The standard podchecker program checks pod syntax for errors and warnings.
For example, it checks for unknown pod sequences and for seemingly blank lines
containing whitespace. It is still advisable to pass your document through two
or more different pod translators and proofread the results. Some of the problems
you find may be idiosyncrasies of the particular translators, which you may or
may not wish to work around. Here’s a bit of pod with some problems:

=encoding utf8

=pod

This is a D<para>.

=item * This is an item

=cut

Using podchecker catches two errors and gives you a warning about the whitespace
you can’t see in the blank line:

% podchecker broken.pod
*** ERROR: Unknown interior–sequence 'D' at line 5 in file broken.pod
*** ERROR: =item without previous =over at line 7 in file broken.pod
*** WARNING: line containing nothing but whitespace in paragraph at line 8
in file broken.pod
broken.pod has 2 pod syntax errors.

And, as always, Everything is Subject To Change at the Whim of the Random
Hacker.

Documenting Your Perl Programs
We hope you document your code whether or not you’re a Random Hacker. If
you do, you may wish to include the following sections in your pod:

=head1 NAME

The name of your program or module.

=head1 SYNOPSIS

A summary of the module’s use.

=head1 DESCRIPTION

The bulk of your documentation. (Bulk is good in this context.)

748 | Chapter 23: Plain Old Documentation

www.it-ebooks.info

http://www.it-ebooks.info/

=head1 AUTHOR

Who you are. (Or an alias, if you are ashamed of your program.)

=head1 BUGS

What you did wrong (and why it wasn’t really your fault).

=head1 SEE ALSO

Where people can find related information (so they can work around your
bugs).

=head1 COPYRIGHT

The copyright statement. If you wish to assert an explicit copyright, you
should say something like:

Copyright 2013, Randy Waterhouse. All Rights Reserved.

Many modules also add:

This program is free software. You may copy or
redistribute it under the same terms as Perl itself.

One caveat: if you’re going to put your pod at the end of the file, and you’re using
an _ _END_ _ or _ _DATA_ _ token, make sure to put an empty line before the first
pod directive:

_ _END_ _

=head1 NAME

Modern – I am the very model of a modern major module

Without the empty line before the =head1, the pod translators will ignore the start
of your (extensive, accurate, cultured) documentation.

Documenting Your Perl Programs | 749

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 24

Perl Culture

This book is a part of Perl culture, so we can’t hope to put everything we know
about Perl culture in here. We can only whet your appetite with a little history,
a little art—some would say “very little art”―and some highlights from the Perl
community. For a much larger dose of Perl culture, see http://www.perl.org. Or
just get acquainted with some other Perl programmers. We can’t tell you what
sort of people they’ll be—about the only personality trait Perl programmers have
in common is that they’re all pathologically helpful.

History Made Practical
In order to understand why Perl is defined the way it is (or isn’t), one must first
understand why Perl even exists. So let’s drag out the old dusty history book…

Way back in 1986, Larry was a systems programmer on a project developing
multilevel-secure wide area networks. He was in charge of an installation con-
sisting of three VAXen and three Suns on the West Coast, connected over an
encrypted, 1200-baud serial line to a similar configuration on the East Coast.
Since Larry’s primary job was support (he wasn’t a programmer on the project,
just the system guru), he was able to exploit his three virtues (Laziness, Impa-
tience, and Hubris) to develop and enhance all sorts of useful tools—such as rn,
patch, and warp.1 One day, after Larry had just finished ripping rn to shreds,
leaving it in pieces on the floor of his directory, the great Manager came to him
and said, “Larry, we need a configuration management and control system for
all six VAXen and all six Suns. We need it in a month. Go to it!”

1. It was at about this time that Larry latched onto the phrase feeping creaturism in a desperate attempt to
justify on the basis of biological necessity his overwhelming urge to add “just one more feature”. After
all, if Life Is Simply Too Complicated, why not programs, too? Especially programs like rn that really
ought to be treated as advanced Artificial Intelligence projects so that they can read your news for you.
Of course, some people say that the patch program is already too smart.

751

www.it-ebooks.info

http://www.perl.org
http://www.it-ebooks.info/

So, Larry―never being one to shirk work―asked himself what was the best way
to have a bicoastal CM system, without writing it from scratch, that would allow
viewing of problem reports on both coasts, with approvals and control. The an-
swer came to him in one word: B-news.2 Larry went off and installed news on
these machines and added two control commands: an “append” command to
append to an existing article, and a “synchronize” command to keep the article
numbers the same on both coasts. CM would be done using RCS (Revision Con-
trol System), and approvals and submissions would be done using news and
rn. Fine so far.

Then the great Manager asked him to produce reports. News was maintained in
separate files on a master machine, with lots of cross-references between files.
Larry’s first thought was, “Let’s use awk.” Unfortunately, the awk of that day
couldn’t handle opening and closing of multiple files based on information in
the files. Larry didn’t want to have to code a special-purpose tool. As a result, a
new language was born.

This new tool wasn’t originally called Perl. Larry bandied about a number of
names with his officemates and cohorts (Dan Faigin, who wrote this history, and
Mark Biggar, his brother-in-law, who also helped greatly with the initial design).
Larry actually considered and rejected every three- or four-letter word in the
dictionary. One of the earliest names was “Gloria”, after his sweetheart (and
wife). He soon decided that this would cause too much domestic confusion.

The name then became “Pearl”, which mutated into our present-day “Perl”, partly
because Larry saw a reference to another language called PEARL, but mostly
because he’s too lazy to type five letters all the time. And, of course, so that Perl
could be used as a four-letter word. (You’ll note, however, the vestiges of the
former spelling in the acronym’s gloss: “Practical Extraction And Report Lan-
guage”.3)

This early Perl lacked many of the features of today’s Perl. Pattern matching and
filehandles were there, scalars were there, and formats were there, but there were
very few functions, no associative arrays, and only a crippled implementation of
regular expressions, borrowed from rn. The manpage was only 15 pages long.
But Perl was faster than sed and awk, and it began to be used on other applications
on the project.

But Larry was needed elsewhere. Another great Manager came over one day and
said, “Larry, support R&D.” And Larry said, okay. He took Perl with him and

2. That is, the second implementation of Usenet transport software.

3. This is sometimes called a backronym since the name came first and the expansion later.

752 | Chapter 24: Perl Culture

www.it-ebooks.info

http://www.it-ebooks.info/

discovered that it was turning into a good tool for system administration. He
borrowed Henry Spencer’s beautiful regular expression package and butchered it
into something Henry would prefer not to think about during dinner. Then Larry
added most of the goodies he wanted, as well as a few goodies other people
wanted. He released it on the network.4 The rest, as they say, is history.5 Which
goes something like this: Perl 1.0 was released on December 18, 1987; some
people still take Perl’s Birthday seriously. Perl 2.0 follows in June 1988, and
Randal Schwartz created the legendary “Just Another Perl Hacker” (JAPH) sig-
nature. In 1989, Tom Christiansen presented the first public Perl tutorial at the
Baltimore Usenix. With Perl 3.0 in October 1989, the language was released and
distributed for the first time under the terms of the GNU Public License.

In March 1990, Larry wrote the first Perl Poem (see the following section). Then
he and Randal wrote the first edition of this book, The Pink Camel; it was pub-
lished in early 1991.6 Perl 4.0 was released simultaneously; it included an Artistic
License as well as the GPL. After Perl 4, Larry conceived a new and improved
Perl; in 1994, the Perl 5 Porters, or just p5p, was established to port perl to almost
every system it could get its hands on. This group, fluid in membership, is still
responsible for Perl’s development and support.

The unveiling of the much anticipated Perl 5 occurred in October 1994. A com-
plete rewrite of Perl, it included objects and modules. The advent of Perl 5 even
merited coverage by The Economist.7 In 1995, CPAN was officially introduced to
the Perl community. Jon Orwant began publishing The Perl Journal in 1996. After
a long gestation, the second edition of this book, The Blue Camel, appeared that
fall. In 1997, a group of notable Perl hackers founded The Perl Institute to orga-
nize advocacy and support for Perl.

The first O’Reilly Perl Conference (TPC) was held in San Jose, California, in the
summer of 1997. During this conference, a group of New Yorkers formed the
first Perl users group, which they called /New York Perl M((o|u)ngers|

aniacs)*/, although that was a bit unwieldy, so it turned into NY.pm, setting the
pattern for most future Perl user group names. That turned into Perl mongers the

4. More astonishingly, he kept on releasing it as he went to work at Jet Propulsion Lab, then at NetLabs and
Seagate, and then at O’Reilly & Associates (a small company that publishes pamphlets about computers
and stuff, now called O’Reilly Media).

5. And this, so to speak, is a footnote to history. When Perl was started, rn had just been ripped to pieces in
anticipation of a major rewrite. Since he started work on Perl, Larry hasn’t touched rn. It is still in pieces.
Occasionally, Larry threatens to rewrite rn in Perl (but never seriously).

6. Its title was Programming perl, with an all-lowercase “perl”.

7. “Unlike lots of other freely available software, Perl is useful, and it works.”—“Electric metre”, The
Economist, July 1, 1995.

History Made Practical | 753

www.it-ebooks.info

http://www.pm.org
http://www.it-ebooks.info/

next year when that same group helped people start their own user groups. Perl
mongers took over for The Perl Institute.

In 1999, Kevin Lenzo organized Yet Another Perl Conference (YAPC) at Carnegie
Mellon in Pittsburgh. The tech conferences were mostly held on the West Coast
of the United States, close to Silicon Valley. That wasn’t convenient for the East
Coasters. This is the same year that Chris Nandor wrote a Perl script to submit
25,000 All-Star votes for Boston Red Sox shortstop Nomar Garciaparra,8 earning
him mentions in many All-Star stories for several years after that, and what some
people believe motivated a single episode subplot in the TV show Sports Night.9

The next year, the London Perl mongers organized YAPC::EU (although that
wasn’t the first European Perl event; the first German Perl Workshop predated
even The Perl Conference). Those conferences were so successful that they
turned into the Yet Another Foundation (also known as The Perl Foundation)
in the U.S. and the YAPC Europe Foundation in Europe. Soon there were YAPCs
in Asia and South America, too, although the different conferences really only
share the name. Now it’s tough to find a week where there isn’t a Perl event
somewhere, which makes for a very close-knit community of people who mostly
work apart from one another but get together often.

The Perl Conference expanded into other subjects. It turned into The Open Source
Conference, or just OSCON, where Larry regularly gives his “State of the Onion”
address and Damian Conway wows audiences with “The Conway Channel”. At
the 2000 edition of OSCON, Larry announced Perl 6―decidedly not the subject
of this book―as an ambitious project to start from scratch. For this book, we’ll
just say that Perl 6 is a lot of fun, it revitalized Perl 5 development, and it only
shares a name with the Perl we’re writing about here. It’s really a completely
different language, stealing from Perl just like Perl stole from other languages.

For more Perl history, at least up to 2002, check out the Perl Timeline on CPAST,
the Comprehensive Perl Arcana Society Tapestry (http://history.perl.org).

Perl Poetry
Perl assumes that any bareword it runs into will eventually be the name of a
defined subroutine, even if you haven’t defined it yet. This is sometimes called
“Perl poetry mode”. This allows people to write poetry in Perl, such as this mon-
strosity:

8. “Cyber-stuffing remains threat to All-Star voting,” ESPN.com.

9. In the “Louise Revisited” episode, which aired on October 26, 1999, Jeremy used a Perl script to stuff the
ballot box for Casey, one of the anchors.

754 | Chapter 24: Perl Culture

www.it-ebooks.info

http://history.perl.org
http://static.espn.go.com/mlb/s/2001/0624/1218244.html
http://www.it-ebooks.info/

BEFOREHAND: close door, each window & exit; wait until time.
 open spellbook, study, read (scan, select, tell us);
write it, print the hex while each watches,
 reverse its length, write again;
 kill spiders, pop them, chop, split, kill them.
 unlink arms, shift, wait & listen (listening, wait),
sort the flock (then, warn the "goats" & kill the "sheep");
 kill them, dump qualms, shift moralities,
 values aside, each one;
 die sheep! die to reverse the system
 you accept (reject, respect);
next step,
 kill the next sacrifice, each sacrifice,
 wait, redo ritual until "all the spirits are pleased";
 do it ("as they say").
do it(*everyone***must***participate***in***forbidden**s*e*x*).
return last victim; package body;
 exit crypt (time, times & "half a time") & close it,
 select (quickly) & warn your next victim;
AFTERWORDS: tell nobody.
 wait, wait until time;
 wait until next year, next decade;
 sleep, sleep, die yourself,
 die at last

Larry wrote this poem and sent it to news.groups to support his request for the
creation of a comp.lang.perl.poems group. Most people probably noticed that it
was April 1, but that didn’t deter people from writing more Perl poetry.

Sharon Hopkins wrote quite a few Perl poems, as well as a paper on Perl poetry
that she presented at the Usenix Winter 1992 Technical Conference, entitled
“Camels and Needles: Computer Poetry Meets the Perl Programming Lan-
guage”. Besides being the most prolific Perl poet, Sharon is also the most widely
published, having had the following poem published in both The Economist and
The Guardian:

#!/usr/bin/perl

APPEAL:

listen (please, please);

open yourself, wide;
 join (you, me),
connect (us,together),

tell me.

do something if distressed;

Perl Poetry | 755

www.it-ebooks.info

http://www.economist.com
http://www.guardiannews.com
http://www.it-ebooks.info/

 @dawn, dance;
 @evening, sing;
 read (books,$poems,stories) until peaceful;
 study if able;

 write me if–you–please;

sort your feelings, reset goals, seek (friends, family, anyone);

 do*not*die (like this)
 if sin abounds;

keys (hidden), open (locks, doors), tell secrets;
do not, I–beg–you, close them, yet.

 accept (yourself, changes),
 bind (grief, despair);

require truth, goodness if–you–will, each moment;

select (always), length(of–days)

listen (a perl poem)
Sharon Hopkins
rev. June 19, 1995

Virtues of the Perl Programmer
Laziness

Laziness sounds like the vice of the same name, but there’s a difference. The
vice is about the avoidance of immediate work. The virtue is about the
avoidance of future work. Programmers with the power of Perl at their fin-
gertips create the tools that make the same tasks easier the more they are
done. Perl is a great language of automating tasks, and the more it automates
today, the less work programmers do manually later.

Impatience
Impatience is that nasty feeling you get when the computer is doing what it
wants instead of what you want. Or, more correctly, when the programmer
on the other side of the software chose the wrong default settings, made a
poor GUI, or doesn’t give you access to this data. You’ve experienced it
enough to not inflict the same pain on other programmers, turning your
frustration with your wasted time into a benefit for other people.

756 | Chapter 24: Perl Culture

www.it-ebooks.info

http://www.it-ebooks.info/

Hubris
Hubris is the sense that, with the right tools, you can do just about anything.
It’s all a Simple Matter of Programming, right? It’s also the thing that’s likely
to make you fly too close to the Sun.

Events
Almost every week of the year has some Perl event. Here are some of the main
ones. Most are listed in The Perl Review Community Calendar (http://theperlre
view.com/community_calendar).

The Perl Conference, OSCON
O’Reilly & Associates’ The Perl Conference in 1997 wasn’t the first Perl event,
but it might have been the most important, historically. At this event, a small
group of New Yorkers formed the first Perl users group, NY.pm. This led to
the creation of several other Perl mongers groups that year; within a couple
of years, there were hundreds of groups. The Perl Conference expanded to
become The Open Source Conference, or just OSCON.

YAPC
YAPC, or Yet Another Perl Conference, comes in many forms and is on at
least four continents. Every year, one of these low cost, grass roots, mostly
noncommercial conferences is held in Asia, Europe, North America, and
South America. Although they share the same name, each is organized by a
different group.

Perl Workshops
Whereas YAPC runs over several days, a Perl workshop is usually a one- or
two-day event dedicated to a particular subject, such as the Perl QA Work-
shop, which focuses on issues of CPAN infrastructure and Perl testing. Not
many people know that the German Perl Workshop was the first organized
Perl event, even before there were Perl mongers or The Perl Conference.

Hackathons
The least structured of all Perl events are hackathons, where Perl people
assemble to do work in the same place. Sometimes the hackathon focuses
on a particular topic, and sometimes it's just a bunch of people working on
their own projects in the same room.

Events | 757

www.it-ebooks.info

http://theperlreview.com/community_calendar
http://theperlreview.com/community_calendar
http://ny.pm.org
http://www.it-ebooks.info/

Getting Help
Perl people are some of the most helpful people around, and even the people who
don’t like Perl tend to realize that. We think Perl’s roots in so many different
kinds of languages attract the sort of people who like different kinds of languages
rather than just the one they know. Perhaps they find a little good in everything.

If you need to find help, there are many people waiting to help you in almost any
Internet-type discussion thingy that exists. Here are several notable ones:

http://perldoc.perl.org
All of the Perl documentation is online, so you never have to live without
it―despite what your platform and packaging system think. Yes, some ven-
dors give you perl with no manuals.

Learn Perl
This website is your starting point for many of the beginner resources avail-
able, including many that we list here.

Perl beginners mailing list
Casey West started this mailing list as a safe place for absolute beginners to
ask the most basic questions in a safe environment. Other fora may be much
more, well, unregulated, and a bit more discouraging for the new Perl pro-
grammer.

Perlmonks
Perlmonks is a web bulletin board dedicated to Perl. It’s not specifically a
help desk, but if you’ve done your homework and ask a good question,
you’re likely to get top-notch help very quickly. You might want to read
“brian’s Guide to Solving Any Perl Problem” first.10

Stackoverflow
Stackoverflow is a question-and-answer site for general programming. Even
though it is not dedicated to Perl, there are several Perl experts who frequent
the site and answer questions.

Your local Perl mongers group
There are hundreds of Perl mongers groups across the world. Although each
has its particular flavor, it’s a good way for you to find and interact with Perl
users near you (or not so near you). Many of these groups put on workshops
and other events. Find the mongers nearest you at http://www.pm.org, and
if you don’t find one, start one!

10. This guide also appears in Mastering Perl.

758 | Chapter 24: Perl Culture

www.it-ebooks.info

http://perldoc.perl.org
http://learn.perl.org
http://www.perlmonks.org
http://www.perlmonks.org/?node_id=376075
http://www.stackoverflow.con
http://www.pm.org
http://my.safaribooksonline.com/book/programming/perl/9780596527242
http://www.it-ebooks.info/

Usenet newsgroups
The Perl newsgroups are a great, if sometimes cluttered, source of informa-
tion about Perl. Your first stop might be news:comp.lang.perl.moderated, a
moderated, low-traffic newsgroup that includes announcements and tech-
nical discussion. Because of the moderation, the newsgroup is quite reada-
ble.

The high-traffic news:comp.lang.perl.misc group discusses everything from
technical issues to Perl philosophy to Perl games and Perl poetry. Like Perl
itself, news:comp.lang.perl.misc is meant to be useful, and no question is too
silly to ask.11

If you're using a web browser to access Usenet instead of a regular newsreader,
prepend news: to the newsgroup name to get at one of these named news-
groups. (This only works if you have a news server.) Alternately, if you use
a Usenet searching service like Google Groups, specify *perl* as the news-
groups to search for.

Mailing lists
Many topics, both general and specific, have dedicated mailing lists. Many
of those are listed on http://lists.perl.org. You can find others directly from
project websites. You can also use sites such as http://markmail.org to search
the archives across many Perl lists.

IRC
Internet Relay Chat (IRC) is another favorite medium for Perl programmers,
and, if you like that sort of thing, you’ll find plenty of people to talk to. These
chat rooms don’t see themselves primarily as a help desk, so dropping by
just to ask a question without introducing yourself is a bit like crashing a
party. However, some, like #perl–help and #win32, are specifically help
channels. Find many IRC channels at http://www.irc.perl.org/.

11. Of course, some questions are too silly to answer. (Especially those already answered in the online
manpages and FAQs. Why ask for help on a newsgroup when you could find the same answer yourself
in less time than it takes to type in the question?)

Getting Help | 759

www.it-ebooks.info

news:comp.lang.perl.moderated
news:comp.lang.perl.misc
news:comp.lang.perl.misc
news:
http://groups.google.com/
http://lists.perl.org
http://markmail.org
http://www.irc.perl.org/
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

PART V

Reference Material

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 25

Special Names

This chapter is about variables that have special meanings to Perl. Most of the
punctuational names have reasonable mnemonics or analogs in one of the shells
(or both). But if you want to use long variable names as synonyms, just say:

use English "–no_match_vars";

at the top of your program. This aliases all the short names to long names in the
current package. Some of these variables even have medium names, generally
borrowed from awk. Most people eventually settle on using the short names, at
least for the more commonly used variables. Throughout this book, we consis-
tently refer to the short names, but we also often mention the long names (in
parentheses) so that you can look them up easily in this chapter.

The semantics of these variables can be quite magical. (To create your own magic,
see Chapter 14.) A few of these variables are read-only. If you try to assign values
to them, an exception will be raised.

In what follows, we’ll first provide a concise listing of the variables and functions
for which Perl assigns a special meaning, grouped by type, so you can look up
variables when you’re not sure of the proper name. Then we’ll explain all of the
variables alphabetically under their proper name (or their least improper name).

Special Names Grouped by Type
We used the word “type” loosely—the sections here actually group variables more
by their scope―that is, from where they’re visible.

Regular Expression Special Variables
The following special variables related to pattern matching are visible throughout
the dynamic scope in which the pattern match occurred. In other words, they

763

www.it-ebooks.info

http://www.it-ebooks.info/

behave as though they were declared with local, so you needn’t declare them that
way yourself. See Chapter 5.

$digits

$& ($MATCH)
$' ($POSTMATCH)
$` ($PREMATCH)

${^MATCH}
${^POSTMATCH}
${^PREMATCH}

$+ ($LAST_PAREN_MATCH)
%+ (%LAST_PAREN_MATCH)
@+ (@LAST_MATCH_END)

@–
%–

$^R ($LAST_REGEXP_CODE_RESULT)
$^N ($LAST_SUBMATCH_RESULT)

Per-Filehandle Variables
These special variables never need to be mentioned in a local, because they always
refer to some value pertaining to the currently selected output filehandle—each
filehandle keeps its own set of values. When you select another filehandle, the
old filehandle remembers the values it had for these variables, and the variables
now reflect the values of the new filehandle. See also the IO::Handle module.

$| ($AUTOFLUSH, $OUTPUT_AUTOFLUSH)
$− ($FORMAT_LINES_LEFT)
$= ($FORMAT_LINES_PER_PAGE)
$~ ($FORMAT_NAME)
$% ($FORMAT_PAGE_NUMBER)
$^ ($FORMAT_TOP_NAME)

Per-Package Special Variables
These special variables exist separately in each package. There should be no need
to localize them, since sort automatically does so on $a and $b, and the rest are
probably best left alone (though you will need to declare them with our if you
use strict).

$a
$AUTOLOAD
$b
@EXPORT

764 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

@EXPORT_OK
%EXPORT_TAGS
%FIELDS
@ISA
%OVERLOAD
$VERSION

Program-Wide Special Variables
These variables are truly global in the fullest sense—they mean the same thing
in every package, because they’re all forced into package main when unqualified
(except for @F, which is special in main, but not forced). If you want a temporary
copy of one of these, you must localize it in the current dynamic scope.

%ENV
%! (%ERRNO, %OS_ERROR)
%INC
%SIG
%^H

@_
@ARGV
@INC

$_
$0 ($PROGRAM_NAME)
$ARGV

$! ($ERRNO, $OS_ERROR)
$" ($LIST_SEPARATOR)
$$ ($PID, $PROCESS_ID)
$(($GID, $REAL_GROUP_ID)
$) ($EGID, $EFFECTIVE_GROUP_ID)
$, ($OFS, $OUTPUT_FIELD_SEPARATOR)
$. ($NR, $INPUT_LINE_NUMBER)
$/ ($RS, $INPUT_RECORD_SEPARATOR)
$: ($FORMAT_LINE_BREAK_CHARACTERS)
$; ($SUBSEP, $SUBSCRIPT_SEPARATOR)
$< ($UID, $REAL_USER_ID)
$> ($EUID, $EFFECTIVE_USER_ID)
$? ($CHILD_ERROR)
$@ ($EVAL_ERROR)
$[
$\ ($ORS, $OUTPUT_RECORD_SEPARATOR)
$]
$^A ($ACCUMULATOR)
$^C ($COMPILING)
$^D ($DEBUGGING)
${^ENCODING}
$^E ($EXTENDED_OS_ERROR)

Special Names Grouped by Type | 765

www.it-ebooks.info

http://www.it-ebooks.info/

${^GLOBAL_PHASE}
$^F ($SYSTEM_FD_MAX)
$^H
$^I ($INPLACE_EDIT)
$^L ($FORMAT_FORMFEED)
$^M
$^O ($OSNAME)
${^OPEN}
$^P ($PERLDB)
$^R ($LAST_REGEXP_CODE_RESULT)
${^RE_DEBUG_FLAGS}
${^RE_TRIE_MAXBUF}
$^S (EXCEPTIONS_BEING_CAUGHT)
$^T ($BASETIME)
${^TAINT}
${^UNICODE}
${^UTF8CACHE}
${^UTF8LOCALE}
$^V ($PERL_VERSION)
$^W ($WARNING)
${^WARNING_BITS}
${^WIDE_SYSTEM_CALLS}
${^WIN32_SLOPPY_STAT}
$^X ($EXECUTABLE_NAME)

Per-Package Special Filehandles
Except for DATA, which is always per-package, the following filehandles are always
assumed to be in main when not fully qualified with another package name:

_ # (underline)
ARGV
ARGVOUT
DATA
STDIN
STDOUT
STDERR

Per-Package Special Functions
The following subroutine names have a special meaning to Perl. They’re always
called implicitly because of some event, such as accessing a tied variable or trying
to call an undefined function. We don’t describe them in this chapter since they
all receive heavy-duty coverage elsewhere in the book.

Undefined function call interceptor (see Chapter 10):

AUTOLOAD

766 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

Moribund objects’ finalization (see Chapter 12):

DESTROY

Exception objects (see die in Chapter 27):

PROPAGATE

Auto-init and auto-cleanup functions (see Chapter 16):

BEGIN, CHECK, UNITCHECK, INIT, END

Threading support:

CLONE, CLONE_SKIP

Tie methods (see Chapter 14):

BINMODE, CLEAR, CLOSE, DELETE, DESTROY, EOF, EXISTS, EXTEND,
FETCH, FETCHSIZE, FILENO, FIRSTKEY, GETC, NEXTKEY, OPEN, POP,
PRINT, PRINTF, PUSH, READ, READLINE, SCALAR, SEEK, SHIFT,
SPLICE, STORE, STORESIZE, TELL, TIEARRAY, TIEHANDLE, TIEHASH,
TIESCALAR, UNSHIFT, and WRITE.

Special Variables in Alphabetical Order
We’ve alphabetized these entries according to the long variable name. If you don’t
know the long name of a variable, you can find it in the previous section. (Vari-
ables without alphabetical names are sorted to the front.)

So that we don’t have to keep repeating ourselves, each variable description in
Table 25-1 starts with one or more of these annotations.

Table 25-1. Annotations for special variables

Annotation Meaning

XXX Deprecated, do not use in anything new.

NOT Not Officially There (internal use only).

RMV Removed from Perl.

ALL Truly global, shared by all packages.

PKG Package global; each package can have its own.

FHA Filehandle attribute; one per I/O object.

DYN Dynamically scoped automatically (implies ALL).

LEX Lexically scoped at compile time.

RO Read only; raises an exception if you modify.

Special Variables in Alphabetical Order | 767

www.it-ebooks.info

http://www.it-ebooks.info/

When more than one variable name or symbol is listed, only the short one is
available by default. Using the English module makes the longer synonyms avail-
able to the current package, and only to the current package, even if the variable
is marked [ALL].

Entries of the form method HANDLE EXPR show object-oriented interfaces to the per-
filehandle variables provided by the IO::Handle module. As of v5.14, this module
is loaded on demand. (You may also use the HANDLE–>method(EXPR) notation if
you prefer.) These let you avoid having to call select to change the default output
handle before examining or changing that variable. Each such method returns
the old value of the attribute; a new value is set if the EXPR argument is supplied.
If not supplied, most of the methods do nothing to the current value, except for
autoflush, which assumes an argument of 1, just to be different.

$_ [ALL] The default input and pattern-search space. These pairs are equiva-
lent:

while (<>) {...} # equivalent only in unadorned while test
while (defined($_ = <>)) {...}

chomp
chomp($_)

/^Subject:/
$_ =~ /^Subject:/

tr/a–z/A–Z/
$_ =~ tr/a–z/A–Z/

Here are the places where Perl will assume $_ if you don’t specify something
to operate on:

• List functions like print and unlink, and unary functions like ord, pos,
and int, as well as all the file tests, except for –t, which defaults to
STDIN. All functions that default to $_ are so marked in Chapter 27.

• The pattern-matching operations m// and s///, and the transliteration
operations y/// and tr///, when used without an =~ operator.

• The iterator variable in a foreach loop (even when spelled for or when
used as a statement modifier) if no other variable is supplied.

• The implicit iterator variable in the grep and map functions. (There is no
way to specify a different variable for these.)

• The default place to put an input record when a <FH>, readline, or
glob operation’s result is tested by itself as the sole criterion of a while
test. This assignment does not occur outside of a while test or if any
additional elements are included in the while expression.

768 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

Because $_ is a global variable, this may sometimes lead to unwanted side
effects. As of v5.10, you may use a private (lexical) version of $_ by declaring
it with my. Moreover, declaring our $_ restores the global $_ in the current
scope.

(Mnemonic: underline is the underlying operand in certain operations.)

@_ [ALL] Within a subroutine, this array holds the argument list passed to that
subroutine. See Chapter 7.

_ (underline)

[ALL] This is the special filehandle used to cache the information from the
last successful stat, lstat, or file test operator (like –w $file or –d $file).

$digits

[DYN,RO] The numbered variables $1, $2, and so on (up just as high as you
want)1 contain the text matched by the corresponding set of parentheses in
the last matched pattern within the currently active dynamic scope.
(Mnemonic: like \digits.)

$] [ALL] Returns the version + patchlevel/1000. It can be used at the beginning
of a script to determine whether the Perl interpreter executing the script is
in the right range of versions. (Mnemonic: is this version of Perl in the right
bracket?) Example:

warn "No checksumming!\n" if $] < 3.019;
die "Must have prototyping available\n" if $] < 5.003;

See also the documentation of use VERSION and require VERSION for a con-
venient way to fail if the Perl interpreter is too old. See $^V for a more flexible
representation of the Perl version.

$[[XXX,LEX] The index of the first element in an array and of the first char-
acter in a substring. Default is 0, but we used to set it to 1 to make Perl
behave more like awk (or FORTRAN) when subscripting and when evalu-
ating the index and substr functions. Because it was found to be so danger-
ous, assignment to $[is now treated as a lexically scoped compiler directive,
and it cannot influence the behavior of any other file. (Mnemonic: [begins
subscripts.)

$# [RMV,ALL] Removed in the v5.10 release. Don’t use this; use printf instead.
$# once contained the output format for printed numbers, in a half-hearted
attempt to emulate awk’s OFMT variable. (Mnemonic: # is the number sign,

1. Although many regular expression engines only support up to nine backreferences, Perl has no such limit.
So if you go around writing $768, Perl won’t mind, although maintainers of your code might.

Special Variables in Alphabetical Order | 769

www.it-ebooks.info

http://www.it-ebooks.info/

but if you’re sharp, you’ll just forget it so you don’t make a hash of your
program and get pounded for it.)

This is not the sigil you use in front of an array name to get the last index,
like $#ARRAY. That’s still how you get the last index of an array in Perl. The
two have nothing to do with each other.

$* [RMV,ALL] This defunct variable could once upon a time be set to true to
get Perl to assume /m on every pattern match that doesn’t have an ex-
plicit /s. It was removed in the v5.10 release. (Mnemonic: * matches multiple
things.)

%− [DYN,RO] Like %+ (%LAST_PAREN_MATCH), this variable allows access
to the named capture groups in the last successful pattern match in the
currently active dynamic scope. Its keys are the names of the capture groups,
and its values are array references. Each contains the values matched by all
groups of that same name, should there be several of them, in the order in
which those names appeared in the pattern.

Do not mix calls to each on this hash while also doing pattern matching in
the loop itself, or things will change out from under you.

If you don’t like writing $−{NAME}[0] and such, use the standard
Tie::Hash::NamedCapture module to give %− an aliased name of your own
choosing.

$a [PKG] This variable is used by the sort function to hold the first of each pair
of values to be compared ($b is the second of each pair). The package for
$a is the same one that the sort operator was compiled in, which is not
necessarily the same as the one its comparison function was compiled into.
This variable is implicitly localized within the sort comparison block. Be-
cause it is a global, it is exempt from use strict complaints. Because it is an
alias for the actual array value, you might think you can modify it, but you
shouldn’t. See the sort function.

$ACCUMULATOR

$^A [ALL] The current value of the write accumulator for format lines. A format
contains formline commands that put their result into $^A. After calling its
format, write prints out the contents of $^A and empties it. So you never
actually see the contents of $^A unless you call formline yourself and then
look at it. See the formline function.

ARGV

[ALL] The special filehandle that iterates over command-line filenames in
@ARGV. Usually written as the null filehandle in the angle operator: <>.

770 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

$ARGV

[ALL] Contains the name of the current file when reading from the ARGV
handle using the <> or readline operators.

@ARGV

[ALL] The array containing the command-line arguments intended for the
script. Note that $#ARGV is generally the number of arguments minus one,
since $ARGV[0] is the first argument, not the command name; use scalar
@ARGV for the number of program arguments. See $0 for the program name.

ARGVOUT

[ALL] The special filehandle used while processing the ARGV handle under
the –i switch or the $^I variable. See the –i switch in Chapter 17.

$AUTOLOAD

[PKG] During the execution of an AUTOLOAD method, this per-package vari-
able contains the fully qualified name of the function on whose behalf the
AUTOLOAD method is running. See Chapter 25.

$b [PKG] The variable, companion to $a, used in sort comparisons. See $a and
the sort function for details.

$BASETIME

$^T [ALL] The time at which the script began running, in seconds, since the
epoch (the beginning of 1970 for Unix systems). The values returned by the –
M, –A, and –C file tests are relative to this moment.

$CHILD_ERROR

$? [ALL] The status returned by the last pipe close, backtick (``) command, or
wait, waitpid, or system functions. Note that this is not just the simple exit
code, but the entire 16-bit status word returned by the underlying wait(2)
or waitpid(2) syscall (or equivalent). Thus, the exit value of the subprocess
is in the high byte―that is, $? >> 8. In the low byte, $? & 127 says which
signal (if any) the process died from, while $? & 128 reports whether its
demise produced a core dump. (Mnemonic: similar to $? in the sh and its
offspring.)

Inside an END block, $? contains the value that is going to be given to exit.
You can modify $? in an END to change the exit status of the script. For
example:

END {
 $? = 1 if $? == 255; # die would make it 255
}

Special Variables in Alphabetical Order | 771

www.it-ebooks.info

http://www.it-ebooks.info/

Under VMS, the pragma use vmsish "status" makes $? reflect the true VMS
exit status instead of the default emulation of POSIX status.

If the h_errno variable is supported in C, its numeric value is returned via
$? if any of the gethost*() functions fail.

$COMPILING

$^C [ALL] The current value of the internal flag associated with the –c switch,
mainly of use with –MO=… to let code alter its behavior. For example, you
might want to AUTOLOAD at compile time instead of using the normal, deferred
loading so that code can be generated right away. Setting $^C = 1 is similar
to calling B::minus_c. See Chapter 16.

DATA

[PKG] This special filehandle refers to anything following either the
_ _END_ _ token or the _ _DATA_ _ token in the current file. The _ _END_ _ token
always opens the main::DATA filehandle, and so it is used in the main pro-
gram. The _ _DATA_ _ token opens the DATA handle in whichever package is in
effect at the time, so different modules can each have their own DATA file-
handle, since they (presumably) have different package names.

$DEBUGGING

$^D [ALL] The current value of the internal debugging flags, set from the –D
switch on the command line; see the section “Switches” on page 580 in
Chapter 17 for the values. Like its command-line equivalent, you can use
numeric or symbolic values―for example, $^D = 10 or $^D = "st".

(Mnemonic: value of the –D switch.)

${^ENCODING}

[XXX,ALL] The object reference to the Encode object that is used to convert
the source code to Unicode. Thanks to this variable, your Perl script does
not have to be written in UTF-8. Default is undef. The direct manipulation
of this variable is highly discouraged.

This variable was added in v5.8.2.

$EFFECTIVE_GROUP_ID

$) [ALL] The effective GID (group ID) of this process. If you are on a machine
that supports membership in multiple groups simultaneously, $) gives a
space-separated list of groups you are in. The first number is the one re-
turned by getegid(2), and the subsequent ones by getgroups(2), one of which
may be the same as the first number.

772 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

Similarly, a value assigned to $) must also be a space-separated list of num-
bers. The first number is used to set the effective GID, and the rest (if any)
are passed to the setgroups(2) syscall. To get the effect of an empty list for
setgroups, just repeat the new effective GID; for example, to force an effective
GID of 5 and an effectively empty setgroups list, say:

$) = "5 5";

(Mnemonic: parentheses are used to group things. The effective GID is the
group that’s right for you, if you’re running setgid.) Note: $<, $>, $(, and $)
can only be set on machines that support the corresponding system set-id
routine. $(and $) can be swapped only on machines supporting setregid(2).

$EFFECTIVE_USER_ID

$> [ALL] The effective UID of this process as returned by the geteuid(2) syscall.
Example:

$< = $>; # set real to effective uid
($<,$>) = ($>,$<); # swap real and effective uid

You can change both the effective uid and the real uid at the same time using
POSIX::setuid. Changes to $> require a check to $! to detect any possible
errors after an attempted change.

(Mnemonic: it’s the UID you went to, if you’re running setuid.) Note: $< and
$> can only be swapped on machines supporting setreuid(2). And sometimes
not even then.

%ENV [ALL] The hash containing your current environment variables. Setting a
value in %ENV changes the environment for both your process and child pro-
cesses launched after the assignment. (It cannot change a parent process’s
environment on any system resembling Unix.)

$ENV{PATH} = "/bin:/usr/bin";
$ENV{PAGER} = "less";
$ENV{LESS} = "MQeicsnf"; # our favorite switches to less(1)
system "man perl"; # picks up new settings

To remove something from your environment, make sure to use the delete
function instead of undef on the hash value.

Note that processes running as crontab(5) entries inherit a particularly im-
poverished set of environment variables. (If your program runs fine from the
command line but not under cron, this is probably why.) Also note that you
should set $ENV{PATH}, $ENV{SHELL}, $ENV{BASH_ENV}, and $ENV{IFS} if you
are running as a setuid script. See Chapter 20.

$EVAL_ERROR

Special Variables in Alphabetical Order | 773

www.it-ebooks.info

http://www.it-ebooks.info/

$@ [ALL] The currently raised exception or the Perl syntax error message from
the last eval operation. (Mnemonic: where was the syntax error “at”?) Unlike
$! ($OS_ERROR), which is set on failure but not cleared on success, $@ is guar-
anteed to be set (to a true value) if the last eval had a compilation error or
runtime exception, and guaranteed to be cleared (to a false value) if no such
problem occurred.

Warning messages are not collected in this variable. You can, however, set
up a routine to process warnings by setting $SIG{_ _WARN_ _}, as described
later in this section.

Note that the value of $@ may be an exception object rather than a string. If
so, you can still probably treat it as a string if the exception object has
stringification overloading defined for its class. If you propagate an excep-
tion by saying:

die if $@;

then an exception object will call $@–>PROPAGATE to see what to do. (A string
exception merely adds a “propagated at” line to the string.)

$EXCEPTIONS_BEING_CAUGHT

$^S [ALL] This variable reflects the current state of the interpreter, returning
true if inside an eval and false otherwise. It’s undefined if parsing of the
current compilation unit hasn’t finished yet, which may be the case in
$SIG{_ _DIE_ _} and $SIG{_ _WARN_ _} handlers. (Mnemonic: state of eval.)

$EXECUTABLE_NAME

$^X [ALL] The name that the perl binary itself was executed as, from C’s argv[0].

@EXPORT

[PKG] This array variable is consulted by the Exporter module’s import
method to find the list of other package variables and subroutines to be
exported by default when the module is used, or when the :DEFAULT import
tag is used. It is not exempt from use strict complaints, so it must be de-
clared with our or fully qualified by package name if you’ve enabled that
pragma. However, all variables whose names begin with the string
“EXPORT” are exempt from warnings about being used only once. See Chap-
ter 11.

@EXPORT_OK

[PKG] This array variable is consulted by the Exporter module’s import
method to determine whether a requested import is legal. It is not exempt
from use strict. See Chapter 11.

774 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

%EXPORT_TAGS

[PKG] This hash variable is consulted by the Exporter module’s import
method when an import symbol with a leading colon is requested, as in use
POSIX ":sys_wait_h". The keys are the colon tags, but without the leading
colon. The values should be references to arrays containing symbols to im-
port when the colon tag is requested, all of which must also appear in either
@EXPORT or @EXPORT_OK. It is not exempt from use strict. See Chapter 11.

$EXTENDED_OS_ERROR

$^E [ALL] Error information specific to the current operating system. Under
Unix, $^E is identical to $! ($OS_ERROR), but it differs under OS/2, VMS, and
Microsoft systems and on MacPerl. See your port’s information for specifics.
Caveats mentioned in the description of $! generally apply to $^E as well.
(Mnemonic: extra error explanation.)

@F [PKG] The array into which the input line’s fields are split when the –a com-
mand-line switch is given. If the –a option is not used, this array has no
special meaning. (This array is actually only @main::F, and not in all packages
at once.)

%FIELDS

[XXX,PKG] This hash is for internal use by the fields pragma to determine
the current legal fields in an object hash.

format_formfeed HANDLE EXPR

$FORMAT_FORMFEED

$^L [ALL] What a write function implicitly outputs to perform a form feed before
it emits a top of form header. Default is "\f".

format_lines_left HANDLE EXPR

[FHA] The number of lines left on the page of the currently selected output
handle, for use with the format declaration and the write function.
(Mnemonic: lines_on_page – lines_printed.)

format_lines_per_page HANDLE EXPR

$FORMAT_LINES_PER_PAGE

$= [FHA] The current page length (printable lines) of the currently selected
output handle, for use with format and write. Default is 60. (Mnemonic: =
has horizontal lines.)

format_line_break_characters HANDLE EXPR

$FORMAT_LINE_BREAK_CHARACTERS

Special Variables in Alphabetical Order | 775

www.it-ebooks.info

http://www.it-ebooks.info/

$: [ALL] The current set of characters after which a string may be broken to
fill continuation fields (starting with ̂) in a format. Default is " \n–" to break
on whitespace or hyphens. (Mnemonic: a colon is a technical word meaning
part of a line in poetry. Now you just have to remember the mnemonic…)

format_name HANDLE EXPR

$FORMAT_NAME

$~ [FHA] The name of the current report format for the currently selected out-
put handle. Default is the filehandle’s name. (Mnemonic: takes a turn after
$^.)

format_page_number HANDLE EXPR

$FORMAT_PAGE_NUMBER

$% [FHA] The current page number of the currently selected output handle, for
use with format and write. (Mnemonic: % is the page number register in
troff(1). What, you don’t know what troff is?)

format_top_name HANDLE EXPR

$FORMAT_TOP_NAME

$^ [FHA] The name of the current top-of-page format for the currently selected
output handle. Default is the name of the filehandle with _TOP appended.
(Mnemonic: points to top of page.)

$^H [NOT,LEX] This variable contains lexically scoped status bits (a.k.a. hints)
for the Perl parser. This variable is strictly for internal use only. Its availa-
bility, behavior, and contents are subject to change without notice. If you
touch it, you will undoubtedly die a horrible death of some loathsome trop-
ical disease unknown to science. (Mnemonic: we won’t give you a hint.)

%^H [NOT,LEX] The %^H hash provides the same lexical scoping semantics as
$^H, making it useful for implementation of lexically scoped pragmas. Read
the dire warnings listed under $^H, and then add to them the fact that this
variable is still experimental.

%INC

[ALL] The hash containing entries for the filename of each Perl file loaded
via do FILE, require, or use. The key is the filename you specified, and the
value is the location of the file actually found. The require operator uses this
array to determine whether a given file has already been loaded. For exam-
ple:

% perl –MLWP::Simple –le 'print $INC{"LWP/Simple.pm"}'
/opt/perl/5.6.0/lib/site_perl/LWP/Simple.pm

776 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

@INC

[ALL] The array containing the list of directories where Perl modules may
be found by do FILE, require, or use. It initially consists of the arguments to
any –I command-line switches and directories in the PERL5LIB environment
variable, followed by the default Perl libraries, such as:

/usr/local/lib/perl5/site_perl/5.14.2/darwin–2level
/usr/local/lib/perl5/site_perl/5.14.2
/usr/local/lib/perl5/5.14.2/darwin–2level
/usr/local/lib/perl5/5.14.2
/usr/local/lib/perl5/site_perl
.

followed by “.” to represent the current directory. If you need to modify this
list from within your program, try the lib pragma, which not only modifies
the variable at compile time, but also adds in any related architecture-de-
pendent directories (such as those that contain the shared libraries used by
XS modules):

use lib "/mypath/libdir/";
use SomeMod;

$INPLACE_EDIT

$^I [ALL] The current value of the inplace-edit extension. Use undef to disable
inplace editing. You can use this from within your program to get the same
behavior as the –i switch provides. For example, to do the equivalent of this
command:

% perl –i.orig –pe 's/foo/bar/g' *.c

you can use the following equivalent code in your program:

local $^I = ".orig";
local @ARGV = glob("*.c");
while (<>) {
 s/foo/bar/g;
 print;
}

(Mnemonic: value of the –i switch.)

$INPUT_LINE_NUMBER

$. [ALL] The current record number (usually line number) for the last file-
handle you read from (or called seek or tell on). The value may be different
from the actual physical line number in the file, depending on what notion
of “line” is in effect—see $/ ($INPUT_RECORD_SEPARATOR) on how to affect that.
An explicit close on a filehandle resets the line number. Because <> never

Special Variables in Alphabetical Order | 777

www.it-ebooks.info

http://www.it-ebooks.info/

does an explicit close, line numbers increase across ARGV files (but see ex-
amples under eof). Localizing $. also localizes Perl’s notion of “the last read
filehandle”. (Mnemonic: many programs use “.” to mean the current line
number.)

$INPUT_RECORD_SEPARATOR

$/ [ALL] The input record separator, newline by default, which is consulted by
the readline function, the <FH> operator, and the chomp function. It works
like awk’s RS variable and, if set to the null string, treats one or more empty
lines as a record terminator. (But an empty line must contain no hidden
spaces or tabs.) You may set it to a multicharacter string to match a multi-
character terminator, but you may not set it to a pattern—awk has to be
better at something.

Note that setting $/ to "\n\n" means something slightly different than setting
it to "", if the file contains consecutive empty lines. Setting it to "" will treat
two or more consecutive empty lines as a single empty line. Setting it to "\n
\n" means Perl will blindly assume that a third newline belongs to the next
paragraph.

Entirely undefining $/ makes the next line input operation slurp in the re-
mainder of the file as one scalar value:

undef $/; # enable whole–file mode
$_ = <FH>; # whole file now here
s/\n[\t]+/ /g; # fold indented lines

If you’re using the while (<>) construct to access the ARGV handle while $/ is
undefined, each read gets the next file:

undef $/;
while (<>) { # $_ has the whole next file in it
 ...
}

Although we used undef above, it’s safer to undefine $/ using local:

{
 local $/;
 $_ = <FH>;
}

Setting $/ to a reference to either an integer, a scalar containing an integer,
or a scalar that’s convertible to an integer will make readline and <FH> op-
erations read in fixed-length records (with the maximum record size being
the referenced integer) instead of variable-length records terminated by a
particular string. So this:

778 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

$/ = \32768; # or \"32768" or \$scalar_var_containing_32768
open(FILE, $myfile);
$record = <FILE>;

will read a record of no more than 32,768 bytes from the FILE handle. If you’re
not reading from a record-oriented file (or your operating system doesn’t
have record-oriented files), then you’ll likely get a full chunk of data with
every read. If a record is larger than the record size you’ve set, you’ll get the
record back in pieces. Record mode mixes well with line mode only on sys-
tems where standard I/O supplies a read(3) function; VMS is a notable ex-
ception.

Calling chomp when $/ is set to enable record mode—or when it is undefined
—has no effect. See also the –0 (the digit) and the –l (the letter) command-
line switches in Chapter 17. (Mnemonic: / is used to separate lines when
quoting poetry.)

@ISA

[PKG] This array contains names of other packages to look through when a
method call cannot be found in the current package. That is, it contains the
base classes of the package. The base pragma sets this implicitly. It is not
exempt from strict. See Chapter 12.

@LAST_MATCH_END

@+ [DYN,RO] This array holds the offsets of the ends of the last successful sub-
matches in the currently active dynamic scope. $+[0] is the offset of the end
of the entire match. This is the same value the pos function returns when
called on the variable that it was matched against. (When we say “offset of
the end”, we really mean the offset to the first character following the end of
whatever matched, so that we can subtract beginning offsets from end off-
sets and arrive at the length.) The nth element of this array holds the offset
of the nth submatch, so $+[1] is the offset where $1 ends, $+[2] the offset
where $2 ends, and so on. You can use $#+ to determine how many subgroups
were in the last successful match. See also @− (@LAST_MATCH_START).

After a successful match against some variable $var:

• $` is the same as substr($var, 0, $–[0])

• $& is the same as substr($var, $–[0], $+[0] – $–[0])

• $' is the same as substr($var, $+[0])

• $1 is the same as substr($var, $–[1], $+[1] – $–[1])

• $2 is the same as substr($var, $–[2], $+[2] – $–[2])

• $3 is the same as substr($var, $–[3], $+[3] – $–[3]), and so on

Special Variables in Alphabetical Order | 779

www.it-ebooks.info

http://www.it-ebooks.info/

@LAST_MATCH_START

@− [DYN,RO] This array holds the offsets of the beginnings of the last successful
submatches in the currently active dynamic scope. $−[0] is the offset of the
beginning of the entire match. The nth element of this array holds the offset
of the nth submatch, so $−[1] is the offset where $1 begins, $−[2] the offset
where $2 begins, and so on. You can use $#− to determine how many sub-
groups were in the last successful match. See also @+ (@LAST_MATCH_END).

$LAST_PAREN_MATCH

$+ [DYN,RO] This returns the last parenthesized submatch from the last suc-
cessful pattern in the currently active dynamic scope. This is useful when
you don’t know (or care) which of a set of alternative patterns matched.
(Mnemonic: be positive and forward looking.) Example:

$rev = $+ if /Version: (.*)|Revision: (.*)/;

%LAST_PAREN_MATCH

%+ [DYN,RO] Like %–, this variable allows access to the named capture groups
in the last successful pattern match in the currently active dynamic scope.
Its keys are the names of the capture groups, and its values are the string
matched by that name or, in the event that you have more than one group
by one name, the last such match. Use %– to find all of them.

Do not mix calls to each on this hash while also doing pattern matching in
the loop itself, or things will change out from under you.

If you don’t like writing $+{NAME} and such, use the standard Tie::Hash::Name
dCapture module to give %+ an aliased name of your own choosing.

$LAST_REGEXP_CODE_RESULT

$^R [DYN] This contains the result of the last snippet of code executed inside a
successful pattern with the (?{ CODE }) construct. $^R gives you a way to
execute code and remember the result for use later in the pattern, or even
afterward.

As the Perl regular expression engine moves through the pattern, it may en-
counter multiple (?{ CODE }) expressions. As it does, it remembers each value
of $^R so that if it later has to backtrack past an expression, it restores the
previous value of $^R. In other words, $^R has a dynamic scope within the
pattern, much like $1 and friends.

So $^R is not simply the result of the last snippet of code executed inside a
pattern. It’s the result of the last snippet of code leading to a successful

780 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

match. A corollary is that if the match was not successful, $^R will be restored
to whatever value it had before the match occurred.

If the (?{ CODE }) pattern is functioning directly as the conditional of a (?
(COND)IFTRUE|IFFALSE) subpattern, $^R is not set.

$LAST_SUBMATCH_RESULT

$^N The text matched by the used group most-recently closed (i.e., the group
with the rightmost closing parenthesis) of the last successful search pattern.

This is mainly used from inside (?{...}) blocks to examine text just
matched. For example, to effectively capture text to a variable (in addition
to $1, $2, etc.), replace (...) with:

(?:(PATTERN)(?{ $var = $^N }))

Setting and then using $var in this way relieves you from having to worry
about exactly which set of parentheses they are.

This variable was added in v5.8.

Mnemonic: the (possibly) Nested parenthesis that most recently closed.

$LIST_SEPARATOR

$" [ALL] When an array or slice is interpolated into a double-quoted string (or
the like), this variable specifies the string to put between individual ele-
ments. Default is a space. (Mnemonic: obvious, one hopes.)

$^M [ALL] By default, running out of memory is not trappable. However, if your
perl was compiled to take advantage of $^M, you may use it as an emergency
memory pool. If your Perl is compiled with −DPERL_EMER-
GENCY_SBRK and uses Perl’s malloc, then:

$^M = "a" x (1 << 16);

would allocate a 64K buffer for emergency use. See the INSTALL file in the
Perl source distribution directory for information on how to enable this op-
tion. As a disincentive to casual use of this advanced feature, there is no use
English long name for this variable (and we won’t tell you what the
mnemonic is).

$MATCH

$& [DYN,RO] The string matched by the last successful pattern match in the
currently active dynamic scope. (Mnemonic: like & in some editors.)

The use of this variable anywhere in a program imposes a considerable per-
formance penalty on all regular expression matches. To avoid this penalty,
you can extract the same substring by using @−. Starting with v5.10, you can

Special Variables in Alphabetical Order | 781

www.it-ebooks.info

http://www.it-ebooks.info/

use the /p match flag and the ${^MATCH} variable to do the same thing for
particular match operations.

${^MATCH}

[DYN,RO] This variable is just like $& ($MATCH) except that it does not incur
the performance penalty associated with that variable, and it is only guar-
anteed to contain a defined value when the pattern was compiled or exe-
cuted with the /p modifier.

This variable was added in v5.10.

$OSNAME

$^O [ALL] This variable contains the name of the platform (usually the operating
system) for which the current perl binary was compiled. It’s a cheap alter-
native to pulling it out of the Config module.

$OS_ERROR

$ERRNO

$! [ALL] If used in a numeric context, yields the current value of the last syscall
error, with all the usual caveats. (This means that you shouldn’t depend on
the value of $! to be anything in particular, unless you’ve gotten a specific
error return indicating a system error.) If used in a string context, $! yields
the corresponding system error string. You can assign an error number to
$! if, for instance, you want $! to return the string for that particular error,
or you want to set the exit value for die. See also the Errno. (Mnemonic:
what just went bang?)

%OS_ERROR

%ERRNO

%! [ALL] Each element of %! has a true value only if $! is set to that value. For
example, $!{ENOENT} is true if and only if the current value of $! is ENOENT;
that is, if the most recent error was “No such file or directory” (or its moral
equivalent: not all operating systems, and certainly not all languages, give
that exact error). To check for whether a particular key is meaningful on
your system, use exists $!{SOMEKEY}; for a list of legal keys, use keys %!. See
the documentation for the Errno module for more information, and see also
$! above.

This variable was added in v5.005.

[ALL] This hash is defined only if you’ve loaded the standard Errno module.
Once you’ve done this, you can subscript into %! using a particular error
string, and its value is true only if that’s the current error. For example, $!

782 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

{ENOENT} is true only if the C errno variable is currently set to the C
#define value, ENOENT. This is convenient for accessing vendor-specific sym-
bols.

autoflush HANDLE EXPR

$AUTOFLUSH

$| [FHA] If set to true, forces a buffer flush after every print, printf, and
write on the currently selected output handle. (We call this command buffer-
ing. Contrary to popular belief, setting this variable does not turn off
buffering.) The default is false, which on many systems means that STDOUT
will be line buffered if output is to the terminal, and block buffered other-
wise, even on pipes and sockets. Setting this variable is useful when you are
outputting to a pipe, such as when you are running a Perl script under
rsh(1) and want to see the output as it’s happening. If you have pending,
unflushed data in the currently selected filehandle’s output buffer when this
variable is set to true, that buffer will be immediately flushed as a side effect
of assignment. See the one-argument form of select for examples of con-
trolling buffering on filehandles other than STDOUT. (Mnemonic: when you
want your pipes to be piping hot.)

This variable has no effect on input buffering; for that, see getc in Chap-
ter 27 or the example in the POSIX module.

$OUTPUT_FIELD_SEPARATOR

$/ [ALL] The output field separator (terminator, actually) for print. Ordinarily,
print simply prints out the list elements you specify without anything be-
tween them. Set this variable as you would set awk’s OFS variable to specify
what is printed between fields. (Mnemonic: what is printed when there is a
“,” in your print statement.)

$OUTPUT_RECORD_SEPARATOR

$\ [ALL] The output record separator (terminator, actually) for print. Ordi-
narily, print simply prints out the comma-separated fields you specify, with
no trailing newline or record separator assumed. Set this variable as you
would set awk’s ORS variable to specify what is printed at the end of the
print. (Mnemonic: you set $\ instead of adding "\n" at the end of the print.
Also, it’s just like /, but it’s what you get “back” from Perl.) See also the –l
(for “line”) command-line switch in Chapter 17.

Special Variables in Alphabetical Order | 783

www.it-ebooks.info

http://www.it-ebooks.info/

%OVERLOAD

[NOT,PKG] This hash’s entries are set internally by the use overload pragma
to implement operator overloading for objects of the current package’s class.
See Chapter 13.

$PERLDB

$^P [NOT,ALL] The internal variable for enabling the Perl debugger (perl –d).

$PERL_VERSION

$^V [ALL] The revision, version, and subversion of the Perl interpreter. This
variable first appeared in v5.6.0; earlier versions of perl will see an undefined
value. Before v5.10.0, $^V was represented as a v-string.

$^V can be used to determine whether the Perl interpreter executing a script
is in the right range of versions. For example:

warn "Hashes not randomized!\n" unless $^V && $^V gt v5.8;

To convert $^V into its string representation, use sprintf’s "%vd" conversion:

printf "version is v%vd\n", $^V; # Perl's version

Newer versions of Perl will do this automatically:

$ perl –E 'say $^V'
v5.14.0

$ perl –E 'say $^V 5.10.1'
1

See the documentation of use VERSION and require VERSION for a convenient
way to fail if the running Perl interpreter is older than you were hoping. See
also $] for the original representation of the Perl version.

Mnemonic: use ^V for Version Control.

$POSTMATCH

$' [DYN,RO] The string following whatever was matched by the last successful
pattern in the currently active dynamic scope. (Mnemonic: ' often follows
a quoted string.) Example:

$_ = "abcdefghi";
/def/;
print "$`:$&:$'\n"; # prints abc:def:ghi

Thanks to dynamic scope, Perl can’t know which patterns will need their
results saved away into these variables, so mentioning $` or $' anywhere in
a program incurs a performance penalty on all pattern matches throughout
the program. This isn’t much of an issue in small programs, but you prob-

784 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

ably should avoid this pair when you’re writing reusable module code. The
example above can be equivalently recoded like this, but without the global
performance hit:

$_ = "abcdefghi";
/(.*?)(def)(.*)/s; # /s in case $1 contains newlines
print "$1:$2:$3\n"; # prints abc:def:ghi

${^POSTMATCH}

[DYN,RO] This variable is just like $' ($POSTMATCH) except that it does not
incur the performance penalty associated with that variable, and it is only
guaranteed to contain a defined value when the pattern was compiled or
executed with the /p modifier.

This variable was added in v5.10.

$PREMATCH

$` [DYN,RO] The string preceding whatever was matched by the last successful
pattern in the currently active dynamic scope. (Mnemonic: ̀ often precedes
a quoted string.) See the performance note under $', previously.

${^PREMATCH}

This is just like $` ($PREMATCH) except that it does not incur the performance
penalty associated with that variable, and it is only guaranteed to contain a
defined value when the pattern was compiled or executed with the /p modi-
fier.

This variable was added in v5.10.

$PROCESS_ID

$$ [ALL] The process number (PID) of the Perl running this script. This vari-
able is automatically updated upon a fork. In fact, you can even set $$ your-
self; this will not, however, change your PID. That would be a neat trick.
(Mnemonic: same as in the various shells.)

You need to be careful not to use $$ anywhere it might be misinterpreted as
a dereference: $$alphanum. In this situation, write ${$}alphanum to distin-
guish it from ${$alphanum}.

$PROGRAM_NAME

$0 [ALL] Contains the name of the file containing the Perl script being executed.
Assignment to $0 is magical: it attempts to modify the argument area that
the ps(1) program normally reports on. This is more useful as a way of in-
dicating the current program state than it is for hiding the program you’re

Special Variables in Alphabetical Order | 785

www.it-ebooks.info

http://www.it-ebooks.info/

running. But it doesn’t work on all systems. (Mnemonic: same as sh, ksh,
bash, etc.)

In multithreaded scripts, Perl coordinates the threads so that any thread may
modify its copy of the $0, and the change becomes visible to ps (assuming
the operating system plays along). Note that the view other threads have of
$0 will not change, since they have their own copies of it.

If the program has been given to Perl via the switches –e or –E, $0 will contain
the string "–e".

$REAL_GROUP_ID

$([ALL] The real group ID (GID) of this process. If you are on a platform that
supports simultaneous membership in multiple groups, $(gives a space-
separated list of groups you are in. The first number is the one returned by
getgid(2), and the subsequent ones by getgroups(2), one of which may be the
same as the first number.

However, a value assigned to $(must be a single number used to set the real
GID. So the value given by $(should not be assigned back to $(without
being forced to be numeric, such as by adding zero. This is because you can
have only one real group. See $) ($EFFECTIVE_GROUP_ID) instead, which al-
lows you to set multiple effective groups.

(Mnemonic: parentheses are used to group things. The real GID is the group
you left, if you’re running setgid.)

$REAL_USER_ID

$< [ALL] The real user ID (UID) of this process as returned by the getuid(2)
syscall. Whether and how you can modify this is subject to the vagaries of
your system’s implementation—see examples under $> ($EFFEC
TIVE_USER_ID). Because changes to $< require a system call, check $! after a
change attempt to detect possible errors. (Mnemonic: it’s the UID you came
from, if you’re running setuid.)

%SIG

[ALL] The hash used to set signal handlers for various signals. (See the sec-
tion “Signals” on page 518 in Chapter 15.) For example:

sub handler {
 my $sig = shift; # 1st argument is signal name
 syswrite STDERR, "Caught a SIG$sig––shutting down\n";
 # Avoid standard I/O in async handlers
 # to suppress core dumpage. (Even that
 # string concat is risky.)
 close LOG; # This calls standard I/O, so

786 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

 # may dump core anyway!
 exit 1; # But since we're exiting, no
 # harm in trying
}

$SIG{INT} = \&handler;
$SIG{QUIT} = \&handler;
...
$SIG{INT} = "DEFAULT"; # restore default action
$SIG{QUIT} = "IGNORE"; # ignore SIGQUIT

The %SIG hash contains undefined values corresponding to those signals for
which no handler has been set. A handler may be specified as a subroutine
reference or as a string. A string value that is not one of the two special
actions “DEFAULT” or “IGNORE” is the name of a function that, if unqualified
by package, is interpreted to be the main package. Here are some other ex-
amples:

$SIG{PIPE} = "Plumber"; # okay, assumes main::Plumber
$SIG{PIPE} = \&Plumber; # fine, use Plumber from current package

Certain internal hooks can also be set using the %SIG hash. The routine in-
dicated by $SIG{_ _WARN_ _} is called when a warning message is about to be
printed. The warning message is passed as the first argument. The presence
of a _ _WARN_ _ hook causes the ordinary printing of warnings to STDERR to be
suppressed. You can use this to save warnings in a variable or to turn warn-
ings into fatal errors, like this:

local $SIG{_ _WARN_ _} = sub { die $_[0] };
eval $proggie;

This is similar to saying:

use warnings qw/FATAL all/;
eval $proggie;

except that the first has dynamic scope, whereas the second has lexical scope.

The routine indicated by $SIG{_ _DIE_ _} provides a way to turn a frog ex-
ception into a prince exception with a magical kiss, which often doesn’t
work. The best use is for a moribund program that’s about to die of an
untrapped exception to do some last-moment processing on its way out.
You can’t save yourself this way, but you can give one last hurrah.

The exception message is passed as the first argument. When a _ _DIE_ _ hook
routine returns, exception processing continues as it would have in the ab-
sence of the hook, unless the hook routine itself exits via a goto, a loop exit,
or a die. The _ _DIE_ _ handler is explicitly disabled during the call so that
you yourself can then call the real die from a _ _DIE_ _ handler. (If it weren’t

Special Variables in Alphabetical Order | 787

www.it-ebooks.info

http://www.it-ebooks.info/

disabled, the handler would call itself recursively forever.) The handler for
$SIG{_ _WARN_ _} works similarly.

Only the main program should set $SIG{_ _DIE_ _}, not modules. That’s be-
cause, currently, even exceptions that are being trapped still trigger a
$SIG{_ _DIE_ _} handler. This is strongly discouraged because of its potential
for breaking innocent modules who aren’t expecting their predicted excep-
tions to be mysteriously altered. Use this feature only as a last resort, and,
if you must, always put a local on the front to limit the period of danger.

If you’re used to programming languages that react to uncaught exceptions
by providing a messy stack dump all over the screen, you can get Perl to do
much the same thing by putting this in your main program:

use Carp;
$SIG{_ _DIE_ _} = sub { confess "$0: UNCAUGHT EXCEPTION: @_" unless $^S };

Do not attempt to build an exception-handling mechanism on this feature.
Use eval {} to trap exceptions instead. For example, instead of using a
_ _DIE_ _ hook, it’s cleaner to arrange for your entire main program to be in
a subroutine and wrap that with a standard exception catcher―a regular
eval BLOCK:

use Carp;
eval {
 function_that_does_everything();
 1;
} || confess "$0: Caught unexpected exception: $@";

STDERR

[ALL] The special filehandle for standard error in any package.

STDIN

[ALL] The special filehandle for standard input in any package.

STDOUT

[ALL] The special filehandle for standard output in any package.

$SUBSCRIPT_SEPARATOR

$; [ALL] The subscript separator for multidimensional hash emulation. If you
refer to a hash element as:

$foo{$a,$b,$c}

it really means:

$foo{join($;, $a, $b, $c)}

But don’t put:

@foo{$a,$b,$c} # a slice––note the @

788 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

which means:

($foo{$a},$foo{$b},$foo{$c})

The default is "\034", the same as SUBSEP in awk. Note that if your keys
contain binary data, there might not be any safe value for $;. (Mnemonic:
comma—the syntactic subscript separator—is a semi-semicolon. Yeah, we
know it’s pretty lame, but $, is already taken for something more important.)

Although we haven’t deprecated this feature, you should instead consider
using “real” multidimensional hashes now, such as $foo{$a}{$b}{$c} in-
stead of $foo{$a,$b,$c}. The fake ones may be easier to sort, however, and
they are much more amenable to use as simple DBM files.

$SYSTEM_FD_MAX

$^F [ALL] The maximum “system” file descriptor, ordinarily 2. System file de-
scriptors are passed to new programs during an exec, while higher file de-
scriptors are not. Also, during an open, system file descriptors are preserved
even if the open fails. (Ordinary file descriptors are closed before the open is
attempted and stay closed if the open fails.) Note that the close-on-exec status
of a file descriptor will be decided according to the value of $^F at the time
of the open, not the time of the exec. Avoid this by temporarily jacking $^F
through the roof first:

{
 local $^F = 10_000;
 pipe(HITHER,THITHER) || die "can't pipe: $!";
}

${^TAINT}

[ALL,RO] This read-only variable reflects whether taint mode is on, off, or
just giving warnings:

0 Taint mode is off (the default).

1 Taint mode is on, usually because the program was run with the -T com-
mand-line switch.

-1 Taint warnings only, enabled by the -t or -TU command-line switches.

This variable was added in v5.8.

${^UNICODE}

[XXX,ALL] This variable reflects certain internal Unicode settings of Perl.
This variable is set to a numeric value during Perl startup by the –C com-
mand-line switch or the PERL_UNICODE environment variable; thereafter, it is
read-only.

Special Variables in Alphabetical Order | 789

www.it-ebooks.info

http://www.it-ebooks.info/

This variable was added in v5.8.2.

${^UTF8CACHE}

[NOT, ALL] Internal variable that controls the state of the internal UTF-8
offset caching code:

1 For on (the default)

0 For off

-1 To debug the caching code by checking all its results against linear scans and
panicking on any discrepancy. Set by the -Ca command-line switch.

This variable was added in v5.8.9.

${^UTF8LOCALE}

[NOT,ALL] This variable indicates whether a UTF-8 locale was detected by
Perl at startup. This information is used by Perl when in its “adjust utf8ness
to locale” mode, set by the –CL command-line switch.

This variable was added in v5.8.8.

$VERSION

[PKG] This variable is accessed whenever a minimum acceptable version of
a module is specified, as in use SomeMod 2.5. If $SomeMod::VERSION is less than
that, an exception is raised. Technically, it’s the UNIVERSAL–>VERSION method
that looks at this variable, so you could define your own VERSION function
in the current package if you want something other than the default behav-
ior. See Chapter 12.

$WARNING

$^W [ALL] The current Boolean value of the global warning switch (not to be
confused with the global warming switch, about which we hear many global
warnings). See also the warnings pragma in Chapter 29, and the –W and –
X command-line switches for lexically scoped warnings, which are unaffec-
ted by this variable. (Mnemonic: the value is related to the –w switch.)

${^WARNING_BITS}

[NOT,ALL] The current set of warning checks enabled by the use warn
ings pragma. See use warnings in Chapter 29 for more details.

${^WIDE_SYSTEM_CALLS}

[ALL] Global flag that enables all syscalls made by Perl to use wide-character
APIs native to the system, if available. This can also be enabled from the
command line using the –C command-line switch. The initial value is typi-
cally 0 for compatibility with Perl versions earlier than v5.6, but Perl may
automatically set it to 1 if the system provides a user-settable default (such

790 | Chapter 25: Special Names

www.it-ebooks.info

http://www.it-ebooks.info/

as via $ENV{LC_CTYPE}). The bytes pragma always overrides the effect of this
flag in the current lexical scope.

${^WIN32_SLOPPY_STAT}

[ALL] If this variable is set to a true value, then stat on Windows will not
try to open the file. This means that the link count cannot be determined
and file attributes may be out of date if additional hardlinks to the file exist.
On the other hand, not opening the file is considerably faster, especially for
files on network drives.

This variable could be set in the sitecustomize.pl file to configure the local
Perl installation to use “sloppy” stat by default. See the documentation for
–f in “Command Switches” in perlrun for more information about site cus-
tomization.

This variable was added in v5.10.

Special Variables in Alphabetical Order | 791

www.it-ebooks.info

http://perldoc.perl.org/perlrun.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 26

Formats

Perl is known for its ability to tear apart text in many different ways―that’s the
Extraction part that made it popular. Perl also makes it easy to create formatted
strings for its Report job. This chapter covers the printf and sprintf functions,
the pack and unpack functions, and formats, historically intended for printing
nicely formatted reports on your line-printer, but still useful from time to time
in this millennium.

String Formats
Perl can create a string formatted by the usual printf conventions of the C library
function sprintf. The sprintf version returns a string, and the printf version
outputs either to the default or supplied filehandle:

sprintf FORMAT, LIST
printf FORMAT, LIST
printf FILEHANDLE FORMAT, LIST

The sprintf argument handling is a bit special. Its first argument is always taken
as a scalar, even if it’s an array. This is probably not what you want since it uses
@array in scalar context and only prints the number of elements in the array:

my @array = ('%d %d %d', 1, 2, 3);
sprintf @array;

The arguments for printf are different since it handles an optional FILEHANDLE
argument.

793

www.it-ebooks.info

http://www.it-ebooks.info/

The FORMAT string contains text with embedded field specifiers into which the
elements of LIST are substituted, one per field. This feature is one of the things
that Perl stole from C, so look at the sprintf(3) or printf(3) on your system for an
explanation of the general principles.

Perl does its own sprintf formatting—it emulates the C function sprintf, but it
doesn’t use it.1 As a result, any nonstandard extensions in your local sprintf(3)
function are not available from Perl.

Perl’s sprintf permits the universally known conversions shown in Table 26-1.

Table 26-1. Formats for sprintf

Field Meaning

%% A literal percent sign

%b An unsigned integer, in binary

%B Like %b, but using an uppercase “B” with the # flag

%c A character with the given ordinal value

%d A signed integer, in decimal

%e A floating-point number, in scientific notation, with a lowercase “e”

%E Like %e, but using an uppercase “E”

%f A floating-point number, in fixed decimal notation

%g A floating-point number, in %e or %f notation

%G Like %g, but with an uppercase “E” (if applicable)

%h A C short or unsigned short, depending on the compiler that built perl

%n Stores the number of C chars output so far into the next argument

%o An unsigned integer, in octal

%p A pointer (outputs the Perl value’s address in hexadecimal)

%s A string of unspecified width

%u An unsigned integer, in decimal

%x An unsigned integer, in hexadecimal, using lowercase letters

%X An unsigned integer, in hexadecimal, using uppercase letters

You might instead want Table 26-2 to see those conversions by the type of value
they expect.

1. Except for floating-point numbers, and even then only the standard modifiers are allowed.

794 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

Table 26-2. Formats by value type

Type Format

Integers %b %B %d %h %o %p %u

Floating point %e %E %f %g %G

Strings %c %s

For some numeric conversions, you can specify how the sprintf should interpret
the number instead of relying on the sizes that your compiler supplies. See Ta-
ble 26-3.

Table 26-3. sprintf numeric conversions

Field Meaning

hh C char or unsigned char (v5.14 and later)

h C short or unsigned short (v5.14 and later)

j C type intmax_t (v5.14 or later, with a C99 compiler)

l C long or unsigned long

q, L, l l C long long, unsigned long long, or quad (compiler must support quads)

t C ptrdiff_t (v5.14 or later)

v Interpret string as a vector of integers, output as numbers separated either
by dots or by an arbitrary string received from the argument list when the
flag is preceded by *

z C size_t (v5.14 or later)

For backward (and we do mean “backward”) compatibility, Perl permits these
unnecessary but widely supported conversions in Table 26-4. We segregate these
from Table 26-1 in the hopes that you won’t use them.

Table 26-4. Backward compatible synonyms for numeric conversions

Field Meaning

%i A synonym for %d

%D A synonym for %ld

%U A synonym for %lu

%O A synonym for %lo

%F A synonym for %f

String Formats | 795

www.it-ebooks.info

http://www.it-ebooks.info/

Between the % and the format letter, you may specify several additional attributes
controlling the interpretation of the format, as listed in Table 26-5.

Table 26-5. Format modifiers for sprintf

Flag Meaning

space Prefix positive number with a space

+ Prefix positive number with a plus sign

– Left-justify within the field

0 Use zeros, not spaces, to right-justify

Prefix nonzero octal with “0”, nonzero hex with “0x”

* Use the value of the next argument as the field width

number$ Use the value of the argument at position number

*number$ Use the value of the argument at position number as the field width

number Minimum field width (there is no maximum width equivalent)

. number “Precision”: digits after decimal point for floating-point numbers, maxi-
mum length for string, minimum length for integer

Here are some examples. Putting a space in front of the specifier puts exactly one
space in front of the number, no matter its size:

printf "<% d>", 1; # "< 1>"

Using a + appends a positive sign to the number, even if it is 0:2

printf "<%+d>", 1; # "<+1>"
printf "<%+d>", 2; # "<+2>"

Using a space and a + together, in any order, always puts a + in front of the positive
number:

printf "<%+ d>", 3; # "<+3>"
printf "<% +d>", 5; # "<+5>"

Specifying a precision for an integer will zero pad it. The + doesn’t count against
the precision:

printf "<%.5d>", 8; # "<00008>"
printf "<%+.5d>", 13; # "<+00013>"

If the width is larger, though, it only zero pads to the width of the precision. You
can left or right justify the values:

2. This is different from the concept of 0+ and 0-, the limit of 0 approached from different sides.

796 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

printf "<%–10.6d>", 21; # "<000021 >"
printf "<%10.6d>", 34; # "< 000034>"
printf "<%010.6d>", 55; # "< 000055>"
printf "<%+10.6d>", 89; # "< +000089>"

Those work for any of the integer formats.

Strings by default align to the right, although a minus aligns the string to the left:

printf "<%6s>", 144; # "< 144>"
printf "<%–6s>", 233; # "<233 >"

A leading 0 pads the blank positions with zeros, but only to the left, even if the
value isn’t a number:

printf "<%06s>", 377; # "<000377>"
printf "<%–06s>", 610; # "<610 >" – no zeroes
printf "<%06s>", "Perl"; # "<00Perl>"

The width is handy to align strings in a fixed column format. However, printf
uses the width only for the minimum. It does not truncate strings:

printf "<%5s>", "Amelia"; # "<Amelia>", with all six characters

If you want to truncate the string should it overflow, you can use .number after
the field width:

printf "<%5.5s>", "Camelia"; # "<Camel>", with only five characters

The width of the field and the number of characters you take don’t have to match
up. If you take more characters than the width, the string still overflows:

printf "<%3.5s>\n", "Camelia"; # "<Camel>"

Normally, printf fills in the specifiers with the next unused argument, but you
can tell it explicitly which argument to use with number$. When you use number
$, you must be careful to use uninterpolated strings or escape the dollar sign, or
else Perl will think you want a variable interpolated there.

printf '%2$d %1$d', 12, 34; # "34 12"
printf '%3$d %d %1$d', 1, 2, 3; # "3 1 1"

This also allows you to reuse arguments, too:

printf '%2$d %1$d %2$d', 12, 34; # "34 12 34"

Sometimes you don’t know the width ahead of time, so you can specify it as an
argument and take the value from the next argument with *. This takes an ar-
gument for the width before it takes an argument for the string:

printf "<%*s>", 6, "Perl"; # "< Perl>"

If the argument’s value is negative, it’s left-justified:

printf "<%*s>", –6, "Perl"; # "<Perl >"

String Formats | 797

www.it-ebooks.info

http://www.it-ebooks.info/

If you don’t want to use the next argument, you can use number$ to specify the
width argument by its position:

printf '<%*2$s>', "a", 6; # "< a>"

If you want to take the field width and the maximum number of characters in the
string from the argument list, you can use * in both places:

printf "<%*.*s>\n", 10, 5, "Camelia"; # "< Camel>"

but you can only use an argument for the width:

printf '<%*2$.*s>', "Camelia", 10, 5; # "< Camelia>"
printf '<%*.*2$s>', "Camelia", 10, 5; # "<%*.*2$s>"

A # adds extra characters to the front of a number to denote its base, but only
when the value is not 0 (in which case it doesn’t matter):

printf "<%#o>", 37; # "<045>"

printf "<%#x>", 42; # "<0x2a>"
printf "<%#X>", 42; # "<0X2A>"

printf "<%#b>", 137; # "<0b10001001>"
printf "<%#B>", 137; # "<0B10001001>"

When the # flag and a precision are given in the %o conversion, the precision won’t
count the leading “0”:

printf "<%#.5o>", 0377; # "<00377>"
printf "<%#.5o>", 010755; # "<010755>"
printf "<%#.0o>", 0; # "<0>"

For floating-point values (%e, %f, and %g), you can specify the number of places
after the decimal point with .number. If you are using a width, this goes after the
width. Notice that this specifier rounds the number:

printf "<%f>", 3.14159265; # "<3.141593>"
printf "<%.1f>", 3.14159265; # "<3.1>"
printf "<%.0f>", 3.14159265; # "<3>"

printf "<%e>", 6.62606857e–34; # "<6.626069e–34>"
printf "<%.1e>", 1.05457148e–34; # "<1.1e–34>"

If use locale (see Chapter 29) is in effect and you called POSIX::setlocale, the
format uses the decimal separator for that locale:

use POSIX;
use locale;

POSIX::setlocale(LC_NUMERIC, "fr_FR");
printf "<%f>", 3.1415926; # "<3,141593>"

798 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

The %g specifier uses your system preferences, so you might get slightly different
results:

printf "<%g>", 1 << 31; # "<2.14748e+09>"
printf "<%.5g>", 1 << 31; # "<2.1475e+09>"
printf "<%.10g>", 1 << 31; # "<2147483648>"

The number of digits used for exponents less than 100 depends on your system;
some may zero pad them:

printf "<%g>", 1 << 31; # "<2.14748e+009>" maybe

The v modifier is different than the other ones. It breaks apart its string argument,
considering each character to be an integer that it formats as you tell it. It joins
the integers with a dot. Used with a hex format specifier, this is convenient for
printing out sequences of codepoints in a “Unicode-like” notation:

printf "<%vd>", "\x5\xE\x2"; # "5.14.2"

use utf8;
printf "<%vd>", "À%{"; # "<65.758.37.123>"
printf "<%vX>", "À%{"; # "<41.300.25.7B>"
printf "U+v%04x", "À%{"; # "U+0041.0300.0025.007B"

(Notice how the “À” grapheme above requires two separate codepoints.)

If you don’t want to use a dot to join the numbers, you can specify your separator
as an argument:

printf "<%*vX>", ":", "À%{"; # "<41:300:325:7B>"
printf "<%*2$vX>", "À%{", ":"; # "<41:300:25:7B>"

Graphemes, in particular multicodepoint grapheme clusters, are an issue here. As
we’ll see with the other two types of formats described in this chapter, Perl gives
the wrong answer when calculating widths for Unicode data that contains non-
printing characters, combining marks, and wide characters. The same is also true
of field widths in format strings for printf and sprintf. There is an example in
the section “Graphemes and Normalization” on page 290 in Chapter 6 showing
how to use the columns method from the Unicode::GCString module to trick
printf into doing the right thing with all these, despite itself. The basic strategy
is to prepad to the correct width beforehand using the smarter columns method
instead of expecting simpleminded printf to suss out something so sophisticated.

Binary Formats
If you’re familiar with more traditional languages, you may have come across the
concept of records or struct types. In contrast to sprintf, which is primarily
oriented toward human-readable output, the pack and unpack functions are

Binary Formats | 799

www.it-ebooks.info

http://www.it-ebooks.info/

useful for low-level, repetitive conversion and formatting of basic datatypes into
(and back out of) string representations of these struct or record types. The two
functions share a template language, with minor differences, described in the
next section.

pack
pack TEMPLATE, LIST

This function takes a LIST of ordinary Perl values, converts them into a string of
bytes according to the TEMPLATE, and returns this string. The argument list will
be padded or truncated as necessary. That is, if you provide fewer arguments
than the TEMPLATE requires, pack assumes additional null arguments. If you pro-
vide more arguments than the TEMPLATE requires, the extra arguments are ignored.
Unrecognized format elements in TEMPLATE will raise an exception.

The template describes the structure of the string as a sequence of fields. Each
field is represented by a single character that describes the type of the value and
its encoding. For instance, a format character of N specifies an unsigned four-byte
integer in big-endian byte order.

Fields are packed in the order given in the template. For example, to pack an
unsigned one-byte integer and a single-precision floating-point value into a
string, you’d say:

$string = pack("Cf", 244, 3.14);

The first byte of the returned string has the value 244. The remaining bytes are
the encoding of 3.14 as a single-precision float. The particular encoding of the
floating-point number depends on your computer’s hardware.

Some important things to consider when packing are:

• The type of data (such as integer or float or string)

• The range of values (such as whether your integers will fit into one, two, four,
or maybe even eight bytes; or whether you’re packing 8-bit or Unicode char-
acters)

• Whether your integers are signed or unsigned

• The encoding to use (such as native, little-endian, or big-endian packing of
bits and bytes)

Table 26-6 lists the format characters and their meanings. (Other characters can
occur in formats as well; these are described later.)

800 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

Table 26-6. Template characters for pack/unpack

Character Meaning

a A null-padded string of bytes

A A space-padded string of bytes

b A bit string, in ascending bit order inside each byte (like vec)

B A bit string, in descending bit order inside each byte

c A signed char (8-bit integer) value

C An unsigned char (8-bit integer) value; see U for Unicode

d A double-precision floating-point number in native format

D A float or long-double floating-point number in native format; long doubles
are available only if your system supports them and you compiled perl for
them

f A single-precision floating-point number in native format

F A Perl internal floating-point number (NV) in native format

h A hexadecimal string, low nybble first

H A hexadecimal string, high nybble first

i A signed integer value, native format; this is at least 32 bits, but depends on
the C compiler you used

I An unsigned integer value, native format; this is at least 32 bits, but depends
on the C compiler you used

j A Perl-internal signed integer (IV)

J A Perl-internal unsigned integer (UV)

l A signed long value, always 32 bits

L An unsigned long value, always 32 bits

n A 16-bit short in “network” (big-endian) order

N A 32-bit long in “network” (big-endian) order

p A pointer to a structure (null-terminated string)

P A pointer to a fixed-length string

q A signed quad (64-bit integer) value

Q An unsigned quad (64-bit integer) value (only if your system supports 64-
bits and you compiled your perl for them)

s A signed short value, always 16 bits

S An unsigned short value, always 16 bits

u A uuencoded string

Binary Formats | 801

www.it-ebooks.info

http://www.it-ebooks.info/

Character Meaning

U A Unicode character number; this converts to a character in character mode
and a UTF-8 encoded character in byte mode

v A 16-bit short in “VAX” (little-endian) order

V A 32-bit long in “VAX” (little-endian) order

w A BER compressed integer

W An unsigned char value

x A null byte (skip forward a byte)

X Back up a byte

Z A null-terminated (and null-padded) string of bytes

@ Null-fill to absolute position

. Null-fill or truncate to absolute position

(Start a group

) End a group

Table 26-7. Template modifiers for pack/unpack

Modifier Applied to Effect

! iIlLsS Forces native sizes

! xX Makes x and X act as alignment characters

! nNvV Treats as signed instead of unsigned integers

! @. Specifies the position as the byte offset in the internal
representation of the packed string―danger!

> dDfFiIjJlLpPqQsS Forces big-endian byte order; can apply to groups and
subgroups

< dDfFiIjJlLpPqQsS Forces little-endian byte order; can apply to groups and
subgroups

You may freely place whitespace and comments in your TEMPLATEs. Comments
start with the customary # symbol and extend up through the first newline (if
any) in the TEMPLATE.

Repetition

Each letter in the template may be followed by a number indicating the count,
interpreted as a repeat count or length of some sort, depending on the format.
We’ll start with those that repeat, the ones that pack as characters or numbers:
c, C, d, D, f, F, i, I, j, J, l, L, n, N, p, q, Q, s, S, U, v, V, w, and W.

802 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

A number after these fields represents repetition, so that field will be repeated in
the string, taking as many arguments as is specified:

$out = pack 'C4', 192, 168, 1, 1; # \xC0\xA8\01\01

The repeat can optionally go in brackets:

$out = pack 'C[4]', 192, 168, 1, 1; # \xC0\xA8\01\01

Another letter in the brackets uses the length of that format for the count:

$out = pack 'C[N]', 192, 168, 1, 1; # \xC0\xA8\01\01
$out = pack 'C[s]', 192, 168, 1, 1; # \xC0\xA8

If there aren’t enough arguments, pack fills in the remaining arguments with nulls:

$out = pack 'C4', 192, 168; # \xC0\xA8\00\00

Using a * takes up the remaining arguments:

$out = pack 'C*', 192, 168, 1, 1; # \xC0\xA8\01\01

The other letters do other things with a repeat. A number after a, A, or Z specifies
the length of the field to be padded:

$out = pack 'A10', 192, 168, 1, 1; # \xC0\xA8\01\01

If the number is less than the string width, a and A truncate:

$out = pack 'A4', 'Amelia'; # "Amel"
$out = pack 'a4', 'Amelia'; # "Amel"

With the *, a and A produce a field as long as its argument:

$out = pack 'A*', 'Amelia'; # "Amelia"
$out = pack 'a*', 'Amelia'; # "Amelia"

The Z, however, reserves the final position for the terminating null byte:

$out = pack 'Z4', 'Amelia'; # "Ame\000"

as long as the number is not 0, in which case there is no null byte:

$out = pack 'Z0', 'Amelia'; # ""

A Z* takes the entire string, no matter how long, and still ends it with a null:

$out = pack 'Z*', 'Amelia'; # "Amelia\000"

For b and B, the count is the number of bits you want in the output. Each b and
B uses only one bit, the least significant one, from each character in the input,
and each sets only one bit, whatever its length:

$out = pack 'B8', '10011101'; # 0b10011101
$out = pack 'b8', '10011101'; # 0b10111001

Binary Formats | 803

www.it-ebooks.info

http://www.it-ebooks.info/

The h and H do something similar using the count as the number of nybbles to
produce. These are special, though, since they interpret characters that look like
a hexadecimal digit as that number:

$out = pack 'h1', 'a'; # 0x0a
$out = pack 'H1', 'a'; # 0xa0
$out = pack 'H8', 'deadbeef'; # 0xdeadbeef

Otherwise, it uses the low nybble:

$out = pack 'h2', '1'; # 0x01
$out = pack 'h2', 'one'; # 0x08
$out = pack 'H2', 'one'; # 0x80

A * with h or H pads the string with nulls to get an even number of nybbles:

$out = pack 'H*', 'deadbee'; # 0xdeadbee0

For P, the count specifies the size of the struct to pack.

With u, the count is the line length for the uuencoded string. A count less than 3
(or is *) is treated as 45. This format:

$out = pack "u30", $some_string;

takes one line:

93VYE(')I;F<@=&\@<G5L92!T:&5M(&%L;```

But with the same string and a shorter line length:

$out = pack "u15", $some_string;

wraps the string:

/3VYE(')I;F<@=&\@<G5L
*92!T:&5M(&%L;```

An x consumes no arguments, but inserts as many nulls as specified. A * is the
same as 0:

$out = pack "H2 x h2", "dead", "beef"; # 0xde00eb
$out = pack "H2 x3 h2", "dead", "beef"; # 0xde000000eb
$out = pack "H2 x* h2", "dead", "beef"; # 0xdeeb

The X consumes no arguments. It backs up the number of bytes specified, as long
as it does not go past the beginning of the string packed so far. A * is the same
as 0:

$out = pack "H2 X h2", "dead", "beef"; # 0xeb
$out = pack "H2 X3 h2", "dead", "beef"; # 0xde000000eb
$out = pack "H2 X* h2", "dead", "beef"; # 0xdeeb

An @ truncates or fills to the position relative to the innermost group (or the entire
string if there is no group). If the packed string so far is longer than the count,

804 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

its length is reduced to count. If the packed string so far is shorter than count,
it's padded with nulls. In each case, the rest of the template picks up from the
new position:

$out = pack 'A*', 'Amelia'; # Amelia
$out = pack 'A*@3', 'Amelia'; # Ame
$out = pack 'A*@3A*', 'Amelia', 'Camel'; # AmeCamel

$out = pack 'c@5', 137; # 0x8900000000

A * is the same as 0, so it truncates everything done so far:

$out = pack 'A*@*A*', 'Amelia', 'Camel'; # Camel

Within a group, the truncation or padding only applies to that part of the group:

$out = pack 'A(A@4A)A', 'A', 'B', 'C', 'D'; # "AB\000\000\000CD
$out = pack 'A(A@*A)A', 'A', 'B', 'C', 'D'; # "ACD

The . also truncates or pads, but it takes the position from the list. The repeat
count specifies the start of the effect: 0 to start from the current position, a num-
ber to specify the group to start from, or a * to specify the beginning of the string:

truncate from the beginning of the string
$out = pack 'A(A.*A)A', 'A', 'B', 1, 'C', 'D'; # 'ACD'

pad from the beginning of the string
$out = pack 'A(A.*A)A', 'A', 'B', 5, 'C', 'D'; # "AB\000\000\000CD"

truncate from the beginning of the string
$out = pack 'A(A.1A)A', 'A', 'B', 1, 'C', 'D'; # "ABCD"

pad from the beginning of the string
$out = pack 'A(A.1A)A', 'A', 'B', 3, 'C', 'D'; # "AB\000\000\000\000CD"

pad from the current position
$out = pack 'A(A.0A)A', 'A', 'B', 0, 'C', 'D'; # "ABCD"
$out = pack 'A(A.0A)A', 'A', 'B', 2, 'C', 'D'; # "AB\000\000CD"

Other modifiers

The / character allows packing and unpacking of strings where the packed struc-
ture contains a byte count followed by the string itself. You write length–item/
string–item. The length–item can be any pack template letter, and it describes
how the length value is packed. The ones likely to be of most use are integer-
packing ones like n (for Java strings), w (for ASN.1 or SNMP), and N (for Sun XDR).
The string–item must, at present, be A*, a*, or Z*. For unpack, the length of the
string is obtained from the length–item, but if you put in the *, it will be ignored:

Binary Formats | 805

www.it-ebooks.info

http://www.it-ebooks.info/

unpack "C/a", "\04Gurusamy"; # gives "Guru"
unpack "a3/A* A*", "007 Bond J "; # gives (" Bond","J")
pack "n/a* w/a*","hello,","world"; # gives "\000\006hello,\005world"

The length–item is not returned explicitly from unpack. Adding a count to the
length–item letter is unlikely to do anything useful unless that letter is A, a, or
Z. Packing with a length–item of a or Z may introduce null (\0) characters, which
Perl does not regard as legal in numeric strings.

The integer formats s, S, l, and L may be immediately followed by a ! to signify
native shorts or longs instead of exactly 16 or 32 bits, respectively. Today, this
is an issue mainly in 64-bit platforms, where the native shorts and longs as seen
by the local C compiler can be different than these values. (i! and I! also work
but only because of completeness; they are identical to i and I.)

The actual sizes (in bytes) of native shorts, ints, longs, and long longs on the
platform where Perl was built are also available via the Config module:

use Config;
say $Config{shortsize};
say $Config{intsize};
say $Config{longsize};
say $Config{longlongsize};

Just because Configure knows the size of a long long doesn’t necessarily imply that
you have q or Q formats available to you. (Some systems do, but you may or may
not be running one. Yet.)

Integer formats of greater than one byte in length (s, S, i, I, l, and L) are inherently
nonportable between processors, because they obey the native byte order and
endianness. If you want portable packed integers, use the formats n, N, v, and V;
their byte endianness and size are known.

Floating-point numbers are only in the native machine format. Because of the
variety of floating formats and the lack of a standard “network” representation,
no facility for interchange has been made. This means that packed floating-point
data written on one machine may not be readable on another. This is a problem
even when both machines use IEEE floating-point arithmetic, because the en-
dianness of the memory representation is not part of the IEEE spec.

Perl internally uses doubles for all floating-point calculations, so converting from
double into float, then back again to double, will lose precision. This means that
unpack("f", pack("f", $foo)) will not generally equal $foo.

You are responsible for any alignment or padding considerations expected by
other programs, particularly those programs that were created by a C compiler
with its own idiosyncratic notions of how to lay out a C struct on the particular

806 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

architecture in question. You’ll have to add enough xs while packing to make up
for this. For example, a C declaration of:

struct foo {
 unsigned char c;
 float f;
};

might be written out in a “C x f” format, a “C x3 f” format, or even an “f C”
format—just to name a few. The pack and unpack functions handle their input
and output as flat sequences of bytes, because there is no way for them to know
where the bytes are going to or coming from.

The ! applied to the @ or . makes those positions use the byte offset in the packed
strings. This can be very efficient, but you have to think much harder about the
string and know the sizes for the other formats.

The < and > for endianness on the specifier on d, D, f, F, i, I, j, J, l, L, p, P, q, Q,
s, and S. These are the specifiers that pack integers, save for those that already
specify endianness. The < forces little-endian semantics, and the > forces big-en-
dian semantics:

$out = pack 'L>', 0xDEADBEEF; # "\xDE\xAD\xBE\xEF"
$out = pack 'L<', 0xDEADBEEF; # "\xEF\xBE\xAD\xDE"

More examples

Let’s look at some more examples. This first pair packs numeric values into bytes:

$out = pack "CCCC", 65, 66, 67, 68; # $out eq "ABCD"
$out = pack "C4", 65, 66, 67, 68; # same thing

This one does the same thing with Unicode circled letters:

$foo = pack("U4",0x24b6,0x24b7,0x24b8,0x24b9);

This does a similar thing, with a couple of nulls thrown in:

$out = pack "CCxxCC", 65, 66, 67, 68; # $out eq "AB\0\0CD"

Packing your shorts doesn’t imply that you’re portable:

$out = pack "s2", 1, 2; # "\1\0\2\0" on little–endian
 # "\0\1\0\2" on big–endian

On binary and hex packs, the count refers to the number of bits or nybbles, not
the number of bytes produced:

$out = pack "B32", "01010000011001010111001001101100";
$out = pack "H8", "5065726c"; # both produce "Perl"

The length on an a field applies only to one string:

$out = pack "a4", "abcd", "x", "y", "z"; # "abcd"

Binary Formats | 807

www.it-ebooks.info

http://www.it-ebooks.info/

To get around that limitation, use multiple specifiers:

$out = pack "aaaa", "abcd", "x", "y", "z"; # "axyz"
$out = pack "a" x 4, "abcd", "x", "y", "z"; # "axyz"

The a format does null filling:

$out = pack "a14", "abcdefg"; # "abcdefg\0\0\0\0\0\0\0"

This template packs a C struct tm record (at least on some systems):

$out = pack "i9pl", gmtime(), $tz, $toff;

Generally, the same template may also be used in the unpack function, although
some formats act differently, notably a, A, and Z.

If you want to join fixed-width text fields together, use pack with a TEMPLATE of
several A or a formats:

$string = pack("A10" x 10, @data);

Don’t say that “A” too seriously: it works on Perl’s internal Unicode just fine. But
it's pad by codepoint, not by logical print column. If you need to work on your
résumé, you would get this:

pack("(A10)2", "re\x{301}sume\x{301}", "work")'
"résumé work "

But if you need to start working again, you would get this:

say pack("(A10)2", "resume", "work")'
resume work

See the discussion on “Graphemes and Normalization” on page 290 in Chap-
ter 6 for how to use the columns method from Unicode::GCStringto pad correctly
in the face of control characters, combining marks, and wide (two-column) char-
acters like those found in many East Asian scripts.

If you want to join variable-width text fields with a separator, use the join function
instead:

$string = join(" and ", @data);
$string = join("", @data); # null separator

Although all of our examples used literal strings as templates, there is no reason
you couldn’t pull in your templates from a disk file. You could build an entire
relational database system around this function. (What that would prove about
you we won’t get into.)

808 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

unpack
unpack TEMPLATE, EXPR

This function does the reverse of pack: it expands a string (EXPR) representing a
data structure into a list of values according to the TEMPLATE and returns those
values. In scalar context, it can be used to unpack a single value. The TEMPLATE
here has much the same format as it has in the pack function—it specifies the
order and type of the values to be unpacked. See pack for a detailed description
of TEMPLATE. An invalid element in the TEMPLATE, or an attempt to move outside
the string with the x, X, or @ formats, raises an exception.

The string is broken into chunks described by the TEMPLATE. Each chunk is sep-
arately converted to a value. Typically, the bytes of the string either are the result
of a pack or represent a C structure of some kind.

If the repeat count of a field is larger than the remainder of the input string allows,
the repeat count is silently decreased. (Normally, you’d use a repeat count of *
here, anyway.) If the input string is longer than what TEMPLATE describes, the rest
of the string is ignored.

The unpack function is also useful for plain text data, too, not just binary data.
Imagine that you had a data file that contained records that looked like this:

2009 The Graveyard Book Neil Gaiman
2008 The Yiddish Policemen’s Union Michael Chabon
2007 Rainbows End Vernor Vinge
2006 Spin Robert Charles Wilson
2005 Jonathan Strange & Mr Norrell Susanna Clarke
2004 Paladin of Souls Lois McMaster Bujold
2003 Hominids Robert J. Sawyer
2002 American Gods Neil Gaiman
2001 Harry Potter and the Goblet of Fire J. K. Rowling

Such a file might have been produced either by printf, described earlier in this
chapter, or by formats, described in the next section. Or it could have been pro-
duced externally. In any case, you can’t use split to parse out the fields because
they have no distinct separator. Instead, fields are determined by their byte offset
into the record. So even though this is a regular text record, because it’s in a fixed
format, you want to use unpack to pull it apart:

use v5.14;
while (<>) {
 my($year, $title, $author) = unpack("A4 x A39 A*", $_);
 say "$author won ${year}'s Hugo for $title.";
}

Binary Formats | 809

www.it-ebooks.info

http://www.it-ebooks.info/

(The reason we wrote ${year}'s there is because Perl would have treated
$year's as meaning $year::s. If you were using UTF-8 in your source code via
use utf8, you could have used $year’s safely enough, though.)

In addition to fields allowed in pack, you may prefix a field with %number to pro-
duce a simple number-bit additive checksum of the items instead of the items
themselves. Default is a 16-bit checksum. The checksum is calculated by sum-
ming numeric values of expanded values (for string fields, the sum of
ord($char) is taken; for bit fields, it's the sum of zeros and ones). For example,
the following computes the same number as the SysV sum(1) program:

undef $/;
$checksum = unpack ("%32C*", <>) % 65535;

The following efficiently counts the number of set bits in a bitstring:

$setbits = unpack "%32b*", $selectmask;

Here’s a simple Base64 decoder:

while (<>) {
 tr#A–Za–z0–9+/##cd; # remove non–base64 chars
 tr#A–Za–z0–9+/# –_#; # convert to uuencoded format
 $len = pack("c", 32 + 0.75*length); # compute length byte
 print unpack("u", $len . $_); # uudecode and print
}

The p and P formats should be used with care. Since Perl has no way of checking
whether the value passed to unpack corresponds to a valid memory location,
passing a pointer value that’s not known to be valid is likely to have disastrous
consequences.

If there are more pack codes or if the repeat count of a field or a group is larger
than what the remainder of the input string allows, the result is not well defined:
the repeat count may be decreased; or unpack may produce empty strings or zeros,
or it may raise an exception. If the input string is longer than one described by
the TEMPLATE, the remainder of that input string is ignored.

Picture Formats
Perl has a mechanism to help you generate simple reports of the kind you often
see coming out of your mainframe’s line printer. (What, you don’t have one of
those?) To facilitate this, Perl helps you code up your output page close to how
it will look when it’s printed. It can keep track of things like how many lines are
on a page, the current page number, when to print page headers, and so on.
Keywords are borrowed from FORTRAN: format to declare and write to execute;
see the relevant entries in Chapter 27. Fortunately, the layout is much more legi-

810 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

ble, more like the PRINT USING statement of BASIC. Think of it as a poor man’s
nroff(1). (If you know nroff, that may not sound like a recommendation.)

Formats, like packages and subroutines, are declared rather than executed, so they
may occur at any point in your program. (Usually it’s best to keep them all to-
gether.) They have their own namespace apart from all the other types in Perl.
This means that if you have a function named “Foo”, it is not the same thing as a
format named “Foo”. However, the default name for the format associated with a
given filehandle is the same as the name of that filehandle. Thus, the default
format for STDOUT is named “STDOUT”, and the default format for filehandle TEMP
is named “TEMP”. They just look the same. They aren’t.

Output record formats are declared as follows:

format NAME =
FORMLIST
.

If NAME is omitted, format STDOUT is defined. FORMLIST consists of a sequence of
lines, each of which may be of one of three types:

• A comment, indicated by putting a # in the first column.

• A “picture” line giving the format for one output line.

• An argument line supplying values to plug into the previous picture line.

Picture lines are printed exactly as they look, except for certain fields that sub-
stitute values into the line.3 Each substitution field in a picture line starts with
either @ (at) or ^ (caret). These lines do not undergo any kind of variable inter-
polation. The @ field (not to be confused with the array marker @) is the normal
kind of field; the other kind, the ̂ field, is used to do rudimentary multiline text-
block filling. The length of the field is supplied by padding out the field with
multiple <, >, or | characters to specify, respectively, left justification, right justi-
fication, or centering. If the variable exceeds the width specified, it is truncated.

Be warned that all this talk of widths and justification breaks down miserably
once you bring “interesting” Unicode characters into the picture for interesting
values of “interesting”. It doesn’t even work with nonprinting ASCII. Picture
formats assume every codepoint takes up exactly one column. In Unicode, this
is not true, as many codepoints occupy zero print columns, and some occupy
two of them. See the discussion on ˆ“Graphemes and Normaliza-

3. Even those fields maintain the integrity of the columns you put them in, however. There is nothing in a
picture line that can cause fields to grow or shrink or shift back and forth. The columns you see are sacred
in a WYSIWYG sense—assuming you’re using a fixed-width font. Even control characters are assumed
to have a width of one.

Picture Formats | 811

www.it-ebooks.info

http://www.it-ebooks.info/

tion” on page 290 in Chapter 6 for how to use the columns method from Uni
code::GCString to get the true print columns of a Unicode string.

As an alternate form of right justification, you may also use # characters (after an
initial @ or ^) to specify a numeric field. You can insert a . in place of one of the
characters to line up the decimal points. If any value supplied for these fields
contains a newline, only the text up to the newline is printed. Finally, the special
field @* can be used for printing multiline, nontruncated values; it should gener-
ally appear on a picture line by itself.

The values are specified on the following line in the same order as the picture
fields. The expressions providing the values should be separated by commas. The
expressions are all evaluated in list context before the line is processed, so a single
list expression could produce multiple list elements. The expressions may be
spread out to more than one line if enclosed in braces. (If so, the opening brace
must be the first token on the first line.) This lets you line up the values under
their respective format fields for easier reading.

If an expression evaluates to a number with a decimal part, and if the corre-
sponding picture specifies that the decimal part should appear in the output (that
is, any picture except multiple # characters without an embedded .), the character
used for the decimal point is always determined by the current LC_NUMERIC locale.
This means that if, for example, the runtime environment happens to specify a
German locale, a comma will be used instead of a period. See the perllocale man-
page for more information.

Inside an expression, the whitespace characters \n, \t, and \f are all considered
equivalent to a single space. Thus, you could think of this filter as being applied
to each value in the format:

$value =~ tr/\n\t\f/ /;

The remaining whitespace character, \r, forces the printing of a newline if the
picture line allows it.

Picture fields that begin with ^ rather than @ are treated specially. With a # field,
the field is blanked out if the value is undefined. For other field types, the caret
enables a kind of fill mode. Instead of an arbitrary expression, the value supplied
must be a scalar variable name that contains a text string. Perl puts as much text
as it can into the field, and then chops off the front of the string so that the next
time the variable is referenced, more of the text can be printed. (Yes, this means
that the variable itself is altered during execution of the write call and is not
preserved. Use a scratch variable if you want to preserve the original value.)
Normally, you would use a sequence of fields lined up vertically to print out a
block of text. You might wish to end the final field with the text “...”, which will

812 | Chapter 26: Formats

www.it-ebooks.info

http://perldoc.perl.org/perllocale.html
http://www.it-ebooks.info/

appear in the output if the text was too long to appear in its entirety. You can
change which characters are legal to “break” on (or after) by changing the vari-
able $: (that’s $FORMAT_LINE_BREAK_CHARACTERS if you’re using the English module)
to a list of the desired characters.

Understand that this simplistic type of linebreaking has nothing to do with the
sophisticated linebreaking required by UAX #14: Unicode Line Breaking Algo-
rithm. With Unicode text, the Line_Break=VALUE (abbreviation LB) property of
each codepoint must be used, in conjunction with fancy tables, to figure out
where breaks are permitted. To give you an idea of how complicated this is, here
are the possible property values for VALUE in \p{LB=VALUE}:

Ambiguous Contingent_Break Ideographic Postfix_Numeric
Alphabetic Close_Punctuation Inseparable Prefix_Numeric
Break_Both Close_Parenthesis Infix_Numeric Quotation
Break_After Combining_Mark Line_Feed Space
Break_Before Complex_Context Next_Line Unknown
Mandatory_Break Exclamation Nonstarter Word_Joiner
Break_Symbols Glue Numeric ZWSpace
Carriage_Return Hyphen Open_Punctuation

Scripts normally written without whitespace or dashes are especially challenging
to linebreak, so this is really the only way to do it. The Unicode::LineBreak mod-
ule from CPAN, which includes the popular Unicode::GCString module in its
distribution, fully implements UAX #14, including handling East Asian scripts.
You’ll want to use this module for anything fancier than simplistic ASCII.

Using ^ fields can produce variable-length records. If the text to be formatted is
short, just repeat the format line with the ^ field in it a few times. If you just do
this for short data, you’d end up getting a few blank lines. To suppress lines that
would end up blank, put a ~ (tilde) character anywhere in the line. (The tilde itself
will be translated to a space upon output.) If you put a second tilde next to the
first, the line will be repeated until all the text in the fields on that line are ex-
hausted. (This works because the ^ fields chew up the strings they print. But if
you use a field of the @ variety in conjunction with two tildes, the expression you
supply had better not give the same value every time forever! Use a shift or some
other operator with a side effect that exhausts the set of values.)

Top-of-form processing is by default handled by a format with the same name as
the current filehandle with _TOP concatenated to it. It’s triggered at the top of each
page. See the write entry in Chapter 27.

Here are some examples:

a report on the /etc/passwd file
format STDOUT_TOP =
 Passwd File

Picture Formats | 813

www.it-ebooks.info

http://www.it-ebooks.info/

Name Login Office Uid Gid Home
––
.
format STDOUT =
@<<<<<<<<<<<<<<<<<< @||||||| @<<<<<<@>>>> @>>>> @<<<<<<<<<<<<<<<<<
$name, $login, $office,$uid,$gid, $home
.

a report from a bug report form
format STDOUT_TOP =
 Bug Reports
@<<<<<<<<<<<<<<<<<<<<<<< @||| @>>>>>>>>>>>>>>>>>>>>>>>
$system, $%, $date
––
.
format STDOUT =
Subject: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $subject
Index: @<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $index, $description
Priority: @<<<<<<<<<< Date: @<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $priority, $date, $description
From: @<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $from, $description
Assigned to: @<<<<<<<<<<<<<<<<<<<<<< ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $programmer, $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 $description
~ ^<<<<<<<<<<<<<<<<<<<<<<<...
 $description
.

Lexical variables are not visible within a format unless the format is declared
within the scope of the lexical variable.

It is possible to intermix prints with writes on the same output channel, but
you’ll have to handle the $– special variable ($FORMAT_LINES_LEFT if you’re using
the English module) yourself.

Format Variables
The current format name is stored in the variable $~ ($FORMAT_NAME), and the cur-
rent top-of-form format name is in $^ ($FORMAT_TOP_NAME). The current output
page number is stored in $% ($FORMAT_PAGE_NUMBER), and the number of lines on

814 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

the page is in $= ($FORMAT_LINES_PER_PAGE). Whether to flush the output buffer
on this handle automatically is stored in $| ($OUTPUT_AUTOFLUSH). The string to be
output before each top of page (except the first) is stored in $^L ($FORMAT_FORM
FEED). These variables are set on a per-filehandle basis, so you’ll need to select
the filehandle associated with a format in order to affect its format variables:

select((select(OUTF),
 $~ = "My_Other_Format",
 $^ = "My_Top_Format"
)[0]);

Pretty ugly, eh? It’s a common idiom, though, so don’t be too surprised when you
see it. You can at least use a temporary variable to hold the previous filehandle:

$ofh = select(OUTF);
$~ = "My_Other_Format";
$^ = "My_Top_Format";
select($ofh);

This is a much better approach in general because not only does legibility im-
prove, but you now have an intermediary statement in the code to stop on when
you’re single-stepping in the debugger. If you use the English module, you can
even read the variable names:

use English;
$ofh = select(OUTF);
$FORMAT_NAME = "My_Other_Format";
$FORMAT_TOP_NAME = "My_Top_Format";
select($ofh);

But you still have those funny calls to select. If you want to avoid them, use the
IO::Handle module bundled with Perl. Now you can access these special variables
using lowercase method names instead:

use IO::Handle;
OUTF–>format_name("My_Other_Format");
OUTF–>format_top_name("My_Top_Format");

Much better!

Since the values line following your picture line may contain arbitrary expressions
(for @ fields, not ̂ fields), you can farm out more sophisticated processing to other
functions, like sprintf or one of your own. For example, to insert commas into
a number:

format Ident =
 @<<<<<<<<<<<<<<<
 commify($n)
.

To get a real @, ~, or ^ into the field, do this:

Picture Formats | 815

www.it-ebooks.info

http://www.it-ebooks.info/

format Ident =
I have an @ here.
 "@"
.

To center a whole line of text, do something like this:

format Ident =
@||
 "Some text line"
.

The > field-length indicator ensures that the text will be right-justified within the
field, but the field as a whole occurs exactly where you show it occurring. There
is no built-in way to say “float this field to the righthand side of the page, however
wide it is.” You have to specify where it goes relative to the left margin. The truly
desperate can generate their own format on the fly, based on the current number
of columns (not supplied), and then eval it:

$format = "format STDOUT = \n"
 . "^" . "<" x $cols . "\n"
 . '$entry' . "\n"
 . "\t^" . "<" x ($cols–8) . "~~\n"
 . '$entry' . "\n"
 . ".\n";
print $format if $Debugging;
eval $format;
die $@ if $@;

The most important line there is probably the print. What the print would print
out looks something like this:

format STDOUT =
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$entry
 ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
$entry
.

Here’s a little program that behaves like the fmt(1) Unix utility:

format =
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< ~~
$_

.

$/ = "";
while (<>) {
 s/\s*\n\s*/ /g;
 write;
}

816 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

Footers
While $^ ($FORMAT_TOP_NAME) contains the name of the current header format,
there is no corresponding mechanism to do the same thing automatically for a
footer. Not knowing how big a format is going to be until you evaluate it is one
of the major problems. It’s on the to-do list.4

Here’s one strategy: if you have a fixed-size footer, you can get footers by check-
ing $– ($FORMAT_LINES_LEFT) before each write, and then print the footer yourself
if necessary.

Here’s another strategy: open a pipe to yourself using open(MESELF, “|–”) (see the
open entry in Chapter 27), and always write to MESELF instead of STDOUT. Have
your child process postprocess its STDIN to rearrange headers and footers however
you like. Not very convenient, but it's doable.

Accessing Formatting Internals
For low-level access to the internal formatting mechanism, you may use the built-
in formline operator and access $^A (the $ACCUMULATOR variable) directly. (Formats
essentially compile into a sequence of calls to formline.) For example:

$str = formline <<'END', 1,2,3;
@<<< @||| @>>>
END

say "Wow, I just stored '$^A' in the accumulator!";

Or to create an swrite subroutine that is to write as sprintf is to printf, do this:

use Carp;
sub swrite {
 croak "usage: swrite PICTURE ARGS" unless @_;
 my $format = shift;
 $^A = "";
 formline($format, @_);
 return $^A;
}

$string = swrite(<<'END', 1, 2, 3);
Check me out
@<<< @||| @>>>
END
print $string;

4. That doesn’t guarantee we’ll ever do it, of course. Formats are somewhat passé in this age of WWW,
Unicode, XML, XSLT, and whatever the next few things after that are.

Picture Formats | 817

www.it-ebooks.info

http://www.it-ebooks.info/

If you were using the IO::Handle module, you could use formline as follows to
wrap a block of text at column 72:

use IO::Handle;
STDOUT–>formline("^" . ("<" x 72) . "~~\n", $long_text);

Now brace yourself for a big chapter…

818 | Chapter 26: Formats

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 27

Functions

This chapter describes the built-in Perl functions in alphabetical order1 for con-
venient reference. Each function description begins with a brief summary of the
syntax for that function. Parameter names like THIS represent placeholders for
actual expressions, and the text following the syntax summary will describe the
semantics of supplying (or omitting) the actual arguments.

You can think of functions as terms in an expression, along with literals and vari-
ables. Or you can think of them as prefix operators that process the arguments
after them. We call them operators half the time anyway.

Some of these operators, er, functions take a LIST as an argument. Elements of
the LIST should be separated by commas (or by =>, which is just a funny kind of
comma). The elements of the LIST are evaluated in list context, so each element
will return either a scalar or a list value, depending on its sensitivity to list context.
Each returned value, whether scalar or list, will be interpolated as part of the
overall sequence of scalar values. That is, all the lists get flattened into one list.
From the point of view of the function receiving the arguments, the overall ar-
gument LIST is always a single-dimensional list value. (To interpolate an array as
a single element, you must explicitly create and interpolate a reference to the
array instead.)

Predefined Perl functions may be used either with or without parentheses around
their arguments; the syntax summaries in this chapter omit the parentheses. If
you do use parentheses, the simple but occasionally surprising rule is this: if it
looks like a function, then it is a function, so precedence doesn’t matter. Other-
wise, it’s a list operator or unary operator, and precedence does matter. Be

1. Sometimes tightly related functions are grouped together in the system manpages, so we respect that
grouping here. To find the description of endpwent, for instance, you’ll have to look under getpwent.

819

www.it-ebooks.info

http://www.it-ebooks.info/

careful, because even if you put whitespace between the keyword and its left
parenthesis, that doesn’t keep it from being a function:

print 1+2*4; # Prints 9
print(1+2) * 4; # Prints 3!
print (1+2)*4; # Also prints 3!
print +(1+2)*4; # Prints 12
print ((1+2)*4); # Prints 12

If you run Perl with the –w switch, it will warn you about this. For example, the
second and third lines above produce messages like this:

print (...) interpreted as function at – line 2.
Useless use of integer multiplication in void context at – line 2.

Given the simple definition of some functions, you have considerable latitude in
how you pass arguments. For instance, the most common way to use chmod is to
pass the file permissions (the mode) as the first:

chmod 0644, @array;

but the definition of chmod just says:

chmod LIST

so you could just as well say:

unshift @array, 0644;
chmod @array;

If the first argument of the list is not a valid mode, chmod will fail, but that’s a
runtime semantic problem unrelated to the syntax of the call. If the semantics
require any special arguments to be passed first, the text will describe these re-
strictions.

In contrast to the simple LIST functions, other functions impose additional syn-
tactic constraints. For instance, push has a syntax summary that looks like this:

push ARRAY, LIST

This means that push requires a proper array as its first argument, but doesn’t care
about its remaining arguments. That’s what the LIST at the end means. (LISTs
always come at the end, since they gobble up all remaining values.) Whenever a
syntax summary contains any arguments before the LIST, those arguments are
syntactically distinguished by the compiler, not just semantically distinguished
by the interpreter when it runs later. Such arguments are never evaluated in list
context. They may be evaluated in scalar context, or they may be special refer-
ential arguments such as the array in push. (The description will tell you which
is which.)

820 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

For operations based directly on the C library’s functions, we do not try to du-
plicate your system’s documentation. When a function description says to see
function(2), that means you should look up the corresponding C version of that
function to learn more about its semantics. The number in parentheses indicates
the section of the system programmer’s manual in which you will find the man-
page, if you have the manpages installed. (And in which you won’t, if you don’t.)

These manpages may document system-dependent behavior like shadow pass-
word files, access control lists, and so forth. Many Perl functions that derive from
C library functions in Unix are emulated even on non-Unix platforms. For ex-
ample, although your operating system might not support the flock(2) or fork(2)
syscalls, Perl will do its best to emulate them anyway by using whatever native
facilities your platform provides.

Occasionally, you’ll find that the documented C function has more arguments
than the corresponding Perl function. Generally, the missing arguments are
things that Perl knows already, such as the length of the previous argument, so
you needn’t supply them in Perl. Any remaining disparities are caused by the
different ways Perl and C specify filehandles and success/failure values.

In general, functions in Perl that serve as wrappers for syscalls of the same name
(like chown(2), fork(2), closedir(2), etc.) all return true when they succeed, and
undef otherwise, as mentioned in the descriptions that follow. This is different
from the C library’s interfaces to these operations, which all return –1 on failure.
Exceptions to this rule are wait, waitpid, and syscall. Syscalls also set the special
$! ($OS_ERROR) variable on failure. Other functions do not, except accidentally.

For functions that can be used in either scalar or list context, failure is generally
indicated in scalar context by returning a false value (usually undef) and in list
context by returning the null list. Successful execution is generally indicated by
returning a value that will evaluate to true (in context).

Remember the following rule: there is no rule that relates the behavior of a func-
tion in list context to its behavior in scalar context, or vice versa. It might do two
totally different things.

Each function knows the context in which it was called. The same function that
returns a list when called in list context will, when called in scalar context, return
whichever kind of value would be most appropriate. Some functions return the
length of the list that would have been returned in list context. Some operators
return the first value in the list. Some functions return the last value in the list.
Some functions return the “other” value, when something can be looked up
either by number or by name. Some functions return a count of successful

Functions | 821

www.it-ebooks.info

http://www.it-ebooks.info/

operations. In general, Perl functions do exactly what you want—unless you want
consistency.

One final note: we’ve tried to be very consistent in our use of the terms “byte”
and “character”. Historically, these terms have been confused with each other
(and with themselves). But when we say “byte”, we mean a character whose
ordinal value fits into 8 bits. When we say “character”, we usually mean an ab-
stract Unicode codepoint. This is the kind of thing C programmers used to stick
in their char variables until they outgrew them. Today, int is the new char. A
codepoint is a programmer-visible character, a nonnegative integer that corre-
sponds to a single Unicode entity, sometimes informally called a character.

Currently, few of Perl’s functions outside its regex library have much to do with
graphemes, but they’re the next layer of abstraction up from codepoints. These
are user-visible characters, which may in turn comprise several programmer-visi-
ble ones. A CR+LF is one examples of a grapheme that occupies two codepoints.
Another good one is ȭ, which may occupy anywhere from 1–3 codepoints, de-
pending on normalization: “\x{22D}” in NFC, “\x{6F}\x{303}\x{304}” in NFD,
or “\x{F5}\x{304}”, which is neither. In this chapter, if you catch us talking about
characters, we really mean codepoints, and if we talk about bytes, we just mean
undecoded ordinals smaller than 256.

Perl Functions by Category
Here are Perl’s functions and function-like keywords, arranged by category. Some
functions appear under more than one heading.

Scalar manipulation
chomp, chop, chr, crypt, fc, hex, index, lc, lcfirst, length, oct, ord, pack,
q//, qq//, reverse, rindex, sprintf, substr, tr///, uc, ucfirst, y///

Regular expressions and pattern matching
m//, pos, qr//, quotemeta, s///, split, study

Numeric functions
abs, atan2, cos, exp, hex, int, log, oct, rand, sin, sqrt, srand

Array processing
pop, push, shift, splice, unshift

As of v5.12, you may also use each, keys, and values on arrays, if you really
feel you must.

List processing
grep, join, map, qw//, reverse, sort, unpack

822 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Hash processing
delete, each, exists, keys, values

Input and output
binmode, close, closedir, dbmclose, dbmopen, die, eof, fileno, flock, format,
getc, print, printf, read, readdir, readpipe, rewinddir, say, seek, seekdir,
select (ready file descriptors), syscall, sysread, sysseek, syswrite, tell,
telldir, truncate, warn, write

Fixed-length data and records
pack, read, syscall, sysread, sysseek, syswrite, unpack, vec

Filehandles, files, and directories
–X, chdir, chmod, chown, chroot, fcntl, glob, ioctl, link, lstat, mkdir, open,
opendir, readlink, rename, rmdir, select (ready file descriptors), select (out-
put filehandle), stat, symlink, sysopen, umask, unlink, utime

Flow of program control
caller, continue, die, do, dump, eval, exit, _ _FILE_ _, goto, last, _ _LINE_ _,
next, _ _PACKAGE_ _, redo, return, sub, wantarray

Scoping
caller, import, local, my, no, our, package, state, use

state is available only if the “state” feature is enabled or if it is prefixed with
CORE::. See feature. Alternately, include a use v5.10 or later to the current
scope.

The switch feature
break, continue, default, given, when

Except for continue as an expression not a block, these are available only if
you enable the “switch” feature. Alternately, include a use v5.10 or later to
the current scope. See “The given Statement” on page 133 in Chapter 4.

Miscellaneous
defined, dump, eval, formline, lock, prototype, reset, scalar, undef, wantarray

Processes and process groups
alarm, exec, fork, getpgrp, getppid, getpriority, kill, pipe, qx//, setpgrp,
setpriority, sleep, system, times, wait, waitpid

Library modules
do, import, no, package, require, use

Classes and objects
bless, dbmclose, dbmopen, package, ref, tie, tied, untie, use

Perl Functions by Category | 823

www.it-ebooks.info

http://www.it-ebooks.info/

Low-level socket access
accept, bind, connect, getpeername, getsockname, getsockopt, listen, recv,
send, setsockopt, shutdown, socket, socketpair

System V interprocess communication
msgctl, msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget,
shmread, shmwrite

Fetching user and group information
endgrent, endhostent, endnetent, endpwent, getgrent, getgrgid, getgrnam,
getlogin, getpwent, getpwnam, getpwuid, setgrent, setpwent

Fetching network information
endprotoent, endservent, gethostbyaddr, gethostbyname, gethostent,
getnetbyaddr, getnetbyname, getnetent, getprotobyname, getprotobynumber,
getprotoent, getservbyname, getservbyport, getservent, sethostent,
setnetent, setprotoent, setservent

Time
gmtime, localtime, time, times

Functions related to Unicode
binmode, chomp, chop, chr, dbmopen, fc, getc, index, lc, lcfirst, length, m//,
my, open, ord, our, pack, package, pos, print, printf, quotemeta, read,
readline, reverse, rindex, s///, seek, sort, split, sprintf, state, substr,
sysopen, sysread, sysseek, syswrite, tell, tr///, truncate, uc, ucfirst,
unpack, write, y///

Perl Functions in Alphabetical Order
Many of the following function names are annotated with, um, annotations. Here
are their meanings:

• Uses $_ ($ARG) as a default variable.

• Sets $! ($OS_ERROR) on syscall errors.

• Raises exceptions; uses eval to trap $@ ($EVAL_ERROR).

• Sets $? ($CHILD_ERROR) when child process exits.

• Taints returned data.

• Taints returned data under some system, locale, or handle settings.

• Raises an exception if given an argument of inappropriate type.

• Raises an exception if modifying a read-only target.

• Raises an exception if fed tainted data.

824 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

• Raises an exception if unimplemented on current platform.

• Raises an exception if passed a string containing characters with ordinals
higher than 255.

Functions that return tainted data when fed tainted data are not marked, since
that’s most of them. In particular, if you use any function on %ENV or @ARGV, you’ll
get tainted data.

Functions marked with raise an exception when they require, but do not re-
ceive, an argument of a particular type (such as filehandles for I/O operations,
references for blessing, etc.).

Functions marked with sometimes need to alter their arguments. If they can’t
modify the argument because it’s marked read-only, they’ll raise an exception.
Examples of read-only variables are the special variables containing data cap-
tured during a pattern match and variables that are really aliases to constants.

Functions marked with may not be implemented on all platforms. Although
many of these are named after functions in the Unix C library, don’t assume that
just because you aren’t running Unix, you can’t call any of them. Many are emu-
lated, even those you might never expect to see—such as fork on Win32 systems.
For more information about the portability and behavior of system-specific func-
tions, see the perlport manpage, plus any platform-specific documentation that
came with your Perl port.

Functions marked with raise an exception when they are passed an undecoded
string with any characters that are too big to fit into a byte value.

Functions that raise other miscellaneous exceptions are marked with , includ-
ing math functions that throw range errors, such as sqrt(–1).

abs
abs VALUE
abs

This function returns the absolute value of its argument.

$diff = abs($first – $second);

Here and in the examples following, good style (and the strict pragma) would
dictate that you add a my modifier to declare a new lexically scoped variable, like
this:

my $diff = abs($first – $second);

Perl Functions in Alphabetical Order | 825

www.it-ebooks.info

http://perldoc.perl.org/perlport.html
http://www.it-ebooks.info/

However, we’ve omitted my from most of our examples for clarity. Just assume that
any such variable was declared earlier.

accept
accept SOCKET, PROTOSOCKET

This function is used by server processes that wish to listen for socket connections
from clients. PROTOSOCKET must be a filehandle already opened via the socket
operator and bound to one of the server’s network addresses or to INADDR_ANY.
Execution is suspended until a connection is made, at which point the SOCKET
filehandle is opened and attached to the newly made connection. The original
PROTOSOCKET remains unchanged; its sole purpose is to be cloned into a real socket.
The function returns the connected address if the call succeeds, false otherwise.
For example:

unless ($peer = accept(SOCKET, PROTOSOCK)) {
 die "Can't accept a connection: $!";
}

On systems that support it, the close-on-exec flag will be set for the newly opened
file descriptor, as determined by the value of $^F ($SYSTEM_FD_MAX).

See accept(2). See also the example in the section “Sockets” on page 543 in Chap-
ter 15.

alarm
alarm EXPR
alarm

This function tells the operating system to send a SIGALRM signal to the current
process after EXPR wallclock seconds have elapsed.

Only one timer may be active at once. Each call disables the previous timer, and
an EXPR of 0 cancels the previous timer without starting a new one. The return
value is the amount of time remaining on the previous timer.

print "Answer me within one minute, or die: ";
alarm(60); # kill program in one minute
$answer = <STDIN>;
$timeleft = alarm(0); # clear alarm
say "You had $timeleft seconds remaining";

It is usually a mistake to intermix alarm and sleep calls, because many systems
use the alarm(2) syscall mechanism to implement sleep(3). Historically, the
elapsed time may be up to one second less than you specified because of how

826 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

seconds are counted. Additionally, a busy system may not get around to running
your process immediately. See Chapter 15 for information on signal handling,
such as how to use alarms to time out slow operations.

For alarms of finer granularity than one second, the Time::HiRes module provides
functions for this purpose. For a hackier approach, use the four-argument version
of select (leaving the first three arguments undefined), or Perl’s syscall function
to access setitimer(2) (if your system supports it).

atan2
atan2 Y, X

This function returns the principal value of the arc tangent of Y/X in the range -π
to +π. A quick way to get an approximate value of π is to say:

$pi = atan2(1,1) * 4;

For the tangent operation, you may use the tan function from the Math::Trig or
the POSIX modules, or just use the familiar relation:

sub tan { sin($_[0]) / cos($_[0]) }

If either or both arguments are 0, the return value is implementation defined; see
your atan2(3) manpage for more information.

bind
bind SOCKET, NAME

This function assigns a name to an unnamed but already-opened socket specified
by the SOCKET filehandle so that other processes can find it. The function returns
true if it succeeded, false otherwise. NAME should be a packed address of the proper
type for the socket.

use Socket;
$port_number = 80; # pretend we want to be a web server
$sockaddr = sockaddr_in($port_number, INADDR_ANY);
bind(SOCK, $sockaddr) || die "Can't bind $port_number: $!";

See bind(2). See also the examples in the section “Sockets” in Chapter 15. Nor-
mally, you should be using the higher-level interface to sockets provided by the
standard IO::Socket module.

Perl Functions in Alphabetical Order | 827

www.it-ebooks.info

http://www.it-ebooks.info/

binmode
binmode FILEHANDLE, IOLAYER
binmode FILEHANDLE

This function arranges for the FILEHANDLE to have the semantics specified by the
IOLAYER argument. If IOLAYER is omitted, binary (or “raw”) semantics are applied
to the filehandle. If FILEHANDLE is an expression, the value is taken as the name of
the filehandle or a reference to a filehandle, as appropriate. The function returns
true if it succeeded, false otherwise.

The binmode function should be called after the open but before any I/O is done
on the filehandle. The only way to reset the mode on a filehandle is to reopen
the file, since the various layers may have treasured up various bits and pieces of
data in various buffers. This restriction may be relaxed in the future.

In olden days, binmode was used primarily on operating systems whose runtime
libraries distinguished text from binary files. On those systems, the purpose of
binmode was to turn off the default text semantics. However, with the advent of
Unicode and its many different storage encodings, programs on all systems must
take some cognizance of the distinction.

These days there is only one kind of binary file (as far as Perl is concerned), but
there are many kinds of text files, which Perl would also like to treat in a single
way. So Perl has a single internal format for Unicode text, UTF-8.

Since there are many kinds of text files, text files often need to be translated on
input into UTF-8, and then back into some legacy character set or some other
representation of Unicode on output.

You can use I/O layers to tell Perl how exactly (or inexactly) to do these transla-
tions. For example, a layer of “:text” tells Perl to do generic text processing
without telling Perl which kind of text processing to do.

But I/O layers like “:utf8” and “:encoding(Latin1)” tell Perl which text format
to read and write.

On the other hand, the “:raw” I/O layer tells Perl to keep its cotton-pickin’ hands
off the data.

For more on how I/O layers work, see the open function. The rest of this discussion
describes what binmode does without the IOLAYER argument; that is, the historical
meaning of binmode, which is equivalent to:

binmode FILEHANDLE, ":raw";

828 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Unless instructed otherwise, Perl assumes your freshly opened file should be read
or written in text mode. Text mode means that \n (newline) will be your internal
line terminator. All systems use \n as the internal line terminator, but what that
really represents varies from system to system, device to device, and even file to
file, depending on how you access the file. In such legacy systems (including
MS-DOS and VMS), what your program sees as a \n may not be what’s physically
stored on disk. The operating system might, for example, store text files with
\cM\cJ sequences that are translated on input to appear as \n to your program,
then on output translate \n from your program back to \cM\cJ. The binmode
function disables this automatic translation on such systems.

In the absence of an IOLAYER argument, binmode has no effect under Unix (in-
cluding Mac OS X), both of which use \n to end each line and represent that as
a single character. (It may, however, be a different character: Unix uses \cJ and
pre-Unix Macs used \cM. Doesn’t matter.)

The following example shows how a Perl script might read a GIF image from a
file and print it to the standard output. On systems that would otherwise alter
the literal data into something other than its exact physical representation, you
must prepare both handles. While you could use a “:raw” layer directly in the
GIF open, you can’t do that so easily with preopened filehandles like STDOUT:

binmode(STDOUT, ":raw")
 || die "couldn't binmode STDOUT to raw: $!";
open(GIF, "< :raw", "vim–power.gif")
 || die "Can't open vim–power.gif: $!";
while (read(GIF, $buf, 1024)) { # now bytes, not chars
 print STDOUT $buf;
}

Note that if you use the built-in UTF-8 layer, like this:

binmode(HANDLE, ":utf8");

then if it is an input handle, you must be prepared to deal with encoding errors
yourself, because as of v5.14, the default is too lenient with malformed UTF-8.
The quickest and also perhaps the best way to handle encoding errors is not to
allow them at all.

use warnings FATAL => "utf8";

Even if you implement the Encode module using something like:

binmode(HANDLE, ":encoding(utf8)")

you should still fatalize UTF-8 warnings as shown above, because otherwise you
will not take an exception when there is an error. (Always assuming you prefer
exceptions to mangled text. Neither is designed to make you happy.)

Perl Functions in Alphabetical Order | 829

www.it-ebooks.info

http://www.it-ebooks.info/

bless
bless REF, CLASSNAME
bless REF

This function tells the referent pointed to by reference REF that it is now an object
in the CLASSNAME package—or the current package if no CLASSNAME is specified. If
REF is not a valid reference, an exception is raised. For convenience, bless returns
the reference, since it’s often the last function in a constructor subroutine. For
example:

$pet = Beast–>new(TYPE => "cougar", NAME => "Clyde");

then in Beast.pm:
sub new {
 my $class = shift;
 my %attrs = @_;
 my $self = { %attrs };
 return bless($self, $class);
}

You should generally bless objects into CLASSNAMEs that are mixed case. Name
spaces with all lowercase names are reserved for internal use as Perl pragmata
(compiler directives). Built-in types (such as “SCALAR”, “ARRAY”, “HASH”, “UNIVERSAL”,
etc.) all have uppercase names, so you may wish to avoid such package names as well.

Make sure that CLASSNAME is not false; blessing into false packages is not supported
and may result in unpredictable behavior.

It is not a bug that there is no corresponding curse operator. (But there is a sin
operator.) See also Chapter 12 for more about the blessing (and blessings) of
objects.

break
break

Exit from a given block earlier than normal (before the end of a when clause). This
keyword is enabled by the switch feature; see the feature pragma in Chap-
ter 29 for more information.

caller
caller EXPR
caller

This function returns information about the stack of current subroutine calls and
such. Without an argument, it returns the package name, filename, and line
number from which the currently executing subroutine was called:

830 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

($package, $filename, $line) = caller;

Here’s an example of an exceedingly picky function, making use of the special
tokens _ _PACKAGE_ _ and _ _FILE_ _ described in Chapter 2:

sub careful {
 my ($package, $filename) = caller;
 unless ($package eq _ _PACKAGE_ _ && $filename eq _ _FILE_ _) {
 die "You weren't supposed to call me, $package!";
 }
 say "called me safely";
}

sub safecall {
 careful();
}

When called with an argument, caller evaluates EXPR as the number of stack
frames to go back before the current one. For example, an argument of 0 means
the current stack frame, 1 means the caller, 2 means the caller’s caller, and so on.
The function also reports additional information, as shown here:

my $i = 0;
while (my ($package, $filename, $line, $subroutine,
 $hasargs, $wantarray, $evaltext, $is_require,
 $hints, $bitmask, $hinthash) = caller($i++))
{
 ...
}

If the frame is a subroutine call, $hasargs is true if it has its own @_ array (not one
borrowed from its caller). Otherwise, $subroutine may be “(eval)” if the frame
is not a subroutine call but an eval. If so, additional elements $evaltext and
$is_require are set: $is_require is true if the frame is created by a require or
use statement, and $evaltext contains the text of the eval EXPR statement. In
particular, for a eval BLOCK statement, $filename is “(eval)”, but $evaltext is
undefined. (Note also that each use statement creates a require frame inside an
eval EXPR frame.) The $hints, $bitmask, and $histhash are internal values; please
ignore them unless you’re a member of the thaumatocracy.2

In a fit of even deeper magic, caller also sets the array @DB::args to the arguments
passed in the given stack frame—but only when called from within the DB pack-
age. See Chapter 18.

2. $hinthash is a reference to a hash containing the value of %^H when the caller was compiled, or undef if
%^H was empty. Do not modify the values of this hash, as they are the actual values stored in the optree.

Perl Functions in Alphabetical Order | 831

www.it-ebooks.info

http://www.it-ebooks.info/

Be aware that the optimizer might have optimized call frames away before
caller had a chance to get the information. That means that caller(N) might not
return information about the call frame you expect for N > 1. In particular,
@DB::args might have information from the previous time caller was called.

Also understand that setting @DB::args is best effort, intended for debugging or
generating backtraces, and should not be relied on. In particular, @_ contains
aliases to the caller’s current @_ array. Perl does not take a snapshot of @_ at sub-
routine entry, so @DB::args will reflect any modifications the subroutine made to
@_ subsequent to its call. In addition, @DB::args, like @_, does not hold explicit
references to its elements, so in certain cases its elements may have become freed
and reallocated for other variables or temporary values. Finally, a side effect of
the current implementation is that the effects of only shift @_ can be undone
(but not pop or splice), and if a reference to @_ has been taken, you’re probably
just hosed. So @DB::args is actually a hybrid of the current and initial states of
@_. Buyer beware.

chdir
chdir EXPR
chdir

This function changes the current process’s working directory to EXPR, if possible.
If EXPR is omitted, $ENV{HOME} is used if set, and $ENV{LOGDIR} otherwise; these are
usually the process’s home directory. The function returns true on success, false
otherwise.

chdir("$prefix/lib") || die "Can't cd to $prefix/lib: $!";

See also the Cwd module, which lets you keep track of your current directory
automatically.

On systems that support fchdir(2), you may pass a filehandle or directory handle
as EXPR. On systems that don’t support fchdir(2), passing handles raises a runtime
exception.

chmod
chmod LIST

This function changes the permissions of a list of files. The first element of the
list must be the numerical mode, as in the chmod(2) syscall. The function returns
the number of files successfully changed. For example:

$cnt = chmod 0755, "file1", "file2";

832 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

will set $cnt to 0, 1, or 2, depending on how many files were changed. Success is
measured by lack of error, not by an actual change, because a file may have had
the same mode before the operation. An error probably means you lacked suffi-
cient privileges to change its mode because you were neither the file’s owner nor
the superuser. Check $! to find the actual reason for failure.

Here’s a more typical usage:

chmod(0755, @executables) == @executables
 || die "couldn't chmod some of @executables: $!";

If you need to know which files didn’t allow the change, use something like this:

@cannot = grep {not chmod(0755, $_) } "file1", "file2", "file3";
die "$0: could not chmod @cannot" if @cannot;

This idiom uses the grep function to select only those elements of the list for
which the chmod function failed.

On systems that support fchmod(2), you may also pass filehandles in the argu-
ment list. On systems without fchmod(2) support, passing filehandles raises a
runtime exception. To be recognized, filehandles must be passed as typeglobs or
references to typeglobs: strings are considered filenames.

When using nonliteral mode data, you may need to convert an octal string to a
number using the oct function. That’s because Perl doesn’t automatically assume
a string contains an octal number just because it happens to have a leading “0”.

$DEF_MODE = 0644; # Can't use quotes here!
PROMPT: {
 print "New mode? ";
 $strmode = <STDIN>;
 exit unless defined $strmode; # test for eof
 if ($strmode =~ /^\s*$/) { # test for blank line
 $mode = $DEF_MODE;
 }
 elsif ($strmode !~ /^\d+$/) {
 say "Want numeric mode, not $strmode";
 redo PROMPT;
 }
 else {
 $mode = oct($strmode); # converts "755" to 0755
 }
 chmod $mode, @files;
}

This function works with numeric modes much like the Unix chmod(2) syscall.
If you want a symbolic interface like the one the chmod(1) command provides,
see the File::chmod module on CPAN.

You can also import the symbolic S_I* constants from the Fcntl module:

Perl Functions in Alphabetical Order | 833

www.it-ebooks.info

http://www.it-ebooks.info/

use Fcntl ":mode";
chmod S_IRWXU | S_IRGRP | S_IXGRP | S_IROTH | S_IXOTH, @executables;

Some people consider that more readable than 0755. Go figure.

chomp
chomp VARIABLE
chomp LIST
chomp

This function (normally) deletes a trailing newline from the end of a string con-
tained in a variable. This is a slightly safer version of chop (described next) in that
it has no effect on a string that doesn’t end in a newline. More specifically, it
deletes the terminating string corresponding to the current value of $/, and not
just any last character.

Unlike chop, chomp returns the number of characters deleted. If $/ is "" (in para-
graph mode), chomp removes all trailing newlines from the selected string (or
strings, if chomping a LIST). When in slurp mode ($/ = undef) or fixed-length
record mode ($/ is a reference to an integer), chomp does nothing. You cannot
chomp a literal, only a variable. Chomping a hash chomps only the values, not the
keys.

For example:

while (<PASSWD>) {
 chomp; # avoid \n on last field
 @array = split /:/;
 ...
}

I/O layers are allowed to override the value of the $/ variable and mark how strings
should be chomped. This has the advantage that an I/O layer can recognize more
than one variety of line terminator (like the Unicode paragraph and line separa-
tors), but still safely chomp whatever terminates the current line.

The chomp function is not currently smart enough to handle Unicode linebreak
sequences, whose regex metacharacter is \R. To do so on your own:

s/\R/\n/g; # convert all Unicode linebreaks to \n

Or, sometimes, perhaps like this:

my @paras = split /\R+/, our $file_contents;

However, if you want to preserve the linebreak sequence, you’d best do this:

our $line =~ s/(\R?)\z//;
my $terminator = $1;

834 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

chop
chop VARIABLE
chop LIST
chop

This function chops off the last character of a string variable and returns the
character chopped. The chop function is used primarily to remove the newline
from the end of an input record, and it is more efficient than using a substitution.
If that’s all you’re doing, then it would be safer to use chomp, since chop always
shortens the string no matter what’s there, and chomp is more selective.

You cannot chop a literal, only a variable. If you chop a LIST of variables, each
string in the list is chopped:

@lines = `cat myfile`;
chop @lines;

You can chop anything that is an lvalue, including an assignment:

chop($cwd = `pwd`);
chop($answer = <STDIN>);

This is different from:

$answer = chop($tmp = <STDIN>); # WRONG

which puts a newline into $answer because chop returns the character chopped,
not the remaining string (which is in $tmp). One way to get the result intended
here is with substr:

$answer = substr <STDIN>, 0, –1;

But this is more commonly written as:

chop($answer = <STDIN>);

In the most general case, chop can be expressed using substr:

$last_char = chop($var);
$last_char = substr($var, –1, 1, ""); # same thing

Once you understand this equivalence, you can use it to do bigger chops. To chop
more than one character, use substr as an lvalue, assigning a null string. The
following removes the last five characters of $caravan:

substr($caravan, –5) = "";

The negative subscript causes substr to count from the end of the string instead
of the beginning. To save the removed characters, you could use the four-argu-
ment form of substr, creating something of a quintuple chop:

$tail = substr($caravan, –5, 5, "");

Perl Functions in Alphabetical Order | 835

www.it-ebooks.info

http://www.it-ebooks.info/

This is all dangerous business dealing with codepoints instead of graphemes. Perl
doesn’t really have a grapheme mode, so you have to deal with them yourself.
Consider a word like naïveté, which is really nai\x{308}vete\x{301} in NFD. If
you use chop, you won’t get naïvet; you’ll get naïvete. You have need to use s/\X\z//
to chop a grapheme instead of a codepoint. The CPAN Unicode::GCString
module is a tremendous help with all this.

chown
chown LIST

This function changes the owner and group of a list of files. The first two elements
of the list must be the numeric UID and GID, in that order. A value of –1 in either
position is interpreted by most systems to leave that value unchanged. The func-
tion returns the number of files successfully changed. For example:

chown($uidnum, $gidnum, "file1", "file2") == 2
 || die "can't chown file1 || file2: $!";

will set $cnt to 0, 1, or 2, depending on how many files got changed (in the sense
that the operation succeeded, not in the sense that the owner was different af-
terward). Here’s a more typical usage:

chown($uidnum, $gidnum, @filenames) == @filenames
 || die "can't chown @filenames: $!";

Here’s a subroutine that accepts a username, looks up the user and group IDs for
you, and does the chown:

sub chown_by_name {
 my($user, @files) = @_;
 chown((getpwnam($user))[2,3], @files) == @files
 || die "can't chown @files: $!";
}

chown_by_name("fred", glob("*.c"));

However, you may not want the group changed as the previous function does,
because the /etc/passwd file associates each user with a single group even though
that user may be a member of many secondary groups according to /etc/group.
An alternative is to pass a –1 for the GID, which leaves the group of the file un-
changed. If you pass a –1 as the UID and a valid GID, you can set the group
without altering the owner.

On systems that support fchown(2), you may also pass filehandles in the argument
list. On systems without fchown(2) support, passing filehandles raises a runtime

836 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

exception. To be recognized, filehandles must be passed as typeglobs or refer-
ences to typeglobs: strings are considered filenames.

On most systems, you are not allowed to change the ownership of the file unless
you’re the superuser, although you should be able to change the group to any of
your secondary groups. On insecure systems, these restrictions may be relaxed,
but this is not a portable assumption. On POSIX systems, you can detect which
rule applies like this:

use POSIX qw(sysconf _PC_CHOWN_RESTRICTED);
only try if we're the superuser or on a permissive system
if ($> == 0 || !sysconf(_PC_CHOWN_RESTRICTED)) {
 chown($uidnum, –1, $filename)
 || die "can't chown $filename to $uidnum: $!";
}

chr
chr NUMBER
chr

This function returns the character represented by NUMBER (truncated to an integer)
in the Unicode character set. For example, chr(65) is “A”, LATIN SMALL LETTER A,
and chr(0x2122) is “™”, TRADE MARK SIGN. For the reverse of chr, use ord.

If NUMBER is negative, this function produces the Unicode REPLACEMENT CHARAC-

TER, U+FFFD.3

(Note that characters with codepoints between 128 and 255 are by default inter-
nally not encoded as UTF-8 for backward-compatibility reasons. You shouldn’t
ever notice this, but if you do, that’s why.)

If you’d rather specify your characters by name than by number (for example,
“\N{WHITE SMILING FACE}” for a Unicode smiley, “☺”), see the section “char-
names” on page 1008 in Chapter 29. To convert a character number to its official
name instead of to the character itself, see that pragma’s charnames::viacode
function.

chroot
chroot FILENAME
chroot

If successful, FILENAME becomes the new root directory for the current process—
the starting point for pathnames beginning with “/”. This directory is inherited

3. Except under the bytes pragma, where the low eight bits of the value are used.

Perl Functions in Alphabetical Order | 837

www.it-ebooks.info

http://www.it-ebooks.info/

across exec calls and by all subprocesses forked after the chroot call. There is no
way to undo a chroot. For security reasons, only the superuser can use this func-
tion. Here’s some code that approximates what many FTP servers do:

chroot((getpwnam("ftp"))[7])
 || die "can't do anonymous ftp: $!";

This function is unlikely to work on non-Unix systems. See chroot(2).

close
close FILEHANDLE
close

This function closes the file, socket, or pipe associated with FILEHANDLE after
flushing any IO buffers. It closes the currently selected filehandle if the argument
is omitted. It returns true if the close is successful, false otherwise. You don’t
have to close FILEHANDLE if you are immediately going to do another open on it,
since the next open will close it for you, but then you would miss any error that
occurred. (See open.) However, an explicit close on an input file resets the line
counter ($.); the implicit close done by open does not.

FILEHANDLE may be an expression whose value can be used as an indirect filehandle
(either the real filehandle name or a reference to anything that can be interpreted
as a filehandle object).

If the filehandle came from a piped open, close returns false if any underlying
syscall fails or if the program at the other end of the pipe exited with nonzero
status. In the latter case, the close forces $! ($OS_ERROR) to zero. So if a close on
a pipe returns a nonzero status, check $! to determine whether the problem was
with the pipe itself (nonzero value) or with the program at the other end (zero
value). In either event, $? ($CHILD_ERROR) and ${^CHILD_ERROR_NATIVE} contain
the wait status value (see its interpretation under system) of the command asso-
ciated with the other end of the pipe. For example:

open(OUTPUT, "| sort –rn | lpr –p") # pipe to sort and lpr
 || die "Can't start sortlpr pipe: $!";
print OUTPUT @lines; # print stuff to output
close(OUTPUT) # wait for sort to finish
 || warn $! ? "Syserr closing sortlpr pipe: $!"
 : "Wait status $? from sortlpr pipe";

A filehandle produced by dup(2)ing a pipe is treated as an ordinary filehandle, so
close will not wait for the child on that filehandle. You have to wait for the child
by closing the original filehandle. For example:

838 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

open(NETSTAT, "netstat –rn |")
 || die "can't run netstat: $!";
open(STDIN, "<&NETSTAT")
 || die "can't dup to stdin: $!";

If you close STDIN above, there is no wait; if you close NETSTAT, there is.

If you somehow manage to reap an exited pipe child on your own, the close will
fail. This could happen if you had a $SIG{CHLD} handler of your own that got
triggered when the pipe child exited, or if you intentionally called waitpid on the
process ID returned from the open call.

closedir
closedir DIRHANDLE

This function closes a directory opened by opendir and returns the success of that
operation. See the examples under readdir. DIRHANDLE may be an expression
whose value can be used as an indirect dirhandle, usually the real dirhandle name
or an autovivified handle object.

connect
connect SOCKET, NAME

This function initiates a connection with another process that is waiting at an
accept. The function returns true if it succeeded, false otherwise. NAME should be
a packed network address of the proper type for the socket. For example, as-
suming SOCK is a previously created socket:

use Socket;

my ($remote, $port) = ("www.perl.com", 80);
my $destaddr = sockaddr_in($port, inet_aton($remote));
connect(SOCK, $destaddr)
 || die "Can't connect to $remote at port $port: $!";

To disconnect a socket, use either close or shutdown. See also the examples in the
section “Sockets” on page 543 in Chapter 15. See connect(2). For most socket
operations, the higher-level interface provided by the standard IO::Socket mod-
ule is preferred.

continue
This is usually a flow-control statement rather than a function. If there is a con
tinue attached to a BLOCK (typically in a while or foreach), it is always executed

Perl Functions in Alphabetical Order | 839

www.it-ebooks.info

http://www.it-ebooks.info/

just before the conditional is about to be evaluated again, just like the third part
of a for(;;) loop. Thus it can be used to increment a loop variable, even when
the loop has been continued via the next statement (which is similar to the C
continue statement).

last, next, or redo may appear within a continue block; last and redo behave as
if they had been executed within the main block. So will next, but since it will
execute a continue block, it may be more entertaining.

while (EXPR) {
 ### redo always comes here
 do_something;
} continue {
 ### next always comes here
 do_something_else;
 # then back the top to re–check EXPR
}
last always comes here

Omitting the continue section is equivalent to using an empty one, logically
enough, so next goes directly back to check the condition at the top of the loop.
See the section “Loop Control” on page 144 in Chapter 4.

However, if the “switch” feature is enabled, continue is also an operator that exits
the current when or default block and, by default, falls through to the next one.
See the section “The given Statement” on page 133 in Chapter 4.

cos
cos EXPR
cos

This function returns the cosine of EXPR (expressed in radians). For example, the
following script will print a cosine table of angles measured in degrees:

Here's the lazy way of getting degrees–to–radians

$pi = atan2(1,1) * 4;
$pi_over_180 = $pi/180;

Print table
for ($deg = 0; $deg <= 90; $deg++) {
 printf "%3d %7.5f\n", $deg, cos($deg * $pi_over_180);
}

For the inverse cosine operation, use the acos function from the Math::Trig or
POSIX modules, or else use this relation:

sub acos { atan2(sqrt(1 – $_[0] * $_[0]), $_[0]) }

840 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

crypt
crypt PLAINTEXT, SALT

This function computes a one-way hash of a string exactly in the manner of
crypt(3). This is somewhat useful for checking the password file for lousy pass-
words,4 although what you really want to do is prevent people from adding the
bad passwords in the first place.

crypt is intended to be a one-way function, much like breaking eggs to make an
omelette. There is no (known) way to decrypt an encrypted password apart from
exhaustive, brute-force guessing.

When verifying an existing encrypted string, you should use the encrypted text
as the SALT (like crypt($plain, $crypted) eq $crypted). This lets your code work
with the standard crypt (and with more exotic implementations, too).

When choosing a new SALT, you minimally need to create a random two-character
string whose characters come from the set [./0–9A–Za–z] (like join "", (".",
"/", 0..9, "A".."Z", "a".."z")[rand 64, rand 64]). Older implementations of
crypt needed only the first two characters of the SALT, but code that gives only
the first two characters is now considered nonportable. See your local crypt(3)
manpage for details.

Here’s an example that makes sure that whoever runs this program knows his
own password:

$pwd = (getpwuid ($<))[1]; # Assumes we're on Unix

system "stty –echo"; # or look into Term::ReadKey on CPAN
print "Password: ";
chomp($word = <STDIN>);
print "\n";
system "stty echo";

if (crypt($word, $pwd) ne $pwd) {
 die "Sorry...\n";
} else {
 say "ok";
}

Of course, typing in your own password to whoever asks for it is unwise.

Shadow password files are slightly more secure than traditional password files,
and you might have to be a superuser to access them. Because few programs
should run under such powerful privileges, you might have the program maintain

4. Only people with honorable intentions are allowed to do this.

Perl Functions in Alphabetical Order | 841

www.it-ebooks.info

http://www.it-ebooks.info/

its own independent authentication system by storing the crypt strings in a dif-
ferent file than /etc/passwd or /etc/shadow.

The crypt function is unsuitable for encrypting large quantities of data, not least
of all because you can’t get the information back. Look at the Crypt::*,
Digest::*, and PGP::* directories on your favorite CPAN mirror for a slew of
potentially useful modules.

If using crypt on a Unicode string, which may have characters with codepoints
above 255, Perl tries copying the string to an 8-bit byte string before calling
crypt on the copy. If that works, good. If not, crypt raises an exception.

dbmclose
dbmclose HASH

This function breaks the binding between a DBM (database management) file
and a hash.

dbmclose is really just a call to untie with the proper arguments, provided for
backward compatibility with ancient versions of Perl.

dbmopen
dbmopen HASH, DBNAME, MODE

This binds a DBM file to a hash (that is, an associative array). (A DBM consists
of a set of C library routines that allow random access to records via a hashing
algorithm.) HASH is the name of the hash (including the %). DBNAME is the name of
the database (without any .dir or .pag extension). If the database does not exist
and a valid MODE is specified, the database is created with the protection specified
by MODE, as modified by the umask. To prevent creation of the database if it doesn’t
exist, you may specify a MODE of undef, and the function will return false if it can’t
find an existing database. Values assigned to the hash before the dbmopen are not
accessible.

The dbmopen function is really just a call to tie with the proper arguments, pro-
vided for backward compatibility with ancient versions of Perl. The return value
from dbmopen is the same as it would be if you had called tie yourself: the tied
object on success, or false on failure. You can control which DBM library you
use by using the tie interface directly or by loading the appropriate module before
you call dbmopen. Here’s an example that works on some systems for versions of
DB_File similar to the version in your Netscape browser:

842 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

use DB_File;
dbmopen(%NS_Hist, "$ENV{HOME}/.netscape/history.dat", undef)
 || die "Can't open netscape history file: $!";

while (($url, $when) = each %NS_Hist) {
 next unless defined($when);
 chop ($url, $when); # kill trailing null bytes
 printf "Visited %s at %s.\n", $url,
 scalar(localtime(unpack("V",$when)));
}

If you don’t have write access to the DBM file, you can only read the hash variables,
not set them. If you want to test whether you can write, either use a file test like
-w $file, or try setting a dummy hash entry inside an eval {}, which will trap the
exception.

Functions such as keys and values may return huge list values when used on large
DBM files. You may prefer to use the each function to iterate over large DBM files
so that you don’t load the whole thing in memory at once.

Hashes bound to DBM files have the same limitations as the type of DBM package
you’re using, including restrictions on how much data you can put into a bucket.
If you stick to short keys and values, it’s rarely a problem. See also the DB_File.

Another thing you should bear in mind is that many existing DBM databases
contain null-terminated keys and values because they were set up with C pro-
grams in mind. The Netscape history file and the old sendmail aliases file are
examples. Just use "$key\0" when pulling out a value, and remove the null from
the value.

$alias = $aliases{"postmaster\0"};
$alias =~ s/\0\z//; # kill the null

Starting with v5.8.4, the standard DBM_Filter module can handle the business of
having null-terminated strings for you automatically.

use DB_File;
$db = dbmopen(%aliases, "/etc/mail/aliases", undef)
 || die "can't dbmopen /etc/mail/aliases: $!";
$db–>Filter_Push("null");
$alias = $aliases{"postmaster"};
print "postmaster is aliased to $alias\n";

The same strategy is useful for pushing a utf8 filter on the handle. See Chap-
ter 6 for an example of how to use Unicode as keys and values of DBM files.

There is currently no built-in way to lock a generic DBM file. Some would con-
sider this a bug. The GDBM_File module does try to provide locking at the gran-
ularity of the entire file. When in doubt, your best bet is to use a separate lock file.

Perl Functions in Alphabetical Order | 843

www.it-ebooks.info

http://www.it-ebooks.info/

defined
defined EXPR
defined

This function returns a Boolean value saying whether EXPR is a defined value.
Most data you deal with is defined, but a scalar that contains no valid string,
numeric, or reference value is said to contain the undefined value, or undef for
short. Initializing a scalar variable to a particular value defines it, and it stays
defined until you assign an undefined value to it or explicitly call the undef func-
tion on that variable.

Many operations return undef under exceptional conditions, such as at end-of-
file, when using an uninitialized variable’s value, an operating system error, etc.
Since undef is just one kind of false value, a simple Boolean test does not distin-
guish between undef, numeric zero, the null string, and the one-character string,
“0”—all of which are equally false. The defined function lets you distinguish
between an undefined null string and a defined null string when using operators
that might return a real null string.

Here is a fragment that tests a scalar value from a hash:

print if defined $switch{D};

When used on a hash element like this, defined tells only whether the value is
defined, not whether the key has an entry in the hash. It’s possible to have a key
whose value is undefined; the key itself, however, still exists. Use exists to de-
termine whether the hash key exists.

In the next example, we exploit the convention that some operations return the
undefined value when you run out of data (this presumes there are no elements
that contain undef):

print "$val\n" while defined($val = pop(@ary));

In this one, we do the same thing with the getpwent function for retrieving infor-
mation about the system’s users.

setpwent();
while (defined($name = getpwent())) {
 say "<<$name>>";
}
endpwent();

The same thing goes for error returns from syscalls that could validly return a
false value:

die "Can't readlink $sym: $!"
 unless defined($value = readlink $sym);

844 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

You may also use defined to see whether a subroutine has been defined yet. This
makes it possible to avoid blowing up on nonexistent subroutines (or subroutines
that have been declared but never given a definition):

indir("funcname", @arglist);
sub indir {
 my $subname = shift;
 no strict "refs"; # so we can use subname indirectly
 if (defined &$subname) {
 &$subname(@_); # or $subname–>(@_);
 }
 else {
 warn "Ignoring call to invalid function $subname";
 }
}

However, even an undefined subroutine might still be callable, in that its package
may have an AUTOLOAD function that handles calls to undefined functions in that
package.

Use of defined on aggregates (hashes and arrays) is deprecated. It used to report
whether memory for that aggregate had ever been allocated. Instead, use a simple
Boolean test to see whether the array or hash has any elements:

if (@an_array) { print "has array elements\n" }
if (%a_hash) { print "has hash members\n" }

When used on a hash element, it tells you whether the value is defined, not
whether the key exists in the hash. Use exists for the latter purpose.

See also undef and exists.

delete
delete EXPR

This function deletes an element (or a slice of elements) from the specified hash
or array. (See unlink if you want to delete a file.) Deleted elements are normally
returned in the order specified, although this behavior is not guaranteed for tied
variables such as DBM files. After the delete operation, the exists function re-
turns false on any deleted key or index. (In contrast, after the undef function, the
exists function continues to return true, because the undef function only unde-
fines the value of the element, but doesn’t delete the element itself.)

Deleting from the %ENV hash modifies the environment. Deleting from a hash tied
to a (writable) DBM file deletes the entry from that DBM file.

Deleting from an array causes the element at the specified position to revert to a
completely uninitialized state, but it doesn’t close up the gap, since that would

Perl Functions in Alphabetical Order | 845

www.it-ebooks.info

http://www.it-ebooks.info/

change the positions of all subsequent entries. Use a splice for that. However, if
you delete the final element in an array, the array size does shrink by one or more,
depending on the position of the next largest existing element, if any.

Calling delete on array values is deprecated and likely to be removed in some
future version of Perl.

EXPR can be arbitrarily complicated if the final operation is a hash or array lookup:

set up array of array of hash
$dungeon[$x][$y] = \%properties;

delete one property from hash
delete $dungeon[$x][$y]{"OCCUPIED"};

delete three properties all at once from hash
delete @{ $dungeon[$x][$y] }{ "OCCUPIED", "DAMP", "LIGHTED" };

delete reference to %properties from array
delete $dungeon[$x][$y];

The following naïve example inefficiently deletes all values from a %hash:

for my $key (keys %hash) {
 delete $hash{$key};
}

As does this:

delete @hash{keys %hash};

Both are slower than assigning the empty list or undefining it:

%hash = (); # completely empty %hash
undef %hash; # forget %hash ever existed

Likewise for arrays:

for my $index (0 .. $#array) {
 delete $array[$index];
}

and:

delete @array[0 .. $#array];

are less efficient than either of:

@array = (); # completely empty @array
undef @array; # forget @array ever existed

The delete local EXPR construct can also be used to localize the deletion of array
or hash elements to the current block. Until the block exits, elements locally
deleted temporarily no longer exist.

846 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

die
die LIST
die

Outside an eval, this function prints the concatenated value of LIST to STDERR and
exits with the current value of $! (the C library’s errno variable). If $! is 0, it exits
with the value of ($? >> 8), the status of the last reaped child from a system, wait,
close on a pipe, or `command`. If ($? >> 8) is 0, it exits with 255.

Within an eval, the function sets the $@ variable to the error message that would
have otherwise been produced, then aborts the eval, which returns undef. The
die function can thus be used to raise named exceptions that can be caught at a
higher level in the program. See eval later in this chapter.

If LIST is a single object reference, that object is assumed to be an exception object
and is returned unmodified as the exception in $@ (described below).

If LIST is empty and $@ already contains a string value (typically from a previous
eval) that value is reused after appending “\t...propagated”. This is useful for
propagating (reraising) exceptions:

eval { ... };
die unless $@ =~ /Expected exception/;

If LIST is empty and $@ already contains an exception object, that object’s
$@–>PROPAGATE method is invoked with additional file and line number parameters
to determine how the exception should propagate, with its return value replacing
the value in $@. That is, it’s as if $@ = eval { $@–>PROPAGATE(_ _FILE_ _, _ _LINE_ _) }
were called.

If LIST is empty and $@ is empty, then the string “Died” is used. If an uncaught
exception results in an interpreter exit, the exit code is determined from the
values of $! and $? with this pseudocode:

exit $! if $!; # errno
exit $? >> 8 if $? >> 8; # child exit status
exit 255; # last resort

The intent is to squeeze as much possible information about the likely cause into
the limited space of the system exit code. However, because $! can be set by any
syscall, the value of the exit code used by die can be unpredictable, so it should
not be relied on other than being nonzero.

If the final value of LIST does not end in a newline (and you’re not passing an
exception object), the current script filename, line number, and input line num-
ber (if any) are appended to the message, as well as a newline. Hint: sometimes
appending “, stopped” to your message will cause it to make better sense when

Perl Functions in Alphabetical Order | 847

www.it-ebooks.info

http://www.it-ebooks.info/

the string "at scriptname line 123" is appended. Suppose you are running script
canasta; consider the difference between the following two ways of dying:

die "/usr/games is no good";
die "/usr/games is no good, stopped";

which produce, respectively:

/usr/games is no good at canasta line 123.
/usr/games is no good, stopped at canasta line 123.

If you want your own error messages reporting the filename and line number, use
the _ _FILE_ _ and _ _LINE_ _ special tokens (which don’t interpolate within
strings):

die sprintf qq("%s" line "%s", phooey on you!\n),
 _ _FILE_ _, _ _LINE_ _;

This produces output like:

"canasta", line 38, phooey on you!

One other style issue—consider the following equivalent examples:

die "Can"t cd to spool: $!" unless chdir "/usr/spool/news";

chdir("/usr/spool/news") || die "Can't cd to spool: $!"

Because the important part is the chdir, the second form is generally preferred.

You can also call die with a reference argument, and if this is trapped within an
eval, $@ contains that reference. This permits more elaborate exception handling
using objects that maintain arbitrary state about the exception. Such a scheme
is sometimes preferable to matching particular string values of $@ with regular
expressions. Because $@ is a global variable and eval may be used within object
implementations, be careful that analyzing the error object doesn’t replace the
reference in the global variable. It’s easiest to make a local copy of the reference
before any manipulations. Here’s an example:

use Scalar::Util "blessed";

eval { WHATEVER; die Some::Module::Exception–>new(FOO => "bar") };
if (my $eval_err = $@) {
 if (blessed($eval_err) && $eval_err–>isa("Some::Module::Exception")) {
 # handle Some::Module::Exception
 }
 else {
 # handle all other exceptions
 }
}

848 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Because Perl stringifies uncaught exception messages before display, you’ll prob-
ably want to overload stringification operations on exception objects. See Chap-
ter 13 for details about that.

You can arrange for a function to be run just before die by setting $SIG{_ _DIE_ _}
to the function to run. The associated handler is called with the error text, and it can
change the error message (if it wants to) by calling die again. Only the most
accomplished and desperate wizards ever attempt such feats of magic, and fewer
still survive.

See also eval, exit, warn, %SIG, the warnings pragma, and the Carp module.

do (block)
do BLOCK

The do BLOCK form executes the sequence of statements in the BLOCK and returns
the value of the last expression evaluated in the block. When modified by a
while or until statement modifier, Perl executes the BLOCK once before testing the
loop condition. (On other statements, the loop modifiers test the conditional
first.) The do BLOCK itself does not count as a loop, so the loop control statements
next, last, or redo cannot be used to leave or restart the block. See the section
“Bare Blocks as Loops” on page 147 in Chapter 4 for workarounds.

do (file)
do FILE

The do FILE form uses the value of FILE as a filename and executes the contents
of the file as a Perl script. Its primary use is (or rather was) to include subroutines
from a Perl subroutine library, so that:

do "stat.pl";

is rather like:

scalar eval `cat stat.pl`; # `type stat.pl` on Windows

except that do is more efficient, more concise, keeps track of the current filename
for error messages, searches the directories listed in the @INC array, and updates
%INC if the file is found. (See Chapter 25.) It also differs in that code evaluated
with do FILE cannot see lexicals in the enclosing scope, whereas code in eval
FILE does. It’s the same, however, in that it reparses the file every time you call it
—so you might not want to do this inside a loop unless the filename itself changes
at each loop iteration.

Perl Functions in Alphabetical Order | 849

www.it-ebooks.info

http://www.it-ebooks.info/

If do can’t read the file, it returns undef and sets $! to the error. If do can read the
file but can’t compile it, it returns undef and sets an error message in $@. If the
file is successfully compiled, do returns the value of the last expression evaluated.

Inclusion of library modules (which have a mandatory .pm suffix) is better done
with the use and require operators, which also do error checking and raise an
exception if there’s a problem. They also offer other benefits: they avoid duplicate
loading, help with object-oriented programming, and provide hints to the com-
piler on function prototypes.

But do FILE is still useful for such things as reading program configuration files.
Manual error checking can be done this way:

read in config files: system first, then user
for $file ("/usr/share/proggie/defaults.rc",
 "$ENV{HOME}/.someprogrc")
{
 unless ($return = do $file) {
 warn "couldn't parse $file: $@" if $@;
 warn "couldn't do $file: $!" unless defined $return;
 warn "couldn't run $file" unless $return;
 }
}

A long-running daemon could periodically examine the timestamp on its con-
figuration file, and if the file has changed since it was last read in, the daemon
could use do to reload that file. This is more tidily accomplished with do than with
require or use.

do (subroutine)
do SUBROUTINE(LIST)

The do SUBROUTINE(LIST) is a deprecated form of a subroutine call. An exception
is raised if the SUBROUTINE is undefined. See Chapter 7.

dump
dump LABEL
dump

This function causes an immediate core dump. Primarily this is so that you can
use the undump program (not supplied) to turn your core dump into an exe-
cutable binary after having initialized all your variables at the beginning of the
program. When the new binary is executed it will begin by executing a goto
LABEL (with all the restrictions that goto suffers). Think of it as a goto with an
intervening core dump and reincarnation. If LABEL is omitted, the program is

850 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

restarted from the top. Warning: any files opened at the time of the dump will
not be open any more when the program is reincarnated, with possible resulting
confusion on the part of Perl. See also the –u command-line option in Chapter 17.

This function is now largely obsolete, partly because it’s difficult to convert a core
file into an executable in the general case, and partly because various compiler
backends for generating portable bytecode and compilable C code have super-
seded it. However, the people managing the Perl compiler project (meaning
perlcc and friends), hosted on CPAN, report that dump and undump support may
soon be resurrected.

If you’re looking to use dump to speed up your program, check out the discussion
of efficiency matters in Chapter 21, as well the Perl native-code generator in
Chapter 16. You might also consider autoloading or selfloading, which at least
make your program appear to run faster.

each
each HASH
each ARRAY
each EXPR

This function steps through a hash one key/value pair at a time. When called in
list context, each returns a two-element list consisting of the key and value for
the next element of a hash so that you can iterate over it. When called in scalar
context, each returns just the key for the next element in the hash. When the hash
is entirely read, the empty list is returned, which when assigned produces a false
value in scalar context, such as a loop test. The next call to each after that will
start iterating again. The typical use is as follows, using predefined %ENV hash:

while (($key,$value) = each %ENV) {
 say "$key=$value";
}

Internally, a hash maintains its own entries in an apparently random order. The
each function iterates through this sequence because every hash remembers
which entry was last returned. The actual ordering of this sequence is subject to
change in future versions of Perl, but is guaranteed to be in the same order as the
keys (or values) function would produce on the same (unmodified) hash. For
security reasons, this ordering can vary between different runs of the same pro-
gram.

Perl maintains a single iterator for each hash, shared by all each, keys, and val
ues function calls in the program; it can be reset by reading all the elements from
the hash, or by evaluating keys %hash or values %hash. If you add or delete ele-

Perl Functions in Alphabetical Order | 851

www.it-ebooks.info

http://www.it-ebooks.info/

ments of a hash while iterating over it, the result is not well defined: entries may
be skipped or duplicated.

Starting with v5.12, each can also take an array argument. The keys of the array
are its indices. Unlike with a hash, pairs are returned in ascending order by key
(array index).

Starting with v5.14, each can take a reference to an unblessed hash or array, which
will be dereferenced automatically. This aspect of each is considered experimen-
tal. The exact behavior may change in a future version of Perl.

while (($key,$value) = each $hashref) { ... }

See also keys, values, and sort.

eof
eof FILEHANDLE
eof()
eof

This function returns true if the next read on FILEHANDLE would return end-of-
file or if FILEHANDLE is not open. FILEHANDLE may be an expression whose value
gives the real filehandle or a reference to a filehandle object of some sort. An
eof without an argument returns the end-of-file status for the last file read. An
eof() with empty parentheses () tests the ARGV filehandle (most commonly seen
as the null filehandle in <>). Therefore, inside a while (<>) loop, an eof() with
parentheses will detect the end of only the last of a group of files. Use eof (without
parentheses) to test each file in a while (<>) loop. For example, the following code
inserts dashes just before the last line of the last file:

while (<>) {
 if (eof()) {
 say "–" x 30;
 }
 print;
}

On the other hand, this script resets line numbering on each input file:

reset line numbering on each input file
while (<>) {
 next if /^\s*#/; # skip comments
 print "$.\t$_";
} continue {
 close ARGV if eof; # Not eof()!
}

852 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Like “$” in a sed program, eof tends to show up in line number ranges. Here’s a
script that prints lines from /pattern/ to the end of each input file:

while (<>) {
 print if /pattern/ .. eof;
}

Here, the flip-flop operator (..) evaluates the pattern match for each line. Until
the pattern matches, the operator returns false. When it finally matches, the
operator starts returning true, causing the lines to be printed. When the eof op-
erator finally returns true (at the end of the file being examined), the flip-flop
operator resets and starts returning false again for the next file in @ARGV.

Warning: the eof function reads a byte and then pushes it back on the input stream
with ungetc(3), so it is not useful in an interactive context. Experienced Perl pro-
grammers rarely use eof, since the various input operators already behave politely
in while-loop conditionals. See the example in the description of foreach in
Chapter 4.

eval
eval BLOCK
eval EXPR
eval

The eval keyword serves two distinct but related purposes in Perl. These purposes
are represented by two forms of syntax, eval BLOCK and eval EXPR. The first form
traps runtime exceptions (errors) that would otherwise prove fatal, similar to the
“try block” construct in C++ or Java. The second form compiles and executes
little bits of code on the fly at runtime, and also (conveniently) traps any excep-
tions just like the first form. But the second form runs much slower than the first
form, since it must parse the string every time. On the other hand, it is also more
general. Whichever form you use, eval is the preferred way to do all exception
handling in Perl.

For either form of eval, the value returned from an eval is the value of the last
expression evaluated, just as with subroutines. Similarly, you may use the
return operator to return a value from the middle of the eval. The expression
providing the return value is evaluated in void, scalar, or list context, depending
on the context of the eval itself. See wantarray for more on how the evaluation
context can be determined.

If there is a trappable error (including any produced by the die operator), eval
returns undef and puts the error message (or object) in $@. If there is no error,

Perl Functions in Alphabetical Order | 853

www.it-ebooks.info

http://www.it-ebooks.info/

$@ is guaranteed to be set to the null string, so you can test it reliably afterward
for errors. A simple Boolean test suffices:

eval { ... }; # trap runtime errors
if ($@) { ... } # handle error

The eval BLOCK form is syntax checked and compiled at compile time, so it is just
as efficient at runtime as any other block. (People familiar with the slow eval
EXPR form are occasionally confused on this issue.) Because the BLOCK is compiled
when the surrounding code is, this form of eval cannot trap syntax errors.

The eval EXPR form can trap syntax errors because it parses the code at runtime.
(If the parse is unsuccessful, it places the parse error in $@, as usual.) Otherwise,
it executes the value of EXPR as though it were a little Perl program. The code is
executed in the context of the current Perl program, which means that it can see
any enclosing lexicals from a surrounding scope, and that any nonlocal variable
settings remain in effect after the eval is complete, as do any subroutine or format
definitions. The code of the eval is treated as a block, so any locally scoped vari-
ables declared within the eval last only until the eval is done. (See my and
local.) As with any code in a block, a final semicolon is not required.

Here is a simple Perl shell. It prompts the user to enter a string of arbitrary Perl
code, compiles and executes that string, and prints whatever error occurred:

print "\nEnter some Perl code: ";

while (<STDIN>) {
 eval;
 print $@;
 print "\nEnter some more Perl code: ";
}

Here is a rename program to do a mass renaming of files using a Perl expression:

#!/usr/bin/perl
rename – change filenames
$op = shift;
for (@ARGV) {
 $was = $_;
 eval $op;
 die if $@;
 # next line calls the built–in function, not
 # the script by the same name
 rename($was,$_) unless $was eq $_;
}

You’d use that program like this:

854 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

% rename 's/\.orig$//' *.orig
% rename 'y/A–Z/a–z/ unless /^Make/' *
% rename '$_ .= ".bad"' *.f

Since eval traps errors that would otherwise prove fatal, it is useful for determin-
ing whether particular features (such as fork or symlink) are implemented.

Because eval BLOCK is syntax checked at compile time, any syntax error is reported
earlier. Therefore, if your code is invariant and both eval EXPR and eval BLOCK
will suit your purposes equally well, the BLOCK form is preferred. For example:

make divide–by–zero nonfatal
eval { $answer = $a / $b }; warn $@ if $@;

same thing, but less efficient if run multiple times
eval '$answer = $a / $b'; warn $@ if $@;

a compile–time syntax error (not trapped)
eval { $answer = }; # WRONG

a runtime syntax error
eval '$answer ='; # sets $@

Here, the code in the BLOCK has to be valid Perl code to make it past the compile
phase. The code in the EXPR doesn’t get examined until runtime, so it doesn’t cause
an error until runtime.

The block of eval BLOCK does not count as a loop, so the loop control statements
next, last, or redo cannot be used to leave or restart the block.

An eval STRING executed within the DB package doesn’t see the usual surrounding
lexical scope, but rather the scope of the first non-DB piece of code that called
it. You don’t normally need to worry about this unless you are writing a Perl
debugger.

exec
exec PATHNAME LIST
exec LIST

The exec function terminates the current program and executes an external com-
mand and never returns!!! Use system instead of exec to return to your program
after the commands complete. The exec function fails and returns false only if
the command does not exist and if it is executed directly instead of via your
system’s command shell, discussed below.

If there is only one scalar argument, the argument is checked for shell metachar-
acters. If metacharacters are found, the entire argument is passed to the system’s

Perl Functions in Alphabetical Order | 855

www.it-ebooks.info

http://www.it-ebooks.info/

standard command interpreter (/bin/sh under Unix). If there are no metacharac-
ters, the argument is split into words and executed directly, since in the interests
of efficiency this bypasses the overhead of shell processing. It also gives you more
control of error recovery should the program not exist.

If there is more than one argument in LIST, or if LIST is an array with more than
one value, the system shell will never be used. This also bypasses any shell pro-
cessing of the command. The presence or absence of metacharacters in the ar-
guments doesn’t affect this list-triggered behavior, which makes it the preferred
form in security-conscious programs that do not wish to expose themselves to
injection attacks via shell escapes.

This example causes the currently running Perl program to replace itself with the
echo program, which then prints out the current argument list:

exec "echo", "Your arguments are: ", @ARGV;

This example shows that you can exec a pipeline, not just a single program.

exec "sort $outfile | uniq"
 || die "Can't do sort/uniq: $!";

Ordinarily, exec never returns—if it does return, it always returns false, and you
should check $! to find out what went wrong. In very old releases of Perl (before
v5.6), exec (and system) did not flush your output buffer, so you needed to enable
command buffering by setting $| on one or more filehandles to avoid lost output
with exec or misordered output with system.

When you ask the operating system to execute a new program within an existing
process (as Perl’s exec function does), you tell the system the location of the pro-
gram to execute, but you also tell the new program (through its first argument)
the name under which the program was invoked. Customarily, the name you tell
it is just a copy of the location of the program, but it doesn’t necessarily have to
be, since there are two separate arguments at the level of the C language. When
it is not a copy, you have the odd result that the new program thinks it’s running
under a name that may be totally different from the actual pathname where the
program resides. Often this doesn’t matter to the program in question, but some
programs do care and adopt a different persona depending on what they think
their name is. For example, the vi editor looks to see whether it was called as
“vi” or as “view”. If invoked as “view”, it automatically enables read-only mode,
just as though it were called with the –R command-line option.

This is where exec’s optional PATHNAME parameter comes into play. Syntactically,
it goes in the indirect-object slot like the filehandle for print or printf. It therefore
doesn’t take a comma afterwards, because it’s not exactly part of the argument
list. (In a sense, Perl takes the opposite approach from the operating system in

856 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

that it assumes the first argument is the important one, and lets you modify the
pathname if it differs.) For example:

$editor = "/usr/bin/vi";
exec $editor "view", @files # trigger read–only mode
 || die "Couldn't execute $editor: $!";

As with any other indirect object, you can also replace the simple scalar holding
the program name with a block containing arbitrary code, which simplifies the
previous example to:

exec { "/usr/bin/vi" } "view", @files # trigger read–only mode
 || die "Couldn't execute /usr/bin/vi: $!";

As we mentioned earlier, exec treats a discrete list of arguments as a directive to
bypass shell processing. However, there is one place where you might still get
tripped up. The exec call (and system, too) cannot distinguish between a single
scalar argument and an array containing only one element.

@args = ("echo surprise"); # just one element in list
exec @args # still subject to shell escapes
 || die "exec: $!"; # because @args == 1

To avoid this, use the PATHNAME syntax, explicitly duplicating the first argument
as the pathname, which forces the rest of the arguments to be interpreted as a
list, even if there is only one of them:

exec { $args[0] } @args # safe even with one–argument list
 || die "can't exec @args: $!";

The first version, the one without the curlies, runs the echo program, passing
“surprise” as an argument. The second version doesn’t; it tries to run a program
literally called echo surprise, doesn’t find it (we hope), and sets $! to a nonzero
value indicating failure.

Because the exec function is most often used shortly after a fork, it is assumed
that anything that normally happens when a Perl process terminates should be
skipped. On an exec, Perl does not call your END blocks, nor will it call any
DESTROY methods associated with any objects. Otherwise, your child process
would end up doing the cleanup you expected the parent process to do. (We
wish that were the case in real life.)

Because it’s such a common mistake to use exec instead of system, Perl warns you
if there is a following statement that isn’t die, warn, or exit, provided you have
warnings enabled. (You do have warnings enabled, right?) If you really want to
follow an exec with some other statement, you can use either of these styles to
avoid the warning:

Perl Functions in Alphabetical Order | 857

www.it-ebooks.info

http://www.it-ebooks.info/

exec ("foo") || print STDERR "couldn't exec foo: $!";
{ exec ("foo") }; print STDERR "couldn't exec foo: $!";

As the second line above shows, a call to exec that is the last statement in a block
is exempt from this warning.

Perl attempts to flush all files opened for output before the exec, but this may not
be supported on some platforms. To be safe, you may need to set $| ($AUTO
FLUSH in English) or call the autoflush method of IO::Handle on any open handles
to avoid lost output.

Note that on an exec, END blocks are not called and DESTROY methods are not
invoked on your objects.

See also system.

exists
exists EXPR

Given an expression that specifies an element of a hash, this function returns true
if the specified element in the hash has ever been initialized, even if the corre-
sponding value is undefined.

print "True\n" if $hash{$key};
print "Exists\n" if exists $hash{$key};
print "Defined\n" if defined $hash{$key};

Historically, exists may also be called on array elements, but its behavior is less
obvious and is strongly tied to the use of delete on arrays. However, calling
exists on array values is deprecated and likely to be removed in a future version
of Perl.

print "True\n" if $array[$index];
print "Exists\n" if exists $array[$index];
print "Defined\n" if defined $array[$index];

An element can be true only if it’s defined, and it can be defined only if it exists,
but the reverse doesn’t necessarily hold.

EXPR can be arbitrarily complicated, provided the final operation is a hash key or
array index lookup:

if (exists $hash{A}{B}{$key}) { ... }

Although the last element does not spring into existence just because its existence
was tested, intervening ones do. Thus, $$hash{"A"} and $hash{"A"}–>{"B"} both
spring into existence. This is not a function of exists, per se; it happens anywhere
the arrow operator is used (explicitly or implicitly):

858 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

undef $ref;
if (exists $ref–>{"Some key"}) { }
print $ref; # prints HASH(0x80d3d5c)

Even though the “Some key” element didn’t spring into existence, the previously
undefined $ref variable did suddenly come to hold an anonymous hash. This is
a surprising instance of autovivification in what does not at first—or even second
—glance appear to be an lvalue context. This behavior is likely to be fixed in a
future release. As a workaround, you can nest your calls:

if ($ref &&
 exists $ref–>[$x] &&
 exists $ref–>[$x][$y] &&
 exists $ref–>[$x][$y]{$key} &&
 exists $ref–>[$x][$y]{$key}[2]) { ... }

If EXPR is the name of a subroutine, the exists function returns true if that sub-
routine has been declared, even if it has not yet been defined. The following prints
“Exists” only:

sub flub;
print "Exists\n" if exists &flub;
print "Defined\n" if defined &flub;

Using exists on a subroutine name can be useful for an AUTOLOAD subroutine that
needs to know whether a particular package wants a particular subroutine to be
defined. The package can indicate this by declaring a stub sub like flub, as shown
above.

Accidentally using the return value of a subroutine call, rather than a subroutine
name, as an argument to exists is an error.

exists ⊂ # OK
exists &sub(); # Error: the parens would call the function

exit
exit EXPR
exit

This function evaluates EXPR as an integer and exits immediately with that value
as the final error status of the program. If EXPR is omitted, the function exits with
0 status (meaning “no error”). Here’s a fragment that lets a user exit the program
by typing x or X:

$ans = <STDIN>;
exit if $ans =~ /^[Xx]/;

You shouldn’t use exit to abort a subroutine if there’s any chance that someone
might want to trap whatever error happened. Use die instead, which can be

Perl Functions in Alphabetical Order | 859

www.it-ebooks.info

http://www.it-ebooks.info/

trapped by an eval. Or use one of die’s wrappers from the Carp module, like
croak or confess.

We said that the exit function exits immediately, but that was a bald-faced lie. It
exits as soon as possible, but first it calls any defined END routines for at-exit
handling. These routines cannot abort the exit, although they can change the
eventual exit value by setting the $? variable. Likewise, any class that defines a
DESTROY method will invoke that method on behalf of all its objects before the real
program exits. If you really need to bypass exit processing, you can call the
POSIX module’s _exit function to avoid all END and destructor processing. And if
POSIX isn’t available, you can exec "/bin/false" or some such.

exp
exp EXPR
exp

This function returns e, the natural logarithm base, to the power of EXPR. To get
the value of e, use exp(1). For general exponentiation of different bases, use the
** operator we stole from FORTRAN:

use Math::Complex;
print –exp(1) ** (i * pi); # prints 1(ish)

_ _FILE_ _
A special token that returns the name of the file in which it occurs. See “Gener-
ating Perl in Other Languages” on page 717 in Chapter 21.

fc
fc EXPR
fc

New to v5.16, this function returns the full Unicode casefold of EXPR. This is the
internal function implementing the \F escape in casefolded strings. Just as title-
case is based on uppercase but different, foldcase is based on lowercase but dif-
ferent. In ASCII there is a one-to-one mapping between only two cases, but in
Unicode there is a one-to-many mapping and between three cases. Because that’s
too many combinations to check manually each time, a fourth casemap called
foldcase was invented as a common intermediary for the other three. It is not a
case itself, but it is a casemap.

To compare whether two strings are the same without regard to case, do this:

860 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

fc($a) eq fc($b)

Prior to v5.16, the only reliable way to compare strings case-insensitively was with
the /i pattern modifier, because Perl has always used casefolding semantics for
case-insensitive pattern matches. Knowing this, you can emulate equality com-
parisons like this:

sub fc_eq($$) {
 my($a, $b) = @_;
 return $a =~ /\A\Q$b\E\z/i;
}

For earlier releases than v5.16, the fc function can be found in the Unicode::Case
Fold module on CPAN. For comparisons that are both accent- and case-insensi-
tive, use the eq or cmp methods with a Unicode::Collate collator object that was
passed level=>1 in its constructor, or with a Unicode::Collate::Locale object
similarly constructed for locale-specific equality and ordering. See “A Case of
Mistaken Identity” and “Comparing and Sorting Unicode Text” in Chapter 6.

fcntl
fcntl FILEHANDLE, FUNCTION, SCALAR

This function calls your operating system’s file control functions, as documented
in the fcntl(2) manpage. Before you call fcntl, you’ll probably first have to say:

use Fcntl;

to load the correct constant definitions.

SCALAR will be read or written (or both) depending on the FUNCTION. A pointer to
the string value of SCALAR will be passed as the third argument of the actual
fcntl call. (If SCALAR has no string value but does have a numeric value, that value
will be passed directly rather than passing a pointer to the string value.) See the
Fcntl module for a description of the more common permissible values for FUNC
TION.

The fcntl function will raise an exception if used on a system that doesn’t im-
plement fcntl(2). On systems that do implement it, you can do such things as
modify the close-on-exec flags (if you don’t want to play with the $^F ($SYS
TEM_FD_MAX) variable), modify the nonblocking I/O flags, emulate the lockf(3)
function, and arrange to receive the SIGIO signal when I/O is pending.

Here’s an example of setting a filehandle named REMOTE to be nonblocking at the
system level. This makes any input operation return immediately if nothing is
available when reading from a pipe, socket, or serial line that would otherwise
block. It also works to cause output operations that normally would block to

Perl Functions in Alphabetical Order | 861

www.it-ebooks.info

http://www.it-ebooks.info/

return a failure status instead. (For those, you’ll likely have to negotiate $| as
well.)

use Fcntl qw(F_GETFL F_SETFL O_NONBLOCK);

$flags = fcntl(REMOTE, F_GETFL, 0)
 || die "Can't get flags for the socket: $!";

$flags = fcntl(REMOTE, F_SETFL, $flags | O_NONBLOCK)
 || die "Can't set flags for the socket: $!";

The return value of fcntl (and ioctl) is shown in Table 27-1.

Table 27-1. Return values for fcntl

Syscall Returns Perl Returns

–1 undef

0 String “0 but true”

Anything else That number

Thus, Perl returns true on success and false on failure, yet you can still easily
determine the actual value returned by the operating system:

$retval = fcntl(...) || –1;
printf "fcntl actually returned %d\n", $retval;

Here, even the string “0 but true” prints as 0, thanks to the %d format. This string
is true in Boolean context and 0 in numeric context. This lets you use a simple
|| die test on the return value instead of the skewed version, // die. (It is also
happily exempt from the normal warnings on improper numeric conversions.)

fileno
fileno FILEHANDLE

This function returns the file descriptor underlying a filehandle. If the filehandle
is not open, fileno returns undef. If there is no real file descriptor at the OS level,
as can happen with filehandles connected to memory objects via open with a
reference for the third argument, −1 is returned.

A file descriptor is a small, nonnegative integer like 0 or 1, in contrast to filehandles
like STDIN and STDOUT, which are symbols. Unfortunately, the operating system
doesn’t know about your cool symbols. It only thinks of open files using these
small file numbers, and although Perl will usually do the translations for you
automatically, occasionally you have to know the actual file descriptor.

862 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

So, for example, the fileno function is useful for constructing bitmaps for
select and for passing to certain obscure system calls if syscall(2) is implemented.
It’s also useful for double checking that the open function gave you the file de-
scriptor you wanted and for determining whether two filehandles use the same
system file descriptor.

if (fileno(THIS) == fileno(THAT)) {
 say "THIS and THAT are dups";
}

If FILEHANDLE is an expression, the value is taken as an indirect filehandle, gener-
ally its name or a reference to something resembling a filehandle object.

Don’t count on the association of a Perl filehandle and a numeric file descriptor
throughout the life of the program. If a file has been closed and reopened, the
file descriptor may change. Perl takes a bit of trouble to try to ensure that certain
file descriptors won’t be lost if an open on them fails, but it only does this for file
descriptors that don’t exceed the current value of the special $^F ($SYS
TEM_FD_MAX) variable (by default, 2). Although filehandles STDIN, STDOUT, and
STDERR start out with file descriptors of 0, 1, and 2 (the Unix standard convention),
even they can change if you start closing and opening them with wild abandon.
You can’t get into trouble with 0, 1, and 2 so long as you always reopen imme-
diately after closing. The basic rule on Unix systems is to pick the lowest available
descriptor, and that’ll be the one you just closed.

flock
flock FILEHANDLE, OPERATION

The flock function is Perl’s portable file-locking interface. It locks only entire
files, not individual records. The function manages locks on the file associated
with FILEHANDLE, returning true for success and false otherwise. To avoid the
possibility of lost data, Perl flushes your FILEHANDLE before locking or unlocking
it. Perl might implement its flock using flock(2), fcntl(2), lockf(3), or some other
platform-specific lock mechanism; if none of these is available, calling flock
raises an exception. See the section “File Locking” on page 524 in Chapter 15.

OPERATION is one of LOCK_SH, LOCK_EX, or LOCK_UN, possibly OR'd with LOCK_NB.
These constants are traditionally valued 1, 2, 8, and 4, but you can use the sym-
bolic names if you import them from the Fcntl module, either individually or as
a group using the :flock tag.

LOCK_SH requests a shared lock, so it’s typically used for reading. LOCK_EX requests
an exclusive lock, so it’s typically used for writing. LOCK_UN releases a previously
requested lock; closing the file also releases any locks. If the LOCK_NB bit is used

Perl Functions in Alphabetical Order | 863

www.it-ebooks.info

http://www.it-ebooks.info/

with LOCK_SH or LOCK_EX, flock returns immediately rather than waiting for an
unavailable lock. Check the return status to see whether you got the lock you
asked for. If you don’t use LOCK_NB, you might wait indefinitely for the lock to be
granted.

Another nonobvious but traditional aspect of flock is that its locks are merely
advisory. Discretionary locks are more flexible but offer fewer guarantees than
mandatory ones. This means that files locked with flock may be modified by
programs that do not also use flock. Cars that stop for red lights get on well with
one another, but not with cars that don’t stop for red lights. Drive defensively.

Some implementations of flock cannot lock things over the network. While you
could in theory use the more system-specific fcntl for that, the jury (having se-
questered itself on the case for the last couple of decades or so) is still out on
whether this is (or even can be) reliable.

Here’s a mailbox appender for Unix systems that use flock(2) to lock mailboxes:

use Fcntl qw/:flock/; # import LOCK_* constants
sub mylock {
 flock(MBOX, LOCK_EX)
 || die "can't lock mailbox: $!";
 # in case someone appended while we were waiting
 # and our stdio buffer is out of sync
 seek(MBOX, 0, 2)
 || die "can't seek to the end of mailbox: $!";
}

open(MBOX, ">> /usr/spool/mail/$ENV{USER}")
 || die "can't open mailbox: $!";

mylock();
say MBOX $msg, "\n";
close MBOX
 || die "can't close mailbox: $!";

On systems that support a real flock(2) syscall, locks are inherited across fork
calls. Other implementations are not so lucky and are likely to lose the locks
across forks. See also the section “File Locking” on page 524 in Chapter 15 for
other flock examples.

fork
fork

This function creates two processes out of one by invoking the fork(2) syscall. If
it succeeds, the function returns the new child process’s ID to the parent process

864 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

and 0 to the child process. If the system doesn’t have sufficient resources to
allocate a new process, the call fails and returns undef. File descriptors (and
sometimes locks on those descriptors) are shared, while everything else is copied
—or at least made to look that way.

In ancient versions, unflushed buffers remain unflushed in both processes, which
means you might need to set $| on one or more filehandles earlier in the program
to avoid duplicate output.

A nearly bulletproof way to launch a child process while checking for “cannot
fork” errors would be:

use Errno qw(EAGAIN);
FORK: {
 if ($pid = fork) {
 # parent here
 # child process pid is available in $pid
 }
 elsif (defined $pid) { # $pid is zero here if defined
 # child here
 # parent process pid is available with getppid
 }
 elsif ($! == EAGAIN) {
 # EAGAIN is the supposedly recoverable fork error
 sleep 5;
 redo FORK;
 }
 else {
 # weird fork error
 die "Can't fork: $!";
 }
}

These precautions are not necessary on operations that do an implicit fork(2)—
such as system, backticks, or opening a process as a filehandle—because Perl
automatically retries a fork on a temporary failure when it’s doing the fork for
you. Be careful to end the child code with an exit; otherwise, your child will
inadvertently leave the conditional block and start executing code intended only
for the parent process.

If you fork without ever waiting on your children, you will accumulate zombies
(exited processes whose parents haven’t waited on them yet). On some systems,
you can avoid this by setting $SIG{CHLD} to “IGNORE”; on most, you must wait for
your moribund children. See “wait” in this chapter for examples of doing this,
or see the section “Signals” on page 518 in Chapter 15 for more on SIGCHLD.

If a forked child inherits system file descriptors like STDIN and STDOUT that are
connected to a remote pipe or socket, you may have to reopen these in the child

Perl Functions in Alphabetical Order | 865

www.it-ebooks.info

http://www.it-ebooks.info/

to /dev/null. That’s because even when the parent process exits, the child will live
on with its copies of those filehandles. The remote server (such as, say, a CGI
script or a background job launched from a remote shell) will appear to hang
because it’s still waiting for all copies to be closed. Reopening the system file-
handles to something else fixes this.

On most systems supporting fork(2), great care has gone into making it extremely
efficient (for example, using copy-on-write technology on data pages), making
it the dominant paradigm for multitasking over the last few decades. The fork
function is unlikely to be implemented efficiently (or perhaps at all) on systems
that don’t resemble Unix. For example, Perl emulates a proper fork even on
Microsoft systems, but no assurances are made on performance. You might have
more luck there with the Win32::Process module.

Perl attempts to flush all files opened for output before forking the child process,
but this may not be supported on some platforms. To be safe, you may need to
set $| ($AUTOFLUSH in English) or call the autoflush method from IO::Handle on
any open handles to avoid duplicate output.

If you fork without ever waiting on your children, you will accumulate zombies.
On some systems, you can avoid this by setting $SIG{CHLD} to “IGNORE”. See also
Chapter 15 for more examples of forking and reaping moribund children.

Note that if your forked child inherits system file descriptors like STDIN and
STDOUT that are actually connected by a pipe or socket, then the remote server
(such as, say, a CGI script or a backgrounded job launched from a remote shell)
won’t think you’re done, even if you exit the parent process. You should reopen
those to /dev/null if this is an issue.

format
format NAME =
 picture line
 value list
 ...
 .

This function declares a named sequence of picture lines (with associated values)
for use by the write function. If NAME is omitted, the name defaults to STDOUT,
which happens to be the default format name for the STDOUT filehandle. Since,
like a sub declaration, this is a package-global declaration that happens at compile
time, any variables used in the value list need to be visible at the point of the
format’s declaration. That is, lexically scoped variables must be declared earlier
in the file, while dynamically scoped variables merely need to be set at the time

866 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

write is called. Here’s an example (which assumes we’ve already calculated
$cost and $quantity):

my $str = "widget"; # Lexically scoped variable

format Nice_Output =
Test: @<<<<<<<< @||||| @>>>>>
 $str, $%, '$' . int($num)
.

local $~ = "Nice_Output"; # Select our format
local $num = $cost * $quantity; # Dynamically scoped variable

write;

Like filehandles, format names are identifiers that exist in a symbol table (pack-
age) and may be fully qualified by package name. Within the typeglobs of a
symbol table’s entries, formats reside in their own namespace, which is distinct
from filehandles, directory handles, scalars, arrays, hashes, and subroutines. Like
those other six types, however, a format named Whatever would also be affected
by a local on the *Whatever typeglob. In other words, a format is just another
gadget contained in a typeglob, independent of the other gadgets.

The section “Picture Formats” on page 810 in Chapter 26 contains numerous
details and examples of their use. Chapter 25 describes the internal format-spe-
cific variables, and the English and IO::Handle modules provide easier access to
them.

formline
formline PICTURE, LIST

This is an internal function used by formats, although you may also call it yourself.
It always returns true. It formats a list of values according to the contents of
PICTURE, placing the output into the format output accumulator, $^A (or $ACCUMU
LATOR if you use the English module). Eventually, when a write is done, the con-
tents of $^A are written to some filehandle, but you could also read $^A yourself
and then set $^A back to "". A format typically does one formline per line of form,
but the formline function itself doesn’t care how many newlines are embedded
in the PICTURE. This means that the ~ and ~~ tokens will treat the entire PICTURE
as a single line. You may therefore need to use multiple formlines to implement
a single record format, just as the format compiler does internally.

Be careful if you put double quotes around the picture, since an @ character may
be taken to mean the beginning of an array name. See the section “Picture For-
mats” on page 810 in Chapter 26 for example uses.

Perl Functions in Alphabetical Order | 867

www.it-ebooks.info

http://www.it-ebooks.info/

getc
getc FILEHANDLE
getc

This function returns the next character from the input file attached to FILEHAN
DLE. It returns undef at end-of-file or if an I/O error was encountered. If FILEHAN
DLE is omitted, the function reads from STDIN.

This function is somewhat slow, but it's occasionally useful for single-character
input from the keyboard—provided you manage to get your keyboard input
unbuffered. This function requests unbuffered input from the standard I/O li-
brary. Unfortunately, the standard I/O library is not so standard as to provide a
portable way to tell the underlying operating system to supply unbuffered key-
board input to the standard I/O system. To do that, you have to be slightly more
clever, and in an operating-system-dependent fashion. Under Unix you might
say this:

if ($BSD_STYLE) {
 system "stty cbreak </dev/tty >/dev/tty 2>&1";
} else {
 system "stty", "–icanon", "eol", "\001";
}

$key = getc;

if ($BSD_STYLE) {
 system "stty –cbreak </dev/tty >/dev/tty 2>&1";
} else {
 system "stty", "icanon", "eol", "^@"; # ASCII NUL
}
print "\n";

This code puts the next character typed on the terminal in the string $key. If your
stty program has options like cbreak, you’ll need to use the code where
$BSD_STYLE is true. Otherwise, you’ll need to use the code where it is false. Deter-
mining the options for stty(1) is left as an exercise to the reader.

The POSIX module provides a more portable version of this using the POSIX::get
attr function on systems purporting POSIX compliance. See also the Term::Read
Key module from your nearest CPAN site for a more portable and flexible ap-
proach. For the ungetc function, use the method in the IO::Handle class.

868 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

getgrent
getgrent
setgrent
endgrent

These routines iterate through your /etc/group file (or maybe someone else’s /etc/
group file, if it’s coming from a server somewhere). The return value from get
grent in list context is:

0 1 2 3
($name, $passwd, $gid, $members) = getgrent();

where $members contains a space-separated list of the login names of the members
of the group. To set up a hash for translating group names to GIDs, say this:

while (($name, $passwd, $gid) = getgrent()) {
 $gid{$name} = $gid;
}

In scalar context, getgrent returns only the group name. The standard
User::grent module supports a by-name interface to this function. See get-
grent(3).

getgrgid
getgrgid GID

This function looks up a group file entry by group number. The return value in
list context is:

0 1 2 3
($name, $passwd, $gid, $members)
 = getgrgid(0);

where $members contains a space-separated list of the login names of the members
of the group. If you want to do this repeatedly, consider caching the data in a
hash using getgrent.

In scalar context, getgrgid returns only the group name. The User::grent module
supports a by-name interface to this function. See getgrgid(3).

getgrnam
getgrnam NAME

This function looks up a group file entry by group name. The return value in list
context is:

Perl Functions in Alphabetical Order | 869

www.it-ebooks.info

http://www.it-ebooks.info/

0 1 2 3
($name, $passwd, $gid, $members) =
 getgrnam("wheel");

where $members contains a space-separated list of login names that are members
of the group. If you want to do this repeatedly, consider caching the data in a
hash using getgrent.

In scalar context, getgrnam returns only the numeric group ID. The User::grent
module supports a by-name interface to this function. See getgrnam(3).

gethostbyaddr
gethostbyaddr ADDR, ADDRTYPE

This function translates addresses into names (and alternate addresses). ADDR
should be a packed binary network address, and ADDRTYPE should in practice
usually be AF_INET (from the Socket module). The return value in list context is:

0 1 2 3 4 ...
($name, $aliases, $addrtype, $length, @addrs) =
 gethostbyaddr($packed_binary_address, $addrtype);

where @addrs is a list of packed binary addresses. In the Internet domain, each
address is (historically) four bytes long and can be unpacked by saying something
like:

($a, $b, $c, $d) = unpack("C4", $addrs[0]);

Alternatively, you can convert directly to dot-vector notation with the v modifier
to sprintf:

$dots = sprintf "%vd", $addrs[0];

The inet_ntoa function from the Socket module is useful for producing a print-
able version. This approach will become important if and when we all ever man-
age to switch over to IPv6.

use Socket;
$printable_address = inet_ntoa($addrs[0]);

In scalar context, gethostbyaddr returns only the hostname.

To produce an ADDR from a dot vector, say this:

use Socket;
$ipaddr = inet_aton("127.0.0.1"); # localhost
$claimed_hostname = gethostbyaddr($ipaddr, AF_INET);

870 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

See the section “Sockets” on page 543 in Chapter 15 for more examples. The
Net::hostent module supports a by-name interface to this function. See gethost-
byaddr(3).

The Socket module is a gethostinfo function that works for addresses in all com-
mon forms, including IPv6.

The getaddrinfo function is used to get a list of IP addresses and port numbers
for a given host (and possibly service), and it provides more flexibility than the
gethostbyname(3) and getservbyname(3) functions.

use Socket qw(:all);
@addr_structs = getaddrinfo("127.0.0.1"); # IPv4 loopback
@addr_structs = getaddrinfo("207.171.7.72");

@addr_structs = getaddrinfo("::1"); # IPv6 loopback
@addr_structs = getaddrinfo("e80::223:12ff:fe58:714c");

gethostbyname
gethostbyname NAME

This function translates a network hostname to its corresponding addresses (and
other names). The return value in list context is:

0 1 2 3 4 ...
($name, $aliases, $addrtype, $length, @addrs) =
 gethostbyname($remote_hostname);

where @addrs is a list of raw addresses. In the Internet domain, each address is
(historically) four bytes long and can be unpacked by saying something like:

($a, $b, $c, $d) = unpack("C4", $addrs[0]);

You can convert directly to dot-vector notation with the v modifier to sprintf:

$dots = sprintf "%vd", $addrs[0];

In scalar context, gethostbyname returns only the host address:

use Socket;
$ipaddr = gethostbyname($remote_host);
printf "%s has address %s\n",
 $remote_host, inet_ntoa($ipaddr);

See “Sockets” on page 543 in Chapter 15 for another approach. The Net::hos
tent module supports a by-name interface to this function. See also gethostby-
name(3).

Perl Functions in Alphabetical Order | 871

www.it-ebooks.info

http://www.it-ebooks.info/

gethostent
gethostent
sethostent STAYOPEN
endhostent

These functions iterate through your /etc/hosts file and return each entry one at
a time. The return value from gethostent is:

($name, $aliases, $addrtype, $length, @addrs)

where @addrs is a list of raw addresses. In the Internet domain, each address is
four bytes long and can be unpacked by saying something like:

($a, $b, $c, $d) = unpack("C4", $addrs[0]);

Scripts that use gethostent should not be considered portable. If a machine uses
a name server, it would have to interrogate most of the Internet to try to satisfy
a request for all the addresses of every machine on the planet. So gethostent is
unimplemented on such machines. See gethostent(3) for other details.

The Net::hostent module supports a by-name interface to this function.

getlogin
getlogin

This function returns the current login name if found. On Unix systems, this is
read from the utmp(5) file. If it returns false, use getpwuid instead. For example:

$login = getlogin() || (getpwuid($<))[0] || "Intruder!!";

getnetbyaddr
getnetbyaddr ADDR, ADDRTYPE

This function translates a network address to the corresponding network name
or names. The return value in list context is:

use Socket;
($name, $aliases, $addrtype, $net) = getnetbyaddr(127, AF_INET);

In scalar context, getnetbyaddr returns only the network name. The
Net::netent module supports a by-name interface to this function. See getnet-
byaddr(3).

872 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

getnetbyname
getnetbyname NAME

This function translates a network name to its corresponding network address.
The return value in list context is:

($name, $aliases, $addrtype, $net) = getnetbyname("loopback");

In scalar context, getnetbyname returns only the network address. The
Net::netent module supports a by-name interface to this function. See getnetby-
name(3).

getnetent
getnetent
setnetent STAYOPEN
endnetent

These functions iterate through your /etc/networks file. The return value in list
context is:

($name, $aliases, $addrtype, $net) = getnetent();

In scalar context, getnetent returns only the network name. The Net::netent
module supports a by-name interface to this function. See getnetent(3).

The concept of network names seems rather quaint these days; most IP addresses
are on unnamed (and unnameable) subnets.

getpeername
getpeername SOCKET

This function returns the packed socket address of the other end of the SOCKET
connection. For example:

use Socket;
$hersockaddr = getpeername SOCK;
($port, $heraddr) = sockaddr_in($hersockaddr);
$herhostname = gethostbyaddr($heraddr, AF_INET);
$herstraddr = inet_ntoa($heraddr);

Perl Functions in Alphabetical Order | 873

www.it-ebooks.info

http://www.it-ebooks.info/

getpgrp
getpgrp PID

This function returns the current process group for the specified PID (use a PID
of 0 for the current process). Invoking getpgrp will raise an exception if used on
a machine that doesn’t implement getpgrp(2). If PID is omitted, the function re-
turns the process group of the current process (the same as using a PID of 0). On
systems implementing this operator with the POSIX getpgrp(2) syscall, PID must
be omitted or, if supplied, it must be 0.

getppid
getppid

This function returns the process ID of the parent process. On the typical Unix
system, if your parent process ID changes to 1, it means your parent process has
died and you’ve been adopted by the init(8) program.

getpriority
getpriority WHICH, WHO

This function returns the current priority for a process, a process group, or a user.
See getpriority(2). Invoking getpriority will raise an exception if used on a ma-
chine that doesn’t implement getpriority(2).

The BSD::Resource module from CPAN provides a more convenient interface,
including the PRIO_PROCESS, PRIO_PGRP, and PRIO_USER symbolic constants to sup-
ply for the WHICH argument. Although these are traditionally set to 0, 1, and 2,
respectively, you really never know what may happen within the dark confines
of C’s #include files.

A value of 0 for WHO means the current process, process group, or user. So to get
the priority of the current process, use:

$curprio = getpriority(0, 0);

getprotobyname
getprotobyname NAME

This function translates a protocol name to its corresponding number. The return
value in list context is:

($name, $aliases, $protocol_number) = getprotobyname("tcp");

874 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

When called in scalar context, getprotobyname returns only the protocol number.
The Net::proto module supports a by-name interface to this function. See get-
protobyname(3).

getprotobynumber
getprotobynumber NUMBER

This function translates a protocol number to its corresponding name. The return
value in list context is:

1 2 3
($name, $aliases, $protocol_number) = getprotobynumber(6);

When called in scalar context, getprotobynumber returns only the protocol name.
The Net::proto module supports a by-name interface to this function. See get-
protobynumber(3).

getprotoent
getprotoent
setprotoent STAYOPEN
endprotoent

These functions iterate through the /etc/protocols file. In list context, the return
value from getprotoent is:

1 2 3
($name, $aliases, $protocol_number) = getprotoent();

When called in scalar context, getprotoent returns only the protocol name. The
Net::proto module supports a by-name interface to this function. See getpro-
tent(3).

getpwent
getpwent
setpwent
endpwent

These functions conceptually iterate through your /etc/passwd file, though this
may involve the /etc/shadow file if you’re the superuser and are using shadow
passwords; it may get a lot fancier than that if you’re using some database- or
network-based login system. The return value in list context is:

0 1 2 3 4 5 6 7 8
($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwent();

Perl Functions in Alphabetical Order | 875

www.it-ebooks.info

http://www.it-ebooks.info/

Some machines may use the quota and comment fields for purposes other than
their named purposes, but the remaining fields will always be the same. To set
up a hash for translating login names to UIDs, say this:

while (($name, $passwd, $uid) = getpwent()) {
 $uid{$name} = $uid;
}

In scalar context, getpwent returns only the username. The User::pwent module
supports a by-name interface to this function. See getpwent(3).

getpwnam
getpwnam NAME

This function translates a username to the corresponding /etc/passwd file entry.
The return value in list context is:

0 1 2 3 4 5 6 7 8
($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwnam("daemon");

On systems that support shadow passwords, you will have to be the superuser to
retrieve the actual password. Your C library should notice that you’re suitably
empowered and open the /etc/shadow file (or wherever it keeps the shadow file).
At least, that’s how it’s supposed to work.

For repeated lookups, consider caching the data in a hash using getpwent.

In scalar context, getpwnam returns only the numeric user ID. The User::pwent
module supports a by-name interface to this function. See getpwnam(3) and
passwd(5).

getpwuid
getpwuid UID

This function translates a numeric user ID to the corresponding /etc/passwd file
entry. The return value in list context is:

0 1 2 3 4 5 6 7 8
($name,$passwd,$uid,$gid,$quota,$comment,$gcos,$dir,$shell) = getpwuid(2);

For repeated lookups, consider caching the data in a hash using getpwent.

In scalar context, getpwuid returns the username. The User::pwent module sup-
ports a by-name interface to this function. See getpwnam(3) and passwd(5).

876 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

getservbyname
getservbyname NAME, PROTO

This function translates a service (port) name to its corresponding port number.
PROTO is a protocol name such as “tcp”. The return value in list context is:

0 1 2 3
($name, $aliases, $port_number, $protocol_name) = getservbyname("www", "tcp");

In scalar context, getservbyname returns only the service port number. The
Net::servent module supports a by-name interface to this function. See getserv-
byname(3).

getservbyport
getservbyport PORT, PROTO

This function translates a service (port) number to its corresponding names.
PROTO is a protocol name such as “tcp”. The return value in list context is:

0 1 2 3
($name, $aliases, $port_number, $protocol_name) = getservbyport(80, "tcp");

In scalar context, getservbyport returns only the service name. The Net::ser
vent module supports a by-name interface to this function. See getservbyport(3).

getservent
getservent
setservent STAYOPEN
endservent

This function iterates through the /etc/services file or its equivalent. The return
value in list context is:

0 1 2 3
($name, $aliases, $port_number, $protocol_name) = getservent();

In scalar context, getservent returns only the service port name. The Net::ser
vent module supports a by-name interface to this function. See getservent(3).

getsockname
getsockname SOCKET

This function returns the packed socket address of this end of the SOCKET con-
nection. (And why wouldn’t you know your own address already? Maybe be-
cause you bound an address containing wildcards to the server socket before

Perl Functions in Alphabetical Order | 877

www.it-ebooks.info

http://www.it-ebooks.info/

doing an accept, and now you need to know what interface someone used to
connect to you. Or you were passed a socket by your parent process—inetd, for
example.)

use Socket;
assume that SOCK is a connected socket
$mysockaddr = getsockname(SOCK);
($port, $myaddr) = sockaddr_in($mysockaddr);
$myname = gethostbyaddr($myaddr, AF_INET);
printf "I am %s [%vd]\n", $myname, $myaddr;

getsockopt
getsockopt SOCKET, LEVEL, OPTNAME

This function queries the option named OPTNAME associated with SOCKET at a given
LEVEL. Options may exist at multiple protocol levels depending on socket type,
but at least the uppermost socket level SOL_SOCKET (defined in the Socket module)
will exist. To query options at another level the protocol number of the appro-
priate protocol controlling the option should be supplied. For example, to indi-
cate that an option is to be interpreted by the TCP protocol, LEVEL should be set
to the protocol number for TCP, which you can get using getprotobyname.

The function returns a packed string representing the requested socket option, or
undef if there is an error with the reason for that error in $!. Just what is in the
packed string depends on the LEVEL and OPTNAME; see getsockopt(2) for details. But
often the option is an integer, in which case the result is a packed integer, which
you can unpack with the “i” (or I) format.

For example, to test whether Nagle’s algorithm is enabled on a socket:

use Socket qw(:all);

assume that $socket hold the handle of a connected socket
$tcp = IPPROTO_TCP;
$packed = getsockopt($socket, $tcp, TCP_NODELAY)
 || die "getsockopt: $!";
$nodelay = unpack("I", $packed);
printf "Nagle's algorithm is o%s.\n", $nodelay ? "ff" : "n";

See setsockopt for more information.

878 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

glob
glob EXPR
glob

This function returns the value of EXPR with filename expansions the way a shell
would expand them. This is the internal function implementing the <*> operator.

For historical reasons, the algorithm matches the csh(1)’s style of expansion, not
the Bourne shell’s. Files whose first character is a dot (“.”) are ignored unless
this character is explicitly matched first. An asterisk (“*”) matches any sequence
of any character (including none). A question mark (“?”) matches any one char-
acter. A square bracket sequence (“[…]”) specifies a simple character class, like
“[chy0–9]”. Character classes may be negated with a circumflex, as in “*.[^oa]”,
which matches any file with an extension consisting of a period followed by one
character that is neither an “a” nor an “o”. A tilde (“~”) expands to a home
directory, as in “~/.*rc” for all the current user’s “rc” files, or “~jane/Mail/*” for
all of Jane’s mail files. Braces may be used for alternation, as in “~/.
{mail,ex,csh,twm,}rc” to get those particular rc files.

The glob function grandfathers the use of whitespace to separate multiple pat-
terns such as <*.c *.h>. If you want to glob filenames that might contain white-
space, you’ll have to use extra quotes around the spacy filename to protect it.
For example, to glob filenames that have an “e” followed by a space followed by
an “f”, use either of:

@spacies = <"*e f*">;
@spacies = glob '"*e f*"';
@spacies = glob q("*e f*");

If you had to get a variable through, you could do this:

@spacies = glob "'*${var}e f*'";
@spacies = glob qq("*${var}e f*");

Alternately, you can use the File::Glob module directly; for details, see its man-
page. Calling glob or the <*> operator automatically uses that module, so if the
module mysteriously vaporizes from your library, an exception is raised.

When you call open, Perl does not expand wildcards, even tildes. You need to
glob the result first:

open(MAILRC, "~/.mailrc") # WRONG: tilde is a shell thing
 || die "can't open ~/.mailrc: $!";

open(MAILRC, <~/.mailrc>) # expand tilde first
 || die "can't open ~/.mailrc: $!";

Perl Functions in Alphabetical Order | 879

www.it-ebooks.info

http://www.it-ebooks.info/

open(MAILRC, (glob("~/.mailrc"))[0]) # same, but more
 || die "can't open ~/.mailrc: $!"; # careful of list return

If nonempty braces are the only wildcard characters used in the glob, no filenames
are matched, but potentially many strings are returned. For example, this pro-
duces nine strings, one for each pairing of fruits and colors:

@many = glob "{apple,tomato,cherry}={green,yellow,red}";

The glob function is not related to the Perl notion of typeglobs, other than that
they both use a * to represent multiple items.

See also the section “Filename Globbing Operator” on page 91 in Chapter 2.

gmtime
gmtime EXPR
gmtime

This function converts a time as returned by the time function to a nine-element
list with the time correct for what was historically called Greenwich Mean Time
(GMT), but which is now known as Coordinated Universal Time (UTC). It’s typ-
ically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime;

If as here the EXPR is omitted, it does gmtime(time()). The Perl library module
Time::Local contains a subroutine, timegm, that can convert the list back into a
time value.

All list elements are numeric and come straight out of a struct tm (that’s a C
programming structure—don’t sweat it). In particular, this means that $mon has
the range 0..11, with January as month 0, and $wday has the range 0..6, with
Sunday as day 0. You can remember which ones are zero-based because those are
the ones you’re always using as subscripts into zero-based arrays containing
month and day names.

For example, to get the current month in London, you might say:

$london_month = (qw(Jan Feb Mar Apr May Jun
 Jul Aug Sep Oct Nov Dec))[(gmtime)[4]];

$year is the number of years since 1900; that is, in year 2023, $year is 123, not
simply 23. To get the four-digit year, just say $year + 1900. To get the two-digit
year (for example “01” in 2001), use sprintf("%02d", $year % 100).

880 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

In scalar context, gmtime returns a ctime(3)-like string based on the GMT time
value. The Time::gmtime module supports a by-name interface to this function.
See also POSIX::strftime for a more fine-grained approach to formatting times.

This scalar value is not locale dependent but is instead a Perl built-in. Also see
the Time::Local module and the strftime(3) and mktime(3) functions available via
the POSIX module. To get somewhat similar but locale-dependent date strings, set
up your locale environment variables appropriately (please see the perllocale
manpage), and try:

use POSIX qw(strftime);
$now_string = strftime "%a %b %e %H:%M:%S %Y", gmtime;

The %a and %b escapes, which represent the short forms of the day of the week
and the month of the year, may not necessarily be three characters wide in all
locales.

goto
goto LABEL
goto EXPR
goto &NAME

goto LABEL finds the statement labelled with LABEL and resumes execution there.
If the LABEL cannot be found, an exception is raised. It cannot be used to go into
any construct that requires initialization, such as a subroutine or a foreach loop.
It also can’t be used to go into a construct that is optimized away. It can be used
to go almost anywhere else within the dynamic scope,5 including out of subrou-
tines; however, for that purpose, it’s usually better to use some other construct
such as last or die. The author of Perl has never felt the need to use this form of
goto (in Perl, that is—C is another matter).

Going to even greater heights of orthogonality (and depths of idiocy), Perl allows
goto EXPR, which expects EXPR to evaluate to a label name, whose location is
guaranteed to be unresolvable until runtime since the label is unknown when the
statement is compiled. This allows for computed gotos per FORTRAN, but isn’t
recommended if you’re optimizing for maintainability:

goto +("FOO", "BAR", "GLARCH")[$i];

The unrelated goto &NAME is highly magical, substituting a call to the named sub-
routine for the currently running subroutine. This construct may be used without
shame by AUTOLOAD subroutines that wish to load another subroutine and then

5. This means that if it doesn’t find the label in the current routine, it looks back through the routines that
called the current routine for the label, thus making it nearly impossible to maintain your program.

Perl Functions in Alphabetical Order | 881

www.it-ebooks.info

http://perldoc.perl.org/perllocale.html
http://www.it-ebooks.info/

pretend that this new subroutine—and not the original one—had been called in
the first place (except that any modifications to @_ in the original subroutine are
propagated to the replacement subroutine). After the goto, not even caller will
be able to tell that the original AUTOLOAD routine was called first.

grep
grep EXPR, LIST
grep BLOCK LIST

This function evaluates EXPR or BLOCK in Boolean context for each element of
LIST, temporarily setting $_ to each element in turn, much like the foreach con-
struct. In list context, it returns a list of those elements for which the expression
is true. (The operator is named after a beloved Unix program that extracts lines
out of a file that match a particular pattern. In Perl, the expression is often a
pattern, but it doesn’t have to be.) In scalar context, grep returns the number of
times the expression was true.

If @all_lines contains lines of code, this example weeds out comment lines:

@code_lines = grep !/^\s*#/, @all_lines;

Because $_ is an implicit alias to each list value, altering $_ modifies the elements
of the original list. While this is useful and supported, it can occasionally cause
bizarre results if you aren’t expecting it. For example:

@list = qw(barney fred dino wilma);
@greplist = grep { s/^[bfd]// } @list;

@greplist is now “arney”, “red”, “ino”, but @list is now “arney”, “red”, “ino”,
“wilma”! Ergo, Caveat Programmor.

See also map. The following two statements are functionally equivalent:

@out = grep { EXPR } @in;
@out = map { EXPR ? $_ : () } @in

For a version of grep that short circuits, see the first function from the standard
List::Util module. Instead of returning a list of all elements for which the
EXPR was true, it returns only the first such, or undef if none were. As always, $_
is set to each element:

use List::Util qw(first);

$first_over_100 = first { $_ > 100 } @list;
$first_with_foo = first { /foo/ } @list;

And here’s a function that takes a single character and reports which release of
the Unicode Standard it premièred in:

882 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

use v5.14;
use List::Util qw(first);
sub getage(_) {
 my $one_char = shift;
 die unless length($one_char) == 1;
 state $ages = [reverse qw(1.1 2.0 2.1 3.0 3.1 3.2
 4.0 4.1 5.0 5.1 5.2 6.0
)];
 return first { $one_char =~ /\p{Age=$_}/ } @$ages;
}

hex
hex EXPR
hex

This function interprets EXPR as a hexadecimal string and returns the equivalent
decimal value. A leading “0x” is ignored, if present. To interpret strings that might
start with any of 0, 0b, or 0x, see oct. The following code sets $number to
4,294,906,560:

$number = hex("ffff12c0");

To do the inverse function, use sprintf:

sprintf "%lx", $number; # (That's an ell, not a one.)

Hex strings may represent integers only. Strings that would cause integer overflow
trigger a warning. Unlike oct, leading whitespace is not stripped.

import
import CLASSNAME LIST
import CLASSNAME

There is no built-in import function. It is merely an ordinary class method defined
(or inherited) by modules that wish to export names to another module through
the use operator. See use for details.

index
index STR, SUBSTR, OFFSET
index STR, SUBSTR

This function searches for one literal string within another. It returns the position
of the first occurrence of SUBSTR in STR. The OFFSET, if specified, says how many
characters from the start to skip before beginning to look. Positions are based at

Perl Functions in Alphabetical Order | 883

www.it-ebooks.info

http://www.it-ebooks.info/

0. If the substring is not found, the function returns one less than the base, or-
dinarily –1. To work your way through a string, you might say:

$pos = –1;
while (($pos = index($string, $lookfor, $pos)) > –1) {
 say "Found at $pos"; $pos++;
}

Offsets are always by programmer-visible characters (i.e., codepoints), not by
user-visible characters (graphemes). The offset is in bytes only if you have already
decoded from abstract characters into some serialization scheme, like UTF-8 or
UTF-16. See Chapter 6.

To work with strings as sequences of graphemes instead of codepoints, see the
index, rindex, and pos methods for the CPAN Unicode::GCString module.

int
int EXPR
int

This function returns the integer portion of EXPR. If you’re a C programmer, you’re
apt to forget to use int with division, which is a floating-point operation in Perl:

$average_age = 939/16; # yields 58.6875 (58 in C)
$average_age = int 939/16; # yields 58

You should not use this function for generic rounding, because it truncates toward
0 and because machine representations of floating-point numbers can produce
counterintuitive results. For example, int(–6.725/0.025) produces –268 rather
than the correct –269; that’s because the value is really more like –

268.99999999999994315658. Usually, the sprintf, printf, or the POSIX::floor and
POSIX::ceil functions will serve you better than will int.

$n = sprintf("%.0f", $f); # round (not trunc) to nearest integer

To compensate for the inherent bias that always rounding a 5 up would cause,
IEEE specifies that rounding be toward the nearest even number on a 5. There-
fore, this:

for (–3 ... 3) { printf "%.0f\n", $_ + 0.5 }

Prints the sequence ‒2, ‒2, ‒0, 0, 2, 2, and 4.

884 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

ioctl
ioctl FILEHANDLE, FUNCTION, SCALAR

This function implements the ioctl(2) syscall, which controls I/O. To get the cor-
rect function definitions, first you’ll probably have to say:

require "sys/ioctl.ph"; # perhaps /usr/local/lib/perl/sys/ioctl.ph

If sys/ioctl.ph doesn’t exist or doesn’t have the correct definitions, you’ll have to
roll your own based on your C header files such as sys/ioctl.h. (The Perl distri-
bution includes a script called h2ph to help you do this, but running it is non-
trivial.) SCALAR will be read or written (or both) depending on the FUNCTION—a
pointer to the string value of SCALAR will be passed as the third argument of the
actual ioctl(2) call. If SCALAR has no string value but does have a numeric value,
that value will be passed directly rather than a pointer to the string value. The
pack and unpack functions are useful for manipulating the values of structures
used by ioctl. If the ioctl needs to write data into your SCALAR, it is up to you to
ensure that the string is long enough to hold what needs to be written, often by
initializing it to a dummy value of the correct size using pack. The following
example determines how many bytes (not characters) are available for reading
using the FIONREAD ioctl:

require "sys/ioctl.ph";

pre–allocate the right size buffer:
$size = pack("L", 0);
ioctl(FH, FIONREAD(), $size)
 || die "Couldn't call ioctl: $!";
$size = unpack("L", $size);

Here is how to detect the current window size6 in rows and columns:

require "sys/ioctl.ph";

four unsigned shorts of the native size
$template = "S!4";
pre–allocate the right size buffer:
my $ws = pack($template, ());
ioctl(STDOUT, TIOCGWINSZ(), $ws)
 || die "Couldn't call ioctl: $!";
($rows, $cols, $xpix, $ypix) = unpack($template, $ws);

If h2ph wasn’t installed or doesn’t work for you, you can grep the include files by
hand or write a small C program to print out the value. You may also have to

6. Or, rather, how to get the window size associated with the STDOUT filehandle.

Perl Functions in Alphabetical Order | 885

www.it-ebooks.info

http://www.it-ebooks.info/

look at C code to determine the structure template layout and size needed for
your system.

The return value of ioctl (and fcntl) is as shown in Table 27-2.

Table 27-2. Return values for ioctl

Syscall Returns Perl Returns

–1 undef

0 String “0 but true”

Anything else That number

Thus, Perl returns true on success and false on failure, yet you can still easily
determine the actual value returned by the operating system:

$retval = ioctl(...) || –1;
printf "ioctl actually returned %d\n", $retval;

The special string “0 but true” is exempt from warnings from the –w command-
line flag or the warnings pragma about improper numeric conversions.

Calls to ioctl should not be considered portable. If, say, you’re merely turning off
echo once for the whole script, it’s more portable to say:

system "stty –echo"; # Works on most Unix boxen

Just because you can do something in Perl doesn’t mean you ought to. For still
better portability, you might look at the Term::ReadKey module from CPAN. Al-
most anything you might want to use ioctl for, there probably exists a CPAN
module that already does that, and more portably, too, because they usually rope
your system’s C compiler into doing the heavy lifting for you.

join
join EXPR, LIST

This function joins the separate strings of LIST into a single string with fields
separated by the value of EXPR, and returns the string. For example:

$rec = join ":", $login,$passwd,$uid,$gid,$gcos,$home,$shell;

To do the opposite, see split. To join things together into fixed-position fields,
see pack. The most efficient way to concatenate many strings together is to join
them with a null string:

$string = join "", @array;

886 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Unlike split, join doesn’t take a pattern as its first argument and will produce a
warning if you try.

keys
keys HASH
keys ARRAY
keys EXPR

This function returns a list consisting of all keys in the indicated HASH. The keys
are returned in an apparently random order, but it is the same order produced
by either the values or each function (assuming the hash has not been modified
between calls). As a side effect, it resets HASH’s iterator. Here is a (rather cork-
brained) way to print your environment:

@keys = keys %ENV; # keys are in the same order as
@values = values %ENV; # values, as this demonstrates
while (@keys) {
 say pop(@keys), "=", pop(@values);
}

You’re more likely to want to see the environment sorted by keys:

for my $key (sort keys %ENV) {
 say $key, "=", $ENV{$key};
}

You can sort the values of a hash directly, but that’s somewhat useless in the
absence of any way to map values back to keys. To sort a hash by value, you
generally need to sort the keys by providing a comparison function that accesses
the values based on the keys. Here’s a descending numeric sort of a hash by its
values:

for my $key (sort { $hash{$b} <=> $hash{$a} } keys %hash) {
 printf "%4d %s\n", $hash{$key}, $key;
}

Using keys on a hash bound to a largish DBM file will produce a largish list,
causing you to have a largish process. You might prefer to use the each function
here, which will iterate over the hash entries one by one without slurping them
all into a single gargantuan list.

In scalar context, keys returns the number of elements of the hash (and resets the
each iterator). However, to get this information for tied hashes, including DBM
files, Perl must walk the entire hash, so it’s not efficient then. Calling keys in void
context helps with that.

Used as an lvalue, keys increases the number of hash buckets allocated for the
given hash. (This is similar to preextending an array by assigning a larger number

Perl Functions in Alphabetical Order | 887

www.it-ebooks.info

http://www.it-ebooks.info/

to $#array.) Preextending your hash can gain a measure of efficiency, if you hap-
pen to know the hash is going to get big, and how big it’s going to get. If you say:

keys %hash = 1000;

then %hash will have at least 1,000 buckets allocated for it (you get 1,024 buckets,
in fact, since it rounds up to the next power of two). You can’t shrink the number
of buckets allocated for the hash using keys in this way (but you needn’t worry
about doing this by accident, as trying has no effect). The buckets will be retained
even if you do %hash = (). Use undef %hash if you want to free the storage while
%hash is still in scope.

See also each, values, and sort.

kill
kill SIGNAL, LIST

This function sends a signal to a list of processes. For SIGNAL, you may use either
an integer or a quoted signal name (without a “SIG” on the front). Trying to use
an unrecognized SIGNAL name raises an exception. The function returns the num-
ber of processes successfully signalled. If SIGNAL is negative, the function kills
process groups instead of processes. (On Unix systems derived from SysV, a
negative process number will also kill process groups, but that’s not portable.)
A PID of zero sends the signal to all processes of the same group ID as the sender.
For example:

$cnt = kill 1, $child1, $child2;
kill 9, @goners;
kill "STOP", getppid # Can *so* suspend my login shell...
 unless getppid == 1; # (But don't taunt init(8).)

A SIGNAL of 0 tests whether a process is still alive and that you still have permission
to signal it. No signal is sent. This way you can check whether the process is still
alive and hasn’t changed its UID.

use Errno qw(ESRCH EPERM);
if (kill 0 => $minion) {
 say "$minion is alive!";
} elsif ($! == EPERM) { # changed UID
 say "$minion has escaped my control!";
} elsif ($! == ESRCH) {
 say "$minion is deceased."; # or zombied
} else {
 warn "Odd; I couldn't check on the status of $minion: $!\n";
}

See the section “Signals” on page 518 in Chapter 15.

888 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

last
last LABEL
last

The last operator immediately exits the loop in question, just like the break
statement in C or Java (as used in loops). If LABEL is omitted, the operator refers
to the innermost enclosing loop. The continue block, if any, is not executed.

LINE: while (<MAILMSG>) {
 last LINE if /^$/; # exit when done with header
 # rest of loop here
}

last cannot be used to exit a block that returns a value, such as eval {}, sub
{}, or do {}, and it should not be used to exit a grep or map operation. With
warnings enabled, Perl warns if you last out of a loop that’s not in your current
lexical scope, such as a loop in a calling subroutine.

A block by itself is semantically identical to a loop that executes once. Thus,
last can be used to effect an early exit out of such a block. See also Chapter 4 for
illustrations of how last, next, redo, and continue work.

lc
lc EXPR
lc

This function returns a lowercased version of EXPR. This is the internal function
implementing the \L escape in double-quoted strings.

Do not use lc for case-insensitive comparisons the way you may have once done
in ASCII, because it gives the wrong answer for Unicode. Instead, use the fc
(foldcase) function, either from the CPAN Unicode::CaseFold module, or via use
feature "fc" in v5.16 or later. See the section “A Case of Mistaken Identity” in
Chapter 6 for more information.

Codepoints in the 128–256 range are ignored by lc if the string does not have
Unicode semantics (and locale mode is not in effect), which can be difficult to
guess. The unicode_strings feature guarantees Unicode semantics even on those
codepoints. See Chapter 6.

Your current LC_CTYPE locale is respected if use locale is in effect, though how
locales interact with Unicode is still a topic of ongoing research, as they say. See
the perllocale, perlunicode, and LIperlfunc> manpages for the most recent results.

Perl Functions in Alphabetical Order | 889

www.it-ebooks.info

http://perldoc.perl.org/perllocale.html
http://perldoc.perl.org/perlunicode.html
http://www.it-ebooks.info/

lcfirst
lcfirst EXPR
lcfirst

This function returns a version of EXPR with the first character lowercased. This
is the internal function implementing the \l escape in double-quoted strings. See
the previous entry regarding Unicode casemapping.

length
length EXPR
length

This function returns the length in codepoints (programmer-visible characters)
of the scalar value EXPR. If EXPR is omitted, it returns the length of $_. (But be
careful that the next thing doesn’t look like the start of an EXPR, or Perl’s lexer will
get confused. For example, length < 10 won’t compile. When in doubt, use
parentheses.)

Do not try to use length to find the size of an array or hash. Use scalar @array
for the size of an array, and scalar keys %hash for the number of key/value pairs
in a hash. (The scalar is typically omitted when redundant.)

To find the number of graphemes (user-visible characters) in a string, either count
them:

my $count = 0;
$count++ while our $string =~ /\X/g;

or use the CPAN Unicode::GCString module, which lets you work with a string
as a sequence of graphemes instead of as a sequence of codepoints. That module
also tells you how long a string is in print columns. That way you can still use
printf justification and, if you’re creative, maybe even format and write, even
though some codepoints occupy 0 columns, others 1 column, and still others 2
columns when printed.

_ _LINE_ _
A special token that compiles to the current line number. See “Generating Perl in
Other Languages” on page 717 in Chapter 21.

890 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

link
link OLDFILE, NEWFILE

This function creates a new filename linked to the old filename. The function
returns true for success, false otherwise. See also symlink later in this chapter.
This function is unlikely to be implemented on non-Unix-style filesystems.

listen
listen SOCKET, QUEUESIZE

Thisfunction tells the system that you’re going to be accepting connections on this
SOCKET and that the system can queue the number of waiting connections speci-
fied by QUEUESIZE. Imagine having call-waiting on your phone, with up to 17 call-
ers queued. (Gives me the willies!) The function returns true if it succeeds, false
otherwise.

use Socket;
listen(PROTOSOCK, SOMAXCONN)
 || die "cannot set listen queue on PROTOSOCK: $!";

See accept. See also the section “Sockets” on page 543 in Chapter 15. See listen(2).

local
local EXPR

This operator does not create a local variable; use my for that. Instead, it localizes
existing variables; that is, it causes one or more global variables to have locally
scoped values within the innermost enclosing block, eval, or file. If more than
one variable is listed, the list must be placed in parentheses because the operator
binds more tightly than commas. All listed variables must be legal lvalues—that
is, something you could assign to; this can include individual elements of arrays
or hashes.

This operator works by saving the current values of the specified variables on a
hidden stack and restoring them on exiting the block, subroutine, eval, or file.
After the local is executed, but before the scope is exited, any subroutines and
executed formats will see the local, inner value, instead of the previous, outer
value, because the variable is still a global variable, despite having a localized
value. The technical term for this is dynamic scoping. See the section “Scoped
Declarations” on page 155 in Chapter 4.

The EXPR may be assigned to if desired, which lets you initialize your variables as
you localize them. If no initializer is given, all scalars are initialized to undef, and

Perl Functions in Alphabetical Order | 891

www.it-ebooks.info

http://www.it-ebooks.info/

all arrays and hashes to (). As with ordinary assignment, if you use parentheses
around the variables on the left (or if the variable is an array or hash), the
expression on the right is evaluated in list context. Otherwise, the expression on
the right is evaluated in scalar context.

In any event, the expression on the right is evaluated before the localization, but
the initialization happens after localization, so you can initialize a localized vari-
able with its nonlocalized value. For instance, this code demonstrates how to
make a temporary change to a global array:

if ($sw eq "–v") {
 # init local array with global array
 local @ARGV = @ARGV;
 unshift(@ARGV, "echo");
 system @ARGV;
}
@ARGV restored

You can also temporarily modify global hashes:

temporarily add a couple of entries to the %digits hash
if ($base12) {
 # (NOTE: We're not claiming this is efficient!)
 local(%digits) = (%digits, T => 10, E => 11);
 parse_num();
}

You can use local to give temporary values to individual elements of arrays and
hashes, even lexically scoped ones:

if ($protected) {
 local $SIG{INT} = "IGNORE";
 precious(); # no interrupts during this function
} # previous handler (if any) restored

You can also use local on typeglobs to create local filehandles without loading
any bulky object modules:

local *MOTD; # protect any global MOTD handle
my $fh = do { local *FH }; # create new indirect filehandle

Although you may see localized typeglobs used in old code that needed to gen-
erate new filehandles, these days a plain my $fh is good enough. That’s because
if you give an undefined variable as the filehandle argument to a function that
initializes a filehandle (such as the first argument to open or socket), Perl auto-
vivifies a brand new filehandle for you.

In general, you usually want to use my instead of local, because local isn’t really
what most people think of as “local”, or even “lo-cal”. See my.

892 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

The delete local EXPR construct can also be used to localize the deletion of array
or hash elements to the current block.

localtime
localtime EXPR
localtime

This function converts the value returned by time to a nine-element list with the
time corrected for the local time zone. It’s typically used as follows:

0 1 2 3 4 5 6 7 8
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = localtime;

If, as here, EXPR is omitted, it does localtime(time()).

All list elements are numeric and come straight out of a struct tm. (That’s a bit
of C programming lingo—don’t worry about it.) In particular, this means that
$mon has the range 0..11 with January as month 0, and $wday has the range 0..6
with Sunday as day 0. You can remember which ones are zero-based because those
are the ones you’re always using as subscripts into zero-based arrays containing
month and day names.

For example, to get the name of the current day of the week:

$thisday = (Sun,Mon,Tue,Wed,Thu,Fri,Sat)[(localtime)[6]];

$year is the number of years since 1900; that is, in year 2023, $year is 123, not
simply 23. To get the four-digit year, just say $year + 1900. To get the two-digit
year (for example, “01” in 2001), use sprintf("%02d", $year % 100).

The Perl library module Time::Local contains a subroutine, timelocal, that can
convert in the opposite direction.

In scalar context, localtime returns a ctime(3)-like string. For example, the
date(1) command can be (almost)7 emulated with:

perl –le 'print scalar localtime()'

See also the standard POSIX module’s strftime function for a more fine-grained
approach to formatting times. The Time::localtime module supports a by-name
interface to this function.

lock
lock THING

7. date(1) prints the timezone, whereas scalar localtime does not.

Perl Functions in Alphabetical Order | 893

www.it-ebooks.info

http://www.it-ebooks.info/

The lock function places a lock on a variable, subroutine, or object referenced by
THING until the lock goes out of scope. For backward compatibility, this function
is a built-in only if your version of Perl was compiled with threading enabled,
and if you’ve said use Threads. Otherwise, Perl will assume this is a user-defined
function.

log
log EXPR
log

This function returns the natural logarithm (that is, base e) of EXPR. If EXPR is
negative, it raises an exception. To get the log of another base, use basic algebra:
the base-N log of a number is equal to the natural log of that number divided by
the natural log of N. For example:

sub log10 {
 my $n = shift;
 return log($n)/log(10);
}

For the inverse of log, see exp.

lstat
lstat EXPR
lstat

This function does the same thing as Perl’s stat function (including setting the
special _ filehandle), but if the last component of the filename is a symbolic link,
it stats the symbolic link itself instead of the file to which the symbolic link
points. If symbolic links are unimplemented on your system, a normal stat is
done instead.

m//
/PATTERN/
m/PATTERN/

This is the match operator, which interprets PATTERN as a regular expression. The
operator is parsed as a double-quoted string rather than as a function. See Chap-
ter 5.

894 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

map
map BLOCK LIST
map EXPR, LIST

This function evaluates the BLOCK or EXPR for each element of LIST (locally setting
$_ to each element) and returns the list comprising the results of each such eval-
uation. It evaluates BLOCK or EXPR in list context, so each element of LIST may map
to zero, one, or more elements in the returned value. These are all flattened into
one list. For instance:

@words = map { split " " } @lines;

splits a list of lines into a list of words. But often there is a one-to-one mapping
between input values and output values:

@chars = map chr, @nums;

translates a list of numbers to the corresponding characters. And here’s an example
of a one-to-two mapping:

%hash = map { genkey($_) => $_ } @array;

which is just a funny functional way to write this:

%hash = ();
for my $_ (@array) {
 $hash{genkey($_)} = $_;
}

Because $_ is an alias (implicit reference) into the list’s values, this variable can be
used to modify the elements of the array. This is useful and supported, although
it can cause bizarre results if the LIST is not a named array. Using a regular
foreach loop for this purpose may be clearer. See also grep; map differs from
grep in that map returns a list consisting of the results of each successive evaluation
of EXPR, whereas grep returns a list consisting of each value of LIST for which
EXPR evaluates to true.

mkdir
mkdir FILENAME, MASK
mkdir FILENAME

This function creates the directory specified by FILENAME, giving it permissions
specified by the numeric MASK as modified by the current umask. If the operation
succeeds, it returns true; otherwise, it returns false.

If MASK is omitted, a mask of 0777 is assumed, which is almost always what you
want anyway. In general, creating directories with permissive MASKs (like 0777)

Perl Functions in Alphabetical Order | 895

www.it-ebooks.info

http://www.it-ebooks.info/

and letting the user modify that with her umask is better than supplying a restrictive
MASK and giving the user no way to be more permissive. The exception to this rule
is when the file or directory should be kept private (mail files, for instance). See
umask.

If the mkdir(2) syscall is not built into your C library, Perl emulates it by calling
the mkdir(1) program for each directory. If you are creating a long list of directories
on such a system, it’ll be more efficient to call the mkdir program yourself with
the list of directories than to start zillions of subprocesses.

msgctl
msgctl ID, CMD, ARG

This function calls the System V IPC msgctl(2) syscall; see msgctl(2) for more
details. You may have to use IPC::SysV first to get the correct constant definitions.
If CMD is IPC_STAT, then ARG must be a variable that will hold the returned
msqid_ds C structure. Return values are like ioctl and fcntl: undef for error, “0
but true” for zero, or the actual return value otherwise.

This function is available only on machines supporting System V IPC, which
turns out to be far fewer than those supporting sockets.

msgget
msgget KEY, FLAGS

This function calls the System V IPC msgget(2) syscall. See msgget(2) for details.
The function returns the message queue ID, or undef if there is an error. Before
calling, you should use IPC::SysV.

This function is available only on machines supporting System V IPC.

msgrcv
msgrcv ID, VAR, SIZE, TYPE, FLAGS

This function calls the msgrcv(2) syscall to receive a message from message queue
ID into variable VAR with a maximum message size of SIZE. See msgrcv(2) for
details. When a message is received, the message type will be the first thing in
VAR, and the maximum length of VAR is SIZE plus the size of the message type.
Decode this with unpack("l! a*"). The function returns true if successful, or
false if there is an error. Before calling, you should use IPC::SysV.

This function is available only on machines supporting System V IPC.

896 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

msgsnd
msgsnd ID, MSG, FLAGS

This function calls the msgsnd(2) syscall to send the message MSG to the message
queue ID. See msgsnd(2) for details. MSG must begin with the long integer message
type. You can create a message like this:

$msg = pack "l! a*", $type, $text_of_message;

The function returns true if successful, or false if there is an error. Before calling,
use IPC::SysV.

This function is available only on machines supporting System V IPC.

my
my TYPE EXPR : ATTRIBUTES
my EXPR : ATTRIBUTES
my TYPE EXPR
my EXPR

This operator declares one or more private variables to exist only within the in-
nermost enclosing block, subroutine, eval, or file. If more than one variable is
listed, the list must be placed in parentheses because the operator binds more
tightly than commas. Only simple scalars or complete arrays and hashes may be
declared this way.

The variable name cannot be package qualified, because package variables are all
globally accessible through their corresponding symbol table, and lexical vari-
ables are unrelated to any symbol table. Unlike local, then, this operator has
nothing to do with global variables, other than hiding any other variable of the
same name from view within its scope (that is, where the private variable exists).
A global variable can always be accessed through its package-qualified form,
however, or through a symbolic reference.

A private variable’s scope does not start until the statement after its declaration.
The variable’s scope extends into any enclosed blocks thereafter, up to the end
of the scope of the variable itself.

However, this means that any subroutines you call from within the scope of a
private variable cannot see the private variable unless the block that defines the
subroutine itself is also textually enclosed within the scope of that variable. That
sounds complicated, but it’s not once you get the hang of it. The technical term
for this is lexical scoping, so we often call these lexical variables. In C culture,

Perl Functions in Alphabetical Order | 897

www.it-ebooks.info

http://www.it-ebooks.info/

they’re sometimes called “auto” variables, since they’re automatically allocated
and deallocated at scope entry and exit.

The EXPR may be assigned to if desired, which lets you initialize your lexical vari-
ables. (If no initializer is given, all scalars are initialized to the undefined value
and all arrays and hashes to the empty list.) As with ordinary assignment, if you
use parentheses around the variables on the left (or if the variable is an array or
hash), the expression on the right is evaluated in list context. Otherwise, the
expression on the right is evaluated in scalar context. For example, you can name
your formal subroutine parameters with a list assignment, like this:

my ($friends, $romans, $countrymen) = @_;

But be careful not to omit the parentheses indicating list assignment, like this:

my $country = @_; # right or wrong?

This assigns the length of the array (that is, the number of the subroutine’s argu-
ments) to the variable, since the array is being evaluated in scalar context. You
can profitably use scalar assignment for a formal parameter, though, as long as
you use the shift operator. In fact, since object methods are passed the object as
the first argument, many method subroutines start off by “stealing” the first ar-
gument:

sub simple_as {
 my $self = shift; # scalar assignment
 my ($a,$b,$c) = @_; # list assignment
 ...
}

If you try to declare a lexically scoped subroutine with my sub, Perl will die with
the message that this feature has not been implemented yet. (Unless, of course,
this feature has been implemented yet.8)

The TYPE and ATTRIBUTES are optional. Here’s what a declaration that uses them
might look like:

my Dog $spot :ears(short) :tail(long);

The TYPE, if specified, indicates what kind of scalar or scalars are declared in
EXPR, either directly as one or more scalar variables, or indirectly through an array
or hash. If TYPE is the name of the class, the scalars will be assumed to contain
references to objects of that type, or to objects compatible with that type. In
particular, derived classes are considered compatible. That is, assuming Collie
is derived from Dog, you might declare:

8. There’s some hope of this, as Perl 6 has demonstrated that subroutines can be lexically scoped by default
and still be easy to use.

898 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

my Dog $lassie = new Collie;

Your declaration claims that you will use the $lassie object consistently with its
being a Dog object. The fact that it’s actually a Collie object shouldn’t matter as
long as you only try to do Dog things. Through the magic of virtual methods, the
implementation of those Dog methods might well be in the Collie class, but the
declaration above is only talking about the interface, not the implementation. In
theory.

In fact, Perl doesn’t actually make much use of the type information yet, but it’s
available for future improvements. (It was historically used by pseudohashes, but
those are dead now.) The TYPE declaration should be considered a generic type
interface that might someday be instantiated in various ways depending on the
class. In fact, the TYPE might not even be an official class name. We’re reserving
the lowercase type names for Perl, because one way we’d like to extend the type
interface is to allow optional low-level type declarations such as int, num, and
str.9 These declarations will not be for the purpose of strong typing; rather, they’ll
be hints to the compiler telling it to optimize the storage of the variable with the
assumption that the variable will be used mostly as declared. The semantics of
scalars will stay pretty much the same—you’ll still be able to add two str scalars,
or print an int scalar, just as though they were the ordinary polymorphic scalars
you’re familiar with. But, with an int declaration, Perl might decide to store only
the integer value and forget about caching the resulting string as it currently does.
Loops with int loop variables might run faster, particularly in code compiled
down to C. In particular, arrays of numbers could be stored much more com-
pactly. As a limiting case, the built-in vec function might even become obsolete
when we can write declarations such as:

my bit @bitstring;

The ATTRIBUTES declaration is used more often than types are; see the attributes
pragma in Chapter 29 for more on that. One attribute we’ll likely implement
someday is constant:

my num $PI : constant = atan2(1,1) * 4;

But there are many other possibilities, such as establishing default values for ar-
rays and hashes, or letting variables be shared among cooperating interpreters.
Like the type interface, the attribute interface should be considered a generic
interface, a kind of workbench for inventing new syntax and semantics. We do

9. In fact, such native types are currently being prototyped in Perl 6 with just this syntax, so the Perl 5 folks
might well borrow back all the good bits once the Perl 6 folks have discovered all the bad bits. :–)

Perl Functions in Alphabetical Order | 899

www.it-ebooks.info

http://www.it-ebooks.info/

not know how Perl will evolve in the next 10 years. We only know that we can
make it easier on ourselves by planning for that in advance.

See also local, our, and state, and the section “Scoped Declarations” in Chap-
ter 4.

new
new CLASSNAME LIST
new CLASSNAME

There is no built-in new function. It is merely an ordinary constructor method
(that is, a user-defined subroutine) that is defined or inherited by the CLASSNAME
class (that is, package) to let you construct objects of type CLASSNAME. Many con-
structors are named “new”, but only by convention, just to trick C++ program-
mers into thinking they know what’s going on. Always read the documentation
of the class in question so you know how to call its constructors; for example,
the constructor that creates a list box in the Tk widget set is just called Listbox.
See Chapter 12.

next
next LABEL
next

The next operator is like the continue statement in C: it starts the next iteration
of the loop designated by LABEL:

LINE: while (<STDIN>) {
 next LINE if /^#/; # discard comments
 ...
}

If there were a continue block in this example, it would be executed immediately
following the invocation of next. When LABEL is omitted, the operator refers to
the innermost enclosing loop.

A block by itself is semantically identical to a loop that executes once. Thus,
next will exit such a block early (via the continue block, if there is one).

next cannot be used to exit a block that returns a value, such as eval {}, sub
{}, or do {}, and it should not be used to exit a grep or map operation. With
warnings enabled, Perl warns you if you next out of a loop not in your current
lexical scope, such as a loop in a calling subroutine. See the section “Loop State-
ments” on page 139 in Chapter 4.

900 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

no
no MODULE VERSION LIST
no MODULE VERSION
no MODULE LIST
no MODULE
no VERSION

See the use operator, which is the opposite of no, kind of. Most standard modules
do not unimport anything, making no a no-op, as it were. The pragmatic modules
tend to be more obliging here. If MODULE cannot be found, an exception is raised.

oct
oct EXPR
oct

This function interprets EXPR as an octal string and returns the equivalent decimal
value. If EXPR happens to start with “0x”, it is interpreted as a hexadecimal string
instead. If EXPR starts off with “0b”, it is interpreted as a string of binary digits.
The following will properly convert to whole numbers input strings in decimal,
binary, octal, and hex bases using standard Perl notation:

$val = oct $val if $val =~ /^0/;

For the inverse function, use sprintf with an appropriate format:

$dec_perms = (stat("filename"))[2] & 07777;
$oct_perm_str = sprintf "%o", $perms;

The oct function is commonly used when a data string such as “644” needs to be
converted into a file mode, for example. Although Perl automatically converts
strings into numbers as needed, this automatic conversion assumes base 10.

Leading whitespace is ignored without warning, as are any trailing nondigits, such
as a decimal point (oct only handles nonnegative integers, not negative integers
or floating point).

open
open FILEHANDLE, MODE, EXPR, LIST
open FILEHANDLE, MODE, EXPR
open FILEHANDLE, MODE, REFERENCE
open FILEHANDLE, EXPR

The open function associates an internal FILEHANDLE with an external file specifi-
cation given by EXPR or LIST. It may be called with two or three arguments (or
more if the third argument is a command). When three or more arguments are

Perl Functions in Alphabetical Order | 901

www.it-ebooks.info

http://www.it-ebooks.info/

present, the second argument specifies the access MODE in which the file should
be opened, and the remaining argument supplies the actual filename or the com-
mand to execute, depending on the mode. In the case of a command, additional
arguments may be supplied if you wish to invoke the command directly without
involving a shell, much like system or exec. Or the command may be supplied as
a single argument (the third one), in which case the decision to invoke the shell
depends on whether the command contains shell metacharacters. (Don’t use
more than three arguments if the arguments are ordinary filenames; it won’t
work.) If the MODE is not recognized, open raises an exception.

As a special case, the three-argument form with a read/write mode and the third
argument being undef:

open(my $tmp, "+>", undef) or die ...

opens a filehandle to an anonymous temporary file. Using “+<” also works for
symmetry, but you really should consider writing something to the temporary
file first. You will need to seek to do the reading.

You may use the three-argument form of open to specify I/O layers (sometimes
called “disciplines”) to apply to the handle that affect how the input and output
are processed (see the PerlIO module for more details). For example:

open(my $fh, "< :encoding(UTF–8)", "filename")
 || die "can't open UTF–8 encoded filename: $!";

opens a UTF-8-encoded file (that is, a file containing Unicode characters). As of
v5.14, the default behavior on UTF-8 input streams does not throw an exception
on an encoding error. If you use any sort of UTF-8 layer, consider adding:

use warnings FATAL => "utf8";

so that you can catch the exception. See Chapter 6.

Note that if layers are specified in the three-argument form, then default layers
stored in ${^OPEN} are ignored. (See Chapter 25; default layers are set by the
open pragma or the switch –CioD.)

If your Perl was built using PerlIO,10 you can open filehandles directly to Perl
scalars by passing a reference to that scalar as the EXPR argument in the three-
argument form:

open($fh, ">", \$variable) || ...

To reopen STDOUT or STDERR as an in-memory file, close it first:

10. The default build configuration since the v5.8 release in 2002.

902 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

close(STDOUT) || die "can't close STDOUT: $!";
open(STDOUT, ">", \$variable) || die "can't memopen STDOUT: $!";

If only two arguments are present, the mode and filename/command are assumed
to be combined in the second argument. (And if you don’t specify a mode in the
second argument, just a filename, then the file is opened read-only to be on the
safe side.)

open(LOG, "> logfile") or die "Can't create logfile: $!"; # ok
open(LOG, ">", "logfile") or die "Can't create logfile: $!"; # better

The open function returns true when it succeeds and undef otherwise. If the
open starts up a pipe to a child process, the return value will be the process ID of
that new process. As with any syscall, always check the return value of open to
make sure it worked.11 But this isn’t C or Java, so don’t use an if statement when
the || operator will do. You can also use or, and if you do, you may omit paren-
theses on the open. If you choose to omit parentheses on a function call to turn
it into a list operator, be careful to use “or die” after the list rather than “||
die”. That’s because the precedence of || is higher than list operators like open,
with the unexpected result that the || will bind to your last argument, not the
whole open:

open LOG, ">", "logfile" || die "Can't create logfile: $!"; # WRONG
open LOG, ">", "logfile" or die "Can't create logfile: $!"; # ok

That looks rather intense, so you may wish to use parentheses to tell your eye
where the list operator ends:

open(LOG, ">", "logfile") or die "Can't create logfile: $!"; # good
open(LOG, ">", "logfile") || die "Can't create logfile: $!"; # good

Or just put the or on another line:

open LOG, ">", "logfile"
 or die "Can't create logfile: $!";

As that example shows, the FILEHANDLE argument is often just a simple identifier
(normally uppercase), but it may also be an expression whose value provides a
reference to the actual filehandle. (The reference may be either a symbolic ref-
erence to the filehandle name or a hard reference to any object that can be in-
terpreted as a filehandle.) This is called an indirect filehandle, and any function
that takes a FILEHANDLE as its first argument can handle indirect filehandles as
well as direct ones. But open is special: if you supply it with an undefined variable
for the indirect filehandle, Perl will automatically define that variable for you—
that is, autovivifying it to contain a proper filehandle reference. One advantage

11. Unless you used the autodie pragma, which takes care of checking for you.

Perl Functions in Alphabetical Order | 903

www.it-ebooks.info

http://www.it-ebooks.info/

of this is that the filehandle will be closed automatically when there are no further
references to it, typically when the variable goes out of scope:

{
 my $fh; # (uninitialized)
 open $fh, ">", "logfile" # $fh is autovivified
 or die "Can't create logfile: $!";
 ... # do stuff with $fh
} # $fh closed here

The my $fh declaration can be readably incorporated into the open:

open(my $fh, ">", "logfile") || die ...

The > symbol you’ve been seeing in front of the filename is an example of a mode,
whether part of the filename argument or as a preceding argument. Historically,
the two-argument form of open came first. The recent addition of the three-ar-
gument form lets you separate the mode from the filename, which has the ad-
vantage of avoiding any possible confusion between the two. In the following
example, we know that the user is not trying to open a filename that happens to
start with “>”. We can be sure that he's specifying a MODE of “>”, which opens the
file named in EXPR for writing, creating the file if it doesn’t exist and truncating
the file down to nothing if it does already exist:

open(LOG, ">", "logfile") || die "Can't create logfile: $!";

In the shorter forms, the filename and mode are in the same string. The string is
parsed much as the typical shell processes file and pipe redirections. First, any
leading and trailing whitespace is removed from the string. Then the string is
examined, on either end if need be, for characters specifying how the file is to be
opened. Whitespace is allowed between the mode and the filename.

The modes that indicate how to open a file are shell-like redirection symbols. A
list of these symbols is provided in Table 27-3. To access a file with combinations
of open modes not covered by this table, see the low-level sysopen function.

Table 27-3. Modes for open

 Read Mode Write Access Append Access Create Nonexisting Clobber Existing

< PATH Y N N N N

> PATH N Y N Y Y

>> PATH N Y Y Y N

+< PATH Y Y N N N

+> PATH Y Y N Y Y

+>> PATH Y Y Y Y N

904 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

 Read Mode Write Access Append Access Create Nonexisting Clobber Existing

| COMMAND N Y n/a n/a n/a

COMMAND | Y N n/a n/a n/a

If the mode is “<” or nothing, an existing file is opened for input. If the mode is
“>”, the file is opened for output, which truncates existing files and creates non-
existent ones. If the mode is “>>”, the file is created if needed and opened for
appending, and all output is automatically placed at the end of the file. If a new
file must be created because you used a mode of “>” or “>>”, access permissions
on the new file will depend on the process’s current umask under the rules de-
scribed for that function.

Here are common examples:

open(INFO, "datafile") || die("can't open datafile: $!");
open(INFO, "< datafile") || die("can't open datafile: $!");
open(RESULTS, "> runstats") || die("can't open runstats: $!");
open(LOG, ">> logfile ") || die("can't open logfile: $!");

If you prefer the low-punctuation version, you can write:

open(INFO, "datafile") or die "can't open datafile: $!";
open(INFO, "< datafile") or die "can't open datafile: $!";
open(RESULTS, "> runstats") or die "can't open runstats: $!";
open(LOG, ">> logfile ") or die "can't open logfile: $!";

When opened for reading, the special filename “–” refers to STDIN. When opened
for writing, the same special filename refers to STDOUT. Normally, these are speci-
fied as “<–” and “>–”, respectively.

open(INPUT, "–") || die; # re–open standard input for reading
open(INPUT, "<–") || die; # same thing, but explicit
open(OUTPUT, ">–") || die; # re–open standard output for writing

This way the user can supply a program with a filename that will use the standard
input or the standard output, but the author of the program doesn’t have to write
special code to know about this.

You may also place a “+” in front of any of these three modes to request simulta-
neous read and write. However, whether the file is clobbered or created and
whether it must already exist is still governed by your choice of less-than or
greater-than signs. This means that “+<” is almost always preferred for read/write
updates, as the dubious “+>” mode would first clobber the file before you could
ever read anything from it. (Only use that mode if you want to reread only what
you only just wrote.)

open(DBASE, "+< database")
 || die "can't open existing database in update mode: $!";

Perl Functions in Alphabetical Order | 905

www.it-ebooks.info

http://www.it-ebooks.info/

You can treat a file opened for update as a random-access database and use
seek to move to a particular byte number, but the variable-length records of reg-
ular text files usually make it impractical to use read-write mode to update such
files. See the –i command-line option in Chapter 17 for a different approach to
updating.

If the leading character in EXPR is a pipe symbol, open fires up a new process and
connects a write-only filehandle to the command. This way you can write into
that handle, and what you write will show up on that command’s standard input.
For example:

open(PRINTER, "| lpr –Plp1") || die "can't fork: $!";
say PRINTER "stuff";
close(PRINTER) || die "lpr/close failed: $?/$!";

If the trailing character in EXPR is a pipe symbol, open again launches a new process,
but this time with a read-only filehandle connected to it. This lets whatever the
command writes to its standard output show up on your handle for reading. For
example:

open(NET, "netstat –i –n |") || die "can't fork: $!";
while (<NET>) { ... }
close(NET) || die "can't close netstat: $!/$?";

Explicitly closing any piped filehandle causes the parent process to wait for the
child to finish and returns the status code in $? ($CHILD_ERROR). It’s also possible
for close to set $! ($OS_ERROR). See the examples under close and system for how
to interpret these error codes.

Any pipe command containing shell metacharacters (such as wildcards or I/O
redirections) is passed to your system’s canonical shell (/bin/sh on Unix), so those
shell-specific constructs can be processed first. If no metacharacters are found,
Perl launches the new process itself without calling the shell.

You may also use the three-argument form to start up pipes. Using that style, the
equivalent of the previous pipe opens would be:

open(PRINTER, "|–", "lpr –Plp1") || die "can't fork: $!";
open(NET, "–|", "netstat –i –n") || die "can't fork: $!";

Here, the minus in the second argument represents the command in the third
argument. These commands don’t happen to invoke the shell, but if you want
to guarantee no shell processing occurs, new versions of Perl let you say:

open(PRINTER, "|–", "lpr", "–Plp1") || die "can't fork: $!";
open(NET, "–|", "netstat", "–i", "–n") || die "can't fork: $!";

906 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

If you use the two-argument form to open a pipe to or from the special command
“–”,12 an implicit fork is done first. (On systems that can’t fork, this raises an
exception. Microsoft systems did not support fork during most of the 20th cen-
tury, but they have since.) Here, the minus represents your new child process,
which is a copy of the parent. The return value from this forking open depends
on who is looking at it; it is the process ID of the child when examined from the
parent process, 0 when examined from the child process, and the undefined value
undef if the fork fails—in which case, there is no child. For example:

my $pid = open(FROM_CHILD, "–|") // die "can't fork: $!";

if ($pid) {
 @parent_lines = <FROM_CHILD>; # parent code
}
else {
 print STDOUT @child_lines; # child code
 exit;
}

The filehandle behaves normally for the parent, but for the child process, the
parent’s input (or output) is piped from (or to) the child’s STDOUT (or STDIN). The
child process does not see the parent’s filehandle opened. (This is conveniently
indicated by the 0 PID.)

Typically, you’d use this construct instead of the normal piped open when you
want to exercise more control over just how the pipe command gets executed
(such as when you are running setuid) and don’t want to have to scan shell com-
mands for metacharacters. The following piped opens are roughly equivalent:

open(FH, "| tr 'a–z' 'A–Z'"); # pipe to shell
 # command
open(FH, "|–", "tr", "a–z", "A–Z"); # pipe to bare
 # command
open(FH, "|–") || exec("tr", "a–z", "A–Z") || die; # pipe to child
open(FOO, "|–", "tr", "a–z", "A–Z") || die; # pipe to child

as are these:

open(FH, "cat –n 'file' |"); # pipe from shell
 # command
open(FH, "–|", "cat", "–n", "file"); # pipe from bare
 # command
open(FH, "–|") || exec("cat", "–n", "file") || die; # pipe from child
open(FOO, "–|", "cat", "–n", $file) || die; # pipe from child

12. Or you can think of it as leaving the command off of the three-argument forms above.

Perl Functions in Alphabetical Order | 907

www.it-ebooks.info

http://www.it-ebooks.info/

The last two examples in each block shows the pipe as “list form”, which is not
yet supported on all platforms. A good rule of thumb is that if your platform has
true fork (in other words, if your platform is Unix) you can use the list form.

See “Anonymous Pipes” in Chapter 15 for more examples of this. For more elab-
orate uses of fork open, see the sections “Talking to Yourself” on page 533 in
Chapter 15 and “Cleaning Up Your Environment” on page 656 in Chapter 20.

Perl tries to flush all files opened for output before any operation that may do a
fork, but this may not be supported on some platforms. To be safe, you may need
to set $| ($AUTOFLUSH in English) or call the autoflush method of IO::Handle on
any open handles.

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptor as determined by the value of $^F ($SYSTEM_FD_MAX).

Closing any piped filehandle causes the parent process to wait for the child to
finish and then returns the status value in $? and ${^CHILD_ERROR_NATIVE}.

The filename passed to the two-argument form of open has any leading and trail-
ing whitespace deleted and the normal redirection characters honored. This
property, known as “magic open”, can often be used to good effect. A user could
specify a filename of “rsh cat file |”, or you could change certain filenames as
needed:

$filename =~ s/(.*\.gz)\s*$/gzip –dc < $1|/;
open(FH, $filename) || die "Can't open $filename: $!";

When starting a command with open, you must choose either input or output:
“cmd|” for reading or “|cmd” for writing. You may not use open to start a command
that pipes both in and out, as the (currently) illegal notation, “|cmd|”, might
appear to indicate. However, the standard IPC::Open2 and IPC::Open3 library
routines give you a close equivalent. For details on double-ended pipes, see the
section “Bidirectional Communication” on page 536 in Chapter 15.

You may also, in the Bourne shell tradition, specify an EXPR beginning with >&, in
which case the rest of the string is interpreted as the name of a filehandle (or file
descriptor, if numeric) to be duplicated using the dup2(2) syscall.13 You may use
& after >, >>, <, +>, +>>, and +<. (The specified mode should match the mode of
the original filehandle.)

One reason you might want to do this would be if you already had a filehandle
open and wanted to make another handle that’s really a duplicate of the first one.

13. This doesn’t (currently) work with anonymous handles created by filehandle autovivification, but you can
always use fileno to fetch the file descriptor and dup that.

908 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

open(SAVEOUT, ">&SAVEERR") || die "couldn't dup SAVEERR: $!";
open(MHCONTEXT, "<&4") || die "couldn't dup fd4: $!";

That means that if a function is expecting a filename, but you don’t want to give
it a filename because you already have the file open, you can just pass the file-
handle with a leading ampersand. It’s best to use a fully qualified handle though,
just in case the function happens to be in a different package:

somefunction("&main::LOGFILE");

Another reason to “dup” filehandles is to temporarily redirect an existing file-
handle without losing track of the original destination. Here is a script that saves,
redirects, and restores STDOUT and STDERR:

#!/usr/bin/perl
open SAVEOUT, ">&STDOUT";
open SAVEERR, ">&STDERR";

open(STDOUT, "> foo.out") || die "Can't redirect stdout";
open(STDERR, ">&STDOUT") || die "Can't dup stdout";

select STDERR; $| = 1; # enable autoflush
select STDOUT; $| = 1; # enable autoflush

say STDOUT "stdout 1"; # these I/O streams propagate to
say STDERR "stderr 1"; # subprocesses too

system("some command"); # uses new stdout/stderr

close STDOUT;
close STDERR;

open STDOUT, ">&SAVEOUT";
open STDERR, ">&SAVEERR";

say STDOUT "stdout 2";
say STDERR "stderr 2";

If the filehandle or descriptor number is preceded by a &= combination instead of
a simple &, then instead of creating a completely new file descriptor, Perl makes
the FILEHANDLE an alias for the existing descriptor using the fdopen(3) C library
call. This is slightly more parsimonious of systems resources, although that’s less
of a concern these days.

$fd = $ENV{"MHCONTEXTFD"};
open(MHCONTEXT, "<&=$fdnum")
 || die "couldn't fdopen descriptor $fdnum: $!";

Perl Functions in Alphabetical Order | 909

www.it-ebooks.info

http://www.it-ebooks.info/

Filehandles STDIN, STDOUT, and STDERR always remain open across an exec. Other
filehandles, by default, do not. On systems supporting the fcntl function, you
may modify the close-on-exec flag for a filehandle.

use Fcntl qw(F_GETFD F_SETFD);
$flags = fcntl(FH, F_SETFD, 0)
 || die "Can't clear close–on–exec flag on FH: $!";

See also the special $^F ($SYSTEM_FD_MAX) variable in Chapter 25.

With the two-argument form of open, you have to be careful when you use a string
variable as a filename, since the variable may contain arbitrarily weird characters
(particularly when the filename has been supplied by arbitrarily weird characters
on the Internet). If you’re not careful, parts of the filename might get interpreted
as a MODE string, ignorable whitespace, a dup specification, or a minus. Here’s one
historically interesting way to insulate yourself:

$path =~ s#^(\s)#./$1#;
open(FH, "< $path\0") || die "can't open $path: $!";

But that’s still broken in several ways. Instead, just use the three-argument form
of open to open any arbitrary filename cleanly and without any (extra) security
risks:

open(FH, "<", $path) || die "can't open $path: $!";

On the other hand, if what you’re looking for is a true, C-style open(2) syscall with
all its attendant belfries and whistle-stops, then check out sysopen:

use Fcntl;
sysopen(FH, $path, O_RDONLY) || die "can't open $path: $!";

If you’re running on a system that distinguishes between text and binary files, you
may need to put your filehandle into binary mode—or forgo doing so, as the case
may be—to avoid mutilating your files. On such systems, if you use text mode
on a binary file, or binary mode on a text file, you probably won’t like the results.

Systems that need the binmode function are distinguished from those that don’t
by the format used for text files. Those that don’t need it terminate each line with
a single character that corresponds to what C thinks is a newline, \n. Unix, in-
cluding modern versions of Mac OS, falls into this category. VMS, MVS, MS-
whatever, and S&M operating systems of other varieties treat I/O on text files
and binary files differently, so they need binmode.

Or its equivalent. You can specify binary mode in the open function without a
separate call to binmode. As part of the MODE argument (but only in the three-
argument form), you may specify various input and output layers. To do the

910 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

equivalent of a binmode, use the three-argument form of open and stuff a layer
of :raw in after the other MODE characters:

open(FH, "< :raw", $path) || die "can't open $path: $!";

See the Encode module in Chapter 6 for details about what other sorts of things
you can put there, including handling of Windows text files.

opendir
opendir DIRHANDLE, EXPR

This function opens a directory named EXPR for processing by readdir, telldir,
seekdir, rewinddir, and closedir. The function returns true if successful. Direc-
tory handles have their own namespace separate from filehandles.

See the example at readdir.

ord
ord EXPR
ord

This function returns the numeric value (codepoint) of the first character of
EXPR. The return value is always unsigned. If you want a signed value, use
unpack("c", EXPR). If you want the characters in the string converted to a list of
numbers, use unpack("U*", EXPR) instead. To find the codepoint for a character
gives it name as a string, use the charnames::vianame functions from the char
names pragma.

our
our TYPE EXPR : ATTRIBUTES
our EXPR : ATTRIBUTES
our TYPE EXPR
our EXPR

An our declares one or more variables to be valid globals within the enclosing
block, file, or eval. That is, our has the same rules as a my declaration for deter-
mination of visibility, but does not create a new private variable; it merely allows
unfettered access to the existing package global. If more than one value is listed,
the list must be placed in parentheses.

The primary use of an our declaration is to hide the variable from the effects of a
use strict "vars" declaration; since the variable is masquerading as a my variable,
you are permitted to use the declared global variable without qualifying it with

Perl Functions in Alphabetical Order | 911

www.it-ebooks.info

http://www.it-ebooks.info/

its package. However, just like the my variable, this only works within the lexical
scope of the our declaration. In this respect, it differs from use vars, which affects
the entire package and is not lexically scoped.

our is also like my in that you are allowed to declare variables with a TYPE and with
ATTRIBUTES. Here is the syntax:

our Dog $spot :ears(short) :tail(long);

As of this writing, it’s not entirely clear what that will mean. Attributes could
affect either the global or the local interpretation of $spot. On the one hand, it
would be most like my variables for attributes to warp the current local view of
$spot without interfering with other views of the global in other places. On the
other hand, if one module declares $spot to be a Dog, and another declares
$spot to be a Cat, you could end up with meowing dogs or barking cats. This is
a subject of ongoing research, which is a fancy way to say we don’t know what
we’re talking about yet.

Another way in which our is like my is in its visibility. An our declaration declares
a global variable that will be visible across its entire lexical scope, even across
package boundaries. The package in which the variable is located is determined
at the point of the declaration, not at the point of use. This means the following
behavior holds and is deemed to be a feature:

package Foo;
our $bar; # $bar is $Foo::bar for rest of lexical scope
$bar = 582;

package Bar;
print $bar; # prints 582, just as if "our" had been "my"

However, the distinction between my creating a new, private variable and our ex-
posing an existing, global variable is important, especially in assignments. If you
combine a runtime assignment with an our declaration, the value of the global
variable does not disappear once the our goes out of scope. For that, you need
local:

($x, $y) = ("one", "two");
say "before block, x is $x, y is $y";
{
 our $x = 10;
 local our $y = 20;
 say "in block, x is $x, y is $y";
}
say "past block, x is $x, y is $y";

That prints out:

912 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

before block, x is one, y is two
in block, x is 10, y is 20
past block, x is 10, y is two

Multiple our declarations in the same lexical scope are allowed if they are in dif-
ferent packages. If they happen to be in the same package, Perl will emit warnings
if you ask it to.

use warnings;
package Foo;
our $bar; # declares $Foo::bar for rest of lexical scope
$bar = 20;

package Bar;
our $bar = 30; # declares $Bar::bar for rest of lexical scope
print $bar; # prints 30

our $bar; # emits warning

See also local, our, and state, as well as the section “Scoped Declara-
tions” on page 155 in Chapter 4.

pack
pack TEMPLATE, LIST

This function takes a LIST of ordinary Perl values, converts them into a string of
bytes according to the TEMPLATE, and returns this string. Templates for pack and
unpack are described in Chapter 26.

package
package NAMESPACE VERSION BLOCK
package NAMESPACE VERSION
package NAMESPACE BLOCK
package NAMESPACE

This is not really a function but a declaration that says that the BLOCK, or the rest
of the innermost enclosing scope, belongs to the indicated symbol table or name-
space. (The scope of a package declaration is thus the same as the scope of a my,
state, or our declaration.) Within its scope, the declaration causes the compiler
to resolve all unqualified global identifiers by looking them up in the declared
package’s symbol table.

A package declaration affects only global variables—including those on which
you’ve used local—not lexical variables created with my, state, or our. It only
affects unqualified global variables; global variables that are qualified with a
package name of their own ignore the current declared package. Global variables

Perl Functions in Alphabetical Order | 913

www.it-ebooks.info

http://www.it-ebooks.info/

declared with our are unqualified and therefore respect the current package, but
only at the point of declaration, after which they behave like my variables. That
is, for the rest of their lexical scope, our variables are “nailed” to the package in
use at the point of declaration, even if a subsequent package declaration inter-
venes.

Typically, you would put a package declaration as the first thing in a file that is to
be included by the require or use operator, but you can put one anywhere a
statement would be legal. When creating a traditional or object-oriented module
file, it is customary to name the package the same name as the file to avoid con-
fusion. (It’s also customary to name such packages beginning with a capital letter,
because lowercase modules are by convention interpreted as pragmatic mod-
ules.)

You can switch into a given package in more than one place; it merely influences
which symbol table is used by the compiler for the rest of that block. (If the
compiler sees another package declaration at the same level, the new declaration
overrides the previous one.) Your main program is assumed to start with an
invisible package main declaration.

If VERSION is provided, package sets the $VERSION variable in the given namespace
to a version object with the VERSION provided. VERSION must be a “strict” style
version number as defined by the version pragma: a positive decimal number
(integer or decimal-fraction) without exponentiation, or else a dotted-decimal v-
string with a leading v character and at least three components. (This may be
relaxed to two in the future as people become used to version objects.) You
should set $VERSION only once per package.

You can refer to variables, subroutines, handles, and formats in other packages by
qualifying the identifier with the package name and a double colon: $Pack
age::Variable. If the package name is null, the main package is assumed. That
is, $::sail is equivalent to $main::sail, as well as to $main'sail, which is still
occasionally seen in older code.

Here’s an example:

package main; $sail = "hale and hearty";
package Mizzen; $sail = "tattered";
package Whatever;
say "My main sail is $main::sail.";
say "My mizzen sail is $Mizzen::sail.";

This prints:

My main sail is hale and hearty.
My mizzen sail is tattered.

914 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

The symbol table for a package is stored in a hash with a name ending in a double
colon. The main package’s symbol table is named %main::, for example. So the
existing package symbol *main::sail can also be accessed as $main::{"sail"}.

See Chapter 10 for more information about packages. See my earlier in this chapter
for other scoping issues.

_ _PACKAGE_ _
A special token that returns the name of the package in which it occurs. See
Chapter 10.

pipe
pipe READHANDLE, WRITEHANDLE

Like the corresponding syscall, this function opens a pair of connected pipes—
see pipe(2). This call is usually used right before a fork, after which the pipe’s
reader should close WRITEHANDLE, and the writer close READHANDLE. (Otherwise, the
pipe won’t indicate EOF to the reader when the writer closes it.) If you set up a
loop of piped processes, deadlock can occur unless you are remarkably careful.
In addition, note that Perl’s pipes use standard I/O buffering, so you may need
to set $| ($OUTPUT_AUTOFLUSH) on your WRITEHANDLE to flush after each output op-
eration, depending on the application—see select (output filehandle).

(As with open, if either filehandle is undefined, it will be autovivified.)

Here’s a small example:

pipe(README, WRITEME);
unless ($pid = fork) { # child
 defined($pid) || die "can't fork: $!";
 close(README);
 for $i (1..5) { print WRITEME "line $i\n" }
 exit;
}
$SIG{CHLD} = sub { waitpid($pid, 0) };
close(WRITEME);
@strings = <README>;
close(README);
print "Got:\n", @strings;

Notice how the writer closes the read end and the reader closes the write end. You
can’t use one pipe for two-way communication. Either use two different pipes
or the socketpair syscall for that. See the section “Pipes” on page 531 in Chap-
ter 15.

Perl Functions in Alphabetical Order | 915

www.it-ebooks.info

http://www.it-ebooks.info/

pop
pop ARRAY
pop

This function treats an array like a stack—it pops (removes) and returns the last
value of the array, shortening the array by one element. If ARRAY is omitted, the
function pops @_ within the lexical scope of subroutines and formats; it pops
@ARGV at file scopes (typically the main program) or within the lexical scopes es-
tablished by the eval STRING, BEGIN {}, CHECK {}, UNITCHECKINIT {}, and END {}
constructs. It has the same effect as:

$tmp = $ARRAY[$#ARRAY––];

or:

$tmp = splice @ARRAY, –1;

If there are no elements in the array, pop returns undef. (But don’t depend on that
to tell you when the array is empty if your array contains undef values!) See also
push and shift. If you want to pop more than one element, use splice.

The pop requires its first argument to be an array, not a list. If you just want the
last element of a list, use this:

(LIST)[–1]

Starting with v5.14, pop can take a reference to an unblessed array, which will be
dereferenced automatically. This aspect of pop is considered experimental. The
exact behavior may change in a future version of Perl.

pos
pos SCALAR
pos

This function returns the location in SCALAR where the last m//g search over
SCALAR left off.

It returns the offset of the character (codepoint) after the last one matched. (That
is, it’s equivalent to length($`) + length($&).) This is the offset where the next
m//g search on that string will start. Remember that the offset of the beginning
of the string is 0. Note that 0 is a valid match offset. undef indicates that the search
position is reset (usually due to match failure, but it can also be because no match
has been run on the scalar yet).

For example:

916 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

$graffito = "fee fie foe foo";
while ($graffito =~ m/e/g) {
 say pos $graffito;
}

prints 2, 3, 7, and 11, the offsets of each of the codepoints following an “e”. The
pos function may be assigned a value to tell the next m//g where to start:

$graffito = "fee fie foe foo";
pos $graffito = 4; # Skip the fee, start at fie
while ($graffito =~ m/e/g) {
 say pos $graffito;
}

This prints only 7 and 11. The regular expression assertion \G matches only at the
location currently specified by pos for the string being searched. See the section
“Positions” on page 217 in Chapter 5.

Note that we said codepoints, not characters. We didn’t want to confuse you.
Codepoints are programmer-visible characters, some of which may even be in-
visible to users. A user-visible character, usually called graphemes or grapheme
clusters, may well comprise multiple codepoints. For example, a “\r\n” is one
user character but two programmer characters. See the CPAN Uni

code::GCString module if you would like a flavor of pos that works with
graphemes instead of codepoints.

print
print FILEHANDLE LIST
print FILEHANDLE
print LIST
print

This function prints a string or a comma-separated list of strings. If set, the con-
tents of the $\ ($OUTPUT_RECORD_SEPARATOR) variable will be implicitly printed at
the end of the list. The function returns true if successful, false otherwise. The
current value of $, (if any) is printed between each LIST item. The current value
of $\ (if any) is printed after the entire LIST has been printed.

To use FILEHANDLE alone to print the content of $_ to it, you must use a real file-
handle like FH, not an indirect one like $fh. FILEHANDLE may be a scalar variable
name (unsubscripted), in which case the variable contains either the name of the
actual filehandle or a reference to a filehandle object of some sort. As with any
other indirect object, FILEHANDLE may also be a block that returns such a value:

print { $OK ? "STDOUT" : "STDERR" } "stuff\n";
print { $iohandle[$i] } "stuff\n";

Perl Functions in Alphabetical Order | 917

www.it-ebooks.info

http://www.it-ebooks.info/

If FILEHANDLE is a variable and the next token is a term, it may be misinterpreted
as an operator unless you interpose a + or put parentheses around the arguments.
For example:

print $a – 2; # prints $a – 2 to default filehandle (usually STDOUT)
print $a (– 2); # prints –2 to filehandle specified in $a
print $a –2; # also prints –2 (weird parsing rules :–)

If FILEHANDLE is omitted, the function prints to the currently selected output file-
handle, initially STDOUT. To set the default output filehandle to something other
than STDOUT, use the select FILEHANDLE operation.14 If LIST is also omitted, the
function prints $_. Because print takes a LIST, anything in the LIST is evaluated
in list context. Thus, when you say:

print OUT <STDIN>;

it is not going to print the next line from standard input, but all remaining lines
from standard input up to end-of-file, since that’s what <STDIN> returns in list
context. If you want the other thing, say:

print OUT scalar <STDIN>;

Also, remembering the if-it-looks-like-a-function-it-is-a-function rule, be careful
not to follow the print keyword with a left parenthesis unless you want the cor-
responding right parenthesis to terminate the arguments to the print. Instead,
interpose a + or put parens around all the arguments:

print (1+2)*3, "\n"; # WRONG
print +(1+2)*3, "\n"; # ok
print ((1+2)*3, "\n"); # ok

If you specify a FILEHANDLE, you may omit the LIST only if the FILEHANDLE is a
regular bareword filehandle, not a block or indirect filehandle.

$_ = "stuff\n";
*NEWOUT = *STDOUT;
print NEWOUT; # ok: prints "stuff\n"

$fh = *NEWOUT;
print $fh; # WRONG: prints STDOUT "*main::STDOUT"

Printing Unicode data to a filehandle that doesn’t have an I/O layer specifying
how to encode it will trigger a mandatory warning, “Wide character in print”.
To fix this, specify an encoding via binmode or as the second argument in a three-
or-more-argument open.

binmode(STDOUT, ":utf8") || die "Can't binmode: $!";

14. Thus, STDOUT isn’t really the default filehandle for print. It’s merely the default default filehandle.

918 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

open(HANDLE, "> :encoding(UTF–16)", $file)
 || die "Can't open $file: $!";

Printing to a closed pipe or socket will generate a SIGPIPE signal. See the section
“Signals” on page 518 in Chapter 15.

printf
printf FILEHANDLE FORMAT, LIST
printf FORMAT, LIST
printf FILEHANDLE
printf LIST
printf

This function prints a formatted string to FILEHANDLE or, if omitted, the currently
selected output filehandle, initially STDOUT. The first item in the LIST must be a
string that says how to format the rest of the items. This is similar to the C library’s
printf(3) and fprintf(3) functions. The function is equivalent to:

print FILEHANDLE sprintf FORMAT, LIST

except that $\ ($OUTPUT_RECORD_SEPARATOR) is not appended.

See Chapter 26 for how formats are interpreted. We’d duplicate all that here, but
this book is already an ecological disaster.

An exception is raised only if an invalid reference type is used as the FILEHANDLE
argument.

If you omit both the FORMAT and the LIST, $_ is used—but, in that case, you should
have been using print. Don’t fall into the trap of using a printf when a simple
print would do. The print function is more efficient and less error prone.

prototype
prototype FUNCTION

This function returns the prototype of a function as a string (or undef if the
function has no prototype). FUNCTION is a reference to, or the name of, the function
whose prototype you want to retrieve.

If FUNCTION is a string starting with CORE::, the rest is taken as a name for a Perl
built-in, and an exception is raised if there is no such built-in. If the built-in is
not overridable (such as qw//) or its arguments cannot be expressed by a prototype
(such as system), the function returns undef because the built-in does not really
behave like a Perl function. Otherwise, the string describing the equivalent pro-
totype is returned.

Perl Functions in Alphabetical Order | 919

www.it-ebooks.info

http://www.it-ebooks.info/

push
push ARRAY, LIST

This function treats ARRAY as a stack and pushes the values of LIST onto the end
of ARRAY. The length of ARRAY increases by the length of LIST. The function returns
this new length. The push function has the same effect as:

for my $value (listfunc()) {
 $array[++$#array] = $value;
}

or:

splice @array, @array, 0, listfunc();

but it is more efficient (for both you and your computer). You can use push in
combination with shift to make a fairly time-efficient shift register or queue:

for (;;) {
 push @array, shift @array;
 ...
}

See also pop and unshift.

Starting with v5.14, push can take a reference to an unblessed array, which will be
dereferenced automatically. This aspect of push is considered experimental. The
exact behavior may change in a future version of Perl.

q/STRING/
q/STRING/
qq/STRING/
qr/STRING/
qw/STRING/
qx/STRING/

Generalized quotes. See the section “Pick Your Own Quotes” on page 70 in
Chapter 2. For status annotations on qx//, see readpipe. For status annotations
on qr//, see m//. See also “Staying in Control” on page 232 in Chapter 5.

quotemeta
quotemeta EXPR
quotemeta

This function returns the value of EXPR with all nonalphanumeric characters
backslashed. (That is, all characters not matching /[A–Za–z_0–9]/ will be pre-
ceded by a backslash in the returned string, regardless of locale settings.) This is

920 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

the internal function implementing the \Q escape in interpolative contexts (in-
cluding double-quoted strings, backticks, and patterns).

rand
rand EXPR
rand

This function returns a pseudorandom floating-point number greater than or
equal to 0 and less than the value of EXPR. (EXPR should be positive.) If EXPR is
omitted, the function returns a floating-point number between 0 and 1 (including
0, but excluding 1). rand automatically calls srand unless srand has already been
called. See also srand.

To get an integral value, such as for a die roll, combine this with int, as in:

$roll = int(rand 6) + 1; # $roll now a number between 1 and 6

Because Perl uses your own C library’s pseudorandom number function, like
random(3) or drand48(3), the quality of the distribution is not guaranteed. If you
need stronger randomness, such as for cryptographic purposes, you might con-
sult instead the documentation on random(4) if your system has a /dev/random
or /dev/urandom device; the CPAN modules Math::Random::Secure, Math::Ran
dom::MT::Perl, and Math::TrulyRandom; or a good textbook on computational
generation of pseudorandom numbers, such as the second volume of Knuth.15

read
read FILEHANDLE, SCALAR, LENGTH, OFFSET
read FILEHANDLE, SCALAR, LENGTH

This function tries to read LENGTH characters (meaning codepoints, not
graphemes) of data into variable SCALAR from the specified FILEHANDLE. The func-
tion returns the number of characters read or 0 at end-of-file. It returns undef on
error. SCALAR will grow or shrink to the length actually read. The OFFSET, if speci-
fied, determines where in the variable to start putting characters so that you can
read into the middle of a string.

To copy data from filehandle FROM into filehandle TO, you could say:

while (read(FROM, $buf, 16384)) {
 print TO $buf;
}

15. Knuth, D.E. The Art of Computer Programming, Seminumerical Algorithms, vol. 2, 3rd ed. (Reading, Mass.:
Addison–Wesley, 1997).

Perl Functions in Alphabetical Order | 921

www.it-ebooks.info

http://www.it-ebooks.info/

Note the characters: depending on the status of the filehandle, either (8-bit) bytes
or characters are read. A byte is just Perl’s way of talking about undecoded code-
points with small values. By default, all filehandles operate on bytes. But, for
example, if the filehandle has been opened with the :utf8 I/O layer, the I/O will
operate on UTF-8-encoded Unicode characters, not bytes. Similarly for the two-
argument form of binmode, the middle argument to open, or via the open pragma:
in those cases, pretty much any characters can be read.

The opposite of a read is simply a print, which already knows the length of the
string you want to write and can write a string of any length. Don’t make the
mistake of using write, which is solely used with formats.

Perl’s read function is implemented using standard I/O’s fread(3) function, so the
actual read(2) syscall may read more than LENGTH bytes to fill the input buffer, and
fread(3) may do more than one read(2) syscall to fill the buffer. To gain greater
control, specify the real syscall using sysread. Calls to read and sysread should
not be intermixed unless you are into heavy wizardry (or pain).

readdir
readdir DIRHANDLE

This function reads directory entries (which are simple filenames) from a direc-
tory handle opened by opendir. In scalar context, this function returns the next
directory entry, if any; otherwise, it returns undef. In list context, it returns all
the rest of the entries in the directory, which will be a null list if there are no
entries. For example:

opendir(THISDIR, ".") || die "serious dainbramage: $!";
@allfiles = readdir THISDIR;
closedir THISDIR;
say "@allfiles";

That prints all files in the current directory on one line. If you want to avoid the
“.” and “..” entries, incant one of these (whichever you think is least unreadable):

@allfiles = grep { $_ ne "." && $_ ne ".." } readdir THISDIR;
@allfiles = grep { ! /^[.][.]?\z/ } readdir THISDIR;
@allfiles = grep { ! /^\.{1,2}\z/ } readdir THISDIR;
@allfiles = grep !/^\.\.?\z/, readdir THISDIR;

And to avoid all .* files (like the ls program):

@allfiles = grep !/^\./, readdir THISDIR;

To get just text files, say this:

@textfiles = grep –T, readdir THISDIR;

922 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

But watch out on that last one because the result of readdir needs to have the
directory part glued back on if it’s not the current directory—like this:

opendir(THATDIR, $path) || die "can't opendir $path: $!";
@dotfiles = grep { /^\./ && –f } map { "$path/$_" } readdir(THATDIR);
closedir THATDIR;

As of v5.12 you can use a bare readdir in a while loop, which will set $_ on every
iteration. You may also use an undefined scalar variable, which will be autoviv-
ified with an anonymous directory handle.

my $dh; # make sure it's new
opendir($dh, $somedir) || die "can't opendir $somedir: $!";
while (readdir($dh)) {
 print "$somedir/$_\n";
}
closedir $dh;

readline
readline FILEHANDLE
readline

This is the internal function implementing the <FILEHANDLE> operator, but you
can use it directly. The function reads the next record from FILEHANDLE, which
may be a filehandle name or an indirect filehandle expression that returns either
the name of the actual filehandle or a reference to anything resembling a file-
handle object, such as a typeglob. In scalar context, each call reads and returns
the next record until end-of-file is reached, whereupon the next call returns
undef. In list context, readline reads records until end-of-file is reached and then
returns a list of records. By “record”, we normally mean a line of text, but chang-
ing the value of $/ ($INPUT_RECORD_SEPARATOR) from its default value causes this
operator to “chunk” the text differently. Undefining $/ makes the chunk size
entire files (slurp mode).

When slurping files in scalar context, if you happen to slurp an empty file, read
line returns "" the first time, and undef each subsequent time. When slurping
from the magical ARGV filehandle, each file returns one chunk (again, null files
return as ""), followed by a single undef when the files are exhausted. If FILEHAN
DLE is omitted, the ARGV filehandle is assumed.

The <FILEHANDLE> operator is discussed in more detail in the section “Input
Operators” on page 87 in Chapter 2.

$line = <STDIN>;
$line = readline(STDIN); # same thing
$line = readline(*STDIN); # same thing

Perl Functions in Alphabetical Order | 923

www.it-ebooks.info

http://www.it-ebooks.info/

$line = readline(*STDIN); # same thing

open(my $fh, "<&=STDIN") || die;
bless($fh => "AnyOldClass");
$line = readline($fh); # same thing

readlink
readlink EXPR
readlink

This function returns the filename pointed to by a symbolic link. EXPR should
evaluate to a filename, the last component of which is a symbolic link. If it is not
a symbolic link, or if symbolic links are not implemented on the filesystem, or if
some system error occurs, undef is returned, and you should check the error code
in $!.

Be aware that the returned symlink may be relative to the location you specified.
For instance, you may say:

$link_contents = readlink("/usr/local/src/express/yourself.h");

and readlink might return:

../express.1.23/includes/yourself.h

which is not directly usable as a filename unless your current directory happens
to be /usr/local/src/express.

readpipe
readpipe scalar EXPR
readpipe LIST # (proposed)

This is the internal function implementing the qx// quote construct (also known
as the backticks operator). It is occasionally handy when you need to specify your
EXPR in a way that wouldn’t be handy using the quoted form. Be aware that we
may change this interface in the future to support a LIST argument to make it
more like the exec function, so don’t assume that it will continue to provide scalar
context for EXPR. Supply the scalar yourself, or try the LIST form. Who knows, it
might work by the time you read this.

924 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

recv
recv SOCKET, SCALAR, LEN, FLAGS

This function receives a message on a socket. It attempts to receive LENGTH char-
acters (codepoints) of data into variable SCALAR from the specified SOCKET file-
handle. The function returns the address of the sender or undef if there’s an error.
SCALAR will grow or shrink to the length actually read. The function takes the
same flags as recv(2), and it is actually implemented using the recvfrom(2). See
the section “Sockets” on page 543 in Chapter 15.

Note the characters: depending on the status of the socket, either undecoded (8-
bit) bytes or fully decoded characters are received. By default, all sockets operate
on bytes. But, for example, if the socket has been changed using binmode to op-
erate with the :encoding(utf8) I/O layer, the I/O will operate on UTF-8-encoded
Unicode characters, not bytes.

redo
redo LABEL
redo

The redo operator restarts a loop block without reevaluating the conditional. The
continue block, if any, is not executed. If the LABEL is omitted, the operator refers
to the innermost enclosing loop. This operator is normally used by programs that
wish to deceive themselves about what was just input:

A loop that joins lines continued with a backslash
while (<STDIN>) {
 if (s/\\\n$// && defined($nextline = <STDIN>)) {
 $_ .= $nextline;
 redo;
 }
 print; # or whatever...
}

redo cannot be used to exit a block that returns a value such as eval {}, sub {},
or do {}, and it should not be used to exit a grep or map operation. With warnings
enabled, Perl will warn you if you redo a loop not in your current lexical scope.

A block by itself is semantically identical to a loop that executes once. Thus,
redo inside such a block will effectively turn it into a looping construct. See the
section “Loop Control” on page 144 in Chapter 4.

Perl Functions in Alphabetical Order | 925

www.it-ebooks.info

http://www.it-ebooks.info/

ref
ref EXPR
ref

The ref operator returns a true value if EXPR is a reference, and false otherwise.
The value returned depends on the type of thing the reference refers to. Built-in
types include:

SCALAR
ARRAY
HASH
CODE
REF
GLOB
LVALUE
FORMAT
IO
VSTRING
Regexp

The return value LVALUE indicates a reference to an lvalue that is not a variable.
You get this from taking the reference of function calls like pos or substr.
VSTRING is returned if the reference points to a version string.

The result Regexp indicates that the argument is a regular expression resulting
from qr//.

If the referenced object has been blessed into a package, then that package name
is returned instead. You can think of ref as a “typeof” operator.

if (ref($r) eq "HASH") {
 say "r is a reference to a hash.";
}
elsif (ref($r) eq "Hump") { # Naughty—see below
 say "r is a reference to a Hump object.";
}
elsif (not ref $r) {
 say "r is not a reference at all.";
}

It’s considered bad OO style to test your object’s class for equality to any particular
class name, since a derived class will have a different name but should be allowed
access to the base class’s methods, according to the Liskov Substitution Principle.
It’s better to use the UNIVERSAL method isa, as follows:

if ($r–>isa("Hump")) {
 say "r is a reference to a Hump object, || subclass.";
}

926 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

It’s usually best not to test at all, since the OO mechanism won’t send the object
to your method unless it thinks it’s appropriate in the first place. See Chapter 8
and Chapter 12 for more details. See also the reftype function under the section
“attributes” on page 1002 in Chapter 29.

rename
rename OLDNAME, NEWNAME

This function changes the name of a file. It returns true for success, and false
otherwise. It will not (usually) work across filesystem boundaries, although on
a Unix system the mv command can sometimes be used to compensate for this.
If a file named NEWNAME already exists, it will be destroyed. Non-Unix systems
might have additional restrictions.

See the standard File::Copy module for cross-filesystem renames using a plat-
form-independent move function.

require
require VERSION
require EXPR
require

This function asserts a dependency of some kind on its argument.

If the argument is a string, require loads and executes the Perl code found in the
separate file whose name is given by the string. This is similar to using a do on a
file, except that require checks to see whether the library file has been loaded
already and raises an exception if any difficulties are encountered. (It can thus
be used to express file dependencies without worrying about duplicate compi-
lation.) Like its cousins do and use, require knows how to search the include path
stored in the @INC array and to update %INC on success. See Chapter 25.

The file must return true as the last value to indicate successful execution of any
initialization code, so it’s customary to end such a file with 1 unless you’re sure
it’ll return true otherwise. (This requirement may be relaxed in the future.)

If require’s argument is a version number of the form v5.6.2, require demands
that the currently executing version of Perl be at least that version. (Perl also
accepts a floating-point number such as 5.005_03 for compatibility with older
versions of Perl, but that form is now discouraged because folks from other cul-
tures don’t understand it.) Thus, a script that requires v5.14 can put as its first
line:

Perl Functions in Alphabetical Order | 927

www.it-ebooks.info

http://www.it-ebooks.info/

require 5.014_001; # preferred for (ancient) backward compatibility
require 5.14.1; # ditto
require v5.14.1; # runtime version check

and earlier versions of Perl will abort. Like all requires, however, this is done at
runtime. You might prefer to say use 5.14.0 for a compile-time check. See also
$PERL_VERSION in Chapter 25.

If require’s argument is a bare package name (see package), require assumes an
automatic .pm suffix, making it easy to load standard modules. This behavior is
like use, except that it happens at runtime rather than compile time, and the
import method is not called. For example, to pull in Socket.pm without introduc-
ing any symbols into the current package, say this:

require Socket; # instead of "use Socket;"

However, you can get the same effect with the following, which has the advantage
of giving a compile-time warning if Socket.pm can’t be located:

use Socket ();

Using require on a bare name also replaces any :: in the package name with your
system’s directory separator, traditionally /. In other words, if you try this:

require Foo::Bar; # a splendid bare name

The require function looks for the Foo/Bar.pm file in the directories specified in
the @INC array. But if you try this:

$class = "Foo::Bar";
require $class; # $class is not a bare name

or this:

require "Foo::Bar"; # quoted literal not a bare name

the require function will look for the Foo::Bar file in the @INC array and will com-
plain about not finding Foo::Bar there. If so, you can do this:

eval "require $class";

Now that you understand how require looks for files with a bareword argument,
there is a little extra functionality going on behind the scenes. Before require
looks for a “.pm” extension, it will first look for a similar filename with a
“.pmc” extension. If this file is found, it will be loaded in place of any file ending
in a “.pm” extension.

The @INC array contains a list of scalars that determine how a module is loaded.
The require function walks through this list until it finds a scalar entry that leads
to loadable source code, then loads that code.

928 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Each element of @INC must be either a string (which is treated as the name of a
directory in which to look for the required file) or some form of “code-like entity”
(which is used to generate the contents of the required file).

A “code-like entity” can be a subroutine reference, an array containing a subrou-
tine reference (plus some optional arguments for the subroutine), or an object
with an INC method. Whichever form of the “code-like entity” is encountered, the
code is invoked and passed two arguments: the entity itself and the file that is
being looked for. That is:

Sub ref: $sub_ref–>($sub_ref, $required_file)
Array ref: $arr_ref–>[0]–>($arr_ref, $required_file)
Object: $object–>INC($required_file)

No matter which form is being invoked, the subroutine or method is always ex-
pected to return a list of up to three values, which are interpreted as shown in
Table 27-4.

Table 27-4. Expected return values for coderefs in @INC

Arguments Action

(HANDLE) Read source in from this handle

(HANDLE, CODEREF) Read source in from handle and filter through subroutine

(HANDLE, CODEREF, REF) As above, but pass REF to subroutine as well

(undef, CODEREF) Call subroutine repeatedly to return source lines

(undef, CODEREF, REF) As above, but pass REF to subroutine as well

Anything else Fail and try the next entry in @INC

These hooks are also permitted to set the %INC entry corresponding to the files
they have loaded. See the %INC variable in Chapter 25.

See also do FILE, the use command, the lib pragma, and the standard FindBin
module.

reset
reset EXPR
reset

This function is generally used (or abused) at the top of a loop or in a continue
block at the end of a loop to clear global variables or reset m?? searches so that
they work again. The expression is interpreted as a list of single characters (hy-
phens are allowed for ranges). All scalar variables, arrays, and hashes beginning
with one of those letters are reset to their pristine state. If the expression is omit-

Perl Functions in Alphabetical Order | 929

www.it-ebooks.info

http://www.it-ebooks.info/

ted, one-match searches (m?PATTERN?) are reset to match again. The function resets
variables or searches for only the current package. It always returns true.

To reset all “X” variables, say this:

reset "X";

To reset all lowercase variables, say this:

reset "a–z";

Lastly, to just reset ?? searches, say:

reset;

Resetting “A–Z” in package main is not recommended since you’ll wipe out your
global ARGV, INC, ENV, and SIG arrays and hashes.

Lexical variables (created by my) are not affected. Use of reset is vaguely depre-
cated because it easily clears out entire namespaces, and because the ?? operator
is itself vaguely deprecated; please use m?? instead.

See also the delete_package function from the standard Symbol module, and the
whole issue of Safe compartments documented in the section “Safe Compart-
ments” on page 670 in Chapter 20.

return
return EXPR
return

This operator causes the current subroutine, eval, or do FILE to return immedi-
ately with the specified value or values. Attempting to use return outside these
three places raises an exception. Note also that an eval cannot do a return on
behalf of the subroutine that called the eval.

EXPR will be evaluated in list, scalar, or void context, depending on how the return
value will be used, which may vary from one execution to the next. That is, the
supplied expression will be evaluated with the same context as the subroutine
was called in. If the subroutine was called in scalar context, EXPR is also evaluated
in scalar context and so returns a single scalar value. If the subroutine was in-
voked in list context, then EXPR is also evaluated in list context and so returns a
list of values. A return with no argument returns the scalar value undef in scalar
context, an empty list () in list context, and (naturally) nothing at all in void
context. The context of the subroutine call can be determined from within the
subroutine by using the (misnamed) wantarray function.

930 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

reverse
reverse LIST

In list context, this function returns a list value consisting of the elements of
LIST in the opposite order. The function can be used to create descending se-
quences:

for (reverse 1 .. 10) { ... }

Because of the way hashes flatten into lists when passed as a LIST, reverse can
also be used to invert a hash, presuming the values are unique:

%barfoo = reverse %foobar;

In scalar context, the function concatenates all the elements of LIST and then
returns the reverse of that resulting string, character by character. By character
we mean codepoint, not grapheme. That means you will inappropriately reverse
the pieces of “\r\n” into “\n\r”, causing combining characters to accidentally
apply to the wrong base character. To do a reverse on graphemes instead of by
codepoint, do this:

$codeuni = join "" => reverse $unicode =~ /\X/g;

A small hint: reversing a list sorted earlier by a user-defined function can often
be achieved more easily by sorting the list in the opposite direction in the first
place.

rewinddir
rewinddir DIRHANDLE

This function sets the current position to the beginning of the directory for the
readdir routine on DIRHANDLE. The function may not be available on all machines
that support readdir—rewinddir dies if unimplemented. It returns true on suc-
cess, and false otherwise.

rindex
rindex STR, SUBSTR, POSITION
rindex STR, SUBSTR

This function works just like index except that it returns the position of the last
occurrence of SUBSTR in STR (a reverse index). The function returns –1 if SUBSTR is
not found. POSITION, if specified, is the rightmost position that may be returned.
To work your way through a string backward, say:

Perl Functions in Alphabetical Order | 931

www.it-ebooks.info

http://www.it-ebooks.info/

$pos = length $string;
while (($pos = rindex $string, $lookfor, $pos) >= 0) {
 say "Found at $pos";
 $pos––;
}

Note that like index, this works by character (codepoint) position, not by
grapheme position. To work with strings as sequences of graphemes instead of
codepoints, see the index, rindex, and pos methods for the CPAN Unicode::
GCString module.

rmdir
rmdir FILENAME
rmdir

This function deletes the directory specified by FILENAME if that directory is empty.
If the function succeeds, it returns true; otherwise, it returns false. See also the
File::Path module if you want to remove the contents of the directory first and
don’t care to shell out to call rm –r for some reason (such as not having a shell
or an rm command).

s///
s///

The substitution operator. See the section “Pattern-Matching Operators” in
Chapter 5.

say
say FILEHANDLE LIST
say FILEHANDLE
say LIST
say

Just like print, but implicitly appends a newline. say LIST is simply an abbrevi-
ation for { local $\ = "\n"; print LIST }. To use FILEHANDLE without a LIST to
print the contents of $_ to it, you must use a real filehandle like FH, not an indirect
one like $fh.

This keyword is available only when the “say” feature is enabled; see the section
“Terms and List Operators (Leftward)” on page 97 in Chapter 3.

932 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

scalar
scalar EXPR

This pseudofunction may be used within a LIST to force EXPR to be evaluated in
scalar context when evaluation in list context would produce a different result.
For example:

my($nextvar) = scalar <STDIN>;

prevents <STDIN> from reading all the lines from standard input before doing the
assignment, since assignment to a list (even a my list) provides list context.
Without the scalar in this example, the first line from <STDIN> would still be
assigned to $nextvar, but subsequent lines would be read and thrown away, since
the list we’re assigning to is only able to receive a single scalar value.

Of course, a simpler, less-cluttered way would be to just leave the parentheses off,
thereby changing the list context to a scalar one:

my $nextvar = <STDIN>;

Since a print function is a LIST operator, you have to say:

say "Length is ", scalar(@ARRAY);

if you want the length of @ARRAY to be printed out.

There’s no “list” function corresponding to scalar since, in practice, one never
needs to force evaluation in list context. That’s because any operation that wants
LIST already provides list context to its list arguments for free.

Because scalar is a unary operator, if you accidentally use a parenthesized list for
the EXPR, this behaves as a scalar comma expression, evaluating all but the last
element in void context and returning the final element evaluated in scalar con-
text. This is seldom what you want. The following single statement:

print uc(scalar(&foo,$bar)),$baz;

is the (im)moral equivalent of these two:

&foo;
print(uc($bar),$baz);

See Chapter 2 for more details on the comma operator. See “Prototypes” in Chap-
ter 7 for more on unary operators.

Perl Functions in Alphabetical Order | 933

www.it-ebooks.info

http://www.it-ebooks.info/

seek
seek FILEHANDLE, OFFSET, WHENCE

This function positions the file pointer for FILEHANDLE, just like the fseek(3) call
of standard I/O. The first position in a file is at offset 0, not offset 1. Also, offsets
refer to byte positions, not character positions or line numbers. In general, since
line lengths vary, it’s not possible to access a particular line number without
examining the whole file up to that point, unless all your lines are known to be
of a particular length, or you’ve built an index that translates line numbers into
byte offsets. (The same restrictions apply to character positions in files with vari-
able-length character encodings like UTF-8 and UTF-16: the operating system
doesn’t know what characters are, only bytes.)

FILEHANDLE can be an expression whose value gives either the name of the actual
filehandle, a typeglob, or a reference to anything resembling a filehandle object.
The function returns true on success, and false otherwise. For handiness, the
function can calculate offsets from various file positions for you. The value of
WHENCE specifies which file position your OFFSET uses for its starting point: 0, the
beginning of the file; 1, the current position in the file; or 2, the end of the file.
The OFFSET can be negative for a WHENCE of 1 or 2. If you’d like to use symbolic
values for WHENCE, you may use SEEK_SET, SEEK_CUR, and SEEK_END from either the
IO::Seekable or the POSIX module, or the Fcntl module.

If you want to position the file for sysread or syswrite, don’t use seek; standard
I/O buffering makes its effect on the file’s system position unpredictable and
nonportable. Use sysseek instead.

Because of the rules and rigors of ANSI C, on some systems you have to do a seek
whenever you switch between reading and writing. Among other things, this may
have the effect of calling the standard I/O library’s clearerr(3) function. A
WHENCE of 1 (SEEK_CUR) with an OFFSET 0 is useful for not moving the file position:

seek(TEST, 0, 1);

One interesting use for this function is to allow you to follow growing files, like
this:

for (;;) {
 while (<LOG>) {
 grok($_); # Process current line
 }
 sleep 15;
 seek LOG, 0, 1; # Reset end–of–file error
}

934 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

The final seek clears the end-of-file error without moving the pointer. Depending
on how standard your C library’s standard I/O implementation happens to be,
you may need something more like this:

for (;;) {
 for ($curpos = tell FILE; <FILE>; $curpos = tell FILE) {
 grok($_); # Process current line
 }
 sleep $for_a_while;
 seek FILE, $curpos, 0; # Reset end–of–file error
}

Similar strategies can be used to remember the seek addresses of each line in an
array.

Warning: POSITION is in bytes not characters, no matter whether there should
happen to be any encoding layer on the filehandle. However, all functions in Perl
that read from files do go through any encoding layer, and you can therefore read
a partial “character” and wind up with an invalid Perl string. Avoid mixing calls
to sysseek or seek with I/O functions on filehandle with a multibyte encoding
layer.

seekdir
seekdir DIRHANDLE, POS

This function sets the current position for the next call to readdir on DIRHANDLE.
POS must be a value returned by telldir. This function has the same caveats about
possible directory compaction as the corresponding system library routine. The
function may not be implemented everywhere that readdir is. It’s certainly not
implemented anywhere readdir isn’t.

select (output filehandle)
select FILEHANDLE
select

For historical reasons, there are two select operators that are totally unrelated to
each other. (See the next section for the other one.) This version of the select
operator returns the currently selected output filehandle and, if FILEHANDLE is
supplied, sets the current default filehandle for output. This has two effects: first,
a write or a print without a filehandle will default to this FILEHANDLE; second,
special variables related to output will refer to this output filehandle. For exam-
ple, if you have to set the same top-of-form format for more than one output
filehandle, you might do the following:

Perl Functions in Alphabetical Order | 935

www.it-ebooks.info

http://www.it-ebooks.info/

select REPORT1;
$^ = "MyTop";
select REPORT2;
$^ = "MyTop";

But note that this leaves REPORT2 as the currently selected filehandle. This could
be construed as antisocial, since it could really foul up some other routine’s
print or write statements. Properly written library routines leave the currently
selected filehandle the same on exit as it was on entry. To support this, FILE
HANDLE may be an expression whose value gives the name of the actual filehandle.
Thus, you can save and restore the currently selected filehandle like this:

my $oldfh = select STDERR;
$| = 1;
select $oldfh;

or idiomatically but somewhat obscurely like this:

select((select(STDERR), $| = 1)[0])

This example works by building a list consisting of the returned value from
select(STDERR) (which selects STDERR as a side effect) and $| = 1 (which is always
1), but sets autoflushing on the now-selected STDERR as a side effect. The first
element of that list (the previously selected filehandle) is now used as an argu-
ment to the outer select. Bizarre, right? That’s what you get for knowing just
enough Lisp to be dangerous.

You can also use the standard SelectSaver module to automatically restore the
previous select on scope exit.

However, now that we’ve explained all that, we should point out that you rarely
need to use this form of select nowadays, because most special variables you
would want to set have object-oriented wrapper methods to do it for you. So
instead of setting $| directly, you might say:

use IO::Handle; # Unfortunately, this is *not* a small module
STDOUT–>autoflush(1);

And the earlier format example might be coded as:

use IO::Handle;
REPORT1–>format_top_name("MyTop");
REPORT2–>format_top_name("MyTop");

936 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

select (ready file descriptors)
select RBITS, WBITS, EBITS, TIMEOUT

The four-argument select operator is totally unrelated to the previously de-
scribed select operator. This operator is used to discover which (if any) of your
file descriptors are ready to do input or output, or to report an exceptional con-
dition. (This helps you avoid having to do polling.) It calls the select(2) syscall
with the bit masks you’ve specified, which you can construct using fileno and
vec, like this:

$rin = $win = $ein = "";
vec($rin, fileno(STDIN), 1) = 1;
vec($win, fileno(STDOUT), 1) = 1;
$ein = $rin | $win;

If you want to select on many filehandles, you might wish to write a subroutine:

sub fhbits {
 my @fhlist = @_;
 my $bits;
 for my $fh (@fhlist) {
 vec($bits, fileno($fh), 1) = 1;
 }
 return $bits;
}
$rin = fhbits(*STDIN, *TTY, *MYSOCK);

Notice we passed in the filehandles using their typeglobs, because passing them
in as strings is a bad idea. If you are using autovivified filehandles, you don’t have
to do this.

If you wish to use the same bit masks repeatedly (and it’s more efficient if you
do), the usual idiom is:

($nfound, $timeleft) =
 select($rout=$rin, $wout=$win, $eout=$ein, $timeout);

Or to block until any file descriptor becomes ready:

$nfound = select($rout=$rin, $wout=$win, $eout=$ein, undef);

As you can see, calling select in scalar context just returns $nfound, the number
of ready descriptors found.

The $wout=$win trick works because the value of an assignment is its left side, so
$wout gets clobbered first by the assignment and then by the select, while $win
remains unchanged.

Any of the arguments can also be undef, in which case they’re ignored. The
TIMEOUT, if not undef, is in seconds, which may be fractional. (A timeout of 0 affects

Perl Functions in Alphabetical Order | 937

www.it-ebooks.info

http://www.it-ebooks.info/

a poll.) Not many implementations are capable of returning $timeleft. If not,
they always return $timeleft equal to the supplied $timeout.

The standard IO::Select module provides a user-friendlier interface to select,
mostly because it does all the bit-mask work for you.

One use for select is to sleep with a finer resolution than sleep allows. To do this,
specify undef for all the bitmasks. So to sleep for (at least) 4.75 seconds, use:

select undef, undef, undef, 4.75;

(On some non-Unix systems the triple undef may not work, and you may need
to fake up at least one bitmask for a valid descriptor that won’t ever be ready.)

These days, importing a special version of sleep from the standard Time::HiRes
module is probably the more portable way to do this:

use Time::HiRes qw(sleep);
sleep 4.75; # not the normal sleep

One should probably not (attempt to) mix buffered I/O (like read or <HANDLE>)
with select, except as permitted by POSIX, and even then only on truly POSIX
systems. Use sysread instead.

semctl
semctl ID, SEMNUM, CMD, ARG

This function calls the System V IPC function semctl(2). You’ll probably have to
say use IPC::SysV first to get the correct constant definitions. If CMD is IPC_STAT
or GETALL, then ARG must be a variable that will hold the returned semid_ds struc-
ture or semaphore value array. As with ioctl and fcntl, return values are undef
for error, “0 but true” for zero, and the actual return value otherwise.

See also the IPC::Semaphore module. This function is available only on machines
supporting System V IPC.

semget
semget KEY, NSEMS, FLAGS

This function calls the System V IPC syscall semget(2). Before calling, you should
use IPC::SysV to get the correct constant definitions. The function returns the
semaphore ID, or undef if there is an error.

See also the IPC::Semaphore module. This function is available only on machines
supporting System V IPC.’

938 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

semop
semop KEY, OPSTRING

This function calls the System V IPC syscall semop(2) to do semaphore operations
such as signalling and waiting. Before calling, you should use IPC::SysV to get
the correct constant definitions.

OPSTRING must be a packed array of semop structures. You can make each semop
structure by saying pack("s*", $semnum, $semop, $semflag). The number of
semaphore operations is implied by the length of OPSTRING. The function returns
true if successful, or false if there is an error.

The following code waits on semaphore $semnum of semaphore id $semid:

$semop = pack "s*", $semnum, –1, 0;
semop($semid, $semop) || die "Semaphore trouble: $!";

To signal the semaphore, simply replace –1 with 1.

See the section “System V IPC” on page 540 in Chapter 15. See also the IPC::
Semaphore module. This function is available only on machines supporting Sys-
tem V IPC.

send
send SOCKET, MSG, FLAGS, TO
send SOCKET, MSG, FLAGS

This function sends a message on a socket. It takes the same flags as the syscall
of the same name—see send(2). On unconnected sockets, you must specify a
destination to send TO, which then makes Perl’s send work like sendto(2). The C
syscall sendmsg(2) is currently unimplemented in standard Perl. The send func-
tion returns the number of characters sent, or undef if there is an error.

Note the characters: depending on the status of the socket, either (8-bit) bytes or
characters are sent. By default, all sockets operate on bytes. But if, for example,
the socket has been changed using binmode to operate with the :encoding(utf8)
I/O layer, then its I/O will operate on UTF-8-encoded Unicode characters, not
bytes.

(Some non-Unix systems improperly treat sockets as different from ordinary file
descriptors, with the result that you must always use send and recv on sockets
rather than the handier standard I/O operators.)

One error that at least one of us makes frequently is to confuse Perl’s send with
C’s send and write:

Perl Functions in Alphabetical Order | 939

www.it-ebooks.info

http://www.it-ebooks.info/

send SOCK, $buffer, length $buffer; # WRONG

This will mysteriously fail depending on the relationship of the string length
to the FLAGS bits expected by the system. See “Message Passing” on page 550 in
Chapter 15 for examples.

setpgrp
setpgrp PID, PGRP

This function sets the current process group (PGRP) for the specified PID (use a
PID of 0 for the current process). Invoking setpgrp will raise an exception if used
on a machine that doesn’t implement setpgrp(2). Beware: some systems will ig-
nore the arguments you provide and always do setpgrp(0, $$). Fortunately,
those are the arguments one usually wants to provide. If the arguments are omit-
ted, they default to 0,0. The BSD 4.2 version of setpgrp did not accept any argu-
ments, but in BSD 4.4, it is a synonym for the setpgid function. For better porta-
bility (by some definition), use the setpgid function in the POSIX module directly.
If what you’re really trying to do is daemonize your script, consider the
POSIX::setsid function as well. Note that the POSIX version of setpgrp does not
accept arguments, so only setpgrp(0,0) is truly portable.

setpriority
setpriority WHICH, WHO, PRIORITY

This function sets the current PRIORITY for a process, a process group, or a user,
as specified by the WHICH and WHO. See setpriority(2). Invoking setpriority will
raise an exception if used on a machine that doesn’t implement setpriority(2). To
“nice” your process down by four units (the same as executing your program
with nice(1)), try:

setpriority 0, 0, getpriority(0, 0) + 4;

The interpretation of a given priority may vary from one operating system to the
next. Some priorities may be unavailable to nonprivileged users.

See also the BSD::Resource module from CPAN.

setsockopt
setsockopt SOCKET, LEVEL, OPTNAME, OPTVAL

This function sets the socket option requested. The function returns undef on
error. The Socket module provides the needed constants for LEVEL and OPNAME,

940 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

although those for LEVEL can all be obtained from getprotobyname. LEVEL specifies
which protocol layer you’re aiming the call at, or SOL_SOCKET for the socket itself
at the top of all the layers. OPTVAL might either be a packed string or an integer.
An integer OPTVAL is shorthand for pack("i", OPTVAL). OPTVAL may be specified
as undef if you don’t want to pass an argument.

One common option to set on a socket is SO_REUSEADDR, which gets around the
problem of not being able to bind to a particular address while the previous TCP
connection on that port is still making up its mind to shut down. That would
look like this:

use Socket;
socket(SOCK, ...) || die "Can't make socket: $!";
setsockopt(SOCK, SOL_SOCKET, SO_REUSEADDR, 1)
 || warn "Can't do setsockopt: $!\n";

Another common option is to disable Nagle’s algorithm on a socket:

use Socket qw(IPPROTO_TCP TCP_NODELAY);
setsockopt($socket, IPPROTO_TCP, TCP_NODELAY, 1);

See setsockopt(2) for other possible values.

shift
shift ARRAY
shift

This function shifts the first value of the array off and returns it, shortening the
array by one and moving everything down. (Or up, or left, depending on how
you visualize the array list. We like left.) If there are no elements in the array, the
function returns undef.

If ARRAY is omitted, the function shifts @_ within the lexical scope of subroutines
and formats; it shifts @ARGV at file scopes (typically the main program) or within
the lexical scopes established by the eval STRING, BEGIN {}, CHECK {}, UNITCHECK
{}, INIT {}, and END {} constructs.

Subroutines often start by copying their arguments into lexical variables, and
shift can be used for this:

sub marine {
 my $fathoms = shift; # depth
 my $fishies = shift; # number of fish
 my $o2 = shift; # oxygen concentration
 # ...
}

shift is also used to process arguments at the front of your program:

Perl Functions in Alphabetical Order | 941

www.it-ebooks.info

http://www.it-ebooks.info/

while (defined($_ = shift)) {
 /^[^–]/ && do { unshift @ARGV, $_; last };
 /^–w/ && do { $WARN = 1; next };
 /^–r/ && do { $RECURSE = 1; next };
 die "Unknown argument $_";
}

You should consider the standard Getopt::Std and Getopt::Long modules for
processing program arguments.

Starting with v5.14, shift can take a reference to an unblessed array, which will
be dereferenced automatically. This aspect of shift is considered experimental.
The exact behavior may change in a future version of Perl.

See also unshift, push, pop, and splice. The shift and unshift functions do the
same thing to the left end of an array that pop and push do to the right end.

shmctl
shmctl ID, CMD, ARG

This function calls the System V IPC syscall, shmctl(2). Before calling, you should
use IPC::SysV to get the correct constant definitions.

If CMD is IPC_STAT, then ARG must be a variable that will hold the returned
shmid_ds structure. Like ioctl and fcntl, the function returns undef for error, “0
but true” for zero, and the actual return value otherwise.

This function is available only on machines supporting System V IPC.

shmget
shmget KEY, SIZE, FLAGS

This function calls the System V IPC syscall, shmget(2). The function returns the
shared memory segment ID, or undef if there is an error. Before calling, use
SysV::IPC.

This function is available only on machines supporting System V IPC.

shmread
shmread ID, VAR, POS, SIZE

This function reads from the shared memory segment ID starting at position
POS for size SIZE (by attaching to it, copying out, and detaching from it). VAR must

942 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

be a variable that will hold the data read. The function returns true if successful,
or false if there is an error.

This function is available only on machines supporting System V IPC.

shmwrite
shmwrite ID, STRING, POS, SIZE

This function writes to the shared memory segment ID starting at position POS
for size SIZE (by attaching to it, copying in, and detaching from it). If STRING is
too long, only SIZE bytes are used; if STRING is too short, nulls are written to fill
out SIZE bytes. The function returns true if successful, or false if there is an error.

This function is available only on machines supporting System V IPC. (You’re
probably tired of reading that—we’re getting tired of saying it.)

shutdown
shutdown SOCKET, HOW

This function shuts down a socket connection in the manner indicated by HOW. If
HOW is 0, further receives are disallowed. If HOW is 1, further sends are disallowed.
If HOW is 2, everything is disallowed.

shutdown(SOCK, 0); # no more reading
shutdown(SOCK, 1); # no more writing
shutdown(SOCK, 2); # no more I/O at all

This is useful with sockets when you want to tell the other side you’re done writing
but not done reading, or vice versa. It’s also a more insistent form of close because
it disables any copies of those file descriptors held in forked processes.

Imagine a server that wants to read its client’s request until end-of-file, then send
an answer. If the client calls close, that socket is now invalid for I/O, so no answer
would ever come back. Instead, the client should use shutdown to half-close the
connection:

say SERVER "my request"; # send some data
shutdown(SERVER, 1); # send eof; no more writing
$answer = <SERVER>; # but you can still read

(If you came here trying to figure out how to shut down your system, you’ll have
to execute an external program to do that. See system.)

Perl Functions in Alphabetical Order | 943

www.it-ebooks.info

http://www.it-ebooks.info/

sin
sin EXPR
sin

Sorry, there’s nothing wicked about this operator. It merely returns the sine of
EXPR (expressed in radians).

For the inverse sine operation, you may use Math::Trig or the POSIX module’s
asin function, or use this relation:

sub asin { atan2($_[0], sqrt(1 – $_[0] * $_[0])) }

sleep
sleep EXPR
sleep

This function causes the script to sleep for EXPR (integer) seconds, or forever if no
EXPR, and returns the number of seconds slept. It may be interrupted by sending
the process a SIGALRM. On some older systems, it may sleep up to a full second
less than what you requested, depending on how it counts seconds. Most modern
systems always sleep the full amount. They may appear to sleep longer than that,
however, because your process might not be scheduled right away in a busy
multitasking system. For delays of finer granularity than one second, the standard
Time::HiRes module provides a usleep function. If available, the select (ready
file descriptors) call can also give you better resolution. You may be able to use
syscall to call the getitimer(2) and setitimer(2) routines that some Unix systems
support. You probably cannot mix alarm and sleep calls because sleep is often
implemented using alarm.

See also the POSIX module’s pause function.

socket
socket SOCKET, DOMAIN, TYPE, PROTOCOL

This function opens a socket of the specified kind and attaches it to filehandle
SOCKET. DOMAIN, TYPE, and PROTOCOL are specified the same as for socket(2). If un-
defined, SOCKET will be autovivified. Before using this function, your program
should contain the line:

use Socket;

This gives you the proper constants. The function returns true if successful. See
the examples in the section “Sockets” on page 543 in Chapter 15.

944 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

On systems that support a close-on-exec flag on files, the flag will be set for the
newly opened file descriptor, as determined by the value of $^F. See the $^F
($SYSTEM_FD_MAX) variable in Chapter 25.

socketpair
socketpair SOCKET1, SOCKET2, DOMAIN, TYPE, PROTOCOL

This function creates an unnamed pair of sockets in the specified domain of the
specified type. DOMAIN, TYPE, and PROTOCOL are specified the same as for socket-
pair(2). You will need to use Socket to get the required constants. If either socket
argument is undefined, it will be autovivified. The function returns true if suc-
cessful, and false otherwise. On a system where socketpair(2) is unimplemented,
calling this function raises an exception.

This function is typically used just before a fork. One of the resulting processes
should close SOCKET1, and the other should close SOCKET2. You can use these sock-
ets bidirectionally, unlike the filehandles created by the pipe function. Some sys-
tems define pipe using socketpair, in which a call to pipe(Rdr, Wtr) is essentially:

use Socket;
socketpair(Rdr, Wtr, AF_UNIX, SOCK_STREAM, PF_UNSPEC);
shutdown(Rdr, 1); # no more writing for reader
shutdown(Wtr, 0); # no more reading for writer

Perl v5.8 and later will emulate socketpair using IP sockets to localhost if your
system implements sockets but not socketpair. On systems that support a close-
on-exec flag on files, the flag will be set for the newly opened file descriptors, as
determined by the value of $^F. See the $^F ($SYSTEM_FD_MAX) variable in Chap-
ter 25. See also the example at the end of the section “Bidirectional Communi-
cation” on page 536 in Chapter 15.

sort
sort USERSUB LIST
sort BLOCK LIST
sort LIST

This function sorts the LIST and returns the sorted list value. Undefined values
sort before defined null strings, which sort before everything else. By default, it
sorts in simple numeric codepoint order (or whatever the cmp operator returns in
case of overloading). For a true lexicographic sort, you must use the Unicode::
Collate module; see “Comparing and Sorting Unicode Text” on page 297 in
Chapter 6. The short story is that the easiest way to get a good alphabetic sort is
like this:

Perl Functions in Alphabetical Order | 945

www.it-ebooks.info

http://www.it-ebooks.info/

use Unicode::Collate;
@alphabetized_list = Unicode::Collate–>new–>sort(@list);

When the locale pragma is in effect, sort LIST sorts LIST according to the current
collation locale. Even if such a locale exists, Perl does not support multibyte
locales, so this is unlikely to do what you want. See instead the Unicode::
Collate::Locale module if you want reliable locale sorting.

USERSUB, if given, is the name of a subroutine that returns an integer less than,
equal to, or greater than 0, depending on how the elements of the list are to be
ordered. (The handy <=> and cmp operators can be used to do three-way numeric
and string comparisons.) If a USERSUB is given but that function is undefined,
sort raises an exception.

In the interests of efficiency, the normal calling code for subroutines is bypassed,
with the following effects: the subroutine may not be a recursive subroutine (nor
may you exit the block or routine with a loop-control operator), and the two
elements to be compared are not passed into the subroutine via @_, but rather by
temporarily setting the global variables $a and $b in the package in which the
sort was compiled (see the examples that follow). The variables $a and $b are
aliases to the real values, so don’t modify them in the subroutine.

The comparison subroutine is required to behave. If it returns inconsistent results
(sometimes saying $x[1] is less than $x[2] and sometimes saying the opposite,
for example), the results are not well defined. (That’s another reason you
shouldn’t modify $a and $b.)

USERSUB may be a scalar variable name (unsubscripted), in which case the value
provides either a symbolic or a hard reference to the actual subroutine to use. (A
symbolic name rather than a hard reference is allowed even when the use strict
'refs' pragma is in effect.) In place of a USERSUB, you can provide a BLOCK as an
anonymous, inline sort subroutine.

To do an ordinary numeric sort, say this:

sub numerically { $a <=> $b }
@sortedbynumber = sort numerically 53,29,11,32,7;

To sort in descending order, you could simply apply reverse after the sort, or you
could reverse the order of $a and $b in the sort routine:

@descending = reverse sort numerically 53,29,11,32,7;

sub reverse_numerically { $b <=> $a }
@descending = sort reverse_numerically 53,29,11,32,7;

To sort ASCII strings by codepoint order except without regard to case, run $a
and $b through lc before comparing:

946 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

@unsorted = qw/sparrow Ostrich LARK catbird blueJAY/;
@sorted = sort { lc($a) cmp lc($b) } @unsorted;

Unlike with ASCII, under Unicode neither lc nor uc works for case canonical-
ization, because the mapping between cases is more complex than those two
functions can express. There are now three cases, not two, and there is no longer
a one-to-one mapping between cases; i.e., some uppercase characters have mul-
tiple lowercase variants and vice versa. To address all this, Perl is expected to
someday support an fc function, named so because it produces a string’s “case-
fold”, which is what the /i pattern modifier uses. Look for fc to appear around
v5.16 or so, perhaps as use feature "fc". If an fc function is available, you can
use that instead of lc in your sort comparisons that use cmp, provided your text
isn’t too fancy and you don’t mind sorting (mostly) by numeric codepoint. If you
don’t have an fc, or to sort text alphabetically instead of by codepoint, see the
section “Comparing and Sorting Unicode Text” on page 297 in Chapter 6.

Sorting hashes by value is a common use of the sort function. For example, if a
%sales_amount hash records department sales, doing a hash lookup in the sort
routine lets hash keys be sorted according to their corresponding values:

sort from highest to lowest department sales
sub bysales { $sales_amount{$b} <=> $sales_amount{$a} }

for $dept (sort bysales keys %sale_amount) {
 say "$dept => $sales_amount{$dept}";
}

You can apply additional levels of sorting by cascading multiple comparisons
using the || or or operators. This works nicely because the comparison operators
conveniently return 0 for equivalence, causing them to fall through to the next
comparison. Here, the hash keys are sorted first by their associated sales amounts
and then by the keys themselves (in case two or more departments have the same
sales amount):

sub by_sales_then_dept {
 $sales_amount{$b} <=> $sales_amount{$a}
 ||
 $a cmp $b
}

for $dept (sort by_sales_then_dept keys %sale_amount) {
 say "$dept => $sales_amount{$dept}";
}

Assume that @recs is an array of hash references, where each hash contains fields
such as FIRSTNAME, LASTNAME, AGE, HEIGHT, and SALARY. The following routine sorts

Perl Functions in Alphabetical Order | 947

www.it-ebooks.info

http://www.it-ebooks.info/

to the front of the list those records for people who are first richer, then taller,
then younger, then less alphabetically challenged:

sub prospects {
 $b–>{SALARY} <=> $a–>{SALARY}
 ||
 $b–>{HEIGHT} <=> $a–>{HEIGHT}
 ||
 $a–>{AGE} <=> $b–>{AGE}
 ||
 $a–>{LASTNAME} cmp $b–>{LASTNAME}
 ||
 $a–>{FIRSTNAME} cmp $b–>{FIRSTNAME}
}

@sorted = sort prospects @recs;

Any useful information that can be derived from $a and $b can serve as the basis
of a comparison in a sort routine. For example, if lines of text are to be sorted
according to specific fields, split could be used within the sort routine to derive
the fields.

@sorted_lines = sort {
 @a_fields = split /:/, $a; # colon–separated fields
 @b_fields = split /:/, $b;

 $a_fields[3] <=> $b_fields[3] # numeric sort on 4th field, then
 ||
 $a_fields[0] cmp $b_fields[0] # string sort on 1st field, then
 ||
 $b_fields[2] <=> $a_fields[2] # reverse numeric sort on 3rd field
 ||
 ... # etc.

} @lines;

However, because sort calls the sort routine many times using different pairings
of values for $a and $b, the previous example will resplit each line more often than
needed.

To avoid the expense of repeated derivations such as the splitting of lines to com-
pare their fields, run the derivation once per value prior to the sort and save the
derived information. Here, anonymous arrays are created to encapsulate each
line along with the results of splitting the line:

@temp = map { [$_, split /:/] } @lines;

Next, the array references are sorted:

@temp = sort {
 @a_fields = @$a[1..$#$a];

948 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

 @b_fields = @$b[1..$#$b];

 $a_fields[3] <=> $b_fields[3] # numeric sort on 4th field, then
 ||
 $a_fields[0] cmp $b_fields[0] # string sort on 1st field, then
 ||
 $b_fields[2] <=> $a_fields[2] # reverse numeric sort on 3rd field
 ||
 ... # etc.

} @temp;

Now that the array references are sorted, the original lines can be retrieved from
the anonymous arrays:

@sorted_lines = map { $_–>[0] } @temp;

Putting it all together, this map-sort-map technique16 can be executed in one
statement:

@sorted_lines = map { $_–>[0] }
 sort {
 $a–>[4] <=> $b–>[4] # beware: indices really
 # appear to start at 1
 ||
 $a–>[1] cmp $b–>[1]
 ||
 $a–>[3] <=> $b–>[3]
 ||
 ...
 }
 map { [$_, split /:/] } @lines;

Do not declare $a and $b as lexical variables (with my). They are package globals
(though they’re exempt from the usual restrictions on globals when you’re using
use strict). You do need to make sure your sort routine is in the same package,
though, or else qualify $a and $b with the package name of the caller.

You can write sort subroutines with the standard argument passing method (and,
not coincidentally, use XS subroutines as sort subroutines), provided you declare
the sort subroutine with a prototype of ($$). And if you do that, then you can in
fact declare $a and $b as lexicals:

sub numerically ($$) {
 my ($a, $b) = @_;
 $a <=> $b;
}

And, someday, when full prototypes are implemented, you’ll just say:

16. Sometimes called the Schwartzian Transform.

Perl Functions in Alphabetical Order | 949

www.it-ebooks.info

http://www.it-ebooks.info/

sub numerically ($a, $b) { $a <=> $b }

and then we’ll be back where we started, more or less.

Perl v5.6 and earlier used a quicksort algorithm to implement sort. That algorithm
was not stable and could go quadratic. (A stable sort preserves the input order of
elements that compare equal. Although quicksort’s runtime is O(N·logN) when
averaged over all arrays of length N, the time can be O(N2), quadratic behavior,
for some inputs.) In the experimental v5.7 release, the quicksort implementation
was replaced with a stable mergesort algorithm whose worst-case behavior is
O(N·logN). But benchmarks indicated that for some inputs, on some platforms,
the original quicksort was faster. Perl v5.8 has a sort pragma for limited control
of the sort. Its rather blunt control of the underlying algorithm may not persist
into future Perls, but the ability to characterize the input or output in imple-
mentation independent ways quite probably will. See the section
“sort” on page 1032 in Chapter 29.

splice
splice ARRAY, OFFSET, LENGTH, LIST
splice ARRAY, OFFSET, LENGTH
splice ARRAY, OFFSET
splice ARRAY

This function removes the elements designated by OFFSET and LENGTH from an
ARRAY, and replaces them with the elements of LIST, if any. If OFFSET is negative,
the function counts backward from the end of the array, but if that would land
before the beginning of the array, an exception is raised. If LENGTH is negative, it
removes the elements from OFFSET onward except for –LENGTH elements at the end
of the array. If both OFFSET and LENGTH are in list context, splice returns the
elements removed from the array. In scalar context, it returns the last element
removed, or undef if there was none. If the number of new elements doesn’t equal
the number of old elements, the array grows or shrinks as necessary, and elements
after the splice change their position correspondingly. If LENGTH is omitted, the
function removes everything from OFFSET onward. If OFFSET is omitted, the array
is cleared as it is read. If both OFFSET and LENGTH are omitted, removes everything.
If OFFSET is past the end of the ARRAY, Perl issues a warning, and splices at the end
of the ARRAY.

The equivalents listed in Table 27-5 hold.

950 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Table 27-5. Splice equivalents for array operations

Direct Method Splice Equivalent

push(@a, $x, $y) splice(@a, @a, 0, $x, $y)

pop(@a) splice(@a, –1)

shift(@a) splice(@a, 0, 1)

unshift(@a, $x, $y) splice(@a, 0, 0, $x, $y)

$a[$x] = $y splice(@a, $x, 1, $y)

(@a, @a = ()) splice(@a)

The splice function is also handy for carving up the argument list passed to a
subroutine. For example, assuming list lengths are passed before lists:

sub list_eq { # compare two list values
 my @a = splice(@_, 0, shift);
 my @b = splice(@_, 0, shift);
 return 0 unless @a == @b; # same length?
 while (@a) {
 return 0 if pop(@a) ne pop(@b);
 }
 return 1;
}
if (list_eq($len, @foo[1..$len], scalar(@bar), @bar)) { ... }

It would be cleaner to use array references for this, however.

Starting with v5.14, splice can take a reference to an unblessed array, which will
be dereferenced automatically. This aspect of splice is considered experimental.
The exact behavior may change in a future version of Perl.

split
split /PATTERN/, EXPR, LIMIT
split /PATTERN/, EXPR
split /PATTERN/
split

This function scans a string given by EXPR for separators, and splits the string into
a list of substrings, returning the resulting list value in list context or the count
of substrings in scalar context.17 The separators are determined by repeated pat-
tern matching, using the regular expression given in PATTERN, so the separators
may be of any size and need not be the same string on every match. (The sepa-

17. Scalar context also causes split to write its result to @_, but this usage is deprecated.

Perl Functions in Alphabetical Order | 951

www.it-ebooks.info

http://www.it-ebooks.info/

rators are not ordinarily returned; exceptions are discussed later in this section.)
If the PATTERN doesn’t match the string at all, split returns the original string as
a single substring. If it matches once, you get two substrings, and so on. You may
supply regular expression modifiers to the PATTERN, like /PATTERN/i, /PATTERN/x,
etc. The //m modifier is assumed when you split on the pattern /^/.

If LIMIT is specified and positive, the function splits into no more than that many
fields (though it may split into fewer if it runs out of separators). If LIMIT is
negative, it is treated as if an arbitrarily large LIMIT has been specified. If LIMIT is
omitted or zero, trailing null fields are stripped from the result (which potential
users of pop would do well to remember). If EXPR is omitted, the function splits
the $_ string. If PATTERN is also omitted or is the literal space, “ ”, the function
splits on whitespace, /\s+/, after skipping any leading whitespace.

A PATTERN of /^/ is secretly treated as if it were /^/m, since it isn’t much use other-
wise.

Strings of any length can be split:

@chars = split //, $word;
@fields = split /:/, $line;
@words = split " ", $paragraph;
@lines = split /^/, $buffer;

Using split to break up a string into a sequence of graphemes is possible, but
using a straight pattern match for this is more straightforward:

@graphs = grep { length } split /(\X)/, $word;
@graphs = $word =~ /\X/g;

A pattern capable of matching either the null string or something longer than the
null string (for instance, a pattern consisting of any single character modified by
a * or ?) will split the value of EXPR into separate characters wherever it matches
the null string between characters; nonnull matches will skip over the matched
separator characters in the usual fashion. (In other words, a pattern won’t match
in one spot more than once, even if it matched with a zero width.) For example:

print join(":" => split / */, "hi there");

produces the output “h:i:t:h:e:r:e”. The space disappears because it matches
as part of the separator. As a trivial case, the null pattern // simply splits into
separate characters, and spaces do not disappear. (For normal pattern matches,
a // pattern would repeat the last successfully matched pattern, but split’s pat-
tern is exempt from that wrinkle.)

The LIMIT parameter splits only part of a string:

my ($login, $passwd, $remainder) = split /:/, $_, 3;

952 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

We encourage you to split to lists of names like this to make your code self-
documenting. (For purposes of error checking, note that $remainder would be
undefined if there were fewer than three fields.) When assigning to a list, if
LIMIT is omitted, Perl supplies a LIMIT one larger than the number of variables in
the list, to avoid unnecessary work. For the split above, LIMIT would have been
4 by default, and $remainder would have received only the third field, not all the
rest of the fields. In time-critical applications, it behooves you not to split into
more fields than you really need. (The trouble with powerful languages is that
they let you be powerfully stupid at times.)

We said earlier that the separators are not returned, but if the PATTERN contains
parentheses, then the substring matched by each pair of parentheses is included
in the resulting list, interspersed with the fields that are ordinarily returned.
Here’s a simple example:

split /([–,])/, "1–10,20";

which produces the list value:

(1, "–", 10, ",", 20)

With more parentheses, a field is returned for each pair, even if some pairs don’t
match, in which case undefined values are returned in those positions. So if you
say:

split /(–)|(,)/, "1–10,20";

you get the value:

(1, "–", undef, 10, undef, ",", 20)

The /PATTERN/ argument may be replaced with an expression to specify patterns
that vary at runtime.

As a special case, if the expression is a single space (“ ”), the function splits on
whitespace just as split with no arguments does. Thus, split(" ") can be used
to emulate awk’s default behavior. In contrast, split(/ /) will give you as many
null initial fields as there are leading spaces. (Other than this special case, if you
supply a string instead of a regular expression, it’ll be interpreted as a regular
expression anyway.) You can use this property to remove leading and trailing
whitespace from a string and to collapse intervening stretches of whitespace into
a single space:

$string = join(" ", split(" ", $string));

The following example splits an RFC 822 message header into a hash containing
$head{Date}, $head{Subject}, and so on. It uses the trick of assigning a list of pairs
to a hash, because separators alternate with separated fields. It uses parentheses

Perl Functions in Alphabetical Order | 953

www.it-ebooks.info

http://www.it-ebooks.info/

to return part of each separator as part of the returned list value. Since the
split pattern is guaranteed to return things in pairs by virtue of containing one
set of parentheses, the hash assignment is guaranteed to receive a list consisting
of key/value pairs, where each key is the name of a header field. (Unfortunately,
this technique loses information for multiple lines with the same key field, such
as Received-By lines. Ah, well)

$header =~ s/\n\s+/ /g; # Merge continuation lines.
%head = ("FRONTSTUFF", split /^(\S*?):\s*/m, $header);

The following example processes the entries in a Unix passwd(5) file. You could
leave out the chomp, in which case $shell would have a newline on the end of it.

open(PASSWD, "/etc/passwd");
while (<PASSWD>) {
 chomp; # remove trailing newline
 ($login, $passwd, $uid, $gid, $gcos, $home, $shell) =
 split /:/;
 ...
}

Here’s how to process each word of each line of each file of input to create a word-
frequency hash.

while (<>) {
 for my $word (split) {
 $count{$word}++;
 }
}

The inverse of split is join, except that join can only join with the same separator
between all fields. To break apart a string with fixed-position fields, use unpack.

sprintf
sprintf FORMAT, LIST

This function returns a string formatted by the usual printf conventions of the
C library function sprintf. See sprintf(3) or printf(3) on your system for an ex-
planation of the general principles. The FORMAT string contains text with embed-
ded field specifiers into which the elements of LIST are substituted, one per field.
For an explanation of the fields, see the section “String Formats” on page 793 in
Chapter 26.

sqrt
sqrt EXPR
sqrt

954 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

This function returns the square root of EXPR. For other roots such as cube roots,
you can use the ** operator to raise something to a fractional power. Don’t try
either of these approaches with negative numbers, as that poses a slightly more
complex problem (and raises an exception). But there’s a standard module to
take care of even that:

use Math::Complex;
print sqrt(–2); # prints 1.4142135623731i

srand
srand EXPR
srand

This function sets the random number seed for the rand operator. If EXPR is omit-
ted, it uses a semirandom value supplied by the kernel (if it supports the /dev/
urandom device) or based on the current time and process ID, among other things.
In either case, starting with v5.14, it returns the seed. It’s usually not necessary
to call srand at all, because if it is not called explicitly, it is called implicitly at the
first use of the rand operator. However, this was not true in versions of Perl before
v5.004 (1997), so if your script needs to run under older Perl versions, it should
call srand.

Frequently called programs (like CGI scripts) that simply use time ^ $$ for a seed
can fall prey to the mathematical property that a^b == (a+1)^(b+1) one-third of
the time. So don’t do that. Use this instead:

srand(time() ^ ($$ + ($$ << 15)));

You’ll need something much more random than the default seed for cryptographic
purposes. On some systems, the /dev/random device is suitable. Otherwise,
checksumming the compressed output of one or more rapidly changing operat-
ing system status programs is the usual method. For example:

srand (time ^ $$ ^ unpack "%32L*", `ps wwaxl | gzip`);

If you’re particularly concerned with this, see the Math::TrulyRandom module in
CPAN.

Do not call srand multiple times in your program unless you know exactly what
you’re doing and why you’re doing it. The point of the function is to “seed” the
rand function so that rand can produce a different sequence each time you run
your program. Just do it once at the top of your program, or you won’t get random
numbers out of rand!

Perl Functions in Alphabetical Order | 955

www.it-ebooks.info

http://www.it-ebooks.info/

stat
stat FILEHANDLE
stat DIRHANDLE
stat EXPR
stat

In scalar context, this function returns a Boolean value that indicates whether the
call succeeded. In list context, it returns a 13-element list giving the statistics for
a file, either the file opened via FILEHANDLE or DIRHANDLE, or named by EXPR. It’s
typically used as follows:

($dev,$ino,$mode,$nlink,$uid,$gid,$rdev,$size,
 $atime,$mtime,$ctime,$blksize,$blocks)
 = stat $filename;

Not all fields are supported on all filesystem types; unsupported fields return 0.
Table 27-6 lists the meanings of the fields.

Table 27-6. Fields returned by stat

Index Field Meaning

0 $dev Device number of filesystem

1 $ino Inode number

2 $mode File mode (type and permissions)

3 $nlink Number of (hard) links to the file

4 $uid Numeric user ID of file’s owner

5 $gid Numeric group ID of file’s designated group

6 $rdev The device identifier (special files only)

7 $size Total size of file, in bytes

8 $atime Last access time in seconds since the epoch

9 $mtime Last modify time in seconds since the epoch

10 $ctime Inode change time (not creation time!) in seconds since the epoch

11 $blksize Preferred blocksize for file system I/O

12 $blocks Actual number of blocks allocated

$dev and $ino, taken together, uniquely identify a file on the same system. The
$blksize and $blocks are likely defined only on BSD-derived filesystems. The
$blocks field (if defined) is reported in 512-byte blocks. The value of
$blocks*512 can differ greatly from $size for files containing unallocated blocks,
or “holes”, which aren’t counted in $blocks.

956 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

If stat is passed the special filehandle consisting of an underline, no actual
stat(2) is done, but the current contents of the stat structure from the last stat,
lstat, or stat-based file test operator (such as –r, –w, and –x) are returned.

Because the mode contains both the file type and its permissions, you should
mask off the file type portion and printf or sprintf using a “%o” if you want to
see the real permissions:

$mode = (stat($filename))[2];
printf "Permissions are %04o\n", $mode & 07777;

The File::stat module provides a convenient, by-name access mechanism:

use File::stat;
$sb = stat($filename);
printf "File is %s, size is %s, perm %04o, mtime %s\n",
 $filename, $sb–>size, $sb–>mode & 07777,
 scalar localtime $sb–>mtime;

You can also import symbolic definitions of the various mode bits from the
Fcntl module.

use Fcntl ':mode';

$mode = (stat($filename))[2];

$user_rwx = ($mode & S_IRWXU) >> 6;
$group_read = ($mode & S_IRGRP) >> 3;
$other_execute = $mode & S_IXOTH;

printf "Permissions are %04o\n", S_IMODE($mode), "\n";

$is_setuid = $mode & S_ISUID;
$is_directory = S_ISDIR($mode);

You could write the last two using the –u and –d operators. See stat(2) for more
details.

Hint: if you need only the size of the file, check out the –s file test operator, which
returns the size in bytes directly. There are also file tests that return the ages of
files in days.

state
state EXPR
state TYPE EXPR
state EXPR : ATTRS
state TYPE EXPR : ATTRS

The state declarator introduces a lexically scoped variable, just as my does. How-
ever, the contents of state variables persist across calls to the same routine; such

Perl Functions in Alphabetical Order | 957

www.it-ebooks.info

http://www.it-ebooks.info/

variables can only be initialized once the first time the scope is entered and will
never be reinitialized, unlike lexical variables, which are reinitialized each time
their enclosing scope is entered.

When a closure is cloned, it is considered a new subroutine, so any state variables
will be initialized in the new clone on first call. State variables are not static in
the sense a C programmer would think of it, unless the routine itself is static.

State variables are enabled only when the use feature "state" pragma is in effect.
See the section “feature” on page 1017 in Chapter 29. Only initialization of scalar
state variables is fully supported at this time, though you may always use a scalar
reference to an array or hash.

study
study SCALAR
study

This function takes extra time to study SCALAR in anticipation of doing many
pattern matches on the string before it is next modified. This may or may not
save time, depending on the nature and number of patterns you are searching
on, and on the distribution of character frequencies in the string to be searched
—you probably want to compare runtimes with and without it to see which runs
faster. Those loops that scan for many short constant strings (including the con-
stant parts of more complex patterns) will benefit most from study. If all your
pattern matches are constant strings anchored at the front, study won’t help at
all because no scanning is done. You may have only one study active at a time—
if you study a different scalar, the first is “unstudied”.

The way study works is this: a linked list of every character in the string to be
searched is made, so we know, for example, where all the “k” characters are. From
each search string, the rarest character is selected, based on some static frequency
tables constructed from some C programs and English text. Only those places
that contain this rarest character are examined.

For example, here is a loop that inserts index-producing entries before any line
containing a certain pattern:

while (<>) {
 study;
 print ".IX foo\n" if /\bfoo\b/;
 print ".IX bar\n" if /\bbar\b/;
 print ".IX blurfl\n" if /\bglarch\b/;
 ...
 print;
}

958 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

In searching for /\bfoo\b/, only locations in $_ that contain “f” will be looked
at, because “f” is rarer than “o”. This is a big win except in pathological cases.
The only question is whether it saves you more time than it took to build the
linked list in the first place.

If you have to look for strings that you don’t know until runtime, you can build
an entire loop as a string and eval that to avoid recompiling all your patterns all
the time. Together with setting $/ to input entire files as one record, this can be
very fast, often faster than specialized programs like fgrep(1). The following scans
a list of files (@files) for a list of words (@words), and prints out the names of those
files that contain a case-insensitive match:

$search = "while (<>) { study;";
for my $word (@words) {
 $search .= "++\$seen{\$ARGV} if /\\b$word\\b/i;\n";
}
$search .= "}";
@ARGV = @files;
undef $/; # slurp each entire file
eval $search; # this screams
die $@ if $@; # in case eval failed
$/ = "\n"; # restore normal input terminator
for my $file (sort keys(%seen)) {
 say $file";
}

Now that we have the qr// operator, complicated runtime evals as seen above are
less necessary. This does the same thing:

@pats = ();
for my $word (@words) {
 push @pats, qr/\b${word}\b/i;
}
@ARGV = @files;
undef $/; # slurp each entire file
while (<>) {
 for $pat (@pats) {
 $seen{$ARGV}++ if /$pat/;
 }
}
$/ = "\n"; # restore normal input terminator
for my $file (sort keys(%seen)) {
 say $file";
}

sub
Named declarations:

Perl Functions in Alphabetical Order | 959

www.it-ebooks.info

http://www.it-ebooks.info/

sub NAME PROTO ATTRS
sub NAME ATTRS
sub NAME PROTO
sub NAME

Named definitions:

sub NAME PROTO ATTRS BLOCK
sub NAME ATTRS BLOCK
sub NAME PROTO BLOCK
sub NAME BLOCK

Unnamed definitions:

sub PROTO ATTRS BLOCK
sub ATTRS BLOCK
sub PROTO BLOCK
sub BLOCK

The syntax of subroutine declarations and definitions looks complicated, but it
is actually pretty simple in practice. Everything is based on the syntax:

sub NAME PROTO ATTRS BLOCK

All four fields are optional; the only restrictions are that the fields that do occur
must occur in that order, and that you must use at least one of NAME or BLOCK. For
the moment, we’ll ignore the PROTO and ATTRS; they’re just modifiers on the basic
syntax. The NAME and the BLOCK are the important parts to get straight:

• If you have just a NAME and no BLOCK, it’s a predeclaration of that name (but if
you ever want to call the subroutine, you’ll have to supply a definition with
both a NAME and a BLOCK later). Named declarations are useful because the
parser treats a name specially if it knows it’s a user-defined subroutine. You
can call such a subroutine either as a function or as an operator, just like
built-in functions. These are sometimes called forward declarations.

• If you have both a NAME and a BLOCK, it’s a standard named subroutine defi-
nition (and a declaration, too, if you didn’t declare the name previously).
Named definitions are useful because the BLOCK associates an actual meaning
(the body of the subroutine) with the declaration. That’s all we mean when
we say it defines the subroutine rather than just declaring it. The definition
is like the declaration, however, in that the surrounding code doesn’t see it,
and it returns no inline value by which you could reference the subroutine.

• If you have just a BLOCK without a NAME, it’s a nameless definition—that is, an
anonymous subroutine. Since it doesn’t have a name, it’s not a declaration
at all, but a real operator that returns a reference to the anonymous subrou-
tine body at runtime. This is extremely useful for treating code as data. It lets
you pass odd chunks of code around to be used as callbacks, and maybe even

960 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

as closures if the sub definition operator refers to any lexical variables outside
of itself. That means that different calls to the same sub operator will do the
bookkeeping necessary to keep the correct “version” of each such lexical
variable in sight for the life of the closure, even if the original scope of the
lexical variable has been destroyed.

In any of these three cases, either one or both of the PROTO and ATTRS may occur
after the NAME, before the BLOCK, or both. A prototype is a list of characters in
parentheses that tell the parser how to treat arguments to the function. Attributes
are introduced by a colon and supply additional information to the parser about
the function. Here’s a typical definition that includes all four fields:

sub numstrcmp ($$) : locked {
 my ($a, $b) = @_;
 return $a <=> $b || $a cmp $b;
}

For details on attribute lists and their manipulation, see the section “at-
tributes” on page 1002 in Chapter 29. See also Chapter 7 and “The anonymous
subroutine composer” on page 344 in Chapter 8.

substr
substr EXPR, OFFSET, LENGTH, REPLACEMENT
substr EXPR, OFFSET, LENGTH
substr EXPR, OFFSET

This function extracts a substring out of the string given by EXPR and returns it.
The substring is extracted starting at OFFSET characters from the front of the string.
If OFFSET is negative, the substring starts that far from the end of the string instead.
If LENGTH is omitted, everything to the end of the string is returned. If LENGTH is
negative, the length is calculated to leave that many characters off the end of the
string. Otherwise, LENGTH indicates the length of the substring to extract, which
is sort of what you’d expect.

Notice we said characters, by which we mean codepoints, not bytes or graphemes.
For bytes, encode into UTF-8 first and try again. For graphemes, use the
substr method from the CPAN Unicode::GCString module.

You may use substr as an lvalue (something to assign to), in which case EXPR must
also be a legal lvalue. If you assign something shorter than the length of your
substring, the string will shrink, and if you assign something longer than the
length, the string will grow to accommodate it. To keep the string the same
length, you may need to pad or chop your value using sprintf or the x operator.

Perl Functions in Alphabetical Order | 961

www.it-ebooks.info

http://www.it-ebooks.info/

If you try to assign to an unallocated area past the end of the string, substr raises
an exception.

To prepend the string “Larry” to the current value of $_, use:

substr($var, 0, 0) = "Larry";

To instead replace the first character of $_ with “Moe”, use:

substr($var, 0, 1) = "Moe";

And, finally, to replace the last character of $var with “Curly”, use:

substr($var, –1) = "Curly";

An alternative to using substr as an lvalue is to specify the REPLACEMENT string as
the fourth argument. This lets you replace parts of the EXPR and return what was
there before in one operation, just as you can with splice. The next example also
replaces the last character of $var with “Curly” and puts that replaced character
into $oldstr:

$oldstr = substr($var, –1, 1, "Curly");

You don’t have to use lvalue substr only with assignment. This replaces any spaces
with dots, but only in the last 10 characters in the string:

substr($var, –10) =~ s/ /./g;

Note that we keep talking about characters. As elsewhere in this book, we mean
codepoints, the programmer view of characters, and not graphemes, the user
view of characters; graphemes can and often do span multiple codepoints. The
CPAN Unicode::GCString module provides replacement functions for substr,
index, pos, and many others, so you operate on your strings in logical glyphs
instead of in fiddly little codepoints.

If you were going to use substr instead of regexes because you think that surely
substr must be faster, you might be surprised. Often, regexes are faster than
substr, even for fixed-width fields.

symlink
symlink OLDNAME, NEWNAME

This function creates a new filename symbolically linked to the old filename. The
function returns true for success, and false otherwise. On systems that don’t
support symbolic links, it raises an exception at runtime. To check for that, use
eval to trap the potential error:

$can_symlink = eval { symlink("",""); 1 };

962 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Or use the Config module. Be careful if you supply a relative symbolic link, since
it’ll be interpreted relative to the location of the symbolic link itself, not to your
current working directory.

See also link and readlink earlier in this chapter.

syscall
syscall LIST

This function calls the system call (meaning a syscall, not a shell command)
specified as the first element of the list passes the remaining elements as argu-
ments to the system call. (Many of these calls are now more readily available
through modules like POSIX.) The function raises an exception if syscall(2) is
unimplemented.

The arguments are interpreted as follows: if a given argument is numeric, the
argument is passed as a C integer. If not, a pointer to the string value is passed.
You are responsible for making sure the string is long enough to receive any result
that might be written into it; otherwise, you’re looking at a core dump. You can’t
use a string literal (or other read-only string) as an argument to syscall because
Perl has to assume that any string pointer might be written through. If your
integer arguments are not literals and have never been interpreted in a numeric
context, you may need to add 0 to them to force them to look like numbers.

syscall returns whatever value was returned by the system call invoked. By C
coding conventions, if that system call fails, syscall returns –1 and sets $! (errno).
Some system calls legitimately return –1 if successful. The proper way to handle
such calls is to assign $!=0 before the call, and check the value of $! if syscall
returns –1.

Not all system calls can be accessed this way. For example, Perl supports passing
up to 14 arguments to your system call, which in practice should usually suffice.
However, there’s a problem with syscalls that return multiple values. Consider
syscall(&SYS_pipe): it returns the file number of the read end of the pipe it creates.
There is no way to retrieve the file number of the other end. You can avoid this
instance of the problem by using pipe instead. To solve the generic problem, write
XSUBs (external subroutine modules, a dialect of C) to access the system calls
directly. Then put your new module onto CPAN and become wildly popular.

The following subroutine returns the current time as a floating-point number
rather than as integer seconds as time returns. (It will only work on machines that
support the gettimeofday(2) syscall.)

Perl Functions in Alphabetical Order | 963

www.it-ebooks.info

http://www.it-ebooks.info/

sub finetime() {
 package main; # for next require
 require "syscall.ph";
 # presize buffer to two 32–bit longs...
 my $tv = pack("LL", ());
 syscall(&SYS_gettimeofday, $tv, undef) >= 0
 || die "gettimeofday: $!";
 my($seconds, $microseconds) = unpack("LL", $tv);
 return $seconds + ($microseconds / 1_000_000);
}

Suppose Perl didn’t support the setgroups(2) syscall,18 but your kernel did. You
could still get at it this way:

require "syscall.ph";
syscall(&SYS_setgroups, scalar @newgids, pack("i*", @newgids))
 || die "setgroups: $!";

You may have to run h2ph as indicated in the Perl installation instructions for
syscall.ph to exist. Some systems may require a pack template of “II” instead. Even
more disturbing, syscall assumes the size equivalence of the C types int, long,
and char*. Try not to think of syscall as the epitome of portability.

See the Time::HiRes module from CPAN for a more rigorous approach to fine-
grained timing issues.

sysopen
sysopen FILEHANDLE, FILENAME, MODE, MASK
sysopen FILEHANDLE, FILENAME, MODE

The sysopen function opens the file whose filename is given by FILENAME and
associates it with FILEHANDLE. If FILEHANDLE is an expression, its value is used as
the name of, or reference to, the filehandle. If FILEHANDLE is a variable whose value
is undefined, a value will be created for you. The return value is true if the call
succeeds, and false otherwise.

This function is a direct interface to your operating system’s open(2) syscall fol-
lowed by an fdopen(3) library call. As such, you’ll need to pretend you’re a C
programmer for a bit here. The possible values and flag bits of the MODE parameter
are available through the Fcntl module. Because different systems support dif-
ferent flags, don’t count on all of them being available on your system. Consult
your open(2) manpage or its local equivalent for details. Nevertheless, the flags
listed in Table 27-7 should be present on any system with a reasonably standard
C library.

18. Although through $(, it does.

964 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Table 27-7. Flags for sysopen

Flag Meaning

O_RDONLY Read only.

O_WRONLY Write only.

O_RDWR Read and write.

O_CREAT Create the file if it doesn’t exist.

O_EXCL Fail if the file already exists.

O_APPEND Append to the file.

O_TRUNC Truncate the file.

O_NONBLOCK Nonblocking access.

Many other options are possible, however. Table 27-8 lists some less common
flags.

Table 27-8. Less common flags for sysopen

Flag Meaning

O_NDELAY Old synonym for O_NONBLOCK.

O_SYNC Writes block until data is physically written to the underlying hardware.
O_ASYNC, O_DSYNC, and O_RSYNC may also be seen.

O_EXLOCK flock with LOCK_EX (advisory only).

O_SHLOCK flock with LOCK_SH (advisory only).

O_DIRECTORY Fail if the file is not a directory.

O_NOFOLLOW Fail if the last path component is a symbolic link.

O_BINARY binmode the handle for Microsoft systems. An O_TEXT may also some-
times exist to get the opposite behavior.

O_LARGEFILE Some systems need this for files over 2 GB.

O_NOCTTY Opening a terminal file won’t make that terminal become the process’s
controlling terminal if you don’t have one yet. Usually no longer
needed.

The O_EXCL flag is not for locking: here, exclusiveness means that if the file already
exists, sysopen fails.

If the file named by FILENAME does not exist and the MODE includes the O_CREAT
flag, then sysopen creates the file with initial permissions determined by the
MASK argument (or 0666 if omitted), as modified by your process’s current umask.
This default is reasonable: see the umask entry for an explanation.

Perl Functions in Alphabetical Order | 965

www.it-ebooks.info

http://www.it-ebooks.info/

Filehandles opened with open and sysopen may be used interchangeably. You do
not need to use sysread and friends just because you happened to open the file
with sysopen, nor are you precluded from doing so if you opened it with open.
Each can do things that the other can’t. Regular open can open pipes, fork pro-
cesses, set layers, duplicate file handles, and convert a file descriptor number into
a filehandle. It also ignores leading and trailing whitespace in filenames and re-
spects “–” as a special filename. But when it comes to opening actual files,
sysopen can do anything that open can.

The following examples show equivalent calls to both functions. We omit the or
die $! checks for clarity, but make sure to always check return values in your
programs. We’ll restrict ourselves to using only flags available on virtually all
operating systems. It’s just a matter of controlling the values that you OR together
using the bitwise | operator to pass in MODE argument.

• Open a file for reading:

open(FH, "<", $path);
sysopen(FH, $path, O_RDONLY);

• Open a file for writing, creating a new file if needed, or truncating an old file:

open(FH, ">", $path);
sysopen(FH, $path, O_WRONLY | O_TRUNC | O_CREAT);

• Open a file for appending, creating one if necessary:

open(FH, ">>", $path);
sysopen(FH, $path, O_WRONLY | O_APPEND | O_CREAT);

• Open a file for update, where the file must already exist:

open(FH, "+<", $path);
sysopen(FH, $path, O_RDWR);

And here are things you can do with sysopen but not with regular open:

• Open and create a file for writing, which must not previously exist:

sysopen(FH, $path, O_WRONLY | O_EXCL | O_CREAT);

• Open a file for appending, which must already exist:

sysopen(FH, $path, O_WRONLY | O_APPEND);

• Open a file for update, creating a new file if necessary:

sysopen(FH, $path, O_RDWR | O_CREAT);

• Open a file for update, which must not already exist:

sysopen(FH, $path, O_RDWR | O_EXCL | O_CREAT);

• Open a write-only file without blocking, but not creating it if it doesn’t exist:

966 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

sysopen(FH, $path, O_WRONLY | O_NONBLOCK);

The IO::File module provides a set of object-oriented synonyms (plus a small
bit of new functionality) for opening files. You are welcome to call the appro-
priate IO::File or IO::Handle methods on any handle created with open, sysopen,
pipe, socket, or accept, even if you didn’t use the module to initialize those han-
dles. In fact, Perl will now load those modules implicitly as needed to make sure
those methods are available to you.

sysread
sysread FILEHANDLE, SCALAR, LENGTH, OFFSET
sysread FILEHANDLE, SCALAR, LENGTH

This function tries to read LENGTH characters of data into variable SCALAR from the
specified FILEHANDLE using a low-level syscall, read(2). The function returns the
number of characters read, or 0 at EOF.19 The sysread function returns undef on
error. SCALAR will grow or shrink to the length actually read. The OFFSET, if speci-
fied, says where in the string to start putting the characters so that you can read
into the middle of a string that’s being used as a buffer. For an example of using
OFFSET, see syswrite. An exception is raised if LENGTH is negative or if OFFSET points
outside the string.

If the filehandle has no encoding layer, then the characters read in are no larger
than 255, so they are effectively bytes.

Be prepared to handle the problems (like interrupted syscalls) that standard
I/O normally handles for you. Because it bypasses standard I/O, do not mix
sysread with other kinds of reads, print, printf, write, seek, tell, or eof on the
same filehandle unless you are into heavy wizardry (and/or pain). Also, when
reading characters from a file containing UTF-8, UTF-16, or any other multibyte
encoding, the buffer boundary may fall in the middle of a character. It is therefore
best to set the encoding and read characters instead of bytes.

Note that if the filehandle has been marked as :utf8, Unicode characters are read
instead of bytes (LENGTH, OFFSET, and the return value of sysread are in Unicode
characters). The :encoding(...) layer implicitly introduces the :utf8 layer.

19. There is no syseof function, which is okay, since eof doesn’t work well on device files (like terminals)
anyway. Use sysread and check for a return value of 0 to decide whether you’re done.

Perl Functions in Alphabetical Order | 967

www.it-ebooks.info

http://www.it-ebooks.info/

sysseek
sysseek FILEHANDLE, POSITION, WHENCE

This function sets FILEHANDLE’s system position using the syscall lseek(2). It by-
passes standard I/O, so mixing this with reads (other than sysread), print, write,
seek, tell, or eof may (and probably shall) cause confusion. FILEHANDLE may be
an expression whose value gives the name of the filehandle. The values for
WHENCE are 0 to set the new position to POSITION bytes into the file, 1 to set it to
the current position plus POSITION, and 2 to set it to EOF plus POSITION bytes
(typically negative). For WHENCE, you may use the constants SEEK_SET, SEEK_CUR,
and SEEK_END from the standard IO::Seekable and POSIX modules, or from the
Fcntl module, which is more portable and convenient.

This function returns the new position in bytes, or undef on failure. A position
of zero is returned as the special string “0 but true”, which can be used numer-
ically without producing warnings or having to mess around with // die instead
of the more customary || die.

Warning: POSITION is in bytes not characters, no matter whether there should
happen to be any encoding layer on the filehandle. However, all functions in Perl
that read from files do go through any encoding layer, and you can therefore read
a partial “character” and wind up with an invalid Perl string. Avoid mixing calls
to sysseek or seek with I/O functions on filehandle with a multibyte encoding
layer.

system
system PATHNAME LIST
system LIST

This function executes any program on the system for you and returns that pro-
gram’s exit status—not its output. To capture the output from a command, use
backticks or qx// instead. The system function works exactly like exec, except that
system does a fork first and then, after the exec, waits for the executed program
to complete. That is, it runs the program for you and returns when it’s done,
whereas exec replaces your running program with the new one, so it never returns
if the replacement succeeds.

Argument processing varies depending on the number of arguments, as described
under exec, including determining whether the shell will be called and whether
you’ve lied to the program about its name by specifying a separate PATHNAME.

968 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

Because system and backticks block SIGINT and SIGQUIT, sending one of those
signals (such as from a Control-C) to the program being run doesn’t interrupt
your main program. But the other program you’re running does get the signal.
Check the return value from system to see whether the program you were running
exited properly.

@args = ("command", "arg1", "arg2");
system(@args) == 0
 || die "system @args failed: $?"

The return value is the exit status of the program as returned through the
wait(2) syscall. Under traditional semantics, to get the real exit value, divide by
256 or shift right by 8 bits. That’s because the lower byte has something else in
it. (Two somethings, really.) The lowest seven bits indicate the signal number
that killed the process (if any), and the eighth bit indicates whether the process
dumped core. You can check all failure possibilities, including signals and core
dumps, by inspecting $? ($CHILD_ERROR):

$exit_value = $? >> 8;
$signal_num = $? & 127; # or 0x7f, or 0177, or 0b0111_1111
$dumped_core = $? & 128; # or 0x80, or 0200, or 0b1000_0000

If the program has to be run via the system shell20 because you had only one
argument and that argument had shell metacharacters in it, normal return codes
are subject to that shell’s additional quirks and capabilities. In other words, under
those circumstances, you may be unable to recover the detailed information de-
scribed earlier.

syswrite
syswrite FILEHANDLE, SCALAR, LENGTH, OFFSET
syswrite FILEHANDLE, SCALAR, LENGTH
syswrite FILEHANDLE, SCALAR

This function tries to write LENGTH bytes of data from variable SCALAR to the speci-
fied FILEHANDLE using the write(2) syscall. The function returns the number of
bytes written, or undef on error. The OFFSET, if specified, says from where in the
string to start writing. (You might do this if you were using the string as a buffer,
for instance, or if you needed to recover from a partial write.) A negative OFF
SET specifies that writing should start that many bytes backward from the end of
the string. If SCALAR is empty, the only OFFSET permitted is 0. An exception is raised
if LENGTH is negative or if OFFSET points outside the string.

20. That’s /bin/sh by definition, or whatever makes sense on your platform, but not whatever shell the user
just happens to be using at the time.

Perl Functions in Alphabetical Order | 969

www.it-ebooks.info

http://www.it-ebooks.info/

To copy data from filehandle FROM into filehandle TO, you can use something like:

use Errno qw/EINTR/;
$blksize = (stat FROM)[11] || 16384; # preferred block size?
while ($len = sysread FROM, $buf, $blksize) {
 if (!defined $len) {
 next if $! == EINTR;
 die "System read error: $!";
 }
 $offset = 0;
 while ($len) { # Handle partial writes
 $written = syswrite TO, $buf, $len, $offset;
 die "System write error: $!" unless defined $written;
 $offset += $written;
 $len –= $written;
 }
}

You must be prepared to handle the problems that standard I/O normally handles
for you, such as partial writes. Because syswrite bypasses the C standard I/O
library, do not mix calls to it with reads (other than sysread), writes (like print,
printf, or write), or other stdio functions like seek, tell, or eof unless you are
into heavy wizardry.21

If the filehandle is marked :utf8, Unicode characters encoded in UTF-8 are writ-
ten instead of bytes, and the LENGTH, OFFSET, and return value of syswrite are in
(UTF-8-encoded Unicode) characters. The :encoding(...) layer implicitly intro-
duces the :utf8 layer.

tell
tell FILEHANDLE
tell

This function returns the current file position (in bytes, zero-based) for FILEHAN
DLE. Typically, this value will be fed to the seek function at some future time to
get back to the current position. FILEHANDLE may be an expression giving the name
of the actual filehandle or a reference to a filehandle object. If FILEHANDLE is
omitted, the function returns the position of the file last read. File positions are
meaningful only on regular files. Devices, pipes, and sockets have no file position.

Note the in bytes: even if the filehandle has been set to operate on characters (for
example, by using the :encoding(utf8) open layer), tell still always returns byte
offsets, not character offsets (because that would render seek and tell rather
slow).

21. Or pain.

970 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

There is no systell function. Use sysseek(FH, 0, 1) for that. Seek seek for an
example telling how to use tell.

Do not use tell (or other buffered I/O operations) on a filehandle that has been
manipulated by sysread, syswrite, or sysseek. Those functions ignore the buffer-
ing, while tell does not.

telldir
telldir DIRHANDLE

This function returns the current position of the readdir routines on DIRHANDLE.
This value may be given to seekdir to access a particular location in a directory.
The function has the same caveats about possible directory compaction as the
corresponding system library routine. This function might not be implemented
everywhere that readdir is. Even if it is, no calculation may be done with the
return value. It’s just an opaque value, meaningful only to seekdir.

tie
tie VARIABLE, CLASSNAME, LIST

This function binds a variable to a package class that will provide the implemen-
tation for the variable. VARIABLE is the variable (scalar, array, or hash) or typeglob
(representing a filehandle) to be tied. CLASSNAME is the name of a class imple-
menting objects of an appropriate type.

Any additional arguments are passed to the appropriate constructor method of
the class, meaning one of TIESCALAR, TIEARRAY, TIEHASH, or TIEHANDLE. (If the ap-
propriate method is not found, an exception is raised.) Typically, these are ar-
guments such as might be passed to the dbm_open(3) function of C, but their
meaning is package dependent. The object returned by the constructor is in turn
returned by the tie function, which can be useful if you want to access other
methods in CLASSNAME. (The object can also be accessed through the tied func-
tion.) So a class for tying a hash to an I SAM implementation might provide an
extra method to traverse a set of keys sequentially (the “S” of I SAM), since your
typical DBM implementation can’t do that.

Functions such as keys and values may return huge list values when used on large
objects like DBM files. You may prefer to use the each function to iterate over
such. For example:

Perl Functions in Alphabetical Order | 971

www.it-ebooks.info

http://www.it-ebooks.info/

use NDBM_File;
tie(%ALIASES, "NDBM_File", "/etc/aliases", 1, 0)
 || die "Can't open aliases: $!";
while (($key,$val) = each %ALIASES) {
 say "$key = $val";
}
untie %ALIASES;

A class implementing a hash should provide the following methods:

TIEHASH CLASS, LIST
FETCH SELF, KEY
STORE SELF, KEY, VALUE
DELETE SELF, KEY
CLEAR SELF
EXISTS SELF, KEY
FIRSTKEY SELF
NEXTKEY SELF, LASTKEY
SCALAR SELF
DESTROY SELF
UNTIE SELF

A class implementing an array should provide the following methods:

TIEARRAY CLASS, LIST
FETCH SELF, KEY
STORE SELF, KEY, VALUE
FETCHSIZE SELF
STORESIZE SELF, COUNT
CLEAR SELF
PUSH SELF, LIST
POP SELF
SHIFT SELF
UNSHIFT SELF, LIST
SPLICE SELF, OFFSET, LENGTH, LIST
EXTEND SELF, COUNT
DESTROY SELF
UNTIE SELF

A class implementing a scalar should provide the following methods:

TIESCALAR CLASS, LIST
FETCH SELF,
STORE SELF, VALUE
DESTROY SELF
UNTIE SELF

A class implementing a filehandle should provide the following methods:

TIEHANDLE CLASS, LIST
READ SELF, SCALAR, LENGTH, OFFSET
READLINE SELF
GETC SELF
WRITE SELF, SCALAR, LENGTH, OFFSET

972 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

PRINT SELF, LIST
PRINTF SELF, FORMAT, LIST
BINMODE SELF
EOF SELF
FILENO SELF
SEEK SELF, POSITION, WHENCE
TELL SELF
OPEN SELF, MODE, LIST
CLOSE SELF
DESTROY SELF
UNTIE SELF

Not all methods indicated above need to be implemented: the Tie::Hash,
Tie::Array, Tie::Scalar, and Tie::Handle modules provide base classes that have
reasonable defaults. See Chapter 14 for a detailed discussion of these methods.
Unlike dbmopen, the tie function will not use or require a module for you—you
need to do that explicitly yourself. See the DB_File and Config modules for in-
teresting tie implementations.

tied
tied VARIABLE

This function returns a reference to the object underlying the scalar, array, hash,
or typeglob contained in VARIABLE (the same value that was originally returned
by the tie call that bound the variable to a package). It returns the undefined
value if VARIABLE isn’t tied to a package. So, for example, you can use:

ref tied %hash

to find out to which package your hash is tied. (Presuming you’ve forgotten.)

time
time

This function returns the number of nonleap seconds since “the epoch”, tradi-
tionally 00:00:00 on January 1, 1970, UTC.22 The returned value is suitable for
feeding to gmtime and localtime, for comparison with file modification and access
times returned by stat, and for feeding to utime.

$start = time();
system("some slow command");
$end = time();
if ($end – $start > 1) {

22. Not to be confused with the “epic”, which is about the making of Unix. (Other operating systems may
have a different epoch, not to mention a different epic.)

Perl Functions in Alphabetical Order | 973

www.it-ebooks.info

http://www.it-ebooks.info/

 say "Program started: ", scalar localtime($start);
 say "Program ended: ", scalar localtime($end);
}

For measuring time in finer granularity than integer seconds, use the
Time::HiRes module, included with Perl since the v5.8 release and available from
CPAN earlier than that.

times
times

In list context, this function returns a four-element list giving the user and system
CPU times, in seconds (probably fractional), for this process and terminated
children of this process.

($user, $system, $cuser, $csystem) = times();
printf "This pid and its kids have consumed %.3f seconds\n",
 $user + $system + $cuser + $csystem;

In scalar context, returns just the user time. For example, to time the execution
speed of a section of Perl code:

$start = times();
...
$end = times();
printf "that took %.2f CPU seconds of user time\n",
 $end – $start;

tr///
tr///
y///

This is the transliteration (sometimes erroneously called translation) operator,
which is like the y/// operator in the Unix sed program, only better, in everybody’s
humble opinion. See Chapter 5.

To use with a read-only value without raising an exception, use the /r modifier,
first available in v5.14.

say "bookkeeper" =~ tr/boep/peob/r; # prints "peekkoobor"

truncate
truncate FILEHANDLE, LENGTH
truncate EXPR, LENGTH

974 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

This function truncates the file opened on FILEHANDLE, or named by EXPR, to the
specified length in bytes, not characters. The function raises an exception if
ftruncate(2) or an equivalent isn’t implemented on your system. (You can always
truncate a file by copying the front of it, if you have the disk space.) The function
returns true on success, and undef otherwise.

The behavior is undefined if LENGTH is greater than the current file length. How-
ever, on traditional Unix filesystems, it sets the length of the file past the old end,
and the kernel returns an intervening, never-written-to data as all zero bytes.

The position in the file of FILEHANDLE is left unchanged. You may wish to call
seek before writing to the file after calling truncate on it.

uc
uc EXPR
uc

This function returns an uppercased version of EXPR. This is the internal function
implementing the \U escape in interpolated strings. For titlecase, use ucfirst in-
stead.

Do not use uc for case-insensitive comparisons the way you may have once done
in ASCII, because it gives the wrong answer for Unicode. Instead, use the fc
(foldcase) function, either from the CPAN Unicode::CaseFold module or via
use feature "fc" in v5.16 or later. See the section “A Case of Mistaken Iden-
tity” on page 287 in Chapter 6 for more information.

Codepoints in the 128–256 range are ignored by uc if the string does not have
Unicode semantics (and locale mode is not in effect), which can be difficult to
guess. The unicode_strings feature guarantees Unicode semantics even on those
codepoints. See Chapter 6.

ucfirst
ucfirst EXPR
ucfirst

This function returns a version of EXPR with the first character titlecased and other
characters left alone. Titlecase is “Unicodese” for an initial capital that has (or
expects to have) lowercase characters following it, not uppercase ones. Examples
are the first letter of a sentence, of a person’s name, of a newspaper headline, or
of most words in a title. Characters with no titlecase mapping return the upper-
case mapping instead. This is the internal function implementing the \u escape
in double-quoted strings.

Perl Functions in Alphabetical Order | 975

www.it-ebooks.info

http://www.it-ebooks.info/

For example, if someone used U+FB02 LATIN SMALL LIGATURE FL at the start of
“flower” (that is, "\x{FB02}ower"), and you want to use it as the first word of a
sentence, its titlecase mapping is “Flower”, not “FLower”. Its uppercase is still
“FLOWER”, though.

To capitalize a string by mapping its first character to titlecase and the rest to
lowercase, use:

ucfirst(substr($word, 0, 1)) . lc(substr($word, 1))

Do not (unless you’re into cultural imperialism) use:

ucfirst lc $word

or "\u\L$word", because that can produce a different and incorrect answer with
certain characters. The titlecase of something that’s been lowercased doesn’t
always produce the same thing titlecasing the original produces.

Because titlecasing only makes sense at the start of a string that’s followed by
lowercase characters, we can’t think of any reason you might want to titlecase
every character in a string. But here’s how to do that anyway, just in case:

$string =~ s/ ((?= \p{CWT}) \X) /\u$1/gx;

The full name of the shortcut CWT property we used there is Changes_When_Title
cased=True, but that’s much too long to type, and the official abbreviation works
perfectly well.

See uc regarding the unicode_strings feature.

umask
umask EXPR
umask

This function sets the umask for the process and returns the old one using the
umask(2) syscall. Your umask tells the operating system which permission bits to
disallow when creating a new file, including files that happen to be directories. If
EXPR is omitted, the function merely returns the current umask. For example, to
ensure that the “user” bits are allowed and the “other” bits disallowed, try some-
thing like:

umask((umask() & 077) | 7); # don't change the group bits

Remember that a umask is a number, usually given in octal; it is not a string of
octal digits. See also oct, if all you have is a string. Remember also that the umask’s
bits are complemented compared to ordinary permissions.

976 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

The Unix permission rwxr–x––– is represented as three sets of three bits, or three
octal digits: 0750 (the leading 0 indicates octal and doesn’t count as one of the
three digits). Since the umask’s bits are flipped, it represents disabled permissions
bits. The permission (or “mode”) values you supply to mkdir or sysopen are
modified by your umask, so even if you tell sysopen to create a file with permis-
sions 0777, if your umask is 0022, the file is created with permissions 0755. If your
umask were 0027 (group can’t write; others can’t read, write, or execute), then pass-
ing sysopen a MASK of 0666 would create a file with mode 0640 (since 0666 &
~0027 is 0640).

Here’s some advice: supply a creation mode of 0666 for regular files (in sysopen)
and one of 0777 both for directories (in mkdir) and for executable files. This gives
users the freedom of choice: if they want protected files, they choose process
umasks of 022, 027, or even the particularly antisocial mask of 077. Programs
should rarely if ever make policy decisions better left to the user. The exception
to this rule is programs that write files that should be kept private: mail files, web
browser cookies, .rhosts files, and so on.

If umask(2) is not implemented on your system and you are trying to restrict your
own access (that is, if (EXPR & 0700) > 0), you’ll trigger a runtime exception. If
umask(2) is not implemented and you are not trying to restrict your own access,
the function simply returns undef.

undef
undef EXPR
undef

undef is the name by which we refer to the abstraction known as “the undefined
value”. Conveniently, it also happens to be the name of a function that always
returns the undefined value. We happily confuse the two.23

Coincidentally, the undef function can also explicitly undefine an entity if you
supply its name as an argument. The EXPR argument, if specified, must be an
lvalue. Hence, you may only use this on a scalar value, an entire array or hash, a
subroutine name (using the & prefix), or a typeglob. Any storage associated with
the object will be recovered for reuse (though not returned to the system, for
most operating systems). The undef function will probably not do what you ex-
pect on most special variables. Using it on a read-only variable like $1 raises an
exception.

23. On the other hand, Perl 6 happily chooses to unconfuse undef and confuse other things instead.

Perl Functions in Alphabetical Order | 977

www.it-ebooks.info

http://www.it-ebooks.info/

The undef function is a unary operator, not a list operator, so you can only un-
define one thing at a time. Here are some uses of undef as a unary operator:

undef $foo;
undef $bar{"blurfl"}; # Different from delete $bar{"blurfl"};
undef @ary;
undef %hash;
undef &mysub;
undef *xyz; # destroys $xyz, @xyz, %xyz, &xyz, etc.

Without an argument, undef is just used for its value:

select(undef, undef, undef, $naptime);

return (wantarray ? () : undef) if $they_blew_it;
return if $they_blew_it; # same thing

You may use undef as a placeholder on the left side of a list assignment, in which
case the corresponding value from the right side is simply discarded. Apart from
that, you may not use undef as an lvalue.

($a, $b, undef, $c) = &foo; # Ignore third value returned

Also, do not try to compare anything to undef—it doesn’t do what you think. All
it does is compare against 0 or the null string. Use the defined function or
the // operator to test whether a value is defined.

unlink
unlink LIST
unlink

This function deletes a list of files.24 The function returns the number of filenames
successfully deleted. Here are some examples:

$count = unlink("a", "b", "c");
unlink @goners;
unlink glob("*.orig");

The unlink function will not delete directories unless you are the superuser and
the supply –U command-line option to Perl. Even if these conditions are met, be
warned that unlinking a directory can inflict Serious Damage on your filesystem.
Use rmdir instead.

Here’s a simple rm command with very simple error checking:

24. Actually, under a POSIX filesystem, it removes the directory entries (filenames) that refer to the real files.
Since a file may be referenced (linked) from more than one directory, the file isn’t removed until the last
reference to it is removed.

978 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

#!/usr/bin/perl
@cannot = grep {not unlink} @ARGV;
die "$0: could not unlink all of @cannot" if @cannot;

unpack
unpack TEMPLATE, EXPR

This function does the reverse of pack: it expands a string (EXPR) representing a
data structure into a list of values according to the TEMPLATE and returns those
values. Templates for pack and unpack are described in Chapter 26.

unshift
unshift ARRAY, LIST

This function does the opposite of shift. (Or the opposite of push, depending on
how you look at it.) It prepends LIST to the front of the array and returns the new
number of elements in the array:

unshift(@ARGV, "–e", $cmd) unless $ARGV[0] =~ /^–/;

Note the LIST is prepended whole, not one element at a time, so the prepended
elements stay in the same order. Use reverse to do the reverse.

Starting with v5.14, unshift can take a reference to an unblessed array, which will
be dereferenced automatically. This aspect of unshift is considered experimental.
The exact behavior may change in a future version of Perl.

untie
untie VARIABLE

Breaks the binding between the variable or typeglob contained in VARIABLE and
the package that it’s tied to. See tie, and all of Chapter 14, but especially the
section “A Subtle Untying Trap” on page 510.

use
use MODULE VERSION LIST
use MODULE VERSION ()
use MODULE VERSION
use MODULE LIST
use MODULE ()
use MODULE
use VERSION

Perl Functions in Alphabetical Order | 979

www.it-ebooks.info

http://www.it-ebooks.info/

The use declaration loads in a module, if it hasn’t been loaded before, and imports
subroutines and variables into the current package from the named module.
(Technically speaking, it imports some semantics into the current package from
the named module, generally by aliasing certain subroutine or variable names
into your package.) Most use declarations look like this:

use MODULE LIST;

That is exactly equivalent to saying:

BEGIN { require MODULE; import MODULE LIST }

The BEGIN forces the require and import to happen at compile time. The
require makes sure the module is loaded into memory if it hasn’t been yet. The
import is not a built-in—it’s just an ordinary class method call into the package
named by MODULE to tell that module to pull the list of features back into the current
package. The module can implement its import method any way it likes, though
most modules just choose to derive their import method via inheritance from the
Exporter class that is defined in the Exporter module. See Chapter 11 and the
Exporter module for more information. If no import method can be found, then
the call is skipped without murmur.

If you don’t want your namespace altered, supply an empty list explicitly:

use MODULE ();

That is exactly equivalent to the following:

BEGIN { require MODULE }

If the first argument to use is a version number like v5.12.3, the currently executing
version of Perl must be at least as modern as the version specified. If the current
version of Perl is less than VERSION, an error message is printed and Perl exits
immediately. This is useful for checking the current Perl version before loading
library modules that depend on newer versions, since occasionally we have to
“break” the misfeatures of older versions of Perl. (We try not to break things any
more than we have to. In fact, we often try to break things less than we have to.)

Speaking of not breaking things, Perl still accepts antemillennial version numbers
of the form:

use 5.005_03;

However, to align better with industry standards, all versions of Perl released this
millennium accept (and we prefer to see) the three-tuple form:

use 5.12.0; # That's version 5, subversion 12, patchlevel 0.
use v5.12.0; # same
use v5.12; # same, but be sure to put the v!

980 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

use 5.012; # same, for compatibility with very old perls
use 5.12; # WRONG!

If the VERSION argument is present after MODULE, then the use will call the VER
SION method in class MODULE with the given VERSION as an argument. Note that
there is no comma after VERSION! The default VERSION method, which is inherited
from the UNIVERSAL class, croaks if the given version is larger than the value of the
variable $Module::VERSION.

Also, starting in production-release v5.10, use VERSION will also load the feature
pragma and enable all features available in the requested version. See the section
“feature” on page 1017 in Chapter 29. Similarly, if the specified Perl version is
production-release v5.12 or higher, strictures are enabled lexically as with use
strict (except that the strict.pm file is not actually loaded).

Because use provides a wide-open interface, pragmas (compiler directives) are also
implemented via modules. Examples of currently implemented pragmas include:

use autouse "Carp" => qw(carp croak);
use bignum;
use constant PI => 4 * atan2(1,1);
use diagnostics;
use integer;
use lib "/opt/projects/spectre/lib";
use locale;
use sigtrap qw(die INT QUIT);
use sort qw(stable _quicksort _mergesort);
use strict qw(subs vars refs);
use threads;
use warnings qw(numeric uninitialized);
use warnings qw(FATAL all);

Many of these pragmatic modules import semantics into the current lexical scope.
(This is unlike ordinary modules, which only import symbols into the current
package, which has little relation to the current lexical scope other than that the
lexical scope is being compiled with that package in mind. That is to say… oh,
never mind, see Chapter 11.)

Because use takes effect at compile time, it doesn’t respect the ordinary flow con-
trol of the code being compiled. In particular, putting a use inside the false branch
of a conditional doesn’t prevent it from being processed. If a module or pragma
needs to be loaded only conditionally, this can be done using the if pragma:

use if $] < 5.008, "utf8";
use if WANT_WARNINGS, warnings => qw(all);

There’s a corresponding declaration, no, which “unimports” any meanings orig-
inally imported by use that have since become, er, unimportant:

Perl Functions in Alphabetical Order | 981

www.it-ebooks.info

http://www.it-ebooks.info/

no integer;
no strict qw(refs);
no warnings qw(deprecated);

Care should be taken when using the no VERSION form of no. It is only meant to
be used to assert that the running Perl is of an earlier version than its argument,
not to undo the feature-enabling side effects of use VERSION.

See Chapter 29 for a list of standard pragmas.

utime
utime LIST

This function changes the access and modification times on each file of a list of
files. The first two elements of the list must be the numerical access and modifi-
cation times, in that order. The function returns the number of files successfully
changed. The inode change time of each file is set to the current time. Here’s an
example of a touch command that sets the modification date of the file (assuming
you’re the owner) to about a month in the future:

#!/usr/bin/perl
montouch – post–date files now + 1 month
$day = 24 * 60 * 60; # 24 hours of seconds
$later = time() + 30 * $day; # 30 days is about a month
utime $later, $later, @ARGV;

and here’s a more sophisticated touch-like command with a smattering of error
checking:

#!/usr/bin/perl
montouch – post–date files now + 1 month
$later = time() + 30 * 24 * 60 * 60;
@cannot = grep {not utime $later, $later, $_} @ARGV;
die "$0: Could not touch @cannot." if @cannot;

To read the times from existing files, use stat and then pass the appropriate fields
through localtime or gmtime for printing.

Under NFS this will use the time of the NFS server, not the time of the local
machine. If there is a time synchronization problem, the NFS server and local
machine will have different times. The Unix touch(1) command will in fact nor-
mally use this form instead of the one shown in the first example.

Passing only one of the first two elements as undef is equivalent to passing a 0,
so it will not have the effect described when both are undef. This also triggers an
uninitialized warning.

982 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

On systems that support futimes(2), you may pass filehandles among the files. On
systems that don’t support the futimes(2) syscall, passing filehandles raises an
exception. To be recognized, filehandles must be passed as globs or glob refer-
ences; barewords are considered filenames.

utime($then, $then, $then, *SOME_HANDLE);

values
values HASH
values ARRAY

This function returns a list consisting of all the values in the indicated HASH. The
values are returned in an apparently random order, but it is the same order as
either the keys or each function would produce on the same hash. Oddly, to sort
a hash by its values, you usually need to use the keys function, so see the example
under keys for that.

You can modify the values of a hash using this function because the returned list
contains aliases of the values, not just copies. (In earlier versions, you needed to
use a hash slice for that.)

for (@hash{keys %hash}) { s/foo/bar/g } # old way
for (values %hash) { s/foo/bar/g } # now changes values

Using values on a hash that is bound to a humongous DBM file is bound to
produce a humongous list, causing you to have a humongous process. You might
prefer to use the each function, which will iterate over the hash entries one by one
without slurping them all into a single gargantuan, er, humongous list.

vec
vec EXPR, OFFSET, BITS

The vec function provides compact storage of lists of unsigned integers. These
integers are packed as tightly as possible within an ordinary Perl string. The string
in EXPR is treated as a bit string made up of some arbitrary number of elements,
depending on the length of the string.

OFFSET specifies the index of the particular element you’re interested in. The syn-
taxes for reading and writing the element are the same, since vec stores or returns
the value of the element depending on whether you use it in an lvalue or an rvalue
context.

BITS specifies how wide each element is in bits, which must be a power of two:
1, 2, 4, 8, 16, or 32 (and also 64 on some platforms). (An exception is raised if any

Perl Functions in Alphabetical Order | 983

www.it-ebooks.info

http://www.it-ebooks.info/

other value is used.) Each element can therefore contain an integer in the range
0..(2BITS)–1. For the smaller sizes, as many elements as possible are packed into
each byte. When BITS is 1, there are eight elements per byte. When BITS is 2, there
are four elements per byte. When BITS is 4, there are two elements (traditionally
called nybbles) per byte. And so on. Integers larger than a byte are stored in big-
endian order.

A list of unsigned integers can be stored in a single scalar variable by assigning
them individually to the vec function. (If EXPR is not a valid lvalue, an exception
is raised.) In the following example, the elements are each 4 bits wide:

$bitstring = "";
$offset = 0;

for my $num (0, 5, 5, 6, 2, 7, 12, 6) {
 vec($bitstring, $offset++, 4) = $num;
}

If an element off the end of the string is written to, Perl will first extend the string
with sufficiently many zero bytes.

The vectors stored in the scalar variable can be subsequently retrieved by speci-
fying the correct OFFSET.

$num_elements = length($bitstring)*2; # 2 elements per byte

for my $offset (0 .. $num_elements–1) {
 say vec($bitstring, $offset, 4);
}

If the selected element is off the end of the string, a value of 0 is returned.

Strings created with vec can also be manipulated with the logical operators |, &,
^, and ~. These operators will assume that a bit string operation is desired when
both operands are strings. See the examples of this in the section “Bitwise Oper-
ators” on page 118 in Chapter 3.

If BITS == 1, a bitstring can be created to store a series of bits all in one scalar.
The ordering is such that vec($bitstring,0,1) is guaranteed to go into the lowest
bit of the first byte of the string.

@bits = (0,0,1,0, 1,0,1,0, 1,1,0,0, 0,0,1,0);

$bitstring = "";
$offset = 0;

for my $bit (@bits) {
 vec($bitstring, $offset++, 1) = $bit;
}

984 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

say $bitstring"; # "TC", ie. '0x54', '0x43'

A bit string can be translated to or from a string of 1s and 0s by supplying a
“b*” template to pack or unpack. Alternatively, pack can be used with a “b*” tem-
plate to create the bit string from a string of 1s and 0s. The ordering is compatible
with that expected by vec.

$bitstring = pack "b*", join(q(), @bits);
say $bitstring"; # "TC", same as before

unpack can be used to extract the list of 0s and 1s from the bit string.

@bits = split(//, unpack("b*", $bitstring));
say "@bits"; # 0 0 1 0 1 0 1 0 1 1 0 0 0 0 1 0

If you know the exact length in bits, it can be used in place of the “*”.

See select for additional examples of using bitmaps generated with vec. See
pack and unpack for higher-level manipulation of binary data.

wait
wait

This function waits for a child process to terminate and returns the PID of the
deceased process, or –1 if there are no child processes (or, on some systems, if
child processes are being automatically reaped). The status is returned in $?, as
described under system. If you get zombie child processes, you should be calling
this function, or waitpid.

If you expected a child and didn’t find it with wait, you probably had a call to
system, a close on a pipe, or backticks between the fork and the wait. These
constructs also do a wait(2) and may have harvested your child process. Use
waitpid to avoid this problem.

waitpid
waitpid PID, FLAGS

This function waits for a particular child process to terminate and returns the PID
when the process is dead, –1 if there are no child processes, or 0 if the FLAGS specify
nonblocking and the process isn’t quite dead yet. The status of any dead process
is returned in $?, as described under system. To get valid flag values, you’ll need
to import the “:sys_wait_h” import tag group from the POSIX module. Here’s an
example that does a nonblocking wait for all pending zombie processes.

Perl Functions in Alphabetical Order | 985

www.it-ebooks.info

http://www.it-ebooks.info/

use POSIX ":sys_wait_h";
do {
 $kid = waitpid(–1,&WNOHANG);
} until $kid == –1;

On systems that implement neither the waitpid(2) nor wait4(2) syscall, FLAGS may
be specified only as 0. In other words, you can wait for a specific PID there, but
you can’t do so in nonblocking mode.

On some systems, a return value of –1 could mean that child processes are being
automatically reaped because you set $SIG{CHLD} = "IGNORE".

wantarray
wantarray

This function returns true if the context of the currently executing subroutine is
looking for a list value, and false otherwise. The function returns a defined false
value ("") if the calling context is looking for a scalar, and the undefined false
value (undef) if the calling context isn’t looking for anything; that is, if it’s in void
context.

Here are examples of typical usage:

return unless defined wantarray; # don't bother doing more
my @a = complex_calculation();
return wantarray ? @a : \@a;

See also caller. This function should really have been named “wantlist”, but we
named it back when list contexts were still called array contexts.

warn
warn LIST
warn

This function produces an error message, printing LIST to STDERR just like die,
but it doesn’t try to exit or throw an exception. For example:

warn "Debug enabled" if $debug;

If LIST is empty and $@ already contains a value (typically from a previous eval),
the string “\t...caught” is appended following $@ on STDERR. (This is similar to
the way die propagates errors, except that warn doesn’t propagate [reraise] the
exception.) If the message string supplied is empty, the message “Warning: Some
thing's wrong” is used.

986 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

As with die, if the strings supplied don’t end in a newline, file and line number
information is automatically appended. The warn function is unrelated to Perl’s
–w command-line option, but can be used in conjunction with it, such as when
you wish to emulate built-ins:

warn "Something wicked\n" if $^W;

No message is printed if there is a $SIG{_ _WARN_ _} handler installed. It is the
handler’s responsibility to deal with the message as it sees fit. One thing you
might want to do is promote a mere warning into an exception:

local $SIG{_ _WARN_ _} = sub {
 my $msg = shift;
 die $msg if $msg =~ /isn't numeric/;
};

Most handlers must therefore make arrangements to display the warnings that
they are not prepared to deal with, by calling warn again in the handler. This is
perfectly safe; it won’t produce an endless loop because _ _WARN_ _ hooks are not
called from inside _ _WARN_ _ hooks. This behavior differs slightly from that of
$SIG{_ _DIE_ _} handlers (which don’t suppress the error text but can instead call
die again to change it).

Using a _ _WARN_ _ handler provides a powerful way to silence all warnings, even
the so-called mandatory ones. Sometimes you need to wrap this in a BEGIN{}
block so that it can happen at compile time:

wipe out *all* compile–time warnings
BEGIN { $SIG{_ _WARN_ _} = sub { warn $_[0] if $DOWARN } }
my $foo = 10;
my $foo = 20; # no warning about duplicate my $foo,
 # but hey, you asked for it!

no compile–time or runtime warnings before here
$DOWARN = 1; # *not* a built–in variable

runtime warnings enabled after here
warn "\$foo is alive and $foo!"; # does show up

See the warnings pragma for lexically scoped control of warnings. See the Carp
module’s carp and cluck functions for other ways to produce warning messages.

Perl Functions in Alphabetical Order | 987

www.it-ebooks.info

http://www.it-ebooks.info/

write
write FILEHANDLE
write

This function writes a formatted record (possibly multiline) to the specified file-
handle, using the format associated with that filehandle—see the section “For-
mat Variables” on page 814 in Chapter 26. By default, the format associated with
a filehandle is the one having the same name as the filehandle. However, the
format for a filehandle may be changed by altering the $~ variable after you
select that handle:

$old_fh = select(HANDLE);
$~ = "NEWNAME";
select($old_fh);

or by saying:

use IO::Handle;
HANDLE–>format_name("NEWNAME");

Since formats are put into a package namespace, you may have to fully qualify
the format name if the format was declared in a different package:

$~ = "OtherPack::NEWNAME";

Top-of-form processing is handled automatically. If there is insufficient room on
the current page for the formatted record, the page is advanced by writing a form
feed, a special top-of-page format is used for the new page header, and then the
record is written. The number of lines remaining on the current page is in the
variable $–, which can be set to 0 to force a new page on the next write. (You may
need to select the filehandle first.) By default, the name of the top-of-page format
is the name of the filehandle with “_TOP” appended, but the format for a filehandle
may be changed, altering the $^ variable after selecting that handle or by saying:

use IO::Handle;
HANDLE–>format_top_name("NEWNAME_TOP");

If FILEHANDLE is unspecified, output goes to the current default output filehandle,
which starts out as STDOUT but may be changed by the single-argument form of
the select operator. If the FILEHANDLE is an expression, then the expression is
evaluated to determine the actual FILEHANDLE at runtime.

If a specified format or the current top-of-page format does not exist, an exception
is raised.

The write function is not the opposite of read. Unfortunately. Use print for simple
string output. If you looked up this entry because you wanted to bypass standard
I/O, see syswrite.

988 | Chapter 27: Functions

www.it-ebooks.info

http://www.it-ebooks.info/

y//
y///

The transliteration (historically, but imprecisely, also called translation) operator,
also known as tr///. See Chapter 5.

Perl Functions in Alphabetical Order | 989

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 28

The Standard Perl Library

The standard Perl distribution contains much more than just the perl executable
that runs your scripts. It also includes hundreds of modules filled with reusable
code, which we call Standard Perl Library. Because the standard modules are
available everywhere, if you use one of them in your program, you can run your
program anywhere Perl is installed, without any extra installation steps.

But we should tell you that not everywhere you find perl has the Standard Perl
Library. Since Perl comes with some many different platforms, you might run
into some vendors who change the Perl. Some vendors augment Perl by adding
extra modules or tools. Some might update some modules to work better with
their platforms (and we hope they pass their patches upstream). Others, however,
remove parts. If you find part of the Standard Library missing, complain to your
vendor or install your own Perl.

In previous editions of this book, we listed every module in the Standard Library
and told you a little about each one. We took that out of this edition, and instead
we’ll show you how to do this for yourself. Chapter 29 still goes through all of
the pragmas.

Library Science
Let’s review a bit of the terminology we’ve been splattering about. We, and the
rest of the community, tend to use it loosely because the concepts overlap or
coexist, but sometimes precision matters.

namespace
A namespace is a place to keep names so they won’t be confused with names
in other namespaces. This leaves you with the simpler problem of not con-
fusing the namespaces themselves. There are two ways to avoid confusing
namespaces with one another: give them unique names, or give them unique

991

www.it-ebooks.info

http://www.it-ebooks.info/

locations. Perl lets you do both: named namespaces are called packages, and
unnamed namespaces are called lexical scopes. Since lexical scopes can be
no larger than a file, and since the standard modules are file-sized (at min-
imum), it follows that all module interfaces must make use of named name-
spaces (packages) if they’re to be used by anyone outside the file.

package
A package is Perl’s standard mechanism for declaring a named namespace.
It’s a simple mechanism for grouping together related functions and vari-
ables. Just as two directories can both contain a (different) file named Ame-
lia, two different parts of a Perl program can each have its own $Amelia vari-
able or &Amelia function. Even though these variables or functions seem to
have the same name as one another, those names reside in distinct name-
spaces managed by the package declaration. Package names are used to iden-
tify both modules and classes, as described in Chapter 11 and Chapter 12.

library
The term library is unfortunately rather overloaded in Perl culture. These
days we normally use the term to mean the entire set of Perl modules in-
stalled on your system.

Historically, a Perl library was also a single file containing a collection of
subroutines sharing some common purpose. Such a file often has the file
extension .pl,1 short for “perl library”. We still use that extension for random
bits of Perl code that you pull in with do FILE or with require. Although it’s
not a full-fledged module, a library file typically declares itself to be in a
distinct package so related variables and subroutines can be kept together
and don’t accidentally interfere with other variables in your program. There
is no mandatory extension; others besides .pl sometimes occur, as explained
later in this chapter. These simple, unstructured library files have been
largely superseded by the concept of the module.

module
A Perl module is a library file that conforms to certain specific conventions
that allow one or more files implementing that module to be brought in with
a single use declaration at compile time. Module filenames must always end
in .pm because the use declaration assumes it. The use declaration will also
translate the package separator :: to whatever your directory separator is,
so the directory structure in your Perl library can match your package struc-
ture. Chapter 11 describes how to create your own Perl modules.

1. Yes, people tend to use this extension for programs, too. We guess that’s okay if you’re into that sort of
thing, or your operating system forces it on you to make fancy icons.

992 | Chapter 28: The Standard Perl Library

www.it-ebooks.info

http://www.it-ebooks.info/

class
A class is just a module that implements methods for objects associated with
the module’s package name. If you’re interested in object-oriented modules,
see Chapter 12.

pragma
A pragma is just a special module that twiddles Perl’s internal knobs, often
to change how the compiler interprets something or to add special behavior.
See Chapter 29 for the pragmas in the Standard Library.

extension
An extension is a Perl module that, in addition to loading a .pm file, also loads
a shared library implementing the module’s semantics in C or C++.

program
A Perl program is code designed to be run as an independent entity. It's also
known as a script when you don’t want anyone to expect much from it, an
application when it’s big and complicated, an executable when its caller
doesn’t care what language it was written in, or an enterprise solution when
it costs a fortune. Perl programs might exist as source code, bytecode, or
native machine code. If it’s something you might run from the command
line, we’ll call it a program.

distribution
A distribution is an archive of scripts, libraries, or modules along with a test
suite, documentation, and installation scripts. When people talk about
“getting a module from CPAN”, they really mean a distribution. See Chap-
ter 19.

A Tour of the Perl Library
You’ll save an enormous amount of time if you make the effort to familiarize
yourself with the Standard Library, because there’s no reason to reinvent those
particular wheels. You should be aware, however, that this collection contains a
wide range of material. Although some libraries may be extremely helpful, others
might be completely irrelevant to your needs. For example, if you’re only writing
in 100% pure Perl, those modules that support the dynamic loading of C and C
++ extensions aren’t going to help you much.

Perl expects to find library modules somewhere in its library “include” path,
@INC. This array specifies the ordered list of directories Perl searches when you
load in some library code using the keywords do, require, or use. You can easily
list out those directories by calling Perl with the –V switch for Very Verbose Ver-
sion information, or with this simple code:

A Tour of the Perl Library | 993

www.it-ebooks.info

http://www.it-ebooks.info/

% perl –le "print for @INC"
/usr/local/lib/perl5/site_perl/5.14.2/darwin–2level
/usr/local/lib/perl5/site_perl/5.14.2
/usr/local/lib/perl5/5.14.2/darwin–2level
/usr/local/lib/perl5/5.14.2
.

That’s only one sample of possible output. Every installation of Perl uses its own
paths. The important thing is that, although contents will vary depending upon
your vendor’s and your site’s installation policy, you can rely upon all standard
libraries being installed with Perl. That one is from a Perl installed manually.
Another Perl on the same system can give a different answer.

% /usr/bin/perl –le "print for @INC"
/Library/Perl/5.12/darwin–thread–multi–2level
/Library/Perl/5.12
/Network/Library/Perl/5.12/darwin–thread–multi–2level
/Network/Library/Perl/5.12
/Library/Perl/Updates/5.12.3
/System/Library/Perl/5.12/darwin–thread–multi–2level
/System/Library/Perl/5.12
/System/Library/Perl/Extras/5.12/darwin–thread–multi–2level
/System/Library/Perl/Extras/5.12
.

This output, from Mac OS X.7, is much different and illustrates some different
locations for modules. There’s the Standard Library under /System, but then up-
dates go into a directory closer to the front of @INC. When you update Mac OS
X, instead of overwriting the Standard Library, it puts its updates into a different
vendor-specific directory. The modules you install go into the /Library, so the
operating system updates never overwrite your changes. Unless you say other-
wise when you install modules (see Chapter 19), that’s where they go.

If you look through the directories for this Perl, you might find the same modules
but different versions, but also additional modules. Some vendors apply their
own patches to the Standard Library. Maybe they update the version and maybe
they don’t. If you don’t think that your Perl is acting like everyone else’s, you
might check whether you actually have the same thing everyone else has.

The perldoc command’s –l reports the location of a module:

% perldoc –l MODULE
/usr/local/lib/perl5/site_perl/5.14.2/MODULE

Inside a program, the %INC variable keeps track of what it has already loaded and
where it found it. The keys are the namespace translated to a file path, such as
Unicode/UCD.pm, and the value is the path to the module. See Chapter 25 for
more details.

994 | Chapter 28: The Standard Perl Library

www.it-ebooks.info

http://www.it-ebooks.info/

This brings up one of the problems of module loading. Perl uses the first matching
file it finds in @INC. It does not find the latest or best version if it exists later, and
there isn’t a good way to make perl keep looking, aside from reimplementing the
whole process in a code reference that you put at the front of @INC,2 or creating a
new library path that links to the “best” versions of the modules in all of the other
directories. Those are clunky and take a lot of care and feeding. For instance, if
someone sets PERL5LIB, should you choose the versions that you find there instead
of looking in later directories?

Roll Call
In previous editions we included a list of all modules in the Standard Library, but
this book is already too long to devote tens of pages to that, especially considering
that you can just look in perlmodlib to see the list for your version of Perl. If you
don’t like that, you can make this list yourself by looking for all .pm files, then
extracting the nonblank line after =head1 NAME:

use v5.10;

use File::Find;

my %names;
my $wanted = sub {
 return unless /\.pm\z/;
 open(my $fh, "<", $File::Find::name)
 || die "can't open $File::Find::name: $!";
 OUTER: while(<$fh>) {
 next unless /\A =head1 \s+ NAME/x;
 while(<$fh>) {
 next if /\A \s* \z/x;
 / (?<name>\S+) \s* –+ \s* (?<desc>.*) /x;
 $names{ $+{name} } = $+{desc};
 last OUTER;
 }
 }
 };

find($wanted, @INC);

for my $name (sort keys %names) {
 printf "%–25s – %s\n", $name, $names{$name};
}

With v5.14, that finds about 500 namespaces:

2. The inc::latest module provides a code reference that does this.

A Tour of the Perl Library | 995

www.it-ebooks.info

http://perldoc.perl.org/perlmodlib.html
http://www.it-ebooks.info/

AnyDBM_File – provide framework for multiple DBMs
App::Cpan – easily interact with CPAN from
 – the command line
App::Prove – Implements the C<prove> command.
... many others ...
warnings – Perl pragma to control optional warnings
warnings::register – warnings import function
writemain – write the C code for perlmain.c

There’s another way to get this. The Module::CoreList module, part of the Stan-
dard Perl Library, knows what came with which Perl. Its corelist module is the
interface. To find the versions it knows about, use the –v switch:

% corelist –v
5
5.000
5.001
5.002
...
v5.14.0
v5.14.1

With a version, –v reports all the modules and versions that came with that version
of Perl:

% corelist –v 5.14.1

The following modules were in perl 5.14.1 CORE
AnyDBM_File 1.00
App::Cpan 1.5701
App::Prove 3.23
...many more...
version 0.88
vmsish 1.02
warnings 1.12
warnings::register 1.02

It can also report a module’s history with the –a switch:

% corelist –a Archive::Extract
Archive::Extract was first released with perl v5.9.5
 v5.9.5 0.22_01
 v5.10.0 0.24
 v5.10.1 0.34
 ...
 v5.14.0 0.48
 v5.14.1 0.48

If you want to know the earliest Perl version that contains that module, don’t use
any switch:

% corelist Module::CoreList
Module::CoreList was first released with perl v5.8.9

996 | Chapter 28: The Standard Perl Library

www.it-ebooks.info

http://www.it-ebooks.info/

The –d switch reports the earliest version of Perl to include the module. For ex-
ample, Module::CoreList didn’t join the Standard Perl Library until v5.9.2:

% corelist –d Module::CoreList
Module::CoreList was first released with perl v5.9.2

The –d stands for “date”, so don’t be confused. Perl v5.9.2 was released temporally
before v5.8.9, which is why the results seem odd.

The Future of the Standard Perl Library
Two schools of thought are battling for the future of the Standard Perl Library.
One school would like to have as much as possible in the Standard Perl Library,
so they can create applications using the modules they like and be able to dis-
tribute them easily without requiring people to install additional modules. The
other school wants a minimal distribution with just the right number of modules
to allow the later installation from CPAN of additional modules.

Each school has merit. A bigger Library benefits users. They don’t have to bother
their system administrators and lawyers to allow them to install additional mod-
ules once they have Perl. A smaller library makes it easier for the Perl 5 Porters,
who have less of a distraction handling modules and can spend more time work-
ing on other tasks.

Some modules are dual-lived, meaning they have two tracks of development. One
is in the Perl repository itself and the other is on CPAN. This allows the modules
to patch problems more quickly than the Perl release cycle. When it’s time for a
new release of Perl, the maintainers merge the changes from the CPAN version
into the Perl sources. Sometimes the version in the Perl repository gets fixed first.
In that case, the CPAN developers merge the changes at their leisure.

For many years, this process was cumbersome because the layout of the CPAN
version and the Standard Library version was very different, making the merge a
tedious, hard-to-automate process. Besides patching the modules, the maintain-
ers had to merge the tests into the rest of the Perl test suite, place ancillary files
in the right places, and so on. It wasn’t a task that anyone looked forward to.
The trend now is to put the CPAN distribution completely in its own directory
in the perl repository to make it easy to drop in the changes to a module—and
that may be completely done by the time you read this book. Maintaining dual-
lived modules has improved greatly over the past few years. This makes it easy
for vendors to include additional modules in their customized distribution of
Perl.

A Tour of the Perl Library | 997

www.it-ebooks.info

http://www.it-ebooks.info/

Wandering the Stacks
If you look through the directories in @INC and their subdirectories, you’ll find
several different kinds of files installed. Most have names ending in .pm, but some
end in .pl, .ph, .al, or .so. The ones that most interest you are the first set, because
a suffix of .pm indicates that the file is a proper Perl module. More on those in a
minute.

The few files you see there ending in .pl are those old Perl libraries we mentioned
earlier. They are included for compatibility with ancient releases of Perl from
the ’80s and early ’90s. Because of this, Perl code that worked back in, say, 1990
should continue to behave properly without any fuss, even if you have a modern
version of Perl installed. When writing new code that makes use of the standard
Perl library, you should always elect to use the .pm version over any .pl, where
possible. That’s because modules don’t pollute your namespace the way many
of the old .pl files do. As Perl has evolved, though, the Perl 5 Porters have been
removing some of those files, either delegating those tasks to modules or making
you go to CPAN to get them.

One note on the use of the .pl extension: it means Perl library, not Perl program.
Although .pl is sometimes used to identify Perl programs on web servers that need
to distinguish executable programs from static content in the same directory or
by some systems to associate a file with a program to open it, we suggest that
you use a suffix of .plx instead to indicate an executable Perl program. (Similar
advice holds for operating systems that choose interpreters based on filename
extensions.) Or don’t use an extension at all since perl doesn’t care what you call
it. It will happily run hello.rb as long as the text in it is a Perl program.3

Files with extensions of .al are small pieces of larger modules that will be auto-
matically loaded when you use their parent .pm file. If you build your module
layout using the standard h2xs tool (see Chapter 19) that comes with Perl (and if
you haven’t used Perl’s –A flag), the make install procedure will use the Auto
Loader module (hence the a and the l) to create these little .al files for you.

The .ph files were made by the standard h2ph program, a somewhat aging but
still occasionally necessary tool that does its best to translate C preprocessor
directives into Perl. The resulting .ph files contain constants sometimes needed
by low-level functions like ioctl, fcntl, or syscall. (Nowadays most of these
values are more conveniently and portably available in standard modules such

3. One of the goals of the Parrot interpreter is to be able to load and run a hello.rb—even if it contains Ruby
code.

998 | Chapter 28: The Standard Perl Library

www.it-ebooks.info

http://www.it-ebooks.info/

as the POSIX, Errno, Fcntl, or Socket modules.) See perlinstall for how to install
these optional but sometimes important components.

One last file extension you might encounter while poking around is .so (or what-
ever your system uses for shared libraries). These .so files are platform-dependent
portions of extension modules. Originally written in C or C++, these modules
have been compiled into dynamically relocatable object code. The end user
doesn’t need to be aware of their existence, however, because the module inter-
face hides them. When the user code says require Module or use Module, Perl
loads Module.pm and executes it, which lets the module pull in any other neces-
sary pieces, such as Module.so or any autoloaded .al components. In fact, the
module could load anything it jolly well pleases, including 582 other modules,
and all of those modules could load another 582 modules each. It could down-
load all of CPAN if it felt like it, and maybe the last two years of freshmeat.net
archives.

A module is not just a static chunk of code in Perl. It’s an active agent that figures
out how to implement an interface on your behalf. It may follow all the standard
conventions, or it may not. It’s allowed to do anything to warp the meaning of
the rest of your program, up to and including translating the rest of your program
into SPITBOL. This sort of chicanery is considered perfectly fair as long as it’s
well documented. When you use such a Perl module, you’re agreeing to its con-
tract, not a standard contract written by Perl.

So you’d best read the fine print.

A Tour of the Perl Library | 999

www.it-ebooks.info

http://perldoc.perl.org/perlinstall.html
http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 29

Pragmatic Modules

A pragma is a special kind of module that affects the compilation phase of your
program. Some pragmatic modules (or pragmata, for short [or pragmas, for
shorter]) may also affect the execution phase of your program. Think of these as
hints to the compiler. Because they need to be seen at compile time, they’ll work
only when invoked by a use or a no, because by the time a require or a do runs,
compilation is long since over.

By convention, pragma names are written all in lowercase, because lowercase
module names are reserved for the Perl distribution itself. When writing your
own modules, use at least one upper- or titlecase character in the module name
to avoid conflict with pragma names.

Unlike regular modules, most pragmas limit their effects to the rest of the inner-
most enclosing block from which they were invoked. In other words, they’re
lexically scoped, just like my variables. Ordinarily, the lexical scope of an outer
block covers any inner block embedded within it, but an inner block may coun-
termand a lexically scoped pragma from an outer block by using the no statement:

use strict;
use integer;
{
 no strict "refs"; # allow symbolic references
 no integer; # resume floating–point arithmetic
 #
}

More so than the other modules Perl ships with, the pragmas form an integral
and essential part of the Perl compilation environment. It’s hard to use the com-
piler well if you don’t know how to pass hints to it, so we’ll put some extra effort
into describing pragmas.

1001

www.it-ebooks.info

http://www.it-ebooks.info/

Another thing to be aware of is that we often use pragmas to prototype features
that later get implemented as “real” syntax. So in some programs you’ll see dep-
recated pragmas like use attrs, whose functionality is now supported directly
by subroutine declaration syntax, or use vars, which we replaced with our dec-
larations. We’re not in a terrible hurry to break the old ways of doing things, but
we do think the new ways are nicer to look at.

Finally, at the end of this chapter, we’ll show how to create your own pragmas that
act just like those that come with Perl.

attributes
sub afunc : method;
my $closure = sub : method { ... };

use attributes;
@attrlist = attributes::get(\&afunc);

The attributes pragma has two purposes. The first is to provide an internal
mechanism for declaring attribute lists, which are optional properties associated
with subroutine declarations and (someday soon) variable declarations. (Since
it’s an internal mechanism, you don’t generally use this pragma directly.) The
second purpose is to provide a way to retrieve those attribute lists at runtime
using the attributes::get function call. In this capacity, attributes is just a
standard module, not a pragma.

Only a few built-in attributes are currently handled by Perl. Package-specific at-
tributes are allowed by an experimental extension mechanism described in the
section “Package-specific Attribute Handling” of the attributes(3) manpage.

Attribute setting occurs at compile time; attempting to set an unrecognized at-
tribute is a compilation error. (The error is trappable by eval, but it still stops
the compilation within that eval block.)

Only three built-in attributes for subroutines are currently implemented: locked,
method, and lvalue. See Chapter 7 for further discussion of these. There are cur-
rently no built-in attributes for variables as there are for subroutines, but we can
think of several we might like, such as constant.

The attributes pragma provides two subroutines for general use. They may be
imported if you ask for them.

1002 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

get

This function returns a (possibly empty) list of attributes given a single input
parameter that’s a reference to a subroutine or variable. The function raises
an exception by invoking Carp::croak if passed invalid arguments.

reftype

This function acts somewhat like the built-in ref function, but it always
returns the underlying, built-in Perl data type of the referenced value, ig-
noring any package into which it might have been blessed.

Precise details of attribute handling remain in flux, so you’d best check out the
online documentation included with your Perl release to see what state it’s all in.

autodie
use autodie;

This pragma turns failures of Perl function calls into fatal errors, but only in its
lexical scope. It replaces the standard Perl functions that return false on failure
with versions that throw exceptions on failure. The exception message in $@ lets
you know which sort you encountered:

eval {
 use autodie;
 open my $fh, "<:encoding(UTF–8)", $filename;
 my @lines = <$fh>;
 close $fh;
}

for ($@) {
 when (undef) { }
 when ("open") { say "Open failed"; }
 when (":io") { say "Some other IO error"; }
 when (":all") { say "Some other autodie error" }
 default { say "Non–autodie error" }
 }

The pragma can replace related sets of functions, too, such as just the ones that
deal with input and output:

use autodie qw(:io);

If you don’t want this feature for an inner scope, turn it off:

no autodie;

autodie | 1003

www.it-ebooks.info

http://www.it-ebooks.info/

autouse
use autouse "Carp" => qw(carp croak);
carp "this carp was predeclared and autoused";

This pragma provides a mechanism for runtime demand loading of a particular
module only when a function from that module really gets called. It does this by
providing a stub function that replaces itself with the real call once triggered.
This is similar in spirit to the way the standard AutoLoader and SelfLoader mod-
ules behave. In short, it’s a performance hack to help make your Perl program
start up faster (on average) by avoiding compilation of modules that might never
ever be called during a given execution run.

How autouse behaves depends on whether the module is already loaded. For
example, if the module Module is already loaded, then the declaration:

use autouse "Module" => qw(func1 func2($;$) Module::func3);

is equivalent to the simple import of two functions:

use Module qw(func1 func2);

This assumes that Module defines func2 with prototype ($;$), and that func1 and
func3 have no prototypes. (More generally, this also assumes that Module uses
Exporter’s standard import method; otherwise, a fatal error is raised.) In any
event, it completely ignores Module::func3 since that is presumably already de-
clared.

If, on the other hand, Module has not yet been loaded when the autouse pragma
is parsed, the pragma declares functions func1 and func2 to be in the current
package. It also declares a function Module::func3 (which could be construed as
mildly antisocial, were it not for the fact that the nonexistence of the Module
module has even more antisocial consequences). When these functions are
called, they make sure the Module in question is loaded and then replace them-
selves with calls to the real functions just loaded.

Because the autouse pragma moves portions of your program’s execution from
compile time to runtime, this can have unpleasant ramifications. For example,
if the module you autouse has some initialization that is expected to be done early,
this may not happen early enough. Autousing can also hide bugs in your code
when important checks are moved from compile time to runtime.

In particular, if the prototype you’ve specified on autouse line is wrong, you will
not find out about it until the corresponding function is executed (which may be
months or years later for a rarely called function). To partially alleviate this
problem, you could write your code like this during code development:

1004 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

use Chase;
use autouse Chase => qw[hue($) cry(&$)];
cry "this cry was predeclared and autoused";

The first line ensures that errors in your argument specification will be found
early. When your program graduates from development into production mode,
you can comment out the regular loading of the Chase module and leave just the
autousing call in place. That way you get safety during development and perfor-
mance during production.

base
use base qw(Mother Father);

This pragma lets a programmer conveniently declare a derived class based on the
listed parent classes. This pragma has mostly fallen out of favor, and most people
prefer to use the parent pragma.

The declaration above is roughly equivalent to:

BEGIN {
 require Mother;
 require Father;
 push @ISA, qw(Mother Father);
}

The base pragma takes care of any require needed. When the strict "vars"
pragma is in scope, use base lets you (in effect) assign to @ISA without first having
to declare our @ISA. (Since the base pragma happens at compile time, it’s best to
avoid diddling @ISA on your own at runtime.)

But beyond this, base has another property. If any named base class use fields
facility under fields (mentioned later in this chapter), then the pragma initializes
the package’s special field attributes from the base class. (Multiple inheritance
of field classes is not supported. The base pragma raises an exception if more than
one named base class has fields.)

Any base class not yet loaded will be loaded automatically via require. However,
whether to require a base class package is determined not by the customary in-
spection of %INC, but by the absence of a global $VERSION in the base package. This
hack keeps Perl from repeatedly trying (and failing) to load a base class that isn’t
in its own requirable file (because, for example, it’s loaded as part of some other
module’s file). If $VERSION is not detected after successfully loading a file, base
will define $VERSION in the base package, setting it to the string "–1, defined by
base.pm". This string might change in later versions of the pragma.

base | 1005

www.it-ebooks.info

http://www.it-ebooks.info/

bigint
use bigint;

This pragma bypasses the architecture-dependent treatment of integer operations
to work with very large numbers, as well as handling the special value NaN (for
not a number):

use bigint;
say 2 ** 512;

This pragma works by overloading the numeric operators to use Math::BigInt to
compute values. As such, it can be considerably slower than built-in operations.
Still, slow right answers are always better than fast wrong ones.

You can load different implementing libraries, which may vary in performance.
By default, bigint uses a pure Perl implementation, but you can load a faster
library if you have it:

use bigint lib => 'GMP';

You can set the accuracy, which determines the number of significant digits in the
answer:

use bigint a => 2;

Or, you can set the precision, which specifies the magnitude of the answer. A
precision less than 0 is ignored:

use bigint p => –2; # to the hundredths place (ignored)
use bigint p => 1; # rounded to 10

bignum
use bignum;

This pragma bypasses the architecture-dependent treatment of numeric opera-
tions to work with very large numbers (or numbers with more decimal places),
as well as handling the special value NaN (for not a number):

use bignum;
say sqrt(2);

This pragma works by overloading the numeric operators to use Math::BigInt
and Math::BigFloat to compute values. See bigint.

1006 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

bigrat
use bigrat;

This pragma bypasses the architecture-dependent treatment of numeric opera-
tions to work with rational numbers (that is, fractions) and keep them as rational
numbers so you lose no precision (at least until you are ready for that):

use bigrat;
say 1/2 + 1/3; # 5/6

This pragma works by overloading the numeric operators to use Math::BigInt
and Math::BigRat to compute values. See bigint.

blib
From the command line:

% perl –Mblib program [args...]
% perl –Mblib=DIR program [args...]

From your Perl program:

use blib;
use blib DIR;

This pragma is primarily intended as a way to test arbitrary Perl programs against
an uninstalled version of a package using Perl’s –M command-line switch. It as-
sumes your directory structure was produced by the standard ExtUtils::Make
Maker or Module::Build modules.

The pragma looks for a blib directory structure starting in the directory named
DIR (or current directory if none was specified), and if it doesn’t find a blib direc-
tory there, works its way back up through your .. directories, scanning up to five
levels of parent directory.

bytes
use bytes;
no bytes;

The bytes pragma disables character semantics for the rest of the lexical scope in
which it appears. The no bytes pragma can be used to reverse the effect of use
bytes within the current lexical scope.

Perl normally assumes character semantics in the presence of character data (that
is, data from a source marked as being of a particular character encoding).

bytes | 1007

www.it-ebooks.info

http://www.it-ebooks.info/

To understand the implications and differences between character semantics and
byte semantics, see Chapter 6. A visit to Tokyo might also help.

You probably don’t want to use this pragma, and it’s likely to disappear in later
versions of Perl. In v5.14, the bytes pragma’s documentation strongly discourages
its use. If you have a string, treat it as a character string without worrying about
its underlying encoding.

charnames
use charnames HOW;
print "\N{CHARNAME} is a funny character";

use charnames (); # no compile–time \N{}, just run–time functions

All forms other than use charnames () enable interpolation of named characters
into strings and regexes using the \N{CHARNAME} notation:

use charnames ":full";
print "\N{GREEK SMALL LETTER SIGMA} is called sigma.\n";

use charnames ":short";
print "\N{greek:Sigma} is an uppercase sigma.\n";

use charnames qw(cyrillic greek);
print "\N{sigma} is Greek sigma, and \N{be} is Cyrillic b.\n";

use charnames ":full", ":alias" => {
 "WRY CAT" => "CAT FACE WITH WRY SMILE",
 "AMELIA" => "DROMEDARY CAMEL",
 "s with comma" => 0x0219,
};

":loose" supported on v5.16 and later only
use charnames ":loose";

If :full is present, then \N{CHARNAME} is expanded by looking first in the list of
standard Unicode character names. If :short is present, and CHARNAME has the
form SCRIPT:CNAME, then CNAME is looked up as a letter in script SCRIPT. If :loose
is present (and you are running v5.16 or better), it works just like :full except
names are looked up without regard to case, whitespace, or underscores, just as
in Unicode property names in regexes.

Used with one or more Unicode script name arguments,1 CHARNAME is looked up
as a letter in the given scripts, first looking in the first listed script, then the next

1. You can find the current list of scripts recognized by Unicode in the perluniprops manpage.

1008 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://perldoc.perl.org/perluniprops.html
http://www.it-ebooks.info/

one if any, and so on. For lookup of CHARNAME inside a given script SCRIPTNAME, it
looks for the names:

SCRIPTNAME CAPITAL LETTER CHARNAME
SCRIPTNAME SMALL LETTER CHARNAME
SCRIPTNAME LETTER CHARNAME

If CHARNAME is entirely lowercase, the CAPITAL variant is ignored. Otherwise, the
SMALL variant is ignored.

use charnames "Greek";
print "\N{Sigma} \N{sigma} \N{final sigma}\n"; # Σ σ ς

use charnames "Latin";
print "\N{DZ} \N{D with small letter z} \N{dz}\n"; # Ǳ ǲ ǳ

\N{NAME} operates only at compile time as a special form of string constant used
inside double-quotish strings. NAME must be a literal; you cannot use variables
inside the \N{NAME}. For similar runtime functionality, use charnames::string_via
name, described below.

The notation \N{U+HEXDIGITS}, where the HEXDIGITS is a hexadecimal number,
also inserts a Unicode character into a string, but alone of all \N{...} uses, this
one doesn’t require the charnames pragma. The character inserted is the one
whose codepoint (ordinal value) is equal to the hex number. For example,
\N{U+263A} is the Unicode (white background, black foreground) smiley face.
That notation doesn’t require this pragma, whereas the equivalent using char-
acter names, \N{WHITE SMILING FACE}, does.

Any string that includes a \N{CHARNAME} or \N{U+HEXDIGITS} automatically has
Unicode semantics, even if you haven’t used the Unicode strings feature.

For the C0 and C1 control characters (U+0000..U+001F, U+0080..U+009F) there
are no official Unicode names, but you can instead use the ISO 6429 names: LINE

FEED, ESCAPE, and so forth, and their abbreviations, LF, ESC, etc. See the char-
names manpage for other commonly used aliases.

If the input name is unknown, \N{NAME} raises a warning and substitutes the
Unicode REPLACEMENT CHARACTER (U+FFFD).

For \N{NAME}, it is a fatal error if the bytes is in effect and the input name is that
of a character that won’t fit into a byte (that is, whose ordinal is above 255).

Custom Character Names
You can create custom character names to allow for more convenient typing or to
give names to codepoints Unicode hasn’t assigned a name to. Aliases are added
either using anonymous hashes:

charnames | 1009

www.it-ebooks.info

http://www.it-ebooks.info/

use charnames ":alias" => {
 e_ACUTE => "LATIN SMALL LETTER E WITH ACUTE",
 "APPLE LOGO" => 0xF8FF, # private–use codepoint
};
my $str = "\N{APPLE LOGO}";

or using a file containing a list of key/value pairs:

use charnames ":alias" => "pro"; # look in unicore/pro_alias.pl

The specified file should be under a unicore/ subdirectory somewhere in the
@INC path, and it should be named using a trailing _alias.pl at the end. So, for
example, the file looked for above will be unicore/pro_alias.pl. This file should
return a list in plain Perl:

(
 A_grave => "LATIN CAPITAL LETTER A WITH GRAVE",
 A_circ => "LATIN CAPITAL LETTER A WITH CIRCUMFLEX",
 A_diaer => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_dier => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_uml => "LATIN CAPITAL LETTER A WITH DIAERESIS",
 A_tilde => "LATIN CAPITAL LETTER A WITH TILDE",
 A_macron => "LATIN CAPITAL LETTER A WITH MACRON",
);

Both these methods insert :full automatically as the first argument if no other
argument is given; you can also give the :full explicitly:

use charnames ":full", ":alias" => "pro";

Even private-use characters can gain names. For example, after:

use charnames ":full", ":alias" => {
 "TENGWAR LETTER TINCO" => 0xE000,
 "TENGWAR LETTER PARMA" => 0xE001,
 "TENGWAR LETTER CALMA" => 0xE002,
 "TENGWAR LETTER QUESSE" => 0xE003,
 "TENGWAR LETTER ANDO" => 0xE004,
 ...
}

then string and regex constants in that lexical scope can refer to those named
characters:

if (/\N{TENGWAR LETTER TINCO}/) { ... }

Runtime Lookups
This pragma also provides three functions for converting between character
names and numbers at runtime, rather than at compile time the way \N{CHAR
NAME} interpolation works. These are:

1010 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

charnames::vianame

Takes an official name, official alias, or custom alias and returns a single
integer codepoint. For example, it converts the string "LATIN SMALL LETTER
A" into 0x61.

charnames::string_vianame

Takes a string that can be an official name, an official alias, or a named se-
quence and gives back a string. For example, this converts "LATIN SMALL
LETTER A" into "a". Because of named sequences, the string returned may
(rarely) be longer than length 1.

charnames::viacode

Takes an integer and returns the official alias if there is one, and the official
name if there is not. For example, this converts 0x61 into the string "LATIN
SMALL LETTER A". Will return custom names only if no official name exists,
such as for private-use area codepoints.

These functions are not exported, so you must fully qualify them to use them.
They also provide runtime access to any custom aliases you may have created.
This shows how each works:

use v5.14;
use warnings;
use warnings FATAL => "utf8";
use open qw(:std :utf8);

use charnames ":full", ":alias" => {
 ecute => "LATIN SMALL LETTER E WITH ACUTE",
 "APPLE LOGO" => 0xF8FF, # private use character
};

printf "U+%04X is named '%s'.\n", 0xE9 => charnames::viacode(0xE9);
printf "%s is code U+%04X.\n", ecute => charnames::vianame("ecute");
printf "%s is string '%s'.\n", ecute => charnames::string_vianame("ecute");

printf "U+%04X is named '%s'.\n", 0xF8FF => charnames::viacode(0xF8FF);
printf "%s is code U+%04X.\n", "APPLE LOGO" => charnames::vianame("APPLE LOGO");
printf "%s is string '%s'.\n", "APPLE LOGO" => charnames::string_vianame("APPLE LOGO");

Here's the output it produces:

U+00E9 is named 'LATIN SMALL LETTER E WITH ACUTE'.
ecute is code U+00E9.
ecute is string 'é'.

U+F8FF is named 'APPLE LOGO'.
APPLE LOGO is code U+F8FF.
APPLE LOGO is string ' '.

charnames | 1011

www.it-ebooks.info

http://www.it-ebooks.info/

You can even write your own module that works like the charnames pragma but
defines character names differently. However, the interface to that is still exper-
imental, so see the manpage for the latest.

constant
use constant BUFFER_SIZE => 4096;
use constant ONE_YEAR => 365.2425 * 24 * 60 * 60;
use constant PI => 4 * atan2 1, 1;
use constant DEBUGGING => 0;
use constant ORACLE => 'oracle@cs.indiana.edu';
use constant USERNAME => scalar getpwuid($<);
use constant USERINFO => getpwuid($<);

use constant {
 BUFFER_SIZE => 4096,
 ONE_YEAR => 365.2425 * 24 * 60 * 60,
 PI => 4 * atan2(1, 1),
 DEBUGGING => 0,
 ORACLE => 'oracle@cs.indiana.edu',
 USERNAME => scalar getpwuid($<),
 USERINFO => getpwuid($<),
};

sub deg2rad { PI * $_[0] / 180 }

print "This line does nothing" unless DEBUGGING;

references can be declared constant
use constant CHASH => { foo => 42 };
use constant CARRAY => [1,2,3,4];
use constant CCODE => sub { "bite $_[0]\n" };

print CHASH–>{foo};
print CARRAY–>[$i];
print CCODE–>("me");
print CHASH–>[10]; # compile–time error

This pragma declares the named symbol to be an immutable constant2 with the
given scalar or list value. Values are evaluated in list context. You may override
this with scalar as we did above. Giving it a hash reference declares many con-
stants at once with only one use statement.

Since these constants don’t have a $ on the front, you can’t interpolate them directly
into double-quotish strings, although you may do so indirectly:

print "The value of PI is @{[PI]}.\n";

2. Implemented as a subroutine taking no arguments and returning the same constant each time.

1012 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Because list constants are returned as lists, not as arrays, you must subscript a
list-valued constant using extra parentheses as you would any other list expres-
sion:

$homedir = USERINFO[7]; # WRONG
$homedir = (USERINFO)[7]; # ok

Although using all capital letters (plus underscores between words) for constants
is generally recommended to help them stand out and to avoid potential colli-
sions with other keywords and subroutine names, this is merely a convention.
Constant names must begin with an alphabetic character or an underscore, but
(if alphabetic) it need not be an upper- or titlecase one.

Constants are not private to the lexical scope in which they occur. Instead, they
are simply argumentless subroutines in the symbol table of the package issuing
the declaration. You may refer to a constant CONST from package Other as
Other::CONST. Read more about compile-time inlining of such subroutines in the
section “Inlining Constant Functions” on page 331 in Chapter 7.

As with all use directives, use constant happens at compile time. It’s therefore
misleading at best to place a constant declaration inside a conditional statement,
such as if ($foo) { use constant ... }. Since this happens at compile time, Perl
can replace constant expressions with their value as it runs into them.

Omitting the value for a symbol gives it the value of undef in scalar context or the
empty list, (), in list context. But it is probably best to declare these explicitly:

use constant CAMELIDS => ();
use constant CAMEL_HOME => undef;

Restrictions on constant
List constants are not currently inlined the way scalar constants are. And it is not
possible to have a subroutine or keyword with the same name as a constant. This
is probably a Good Thing.

You cannot declare more than one named constant at a time as a list:

use constant FOO => 4, BAR => 5; # WRONG

That defines a constant named FOO whose return list is (4, "BAR", 5). You need
this instead:

use constant FOO => 4
use constant BAR => 5;

constant | 1013

www.it-ebooks.info

http://www.it-ebooks.info/

or even:

use constant {
 FOO => 4,
 BAR => 5,
};

You can get yourself into trouble if you use a constant in a context that automat-
ically quotes bare names. (This is true for any subroutine call, not just constants.)
For example, you can’t say $hash{CONSTANT} because CONSTANT will be interpreted
as a string. Use $hash{CONSTANT()} or $hash{+CONSTANT} to prevent the quoting
mechanism from kicking in. Similarly, since the => operator quotes its left
operand if that operand is a bare name, you must say CONSTANT() => "value"
instead of CONSTANT=> "value" .

deprecate
use deprecate;

Core modules that have been marked for removal from the Standard Library use
this pragma to issue a warning that you should use the CPAN version instead. If
your module is not in the Standard Library, this pragma does nothing.

diagnostics
use diagnostics; # compile–time enable
use diagnostics –verbose;

enable diagnostics; # runtime enable
disable diagnostics; # runtime disable

This pragma expands the normal terse diagnostics and suppresses duplicate
warnings. It augments the short versions with the more explicative and endearing
descriptions found in perldiag. Like other pragmas, it also affects the compilation
phase of your program, not just the run phase.

When you use diagnostics at the start of your program, this automatically en-
ables Perl’s –w command-line switch by setting $^W to 1. The remainder of your
whole compilation will then be subject to enhanced diagnostics. These still go
out on STDERR.

Because of the interaction between runtime and compile-time issues, and because
it’s probably not a good idea anyway, you may not use no diagnostics to turn
them off at compile time. However, you may control their behavior at runtime
using the disable and enable methods. (Make sure you do the use first or else you
won’t be able to get at the methods.)

1014 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://perldoc.perl.org/perldiag.html
http://www.it-ebooks.info/

The –verbose flag first prints out the perldiag manpage’s introduction before any
other diagnostics are issued. The $diagnostics::PRETTY variable can be set (before
the use) to generate nicer escape sequences for pagers like less(1) or more(1):

BEGIN { $diagnostics::PRETTY = 1 }
use diagnostics;

Warnings dispatched from Perl and detected by this pragma are each displayed
only once. This is useful when you’re caught in a loop that’s generating the same
warning (like uninitialized value) over and over again. Manually generated warn-
ings, such as those stemming from calls to warn or carp, are unaffected by this
duplicate detection mechanism.

Here are some examples of using the diagnostics pragma. The following file is
certain to trigger a few errors at both runtime and compile time:

use diagnostics;
print NOWHERE "nothing\n";
print STDERR "\n\tThis message should be unadorned.\n";
warn "\tThis is a user warning";
print "\nDIAGNOSTIC TESTER: Please enter a<CR> here: ";
my $a, $b = scalar <STDIN>;
print "\n";
print $x/$y;

Here’s the output:

Parentheses missing around "my" list at diag.pl line 6 (#1)
 (W parenthesis) You said something like

 my $foo, $bar = @_;

 when you meant

 my ($foo, $bar) = @_;

 Remember that "my", "our", "local" and "state" bind
 tighter than comma.

Name "main::y" used only once: possible typo at diag.pl line 8 (#2)
 (W once) Typographical errors often show up as unique variable names.
 If you had a good reason for having a unique name, then just mention
 it again somehow to suppress the message. The our declaration is
 provided for this purpose.

 NOTE: This warning detects symbols that have been used only once so
 $c, @c, %c, *c, &c, sub c{}, c(), and c (the filehandle or format)
 are considered the same; if a program uses $c only once but also uses
 any of the others it will not trigger this warning.

Name "main::b" used only once: possible typo at diag.pl line 6 (#2)

diagnostics | 1015

www.it-ebooks.info

http://perldoc.perl.org/perldiag.html
http://www.it-ebooks.info/

Name "main::NOWHERE" used only once: possible typo at diag.pl line 2 (#2)
Name "main::x" used only once: possible typo at diag.pl line 8 (#2)

print() on unopened filehandle NOWHERE at diag.pl line 2 (#3)
 (W unopened) An I/O operation was attempted on a filehandle that was
 never initialized. You need to do an open(), a sysopen(), or a socket()
 call, or call a constructor from the FileHandle package.

 This message should be unadorned.
 This is a user warning at diag.pl line 4.

DIAGNOSTIC TESTER: Please enter a<CR> here:

Use of uninitialized value $y in division (/) at diag.pl line 8, <STDIN>
 line 1 (#4) (W uninitialized) An undefined value was used as if it
 were already defined. It was interpreted as a "" or a 0, but maybe
 it was a mistake. To suppress this warning assign a defined value to
 your variables.

 To help you figure out what was undefined, perl will try to tell you
 the name of the variable (if any) that was undefined. In some cases
 it cannot do this, so it also tells you what operation you used the
 undefined value in. Note, however, that perl optimizes your program
 and the operation displayed in the warning may not necessarily appear
 literally in your program. For example, "that $foo" is usually
 optimized into "that ". $foo, and the warning will refer to the
 concatenation (.) operator, even though there is no . in your program.

Use of uninitialized value $x in division (/) at diag.pl line 8,
 <STDIN> line 1 (#4)

Illegal division by zero at diag.pl line 8, <STDIN> line 1 (#5)
 (F) You tried to divide a number by 0. Either something was wrong in
 your logic, or you need to put a conditional in to guard against
 meaningless input.

Uncaught exception from user code:
 Illegal division by zero at diag.pl line 8, <STDIN> line 1.
 at diag.pl line 8

Diagnostic messages come from the perldiag manpage. If an extant $SIG{_ _
WARN_ _} handler is discovered, this will still be honored, but only after the diag
nostics::splainthis function (the pragma’s $SIG{_ _WARN_ _} interceptor) has had
its way with your warnings. Perl does not currently support stacked handlers, so
this is the best we can do for now. There is a $diagnostics::DEBUG variable you
may set if you’re desperately curious about what sorts of things are being inter-
cepted:

BEGIN { $diagnostics::DEBUG = 1 }
use diagnostics;

1016 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://perldoc.perl.org/perldiag.html
http://www.it-ebooks.info/

encoding
use encoding ENCODING;
use encoding "euc–jp";

This pragma was supposed to let you write Perl source in any ENCODING that you
like and have Perl convert your character strings correctly as well as to convert
standard output and error to the specified encoding. However, it has never
worked correctly and probably never can. Instead, convert your source code from
whatever legacy encoding you were using into UTF-8, and put a use utf8 dec-
laration at the top of the file. Set your standard I/O streams using the open pragma
or with binmode.

feature
use feature ":5.10"; # this is a "feature bundle"
use feature qw(say state switch unicode_strings);

{
 no feature qw(say);
 ...;
}

Perl future-proofs itself by introducing new keywords and features through the
feature pragma. This pragma enables or disables features in the lexical scope.
Specify the ones you want to turn on or off either by a version tag or the feature
name.

say

Enables the say keyword, which is like print but with a free newline.

state

Enables state, which allows persistent subroutine variables.

switch

Enables Perl’s super-charged switch structure, called given–when.

unicode_strings

This feature isn’t a keyword. Instead, it causes all string operations within
the lexical scope to use Unicode semantics. This also applies to regexes
compiled within the scope, even if they should eventually be executed out-
side of it. See “The Unicode Bug” in perlunicode. This feature is the only one
not in the :v5.10 bundle, although it is in the :v5.12 and later bundles.

feature | 1017

www.it-ebooks.info

http://perldoc.perl.org/perlunicode.html
http://www.it-ebooks.info/

fields
This pragma was deprecated in v5.10, so we’re not going to encourage you to use
it by telling you much about it. It was designed as a way to declare class fields
that would be type checked at compile time. To do this, it relied on the (since-
removed) pseudohash feature. If you’re stuck with fields in your legacy code,
you can still read about it in its own documentation, which is still in v5.14 (at
least).

filetest
$can_perhaps_read = –r "file"; # use the mode bits
{
 use filetest "access"; # intuit harder
 $can_really_read = –r "file";
}
$can_perhaps_read = –r "file"; # use the mode bits again

This lexically scoped pragma tells the compiler to change the behavior of the
unary file test operators –r, –w, –x, –R, –W, and –X, documented in Chapter 3. The
default behavior for these file tests is to use the mode bits returned by the stat
family of calls. However, this may not always be the right thing to do, such as
when a filesystem understands ACLs (access control lists). In environments such
as AFS where this matters, the filetest pragma may help the permission oper-
ators to return results more consistent with other tools.

There may be a slight performance decrease in the affected file test operators
under filetest, since on some systems the extended functionality needs to be
emulated.

Warning: any notion of using file tests for security purposes is a lost cause from
the start. There is a window open for race conditions, because there’s no way to
guarantee that the permissions will not change between the test and the real
operation. If you are the least bit serious about security, you won’t use file test
operators to decide whether something will work. Instead, just go ahead and try
the real operation, then test for whether that operation succeeded. (You should
be doing that anyway.) See the section “Handling Timing Glitches” on page 661 in
Chapter 20.

1018 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

if
use if CONDITION, MODULE => IMPORTS;

use if $^O =~ /MSWin/, "Win32::File";

use if $^V >= 5.010, parent => qw(Mojolicious::UserAgent);
use if $^V < 5.010, base => qw(LWP::UserAgent);

The if pragma controls the loading of a module based on some condition. This
pragma doesn’t handle loading modules with a minimum version. Specify an
import list after the module name.

inc::latest
use inc::latest "Module::Build";

Some module authors started distributing their dependencies inside their dis-
tributions in an inc directory. They wanted to use a particular version of
Module::Build, for instance, so they’d install that module in inc in their distri-
bution and prefer it to any installed version. Before the Perl tool chain understood
configure_requires, this was a hack to start the build process with modules
within the distribution.

The inc::latest module tells perl to load a version in inc, but only if its version
is greater than the one installed in the rest of @INC.

integer
use integer;
$x = 10/3;
$x is now 3, not 3.33333333333333333

This lexically scoped pragma tells the compiler to use integer operations from
here through the end of the enclosing block. On many machines, this doesn’t
matter a great deal for most computations, but on those few remaining archi-
tectures without floating-point hardware, it can amount to a dramatic perfor-
mance difference.

Note that this pragma affects certain numeric operations, not the numbers them-
selves. For example, if you run this code:

use integer;
$x = 1.8;
$y = $x + 1;
$z = –1.8;

integer | 1019

www.it-ebooks.info

http://www.it-ebooks.info/

you’ll be left with $x == 1.8, $y == 2, and $z == –1. The $z case happens because
unary – counts as an operation, so the value 1.8 is truncated to 1 before its sign
bit is flipped. Likewise, functions that expect floating-point numbers, such as
sqrt or the trig functions, still receive and return floats even under use integer.
So sqrt(1.44) is 1.2, but 0 + sqrt(1.44) is now just 1.

Native integer arithmetic as provided by your C compiler is used. This means that
Perl’s own semantics for arithmetic operations might not be preserved. One
common source of trouble is the modulus of negative numbers. Perl may do it
one way, but your hardware may do it another:

% perl –le "print (4 % –3)"
–2

% perl –Minteger –le "print (4 % –3)"
1

Additionally, integer arithmetic causes the bit operators to treat their operands as
signed values instead of unsigned values:

% perl –le "print ~0"
18446744073709551615

% perl –Minteger –le "print ~0"
–1

less
use less;

use less "CPU";
use less "memory";
use less "time";
use less "disk";
use less "fat"; # great with "use locale";

Implemented in v5.10 and later, this pragma is intended to someday give hints to
the compiler, code-generator, or interpreter to enable certain trade-offs by using
the new hints hash reference that caller now returns.

This module has always been part of the Perl distribution (as a joke), but it didn’t
do anything until v5.10. Even then, hints are available only in their lexical scope,
so although the pragma documentation makes it sound as though another mod-
ule can easily find out what you want less of, this is still only a demonstration of
the new caller feature.

It is not an error to ask to use less of something that Perl doesn’t know how to
make less of right now.

1020 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

lib
use lib "$ENV{HOME}/libperl"; # add ~/libperl
no lib "."; # remove cwd

This pragma simplifies the manipulation of @INC at compile time. It is typically
used to add extra directories to Perl’s search path so that later do, require, and
use statements will find library files that aren’t located in Perl’s default search path.
It’s especially important with use, since that happens at compile time, too, and
setting @INC normally (that is, at runtime) would be too late.

Parameters to use lib are prepended to the beginning of Perl’s search path. Saying
use lib LIST is almost the same as saying BEGIN { unshift(@INC, LIST) }, but
use lib LIST includes support for platform-specific directories. For each given
directory $dir in its argument list, the lib pragma also checks to see whether a
directory named $dir/$archname/auto exists. If so, the $dir/$archname directory
is assumed to be a corresponding platform-specific directory, so it is added to
@INC (in front of $dir).

To avoid redundant additions that slow access time and waste a small amount of
memory, trailing duplicate entries in @INC are removed when entries are added.

Normally, you should only add directories to @INC. If you do need to delete di-
rectories from @INC, take care to delete only those that you yourself added, or
those you’re somehow certain aren’t needed by other modules in your program.
Other modules may have added directories to your @INC that they need for correct
operation.

The no lib pragma deletes all instances of each named directory from @INC. It
also deletes any corresponding platform-specific directory as described earlier.

When the lib pragma is loaded, it saves the current value of @INC to the array
@lib::ORIG_INC. So to restore the original, just copy that array to the real @INC.

Even though @INC typically includes dot (.), the current directory, this really isn’t
as useful as you’d think. For one thing, the dot entry comes at the end, not the
start, so that modules installed in the current directory don’t suddenly override
system versions. You could say use lib "." if that’s what you really want. More
annoyingly, it’s the current directory of the Perl process, not the directory that
the script was installed into, which makes it completely unreliable. If you create
a program plus some modules for that program to use, it will work while you’re
developing, but it won’t work when you aren’t running in the directory the files
live in.

One solution for this is to use the standard FindBin module:

lib | 1021

www.it-ebooks.info

http://www.it-ebooks.info/

use FindBin; # where was script installed?
use lib $FindBin::Bin; # use that dir for libs, too

The FindBin module tries to guess the full path to the directory in which the
running process’s program was installed. Don’t use this for security purposes,
because malicious programs can usually deceive it if they try hard enough. But
unless you’re intentionally trying to break the module, it should work as in-
tended. The module provides a $FindBin::Bin variable (which you may import)
that contains the module’s guess of where the program was installed. You can
then use the lib pragma to add that directory to your @INC, thus producing an
executable-relative path.

Some programs expect to be installed in a bin directory and then find their library
modules in “cousin” files installed in a lib directory at the same level as bin. For
example, programs might go in /usr/local/apache/bin or /opt/perl/bin, and libraries
go in /usr/local/apache/lib and /opt/perl/lib. This code takes care of that neatly:

use FindBin qw($Bin);
use lib "$Bin/../lib";

If you find yourself specifying the same use lib in several unrelated programs,
you might consider setting the PERL5LIB environment variable instead. See the
description of the PERL5LIB environment variable in Chapter 17.

syntax for sh, bash, ksh, or zsh
$ PERL5LIB=$HOME/perllib; export PERL5LIB

syntax for csh or tcsh
% setenv PERL5LIB ~/perllib

If you want to use optional directories on just this program without changing its
source, look into the –I command-line switch:

% perl –I ~/perllib program–path args

See Chapter 17 for more about using the –I switch on the command line.

locale
@x = sort @y; # ASCII sorting order
{
 use locale;
 @x = sort @y; # Locale–defined sorting order
}
@x = sort @y; # ASCII sorting order again

This lexically scoped pragma tells the compiler to enable (or disable, under no
locale) POSIX locales for built-in operations. Enabling locales tells Perl’s string
comparison and case-related functionality to be respectful of your POSIX

1022 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

language environment. If this pragma is in effect and your C library knows about
POSIX locales, Perl looks to your LC_CTYPE setting for regular expressions and to
your LC_COLLATE setting for string comparisons like those in sort.

Since locales are more a form of nationalization than of internationalization, the
use of locales may interact oddly with Unicode. It’s more portable and more
reliable to use Perl’s native Unicode facilities for matters of casing and compar-
ison, which are standard across all installations, instead of relying on possibly
dodgy vendor locales. See the sections “Comparing and Sorting Unicode Text”
and “Locale Sorting” in Chapter 6.

mro
use mro; # enables next::method and friends globally

use mro "dfs"; # enable DFS MRO for this class (Perl default)
use mro "c3"; # enable C3 MRO for this class

By default, Perl searches for methods with a depth-first search through the classes
(package names) in @INC. The mro pragma changes that method resolution order.
Specifying dfs uses the default depth-first search, while specifying c3 uses the C3
algorithm to resolve certain ambiguities in multiple inheritance. Without an im-
port list, keeps the default method resolution order by enabling features that
interact with C3 method resolution (see Chapter 12).

open
use open IN => ":crlf", OUT => ":raw";
use open OUT => ":utf8";
use open IO => ":encoding(iso–8859–7)";

use open IO => ":locale";

use open ":encoding(utf8)";
use open ":locale";
use open ":encoding(iso–8859–7)";

use open ":std";

The open pragma declares one or more default layers (formerly called disciplines)
for I/O operations, but only if your Perl binary was built with PerlIO. Any open
and readpipe (that is, qx// or backticks) operators found within the lexical scope
of this pragma that do not specify their own layers will use the declared defaults.
Neither open with an explicit set of layers, nor sysopen under any circumstances,
is influenced by this pragma.

open | 1023

www.it-ebooks.info

http://www.it-ebooks.info/

There are several layers to choose from:

:bytes

This layer treats the data as characters with codepoints in the range 0 to 255.
This is the inverse of the :utf8 layer. This is not the same thing as :raw,
though, since this still may do CRLF processing under Windows systems.

:crlf

This layer corresponds to the text mode, in which line endings are translated
to or from the native line endings. This is a no-op on a platform where
binmode is a no-op. This layer is available without PerlIO.

:encoding(ENCODING)

This layer specifies any encoding supported by the Encode module, directly
or indirectly.

:locale

This layer decodes or encodes its data according to the locale settings.

:raw

This pseudolayer turns off any layer below it that would interpret the data
as other than binary data. This is a no-op on a platform where binmode is a
no-op. This layer is available without PerlIO.

:std

The :std layer isn’t really a layer. Importing it applies the other specified
layers to the standard filehandles. With OUT, it sets layers on the standard
output and error. With IN, it sets layers on standard input.

:utf8

This layer decodes or encodes its data as UTF-8, treating the data as character
strings. The inverse of this layer is :bytes.

If you use the built-in utf8 layer on input streams, it is very important that you
be prepared to handle encoding errors. This is the best way:

use warnings FATAL => "utf8"; # in case there are input encoding errors

That way you take an exception if there is a problem. Recovering from encoding
errors is possible, but challenging.

ops
perl –M–ops=system ... # disable the "system" opcode

The ops pragma disables certain opcodes, with irreversible global effect. The Perl
interpreter always compiles Perl source into an internal representation of op-
codes before it runs it. By default, there are no restrictions on which opcodes Perl

1024 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

will run. Disabling opcodes restricts what Perl will compile; any code that would
use a disable opcode causes a compilation error. Don’t think that this provides
robust security, though. The Opcode module has more details about opcodes. Also
see the Safe module (Chapter 20), which might be a better choice for you.

overload
In the Number module:

package Number;
use overload "+" => \&myadd,
 "–" => \&mysub,
 "*=" => "multiply_by";

In your program:

use Number;
$a = Number–>new(57);
$b = $a + 5;

The built-in operators work well on strings and numbers, but make little sense
when applied to object references (since, unlike C or C++, Perl doesn’t allow
pointer arithmetic). The overload pragma lets you redefine the meanings of these
built-in operations when applied to objects of your own design. In the previous
example, the call to the pragma redefines three operations on Number objects:
addition will call the Number::myadd function, subtraction will call the Number::
mysub function, and the multiplicative assignment operator will call the multiply_by
method in class Number (or one of its base classes). We say of these operators that
they are now overloaded because they have additional meanings overlaid on them
(and not because they have too many meanings—though that may also be the
case).

For much more on overloading, see Chapter 13.

overloading
no overloading;

This is one of the few pragmas mostly used to turn something off instead of
turning something on. On its own, it turns off all overloaded operations, return-
ing them to their normal behavior for the rest of the lexical scope.

To disable particular overloaded operations, specify the same keys that over
load uses:

no overloading qw(""); # no stringification overloading

overloading | 1025

www.it-ebooks.info

http://www.it-ebooks.info/

To reenable overloading, do it in reverse:

use overloading; # all back on

use overloading @ops; # reenable only some of them

parent
use parent qw(Mother Father);

The parent pragma supersedes the base pragma. It loads modules and sets up
inheritance relationships without the %FIELDS hash magic, and it provides a way
to set up inheritance without loading files.

The following example is equivalent to loading both parent modules and adding
them to @INC without declaring @INC explicitly:

BEGIN {
 require Mother;
 require Father;
 push @ISA, qw(Mother Father);
}

This assumes each parent module lives in its own file. If the parent classes do not live
in separate files, perhaps because you’ve defined them in the same file or already
loaded them from a file as part of another class, you can use the –norequire option
to merely set up the inheritance relationship:

use parent qw(–norequire Mother Father);

This is equivalent to adding those classes to @INC:

BEGIN {
 push @ISA, qw(Mother Father);
}

re
This pragma controls the use of regular expressions. It has five possible invoca-
tions: taint; eval and /flags mode, which are lexically scoped; and debug and
debugcolor, which aren’t.

use re "taint";
Contents of $match are tainted if $dirty was also tainted
($match) = ($dirty =~ /^(.*)$/s);

Allow code interpolation:
use re "eval";
$pat = '(?{ $var = 1 })'; # embedded code execution
/alpha${pat}omega/; # won't fail unless under –T

1026 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

 # and $pat is tainted

use re "/a"; # by default, every pattern
 # has the /a flag
use re "/msx"; # by default, every pattern
 # has the /msx flags

use re "debug"; # like "perl –Dr"
/^(.*)$/s; # output debugging info during
 # compile time and runtime

use re "debugcolor"; # same as "debug",
 # but with colored output

use re qw(Debug LIST); # fine control of debugging output

When use re "taint" is in effect and a tainted string is the target of a regex, the
numbered regex variables and values returned by the m// operator in list context
are all tainted. This is useful when regex operations on tainted data aren’t meant
to extract safe substrings, but are meant to do other transformations instead. See
the discussion on tainting in Chapter 20.

When use re "eval" is in effect, a regex is allowed to contain assertions that
execute Perl code, which are of the form (?{ ... }), even when the regex contains
interpolated variables. Execution of code segments resulting from variable in-
terpolation into a regex is normally disallowed for security reasons: you don’t
want programs that read patterns from config files, command-line arguments,
or CGI form fields to suddenly start executing arbitrary code if they weren’t
designed to expect this possibility. This pragma allows only untainted strings to
be interpolated; tainted data will still raise an exception (if you’re running with
taint checks enabled). See also Chapter 5 and Chapter 20.

For purposes of this pragma, interpolation of precompiled regular expressions
(produced by the qr// operator) is not considered variable interpolation. Never-
theless, when you build the qr// pattern, it needs to have use re "eval" in effect
if any of its interpolated strings contain code assertions. For example:

$code = '(?{ $n++ })'; # code assertion
$str = '\b\w+\b' . $code; # build string to interpolate

$line =~ /$str/; # this needs use re 'eval'

$pat = qr/$str/; # this also needs use re 'eval'
$line =~ /$pat/; # but this doesn't need use re 'eval'

The flags mode, use re "/flags", enables default pattern modifiers for the match,
substitution, and regular expression quoting operators in its lexical scope. For

re | 1027

www.it-ebooks.info

http://www.it-ebooks.info/

instance, if you want all patterns in your file to use ASCII semantics for its char-
acter classes (\d, \w, and \s):

while (<>) {
 use re "/a";
 if (/\d/) { # only 0 .. 9
 print "Found an ASCII digit: $_";
 }
}

Turning on one of the pattern modifiers that affects classic and POSIX character
classes (/adlu) overrides any settings from the locale pragma or the unicode
_strings feature.

To turn on multiline string mode so that ^ and $ match near newlines, not just
at the ends of the string (/m), . matches newline (/s), and extended patterns (/x),
use:

use re "/msx";

Under use re "debug", Perl emits debugging messages when compiling and when
executing regular expressions. The output is the same as that obtained by running
a “debugging Perl” (one compiled with –DDEBUGGING passed to the C compiler)
and then executing your Perl program under Perl’s –Dr command-line switch.
Depending on how complicated your pattern is, the resulting output can be
overwhelming. Calling use re "debugcolor" enables more colorful output that
can be useful, provided your terminal understands color sequences. Set your
PERL_RE_TC environment variable to a comma-separated list of relevant term-
cap(5) properties for highlighting. For more details, see Chapter 18.

To get more control of the debugging output, use the Debug (capital D) and a list
of things to debug. All is equivalent to use re "debug":

{
 use re qw(Debug All); # just like "use re 'debug'"

 ...;
}

To get finer-grained control of the debugging, try other options. For example, the
COMPILE option outputs only debugging statements related to pattern compilation:

{
 use re qw(Debug COMPILE); # just like 'use re "debug"'

 ...;
}

Many other options are listed in the re documentation.

1028 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

sigtrap
use sigtrap;
use sigtrap qw(stack–trace old–interface–signals); # same thing

use sigtrap qw(BUS SEGV PIPE ABRT);
use sigtrap qw(die INT QUIT);
use sigtrap qw(die normal–signals);
use sigtrap qw(die untrapped normal–signals);
use sigtrap qw(die untrapped normal–signals
 stack–trace any error–signals);

use sigtrap "handler" => \&my_handler, "normal–signals";
use sigtrap qw(handler my_handler normal–signals stack–trace error–signals);

The sigtrap pragma installs some simple signal handlers on your behalf so that
you don’t have to worry about them. This is useful in situations where an un-
trapped signal would cause your program to misbehave, like when you have END
{} blocks, object destructors, or other at-exit processing that needs to be run no
matter how your program happens to terminate.

When your program dies of an uncaught signal, the program exits immediately
without cleanup. If instead you catch and convert such signals into fatal excep-
tions, good things happen: all scopes are exited, their resources are relinquished,
and any END blocks are processed.

The sigtrap pragma provides two simple signal handlers for your use. One gives
a Perl stack trace, and the other throws an exception via die. Alternately, you can
supply your own handler for the pragma to install. You may specify predefined
sets of signals to trap; you can also supply your own explicit list of signals. The
pragma can optionally install handlers for only those signals that have not been
otherwise handled.

Arguments passed to use sigtrap are processed in order. When a user-supplied
signal name or the name of one of sigtrap’s predefined signal lists is encountered,
a handler is immediately installed. When an option is encountered, this affects
only those handlers installed later in processing the argument list.

Signal Handlers
These options affect which handler will be used for signals installed later:

stack–trace

This pragma-supplied handler outputs a Perl stack trace to STDERR and then
tries to dump core. This is the default signal handler.

sigtrap | 1029

www.it-ebooks.info

http://www.it-ebooks.info/

die

This pragma-supplied handler calls die via Carp::croak with a message in-
dicating the signal caught.

handler YOURHANDLER

YOURHANDLER will be used as the handler for signals installed later. YOURHANDLER
can be any value valid for assignment into %SIG. Remember that the proper
functioning of many C library calls (particularly standard I/O calls) cannot
be guaranteed within a signal handler. Worse, it’s hard to guess which bits
of C library code are called from which bits of Perl code. (On the other hand,
many signals that sigtrap traps are pretty vile—they’re gonna take you down
anyway, so there’s not much harm in trying to do something, now is there?)

Predefined Signal Lists
The sigtrap pragma has a few built-in lists of signals to trap:

normal–signals

These are the signals a program might normally expect to encounter, which,
by default, cause it to terminate. They are the HUP, INT, PIPE, and TERM signals.

error–signals

These are the signals that usually reflect a serious problem with the Perl
interpreter or with your program. They are the ABRT, BUS, EMT, FPE, ILL, QUIT,
SEGV, SYS, and TRAP signals.

old–interface–signals

These are the signals that were trapped by default under an older version of
sigtrap’s interface. They are ABRT, BUS, EMT, FPE, ILL, PIPE, QUIT, SEGV, SYS,
TERM, and TRAP. If no signals or signals lists are passed to use sigtrap, this
list is used.

If your platform does not implement a particular signal named in the predefined
lists, that signal name will be silently ignored. (The signal itself can’t be ignored
because it doesn’t exist.)

Other Arguments to sigtrap
untrapped

This token suppresses the installation of handlers for subsequently listed
signals if they’ve already been trapped or ignored.

any

This token installs handlers for all subsequently listed signals. This is the
default behavior.

1030 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

signal

Any argument that looks like a signal name (that is, one matching the pat-
tern /^[A–Z][A–Z0–9]*$/) requests sigtrap to handle that signal.

number

A numeric argument that requires the version number of the sigtrap pragma
to be at least number. This works just like most regular modules that have a
$VERSION package variable:

% perl –Msigtrap –le 'print $sigtrap::VERSION'
1.02

Examples of sigtrap
Provide a stack trace for the old interface signals:

use sigtrap;

Same thing, but more explicitly:

use sigtrap qw(stack–trace old–interface–signals);

Provide a stack trace only on the four listed signals:

use sigtrap qw(BUS SEGV PIPE ABRT);

Die on an INT or a QUIT signal:

use sigtrap qw(die INT QUIT);

Die on any of HUP, INT, PIPE, or TERM:

use sigtrap qw(die normal–signals);

Die on HUP, INT, PIPE, or TERM—except don’t change the behavior for signals that
have already been trapped or ignored elsewhere in the program:

use sigtrap qw(die untrapped normal–signals);

Die on receipt of any currently untrapped normal–signals; additionally, provide
a stack backtrace on receipt of any of the error–signals:

use sigtrap qw(die untrapped normal–signals
 stack–trace any error–signals);

Install the routine my_handler as the handler for the normal–signals:

use sigtrap "handler" => \&my_handler, "normal–signals";

Install my_handler as the handler for the normal–signals; provide a Perl stack
backtrace on receipt of any of the error–signals:

use sigtrap qw(handler my_handler normal–signals
 stack–trace error–signals);

sigtrap | 1031

www.it-ebooks.info

http://www.it-ebooks.info/

sort
Before v5.8, quicksort was the default algorithm for Perl’s built-in sort function.
The quicksort algorithm has at its worst quadratic behavior, and it doesn’t nec-
essarily preserve the order of elements that sort the same (so it’s unstable). Perl
v5.8 changed the default to a merge sort, which at its worst has O(N log N)
behavior and preserves the order of equal elements (so it’s stable).

The sort pragma lets you choose which algorithm to use. And in case the default
might someday change from a mergesort, you can choose a stable sort without
picking the particular algorithm:

use sort "stable"; # guarantee stability
use sort "_quicksort"; # use a quicksort algorithm
use sort "_mergesort"; # use a mergesort algorithm
use sort "defaults"; # revert to default behavior
no sort "stable"; # stability not important

use sort "_qsort"; # alias for quicksort

my $current;
BEGIN {
 $current = sort::current(); # identify prevailing algorithm
}

strict
use strict; # Install all three strictures.

use strict "vars"; # Variables must be predeclared
use strict "refs"; # Can't use symbolic references
use strict "subs"; # Bareword strings must be quoted

use strict; # Install all...
no strict "vars"; # ...then renege on one

use v5.12; # by default with v5.12.0 or later

This lexically scoped pragma changes some basic rules about what Perl considers
to be legal code. Sometimes these restrictions seem too strict for casual pro-
gramming, such as when you’re just trying to whip up a five-line filter program.
The larger your program, the stricter you need to be about it. If you declare a
minimum version of perl with use, and that minimum version is v5.12 or later,
you get strictures implicitly.

Currently, there are three possible things to be strict about: subs, vars, and
refs. If no import list is supplied, all three restrictions are assumed.

1032 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

strict "refs"
This generates a runtime error if you try to dereference a string instead of a ref-
erence, whether intentionally or otherwise.

See Chapter 8 for more about these.

use strict "refs";

$ref = \$foo; # Store "real" (hard) reference
print $$ref; # Dereferencing is ok

$ref = "foo"; # Store name of global (package) variable
print $$ref; # WRONG, runtime error under strict refs

Symbolic references are suspect for various reasons. It’s surprisingly easy for even
well-meaning programmers to invoke them accidentally; strict "refs" guards
against that. Unlike real references, symbolic references can refer only to package
variables. They aren’t reference counted. And there’s often a better way to do
what you’re doing: instead of referencing a symbol in a global symbol table, use
a hash as its own mini symbol table. It’s more efficient, more readable, and less
error prone.

Nevertheless, some sorts of valid manipulation really do require direct access to
the package’s global symbol table of variables and function names. For example,
you might want to examine the @EXPORT list or the @ISA superclass of a given
package whose name you don’t know in advance. Or you might want to install
a whole slew of function calls that are all aliases to the same closure. This is just
what symbolic references are best at, but to use them while use strict is in effect,
you must first undo the refs stricture:

make a bunch of attribute accessors
for my $methname (qw/name rank serno/) {
 no strict "refs";
 *$methname = sub { $_[0]–>{ _ _PACKAGE_ _ . $methname } };
}

strict "vars"
Under this stricture, a compile-time error is triggered if you try to access a variable
that hasn’t met at least one of the following criteria:

• Predefined by Perl itself, such as @ARGV, %ENV, and global punctuation variables
like $. or $_.

• Declared with our (for a global) or my or state (for a lexical).

• Imported from another package. (The vars pragma fakes up an import, but
use our instead.)

strict | 1033

www.it-ebooks.info

http://www.it-ebooks.info/

• Fully qualified using its package name and the double-colon package sepa-
rator.

The local operator by itself isn’t good enough to keep use strict "vars" happy
because, despite its name, that operator doesn’t change whether the named vari-
able is globally visible. Instead, it gives the variable (or individual element of an
array or hash) a new, temporary value for the duration of the block at runtime.
You still need to use our to declare a global variable, or my or state to declare a
lexical variable. You can, however, localize an our:

local our $law = "martial";

Globals predefined by Perl are exempt from these requirements. This applies to
program-wide globals (those forced into package main like @ARGV or $_) and to
per-package variables like $a and $b, which are normally used by the sort func-
tion. Per-package variables used by modules like Exporter must still be declared
using our:

our @EXPORT_OK = qw(name rank serno);

strict "subs"
This stricture makes Perl treat all barewords as syntax errors. A bareword (“bear-
word” in ursine dialects) is any bare name or identifier that has no other inter-
pretation forced by context. (Context is often forced by a nearby keyword or
token, or by predeclaration of the word in question.) Historically, barewords
were interpreted as unquoted strings. This stricture outlaws that interpretation.
If you mean to use it as a string, quote it. If you mean to use it as a function call,
predeclare it or use parentheses.

As a particular case of forced context, remember that a bareword that appears by
itself in curly braces or on the lefthand side of the => operator counts as being
quoted, and so is not subject to this restriction.

use strict "subs";

$x = whatever; # WRONG: bareword error!
$x = whatever(); # This always works, though.

sub whatever; # Predeclare function.
$x = whatever; # Now it's ok.

These uses are permitted, because the => quotes:
%hash = (red => 1, blue => 2, green => 3);

$rednum = $hash{red}; # Ok, braces quote here

1034 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

But not this one:
@coolnums = @hash{blue, green}; # WRONG: bareword error
@coolnums = @hash{"blue", "green"}; # Ok, words now quoted
@coolnums = @hash{qw/blue green/}; # Likewise

subs
use subs qw/winken blinken nod/;
@x = winken 3..10;
@x = nod blinken @x;

This pragma predeclares as standard subroutines the names in the argument list.
The advantage is that you may now use those functions without parentheses as
list operators, just as if you’d declared them yourself. This is not necessarily as
useful as full declarations, because it doesn’t allow prototypes or attributes, such
as:

sub winken(@);
sub blinken(\@) : locked;
sub nod($) : lvalue;

Because it is based on the standard import mechanism, the use subs pragma is
not lexically scoped but package scoped. That is, the declarations are operative
for the entire file in which they appear, but only in the current package. You may
not rescind such declarations with no subs.

threads
Perl has used a couple of different threading models in its time. There were the
old v5.005 threads through the Threads module, but those were removed in v5.10.
The second way, introduced in v5.8, are “interpreter threads” (or “ithreads”)
that give each new thread its own Perl interpreter. If you know about threads
from some other language, forget all that for Perl’s threads because they are the
same in name only.

To use threads, you need a perl compiled with threads support. You can check
the output of perl –V and look for something like USE_ITHREADS in the compile-
time options. You can also check the Config module, which lets you inspect the
compile-time options inside your program:

use Config;
$Config{useithreads}
or die("Recompile Perl with threads to run this program.");

Many perls distributed with operating systems have a thread-enabled Perl already
since it’s easier to turn it on for everyone than have it off for everyone, making a

threads | 1035

www.it-ebooks.info

http://www.it-ebooks.info/

few people complain (which means you might squeeze extra performance out of
your Perl binary by recompiling it without thread support).

Here’s a short example that starts some threads, detaches them, and starts a final
thread and joins it. The program doesn’t wait for the detached threads to finish,
but it will wait for the joined thread to complete. You can create threads with a
code reference or a subroutine name, or using the async function from threads:

#!/usr/bin/perl
use v5.10;

use Config;
$Config{useithreads} || die "You need thread support to run this";

use threads;

threads–>create(sub {
 my $id = threads–>tid;
 foreach (0 .. 10) {
 sleep rand 5;
 say "Meow from cat $id ($_)";
 }
})–>detach;

for (0 .. 4) {
 my $t = async {
 my $id = threads–>tid;
 foreach (0 .. 10) {
 sleep rand 5;
 say "Bow wow from dog $id ($_)";
 }
 };
 $t–>detach;
 return $t;
};

threads–>create("bird")–>join;
sub bird {
 my $id = threads–>tid;
 for (0 .. 10) {
 sleep rand 5;
 say "Chirp from bird $id ($_)";
 }
}

You can read more about threads in perlthrtut, the Perl thread tutorial. Perl has a
way to share variables among threads with thread::shared and a way to set up a
shared queue with the Threads::Queue module.

1036 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://perldoc.perl.org/perlthrtut.html
http://www.it-ebooks.info/

utf8
use utf8;

The utf8 pragma declares that the Perl source for the rest of the lexical scope is
encoded as UTF-8. This lets you use Unicode string literals and identifiers.

use utf8;
my $résumé_name = "Björk Guðmundsdóttir";
{
 no utf8;
 my $mojibake = ' '; # probably erroneous
}

There are other features that the utf8 provides, but they are deprecated in favor
of the Encode module.

Note that as of v5.14, the compiler does not normalize identifiers, so you can’t tell
the difference between different ways to form the same glyphs (using composed
or decomposed characters). See Chapter 6 for details on normalization. We rec-
ommend that you normalize all of your Perl identifiers into NFC (or NFKC) to
avoid situations where you have two different variables that look the same.

vars
use vars qw($frobbed @munge %seen);

This pragma, once used to declare a global variable, is now unofficially deprecated
in favor of the our modifier. The previous declaration is better accomplished us-
ing:

our($frobbed, @munge, %seen);

or even:

our $frobbed = "F";
our @munge = "A" .. $frobbed;
our %seen = ();

No matter which of these you use, remember that they’re talking about package
globals, not file-scoped lexicals.

version
use version 0.77;

my $version = version–>parse($version_string);
my $qversion = qv($other_version_string);

version | 1037

www.it-ebooks.info

http://www.it-ebooks.info/

if ($version > $qversion) {
 say "Version is greater!";
}

The version module isn’t really a pragma, but it looks like one since its name is
all lowercase. Before v5.10, version provided a way to quote version with qv()
and compare version numbers. It sounds simple, but when you get down to the
hairy task it actually is, you might doubt your commitment to programming. For
instance, how do you order the versions 1.02, 1.2, and v1.2.0? Now Perl can do
that internally. It’s still a mess, though.3

vmsish
use vmsish; # all features

use vmsish "exit";
use vmsish "hushed";
use vmsish "status";
use vmsish "time";

no vmsish "hushed";
vmsish::hushed($hush);

use vmsish; # all features
no vmsish "time"; # but turn off 'time'

The vmsish pragma controls various features of Perl on VMS so your program acts
less like a Unix program and more like a VMS program. These features are lexi-
cally scoped, so you can enable and disable them as you need them.

exit
Under exit, using exit 1 and exit 0 both map to SS$_NORMAL, indicating a suc-
cessful exit. Under Unix emulation, exit 1 indicates an error.

hushed
Under hushed, a Perl program run from DCL does not print messages to SYS
$OUTPUT or SYS$ERROR on an unsuccessful exit. This does not suppress any mes-
sages from the Perl program itself. This affects only the exit and die statements
in its lexical scope, and only those that Perl compiles after it encounters this
pragma.

3. You might like David Golden’s “Version numbers should be boring”.

1038 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.dagolden.com/index.php/369/version-numbers-should-be-boring/
http://www.it-ebooks.info/

status
Under status, the system return value and the value of $? use the VMS exit status
rather than emulate the POSIX exit status.

time
With this feature, all times are relative to the local time zone instead of the default
Universal Time.

warnings
use warnings; # same as importing "all"
no warnings; # same as unimporting "all"

use warnings::register;
if (warnings::enabled()) {
 warnings::warn("some warning");
}

if (warnings::enabled("void")) {
 warnings::warn("void", "some warning");
}

warnings::warnif("Warnings are on");
warnings::warnif("number", "Something is wrong with a number");

This lexically scoped pragma permits flexible control over Perl’s built-in warnings,
both those emitted by the compiler as well as those from the runtime system.

Once upon a time, the only control you had in Perl over the treatment of warnings
in your program was through either the –w command-line option or the $^W
variable. Although useful, these tend to be all-or-nothing affairs. The –w option
ends up enabling warnings in pieces of module code that you may not have writ-
ten, which is occasionally problematic for you and embarrassing for the original
author. Using $^W to either disable or enable blocks of code can be less than
optimal because it works only during execution time, not during compile
time.4 Another issue is that this program-wide global variable is scoped dynam-
ically, not lexically. That means that if you enable it in a block and then from
there call other code, you again risk enabling warnings in code not developed
with such exacting standards in mind.

4. In the absence of BEGIN blocks, of course.

warnings | 1039

www.it-ebooks.info

http://www.it-ebooks.info/

The warnings pragma circumvents these limitations by being a lexically scoped,
compile-time mechanism that permits finer control over where warnings can or
can’t be triggered. A hierarchy of warning categories (see Figure 29-1) has been
defined to allow groups of warnings to be enabled or disabled in isolation from
one another. (The exact categorization is experimental and subject to change.)
These categories can be combined by passing multiple arguments to use or no:

use warnings qw(void redefine);
no warnings qw(io syntax untie);

If multiple instances of the warnings pragma are active for a given scope, their
effects are cumulative:

use warnings "void"; # Only "void" warnings enabled.
...
use warnings "io"; # Both "void" and "io" warnings now enabled

Figure 29-1. Perl’s warning categories

1040 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

...
no warnings "void"; # Only "io" warnings now enabled

To make fatal errors of all warnings enabled by a particular warnings pragma, use
the word FATAL at the front of the import list. This is useful when you would
prefer a certain condition that normally causes only a warning to abort your
program. Suppose, for example, that you considered it so improper to use an
invalid string as a number (which normally produces a value of 0) that you want
this brazen act to kill your program. While you’re at it, you decide that using
uninitialized values in places where real string or numeric values are expected
should also be cause for immediate suicide:

{
 use warnings FATAL => qw(numeric uninitialized);
 $x = $y + $z;
}

Now if either $y or $z is uninitialized (that is, holds the special scalar value,
undef), or if either contains a string that doesn’t cleanly convert into a numeric
value, your program will become suicidal; that is, instead of going merrily on its
way, or at most issuing a small complaint if you had warnings enabled, your
program will now raise an exception. (Think of this as Perl running in Python
mode.) If you aren’t trapping exceptions, that makes it a fatal error. The excep-
tion text is the same as would normally appear in the warning message.

Fatalizing all warnings at the top of your program with:

use warnings FATAL => "all";

doesn’t work very well, because it doesn’t distinguish between compile-time warn-
ings and runtime warnings. The first message from the compiler is often not the
one you need to see, but with compile-time fatalized warnings, it’s the one you'll
want to see. A better approach is to delay making them fatal until runtime.

use Carp qw(carp croak confess cluck);
use warnings; # compile–time warnings

at runtime, before you do anything else
$SIG{_ _WARN_ _} = sub { confess "FATALIZED WARNING: @_" };

An alternate application of this idea is to use cluck instead of confess. That way
you still get a stack dump, but your program continues. This can be helpful in
figuring the code path that leads to a warning. See the explanation of the %SIG
hash in 28 for other related examples.

The warnings pragma ignores the –w command-line switch and the value of the
$^W variable; the pragma’s settings take precedence. However, the –W command-
line flag overrides the pragma, enabling full warnings in all code within your

warnings | 1041

www.it-ebooks.info

http://www.it-ebooks.info/

program, even code loaded with do, require, or use. In other words, with –W,
Perl pretends that every block in your program has a use warnings "all" pragma.
Think of it as a lint(1) for Perl programs. (But see also the online documentation
for the B::Lint module.) The –X command-line flag works the other way around.
It pretends that every block has no warnings "all" in effect.

Several functions are provided to help module authors make their module’s func-
tions behave like built-in functions with respect to the lexical scoping of the caller
(that is, so that users of the module can lexically enable or disable warnings the
module might issue):

warnings::register

Registers the current module name as a new category of warnings, so users
of your module can turn off its warnings.

warnings::enabled(CATEGORY)

Returns true if the warnings category CATEGORY is enabled in the lexical scope
of the calling module. Otherwise, it returns false. If CATEGORY is not supplied,
the current package name is used.

warnings::warn(CATEGORY, MESSAGE)

If the calling module has not set CATEGORY to FATAL, prints MESSAGE to
STDERR. If the calling module has set CATEGORY to FATAL, prints MESSAGE to
STDERR, then dies. If CATEGORY is not supplied, the current package name is
used.

warnings::warnif(CATEGORY, MESSAGE)

Like warnings::warn, but only if CATEGORY is enabled.

User-Defined Pragmas
Perl v5.10 added a way to easily create your own lexically scoped pragmata. The
%^H hash contains information other code can inspect to get hints about what
you’d like to do, and caller has a reference to the version of that hash in effect
for the level you request:

my $hints = (caller(1))[10];

This is a simple hash with simple values. Without getting into the gory details,
this hash may be shared between threads so the internals store it in a compact
form that precludes any values other than integers, strings, and undef. That’s
okay, because you really only need it to denote whether your pragma’s feature
is on or off. This hash is also lexically scoped, so each lexical scope gets its own
version.

1042 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

To create your own pragma, define the three subroutines import, unimport, and
in_effect. The first two are invoked implicitly by use and no. Typically, use turns
on a feature by calling import, while no turns off that feature by calling unim
port. Aside from any special processing you’d like, your import and unimport set
a flag in %H. Outside your pragma, other code can call in_effect to find out
whether your pragma is enabled, which you’ll handle by looking in %H for the
value you set.

There are no rules on what you can put in %H, but remember that other pragmas
also use this hash for their own work, so choose a key other code is unlikely to
use, such as your package name.

Here’s a short pragma that replaces the built-in sqrt function with one that can
handle negative numbers (crudely). A use complex calls an import method, which
sets the complex key in %^H to 1 and creates a subroutine called sqrt that uses the
same definition as complex::complex_sqrt. The complex_sqrt uses in_effect to
see whether it should use a negative number. If so, it takes the square root of the
absolute value and, if the square is less than 0, appends “i” to the result:

use utf8;
use v5.10;

package complex;
use strict;
use warnings;
use Carp;

sub complex_sqrt {
 my $number = shift;
 if (complex::in_effect()) {
 my $root = CORE::sqrt(abs($number));
 $root .= "i" if $number < 0;
 return $root;
 }
 else {
 croak("Can't take sqrt of $number") if $number < 0;
 CORE::sqrt($number)
 }
}

sub import {
 $^H{complex} = 1;
 my($package) = (caller(1))[0];
 no strict "refs";
 *{ "${package}::sqrt" } = \&complex::complex_sqrt;
}

sub unimport {

User-Defined Pragmas | 1043

www.it-ebooks.info

http://www.it-ebooks.info/

 $^H{complex} = 0;
}

sub in_effect {
 my $hints = (caller(1))[10];
 return $hints–>{complex};
}

1;

Now parts of your program can create imaginary numbers:

use utf8;
use v5.10;
use complex;

say "1. √–25 is " => sqrt(–25);
say "2. √36 is " => sqrt(36);

eval {
 no complex;

 say "3. √–25 is " => sqrt(–25);
 say "4. √36 is " => sqrt(36);
} or say "Error: $@";

A no complex unsets $^H{complex}, disallowing negative arguments to complex for
the rest of the scope. The %^H hash is lexically scoped, so its previous value is
restored on scope exit. Inside the eval, the no complex turns off the special han-
dling, so sqrt(–25) causes an error:

1. √–25 is 5i
2. √36 is 6
Error: Can't take sqrt of –25 at sqrt.pl line 10

Although this is a toy example, using and returning Math::Complex would do a
better job, even if you use it directly instead of hiding it behind a pragma.

1044 | Chapter 29: Pragmatic Modules

www.it-ebooks.info

http://www.it-ebooks.info/

Glossary

When we italicize a word or phrase in here, it usually means you can find it
defined elsewhere in the glossary. Think of them as hyperlinks.

accessor methods
A method used to indirectly inspect or up-
date an object’s state (its instance variables).

actual arguments
The scalar values that you supply to a func-
tion or subroutine when you call it. For in-
stance, when you call power("puff"), the
string "puff" is the actual argument. See also
argument and formal arguments.

address operator
Some languages work directly with the mem-
ory addresses of values, but this can be like
playing with fire. Perl provides a set of as-
bestos gloves for handling all memory man-
agement. The closest to an address operator
in Perl is the backslash operator, but it gives
you a hard reference, which is much safer
than a memory address.

algorithm
A well-defined sequence of steps, explained
clearly enough that even a computer could
do them.

alias
A nickname for something, which behaves
in all ways as though you’d used the original
name instead of the nickname. Temporary
aliases are implicitly created in the loop vari-
able for foreach loops, in the $_ variable for
map or grep operators, in $a and $b during

sort’s comparison function, and in each el-
ement of @_ for the actual arguments of a
subroutine call. Permanent aliases are ex-
plicitly created in packages by importing
symbols or by assignment to typeglobs. Lex-
ically scoped aliases for package variables
are explicitly created by the our declaration.

alphabetic
The sort of characters we put into words. In
Unicode, this is all letters including all
ideographs and certain diacritics, letter
numbers like Roman numerals, and various
combining marks.

alternatives
A list of possible choices from which you
may select only one, as in, “Would you like
door A, B, or C?” Alternatives in regular ex-
pressions are separated with a single vertical
bar: |. Alternatives in normal Perl expres-
sions are separated with a double vertical
bar: ||. Logical alternatives in Boolean ex-
pressions are separated with either || or or.

anonymous
Used to describe a referent that is not directly
accessible through a named variable. Such a
referent must be indirectly accessible
through at least one hard reference. When
the last hard reference goes away, the anony-
mous referent is destroyed without pity.

1045

www.it-ebooks.info

http://www.it-ebooks.info/

application
A bigger, fancier sort of program with a
fancier name so people don’t realize they are
using a program.

architecture
The kind of computer you’re working on,
where one “kind” of computer means all
those computers sharing a compatible ma-
chine language. Since Perl programs are
(typically) simple text files, not executable
images, a Perl program is much less sensitive
to the architecture it’s running on than pro-
grams in other languages, such as C, that are
compiled into machine code. See also plat-
form and operating system.

argument
A piece of data supplied to a program, sub-
routine, function, or method to tell it what it’s
supposed to do. Also called a “parameter”.

ARGV
The name of the array containing the argu-
ment vector from the command line. If you
use the empty <> operator, ARGV is the name
of both the filehandle used to traverse the ar-
guments and the scalar containing the name
of the current input file.

arithmetical operator
A symbol such as + or / that tells Perl to do
the arithmetic you were supposed to learn
in grade school.

array
An ordered sequence of values, stored such
that you can easily access any of the values
using an integer subscript that specifies the
value’s offset in the sequence.

array context
An archaic expression for what is more cor-
rectly referred to as list context.

Artistic License
The open source license that Larry Wall cre-
ated for Perl, maximizing Perl’s usefulness,
availability, and modifiability. The current
version is 2.0 (http://www.opensource.org/li
censes/artistic-license.php).

ASCII
The American Standard Code for Informa-
tion Interchange (a 7-bit character set ade-
quate only for poorly representing English
text). Often used loosely to describe the
lowest 128 values of the various ISO-8859-
X character sets, a bunch of mutually in-
compatible 8-bit codes best described as
half ASCII. See also Unicode.

assertion
A component of a regular expression that
must be true for the pattern to match but
does not necessarily match any characters
itself. Often used specifically to mean a zero-
width assertion.

assignment
An operator whose assigned mission in life
is to change the value of a variable.

assignment operator
Either a regular assignment or a compound
operator composed of an ordinary assign-
ment and some other operator, that changes
the value of a variable in place; that is, rela-
tive to its old value. For example, $a += 2
adds 2 to $a.

associative array
See hash. Please. The term associative array
is the old Perl 4 term for a hash. Some lan-
guages call it a dictionary.

associativity
Determines whether you do the left opera-
tor first or the right operator first when you
have “A operator B operator C”, and the two
operators are of the same precedence. Oper-
ators like + are left associative, while opera-
tors like ** are right associative. See Chap-
ter 3 for a list of operators and their associa-
tivity.

asynchronous
Said of events or activities whose relative
temporal ordering is indeterminate because
too many things are going on at once.
Hence, an asynchronous event is one you
didn’t know when to expect.

application

1046 | Glossary

www.it-ebooks.info

http://www.opensource.org/licenses/artistic-license.php
http://www.opensource.org/licenses/artistic-license.php
http://www.it-ebooks.info/

atom
A regular expression component potentially
matching a substring containing one or more
characters and treated as an indivisible syn-
tactic unit by any following quantifier. (Con-
trast with an assertion that matches some-
thing of zero width and may not be quanti-
fied.)

atomic operation
When Democritus gave the word “atom” to
the indivisible bits of matter, he meant lit-
erally something that could not be cut: ἀ-
(not) + -τομος (cuttable). An atomic opera-
tion is an action that can’t be interrupted,
not one forbidden in a nuclear-free zone.

attribute
A new feature that allows the declaration of
variables and subroutines with modifiers, as
in sub foo : locked method. Also another
name for an instance variable of an object.

autogeneration
A feature of operator overloading of objects,
whereby the behavior of certain operators
can be reasonably deduced using more fun-
damental operators. This assumes that the
overloaded operators will often have the
same relationships as the regular operators.
See Chapter 13.

autoincrement
To add one to something automatically,
hence the name of the ++ operator. To instead
subtract one from something automatically
is known as an “autodecrement”.

autoload
To load on demand. (Also called “lazy” load-
ing.) Specifically, to call an AUTOLOAD sub-
routine on behalf of an undefined subrou-
tine.

autosplit
To split a string automatically, as the –a
switch does when running under –p or –n in
order to emulate awk. (See also the AutoS
plit module, which has nothing to do with
the –a switch but a lot to do with autoload-
ing.)

autovivification
A Graeco-Roman word meaning “to bring
oneself to life”. In Perl, storage locations
(lvalues) spontaneously generate themselves
as needed, including the creation of any hard
reference values to point to the next level of
storage. The assignment $a[5][5][5][5][5]
= "quintet" potentially creates five scalar
storage locations, plus four references (in
the first four scalar locations) pointing to
four new anonymous arrays (to hold the last
four scalar locations). But the point of au-
tovivification is that you don’t have to worry
about it.

AV
Short for “array value”, which refers to one of
Perl’s internal data types that holds an ar-
ray. The AV type is a subclass of SV.

awk
Descriptive editing term—short for “awk-
ward”. Also coincidentally refers to a ven-
erable text-processing language from which
Perl derived some of its high-level ideas.

backreference
A substring captured by a subpattern within
unadorned parentheses in a regex. Back-
slashed decimal numbers (\1, \2, etc.) later
in the same pattern refer back to the corre-
sponding subpattern in the current match.
Outside the pattern, the numbered variables
($1, $2, etc.) continue to refer to these same
values, as long as the pattern was the last
successful match of the current dynamic
scope.

backtracking
The practice of saying, “If I had to do it all
over, I’d do it differently,” and then actually
going back and doing it all over differently.
Mathematically speaking, it’s returning
from an unsuccessful recursion on a tree of
possibilities. Perl backtracks when it at-
tempts to match patterns with a regular
expression, and its earlier attempts don’t
pan out. See the section “The Little Engine
That /Could(n’t)?/” on page 241 in Chap-
ter 5.

backtracking

Glossary | 1047

www.it-ebooks.info

http://www.it-ebooks.info/

backward compatibility
Means you can still run your old program
because we didn’t break any of the features
or bugs it was relying on.

bareword
A word sufficiently ambiguous to be deemed
illegal under use strict 'subs'. In the ab-
sence of that stricture, a bareword is treated
as if quotes were around it.

base class
A generic object type; that is, a class from
which other, more specific classes are de-
rived genetically by inheritance. Also called
a “superclass” by people who respect their
ancestors.

big-endian
From Swift: someone who eats eggs big end
first. Also used of computers that store the
most significant byte of a word at a lower
byte address than the least significant byte.
Often considered superior to little-endian
machines. See also little-endian.

binary
Having to do with numbers represented in
base 2. That means there’s basically two
numbers: 0 and 1. Also used to describe a
file of “nontext”, presumably because such
a file makes full use of all the binary bits in
its bytes. With the advent of Unicode, this
distinction, already suspect, loses even more
of its meaning.

binary operator
An operator that takes two operands.

bind
To assign a specific network address to a
socket.

bit
An integer in the range from 0 to 1, inclusive.
The smallest possible unit of information
storage. An eighth of a byte or of a dollar.
(The term “Pieces of Eight” comes from be-
ing able to split the old Spanish dollar into
8 bits, each of which still counted for money.

That’s why a 25-cent piece today is still “two
bits”.)

bit shift
The movement of bits left or right in a com-
puter word, which has the effect of multi-
plying or dividing by a power of 2.

bit string
A sequence of bits that is actually being
thought of as a sequence of bits, for once.

bless
In corporate life, to grant official approval to
a thing, as in, “The VP of Engineering has
blessed our WebCruncher project.” Simi-
larly, in Perl, to grant official approval to a
referent so that it can function as an object,
such as a WebCruncher object. See the
bless function in Chapter 27.

block
What a process does when it has to wait for
something: “My process blocked waiting for
the disk.” As an unrelated noun, it refers to
a large chunk of data, of a size that the op-
erating system likes to deal with (normally a
power of 2 such as 512 or 8192). Typically
refers to a chunk of data that’s coming from
or going to a disk file.

BLOCK
A syntactic construct consisting of a se-
quence of Perl statements that is delimited by
braces. The if and while statements are de-
fined in terms of BLOCKs, for instance. Some-
times we also say “block” to mean a lexical
scope; that is, a sequence of statements that
acts like a BLOCK, such as within an eval or a
file, even though the statements aren’t de-
limited by braces.

block buffering
A method of making input and output effi-
cient by passing one block at a time. By de-
fault, Perl does block buffering to disk files.
See buffer and command buffering.

Boolean
A value that is either true or false.

backward compatibility

1048 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

Boolean context
A special kind of scalar context used in con-
ditionals to decide whether the scalar value
returned by an expression is true or false.
Does not evaluate as either a string or a
number. See context.

breakpoint
A spot in your program where you’ve told
the debugger to stop execution so you can
poke around and see whether anything is
wrong yet.

broadcast
To send a datagram to multiple destinations
simultaneously.

BSD
A psychoactive drug, popular in the ’80s,
probably developed at UC Berkeley or there-
abouts. Similar in many ways to the pre-
scription-only medication called “System
V”, but infinitely more useful. (Or, at least,
more fun.) The full chemical name is
“Berkeley Standard Distribution”.

bucket
A location in a hash table containing (po-
tentially) multiple entries whose keys
“hash” to the same hash value according to
its hash function. (As internal policy, you
don’t have to worry about it unless you’re
into internals, or policy.)

buffer
A temporary holding location for data. Data
that are Block buffering means that the data
is passed on to its destination whenever the
buffer is full. Line buffering means that it’s
passed on whenever a complete line is re-
ceived. Command buffering means that it’s
passed every time you do a print command
(or equivalent). If your output is unbuffered,
the system processes it one byte at a time
without the use of a holding area. This can
be rather inefficient.

built-in
A function that is predefined in the language.
Even when hidden by overriding, you can al-

ways get at a built-in function by qualifying
its name with the CORE:: pseudopackage.

bundle
A group of related modules on CPAN. (Also
sometimes refers to a group of command-
line switches grouped into one switch clus-
ter.)

byte
A piece of data worth eight bits in most
places.

bytecode
A pidgin-like lingo spoken among ’droids
when they don’t wish to reveal their orien-
tation (see endian). Named after some simi-
lar languages spoken (for similar reasons)
between compilers and interpreters in the
late 20th century. These languages are char-
acterized by representing everything as a
nonarchitecture-dependent sequence of
bytes.

C
A language beloved by many for its inside-
out type definitions, inscrutable precedence
rules, and heavy overloading of the function-
call mechanism. (Well, actually, people first
switched to C because they found lowercase
identifiers easier to read than upper.) Perl is
written in C, so it’s not surprising that Perl
borrowed a few ideas from it.

cache
A data repository. Instead of computing ex-
pensive answers several times, compute it
once and save the result.

callback
A handler that you register with some other
part of your program in the hope that the
other part of your program will trigger your
handler when some event of interest tran-
spires.

call by reference
An argument-passing mechanism in which
the formal arguments refer directly to the ac-
tual arguments, and the subroutine can
change the actual arguments by changing

call by reference

Glossary | 1049

www.it-ebooks.info

http://www.it-ebooks.info/

the formal arguments. That is, the formal
argument is an alias for the actual argument.
See also call by value.

call by value
An argument-passing mechanism in which
the formal arguments refer to a copy of the
actual arguments, and the subroutine cannot
change the actual arguments by changing
the formal arguments. See also call by refer-
ence.

canonical
Reduced to a standard form to facilitate com-
parison.

capture variables
The variables—such as $1 and $2, and %+ and
%– —that hold the text remembered in a pat-
tern match. See Chapter 5.

capturing
The use of parentheses around a subpattern
in a regular expression to store the matched
substring as a backreference. (Captured
strings are also returned as a list in list con-
text.) See Chapter 5.

cargo cult
Copying and pasting code without under-
standing it, while superstitiously believing
in its value. This term originated from pre-
industrial cultures dealing with the detritus
of explorers and colonizers of technologi-
cally advanced cultures. See The Gods Must
Be Crazy.

case
A property of certain characters. Originally,
typesetter stored capital letters in the upper
of two cases and small letters in the lower
one. Unicode recognizes three cases: lower-
case (character property \p{lower}), titlecase
(\p{title}), and uppercase (\p{upper}). A
fourth casemapping called foldcase is not it-
self a distinct case, but it is used internally
to implement casefolding. Not all letters have
case, and some nonletters have case.

casefolding
Comparing or matching a string case-insen-
sitively. In Perl, it is implemented with
the /i pattern modifier, the fc function, and
the \F double-quote translation escape.

casemapping
The process of converting a string to one of
the four Unicode casemaps; in Perl, it is im-
plemented with the fc, lc, ucfirst, and uc
functions.

character
The smallest individual element of a string.
Computers store characters as integers, but
Perl lets you operate on them as text. The
integer used to represent a particular char-
acter is called that character’s codepoint.

character class
A square-bracketed list of characters used in
a regular expression to indicate that any char-
acter of the set may occur at a given point.
Loosely, any predefined set of characters so
used.

character property
A predefined character class matchable by
the \p or \P metasymbol. Unicode defines
hundreds of standard properties for every
possible codepoint, and Perl defines a few of
its own, too.

circumfix operator
An operator that surrounds its operand, like
the angle operator, or parentheses, or a hug.

class
A user-defined type, implemented in Perl via
a package that provides (either directly or by
inheritance) methods (that is, subroutines) to
handle instances of the class (its objects). See
also inheritance.

class method
A method whose invocant is a package name,
not an object reference. A method associated
with the class as a whole. Also see instance
method.

call by value

1050 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

client
In networking, a process that initiates con-
tact with a server process in order to ex-
change data and perhaps receive a service.

closure
An anonymous subroutine that, when a ref-
erence to it is generated at runtime, keeps
track of the identities of externally visible
lexical variables, even after those lexical vari-
ables have supposedly gone out of scope.
They’re called “closures” because this sort
of behavior gives mathematicians a sense of
closure.

cluster
A parenthesized subpattern used to group
parts of a regular expression into a single
atom.

CODE
The word returned by the ref function when
you apply it to a reference to a subroutine.
See also CV.

code generator
A system that writes code for you in a low-
level language, such as code to implement
the backend of a compiler. See program gen-
erator.

codepoint
The integer a computer uses to represent a
given character. ASCII codepoints are in the
range 0 to 127; Unicode codepoints are in
the range 0 to 0x1F_FFFF; and Perl code-
points are in the range 0 to 232−1 or 0 to
264−1, depending on your native integer size.
In Perl Culture, sometimes called ordinals.

code subpattern
A regular expression subpattern whose real
purpose is to execute some Perl code—for
example, the (?{...}) and (??{...}) sub-
patterns.

collating sequence
The order into which characters sort. This is
used by string comparison routines to de-
cide, for example, where in this glossary to
put “collating sequence”.

co-maintainer
A person with permissions to index a name-
space in PAUSE. Anyone can upload any
namespace, but only primary and co-main-
tainers get their contributions indexed.

combining character
Any character with the General Category of
Combining Mark (\p{GC=M}), which may be
spacing or nonspacing. Some are even invis-
ible. A sequence of combining characters
following a grapheme base character to-
gether make up a single user-visible charac-
ter called a grapheme. Most but not all dia-
critics are combining characters, and vice
versa.

command
In shell programming, the syntactic combi-
nation of a program name and its argu-
ments. More loosely, anything you type to a
shell (a command interpreter) that starts it
doing something. Even more loosely, a Perl
statement, which might start with a label and
typically ends with a semicolon.

command buffering
A mechanism in Perl that lets you store up
the output of each Perl command and then
flush it out as a single request to the operat-
ing system. It’s enabled by setting the $|
($AUTOFLUSH) variable to a true value. It’s used
when you don’t want data sitting around,
not going where it’s supposed to, which may
happen because the default on a file or pipe
is to use block buffering.

command-line arguments
The values you supply along with a program
name when you tell a shell to execute a com-
mand. These values are passed to a Perl pro-
gram through @ARGV.

command name
The name of the program currently execut-
ing, as typed on the command line. In C, the
command name is passed to the program as
the first command-line argument. In Perl, it
comes in separately as $0.

command name

Glossary | 1051

www.it-ebooks.info

http://www.it-ebooks.info/

comment
A remark that doesn’t affect the meaning of
the program. In Perl, a comment is intro-
duced by a # character and continues to the
end of the line.

compilation unit
The file (or string, in the case of eval) that is
currently being compiled.

compile
The process of turning source code into a
machine-usable form. See compile phase.

compile phase
Any time before Perl starts running your
main program. See also run phase. Compile
phase is mostly spent in compile time, but
may also be spent in runtime when BEGIN
blocks, use declarations, or constant subex-
pressions are being evaluated. The startup
and import code of any use declaration is
also run during compile phase.

compiler
Strictly speaking, a program that munches
up another program and spits out yet an-
other file containing the program in a “more
executable” form, typically containing na-
tive machine instructions. The perl program
is not a compiler by this definition, but it
does contain a kind of compiler that takes a
program and turns it into a more executable
form (syntax trees) within the perl process
itself, which the interpreter then interprets.
There are, however, extension modules to
get Perl to act more like a “real” compiler.
See Chapter 16.

compile time
The time when Perl is trying to make sense
of your code, as opposed to when it thinks
it knows what your code means and is
merely trying to do what it thinks your code
says to do, which is runtime.

composer
A “constructor” for a referent that isn’t really
an object, like an anonymous array or a hash
(or a sonata, for that matter). For example,
a pair of braces acts as a composer for a hash,

and a pair of brackets acts as a composer for
an array. See the section “Creating Refer-
ences” on page 342 in Chapter 8.

concatenation
The process of gluing one cat’s nose to an-
other cat’s tail. Also a similar operation on
two strings.

conditional
Something “iffy”. See Boolean context.

connection
In telephony, the temporary electrical circuit
between the caller’s and the callee’s phone.
In networking, the same kind of temporary
circuit between a client and a server.

construct
As a noun, a piece of syntax made up of
smaller pieces. As a transitive verb, to create
an object using a constructor.

constructor
Any class method, instance method, or sub-
routine that composes, initializes, blesses,
and returns an object. Sometimes we use the
term loosely to mean a composer.

context
The surroundings or environment. The con-
text given by the surrounding code deter-
mines what kind of data a particular expres-
sion is expected to return. The three primary
contexts are list context, scalar context, and
void context. Scalar context is sometimes
subdivided into Boolean context, numeric
context, string context, and void context.
There’s also a “don’t care” context (which
is dealt with in Chapter 2, if you care).

continuation
The treatment of more than one physical
line as a single logical line. Makefile lines are
continued by putting a backslash before the
newline. Mail headers, as defined by RFC
822, are continued by putting a space or tab
after the newline. In general, lines in Perl do
not need any form of continuation mark,
because whitespace (including newlines) is
gleefully ignored. Usually.

comment

1052 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

core dump
The corpse of a process, in the form of a file
left in the working directory of the process,
usually as a result of certain kinds of fatal
errors.

CPAN
The Comprehensive Perl Archive Network.
(See the Preface and Chapter 19 for details.)

C preprocessor
The typical C compiler’s first pass, which
processes lines beginning with # for condi-
tional compilation and macro definition,
and does various manipulations of the pro-
gram text based on the current definitions.
Also known as cpp(1).

cracker
Someone who breaks security on computer
systems. A cracker may be a true hacker or
only a script kiddie.

currently selected output channel
The last filehandle that was designated with
select(FILEHANDLE); STDOUT, if no filehandle
has been selected.

current package
The package in which the current statement
is compiled. Scan backward in the text of
your program through the current lexical
scope or any enclosing lexical scopes until
you find a package declaration. That’s your
current package name.

current working directory
See working directory.

CV
In academia, a curriculum vitæ, a fancy kind
of résumé. In Perl, an internal “code value”
typedef holding a subroutine. The CV type is
a subclass of SV.

dangling statement
A bare, single statement, without any braces,
hanging off an if or while conditional. C al-
lows them. Perl doesn’t.

datagram
A packet of data, such as a UDP message,
that (from the viewpoint of the programs
involved) can be sent independently over
the network. (In fact, all packets are sent in-
dependently at the IP level, but stream pro-
tocols such as TCP hide this from your pro-
gram.)

data structure
How your various pieces of data relate to
each other and what shape they make when
you put them all together, as in a rectangular
table or a triangular tree.

data type
A set of possible values, together with all the
operations that know how to deal with those
values. For example, a numeric data type
has a certain set of numbers that you can
work with, as well as various mathematical
operations that you can do on the numbers,
but would make little sense on, say, a string
such as "Kilroy". Strings have their own op-
erations, such as concatenation. Compound
types made of a number of smaller pieces
generally have operations to compose and
decompose them, and perhaps to rearrange
them. Objects that model things in the real
world often have operations that corre-
spond to real activities. For instance, if you
model an elevator, your elevator object
might have an open_door method.

DBM
Stands for “Database Management” rou-
tines, a set of routines that emulate an asso-
ciative array using disk files. The routines
use a dynamic hashing scheme to locate any
entry with only two disk accesses. DBM files
allow a Perl program to keep a persistent
hash across multiple invocations. You can
tie your hash variables to various DBM im-
plementations.

declaration
An assertion that states something exists and
perhaps describes what it’s like, without giv-
ing any commitment as to how or where
you’ll use it. A declaration is like the part of

declaration

Glossary | 1053

www.it-ebooks.info

http://www.it-ebooks.info/

your recipe that says, “two cups flour, one
large egg, four or five tadpoles…” See state-
ment for its opposite. Note that some decla-
rations also function as statements. Subrou-
tine declarations also act as definitions if a
body is supplied.

declarator
Something that tells your program what sort
of variable you’d like. Perl doesn’t require
you to declare variables, but you can use my,
our, or state to denote that you want some-
thing other than the default.

decrement
To subtract a value from a variable, as in
“decrement $x” (meaning to remove 1 from
its value) or “decrement $x by 3”.

default
A value chosen for you if you don’t supply a
value of your own.

defined
Having a meaning. Perl thinks that some of
the things people try to do are devoid of
meaning; in particular, making use of vari-
ables that have never been given a value and
performing certain operations on data that
isn’t there. For example, if you try to read
data past the end of a file, Perl will hand you
back an undefined value. See also false and
the defined entry in Chapter 27.

delimiter
A character or string that sets bounds to an
arbitrarily sized textual object, not to be
confused with a separator or terminator. “To
delimit” really just means “to surround” or
“to enclose” (like these parentheses are do-
ing).

dereference
A fancy computer science term meaning “to
follow a reference to what it points to”. The
“de” part of it refers to the fact that you’re
taking away one level of indirection.

derived class
A class that defines some of its methods in
terms of a more generic class, called a base

class. Note that classes aren’t classified ex-
clusively into base classes or derived classes:
a class can function as both a derived class
and a base class simultaneously, which is
kind of classy.

descriptor
See file descriptor.

destroy
To deallocate the memory of a referent (first
triggering its DESTROY method, if it has one).

destructor
A special method that is called when an ob-
ject is thinking about destroying itself. A Perl
program’s DESTROY method doesn’t do the
actual destruction; Perl just triggers the
method in case the class wants to do any as-
sociated cleanup.

device
A whiz-bang hardware gizmo (like a disk or
tape drive or a modem or a joystick or a
mouse) attached to your computer, which
the operating system tries to make look like a
file (or a bunch of files). Under Unix, these
fake files tend to live in the /dev directory.

directive
A pod directive. See Chapter 23.

directory
A special file that contains other files. Some
operating systems call these “folders”, “draw-
ers”, “catalogues”, or “catalogs”.

directory handle
A name that represents a particular instance
of opening a directory to read it, until you
close it. See the opendir function.

discipline
Some people need this and some people
avoid it. For Perl, it’s an old way to say I/O
layer.

dispatch
To send something to its correct destination.
Often used metaphorically to indicate a
transfer of programmatic control to a desti-
nation selected algorithmically, often by

declarator

1054 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

lookup in a table of function references or, in
the case of object methods, by traversing the
inheritance tree looking for the most specific
definition for the method.

distribution
A standard, bundled release of a system of
software. The default usage implies source
code is included. If that is not the case, it will
be called a “binary-only” distribution.

dual-lived
Some modules live both in the Standard Li-
brary and on CPAN. These modules might
be developed on two tracks as people mod-
ify either version. The trend currently is to
untangle these situations.

dweomer
An enchantment, illusion, phantasm, or jug-
glery. Said when Perl’s magical dwimmer ef-
fects don’t do what you expect, but rather
seem to be the product of arcane dweomer-
craft, sorcery, or wonder working. [From
Middle English.]

dwimmer
DWIM is an acronym for “Do What I Mean”,
the principle that something should just do
what you want it to do without an undue
amount of fuss. A bit of code that does
“dwimming” is a “dwimmer”. Dwimming
can require a great deal of behind-the-scenes
magic, which (if it doesn’t stay properly be-
hind the scenes) is called a dweomer instead.

dynamic scoping
Dynamic scoping works over a dynamic
scope, making variables visible throughout
the rest of the block in which they are first
used and in any subroutines that are called
by the rest of the block. Dynamically scoped
variables can have their values temporarily
changed (and implicitly restored later) by a
local operator. (Compare lexical scoping.)
Used more loosely to mean how a subrou-
tine that is in the middle of calling another
subroutine “contains” that subroutine at
runtime.

eclectic
Derived from many sources. Some would say
too many.

element
A basic building block. When you’re talking
about an array, it’s one of the items that
make up the array.

embedding
When something is contained in something
else, particularly when that might be con-
sidered surprising: “I’ve embedded a com-
plete Perl interpreter in my editor!”

empty subclass test
The notion that an empty derived class
should behave exactly like its base class.

encapsulation
The veil of abstraction separating the inter-
face from the implementation (whether en-
forced or not), which mandates that all ac-
cess to an object’s state be through methods
alone.

endian
See little-endian and big-endian.

en passant
When you change a value as it is being
copied. [From French “in passing”, as in the
exotic pawn-capturing maneuver in chess.]

environment
The collective set of environment variables
your process inherits from its parent. Ac-
cessed via %ENV.

environment variable
A mechanism by which some high-level
agent such as a user can pass its preferences
down to its future offspring (child pro-
cesses, grandchild processes, great-grand-
child processes, and so on). Each environ-
ment variable is a key/value pair, like one
entry in a hash.

EOF
End of File. Sometimes used metaphorically
as the terminating string of a here document.

EOF

Glossary | 1055

www.it-ebooks.info

http://www.it-ebooks.info/

errno
The error number returned by a syscall when
it fails. Perl refers to the error by the name
$! (or $OS_ERROR if you use the English mod-
ule).

error
See exception or fatal error.

escape sequence
See metasymbol.

exception
A fancy term for an error. See fatal error.

exception handling
The way a program responds to an error. The
exception-handling mechanism in Perl is the
eval operator.

exec
To throw away the current process’s program
and replace it with another, without exiting
the process or relinquishing any resources
held (apart from the old memory image).

executable file
A file that is specially marked to tell the op-
erating system that it’s okay to run this file as
a program. Usually shortened to “exe-
cutable”.

execute
To run a program or subroutine. (Has noth-
ing to do with the kill built-in, unless you’re
trying to run a signal handler.)

execute bit
The special mark that tells the operating sys-
tem it can run this program. There are ac-
tually three execute bits under Unix, and
which bit gets used depends on whether you
own the file singularly, collectively, or not at
all.

exit status
See status.

exploit
Used as a noun in this case, this refers to a
known way to compromise a program to get
it to do something the author didn’t intend.

Your task is to write unexploitable pro-
grams.

export
To make symbols from a module available for
import by other modules.

expression
Anything you can legally say in a spot where
a value is required. Typically composed of
literals, variables, operators, functions, and
subroutine calls, not necessarily in that order.

extension
A Perl module that also pulls in compiled C
or C++ code. More generally, any experi-
mental option that can be compiled into Perl,
such as multithreading.

false
In Perl, any value that would look like "" or
"0" if evaluated in a string context. Since un-
defined values evaluate to "", all undefined
values are false, but not all false values are
undefined.

FAQ
Frequently Asked Question (although not
necessarily frequently answered, especially
if the answer appears in the Perl FAQ
shipped standard with Perl).

fatal error
An uncaught exception, which causes termi-
nation of the process after printing a message
on your standard error stream. Errors that
happen inside an eval are not fatal. Instead,
the eval terminates after placing the excep-
tion message in the $@ ($EVAL_ERROR) vari-
able. You can try to provoke a fatal error
with the die operator (known as throwing or
raising an exception), but this may be
caught by a dynamically enclosing eval. If
not caught, the die becomes a fatal error.

feeping creaturism
A spoonerism of “creeping featurism”, noting
the biological urge to add just one more fea-
ture to a program.

errno

1056 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

field
A single piece of numeric or string data that
is part of a longer string, record, or line. Vari-
able-width fields are usually split up by sep-
arators (so use split to extract the fields),
while fixed-width fields are usually at fixed
positions (so use unpack). Instance variables
are also known as “fields”.

FIFO
First In, First Out. See also LIFO. Also a
nickname for a named pipe.

file
A named collection of data, usually stored
on disk in a directory in a filesystem. Roughly
like a document, if you’re into office
metaphors. In modern filesystems, you can
actually give a file more than one name.
Some files have special properties, like di-
rectories and devices.

file descriptor
The little number the operating system uses
to keep track of which opened file you’re
talking about. Perl hides the file descriptor
inside a standard I/O stream and then at-
taches the stream to a filehandle.

fileglob
A “wildcard” match on filenames. See the
glob function.

filehandle
An identifier (not necessarily related to the
real name of a file) that represents a partic-
ular instance of opening a file, until you
close it. If you’re going to open and close
several different files in succession, it’s fine
to open each of them with the same filehan-
dle, so you don’t have to write out separate
code to process each file.

filename
One name for a file. This name is listed in a
directory. You can use it in an open to tell the
operating system exactly which file you want
to open, and associate the file with a file-
handle, which will carry the subsequent
identity of that file in your program, until
you close it.

filesystem
A set of directories and files residing on a par-
tition of the disk. Sometimes known as a
“partition”. You can change the file’s name
or even move a file around from directory to
directory within a filesystem without ac-
tually moving the file itself, at least under
Unix.

file test operator
A built-in unary operator that you use to de-
termine whether something is true about a
file, such as –o $filename to test whether
you’re the owner of the file.

filter
A program designed to take a stream of input
and transform it into a stream of output.

first-come
The first PAUSE author to upload a name-
space automatically becomes the primary
maintainer for that namespace. The “first
come” permissions distinguish a primary
maintainer who was assigned that role from
one who received it automatically.

flag
We tend to avoid this term because it means
so many things. It may mean a command-
line switch that takes no argument itself
(such as Perl’s –n and –p flags) or, less fre-
quently, a single-bit indicator (such as the
O_CREAT and O_EXCL flags used in sysopen).
Sometimes informally used to refer to cer-
tain regex modifiers.

floating point
A method of storing numbers in “scientific
notation”, such that the precision of the
number is independent of its magnitude (the
decimal point “floats”). Perl does its nu-
meric work with floating-point numbers
(sometimes called “floats”) when it can’t get
away with using integers. Floating-point
numbers are mere approximations of real
numbers.

flush
The act of emptying a buffer, often before it’s
full.

flush

Glossary | 1057

www.it-ebooks.info

http://www.it-ebooks.info/

FMTEYEWTK
Far More Than Everything You Ever Wanted
To Know. An exhaustive treatise on one nar-
row topic, something of a super-FAQ. See
Tom for far more.

foldcase
The casemap used in Unicode when com-
paring or matching without regard to case.
Comparing lower-, title-, or uppercase are
all unreliable due to Unicode’s complex,
one-to-many case mappings. Foldcase is a
lowercase variant (using a partially decom-
posed normalization form for certain code-
points) created specifically to resolve this.

fork
To create a child process identical to the par-
ent process at its moment of conception, at
least until it gets ideas of its own. A thread
with protected memory.

formal arguments
The generic names by which a subroutine
knows its arguments. In many languages,
formal arguments are always given individ-
ual names; in Perl, the formal arguments are
just the elements of an array. The formal ar-
guments to a Perl program are $ARGV[0],
$ARGV[1], and so on. Similarly, the formal ar-
guments to a Perl subroutine are $_[0],
$_[1], and so on. You may give the argu-
ments individual names by assigning the
values to a my list. See also actual arguments.

format
A specification of how many spaces and dig-
its and things to put somewhere so that
whatever you’re printing comes out nice and
pretty.

freely available
Means you don’t have to pay money to get it,
but the copyright on it may still belong to
someone else (like Larry).

freely redistributable
Means you’re not in legal trouble if you give
a bootleg copy of it to your friends and we
find out about it. In fact, we’d rather you
gave a copy to all your friends.

freeware
Historically, any software that you give away,
particularly if you make the source code
available as well. Now often called open
source software. Recently there has been a
trend to use the term in contradistinction to
open source software, to refer only to free
software released under the Free Software
Foundation’s GPL (General Public License),
but this is difficult to justify etymologically.

function
Mathematically, a mapping of each of a set
of input values to a particular output value.
In computers, refers to a subroutine or oper-
ator that returns a value. It may or may not
have input values (called arguments).

funny character
Someone like Larry, or one of his peculiar
friends. Also refers to the strange prefixes
that Perl requires as noun markers on its
variables.

garbage collection
A misnamed feature—it should be called,
“expecting your mother to pick up after
you”. Strictly speaking, Perl doesn’t do this,
but it relies on a reference-counting mecha-
nism to keep things tidy. However, we rarely
speak strictly and will often refer to the ref-
erence-counting scheme as a form of
garbage collection. (If it’s any comfort,
when your interpreter exits, a “real” garbage
collector runs to make sure everything is
cleaned up if you’ve been messy with circu-
lar references and such.)

GID
Group ID—in Unix, the numeric group ID
that the operating system uses to identify you
and members of your group.

glob
Strictly, the shell’s * character, which will
match a “glob” of characters when you’re
trying to generate a list of filenames.
Loosely, the act of using globs and similar
symbols to do pattern matching. See also
fileglob and typeglob.

FMTEYEWTK

1058 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

global
Something you can see from anywhere, usu-
ally used of variables and subroutines that are
visible everywhere in your program. In Perl,
only certain special variables are truly global
—most variables (and all subroutines) exist
only in the current package. Global variables
can be declared with our. See “Global Dec-
larations” on page 153 in Chapter 4.

global destruction
The garbage collection of globals (and the
running of any associated object destruc-
tors) that takes place when a Perl inter-
preter is being shut down. Global destruc-
tion should not be confused with the Apoca-
lypse, except perhaps when it should.

glue language
A language such as Perl that is good at hook-
ing things together that weren’t intended to
be hooked together.

granularity
The size of the pieces you’re dealing with,
mentally speaking.

grapheme
A graphene is an allotrope of carbon ar-
ranged in a hexagonal crystal lattice one
atom thick. A grapheme, or more fully, a
grapheme cluster string is a single user-visible
character, which may in turn be several char-
acters (codepoints) long. For example, a car-
riage return plus a line feed is a single
grapheme but two characters, while a “ȫ” is
a single grapheme but one, two, or even
three characters, depending on normaliza-
tion.

greedy
A subpattern whose quantifier wants to
match as many things as possible.

grep
Originally from the old Unix editor com-
mand for “Globally search for a Regular Ex-
pression and Print it”, now used in the gen-
eral sense of any kind of search, especially
text searches. Perl has a built-in grep func-
tion that searches a list for elements match-

ing any given criterion, whereas the grep(1)
program searches for lines matching a regu-
lar expression in one or more files.

group
A set of users of which you are a member. In
some operating systems (like Unix), you can
give certain file access permissions to other
members of your group.

GV
An internal “glob value” typedef, holding a
typeglob. The GV type is a subclass of SV.

hacker
Someone who is brilliantly persistent in
solving technical problems, whether these
involve golfing, fighting orcs, or program-
ming. Hacker is a neutral term, morally
speaking. Good hackers are not to be con-
fused with evil crackers or clueless script kid-
dies. If you confuse them, we will presume
that you are either evil or clueless.

handler
A subroutine or method that Perl calls when
your program needs to respond to some in-
ternal event, such as a signal, or an encounter
with an operator subject to operator over-
loading. See also callback.

hard reference
A scalar value containing the actual address
of a referent, such that the referent’s refer-
ence count accounts for it. (Some hard refer-
ences are held internally, such as the implicit
reference from one of a typeglob’s variable
slots to its corresponding referent.) A hard
reference is different from a symbolic refer-
ence.

hash
An unordered association of key/value pairs,
stored such that you can easily use a string
key to look up its associated data value. This
glossary is like a hash, where the word to be
defined is the key and the definition is the
value. A hash is also sometimes septisyllab-
ically called an “associative array”, which is
a pretty good reason for simply calling it a
“hash” instead.

hash

Glossary | 1059

www.it-ebooks.info

http://www.it-ebooks.info/

hash table
A data structure used internally by Perl for
implementing associative arrays (hashes) ef-
ficiently. See also bucket.

header file
A file containing certain required defini-
tions that you must include “ahead” of the
rest of your program to do certain obscure
operations. A C header file has a .h exten-
sion. Perl doesn’t really have header files,
though historically Perl has sometimes used
translated .h files with a .ph extension. See
require in Chapter 27. (Header files have
been superseded by the module mechanism.)

here document
So called because of a similar construct in
shells that pretends that the lines following
the command are a separate file to be fed to
the command, up to some terminating
string. In Perl, however, it’s just a fancy form
of quoting.

hexadecimal
A number in base 16, “hex” for short. The
digits for 10 through 16 are customarily rep-
resented by the letters a through f. Hexa-
decimal constants in Perl start with 0x. See
also the hex function in Chapter 27.

home directory
The directory you are put into when you log
in. On a Unix system, the name is often
placed into $ENV{HOME} or $ENV{LOGDIR} by
login, but you can also find it with (get
pwuid($<))[7]. (Some platforms do not
have a concept of a home directory.)

host
The computer on which a program or other
data resides.

hubris
Excessive pride, the sort of thing for which
Zeus zaps you. Also the quality that makes
you write (and maintain) programs that
other people won’t want to say bad things
about. Hence, the third great virtue of a pro-
grammer. See also laziness and impatience.

HV
Short for a “hash value” typedef, which
holds Perl’s internal representation of a
hash. The HV type is a subclass of SV.

identifier
A legally formed name for most anything in
which a computer program might be inter-
ested. Many languages (including Perl) al-
low identifiers to start with an alphabetic
character, and then contain alphabetics and
digits. Perl also allows connector punctua-
tion like the underscore character wherever
it allows alphabetics. (Perl also has more
complicated names, like qualified names.)

impatience
The anger you feel when the computer is be-
ing lazy. This makes you write programs
that don’t just react to your needs, but ac-
tually anticipate them. Or at least that pre-
tend to. Hence, the second great virtue of a
programmer. See also laziness and hubris.

implementation
How a piece of code actually goes about do-
ing its job. Users of the code should not
count on implementation details staying the
same unless they are part of the published
interface.

import
To gain access to symbols that are exported
from another module. See use in Chapter 27.

increment
To increase the value of something by 1 (or
by some other number, if so specified).

indexing
In olden days, the act of looking up a key in
an actual index (such as a phone book). But
now it's merely the act of using any kind of
key or position to find the corresponding
value, even if no index is involved. Things
have degenerated to the point that Perl’s
index function merely locates the position
(index) of one string in another.

hash table

1060 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

indirect filehandle
An expression that evaluates to something
that can be used as a filehandle: a string (file-
handle name), a typeglob, a typeglob refer-
ence, or a low-level IO object.

indirection
If something in a program isn’t the value
you’re looking for but indicates where the
value is, that’s indirection. This can be done
with either symbolic references or hard refer-
ences.

indirect object
In English grammar, a short noun phrase
between a verb and its direct object indicat-
ing the beneficiary or recipient of the action.
In Perl, print STDOUT "$foo\n"; can be un-
derstood as “verb indirect-object object”,
where STDOUT is the recipient of the print ac-
tion, and "$foo" is the object being printed.
Similarly, when invoking a method, you
might place the invocant in the dative slot
between the method and its arguments:

$gollum = new Pathetic::Creature "Sméagol";
give $gollum "Fisssssh!";
give $gollum "Precious!";

indirect object slot
The syntactic position falling between a
method call and its arguments when using
the indirect object invocation syntax. (The
slot is distinguished by the absence of a
comma between it and the next argument.)
STDERR is in the indirect object slot here:

print STDERR "Awake! Awake! Fear, Fire,
 Foes! Awake!\n";

infix
An operator that comes in between its
operands, such as multiplication in 24 * 7.

inheritance
What you get from your ancestors, geneti-
cally or otherwise. If you happen to be a
class, your ancestors are called base classes
and your descendants are called derived
classes. See single inheritance and multiple
inheritance.

instance
Short for “an instance of a class”, meaning an
object of that class.

instance data
See instance variable.

instance method
A method of an object, as opposed to a class
method.

A method whose invocant is an object, not a
package name. Every object of a class shares
all the methods of that class, so an instance
method applies to all instances of the class,
rather than applying to a particular instance.
Also see class method.

instance variable
An attribute of an object; data stored with the
particular object rather than with the class
as a whole.

integer
A number with no fractional (decimal) part.
A counting number, like 1, 2, 3, and so on,
but including 0 and the negatives.

interface
The services a piece of code promises to pro-
vide forever, in contrast to its implementa-
tion, which it should feel free to change
whenever it likes.

interpolation
The insertion of a scalar or list value some-
where in the middle of another value, such
that it appears to have been there all along.
In Perl, variable interpolation happens in
double-quoted strings and patterns, and list
interpolation occurs when constructing the
list of values to pass to a list operator or
other such construct that takes a LIST.

interpreter
Strictly speaking, a program that reads a sec-
ond program and does what the second pro-
gram says directly without turning the pro-
gram into a different form first, which is
what compilers do. Perl is not an interpreter
by this definition, because it contains a kind
of compiler that takes a program and turns

interpreter

Glossary | 1061

www.it-ebooks.info

http://www.it-ebooks.info/

it into a more executable form (syntax
trees) within the perl process itself, which the
Perl runtime system then interprets.

invocant
The agent on whose behalf a method is in-
voked. In a class method, the invocant is a
package name. In an instance method, the
invocant is an object reference.

invocation
The act of calling up a deity, daemon, pro-
gram, method, subroutine, or function to
get it to do what you think it’s supposed to
do. We usually “call” subroutines but “in-
voke” methods, since it sounds cooler.

I/O
Input from, or output to, a file or device.

IO
An internal I/O object. Can also mean indi-
rect object.

I/O layer
One of the filters between the data and what
you get as input or what you end up with as
output.

IPA
India Pale Ale. Also the International Pho-
netic Alphabet, the standard alphabet used
for phonetic notation worldwide. Draws
heavily on Unicode, including many com-
bining characters.

IP
Internet Protocol, or Intellectual Property.

IPC
Interprocess Communication.

is-a
A relationship between two objects in which
one object is considered to be a more spe-
cific version of the other, generic object: “A
camel is a mammal.” Since the generic ob-
ject really only exists in a Platonic sense, we
usually add a little abstraction to the notion
of objects and think of the relationship as
being between a generic base class and a spe-
cific derived class. Oddly enough, Platonic

classes don’t always have Platonic relation-
ships—see inheritance.

iteration
Doing something repeatedly.

iterator
A special programming gizmo that keeps
track of where you are in something that
you’re trying to iterate over. The foreach
loop in Perl contains an iterator; so does a
hash, allowing you to each through it.

IV
The integer four, not to be confused with six,
Tom’s favorite editor. IV also means an in-
ternal Integer Value of the type a scalar can
hold, not to be confused with an NV.

JAPH
“Just Another Perl Hacker”, a clever but cryp-
tic bit of Perl code that, when executed,
evaluates to that string. Often used to illus-
trate a particular Perl feature, and some-
thing of an ongoing Obfuscated Perl Contest
seen in USENET signatures.

key
The string index to a hash, used to look up
the value associated with that key.

keyword
See reserved words.

label
A name you give to a statement so that you
can talk about that statement elsewhere in
the program.

laziness
The quality that makes you go to great effort
to reduce overall energy expenditure. It
makes you write labor-saving programs that
other people will find useful, and then docu-
ment what you wrote so you don’t have to
answer so many questions about it. Hence,
the first great virtue of a programmer. Also
hence, this book. See also impatience and
hubris.

invocant

1062 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

leftmost longest
The preference of the regular expression en-
gine to match the leftmost occurrence of a
pattern, then given a position at which a
match will occur, the preference for the
longest match (presuming the use of a
greedy quantifier). See Chapter 5 for much
more on this subject.

left shift
A bit shift that multiplies the number by
some power of 2.

lexeme
Fancy term for a token.

lexer
Fancy term for a tokener.

lexical analysis
Fancy term for tokenizing.

lexical scoping
Looking at your Oxford English Dictionary
through a microscope. (Also known as static
scoping, because dictionaries don’t change
very fast.) Similarly, looking at variables
stored in a private dictionary (namespace)
for each scope, which are visible only from
their point of declaration down to the end
of the lexical scope in which they are de-
clared. —Syn. static scoping. —Ant. dynamic
scoping.

lexical variable
A variable subject to lexical scoping, declared
by my. Often just called a “lexical”. (The our
declaration declares a lexically scoped name
for a global variable, which is not itself a
lexical variable.)

library
Generally, a collection of procedures. In an-
cient days, referred to a collection of sub-
routines in a .pl file. In modern times, refers
more often to the entire collection of Perl
modules on your system.

LIFO
Last In, First Out. See also FIFO. A LIFO is
usually called a stack.

line
In Unix, a sequence of zero or more non-
newline characters terminated with a new-
line character. On non-Unix machines, this
is emulated by the C library even if the un-
derlying operating system has different ideas.

linebreak
A grapheme consisting of either a carriage
return followed by a line feed or any char-
acter with the Unicode Vertical Space char-
acter property.

line buffering
Used by a standard I/O output stream that
flushes its buffer after every newline. Many
standard I/O libraries automatically set up
line buffering on output that is going to the
terminal.

line number
The number of lines read previous to this
one, plus 1. Perl keeps a separate line num-
ber for each source or input file it opens. The
current source file’s line number is repre-
sented by _ _LINE_ _. The current input line
number (for the file that was most recently
read via <FH>) is represented by the $.
($INPUT_LINE_NUMBER) variable. Many error
messages report both values, if available.

link
Used as a noun, a name in a directory that
represents a file. A given file can have mul-
tiple links to it. It’s like having the same
phone number listed in the phone directory
under different names. As a verb, to resolve
a partially compiled file’s unresolved symbols
into a (nearly) executable image. Linking
can generally be static or dynamic, which
has nothing to do with static or dynamic
scoping.

LIST
A syntactic construct representing a comma-
separated list of expressions, evaluated to
produce a list value. Each expression in a
LIST is evaluated in list context and interpo-
lated into the list value.

LIST

Glossary | 1063

www.it-ebooks.info

http://www.it-ebooks.info/

list
An ordered set of scalar values.

list context
The situation in which an expression is ex-
pected by its surroundings (the code calling
it) to return a list of values rather than a sin-
gle value. Functions that want a LIST of ar-
guments tell those arguments that they
should produce a list value. See also context.

list operator
An operator that does something with a list
of values, such as join or grep. Usually used
for named built-in operators (such as print,
unlink, and system) that do not require
parentheses around their argument list.

list value
An unnamed list of temporary scalar values
that may be passed around within a program
from any list-generating function to any
function or construct that provides a list
context.

literal
A token in a programming language, such as
a number or string, that gives you an actual
value instead of merely representing possible
values as a variable does.

little-endian
From Swift: someone who eats eggs little end
first. Also used of computers that store the
least significant byte of a word at a lower byte
address than the most significant byte.
Often considered superior to big-endian
machines. See also big-endian.

local
Not meaning the same thing everywhere. A
global variable in Perl can be localized inside
a dynamic scope via the local operator.

logical operator
Symbols representing the concepts “and”,
“or”, “xor”, and “not”.

lookahead
An assertion that peeks at the string to the
right of the current match location.

lookbehind
An assertion that peeks at the string to the
left of the current match location.

loop
A construct that performs something repeat-
edly, like a roller coaster.

loop control statement
Any statement within the body of a loop that
can make a loop prematurely stop looping
or skip an iteration. Generally, you shouldn’t
try this on roller coasters.

loop label
A kind of key or name attached to a loop (or
roller coaster) so that loop control state-
ments can talk about which loop they want
to control.

lowercase
In Unicode, not just characters with the Gen-
eral Category of Lowercase Letter, but any
character with the Lowercase property, in-
cluding Modifier Letters, Letter Numbers,
some Other Symbols, and one Combining
Mark.

lvaluable
Able to serve as an lvalue.

lvalue
Term used by language lawyers for a storage
location you can assign a new value to, such
as a variable or an element of an array. The
“l” is short for “left”, as in the left side of an
assignment, a typical place for lvalues. An
lvaluable function or expression is one to
which a value may be assigned, as in pos($x)
= 10.

lvalue modifier
An adjectival pseudofunction that warps the
meaning of an lvalue in some declarative
fashion. Currently there are three lvalue
modifiers: my, our, and local.

magic
Technically speaking, any extra semantics
attached to a variable such as $!, $0, %ENV, or

list

1064 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

%SIG, or to any tied variable. Magical things
happen when you diddle those variables.

magical increment
An increment operator that knows how to
bump up ASCII alphabetics as well as num-
bers.

magical variables
Special variables that have side effects when
you access them or assign to them. For ex-
ample, in Perl, changing elements of the
%ENV array also changes the corresponding
environment variables that subprocesses
will use. Reading the $! variable gives you
the current system error number or mes-
sage.

Makefile
A file that controls the compilation of a pro-
gram. Perl programs don’t usually need a
Makefile because the Perl compiler has
plenty of self-control.

man
The Unix program that displays online doc-
umentation (manual pages) for you.

manpage
A “page” from the manuals, typically ac-
cessed via the man(1) command. A manpage
contains a SYNOPSIS, a DESCRIPTION, a
list of BUGS, and so on, and is typically
longer than a page. There are manpages doc-
umenting commands, syscalls, library func-
tions, devices, protocols, files, and such. In
this book, we call any piece of standard Perl
documentation (like perlop or perldelta) a
manpage, no matter what format it’s in-
stalled in on your system.

matching
See pattern matching.

member data
See instance variable.

memory
This always means your main memory, not
your disk. Clouding the issue is the fact that
your machine may implement virtual mem-
ory; that is, it will pretend that it has more

memory than it really does, and it’ll use disk
space to hold inactive bits. This can make it
seem like you have a little more memory
than you really do, but it’s not a substitute
for real memory. The best thing that can be
said about virtual memory is that it lets your
performance degrade gradually rather than
suddenly when you run out of real memory.
But your program can die when you run out
of virtual memory, too—if you haven’t
thrashed your disk to death first.

metacharacter
A character that is not supposed to be treated
normally. Which characters are to be treated
specially as metacharacters varies greatly
from context to context. Your shell will have
certain metacharacters, double-quoted Perl
strings have other metacharacters, and regu-
lar expression patterns have all the double-
quote metacharacters plus some extra ones
of their own.

metasymbol
Something we’d call a metacharacter except
that it’s a sequence of more than one char-
acter. Generally, the first character in the se-
quence must be a true metacharacter to get
the other characters in the metasymbol to
misbehave along with it.

method
A kind of action that an object can take if you
tell it to. See Chapter 12.

method resolution order
The path Perl takes through @INC. By default,
this is a double depth first search, once look-
ing for defined methods and once for AUTO
LOAD. However, Perl lets you configure this
with mro.

minicpan
A CPAN mirror that includes just the latest
versions for each distribution, probably cre-
ated with CPAN::Mini. See Chapter 19.

minimalism
The belief that “small is beautiful”. Paradox-
ically, if you say something in a small lan-

minimalism

Glossary | 1065

www.it-ebooks.info

http://perldoc.perl.org/perlop.html
http://perldoc.perl.org/perldelta.html
http://www.it-ebooks.info/

guage, it turns out big, and if you say it in a
big language, it turns out small. Go figure.

mode
In the context of the stat(2) syscall, refers to
the field holding the permission bits and the
type of the file.

modifier
See statement modifier, regular expression
modifier, and lvalue modifier, not necessarily
in that order.

module
A file that defines a package of (almost) the
same name, which can either export symbols
or function as an object class. (A module’s
main .pm file may also load in other files in
support of the module.) See the use built-in.

modulus
An integer divisor when you’re interested in
the remainder instead of the quotient.

mojibake
When you speak one language and the com-
puter thinks you’re speaking another. You’ll
see odd translations when you send UTF‑8,
for instance, but the computer thinks you
sent Latin-1, showing all sorts of weird char-
acters instead. The term is written

「 」in Japanese and means “charac-
ter rot”, an apt description. Pronounced
[modʑibake] in standard IPA phonetics, or
approximately “moh-jee-bah-keh”.

monger
Short for one member of Perl mongers, a pur-
veyor of Perl.

mortal
A temporary value scheduled to die when
the current statement finishes.

mro
See method resolution order.

multidimensional array
An array with multiple subscripts for finding
a single element. Perl implements these us-
ing references—see Chapter 9.

multiple inheritance
The features you got from your mother and
father, mixed together unpredictably. (See
also inheritance and single inheritance.) In
computer languages (including Perl), it is
the notion that a given class may have mul-
tiple direct ancestors or base classes.

named pipe
A pipe with a name embedded in the filesys-
tem so that it can be accessed by two unre-
lated processes.

namespace
A domain of names. You needn’t worry
about whether the names in one such do-
main have been used in another. See pack-
age.

NaN
Not a number. The value Perl uses for certain
invalid or inexpressible floating-point oper-
ations.

network address
The most important attribute of a socket,
like your telephone’s telephone number.
Typically an IP address. See also port.

newline
A single character that represents the end of
a line, with the ASCII value of 012 octal un-
der Unix (but 015 on a Mac), and repre-
sented by \n in Perl strings. For Windows
machines writing text files, and for certain
physical devices like terminals, the single
newline gets automatically translated by
your C library into a line feed and a carriage
return, but normally, no translation is done.

NFS
Network File System, which allows you to
mount a remote filesystem as if it were local.

normalization
Converting a text string into an alternate but
equivalent canonical (or compatible) repre-
sentation that can then be compared for
equivalence. Unicode recognizes four differ-
ent normalization forms: NFD, NFC,
NFKD, and NFKC.

mode

1066 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

null character
A character with the numeric value of zero.
It’s used by C to terminate strings, but Perl
allows strings to contain a null.

null list
A list value with zero elements, represented
in Perl by ().

null string
A string containing no characters, not to be
confused with a string containing a null
character, which has a positive length and is
true.

numeric context
The situation in which an expression is ex-
pected by its surroundings (the code calling
it) to return a number. See also context and
string context.

numification
(Sometimes spelled nummification and num-
mify.) Perl lingo for implicit conversion into
a number; the related verb is numify. Numi-
fication is intended to rhyme with mummifi-
cation, and numify with mummify. It is un-
related to English numen, numina, numi-
nous. We originally forgot the extra m a long
time ago, and some people got used to our
funny spelling, and so just as with
HTTP_REFERER’s own missing letter, our weird
spelling has stuck around.

NV
Short for Nevada, no part of which will ever
be confused with civilization. NV also
means an internal floating-point Numeric
Value of the type a scalar can hold, not to be
confused with an IV.

nybble
Half a byte, equivalent to one hexadecimal
digit, and worth four bits.

object
An instance of a class. Something that
“knows” what user-defined type (class) it is,
and what it can do because of what class it
is. Your program can request an object to do
things, but the object gets to decide whether

it wants to do them or not. Some objects are
more accommodating than others.

octal
A number in base 8. Only the digits 0
through 7 are allowed. Octal constants in
Perl start with 0, as in 013. See also the oct
function.

offset
How many things you have to skip over
when moving from the beginning of a string
or array to a specific position within it.
Thus, the minimum offset is zero, not one,
because you don’t skip anything to get to the
first item.

one-liner
An entire computer program crammed into
one line of text.

open source software
Programs for which the source code is freely
available and freely redistributable, with no
commercial strings attached. For a more de-
tailed definition, see http://www.opensource
.org/osd.html.

operand
An expression that yields a value that an op-
erator operates on. See also precedence.

operating system
A special program that runs on the bare ma-
chine and hides the gory details of managing
processes and devices. Usually used in a
looser sense to indicate a particular culture
of programming. The loose sense can be
used at varying levels of specificity. At one
extreme, you might say that all versions of
Unix and Unix-lookalikes are the same op-
erating system (upsetting many people, es-
pecially lawyers and other advocates). At the
other extreme, you could say this particular
version of this particular vendor’s operating
system is different from any other version of
this or any other vendor’s operating system.
Perl is much more portable across operating
systems than many other languages. See also
architecture and platform.

operating system

Glossary | 1067

www.it-ebooks.info

http://www.opensource.org/osd.html
http://www.opensource.org/osd.html
http://www.it-ebooks.info/

operator
A gizmo that transforms some number of
input values to some number of output val-
ues, often built into a language with a special
syntax or symbol. A given operator may
have specific expectations about what
types of data you give as its arguments
(operands) and what type of data you want
back from it.

operator overloading
A kind of overloading that you can do on
built-in operators to make them work on ob-
jects as if the objects were ordinary scalar
values, but with the actual semantics sup-
plied by the object class. This is set up with
the overload pragma—see Chapter 13.

options
See either switches or regular expression mod-
ifiers.

ordinal
An abstract character’s integer value. Same
thing as codepoint.

overloading
Giving additional meanings to a symbol or
construct. Actually, all languages do over-
loading to one extent or another, since peo-
ple are good at figuring out things from con-
text.

overriding
Hiding or invalidating some other definition
of the same name. (Not to be confused with
overloading, which adds definitions that
must be disambiguated some other way.) To
confuse the issue further, we use the word
with two overloaded definitions: to describe
how you can define your own subroutine to
hide a built-in function of the same name (see
the section “Overriding Built-in Func-
tions” on page 411 in Chapter 11), and to de-
scribe how you can define a replacement
method in a derived class to hide a base
class’s method of the same name (see Chap-
ter 12).

owner
The one user (apart from the superuser) who
has absolute control over a file. A file may
also have a group of users who may exercise
joint ownership if the real owner permits it.
See permission bits.

package
A namespace for global variables, subrou-
tines, and the like, such that they can be kept
separate from like-named symbols in other
namespaces. In a sense, only the package is
global, since the symbols in the package’s
symbol table are only accessible from code
compiled outside the package by naming the
package. But in another sense, all package
symbols are also globals—they’re just well-
organized globals.

pad
Short for scratchpad.

parameter
See argument.

parent class
See base class.

parse tree
See syntax tree.

parsing
The subtle but sometimes brutal art of at-
tempting to turn your possibly malformed
program into a valid syntax tree.

patch
To fix by applying one, as it were. In the
realm of hackerdom, a listing of the differ-
ences between two versions of a program as
might be applied by the patch(1) program
when you want to fix a bug or upgrade your
old version.

PATH
The list of directories the system searches to
find a program you want to execute. The list
is stored as one of your environment vari-
ables, accessible in Perl as $ENV{PATH}.

operator

1068 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

pathname
A fully qualified filename such as /usr/bin/
perl. Sometimes confused with PATH.

pattern
A template used in pattern matching.

pattern matching
Taking a pattern, usually a regular expres-
sion, and trying the pattern various ways on
a string to see whether there’s any way to
make it fit. Often used to pick interesting
tidbits out of a file.

PAUSE
The Perl Authors Upload SErver (http://
pause.perl.org), the gateway for modules on
their way to CPAN.

Perl mongers
A Perl user group, taking the form of its name
from the New York Perl mongers, the first
Perl user group. Find one near you at http://
www.pm.org.

permission bits
Bits that the owner of a file sets or unsets to
allow or disallow access to other people.
These flag bits are part of the mode word re-
turned by the stat built-in when you ask
about a file. On Unix systems, you can check
the ls(1) manpage for more information.

Pern
What you get when you do Perl++ twice.
Doing it only once will curl your hair. You
have to increment it eight times to shampoo
your hair. Lather, rinse, iterate.

pipe
A direct connection that carries the output of
one process to the input of another without
an intermediate temporary file. Once the
pipe is set up, the two processes in question
can read and write as if they were talking to
a normal file, with some caveats.

pipeline
A series of processes all in a row, linked by
pipes, where each passes its output stream to
the next.

platform
The entire hardware and software context in
which a program runs. A program written in
a platform-dependent language might break
if you change any of the following: machine,
operating system, libraries, compiler, or sys-
tem configuration. The perl interpreter has
to be compiled differently for each platform
because it is implemented in C, but pro-
grams written in the Perl language are
largely platform independent.

pod
The markup used to embed documentation
into your Perl code. Pod stands for “Plain
old documentation”. See Chapter 23.

pod command
A sequence, such as =head1, that denotes the
start of a pod section.

pointer
A variable in a language like C that contains
the exact memory location of some other
item. Perl handles pointers internally so you
don’t have to worry about them. Instead,
you just use symbolic pointers in the form
of keys and variable names, or hard refer-
ences, which aren’t pointers (but act like
pointers and do in fact contain pointers).

polymorphism
The notion that you can tell an object to do
something generic, and the object will in-
terpret the command in different ways de-
pending on its type. [< Greek πολυ- + μορϕή,
many forms.]

port
The part of the address of a TCP or UDP
socket that directs packets to the correct
process after finding the right machine,
something like the phone extension you give
when you reach the company operator. Also
the result of converting code to run on a dif-
ferent platform than originally intended, or
the verb denoting this conversion.

portable
Once upon a time, C code compilable under
both BSD and SysV. In general, code that

portable

Glossary | 1069

www.it-ebooks.info

http://pause.perl.org
http://pause.perl.org
http://www.pm.org
http://www.pm.org
http://www.it-ebooks.info/

can be easily converted to run on another
platform, where “easily” can be defined how-
ever you like, and usually is. Anything may
be considered portable if you try hard
enough, such as a mobile home or London
Bridge.

porter
Someone who “carries” software from one
platform to another. Porting programs writ-
ten in platform-dependent languages such
as C can be difficult work, but porting pro-
grams like Perl is very much worth the
agony.

possessive
Said of quantifiers and groups in patterns
that refuse to give up anything once they’ve
gotten their mitts on it. Catchier and easier
to say than the even more formal nonback-
trackable.

POSIX
The Portable Operating System Interface
specification.

postfix
An operator that follows its operand, as in
$x++.

pp
An internal shorthand for a “push-pop”
code; that is, C code implementing Perl’s
stack machine.

pragma
A standard module whose practical hints
and suggestions are received (and possibly
ignored) at compile time. Pragmas are
named in all lowercase.

precedence
The rules of conduct that, in the absence of
other guidance, determine what should hap-
pen first. For example, in the absence of
parentheses, you always do multiplication
before addition.

prefix
An operator that precedes its operand, as in
++$x.

preprocessing
What some helper process did to transform
the incoming data into a form more suitable
for the current process. Often done with an
incoming pipe. See also C preprocessor.

primary maintainer
The author that PAUSE allows to assign co-
maintainer permissions to a namespace. A
primary maintainer can give up this distinc-
tion by assigning it to another PAUSE au-
thor. See Chapter 19.

procedure
A subroutine.

process
An instance of a running program. Under
multitasking systems like Unix, two or more
separate processes could be running the
same program independently at the same
time—in fact, the fork function is designed
to bring about this happy state of affairs.
Under other operating systems, processes
are sometimes called “threads”, “tasks”, or
“jobs”, often with slight nuances in mean-
ing.

program
See script.

program generator
A system that algorithmically writes code for
you in a high-level language. See also code
generator.

progressive matching
Pattern matching that picks up where it left
off before.

property
See either instance variable or character prop-
erty.

protocol
In networking, an agreed-upon way of send-
ing messages back and forth so that neither
correspondent will get too confused.

prototype
An optional part of a subroutine declaration
telling the Perl compiler how many and

porter

1070 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

what flavor of arguments may be passed as
actual arguments, so you can write subrou-
tine calls that parse much like built-in func-
tions. (Or don’t parse, as the case may be.)

pseudofunction
A construct that sometimes looks like a
function but really isn’t. Usually reserved for
lvalue modifiers like my, for context modifiers
like scalar, and for the pick-your-own-
quotes constructs, q//, qq//, qx//, qw//,
qr//, m//, s///, y///, and tr///.

pseudohash
Formerly, a reference to an array whose ini-
tial element happens to hold a reference to
a hash. You used to be able to treat a pseu-
dohash reference as either an array reference
or a hash reference. Pseduohashes are no
longer supported.

pseudoliteral
An operator that looks something like a lit-
eral, such as the output-grabbing operator,
`command`.

public domain
Something not owned by anybody. Perl is
copyrighted and is thus not in the public do-
main—it’s just freely available and freely re-
distributable.

pumpkin
A notional “baton” handed around the Perl
community indicating who is the lead inte-
grator in some arena of development.

pumpking
A pumpkin holder, the person in charge of
pumping the pump, or at least priming it.
Must be willing to play the part of the Great
Pumpkin now and then.

PV
A “pointer value”, which is Perl Internals Talk
for a char*.

qualified
Possessing a complete name. The symbol
$Ent::moot is qualified; $moot is unqualified.
A fully qualified filename is specified from
the top-level directory.

quantifier
A component of a regular expression speci-
fying how many times the foregoing atom
may occur.

race condition
A race condition exists when the result of
several interrelated events depends on the
ordering of those events, but that order can-
not be guaranteed due to nondeterministic
timing effects. If two or more programs, or
parts of the same program, try to go through
the same series of events, one might inter-
rupt the work of the other. This is a good
way to find an exploit.

readable
With respect to files, one that has the proper
permission bit set to let you access the file.
With respect to computer programs, one
that’s written well enough that someone has
a chance of figuring out what it’s trying to
do.

reaping
The last rites performed by a parent process
on behalf of a deceased child process so that
it doesn’t remain a zombie. See the wait and
waitpid function calls.

record
A set of related data values in a file or
stream, often associated with a unique key
field. In Unix, often commensurate with a
line, or a blank-line–terminated set of lines
(a “paragraph”). Each line of the /etc/
passwd file is a record, keyed on login name,
containing information about that user.

recursion
The art of defining something (at least
partly) in terms of itself, which is a naughty
no-no in dictionaries but often works out
okay in computer programs if you’re careful
not to recurse forever (which is like an in-
finite loop with more spectacular failure
modes).

reference
Where you look to find a pointer to infor-
mation somewhere else. (See indirection.)

reference

Glossary | 1071

www.it-ebooks.info

http://www.it-ebooks.info/

References come in two flavors: symbolic
references and hard references.

referent
Whatever a reference refers to, which may or
may not have a name. Common types of ref-
erents include scalars, arrays, hashes, and
subroutines.

regex
See regular expression.

regular expression
A single entity with various interpretations,
like an elephant. To a computer scientist,
it’s a grammar for a little language in which
some strings are legal and others aren’t. To
normal people, it’s a pattern you can use to
find what you’re looking for when it varies
from case to case. Perl’s regular expressions
are far from regular in the theoretical sense,
but in regular use they work quite well.
Here’s a regular expression: /Oh s.*t./.
This will match strings like “Oh say can you
see by the dawn's early light” and “Oh
sit!”. See Chapter 5.

regular expression modifier
An option on a pattern or substitution, such
as /i to render the pattern case-insensitive.

regular file
A file that’s not a directory, a device, a named
pipe or socket, or a symbolic link. Perl uses
the –f file test operator to identify regular
files. Sometimes called a “plain” file.

relational operator
An operator that says whether a particular
ordering relationship is true about a pair of
operands. Perl has both numeric and string
relational operators. See collating sequence.

reserved words
A word with a specific, built-in meaning to
a compiler, such as if or delete. In many
languages (not Perl), it’s illegal to use re-
served words to name anything else. (Which
is why they’re reserved, after all.) In Perl,
you just can’t use them to name labels or
filehandles. Also called “keywords”.

return value
The value produced by a subroutine or ex-
pression when evaluated. In Perl, a return
value may be either a list or a scalar.

RFC
Request For Comment, which despite the
timid connotations is the name of a series of
important standards documents.

right shift
A bit shift that divides a number by some
power of 2.

role
A name for a concrete set of behaviors. A role
is a way to add behavior to a class without
inheritance.

root
The superuser (UID == 0). Also the top-level
directory of the filesystem.

RTFM
What you are told when someone thinks you
should Read The Fine Manual.

run phase
Any time after Perl starts running your main
program. See also compile phase. Run phase
is mostly spent in runtime but may also be
spent in compile time when require, do
FILE, or eval STRING operators are executed,
or when a substitution uses the /ee modifier.

runtime
The time when Perl is actually doing what
your code says to do, as opposed to the ear-
lier period of time when it was trying to fig-
ure out whether what you said made any
sense whatsoever, which is compile time.

runtime pattern
A pattern that contains one or more vari-
ables to be interpolated before parsing the
pattern as a regular expression, and that
therefore cannot be analyzed at compile
time, but must be reanalyzed each time the
pattern match operator is evaluated. Run-
time patterns are useful but expensive.

referent

1072 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

RV
A recreational vehicle, not to be confused
with vehicular recreation. RV also means an
internal Reference Value of the type a
scalar can hold. See also IV and NV if you’re
not confused yet.

rvalue
A value that you might find on the right side
of an assignment. See also lvalue.

sandbox
A walled off area that’s not supposed to affect
beyond its walls. You let kids play in the
sandbox instead of running in the road. See
Chapter 20.

scalar
A simple, singular value; a number, string,
or reference.

scalar context
The situation in which an expression is ex-
pected by its surroundings (the code calling
it) to return a single value rather than a list
of values. See also context and list context. A
scalar context sometimes imposes addi-
tional constraints on the return value—see
string context and numeric context. Some-
times we talk about a Boolean context inside
conditionals, but this imposes no additional
constraints, since any scalar value, whether
numeric or string, is already true or false.

scalar literal
A number or quoted string—an actual
value in the text of your program, as opposed
to a variable.

scalar value
A value that happens to be a scalar as op-
posed to a list.

scalar variable
A variable prefixed with $ that holds a single
value.

scope
From how far away you can see a variable,
looking through one. Perl has two visibility
mechanisms. It does dynamic scoping of

local variables, meaning that the rest of the
block, and any subroutines that are called by
the rest of the block, can see the variables
that are local to the block. Perl does lexical
scoping of my variables, meaning that the rest
of the block can see the variable, but other
subroutines called by the block cannot see
the variable.

scratchpad
The area in which a particular invocation of
a particular file or subroutine keeps some of
its temporary values, including any lexically
scoped variables.

script
A text file that is a program intended to be
executed directly rather than compiled to an-
other form of file before execution.

Also, in the context of Unicode, a writing
system for a particular language or group
of languages, such as Greek, Bengali, or
Tengwar.

script kiddie
A cracker who is not a hacker but knows just
enough to run canned scripts. A cargo-cult
programmer.

sed
A venerable Stream EDitor from which Perl
derives some of its ideas.

semaphore
A fancy kind of interlock that prevents mul-
tiple threads or processes from using up the
same resources simultaneously.

separator
A character or string that keeps two sur-
rounding strings from being confused with
each other. The split function works on
separators. Not to be confused with delim-
iters or terminators. The “or” in the previous
sentence separated the two alternatives.

serialization
Putting a fancy data structure into linear or-
der so that it can be stored as a string in a
disk file or database, or sent through a
pipe. Also called marshalling.

serialization

Glossary | 1073

www.it-ebooks.info

http://www.it-ebooks.info/

server
In networking, a process that either adver-
tises a service or just hangs around at a
known location and waits for clients who
need service to get in touch with it.

service
Something you do for someone else to make
them happy, like giving them the time of day
(or of their life). On some machines, well-
known services are listed by the getservent
function.

setgid
Same as setuid, only having to do with giving
away group privileges.

setuid
Said of a program that runs with the privi-
leges of its owner rather than (as is usually
the case) the privileges of whoever is run-
ning it. Also describes the bit in the mode
word (permission bits) that controls the fea-
ture. This bit must be explicitly set by the
owner to enable this feature, and the pro-
gram must be carefully written not to give
away more privileges than it ought to.

shared memory
A piece of memory accessible by two differ-
ent processes who otherwise would not see
each other’s memory.

shebang
Irish for the whole McGillicuddy. In Perl cul-
ture, a portmanteau of “sharp” and “bang”,
meaning the #! sequence that tells the sys-
tem where to find the interpreter.

shell
A command-line interpreter. The program
that interactively gives you a prompt, ac-
cepts one or more lines of input, and exe-
cutes the programs you mentioned, feeding
each of them their proper arguments and in-
put data. Shells can also execute scripts con-
taining such commands. Under Unix, typi-
cal shells include the Bourne shell (/bin/sh),
the C shell (/bin/csh), and the Korn shell
(/bin/ksh). Perl is not strictly a shell because

it’s not interactive (although Perl programs
can be interactive).

side effects
Something extra that happens when you
evaluate an expression. Nowadays it can refer
to almost anything. For example, evaluating
a simple assignment statement typically has
the “side effect” of assigning a value to a
variable. (And you thought assigning the
value was your primary intent in the first
place!) Likewise, assigning a value to the
special variable $| ($AUTOFLUSH) has the side
effect of forcing a flush after every write or
print on the currently selected filehandle.

sigil
A glyph used in magic. Or, for Perl, the sym-
bol in front of a variable name, such as $, @,
and %.

signal
A bolt out of the blue; that is, an event trig-
gered by the operating system, probably
when you’re least expecting it.

signal handler
A subroutine that, instead of being content
to be called in the normal fashion, sits
around waiting for a bolt out of the blue be-
fore it will deign to execute. Under Perl, bolts
out of the blue are called signals, and you
send them with the kill built-in. See the
%SIG hash in Chapter 25 and the section
“Signals” on page 518 in Chapter 15.

single inheritance
The features you got from your mother, if she
told you that you don’t have a father. (See
also inheritance and multiple inheritance.) In
computer languages, the idea that classes re-
produce asexually so that a given class can
only have one direct ancestor or base class.
Perl supplies no such restriction, though
you may certainly program Perl that way if
you like.

slice
A selection of any number of elements from
a list, array, or hash.

server

1074 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

slurp
To read an entire file into a string in one op-
eration.

socket
An endpoint for network communication
among multiple processes that works much
like a telephone or a post office box. The
most important thing about a socket is its
network address (like a phone number). Dif-
ferent kinds of sockets have different kinds
of addresses—some look like filenames, and
some don’t.

soft reference
See symbolic reference.

source filter
A special kind of module that does prepro-
cessing on your script just before it gets to the
tokener.

stack
A device you can put things on the top of,
and later take them back off in the opposite
order in which you put them on. See LIFO.

standard
Included in the official Perl distribution, as
in a standard module, a standard tool, or a
standard Perl manpage.

standard error
The default output stream for nasty remarks
that don’t belong in standard output. Repre-
sented within a Perl program by the filehan-
dle STDERR. You can use this stream explicitly,
but the die and warn built-ins write to your
standard error stream automatically (unless
trapped or otherwise intercepted).

standard input
The default input stream for your program,
which if possible shouldn’t care where its
data is coming from. Represented within a
Perl program by the filehandle STDIN.

standard I/O
A standard C library for doing buffered input
and output to the operating system. (The
“standard” of standard I/O is at most

marginally related to the “standard” of stan-
dard input and output.) In general, Perl re-
lies on whatever implementation of stan-
dard I/O a given operating system supplies,
so the buffering characteristics of a Perl pro-
gram on one machine may not exactly
match those on another machine. Normally
this only influences efficiency, not seman-
tics. If your standard I/O package is doing
block buffering and you want it to flush the
buffer more often, just set the $| variable to
a true value.

Standard Library
Everything that comes with the official perl
distribution. Some vendor versions of perl
change their distributions, leaving out some
parts or including extras. See also dual-lived.

standard output
The default output stream for your program,
which if possible shouldn’t care where its
data is going. Represented within a Perl pro-
gram by the filehandle STDOUT.

statement
A command to the computer about what to
do next, like a step in a recipe: “Add mar-
malade to batter and mix until mixed.” A
statement is distinguished from a declara-
tion, which doesn’t tell the computer to do
anything, but just to learn something.

statement modifier
A conditional or loop that you put after the
statement instead of before, if you know
what we mean.

static
Varying slowly compared to something else.
(Unfortunately, everything is relatively sta-
ble compared to something else, except for
certain elementary particles, and we’re not
so sure about them.) In computers, where
things are supposed to vary rapidly, “static”
has a derogatory connotation, indicating a
slightly dysfunctional variable, subroutine,
or method. In Perl culture, the word is po-
litely avoided.

static

Glossary | 1075

www.it-ebooks.info

http://www.it-ebooks.info/

If you’re a C or C++ programmer, you might
be looking for Perl’s state keyword.

static method
No such thing. See class method.

static scoping
No such thing. See lexical scoping.

static variable
No such thing. Just use a lexical variable in
a scope larger than your subroutine, or de-
clare it with state instead of with my.

stat structure
A special internal spot in which Perl keeps
the information about the last file on which
you requested information.

status
The value returned to the parent process
when one of its child processes dies. This
value is placed in the special variable $?. Its
upper eight bits are the exit status of the de-
funct process, and its lower eight bits iden-
tify the signal (if any) that the process died
from. On Unix systems, this status value is
the same as the status word returned by
wait(2). See system in Chapter 27.

STDERR
See standard error.

STDIN
See standard input.

STDIO
See standard I/O.

STDOUT
See standard output.

stream
A flow of data into or out of a process as a
steady sequence of bytes or characters,
without the appearance of being broken up
into packets. This is a kind of interface—the
underlying implementation may well break
your data up into separate packets for de-
livery, but this is hidden from you.

string
A sequence of characters such as “He said
!@#*&%@#*?!”. A string does not have to
be entirely printable.

string context
The situation in which an expression is ex-
pected by its surroundings (the code calling
it) to return a string. See also context and
numeric context.

stringification
The process of producing a string represen-
tation of an abstract object.

struct
C keyword introducing a structure defini-
tion or name.

structure
See data structure.

subclass
See derived class.

subpattern
A component of a regular expression pattern.

subroutine
A named or otherwise accessible piece of
program that can be invoked from else-
where in the program in order to accomplish
some subgoal of the program. A subroutine
is often parameterized to accomplish differ-
ent but related things depending on its input
arguments. If the subroutine returns a mean-
ingful value, it is also called a function.

subscript
A value that indicates the position of a par-
ticular array element in an array.

substitution
Changing parts of a string via the s/// op-
erator. (We avoid use of this term to mean
variable interpolation.)

substring
A portion of a string, starting at a certain
character position (offset) and proceeding for
a certain number of characters.

static method

1076 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

superclass
See base class.

superuser
The person whom the operating system will
let do almost anything. Typically your sys-
tem administrator or someone pretending
to be your system administrator. On Unix
systems, the root user. On Windows sys-
tems, usually the Administrator user.

SV
Short for “scalar value”. But within the Perl
interpreter, every referent is treated as a
member of a class derived from SV, in an
object-oriented sort of way. Every value in-
side Perl is passed around as a C language
SV* pointer. The SV struct knows its own
“referent type”, and the code is smart
enough (we hope) not to try to call a hash
function on a subroutine.

switch
An option you give on a command line to
influence the way your program works, usu-
ally introduced with a minus sign. The word
is also used as a nickname for a switch state-
ment.

switch cluster
The combination of multiple command-line
switches (e.g., –a –b –c) into one switch
(e.g., –abc). Any switch with an additional
argument must be the last switch in a cluster.

switch statement
A program technique that lets you evaluate
an expression and then, based on the value of
the expression, do a multiway branch to the
appropriate piece of code for that value.
Also called a “case structure”, named after
the similar Pascal construct. Most switch
statements in Perl are spelled given. See
“The given Statement” on page 133 in Chap-
ter 4.

symbol
Generally, any token or metasymbol. Often
used more specifically to mean the sort of
name you might find in a symbol table.

symbolic debugger
A program that lets you step through the
execution of your program, stopping or
printing things out here and there to see
whether anything has gone wrong, and, if
so, what. The “symbolic” part just means
that you can talk to the debugger using the
same symbols with which your program is
written.

symbolic link
An alternate filename that points to the real
filename, which in turn points to the real
file. Whenever the operating system is trying
to parse a pathname containing a symbolic
link, it merely substitutes the new name and
continues parsing.

symbolic reference
A variable whose value is the name of an-
other variable or subroutine. By dereferenc-
ing the first variable, you can get at the sec-
ond one. Symbolic references are illegal un-
der use strict "refs".

symbol table
Where a compiler remembers symbols. A
program like Perl must somehow remember
all the names of all the variables, filehan-
dles, and subroutines you’ve used. It does this
by placing the names in a symbol table,
which is implemented in Perl using a hash
table. There is a separate symbol table for
each package to give each package its own
namespace.

synchronous
Programming in which the orderly sequence
of events can be determined; that is, when
things happen one after the other, not at the
same time.

syntactic sugar
An alternative way of writing something
more easily; a shortcut.

syntax
From Greek σύνταξις, “with-arrangement”.
How things (particularly symbols) are put
together with each other.

syntax

Glossary | 1077

www.it-ebooks.info

http://www.it-ebooks.info/

syntax tree
An internal representation of your program
wherein lower-level constructs dangle off the
higher-level constructs enclosing them.

syscall
A function call directly to the operating sys-
tem. Many of the important subroutines and
functions you use aren’t direct system calls,
but are built up in one or more layers above
the system call level. In general, Perl pro-
grammers don’t need to worry about the
distinction. However, if you do happen to
know which Perl functions are really sys-
calls, you can predict which of these will set
the $! ($ERRNO) variable on failure. Unfortu-
nately, beginning programmers often con-
fusingly employ the term “system call” to
mean what happens when you call the Perl
system function, which actually involves
many syscalls. To avoid any confusion, we
nearly always say “syscall” for something
you could call indirectly via Perl’s syscall
function, and never for something you
would call with Perl’s system function.

taint checks
The special bookkeeping Perl does to track
the flow of external data through your pro-
gram and disallow their use in system com-
mands.

tainted
Said of data derived from the grubby hands
of a user, and thus unsafe for a secure pro-
gram to rely on. Perl does taint checks if you
run a setuid (or setgid) program, or if you use
the –T switch.

taint mode
Running under the –T switch, marking all
external data as suspect and refusing to use
it with system commands. See Chapter 20.

TCP
Short for Transmission Control Protocol. A
protocol wrapped around the Internet Pro-
tocol to make an unreliable packet trans-
mission mechanism appear to the applica-

tion program to be a reliable stream of bytes.
(Usually.)

term
Short for a “terminal”—that is, a leaf node
of a syntax tree. A thing that functions gram-
matically as an operand for the operators in
an expression.

terminator
A character or string that marks the end of
another string. The $/ variable contains the
string that terminates a readline operation,
which chomp deletes from the end. Not to be
confused with delimiters or separators. The
period at the end of this sentence is a termi-
nator.

ternary
An operator taking three operands. Some-
times pronounced trinary.

text
A string or file containing primarily print-
able characters.

thread
Like a forked process, but without fork’s in-
herent memory protection. A thread is
lighter weight than a full process, in that a
process could have multiple threads run-
ning around in it, all fighting over the same
process’s memory space unless steps are
taken to protect threads from one another.

tie
The bond between a magical variable and its
implementation class. See the tie function
in Chapter 27 and Chapter 14.

titlecase
The case used for capitals that are followed
by lowercase characters instead of by more
capitals. Sometimes called sentence case or
headline case. English doesn’t use Unicode
titlecase, but casing rules for English titles
are more complicated than simply capital-
izing each word’s first character.

TMTOWTDI
There’s More Than One Way To Do It, the
Perl Motto. The notion that there can be

syntax tree

1078 | Glossary

www.it-ebooks.info

http://www.it-ebooks.info/

more than one valid path to solving a pro-
gramming problem in context. (This
doesn’t mean that more ways are always
better or that all possible paths are equally
desirable—just that there need not be One
True Way.)

token
A morpheme in a programming language,
the smallest unit of text with semantic sig-
nificance.

tokener
A module that breaks a program text into a
sequence of tokens for later analysis by a
parser.

tokenizing
Splitting up a program text into tokens. Also
known as “lexing”, in which case you get
“lexemes” instead of tokens.

toolbox approach
The notion that, with a complete set of sim-
ple tools that work well together, you can
build almost anything you want. Which is
fine if you’re assembling a tricycle, but if
you’re building a defranishizing comboflux
regurgalator, you really want your own ma-
chine shop in which to build special tools.
Perl is sort of a machine shop.

topic
The thing you’re working on. Structures like
while(<>), for, foreach, and given set the
topic for you by assigning to $_, the default
(topic) variable.

transliterate
To turn one string representation into an-
other by mapping each character of the
source string to its corresponding character
in the result string. Not to be confused with
translation: for example, Greek πολύχρωμος
transliterates into polychromos but trans-
lates into many-colored. See the tr/// oper-
ator in Chapter 5.

trigger
An event that causes a handler to be run.

trinary
Not a stellar system with three stars, but an
operator taking three operands. Sometimes
pronounced ternary.

troff
A venerable typesetting language from
which Perl derives the name of its $% variable
and which is secretly used in the production
of Camel books.

true
Any scalar value that doesn’t evaluate to 0 or
"".

truncating
Emptying a file of existing contents, either
automatically when opening a file for writ-
ing or explicitly via the truncate function.

type
See data type and class.

type casting
Converting data from one type to another. C
permits this. Perl does not need it. Nor want
it.

typedef
A type definition in the C and C++ lan-
guages.

typed lexical
A lexical variable that is declared with a
class type: my Pony $bill.

typeglob
Use of a single identifier, prefixed with *. For
example, *name stands for any or all of $name,
@name, %name, &name, or just name. How you
use it determines whether it is interpreted as
all or only one of them. See “Typeglobs and
Filehandles” on page 86 in Chapter 2.

typemap
A description of how C types may be trans-
formed to and from Perl types within an ex-
tension module written in XS.

UDP
User Datagram Protocol, the typical way to
send datagrams over the Internet.

UDP

Glossary | 1079

www.it-ebooks.info

http://www.it-ebooks.info/

UID
A user ID. Often used in the context of file or
process ownership.

umask
A mask of those permission bits that should
be forced off when creating files or directo-
ries, in order to establish a policy of whom
you’ll ordinarily deny access to. See the
umask function.

unary operator
An operator with only one operand, like ! or
chdir. Unary operators are usually prefix
operators; that is, they precede their
operand. The ++ and –– operators can be ei-
ther prefix or postfix. (Their position does
change their meanings.)

Unicode
A character set comprising all the major
character sets of the world, more or less. See
http://www.unicode.org.

Unix
A very large and constantly evolving lan-
guage with several alternative and largely
incompatible syntaxes, in which anyone can
define anything any way they choose, and
usually do. Speakers of this language think
it’s easy to learn because it’s so easily twisted
to one’s own ends, but dialectical differ-
ences make tribal intercommunication
nearly impossible, and travelers are often re-
duced to a pidgin-like subset of the lan-
guage. To be universally understood, a Unix
shell programmer must spend years of study
in the art. Many have abandoned this disci-
pline and now communicate via an
Esperanto-like language called Perl.

In ancient times, Unix was also used to refer
to some code that a couple of people at Bell
Labs wrote to make use of a PDP-7 com-
puter that wasn’t doing much of anything
else at the time.

uppercase
In Unicode, not just characters with the Gen-
eral Category of Uppercase Letter, but any
character with the Uppercase property, in-

cluding some Letter Numbers and Symbols.
Not to be confused with titlecase.

value
An actual piece of data, in contrast to all the
variables, references, keys, indices, opera-
tors, and whatnot that you need to access
the value.

variable
A named storage location that can hold any
of various kinds of value, as your program
sees fit.

variable interpolation
The interpolation of a scalar or array variable
into a string.

variadic
Said of a function that happily receives an in-
determinate number of actual arguments.

vector
Mathematical jargon for a list of scalar val-
ues.

virtual
Providing the appearance of something
without the reality, as in: virtual memory is
not real memory. (See also memory.) The
opposite of “virtual” is “transparent”,
which means providing the reality of some-
thing without the appearance, as in: Perl
handles the variable-length UTF‑8 character
encoding transparently.

void context
A form of scalar context in which an expres-
sion is not expected to return any value at all
and is evaluated for its side effects alone.

v-string
A “version” or “vector” string specified with
a v followed by a series of decimal integers in
dot notation, for instance, v1.20.300.4000.
Each number turns into a character with the
specified ordinal value. (The v is optional
when there are at least three integers.)

warning
A message printed to the STDERR stream to
the effect that something might be wrong

UID

1080 | Glossary

www.it-ebooks.info

http://www.unicode.org
http://www.it-ebooks.info/

but isn’t worth blowing up over. See warn in
Chapter 27 and the warnings pragma in
Chapter 29.

watch expression
An expression which, when its value
changes, causes a breakpoint in the Perl de-
bugger.

weak reference
A reference that doesn’t get counted nor-
mally. When all the normal references to
data disappear, the data disappears. These
are useful for circular references that would
never disappear otherwise.

whitespace
A character that moves your cursor but
doesn’t otherwise put anything on your
screen. Typically refers to any of: space, tab,
line feed, carriage return, or form feed. In
Unicode, matches many other characters
that Unicode considers whitespace, includ-
ing the NO-BREAK SPACE.

word
In normal “computerese”, the piece of data of
the size most efficiently handled by your
computer, typically 32 bits or so, give or take
a few powers of 2. In Perl culture, it more
often refers to an alphanumeric identifier
(including underscores), or to a string of
nonwhitespace characters bounded by
whitespace or string boundaries.

working directory
Your current directory, from which relative
pathnames are interpreted by the operating
system. The operating system knows your
current directory because you told it with a
chdir, or because you started out in the place
where your parent process was when you
were born.

wrapper
A program or subroutine that runs some
other program or subroutine for you, mod-
ifying some of its input or output to better
suit your purposes.

WYSIWYG
What You See Is What You Get. Usually used
when something that appears on the screen
matches how it will eventually look, like
Perl’s format declarations. Also used to mean
the opposite of magic because everything
works exactly as it appears, as in the three-
argument form of open.

XS
An extraordinarily exported, expeditiously
excellent, expressly eXternal Subroutine,
executed in existing C or C++ or in an
exciting extension language called (exasper-
atingly) XS.

XSUB
An external subroutine defined in XS.

yacc
Yet Another Compiler Compiler. A parser
generator without which Perl probably
would not have existed. See the file perly.y
in the Perl source distribution.

zero width
A subpattern assertion matching the null
string between characters.

zombie
A process that has died (exited) but whose
parent has not yet received proper notifica-
tion of its demise by virtue of having called
wait or waitpid. If you fork, you must clean
up after your child processes when they exit;
otherwise, the process table will fill up and
your system administrator will Not Be
Happy with you.

zombie

Glossary | 1081

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index of Perl Modules in This Book

Symbols

A
AnyDBM_File module, 477, 728
AnyEvent module, 696
App::perlbrew module, xxxii
attributes pragma

about, 1002
get function, 1003
my operator and, 899
reftype function, 425, 927, 1003
subroutines and, 335

autobox pragma, 686
autodie pragma, 686, 687, 690, 1003
AutoLoader module

defining functions, 150
loading packages, 398
make install procedure and, 998
runtime demand loading and, 1004

AutoSplit module, 398, 726, 1047
autouse pragma, 150, 1004

B
B::Backend module, 565
B::Bytecode module

about, 566, 567
code generation and, 560
as compiler backend, 565

B::C module, 560, 565, 566
B::CC module, 560, 565, 566
B::Deparse module, 561, 565, 568
B::Fathom module, 565
B::Graph module, 565
B::Lint module, 565, 567, 1042

B::Size module, 565
B::Xref module, 565, 568
base pragma

about, 1005
@ISA variable and, 429–431, 779
parent pragma and, 1026

bigint pragma
about, 1006
bitwise operators and, 118
multiplicative operators and, 104
scalar values and, 66
shift operators and, 105

bignum pragma, 66, 104, 1006
bigrat pragma, 66, 104, 1007
blib pragma, 643, 1007
boolean module, 689
BSD::Resource module, 678, 874, 940
ByteLoader module, 566
bytes pragma, 791, 1007, 1009

C
Carp module

carp function, 479, 987
cluck function, 987
confess function, 479, 860
croak function, 479, 860, 1030
managing unknown symbols, 411

charnames pragma
about, 1008
backslashed character escapes and, 68
custom character names, 1009
loading codepoints, 279
metasymbols and, 200
runtime lookups, 1010–1012
string_vianame function, 1011

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

1083

www.it-ebooks.info

http://www.it-ebooks.info/

viacode function, 312, 837, 1011
vianame function, 911, 1011

Chase module, 1005
Class::Contract module, 449
Class::Multimethod module, 689
Config module

configuration variables and, 593
efficiency practices, 699
inspecting options, 1035
integer formats and, 806
$OSNAME variable and, 782
portability and, 722, 730
programming practices, 703
relative symbolic links and, 963
%SIG variable and, 520
tie implementations, 973

constant pragma, 331, 470, 1012–1014
CORE pseudopackage, 412
Coro module, 696
CPAN.pm module, 639, 728
CPAN::DistnameInfo module, 410
CPAN::Mini module, 632–633, 1065
CPANPLUS library, 639
Crypt::* modules, 842
Cwd module, 601, 696, 832

D
Data::Dump module, 268, 370
Data::Dumper module

parsable code and, 369
portability and, 724
references to subroutines and, 438
saving data structures, 385–386

Date::Parse module, 729
DateTime module, 729
DB module, 603, 616
DBD::SQLite module, 728
DBI module, 427, 728
DBM_Filter module, 286, 843
DB_File module, 842, 973
deprecate pragma, 1014
Devel::AssertOS module, 722
Devel::CheckOS module, 722
Devel::Cover module, 643
Devel::DProf module, 583, 623–627
Devel::NYTProf module, 623, 627
Devel::Peek module, 340
Devel::REPL module, 687
Devel::SmallProf module, 623

diagnostics pragma, xxix, 701, 1014–1016
Digest::* modules, 842
Dist::Zilla module, 642
Distribution::Cooker module, 641
Dumpvalue module, 369
DynaLoader module, 398

E
Encode module

about, 285–286
metasymbols and, 202
open pragma and, 1024
text files and, 911
usage example, 829
utf8 pragma and, 1037

Encode::Locale module, 285
encoding pragma, 596, 1017
English module

$LIST_SEPARATOR variable and, 73
$– variable and, 814
accessing format–specific variables, 867
$ACCUMULATOR variable and, 867
$AUTOFLUSH variable and, 908
longer synonyms and, 768
picture formats, 813
reading variable names, 815

Env module, 685
Errno module

about, 999
%OS_ERROR variable and, 782
portability and, 730

Expect module, 537
Exporter module

about, 391
@EXPORT variable and, 774
@EXPORT_OK variable and, 774
%EXPORT_TAGS variable and, 775
import method, 403, 980, 1004
module privacy and, 407–411
per–package variables and, 1034

ExtUtils::MakeMaker module, 1007
ExtUtils::MM_VMS module, 728

F
Fcntl module

about, 999
fcntl function and, 861

1084 | Index of Perl Modules in This Book

www.it-ebooks.info

http://www.it-ebooks.info/

symbolic names and, 833, 863, 934, 957,
968

sysopen function and, 964
feature pragma

about, 1017
loading, 981
say feature, 586, 932, 1017
scoping and, 823
state feature, 586, 958, 1017
switch feature, 134, 586, 1017
unicode_strings feature, 179, 586, 1017

fields pragma
about, 560
base classes and, 1005
%FIELDS variable and, 775
@ISA variable and, 429–431
new function, 352
phash function, 352

File::Basename module, 403, 725
File::chmod module, 833
File::Copy module, 927
File::Glob module, 412, 879
File::HomeDir module, 725
File::Map module, 540
File::Mmap module, 697
File::Path module, 932
File::Spec module, 725
File::stat module, 957
File::Temp module, 667, 726
filetest pragma, 1018
Filter module, 718
FindBin module, 929, 1021

G
GDBM_File module, 528, 843
Gearman module, 696
Getopt::Long module, 91, 146, 568, 942
Getopt::Std module, 91, 146, 942

H
Hash::Util module, 353, 403, 597

I
if pragma, 981, 1019
inc::latest module, 995, 1019
integer pragma, 104, 704, 1019
IO::File module

about, 967

new_tmpfile function, 666
IO::Handle module

accessing formatting internals, 818
accessing format–specific variables, 867
accessing special variables, 815
autoflush method, 858, 866, 908
data structure records, 383
file handling considerations, 967
hard references and, 354
per–filehandle variables and, 768
programming practices, 682
symbol table references, 347
tied variables and, 512
ungetc function, 868
untaint function, 654

IO::Pty module, 537
IO::Seekable module, 934, 968
IO::Select module, 536, 938
IO::Socket module, 544, 827, 839
IO::Socket::INET module, 545, 546, 547
IO::Socket::IP module, 546
IO::WrapTie module, 512
IPC::Open2 module, 536, 908
IPC::Open3 module, 536, 908
IPC::Run module, 728
IPC::Semaphore module, 938, 939
IPC::Shareable module, 540
IPC::System::Simple module, 728
IPC::SysV module

msgctl function and, 896
msgget function and, 896
msgrcv function and, 896
semget function and, 938
semop function and, 939
shmctl function and, 942

L
less pragma, 1020
lib pragma

about, 1021
@INC variable and, 777
loading modules, 402
PERL5LIB environment variable and, 638
require function and, 929

libnet API, 545
libwww API, 545
List::Util module, 882
local::lib module, 638, 639–640
locale pragma

Index of Perl Modules in This Book | 1085

www.it-ebooks.info

http://www.it-ebooks.info/

about, 1022
pattern modifiers and, 180
sort pragma and, 946

M
Mail::Mailer module, 545, 727
Mail::Send module, 727
Mail::Sendmail module, 727
Math::BigFloat module, 1006
Math::BigInt module, 457, 1006, 1007
Math::BigRat module, 1007
Math::Complex module, 1044
Math::MySum module, 642
Math::Random::MT::Perl module, 921
Math::Random::Secure module, 921
Math::Trig module

acos function, 840
asin function, 944
tan function, 827

Math::TrulyRandom module, 921, 955
Memoize module, 693
MLDBM module, 512
Mo framework, 455
Module::Build module, 1007, 1019
Module::CoreList module, 996
Module::Starter module, 641
mod_perl extension (Apache), 564
Mojolicious package, 630
Moo module, 455
Moose module, 404, 453–455
Mouse framework, 455
mro pragma, 432, 437, 1023
MRO::Compat module, 433

N
Net::DNS module, 545
Net::FTP module, 545
Net::hostent module, 871, 872
Net::netent module, 872, 873
Net::NNTP module, 545
Net::proto module, 875
Net::servent module, 877
Net::SMTP module, 545
Net::Telnet module, 545
Numbers module

about, 1025
myadd function, 1025
mysub function, 1025

O
Opcode module, 672, 1025
open pragma

:bytes layer, 598, 1024
:crlf layer, 598, 1024
:encoding layer, 1024
:locale layer, 1024
:mmap layer, 599
:perlio layer, 599
:pop layer, 599
:raw layer, 503, 599, 1024
:std layer, 1024
:stdio layer, 599
:unix layer, 599
:utf8 layer, 599, 1024
:win32 layer, 599
about, 1017, 1023
–C switch and, 583
programming practices, 682
read function and, 922
setting encoding, 282–285

ops pragma, 1024
overload pragma

about, 458, 1025
Method function, 472
%OVERLOAD variable and, 784
overloadable operators and, 460–467
Overloaded function, 472
StrVal function, 472

overloading pragma, 1025

P
parent pragma

about, 1026
base pragma and, 1005
@ISA variable and, 429–431

Path::Class module, 725
PDL module, 371
Perl::Critic module, 55, 568, 705
Perl::Tidy module, 681, 705, 745
PerlIO module, 582, 902
PerlX::MethodCallWithBlock extension, 688
PerlX::Range extension, 688
PGP::* modules, 842
pod2html module, 740
pod2latex module, 740
pod2man module, 740
pod2text module, 740, 744

1086 | Index of Perl Modules in This Book

www.it-ebooks.info

http://www.it-ebooks.info/

Pod::Checker module, 741
Pod::Find module, 741
Pod::PseudoPod module, 736
Pod::Simple module, 741, 743
Pod::Simple::Text module, 744
POE module, 696
POSIX module

about, 999
acos function, 840
asin function, 944
blocking signals, 522
exit function, 860
getattr function, 868
import tag groups and, 985
input buffering and, 783
mkfifo function, 538
mktime function, 881
pause function, 944
setlocale function, 180
setsid function, 940
sigprocmask syscall and, 522
strftime function, 881, 893
symbolic names and, 934, 968
system calls and, 963
tan function, 827
tmpnam function, 666

PPI package, 568
pragma module

constant function, 470
remove_constant function, 470

R
re pragma, 601, 677, 1026
re::engine::LPEG module, 271
re::engine::Lua module, 272
re::engine::Oniguruma module, 272
re::engine::PCRE module, 272
re::engine::Plan9 module, 272
re::engine::Plugin module, 271
re::engine::RE2 module, 271–273
Regexp module, 354
Regexp::Grammars module, 267–270

S
Safe module

handling insecure code, 670–678
ops pragma and, 1025
reval method, 673

usage examples, 673–675
Scalar::Util module

breaking references and, 441
is_weak function, 364
set_prototype function, 331
tainted function, 652
weaken function, 364

SDBM_File module, 728
SelectSaver module, 936
SelfLoader module, 150, 398, 1004
Shell module, 399
ShMem package, 541
sigtrap pragma

about, 1029
converting singals into exceptions, 571
other arguments supported, 1030
predefined signal lists, 1030
programming practices, 701
signal handlers and, 519, 1029
usage examples, 1031

Smart::Comments module, 55
Socket module

about, 544, 999
AF_INET attribute, 870
getaddrinfo function, 871
inet_ntoa function, 870
networking clients, 546
networking servers, 547
newlines and, 723
SOL_SOCKET attribute, 878, 940

sort pragma, 950, 1032
Storable module, 386, 724
strict pragma

about, 16, 1032
barewords and, 1034
handling insecure code, 671
lexical scoping and, 156
my modifier and, 825
programming practices, 679, 682, 701, 704
references and, 1033
variables and, 63, 165, 779, 1033

Struct::Class module, 443
subs pragma, 439, 1035
SUPER pseudoclass, 433–435
Symbol module

delete_package function, 930
qualify_to_ref function, 329

Index of Perl Modules in This Book | 1087

www.it-ebooks.info

http://www.it-ebooks.info/

T
Taint::Util module

taint function, 652
tainted function, 652

Term::ReadKey module, 615, 868, 886
Term::ReadLine module

debugging support, 615, 617, 618
unattended execution and, 620

Term::Rendezvous module, 619
Test::More module, 642
Test::Pod module, 741
Test::Pod::Coverage module, 741
Text::Autoformat module, 297
Text::CPP module, 590
Thread module, 1035
Thread::Queue module, 1036
threads pragma

about, 1035–1036
async function, 1036

threads::shared pragma, 1036
Tie::Array module

about, 486
SPLICE subroutine, 487, 491
tie function and, 973

Tie::Cache::LRU module, 512
Tie::Const module, 512
Tie::Counter module, 483, 512
Tie::CPHash module, 512
Tie::Cycle module, 483, 512
Tie::DBI module, 512
Tie::DevRandom module, 509
Tie::Dict module, 512
Tie::DictFile module, 512
Tie::DNS module, 513
Tie::EncryptedHash module, 513
Tie::FileLRUCache module, 513
Tie::FlipFlop module, 513
Tie::Handle module, 973
Tie::Hash module, 492, 973
Tie::Hash::NamedCapture module, 228, 770,

780
Tie::HashDefaults module, 513
Tie::HashHistory module, 513
Tie::iCal module, 513
Tie::IxHash module, 513
Tie::LDAP module, 513
Tie::Open2 module, 507–510
Tie::Persistent module, 513
Tie::Pick module, 513

Tie::RDBM module, 513
Tie::RefHash module, 362
Tie::Scalar module, 478, 973
Tie::SecureHash module, 448
Tie::StdArray module, 486
Tie::STDERR module, 513
Tie::StdHash module, 492
Tie::StdScalar module, 478
Tie::SubstrHash module, 697
Tie::Syslog module, 513
Tie::TextDir module, 513
Tie::Toggle module, 513
Tie::TZ module, 513
Tie::VecArray module, 513
Tie::Watch module, 513
Time::gmtime module, 881
Time::HiRes module

alarms and, 827
granularity of measurements, 974
sleep function, 938
system calls and, 964
usleep function, 944

Time::Local module
portability considerations, 729
timegm function, 880
timelocal function, 893

Time::localtime module, 893
Tk module, 427, 617, 700
Try::Tiny module, 330

U
underscore module, 484
Unicode::CaseFold module

fc function and, 288, 861
lc function and, 889
uc function and, 975

Unicode::Collate module
about, 295
cmp method, 861
eq method, 861
locale sorting, 305
normalization and, 302
relational operators and, 111
sort function and, 945
sort method, 304
UCA support, 298
version considerations, 303

Unicode::Collate::Locale module
cmpmethod, 861

1088 | Index of Perl Modules in This Book

www.it-ebooks.info

http://www.it-ebooks.info/

eq method, 861
locale sorting, 305
relational operators and, 111
sort function and, 946

Unicode::GCString module
about, 297
binary formats, 808
chopping strings, 836
grapheme support, 295, 890, 917
index method, 884, 932
picture formats, 812, 813
pos method, 884, 932
rindex method, 884, 932
string formats, 799
substr method, 961

Unicode::LineBreak module, 297, 813
Unicode::Normalize module

about, 292
NFC function, 331
NFD function, 331

Unicode::Regex::Set module, 311
Unicode::Tussle module

ucsort program, 299
unifmt program, 297

Unicode::UCD module, 307
UNIVERSAL class

can method, 436, 439, 440
class inheritance and, 435–438
DOES method, 436
isa method, 435
version checking and, 409
VERSION method, 437

User::grent module, 869, 870
User::pwent module, 876
utf8 pragma, 124, 280–281, 283, 1037

V
vars pragma, 1033, 1037
version module, 354, 410, 1038
vmsish pragma

about, 1038
exit feature, 1038
hushed feature, 1038
status feature, 1039
time feature, 1039

W
warnings pragma

about, 165, 987, 1039–1042
enabled function, 1042
enabling warnings, 594
ioctl function and, 886
programming practices, 679, 680, 686, 701,

714
register function, 1042
tied scalars and, 480
warn function, 1042
warnif function, 1042

Win32::Pipe module, 538
Win32::Process module, 866
Win32::TieRegistry module, 513
Wx module, 700

X
XML::Parser module, 384, 712

Index of Perl Modules in This Book | 1089

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
^ (bitwise XOR) operator, 118
^ regex assertion, 218
_ (underline) filehandle, 769
– (subtraction) operator, 105
– debugger command, 610
–– switch, 580
–– (autodecrement) operator, 100
–> (arrow) operator, 99, 350–352, 419
–0 command-line switch, 577, 580
, (comma) operator, 126
; (semicolon)

programming practices, 680, 709
in simple statements, 130
subroutines and, 328

:: package separator, 62, 992
! (logical NOT) operator, 29, 127
!! debugger command, 612
!= (not equal) operator, 30, 112
?: (conditional) operator, 123–124
. debugger command, 607
.. (range) operator, 120–122, 687
... (range) operator, 153
... (ellipsis statement), 152
() (parentheses), 99, 170, 682
[] (square brackets)

anonymous array composer, 342
array subscripts and, 10
bracketed character classes and, 202–204
scalar lists and, 13

{ } (curly braces)
anonymous hash composer, 343
hash elements and, 12
programming practices, 681

references and, 360
statement delimiters, 56

{ debugger command, 612
{{ debugger command, 612
@ (at sign) sigil, 6, 59
@_ variable, 707, 769
@– (@LAST_MATCH_START) variable, 711,

780
@+ (@LAST_MATCH_END) variable, 711,

779
* (asterisk) sigil, 6
* (multiplication) operator, 25, 104
** (exponentiation) operator, 25, 101
/ (divide) operator, 104
// (logical defined OR) operator, 119
\ (backslash)

backslashed character escapes, 68
backslashed prototype character, 327
programming practices, 687
regular expressions and, 169

\0 escape sequence, 68, 196, 199
& (ampersand) sigil, 6, 18
& (bitwise AND) operator, 118
&& (logical AND) operator, 29, 119, 127
character (comments), 55
#! notation, 578–580, 662
% (modulus) operator, 25, 104, 1066
% (percent sign) sigil, 6, 59
%– variable, 770
%! (%OS_ERROR, %ERRNO) variable, 782
%+ (%LAST_PAREN_MATCH) variable, 780
+ (addition) operator, 25, 105
++ (autoincrement) operator, 100
< (less than) operator, 30, 111
<< (left shift) bit operator, 105, 1063

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

1091

www.it-ebooks.info

http://www.it-ebooks.info/

<< here–document syntax, 74
<= (less than or equal) operator, 30, 111
<> (iterative) operator, 461, 465
<=> comparison operator, 30, 112, 297–303
= (copy constructor), 468
= debugger command, 614
== (equal) operator, 30, 112
=> operator

arrow operator and, 419
key/value pairs and, 84
programming practices, 706
as separator, 11

=~ (binding) operator, 103
> (greater than) operator, 30, 111
>= (greater than or equal) operator, 30, 111
>> (right shift) bit operator, 105, 1072
| (bitwise OR) operator, 118
| (vertical bar), 170
|| (logical OR) operator, 29, 119, 127
~ (bitwise NOT) operator, 118
~~ (smartmatch) operator, 112–117, 134, 137–

139
$ (dollar sign) sigil, 6, 58
$ regex metacharacter, 218
$` ($PREMATCH) variable, 785
$^ ($FORMAT_TOP_NAME) variable, 776,

814
$_ variable

about, 768
automatic value assignment and, 88
magically banishing, 484
programming practices, 706

$– ($FORMAT_LINES_LEFT) variable, 814,
817

$, ($OUTPUT_FIELD_SEPARATOR) variable,
783

$; ($SUBSCRIPT_SEPARATOR) variable, 85,
788

$:
($FORMAT_LINE_BREAK_CHAR
ACTERS) variable, 776, 813

$! ($OS_ERROR, $ERRNO) variable, 782
$? ($CHILD_ERROR) variable

about, 88, 771
close function and, 838
interprocess communications and, 533

$. ($INPUT_LINE_NUMBER) variable, 777
$' ($POSTMATCH) variable, 784
$" ($LIST_SEPARATOR) variable, 73, 781

$(($REAL_GROUP_ID) variable, 786
$) ($EFFECTIVE_GROUP) variable, 772
$[variable, 769
$] variable, 769
$@ ($EVAL_ERROR) variable, 651, 774
$* variable, 770
$/ ($INPUT_RECORD_SEPARATOR)

variable, 778, 923
$\ ($OUTPUT_RECORD_SEPARATOR)

variable, 783, 917
$& ($MATCH) variable, 781
$# variable, 769
$% ($FORMAT_PAGE_NUMBER) variable,

776, 814
$+ ($LAST_PAREN_MATCH) variable, 780
$< ($REAL_USER_ID) variable, 786
$> (EFFECTIVE_USER_ID) variable, 773
$= ($FORMAT_LINES_PER_PAGE) variable,

775, 815
$| ($AUTOFLUSH) variable, 783, 815
$~ ($FORMAT_NAME) variable, 776, 814
$$ ($PROCESS_ID) variable, 785

A
a debugger command, 611
A debugger command, 611
\a escape sequence, 68, 199
–A file test operator, 109
\a metasymbol, 196
\A metasymbol, 196, 218
/a modifier, 175, 183, 186
–a command-line switch, 581, 996
$a variable, 770
$^A ($ACCUMULATOR) variable, 770
abs function, 458, 825
abstraction, defined, 418
accept function, 826
accessor methods

defined, 427, 1045
generating with autoloading, 444
generating with closures, 445
usage example, 442

$ACCUMULATOR ($^A) variable, 770
actual arguments, 1045
addition (+) operator, 25, 105
address operator, 1045
address–of operator, 128
advisory locking, 525, 663
.al file extension, 998

1092 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

alarm function, 522, 826
algorithms (term), 1045
aliases

defined, 1045
for variable names, 63, 763

ALLCAPS convention, 477
alnum character class, 211
alpha character class, 211
alphabetic sort, 1045
alternation (|) metacharacter, 170
alternation in pattern matching, 170, 231
alternative characters, 1045
American Standard Code for Information

Interchange (ASCII), 1046
ampersand (&) sigil, 6, 18
anchors, 44
AND (bitwise) operator, 118
AND (logical) operator, 29, 119, 127
angle (line input) operator, 88–91, 683
annotations

for functions, 824
for special variables, 767

anonymous pipes, 531–533
anonymous referents, 341, 342–345, 1045
AnyDBM_File module, 477, 728
AnyEvent module, 696
App::perlbrew module, xxxii
applications (term), 993, 1046
arbitrary precision arithmetic (see big* pragmas;

Math::* modules)
architecture, 1046
arguments

actual, 1045
command–line, 1051
defined, 1046
formal, 1058
open function, 22
programming practices, 685
subroutines and, 318–320

ARGV filehandle, 770, 1046
$ARGV variable, 90, 771
@ARGV variable, 90, 771
ARGVOUT filehandle, 771
arithmetic operators

about, 1046
binary, 25
overloadable, 460, 462
unary, 28

array context, 1046

array value (AV), 73, 1047
arrays

anonymous array composer, 342
defined, 9, 57, 1046
determining number of elements in, 83
efficiency practices, 695, 697
hashes of, 374–376
list values and, 79–84
modifying en masse, 187
multidimensional, 13, 365–374, 370, 1066
programming practices, 681
sigil for, 6, 59
subscripts for, 10
tying, 486–492
zero–based, 10

arrays of arrays
about, 365
accessing and printing, 368–370
building piecemeal, 366–368
common mistakes, 371–374
creating and accessing, 366
slices of, 370

arrays of hashes
about, 376
accessing and printing, 377
composition of, 376
generating, 377

arrow (–>) operator
about, 99, 350–352
method invocation and, 419

Artistic License, 1046
ASCII (American Standard Code for

Information Interchange), 1046
ascii character class, 211
assertions (in regexes)

defined, 1046
defining, 270
lookahead, 247, 1064
lookaround, 247–249
lookbehind, 247, 1064
metasymbols and, 218–219
zero–width, 169, 217, 1081

assignment operators
about, 26–28, 125–126, 1046
overloadable, 460, 464
usage example, 58

assignments
defined, 1046
list, 9, 82

Index | 1093

www.it-ebooks.info

http://www.it-ebooks.info/

associative arrays (see hashes)
associativity, 95, 1046
asterisk (*) sigil, 6
asynchronous event processing, 696, 1046
at sign (@) sigil, 6, 59
atan2 function, 127, 827
atomic operation, 665, 1047
atoms, 53, 665, 1047
attribute feature, 1047
attributes pragma

about, 1002
get function, 1003
my operator and, 899
reftype function, 425, 927, 1003
subroutines and, 335

authors directory (CPAN), 630
autobox pragma, 686
autodecrement (––) operator, 100
autodie pragma, 686, 687, 690, 1003
autoflush method (IO::Handle), 783
$AUTOFLUSH ($|) variable, 783, 815
autogeneration

about, 1047
arithmetic operators and, 463
conversion operators and, 462

autoincrement (++) operator, 100
autoincrement (term), 1047
AUTOLOAD subroutine, 397–400, 438, 444
$AUTOLOAD variable, 397, 444, 771
AutoLoader module

defining functions, 150
loading packages, 398
make install procedure and, 998
runtime demand loading and, 1004

autoloading
defined, 1047
generating accessors with, 444
methods, 438
packages, 397–400

autosplit (term), 1047
AutoSplit module, 398, 726, 1047
autouse pragma, 150, 1004
autovivification, 348, 689, 1047
AV (array value), 73, 1047
awk (editing term), 1047

B
b debugger command, 608
\b escape sequence, 68

–b file test operator, 109
–B file test operator, 109
\b metasymbol, 196, 219
\B metasymbol, 196, 219
B pod sequence, 737
$b variable, 771
B::Backend module, 565
B::Bytecode module

about, 566, 567
code generation and, 560
as compiler backend, 565

B::C module, 560, 565, 566
B::CC module, 560, 565, 566
B::Deparse module, 561, 565, 568
B::Fathom module, 565
B::Graph module, 565
B::Lint module, 565, 567, 1042
B::Size module, 565
B::Xref module, 565, 568
=back pod directive, 734
backquotes, 7
backreferences

about, 45, 1047
captured strings and, 222
recursive patterns and, 260–262

backronym, 752
backslash (\)

backslashed character escapes, 68
backslashed prototype character, 327
programming practices, 687
regular expressions and, 169

backslash interpolation, 7, 235–237
backslash operator, 342, 353
backtick (command input) operator, 87, 657,

685
backtracking, 1047
backward compatibility

defined, 1048
numeric conversions, 795

barewords
about, 72, 1048
programming practices, 682
strict pragma and, 1034

Barr, Graham, 629
base classes, 416, 1048
base pragma

about, 1005
@ISA variable and, 429–431, 779
parent pragma and, 1026

1094 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

$BASETIME ($^T) variable, 771
BASH_ENV environment variable, 656
BEGIN blocks

compile phase and, 554, 556
run order, 570–574
scoping issues and, 322

=begin pod directive, 736
Berkeley Standard Distribution (BSD), 1049
Biggar, Mark, 752
bigint pragma

about, 1006
bitwise operators and, 118
multiplicative operators and, 104
scalar values and, 66
shift operators and, 105

bignum pragma, 66, 104, 1006
bigrat pragma, 66, 104, 1007
big–endian

defined, 1048
portability and, 724

binary (term), 1048
binary formats

about, 799
pack function, 800–808
unpack function, 800–810

binary key, 471
binary literals, 67
binary operators

about, 95, 1048
additive operators, 105
arrow operator, 99
autodecrement operator, 100
autoincrement operator, 100
binding operator, 103
comma operator, 126
exponentiation operator, 101
handlers and, 458
mathematical operators, 25
multiplicative operators, 104
smartmatch operator, 112–117

bind (term), 1048
bind function, 827
binding (=~) operator, 103
binmode function, 282–285, 682, 723, 828
BINMODE method (tied filehandles), 498, 503
bit string, 1048
bits

defined, 1048
permission, 1069

bitwise operators, 118, 460, 463
bit–shift operators

defined, 105, 1048
left shift, 105, 1063
right shift, 105, 1072

blank character class, 211
bless (term), 424, 1048
bless function

about, 830, 1048
inheritable constructors and, 426
object constructors and, 345, 424
references and, 341
tie function and, 476
usage example, 460

blib pragma, 643, 1007
block buffering, 1048
BLOCK construct

about, 1048
hard references and, 349
loops and, 147

blocks, 56
(see also specific types of blocks)
compound statements and, 131
defined, 56, 131, 1048
as loops, 147

Boolean context
about, 78, 1049
list assignments and, 83
overloadable operators and, 462

boolean module, 689
Boolean values, 8, 1048
braces { } (see curly braces { })
bracketed character classes, 202–204
brackets [] (see square brackets [])
break keyword, 136, 684, 830
breakpoints

commands supported, 608–609
defined, 608, 1049

broadcast (networking term), 1049
BSD (Berkeley Standard Distribution), 1049
BSD::Resource module, 678, 874, 940
buckets (term), 1049
buffering

block, 1048
command, 1051
line, 1063

buffers
defined, 1049
flushing, 1057

Index | 1095

www.it-ebooks.info

http://www.it-ebooks.info/

bug tracking and reports
about, xxxvii
CPAN, 635

built–in data types, 56–58
built–in functions

about, 1049
case considerations, 477
overriding, 411–413, 434
programming practices, 682
prototypes emulating, 327
prototypes of, 333

Bunce, Tim, 629
bundles (term), 1049
bytecodes, 555
ByteLoader module, 566
bytes (term), 1049
bytes pragma, 791, 1007, 1009

C
c debugger command, 609
–c file test operator, 109
–C file test operator, 109
C language

about, 1049
programming practices, 683–684

\c metasymbol, 196, 199
\C metasymbol, 196
C pod sequence, 737
C preprocessor, 1053
C stack, 563
–c command-line switch, 581
–C command-line switch, 582
$^C ($COMPILING) variable, 772
cache (term), 363, 1049
call by reference, 1049
call by value, 1050
callbacks, 356, 1049
caller function, 563, 620, 830
canonical (term), 1050
canonical composition, 291
canonical decomposition, 291
Cantrell, David, 630, 635
capture groups

about, 222–226
named, 226–229

capture variables, 1050
Capture::Tiny module, 728
capturing in pattern matching, 221–229, 1050
cargo cult, 1050

Carp module
carp function, 479, 987
cluck function, 987
confess function, 479, 860
croak function, 479, 860, 1030
managing unknown symbols, 411

case (character), 477, 1050
case statement/structure, 34, 150–152
casefolding, 176, 686, 1050
casemapping, 287–289, 686, 1050
catpod tool, 743
\cC escape sequence, 68
CDPATH environment variable, 656
/cg modifier, 183
character classes

about, 41, 1050
bracketed, 202–204
character properties, 207–210
classic shortcuts, 204–206
metasymbols and, 203
POSIX–style, 210–214
programming practices, 690

character property, 207–210, 1050
characters, 68

(see also charnames pragma)
backslashed escapes, 68
case considerations, 1050
combining, 1051
control, 199–200
defined, 1050
funny, 1058
lowercase, 287, 1064
newline, 1066
null, 1067
regex metacharacters, 168, 192–202, 1065
separators, 1073
shortcuts for alphabetic, 42
terminators, 1078
titlecase, 287, 1078
uppercase, 287, 1080
whitespace, 42, 54, 1081

charnames pragma
about, 1008
backslashed character escapes and, 68
custom character names, 1009
loading codepoints, 279
metasymbols and, 200
runtime lookups, 1010–1012
string_vianame function, 1011

1096 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

viacode function, 312, 837, 1011
vianame function, 911, 1011

Chase module, 1005
chdir function, 832
CHECK blocks, 554, 570–574
$CHILD_ERROR ($?) variable

about, 88, 771
close function and, 838
interprocess communications and, 533

${^CHILD_ERROR_NATIVE} variable, 838
chmod function, 92, 832
chomp function, 834
chop function, 835
chown function, 836
chr function, 837
Christiansen, Tom, 753
chroot function, 669, 837
circular references, 362, 467
circumfix operator, 1050
Clark, James, 713
class inheritance

about, 429
accessing overridden methods, 433–435
alternate method searching, 432
@ISA variable and, 429–431
method autoloading, 438
private methods and, 440
UNIVERSAL class and, 435–438

class methods, 415, 1050
Class::Contract module, 449
Class::Multimethod module, 689
classes

base, 416, 1048
character, 41, 202–214, 690, 1050
defined, 415, 993, 1050
derived, 416, 1054
managing data, 450–453
as packages, 417
package–quoting notation, 423
parent, 1068
programming practices, 689
subclasses, 416, 1054
superclasses, 416, 1048

CLEAR method
tied arrays, 490
tied hashes, 492, 496

clients
CPAN supported, 638–640
defined, 1051

networking, 545–547
close function

about, 838
pipes and, 532
tied filehandles and, 502, 504

CLOSE method (tied filehandles), 498, 502
closedir function, 839
closure subroutines, 355–359, 445–449, 1051
clusters

defined, 1051
switch, 1077

cmp (comparison) operator, 112, 297–303
cntrl character class, 211
CODE (ref function), 1051
code generation phase, 555
code generators

B::Bytecode module, 566
B::C module, 566
backend modules, 565
defined, 553, 1051

code security
about, 668
changing root, 669
code masquerading as data, 675–678
quarantining suspect code, 647, 669
safe compartments, 670–675

code subpatterns, 255–258, 1051
code value (CV), 1053
codepoints

about, 277–280, 822, 1051
casemapping, 287–289
getting at data, 282–286
graphemes and normalization, 290–297
UTF–8 encoding, 280–281

collating sequence, 1051
(see also Unicode::Collate module)

combining characters, 1051
comma (,) operator, 126
command buffering, 1051
command input (backtick) operator, 87, 657,

685
command names, 1051
commands

command-line switches supported, 580–
594

debugger, 606–615
defined, 1051
efficiency practices, 696
pod, 734–737, 1069

Index | 1097

www.it-ebooks.info

http://www.it-ebooks.info/

processing, 575–580
reduced privileges and, 657–659

command–line arguments, 1051
command–line interface

command processing, 575–594
environment variables, 594–601

comments
character and, 55
defined, 1052
multiline form for, 56

communication (see IPC)
comparison operators

<=> operator, 30, 112, 297–303
numeric and string, 30
overloadable, 460, 465

compatibility composition, 291
compatibility decomposition, 291
compilation units, 63, 1052
compile phase

compile time and, 556
defined, 554, 1052

compile time
compile phase and, 556
defined, 1052

compilers and compiling
about, 553, 1052
backend modules, 564
code development tools, 567–569
code generators, 565–567
compiling code, 556–562
–DDEBUGGING option, 430, 473, 585
executing code, 562–564
interpreters and, 562, 569–574
logical passes for, 558
program life cycle and, 554–555
regex, 239–241

$COMPILING ($^C) variable, 772
composers

about, 1052
anonymous array, 342
anonymous hash, 343
anonymous subroutine, 344

compound statements, 131–132
Comprehensive Perl Archive Network (see

CPAN)
Comprehensive TeX Archive Network (CTAN),

629
concatenating strings, 26, 1052
conditional (?:) operator, 123–124

conditional (term), 1052
conditional interpolation, 259
conditional loops, 35–37
Config module

configuration variables and, 593
efficiency practices, 699
inspecting options, 1035
integer formats and, 806
$OSNAME variable and, 782
portability and, 722, 730
programming practices, 703
relative symbolic links and, 963
%SIG variable and, 520
tie implementations, 973

connect function, 839
connections (term), 1052
constant folding, 561
constant pragma, 331, 470, 1012–1014
constants, overloading, 470–472
constructor methods, 416
constructors

copy, 468
defined, 425, 1052
inheritable, 425
initializers and, 427–429
object, 345, 424–429
tie function and, 476

constructs
BLOCK, 147, 349, 1048
defined, 1052
LIST, 1063
loop, 35–39, 139–147, 1064
pseudofunctions, 1071
quote, 70

context
about, 76, 1052
Boolean, 78, 83, 462, 1049
interpolative, 79
list, 47, 76, 1064
numeric, 1067
scalar, 47, 76, 1073
specifying, 8
string, 1076
void, 79, 1080

context stack, 563
continuation lines, 1052
continue statement

about, 839
foreach statement and, 144

1098 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

given statement and, 136
control characters, 199–200
control structures

about, 31
concept of truth and, 32
given statement, 34
if statement, 33
unless statement, 33
when statement, 34

conversion operators, 460, 461
Conway, Damian, 267, 448
Coordinated Universal Time (UTC), 880
copy constructor (=), 468
core dump, 1053
CORE pseudopackage, 412
Coro module, 696
cos function, 840
Cox, Russ, 272
co–maintainers, 634, 1051
CPAN (Comprehensive Perl Archive Network)

about, 388, 1053
bug tracking, 635
clients supported, 638–640
creating distributions, 640–644
ecosystem overview, 633–636
efficiency practices, 698
history of, 629
installing modules, 636–640
minicpan and, 632, 1065
mirroring, 629
module repository, 402
respository overview, 630–632
Schwartz Factor, 632
searching, 635
testing, 635, 642–644

cpan command, 639
CPAN Search site, 635
CPAN Testers, 635, 642, 644
CPAN.pm module, 639, 728
CPAN::DistnameInfo module, 410
CPAN::Mini module, 632–633, 1065
CPANdeps tool, 630, 635
cpanminus client, 639
CPANPLUS library, 639
cpm (comparison) operator, 30
crackers, 666, 1053
creeping featurism, 751, 1056
crypt function, 841
Crypt::* modules, 842

CTAN (Comprehensive TeX Archive Network),
629

culture, Perl (see Perl culture)
curly braces { }

anonymous hash composer, 343
hash elements and, 12
programming practices, 681
references and, 360
statement delimiters, 56

current package, 389, 395, 1053
current working directory, 1053
currently selected output channel, 1053
=cut pod directive, 734
CV (code value), 1053
Cwd module, 601, 696, 832

D
d debugger command, 608
D debugger command, 608
–d file test operator, 31, 108
\d metasymbol, 196, 205
\D metasymbol, 196, 205
/d modifier, 175, 182, 185
–d command-line switch, 583, 603
–D command-line switch, 583
$^D ($DEBUGGING) variable, 451, 772
dangling statements, 1053
DATA filehandle, 283, 697, 772
data security

about, 648–651
cleaning up environment and, 656–657
defeating taint checks, 660
reduced privileges and, 657–659
tainted data and, 651–655

data structures
arrays of arrays, 365–374
arrays of hashes, 376–378
defined, 57, 1053
examining with debugger, 609
hashes of arrays, 374–376
hashes of functions, 381
hashes of hashes, 378–381
more elaborate records, 382–385
nested, 13
programming practices, 689
references pointing to, 341
saving, 385
stat structure, 956–957, 1076

_ _DATA_ _token, 76, 749

Index | 1099

www.it-ebooks.info

http://www.it-ebooks.info/

data types
built–in, 56–58
defined, 1053

Data::Dump module, 268, 370
Data::Dumper module

parsable code and, 369
portability and, 724
references to subroutines and, 438
saving data structures, 385–386

Database Management (DBM) routines, 1053
datagrams

defined, 1053
UDP support, 1079

Date::Parse module, 729
dates and times, portability, 729
DateTime module, 729
DB module, 603, 616
%DB::alias variable, 616
@DB::dbline variable, 622
%DB::dbline variable, 622
$DB::deep variable, 621
$DB::doccmd variable, 614
$DB::signal variable, 620
$DB::single variable, 606, 620
&DB::sub subroutine, 621
$DB::trace variable, 606
DBD::SQLite module, 728
DBI module, 427, 728
DBM (Database Management) routines, 1053
dbmclose function, 475, 842
dbmopen function, 475, 842
DBM_Filter module, 286, 843
DB_File module, 842, 973
ddd graphical debugger, 617
debugger

about, 603–606, 1077
actions and command execution, 611–613
breakpoints, 608–609
commands supported, 606–615
customizing with init files, 616
editor support, 615
examining data structures, 609
locating code, 610
options supported, 616–619
profiling Perl, 623–627
programming practices, 687
prompt example, 604
stepping and running, 607
support considerations, 620–623

trace mode, 609
unattended execution, 619–620
writing a, 622

$DEBUGGING ($^D) variable, 451, 772
declarations

defined, 129, 1053
global, 153–155
my, 15, 897–900
our, 15, 911
package, 15–16, 389, 395–397, 913
programming practices, 689
scoped, 155–164
state, 957
sub, 959–961
use, 980–982, 992

declarators, 129, 1054
decrementing values, 1054
default values, 1054
deference operators, 466
DEFINE blocks, 262
defined (term), 154, 1054
defined function, 492, 844
delete function, 845
DELETE method

tied arrays, 486, 490
tied hashes, 492, 496

delimiters (term), 1054
denial–of–service attacks, 673
deprecate pragma, 1014
dereference (term), 8, 341, 1054
dereference operators, 461
dereference–address operator, 128
derived classes, 416, 1054
descriptors, file, 862, 1057
destroy (term), 1054
DESTROY method

instance destructors and, 440–442
tied arrays, 486, 489
tied filehandles, 498, 504
tied hashes, 492, 498
tied scalars, 477, 482

destructor method, 440–442, 1054
Devel::AssertOS module, 722
Devel::CheckOS module, 722
Devel::Cover module, 643
Devel::DProf module, 583, 623–627
Devel::NYTProf module, 623, 627
Devel::Peek module, 340
Devel::REPL module, 687

1100 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

Devel::SmallProf module, 623
devices (term), 1054
diagnostics pragma, xxix, 701, 1014–1016
die function, 519, 847
Digest::* modules, 842
digit character class, 212
$digits variable, 769
directives

defined, 1054
pod, 733–737

directories
CPAN, 630–632
defined, 1054
home, 1060
working, 1081

directory handle, 1054
discipline (I/O layer), 1054
dispatching, 1054
Dist::Zilla module, 642
Distribution::Cooker module, 641
distributions

build systems in, 636–640
CPAN, 640–644
defined, 993, 1055
standard, xxx–xxxii

divide (/) operator, 104
do (block) statement, 137, 849
do (file) statement, 849
do (subroutine) statement, 850
Do What I Mean (DWIM) principle, 1055
doc directory (CPAN), 630
documenting programs, 748
dollar sign ($) sigil, 6, 58
double–quote interpolation, 171
–dt command-line switch, 583
dual–lived modules, 997, 1055
dump function, 592, 850
Dumpvalue module, 369
dweomer, 1055
DWIM (Do What I Mean) principle, 1055
dwimming, 1055
DynaLoader module, 398
dynamic scope, 156, 1055

E
\e escape sequence, 68, 199
\E escape sequence, 69
–e file test operator, 31, 108
\e metasymbol, 196

\E metasymbol, 196
/e modifier, 186, 254
E pod sequence, 738
–e command-line switch, 576, 585
–E command-line switch, 576, 586
$^E ($EXTENDED_OS_ERROR) variable,

775
each function, 497, 697, 851
eclectic (term), 1055
$EFFECTIVE_GROUP ($)) variable, 772
$EFFECTIVE_USER_ID ($>) variable, 773
efficiency practices

about, 691
maintainer efficiency, 698
porter efficiency, 699
programmer efficiency, 698
space efficiency, 697
time efficiency, 691–697
user efficiency, 700

elements, 53
(see also specific elements)
about, 53, 1055
determining for arrays, 83
slices of, 1074

ellipsis statement, 152
emacs editor, 615
embedding (term), 1055
empty subclass test, 1055
en passant (term), 1055
encapsulation (term), 416, 1055
Encode module

about, 285–286
${^ENCODING} variable and, 772
metasymbols and, 202
open pragma and, 1024
text files and, 911
usage example, 829
utf8 pragma and, 1037

Encode::Locale module, 285
=encoding pod directive, 734
encoding pragma, 596, 1017
${^ENCODING} variable, 772
END blocks

compile phase and, 554
run order, 570–574
run phase and, 555

=end pod directive, 736
End of File (EOF), 1055
_ _END_ _ token

Index | 1101

www.it-ebooks.info

http://www.it-ebooks.info/

about, 76, 576
efficiency practices, 697
pod directives and, 749
program generation and, 717

endianness
big–endian, 1048
little–endian, 1064
portability and, 724

English module
$LIST_SEPARATOR variable and, 73
$– variable and, 814
accessing format–specific variables, 867
$ACCUMULATOR variable and, 867
$AUTOFLUSH variable and, 908
longer synonyms and, 768
picture formats, 813
reading variable names, 815

enterprise solutions, 993
ENV environment variable, 656
Env module, 685
%ENV variable, 773
environment (term), 1055
environment variables, 1055

(see also specific environment variables)
EOF (End of File), 1055
eof function, 503, 696, 852
EOF method (tied filehandles), 498, 503
eq (equal) operator, 30, 112
equality operators, 111
errno (error number), 1056
Errno module

about, 999
%OS_ERROR variable and, 782
portability and, 730

$ERRNO ($OS_ERROR, $!) variable, 782
%ERRNO (%OS_ERROR, %!) variable, 782
error number (errno), 1056
escape sequences, 67–70, 199, 1065
eval function

about, 853–855
debugger and, 606
efficiency practices, 692
exception handling and, 853
programming practices, 712
tainted data and, 651

evaluation
match–time code, 255–258
substitution, 254

$EVAL_ERROR ($@) variable, 651, 774

exception handling
defined, 1056
subroutines, 320

$EXCEPTIONS_BEING_CAUGHT ($^S)
variable, 774

exec function, 658, 855–858, 1056
executable files, 555, 993, 1056
executable image, 555
$EXECUTABLE_NAME ($^X) variable, 774
execute (term), 1056
execute bit, 1056
execution phase, 555
exists function

about, 858–859
tied arrays and, 489
tied hashes and, 492, 497

EXISTS method
tied arrays, 486, 489
tied hashes, 492, 497

exit function, 859
exit status, 1076
exp function, 860
Expect module, 537
exploits, security, 663, 1056
exponentiation (**) operator, 25, 101
@EXPORT variable, 407, 774
Exporter module

about, 391
@EXPORT variable and, 774
@EXPORT_OK variable and, 774
%EXPORT_TAGS variable and, 775
import method, 403, 980, 1004
module privacy and, 407–411
per–package variables and, 1034

exporting
defined, 1056
modules, 408

@EXPORT_OK variable, 407, 774
%EXPORT_TAGS variable, 407, 775
expressions, 1056

(see also regular expressions)
compound statements and, 131
defined, 1056
watch, 609, 1081

EXTEND method (tied arrays), 489
$EXTENDED_OS_ERROR ($^E) variable,

775
extensions

defined, 993, 1056

1102 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

types supported, 998–999
eXternal Subroutine (XS), 640, 728, 1081
ExtUtils::MakeMaker module, 1007
ExtUtils::MM_VMS module, 728

F
f debugger command, 611
\f escape sequence, 68, 199
\F escape sequence, 69
–f file test operator, 31, 108
\f metasymbol, 196
\F metasymbol, 196
–f command-line switch, 586
–F command-line switch, 586
$^F ($SYSTEM_FD_MAX) variable, 775

about, 789
filehandles and, 529
fileno function and, 863
socket function and, 945

Faigin, Dan, 752
fallback key, 470, 473
false values, 1056
FAQ (Frequently Asked Question), 1056
fatal errors, 1056
fc function, 288, 860
fcntl function, 530, 861
Fcntl module

about, 999
fcntl function and, 861
symbolic names and, 833, 863, 934, 957,

968
sysopen function and, 964

feature pragma
about, 1017
loading, 981
say feature, 586, 932, 1017
scoping and, 823
state feature, 586, 958, 1017
switch feature, 134, 586, 1017
unicode_strings feature, 179, 586, 1017

feeping creaturism, 751, 1056
FETCH method

tied arrays, 486, 488
tied hashes, 492, 495
tied scalars, 477, 481

FETCHSIZE method (tied arrays), 486, 489
fields (term), 1057
fields pragma

about, 560, 1018

base classes and, 1005
%FIELDS variable and, 775
@ISA variable and, 429–431
new function, 352
phash function, 352

%FIELDS variable, 775
FIFO (First In, First Out), 538, 554, 1057
file descriptors, 862, 1057
file test operators

about, 1057
smartmatching and, 137
table listing, 31, 108–111

_ _FILE_ _ token, 76, 717, 860
File::Basename module, 403, 725
File::chmod module, 833
File::Copy module, 927
File::Glob module, 412, 879
File::HomeDir module, 725
File::Map module, 540
File::Mmap module, 697
File::Path module, 932
File::Spec module, 725
File::stat module, 957
File::Temp module, 667, 726
fileglobs, 91–93, 1057
<FILEHANDLE> operator, 923
filehandles

about, 21–24, 1057
indirect, 1061
locks and, 526
passing for IPC, 528–531
programming practices, 682
race conditions and, 664
references to, 346
tying, 498–510
typeglobs and, 86
underline character, 769

filenames
about, 1057
glob function and, 91–93
race conditions and, 664

fileno function, 503, 862
FILENO method (tied filehandles), 498, 503
files

defined, 1057
executable, 555, 993, 1056
header, 1060
interprocess commmunications and, 523–

531

Index | 1103

www.it-ebooks.info

http://www.it-ebooks.info/

locking, 524–528
ownership of, 1068
passing filehandles, 528–531
portability and, 725–726
reduced privileges and, 657–659
regular, 1072
temporary, 665–668, 697
text, 1078
truncating, 975, 1079

filesystems
defined, 1057
portability and, 725–726

filetest pragma, 1018
Filter module, 718
filters

defined, 532, 1057
source, 718, 1075

FindBin module, 929, 1021
First In, First Out (FIFO), 538, 554, 1057
FIRSTKEY method (tied hashes), 492, 497
first–come permissions, 634, 1057
flags (term), 1057
floating point methods, 1057
flock function

about, 524–528, 863
handling race conditions, 663
signal handling and, 522

flowed text, 737–740
flushing buffers, 1057
FMTEYEWTK acronym, 1058
foldcase (term), 288, 1058
footers (picture formats), 817
=for pod directive, 736
for statement

about, 37
modifiers and, 130
programming practices, 707

foreach statement
about, 38, 142–144
efficiency practices, 692
modifiers and, 130
programming practices, 684

fork function
about, 864–866
filehandles and, 531
signal handling and, 521

forking processes, 521, 1058
formal arguments, 1058
format function, 866

format modifiers, 796–799
formats

binary, 799–810
defined, 1058
output record, 810–818
picture, 810–818
sprintf function, 794
string, 793–799

format_formfeed method (IO::Handle), 775
$FORMAT_FORMFEED ($^L) variable, 775,

815
format_lines_left method (IO::Handle), 775
$FORMAT_LINES_LEFT ($–) variable, 814,

817
format_lines_per_page method (IO::Handle),

775
$FORMAT_LINES_PER_PAGE ($=) variable,

775, 815
format_line_break_characters method

(IO::Handle), 776
$FORMAT_LINE_BREAK_CHARACTERS

($:) variable, 776, 813
format_name method (IO::Handle), 776
$FORMAT_NAME ($~) variable, 776, 814
format_page_number method (IO::Handle),

776
$FORMAT_PAGE_NUMBER ($%) variable,

776, 814
format_top_name method (IO::Handle), 776
$FORMAT_TOP_NAME ($^) variable, 776,

814
formline function, 867
foy, brian d, 632
Free Software Foundation, 1058
freely available (term), 1058
freely redistributable (term), 1058
freeware (term), 1058
Frequently Asked Question (FAQ), 1056
Friedl, Jeffrey, 40, 246, 252
function generators, 356
function templates, 357
functions, 411

(see also built–in functions)
about, 18, 315, 819–822, 1058
in alphabetical order, 824–989
annotations for, 824
case considerations, 477
by category, 822–824
constant, 331

1104 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

hashes of, 381
lvaluable, 1064
mathematical, 460, 465
per–package special, 766
platform variations and, 722
procedures and, 18
programming practices, 689
pseudofunctions, 1071

funny characters, 1058

G
–g file test operator, 109
\g metasymbol, 196
\G metasymbol, 196, 220
/g modifier, 183, 186
garbage collection

defined, 1058
DESTROY methods and, 441
lexical variables and, 322
programming practices, 690
references and, 362

GDBM_File module, 528, 843
ge (greater than or equal) operator, 30, 111
Gearman module, 696
generated patterns, 252
getc function, 501, 693, 868
GETC method (tied filehandles), 498, 501
getgrent function, 869
getgrgid function, 869
getgrnam function, 869
gethostbyaddr function, 870
gethostbyname function, 871
gethostent function, 872
getlogin function, 872
getnetbyaddr function, 872
getnetbyname function, 873
getnetent function, 873
Getopt::Long module, 91, 146, 568, 942
Getopt::Std module, 91, 146, 942
getpeername function, 548, 873
getpgrp function, 874
getppid function, 874
getpriority function, 874
getprotobyname function, 874
getprotobynumber function, 875
getprotoent function, 875
getpwent function, 875
getpwnam function, 876
getpwuid function, 876

getservbyname function, 877
getservbyport function, 877
getservent function, 877, 1074
getsockname function, 877
getsockopt function, 878
GID (Group ID), 1058
given statement, 34, 133–139
glob (* character), 1058
glob function, 91–93, 412, 879
glob value (GV), 1059
global (term), 1059
global delarations, 153–155
global destruction, 1059
glue language, 1059
gmtime function, 551, 880
Golden, David, 1038
goto operator, 149, 692, 881
grammatical patterns, 262–270
granularity, 1059
graph character class, 212
graphemes

defined, 1059
normalization process and, 290–297
string formats and, 799

greedy subpatterns, 1059
grep function, 882, 1059
Group ID (GID), 1058
group references, 222
grouping in pattern matching, 170, 221, 229
groups

defined, 1059
possessive, 249–251

gt (greater than) operator, 30, 111
GV (glob value), 1059
gvim editor, 615

H
H debugger command, 610
\h metasymbol, 196, 205
\H metasymbol, 196, 205
–h command-line switch, 586
$^H variable, 776
%^H variable, 776
h2xs tool, 640
hackers, 1059
handle references, 346
handlers

defined, 458, 1059
overload, 459, 469

Index | 1105

www.it-ebooks.info

http://www.it-ebooks.info/

signal, 1074
handle_looks_safe function, 665
hard references

about, 340, 1059
arrow operator and, 350–352
backslash operator and, 353
BLOCK construct and, 349
closures and, 355–359
object methods and, 352
pseudohashes and, 352
suggested usage, 353–355
variables and, 348

hash keys, 361
hash tables, 85, 1060
hash value (HV), 1060
Hash::Util module, 353, 403, 597
hashes

about, 10–12, 57, 84–86, 1059
anonymous hash composer, 343
arrays of, 376–378
multidimensional, 85, 378–381
pseudohashes, 352, 1071
sigil for, 6, 59
tying, 492–498

hashes of arrays
about, 374
accessing and printing, 375
composition of, 374
generating, 374

hashes of functions, 381
hashes of hashes (see multidimensional hashes)
=head1 pod directive, 734, 748
=head2 pod directive, 734
header files, 1060
here documents, 73–75, 1060
hex function, 883
hexadecimals, 1060
Hietaniemi, Jarkko, 629
home directory, 1060
HOME environment variable, 595
Hopkins, Sharon, 755
host computers, 1060
hubris quality, 387, 751, 757, 1060
Hume, Andrew, 252
HV (hash value), 1060

I
/i modifier

about, 175

case–insensitive matching and, 288
m// operator and, 182
s/// operator and, 185

I pod sequence, 737
–I command-line switch, 577, 588
–i command-line switch, 587
$^I ($INPLACE_EDIT) variable, 777
I/O (Input/Output)

defined, 1062
standard, 1075

I/O layer, 1062
identifiers

case considerations, 61
defined, 55, 393, 1060

if pragma, 981, 1019
if statement

about, 33, 133
modifiers and, 130

IFS environment variable, 656
impatience quality, 387, 751, 756, 1060
implementation (term), 1060
import (term), 1060
import class method, 484, 883
%INC variable, 776
@INC variable, 643, 994
@INC variable, 777
inc::latest module, 995, 1019
incrementing values, 1060
index function, 294, 883
indexing (term), 1060
indirect filehandles, 1061
indirect object slot, 1061
indirect objects

defined, 1061
method invocation and, 421
syntactic considerations, 421–423

indirection (term), 1061
infix operators, 95, 1061
inheritance

class, 429–440
constructors and, 425
defined, 416, 1061
multiple, 1066
overloading and, 472
single, 1074

INIT blocks
compile phase and, 554
FIFO order and, 555
run order, 570–574

1106 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

scoping issues and, 322
init files, customizing debugger, 616
initializers, 427–429
$INPLACE_EDIT ($^I) variable, 777
input operators

angle operator, 88–91
backtick operator, 87
command input operator, 87
filename globbing operator, 91–93
line input operator, 88–91

Input/Output (I/O)
defined, 1062
standard, 1075

$INPUT_LINE_NUMBER ($.) variable, 777
$INPUT_RECORD_SEPARATOR ($/)

variable, 778, 923
instance data (see instance variables)
instance destructors, 440–442
instance methods, 415, 1061
instance variables

defined, 427, 1061
managing, 442–450
programming practices, 689
suggested uses, 449

instances (term), 415, 1061
int function, 884
integer pragma, 104, 704, 1019
Integer Value (IV), 1062
integers (term), 1061
Intellectual Property (IP), 1062
interfaces (term), 1061
International Phonetic Alphabet (IPA), 1062
internationalization, portability and, 729
Internet Protocol (IP), 1062
Internet Relay Chat (IRC), 759
interpolation

array values, 73
backslash, 7, 235–237
conditional, 259
defined, 1061
double–quote, 171
match–time pattern, 258
variable, 7, 234–239, 1080

interpolative context, 79
interpreters

compilers and, 562, 569–574
defined, 1061

Interprocess Communication (see IPC)
invocants

arrow operator and, 419
defined, 418, 1062

invocation, method, 418–424, 1062
IO::File module

about, 967
new_tmpfile function, 666

IO::Handle module
accessing formatting internals, 818
accessing format–specific variables, 867
accessing special variables, 815
autoflush method, 783, 858, 866, 908
data structure records, 383
file handling considerations, 967
format_formfeed method, 775
format_lines_left method, 775
format_lines_per_page method, 775
format_line_break_characters method, 776
format_name method, 776
format_page_number method, 776
format_top_name method, 776
hard references and, 354
per–filehandle variables and, 768
programming practices, 682
symbol table references, 347
tied variables and, 512
ungetc function, 868
untaint function, 654

IO::Pty module, 537
IO::Seekable module, 934, 968
IO::Select module, 536, 938
IO::Socket module, 544, 827, 839
IO::Socket::INET module, 545, 546, 547
IO::Socket::IP module, 546
IO::WrapTie module, 512
ioctl function, 885–886
IP (Intellectual Property), 1062
IP (Internet Protocol), 1062
IPA (International Phonetic Alphabet), 1062
IPC (Interprocess Communication)

about, 517, 1062
additional information, 518
files and, 523–531
pipes and, 531–539
portability and, 727
signal handling and, 518–523
sockets and, 543–551
System V IPC and, 540–543

IPC::Open2 module, 536, 908
IPC::Open3 module, 536, 908

Index | 1107

www.it-ebooks.info

http://www.it-ebooks.info/

IPC::Run module, 728
IPC::Semaphore module, 938, 939
IPC::Shareable module, 540
IPC::System::Simple module, 728
IPC::SysV module

msgctl function and, 896
msgget function and, 896
msgrcv function and, 896
semget function and, 938
semop function and, 939
shmctl function and, 942

IRC (Internet Relay Chat), 759
@ISA variable

about, 779
class inheritance and, 429–431

ISO–8601 standard, 729
is_tainted function, 651
is–a relationship, 1062
=item pod directive, 734
iteration, 1062
iterative operator (<>), 461, 465
iterators, 1062
IV (Integer Value), 1062

J
JAPH acronym, 753, 1062
Java language, 689–691
join function, 886
jumpenv stack, 563

K
–k file test operator, 109
\k metasymbol, 196
\K metasymbol, 196
key/value pairs

=> operator and, 84
about, 57, 1059
arrays of hashes and, 376

keys
defined, 57, 1062
hash, 361

keys function
about, 887
efficiency practices, 697
tied hashes and, 497
usage example, 12, 85

keywords (term), 61, 1072
kill function, 888

Knuth, D. E., 921
Kogai, Dan, 484
König, Andreas, 629

L
L debugger command, 608
l debugger command, 610
\l escape sequence, 69
\L escape sequence, 69
–l file test operator, 108
\l metasymbol, 197
\L metasymbol, 197
/l modifier, 176, 183, 186
L pod sequence, 737
–l command-line switch, 589
$^L ($FORMAT_FORMFEED) variable, 775,

815
labels

defined, 1062
loop, 1064

Last In, First Out (LIFO), 555, 1063
last operator

about, 39, 889
loop control and, 144–147
programming practices, 684

@LAST_MATCH_END (@+) variable, 711,
779

@LAST_MATCH_START (@–) variable, 711,
780

$LAST_PAREN_MATCH ($+) variable, 780
%LAST_PAREN_MATCH (%+) variable, 780
$LAST_REGEXP_CODE_RESULT ($^R)

variable, 780
$LAST_SUBMATCH_RESULT ($^N)

variable, 781
laziness quality, 387, 751, 756, 1062
lc function, 889
lcfirst function, 890
LC_ALL environment variable, 595
LC_COLLATE environment variable, 595
LC_CTYPE environment variable, 595
LC_NUMERIC environment variable, 595
le (less than or equal) operator, 30, 111
left shift (<<) bit operator, 105, 1063
leftmost longest preference, 216, 1063
leftmost shortest preference, 216
length function, 294, 890
less pragma, 1020
lettercase characters, 287

1108 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

lexeme (token), 556, 1063
lexer (tokener), 556, 1063
lexical analysis, 1063
lexical scopes

defined, 60, 992, 1063
name lookups, 63–65
pragmas and, 156

lexical variables
about, 159–164, 1063
garbage collection and, 322
typed lexicals, 1079

lib pragma
about, 1021
@INC variable and, 777
loading modules, 402
PERL5LIB environment variable and, 598,

638
require function and, 929

libnet API, 545
libraries

defined, 992, 1063
include path, 993

libwww API, 545
life cycle, program, 554–555
LIFO (Last In, First Out), 555, 1063
line (term), 1063
line buffering, 1063
line input (angle) operator, 88–91, 683
line number, 1063
_ _LINE_ _ token, 76, 717, 890
linebreaks, 1063
link function, 891
links

defined, 1063
symbolic, 666, 1077

list assignments, 9, 82
LIST construct, 1063
list context, 47, 76, 1064
list literals, 79–82
list operators

about, 1064
efficiency practices, 697
left side, 97–99
programming practices, 682
right side, 127
unary operators and, 107

list values
about, 79–82, 1064
array length, 83

list assignments, 82
List::Util module, 882
listen function, 891
lists

defined, 1064
null, 1067
processing, 47–49

$LIST_SEPARATOR ($") variable, 73, 781
literal tokens, 76
literals

defined, 1064
list, 79–82
numeric, 67
pseudoliterals, 88, 1071
scalar, 1073
string, 67–70
version, 75

little–endian
defined, 1064
portability and, 724

local operator
about, 162–164, 891, 1064
programming practices, 681

local::lib module, 638, 639–640
locale pragma

about, 1022
pattern modifiers and, 180
patterns with symbolic characters and, 653
sort pragma and, 946

locale sorting, 305
localtime function, 551, 893
lock function, 341, 894
locking, file (see flock function)
LOCK_EX flag, 525
LOCK_SH flag, 525
log function, 894
LOGDIR environment variable, 595
logical operators

about, 29–31, 127, 1064
C–style, 119–120
overloadable, 460, 463

longjmp function, 522, 563
lookahead assertions, 247, 1064
lookaround assertions, 247–249
lookbehind assertions, 247, 1064
lookups, name, 62–65
loop constructs and statements

about, 35, 139, 1064
bare blocks as loops, 147

Index | 1109

www.it-ebooks.info

http://www.it-ebooks.info/

conditional loops, 35–37
efficiency practices, 693
foreach loops, 38, 142–144
last operator, 39, 144–147
next operator, 39, 144–147
programming practices, 681, 706
redo operator, 144–147
three–part loops, 37, 140–142
topicalizers and, 149
until statement, 139
while statement, 139

loop labels, 144–147, 1064
lower character class, 212
lowercase characters, 287, 1064
lstat function, 894
lt (less than) operator, 30, 111
lvaluable function, 1064
lvalue (term), 58, 449, 1064
lvalue modifier, 1064

M
–M file test operator, 109
/m modifier, 175, 182, 185
–m command-line switch, 589
–M command-line switch, 589
$^M variable, 781
m// (match) operator

about, 71, 894
double–quote interpolation, 171–173
modifiers supported, 182–184

magic (term), 475, 1064
magical increment operator, 1065
magical variables, 1065
Mail::Mailer module, 545, 727
Mail::Send module, 727
Mail::Sendmail module, 727
main package, 394
maintainer efficiency, 698
Makefile, 1065
man debugger command, 614
man program (Unix), 1065
manpages

defined, xxxii, 1065
navigating, xxxiii–xxxv
non–Perl, xxxv
system–specific, 721

MANPATH variable, xxxii
map function, 895
map–sort–map technique, 949

mark stack, 563
marshalling (term), 1073
match (m//) operator

about, 71, 894
double–quote interpolation, 171–173
modifiers supported, 182–184

$MATCH ($&) variable, 781
${^MATCH} variable, 782
matching (see pattern matching)
match–time code evaluation, 255–258
match–time pattern interpolation, 258
Math::BigFloat module, 1006
Math::BigInt module, 457, 1006, 1007
Math::BigRat module, 1007
Math::Complex module, 1044
Math::MySum module, 642
Math::Random::MT::Perl module, 921
Math::Random::Secure module, 921
Math::Trig module

acos function, 840
asin function, 944
tan function, 827

Math::TrulyRandom module, 921, 955
mathematical functions, 460, 465
mathematical operators, 25
member data (see instance variables)
Memoize module, 693
memory

defined, 1065
programming practices, 689
shared, 1074

message passing, 550
metacharacters

about, 168, 1065
commonly used, 192
efficiency practices, 696
tables listing, 193–199

MetaCPAN site, 630, 635
metasymbols

about, 169, 192, 1065
alphanumeric, 196–199
character classes and, 203
extended regex sequences, 194
positions, 217–221
regex quantifiers, 193
wildcard, 200–202

method invocation
about, 418
arrow operator and, 419

1110 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

indirect objects and, 421–423
package–quoted classes, 423

method resolution order (mro), 432, 1065
methods

accessing overridden, 433–435
accessor, 427, 442–446, 1045
array–tying, 487–491
autoloading, 438
class, 415, 1050
constructor, 416
defined, 315, 415, 1065
destructor, 1054
filehandle–tying, 499–506
floating point, 1057
hash–tying, 493
instance, 415, 1061
lvalues and, 449
object, 352
private, 440
programming practices, 689
scalar–tying, 478
static, 1076
as subroutines, 417
tied variables and, 477

minicpan
creating, 632
defined, 1065
Schwartz Factor, 632

minimalism, 1065
missing overload handlers, 469
mkdir function, 895
MLDBM module, 512
Mo framework, 455
mode, 1066
modifiers

defined, 1066
format, 796–799
lvalue, 1064
m// operator and, 182–184
pattern, 175–181, 230
regular expression, 175–181, 1072
s/// operator and, 184–189
statement, 130, 694, 1075
tr/// operator and, 189–192

Module::Build module, 1007, 1019
Module::CoreList module, 996
Module::Starter module, 641
modules, 1070

(see also pragmas)

creating, 405–411
defined, 56, 401, 992, 1066
dual–lived, 997, 1055
installing CPAN, 636–640
loading, 402–404, 995
locations for, 994
naming, 405
online documentation, 401
overriding built–in functions, 411–413
pod translators and, 740–741
portability and, 728
privacy considerations, 406–411
sample, 405
testing, 642–644
unloading, 404

modules directory (CPAN), 630
modulus (%) operator, 25, 104, 1066
mod_perl extension (Apache), 564
mojibake, 285, 1066
Mojolicious package, 630
mongers, Perl, 1066, 1069
Moo module, 455
Moose module, 404, 453–455
mortal value, 1066
Mouse framework, 455
mro (method resolution order), 432, 1065
mro pragma, 432, 437, 1023
MRO::Compat module, 433
msgctl function, 896
msgget function, 896
msgrcv function, 896
msgsnd function, 897
multidimensional arrays, 13, 370, 1066
multidimensional hashes

about, 378
accessing and printing, 380
composition of, 378
emulating, 85
generating, 379

multiple inheritance, 1066
multiplication (*) operator, 25, 104
my declaration, 15, 159, 897–900

N
n debugger command, 606, 607
\n escape sequence, 68, 199
\N escape sequence, 68
\n metasymbol, 196, 197
\N metasymbol, 197, 200

Index | 1111

www.it-ebooks.info

http://www.it-ebooks.info/

–n command-line switch, 590
$^N ($LAST_SUBMATCH_RESULT)

variable, 781
named capture groups, 226–229
named pipes, 538–539, 1066
names

about, 60–62
lookup considerations, 62–65
module, 405
qualified, 393

namespaces
about, 60, 387, 991, 1066
Perl distributions and, 631
restricting access, 670

NaN (not a number), 1066
Nandor, Chris, 754
natural languages

about, 4
compilers and, 557
variable syntax, 5–17
verbs and, 17

navigating manpages, xxxiii–xxxv
ne (not equal) operator, 30, 112
nested data structures, 13
nested subroutines, 358
Net::DNS module, 545
Net::FTP module, 545
Net::hostent module, 871, 872
Net::netent module, 872, 873
Net::NNTP module, 545
Net::proto module, 875
Net::servent module, 877
Net::SMTP module, 545
Net::Telnet module, 545
network address, 1066
Network File System (NFS), 543, 1066
networking

clients, 545–547
servers, 547–550

new constructor method, 900
newline character, 723, 1066
next operator

about, 39, 900
loop control and, 144–147
programming practices, 684

NEXTKEY method (tied hashes), 492, 497
NFC normalization form, 291
NFD normalization form, 291
NFKC normalization form, 291

NFKD normalization form, 291
NFS (Network File System), 543, 1066
\NNN metasymbol, 196, 199
no operator (the opposite of use), 404, 484,

901
node (term), 557
nomethod key, 469
nonbacktracking subpatterns, 249–251
normalization, 290–297, 1066
NOT (bitwise) operator, 118
NOT (logical) operator, 29, 127
not a number (NaN), 1066
null character, 1067
null lists, 1067
null strings, 1067
number width, portability and, 724
Numbers module

about, 1025
myadd function, 1025
mysub function, 1025

numeric context, 1067
numeric conversions

backward compatibility, 795
sprintf function, 795

numeric literals, 67
numeric operators, 30, 111
Numeric Value (NV), 1067
numification, 462, 1067
NV (Numeric Value), 1067
nybble, 1067
NYTPROF environment variable, 627

O
O debugger command, 614
o debugger command

AutoTrace option, 617
dieLevel option, 617
frame option, 618
inhibit_exit option, 618
LineInfo option, 617
maxTraceLen option, 618
ornaments option, 618
pager option, 617
PrintRet option, 618
recallCommand option, 616
ShellBang option, 616
signalLevel option, 617
tkRunning option, 617
warnLevel option, 617

1112 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

–o file test operator, 108
–O file test operator, 108
\o metasymbol, 197, 200
/o modifier, 175, 182, 185
\o escape sequence, 68
$^O ($OSNAME) variable, 722, 782
object constructors, 345
object methods, 352
objects

class inheritance, 429–440
constructing, 424–429
defined, 415, 1067
indirect, 421–423, 1061
instance destructors, 440–442
managing class data, 450–453
managing instance data, 442–450
method invocation, 418–424
Moose module and, 453–455
private, 446–449
programming practices, 689
as references, 417
as referents, 417
smartmatching, 117

object–oriented programming (OOP), 415–417
oct function, 67, 901
octals, 1067
offsets in strings, 1067
olpod program, 742
one–liner programs, 1067
Onken, Moritz, 630
OOP (object–oriented programming), 415–417
Opcode module, 672, 1025
open function

about, 901–911
calling with reduced privileges, 657
communicating over pipes, 534
external data cautions, 656
filehandles and, 530
handling race conditions, 664
parameter considerations, 22
pipes and, 531–533
programming practices, 682
tied filehandles and, 501

OPEN method (tied filehandles), 498, 501
open pragma

:bytes layer, 598, 1024
:crlf layer, 598, 1024
:encoding layer, 1024
:locale layer, 1024

:mmap layer, 599
:perlio layer, 599
:pop layer, 599
:raw layer, 503, 599, 1024
:std layer, 1024
:stdio layer, 599
:unix layer, 599
:utf8 layer, 599, 1024
:win32 layer, 599
about, 1017, 1023
–C switch and, 583
programming practices, 682
read function and, 922
setting encoding, 282–285

Open Source Conference (OSCON), 754, 757
open source software, 1067
opendir function, 911
operand stack, 563
operands (term), 1067
operating systems

defined, 1067
simulating #! notation, 578–580

operator overloading
about, 460–467, 1068
overload pragma and, 458
programming practices, 689

operators, 95
(see also specific operators)
about, 24, 95, 1068
ambiguous characters and, 107
case considerations, 477
flavors of, 95
missing from Perl, 128
pattern–matching, 40, 171–192
precedence rules, 96–97, 1070
restricting access, 672

ops pragma, 1024
optimizers, 556, 559
options (see regular expression modifiers;

switches)
OR (bitwise) operator, 118
OR (logical) operator, 29, 119, 127
ord function, 911
ordinals (term), 1068
Orwant, Jon, 753
OSCON (Open Source Conference), 754, 757
$OSNAME ($^O) variable, 722, 782
$OS_ERROR ($ERRNO, $!) variable, 782
%OS_ERROR (%ERRNO, %!) variable, 782

Index | 1113

www.it-ebooks.info

http://www.it-ebooks.info/

our declaration, 15, 161–162, 911–913
output record formats, 810–818
$OUTPUT_FIELD_SEPARATOR ($,) variable,

783
$OUTPUT_RECORD_SEPARATOR ($\)

variable, 783, 917
=over pod directive, 734
overload handlers, 459, 469
overload pragma

about, 458, 1025
Method function, 472
%OVERLOAD variable and, 784
overloadable operators and, 460–467
Overloaded function, 472
overloading constants, 470–472
StrVal function, 472

%OVERLOAD variable, 784
overloading

-X filetest operators, 461
constants, 470–472
copy constructor and, 468
defined, 457, 1068
diagnostic considerations, 473
inheritance and, 472
int function, 461
operator, 458, 460–467, 689, 1068
qr operator, 461
runtime, 473
~~ smartmatch operator, 461

overloading pragma, 1025
overriding

built–in functions, 411–413, 434
defined, 1068
methods, 433–435

ownership, file, 1068
O_APPEND sysopen flag, 965
O_BINARY sysopen flag, 965
O_CREAT sysopen flag, 965
O_DIRECTORY sysopen flag, 965
O_EXCL sysopen flag, 667, 965
O_EXLOCK sysopen flag, 965
O_LARGEFILE sysopen flag, 965
O_NDELAY sysopen flag, 965
O_NOCTTY sysopen flag, 965
O_NOFOLLOW sysopen flag, 667, 965
O_NONBLOCK sysopen flag, 965
O_RDONLY sysopen flag, 965
O_RDWR sysopen flag, 965
O_SHLOCK sysopen flag, 965

O_SYNC sysopen flag, 965
O_TRUNC sysopen flag, 965
O_WRONLY sysopen flag, 965

P
p debugger command, 609
–p file test operator, 108, 539
\p metasymbol, 197
\P metasymbol, 197
/p modifier, 175, 182, 185
–p command-line switch, 577, 590
–P command-line switch, 590
$^P ($PERLDB) variable, 784
pack function

about, 800, 913
format characters, 800–808

package declaration
about, 389, 913
package names and, 395–397
topicalizing and, 15–16

_ _PACKAGE_ _ token, 76, 395, 915
packages

:: separator, 62, 992
about, 387–389
autoloading, 397–400
changing, 395–397
classes as, 417
default, 394
defined, 60, 387, 992, 1068
DESTROY method, 440–442
qualified names, 393
symbol tables, 389–393

package–quoting notation, 423
pads (scratchpads), 60, 1068
parameters (see arguments)
parent classes, 416, 1068
parent pragma

about, 1026
base pragma and, 1005
@ISA variable and, 429–431

parentheses ()
in precedence rules, 99
in pattern matching, 170
programming practices, 682

parse tree, 554, 557, 1068
parse tree reconstruction phase, 555
parse_options function (debugger)

NonStop option, 620
noTTY option, 619

1114 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

ReadLine option, 620
TTY option, 619

parsing
about, 556, 1068
command–line switches, 576
compilation and, 558

pass–by–reference mechanism, 317, 324, 341
patches, 1068
PATH environment variable, 591, 595, 656,

1068
Path::Class module, 725
pathname, 1069
/PATTERN/ debugger command, 611
pattern matching

about, 39–47, 167, 1069
alternation in, 170, 231
capturing, 221–229
capturing in, 1050
character classes in, 202–214
fancy patterns, 247–273
grouping in, 170, 221, 229
metacharacters and, 168, 192–202
metasymbols and, 192–202
positions, 217–221
precedence rules in, 173
programming practices, 686
progressive matching, 219, 1070
regular expression quantifiers, 43–44, 214–

217
special variables, 763
specific characters, 199–200
staying in control, 232–246

pattern modifiers
about, 175–181
scoped, 230

?PATTERN? debugger command, 611
patterns

defined, 1069
defining assertions, 270
generated, 252
grammatical, 262–270
lookaround assertions, 247–249
possessive groups, 249–251
programmatic, 251–260
programming practices, 690
recursive, 260–262
runtime, 1072

pattern–matching operators, 40, 171–175

PAUSE (Perl Authors Upload SErver), 629, 633,
644, 1069

PDL module, 371
percent sign (%) sigil, 6, 59
Perl Authors Upload SErver (PAUSE), 629, 633,

644, 1069
Perl culture

additional information, 751
event information, 757
getting help, 758–759
historical background, 751–754
Perl poetry mode, 754–756
virtues of Perl programmers, 756

Perl language
about, xxiii–xxvii
additional resources, xxxvii
averaging example, 18–21
getting started, 3
installation location of, 580
natural and artificial languages and, 4–18
offline documentation, xxxv–xxxvii
online documentation, xxxii–xxxv
profiling, 623–627
standard distribution, xxx–xxxii

Perl mongers, 753, 758, 1066, 1069
Perl poetry mode, 754–756
PERL5DB environment variable, 595, 616
PERL5DB_THREADED environment variable,

595
PERL5LIB environment variable, 597, 638
PERL5OPT environment variable, 598
PERL5SHELL environment variable, 597
Perl::Critic module, 55, 568, 705
Perl::Tidy module, 681, 705, 745
perlbug tool, xxxviii, 636
$PERLDB ($^P) variable, 784
PERLDB_OPTS environment variable, 616,

620
PERLIO environment variable, 598–600
PerlIO module, 582, 902
PERLIO_DEBUG environment variable, 600
PERLLIB environment variable, 600
Perlmonks web bulletin board, 758
PerlX::MethodCallWithBlock extension, 688
PerlX::Range extension, 688
PERL_ALLOW_NON_IFS_LSP environment

variable, 595
PERL_BADLANG environment variable, 595

Index | 1115

www.it-ebooks.info

http://www.it-ebooks.info/

PERL_DEBUG_MSTATS environment
variable, 595

PERL_DESTRUCT_LEVEL environment
variable, 596

PERL_DL_NONLAZY environment variable,
596

PERL_ENCODING environment variable, 596
PERL_HASH_SEED environment variable,

596
PERL_HASH_SEED_DEBUG environment

variable, 596
PERL_MEM_LOG environment variable, 597
PERL_ROOT environment variable, 597
PERL_SIGNALS environment variable, 523,

597
PERL_UNICODE environment variable

about, 600
disabling Unicode features, 583
programming practices, 682
setting standard streams, 283

$PERL_VERSION ($^V) variable, 784
perl–packrats mailing list, 629
permission bits, 1069
permissions

data security and, 657–659
first–come, 634, 1057

Pern (term), 1069
per–filehandle special variables, 764
per–package special filehandles, 766
per–package special functions, 766
per–package special variables, 764
PGP::* modules, 842
.ph file extension, 998
picture formats

about, 810–814
accessing formatting internals, 817
footers, 817
format variables, 814–816

pipe (|), 170
pipe function, 537, 915
pipeline, 532, 1069
pipes

anonymous, 531–533
bidirectional communication, 536–538
defined, 531, 1069
efficiency practices, 697
named, 538–539
names, 1066
processes communicating over, 533–536

.pl file extension, 992, 998
plain old documentation (see pod)
platforms

defined, 1069
function variation across, 722

.plx file extension, 998

.pm file extension, 998
pod (plain old documentation)

about, 731–733, 1069
command paragraphs, 733–737
documenting programs, 748
flowed text, 737–740
ignored text as, 55
pitfalls with, 747
pod translators, 731, 740–741
sequences defined by, 737–740
verbatim paragraphs, 733
writing tools for, 742–747

pod commands, 734–737, 1069
=pod directive, 734
pod directives, 733–737
pod translators

about, 731
modules and, 740–741

pod2html module, 740
pod2latex module, 740
pod2man module, 740
pod2text module, 740, 744
Pod::Checker module, 741
Pod::Find module, 741
Pod::PseudoPod module, 736
Pod::Simple module, 741, 743
Pod::Simple::Text module, 744
podchecker utility, 741
POE module, 696
pointer value (PV), 1071
pointers, 1069
polymorphism, 416, 1069
pop function, 916
POP method (tied arrays), 486, 491
portability

about, 721–722, 1069
dates and times, 729
endianness and, 724
files and, 725–726
filesystems and, 725–726
internationalization, 729
IPC and, 727
newlines and, 723

1116 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

number width and, 724
standard modules and, 728
system interaction, 727
XS code and, 728

Portable Operating System Interface (POSIX)
about, 1070
character–class syntax notation, 210–214

porter efficiency, 699
porters, 1070
ports (term), 1069
ports directory (CPAN), 631
pos function, 294, 916
positions in strings

about, 217
beginnings, 218
boundaries, 219
endings, 218
\G metasymbol and, 220
progressive matching, 219

POSIX (Portable Operating System Interface)
about, 1070
character–class syntax notation, 210–214

POSIX module
about, 999
acos function, 840
asin function, 944
blocking signals, 522
exit function, 860
getattr function, 868
import tag groups and, 985
input buffering and, 783
mkfifo function, 538
mktime function, 881
pause function, 944
setlocale function, 180
setsid function, 940
sigprocmask syscall and, 522
strftime function, 881, 893
symbolic names and, 934, 968
system calls and, 963
tan function, 827
tmpnam function, 666

possessive (term), 1070
possessive groups, 249–251
postfix operator, 1070
$POSTMATCH ($') variable, 784
${^POSTMATCH} variable, 785
pp (push–pop) code, 1070
PPI package, 568

pragma module
constant function, 470
remove_constant function, 470

pragmas, 1001
(see also specific pragmas)
about, 164, 993, 1001, 1070
case considerations, 405, 477
implicit stricture feature, 17
lexical scopes and, 156
name considerations, 61
user–defined, 1042–1044

precedence rules
about, 96–97, 1070
in pattern matching, 173
sigils and, 352
terms and list operators, 97–99
unary operators, 107

precision, arbitrary (see big* pragmas; Math::*
modules)

prefix operators, 95, 1070
$PREMATCH ($`) variable, 785
${^PREMATCH} variable, 785
preprocessing, 1070
primary maintainer, 634, 1070
print character class, 212
print function

about, 917
efficiency practices, 692
programming practices, 680

PRINT method (tied filehandles), 498, 500
printf function

about, 793, 919
efficiency practices, 692
format modifiers, 796–799
tied filehandles and, 502

PRINTF method (tied filehandles), 498, 502
printing

arrays of arrays, 368–370
arrays of hashes, 377
data structure records, 383–384
hashes of arrays, 375
multidimensional hashes, 380

privacy, module, 406–411
private methods, 440
private objects, 446–449
procedures

defined, 17, 1070
functions and, 18

process groups, signalling, 520

Index | 1117

www.it-ebooks.info

http://www.it-ebooks.info/

processes
client, 1051
communicating over pipes, 533–536
defined, 1070
forking, 521, 1058
server, 1074
streaming data, 1076
zombie, 521, 1081

$PROCESS_ID ($$) variable, 785
profiling Perl, 623–627
program generators, 715–719, 1070
programmatic patterns, 251–260
programmer efficiency, 698
programming practices

C traps, 683–684
common goofs for novices, 679–691
efficiency in, 691–701
frequently ignored advice, 682–683
idiomatic Perl, 705–715
Java traps, 689–691
program generation, 715–719
programming with style, 701–705
Python traps, 685–687
Ruby traps, 687–689
shell traps, 684
universal blunders, 680–682

programs
communicating over pipes, 533–536
defined, 56, 993, 1073
documenting, 748
life cycle of, 554–555
portability and, 722

$PROGRAM_NAME ($0) variable, 785
program–wide special variables, 765
progressive matching, 219, 1070
property (see instance variables)
protocols (term), 1070
prototype function, 919
prototypes

about, 326–331, 1070
of built–in functions, 333
emulating built–in functions, 327
inlining constant functions, 331
programming practices, 690
usage considerations, 332

prove tool, 643
pseudocommands, 534
pseudodeclarators, 157
pseudofunctions, 1071

pseudohashes, 352, 1071
pseudoliterals, 88, 1071
pseudooperators, 461
pseudo-ttys, 537
public domain, 1071
pumpkin (term), 1071
pumpking, 1071
punct character class, 212
push function, 920
PUSH method (tied arrays), 486, 490
push–pop (pp) code, 1070
PV (pointer value), 1071
Python language, 685–687

Q
q debugger command, 613
\Q escape sequence, 69
\Q metasymbol, 197
q// quote operator, 71, 920
qq// quote operator, 71
qr// quote operator, 71, 172, 237–239
qualified (term), 62, 393, 1071
quantifiers

about, 41, 170, 1071
efficiency practices, 693
pattern matching and, 214–217
table listing, 193
usage examples, 43–44, 170

quarantining suspect code, 647, 669
quote constructs, 70
quoted strings, 8, 360
quotemeta function, 920
qw// quote operator, 71
qx// quote operator, 71

R
R debugger command, 606, 613
r debugger command, 607
\r escape sequence, 68, 199
–r file test operator, 31, 108
–R file test operator, 108
\r metasymbol, 197
\R metasymbol, 197
/r modifier, 186, 683, 710
$^R ($LAST_REGEXP_CODE_RESULT)

variable, 780
race conditions

defined, 663, 1071

1118 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

handling, 663–665
rand function, 921
range (..) operator, 120–122, 687
range (...) operator, 153
re pragma, 601, 677, 1026–1028
re::engine::LPEG module, 271
re::engine::Lua module, 272
re::engine::Oniguruma module, 272
re::engine::PCRE module, 272
re::engine::Plan9 module, 272
re::engine::Plugin module, 271
re::engine::RE2 module, 271–273
read function, 502, 921
READ method (tied filehandles), 498, 502
readable (term), 1071
readdir function, 922
readline function, 121, 923
READLINE method (tied filehandles), 498,

501
readlink function, 924
readpipe function, 676, 924
$REAL_GROUP_ID ($() variable, 786
$REAL_USER_ID ($<) variable, 786
reaping zombie processes, 1071
records

data structures and, 382–385
defined, 1071

recursion
defined, 1071
efficiency practices, 697

recursive patterns, 260–262
recv function, 925
redo operator, 144–147, 925
ref function

about, 926, 1051
hard references and, 354
object constructors and, 425

Reference Value (RV), 1073
references

about, 339–342, 1071
anonymous referents and, 342
backreferences, 45, 222, 260–262, 1047
backslash operator and, 342, 353
braces and brackets, 360–364
call by reference mechanism, 1049
circular, 362, 467
creating, 342–348
dereference, 8, 341, 1054
filehandle, 346

garbage collection and, 362
group, 222
hard, 340, 348–359, 1059
hash keys and, 361
implicit creation of, 348
objects as, 417
passing, 317, 324, 341
programming practices, 689
quotation marks and, 360
scalars holding, 7
soft, 1075
strict pragma and, 1033
symbol tables and, 347
symbolic, 339, 359–360, 1077
typeglobs and, 346, 412
weak, 363, 1081

referents
anonymous, 341, 342–345, 1045
defined, 340, 1072
objects as, 417

regex compiler, 239–241
regex engines

alternate, 271–273
rules used by, 241–246

Regexp module, 354
Regexp::Grammars module, 267–270
regular expression modifiers, 175–181, 1072
regular expressions, 39

(see also pattern matching)
additional information, 40
anchors and, 44
assertions in, 1046
backreferences, 45
custom boundaries, 308–309
defined, 39, 1072
differences in Perl, 167
efficiency practices, 693
leftmost longest preference, 1063
metacharacters and, 168, 193–199, 1065
minimal matching, 44
programming practices, 690
quantifiers, 43–44, 193, 214–217
re pragma support, 1026
smartmatching and, 137
special variables, 763
usage considerations, 40–42

regular files, 1072
relational operators, 111, 1072
rename function, 927

Index | 1119

www.it-ebooks.info

http://www.it-ebooks.info/

Request For Comment (RFC), 1072
require function, 402, 927–929
reserved words, 61, 1072
reset function, 929
return operator, 930
return stack, 563
return values, 1072
reverse function, 121, 931
Reverse Polish Notation (RPN), 562
rewinddir function, 931
RFC (Request For Comment), 1072
RFC 822, 953, 1052
Rhine, Jared, 629
right shift (>>) bit operator, 105, 1072
rindex function, 294, 931
rmdir function, 932
roles (term), 1072
root (term), 1072
RPN (Reverse Polish Notation), 562
RTFM acronym, 1072
Ruby language, 687–689
run phase

defined, 555, 1072
runtime and, 556

runtime (term)
defined, 1072
overloading, 473
run phase and, 556

runtime patterns, 1072
RV (Reference Value), 1073
rvalue (term), 58, 1073

S
s debugger command, 606, 607
S debugger command, 611
–s file test operator, 108
–S file test operator, 109
\s metasymbol, 197, 205
\S metasymbol, 197, 205
/s modifier, 175, 182, 185
S pod sequence, 737
–S command-line switch, 577, 591
–s command-line switch, 591
$^S ($EXCEPTIONS_BEING_CAUGHT)

variable, 774
s/// (substitution) operator

about, 71, 932, 1076
double–quote interpolation, 171–174
efficiency practices, 694

modifiers supported, 184–189
usage examples, 40

Safe module
handling insecure code, 670–678
ops pragma and, 1025
quarantining suspect code, 647, 669
reval method, 671, 673
usage examples, 673–675

sandbox
defined, 670, 1073
setting up, 670–675

save stack, 563
say keyword, 932
scalar context

about, 76, 1073
comma operator and, 126
list processing, 47

scalar literals, 1073
scalar pseudofunction, 77, 933
scalar values

about, 65–67, 1073, 1077
barewords, 72
here–document syntax and, 73–75
interpolating array values, 73
literal tokens, 76
numeric literals, 67
quote constructs, 70
string literals, 67–70
version literals, 75

scalar variables
creating, 8
defined, 6, 1073
sigil for, 6, 58

Scalar::Util module
breaking references and, 441
is_weak function, 364
set_prototype function, 331
tainted function, 652
weaken function, 364

scalars
defined, 57, 1073
programming practices, 710
tying, 477–486

Schwartz Factor, 632
Schwartz, Randal, 632, 753
Schwartzian Transform, 949
scope stack, 563
scoped declarations, 155
scopes, 1063

1120 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

(see also lexical scopes)
defined, 60, 1073
dynamic, 156, 1055
static, 1063

scratchpads, 60, 1073
script gradation, 20
script kiddie, 1073
scripts (term), 993, 1073
scripts directory (CPAN), 631
SDBM_File module, 728
searching CPAN, 635
security

handling insecure code, 668–678
handling insecure data, 648–661
handling timing glitches, 661–668
Unix kernel security bugs, 662

sed (Stream EDitor), 1073
seek function, 723, 934
SEEK method (tied filehandles), 498, 502
seekdir function, 935
select (output filehandle) operator, 935–936
select (ready file descriptors) operator, 937–

938
SelectSaver module, 936
SelfLoader module, 150, 398, 1004
semaphore, 527, 1073
semctl function, 938
semget function, 938
semicolon (;)

programming practices, 680, 709
in simple statements, 130
subroutines and, 328

semop function, 939
send function, 939
separators, 40, 1073
sequences defined by pod, 737–740
serialization, 1073
servers

defined, 1074
networking, 547–550

services (term), 1074
setgid program

about, 1074
reduced privileges and, 648, 658

setpgrp function, 521, 940
setpriority function, 940
setsockopt function, 940
setuid program

about, 1074

reduced privileges and, 648, 657
shared memory, 1074
shebang (term), 1074
SHELL environment variable, 577
Shell module, 399
shell program

defined, 1074
here–document syntax, 73–75
programming practices, 684

shift function, 692, 941
SHIFT method (tied arrays), 486, 491
shift operators (see bit–shift operators)
shmctl function, 942
ShMem package, 541
shmget function, 942
shmread function, 942
shmwrite function, 943
shutdown function, 547, 943
side effects, 1074
%SIG variable, 518, 786
sigils

defined, 6, 58, 1074
operator precedence and, 352
variable names and, 61
variable types listed, 6, 58–60

signals and signal handling
about, 518–520, 1074
blocking signals, 522
converting into exceptions, 571
process groups, 520
%SIG variable and, 518, 786
signal safety, 523
sigtrap pragma support, 519, 1029
timing out slow operations, 522
zombie processes and, 521

sigtrap pragma
about, 1029
converting singals into exceptions, 571
other arguments supported, 1030
predefined signal lists, 1030
programming practices, 701
signal handlers and, 519, 1029
usage examples, 1031

simple statements, 130
sin operator, 944
single inheritance, 1074
sleep function, 944
slices of arrays, 370, 681
slices of elements, 1074

Index | 1121

www.it-ebooks.info

http://www.it-ebooks.info/

slurp (term), 1075
Smart::Comments module, 55
smartmatch (~~) operator

about, 112–117
when statement and, 134, 137–139

smolder testing framework, 644
.so file extension, 999
socket function, 944
Socket module

about, 544, 999
AF_INET attribute, 870
getaddrinfo function, 871
inet_ntoa function, 870
networking clients, 546
networking servers, 547
newlines and, 723
SOL_SOCKET attribute, 878, 940

socketpair function, 537, 945
sockets

defined, 1075
interprocess communications and, 543–545
message passing, 550
networking clients, 545–547
networking servers, 547–550

soft references, 1075
sort function

about, 945–950
hashes of arrays and, 374
list processing, 47
sort pragma and, 1032
UCA and, 303
Unicode text and, 297–303
usage example, 12

sort pragma, 950, 1032
source filters, 718, 1075
space character class, 212
space efficiency, 697
special filehandles, per–package, 766
special functions, per–package, 766
special names

grouped by type, 763–767
special variables in alphabetical order, 767–

791
special variables

in alphabetical order, 767–791
annotations for, 767
per–filehandle, 764
per–package, 764
program–wide, 765

regular expression, 763
Spencer, Henry, 753
splice function, 692, 950
SPLICE method (tied arrays), 486, 491
split function

about, 951–954
efficiency practices, 695
separators and, 40, 1073

sprintf function
about, 793, 954
format modifiers for, 796–799
formats supported, 794
numeric conversions, 795
tied filehandles and, 502

sqrt function, 955
square brackets []

anonymous array composer, 342
array subscripts and, 10
bracketed character classes and, 202–204
scalar lists and, 13

srand function, 955
src directory (CPAN), 631
Stackoverflow site, 758
stacks

defined, 1063, 1075
listing of supported, 562
programming practices, 712

standard (term), 1075
standard I/O, 1075
Standard Perl Library

about, 991, 993–995, 1075
cpan command, 639
future of, 997

stat function, 665
stat structure, 956–957, 1076
state declaration, 160, 957
state variables, 322–324, 958
statement modifiers

about, 1075
efficiency practices, 694
simple statements, 130

statements, 129
(see also specific statements)
about, 56, 129, 1075
compound, 131–132
dangling, 1053
loop control, 35–39, 139–147, 1064
simple, 130
switch, 34, 1077

1122 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

static (term), 1075
static methods, 1076
static scopes, 1063
static variables, 1076
status value, 1076
STDERR filehandle

about, 22, 788, 1075
interprocess communications and, 529
warning messages and, 1080

STDIN filehandle
about, 22, 788, 1075
interprocess communications and, 529

STDIO filehandle, 1075
STDOUT filehandle

about, 22, 788, 1075
interprocess communications and, 529

Storable module, 386, 724
STORE method

tied arrays, 486, 488
tied hashes, 492, 495
tied scalars, 477, 481

STORESIZE method (tied arrays), 486, 489
Stream EDitor (sed), 1073
streaming data, 1076
strict pragma

about, 16, 1032
barewords and, 1034
handling insecure code, 671
lexical scoping and, 156
my modifier and, 825
programming practices, 679, 682, 701, 704
references and, 1033
undeclared variables and, 395
variables and, 63, 165, 779, 1033

string context, 1076
string formats, 793–799
string literals, 67–70
string operators, 25, 30, 111
stringification, 461, 1076
strings

concatenating, 26, 1052
construct positions in, 217–221
defined, 1076
efficiency practices, 695
modifying in passing, 187
null, 1067
offsets in, 1067
quoted, 8
separators, 1073

substitution in, 40, 184–189, 932, 1076
terminators in, 1078
text, 1078
transliteration of, 189–192, 974, 989, 1079
v–strings, 1080
whitespace characters and, 55

struct keyword, 1076
Struct::Class module, 443
structures (see control structures; data

structures)
study function, 958
sub declaration

about, 959–961
anonymous subroutine composer, 344
prototypes emulating built–ins, 327

subclasses, 416, 1054
subpatterns

capturing, 221–229, 1050
cluster, 1051
code, 255–258, 1051
defined, 1076
greedy, 1059
nonbacktracking, 249–251
zero–width assertions, 169, 1081

subroutines
ampersand sigil and, 6, 18
anonymous subroutine composer, 344
backslash operator and, 342
closure, 355–359, 1051
defined, 56, 315, 1076
efficiency practices, 693
error indications, 320
lvalue attribute, 336–337
method attribute, 335
methods as, 417
name considerations, 60
nested, 358
parameter lists and, 318–320
passing references, 324
pass–by–reference mechanism, 317
programming practices, 688
prototypes, 326–335
returning references, 345
scoping issues, 321–324
sigil for, 6
syntax, 315–317

subs pragma, 439, 1035
subscripts, 10, 1076

Index | 1123

www.it-ebooks.info

http://www.it-ebooks.info/

$SUBSCRIPT_SEPARATOR ($;) variable, 85,
788

substitution (s///) operator
about, 71, 932, 1076
double–quote interpolation, 171–174
efficiency practices, 694
modifiers supported, 184–189
usage examples, 40

substitution evaluation, 254
substr function

about, 217, 961
efficiency practices, 693
granularity of access, 294

substrings (term), 1076
subtraction (–) operator, 105
suidperl program, 662
SUPER pseudoclass, 433–435
superclasses, 416, 1048
superusers, 1077
SV (see scalar values)
switch clusters, 1077
switch statement, 34, 1077
switches, 1077

(see also specific switches)
about, 1077
command–line, 580–594
parsing, 576

Symbol module
delete_package function, 930
qualify_to_ref function, 329

symbol tables
about, 60, 389–393, 1077
references and, 347
typeglobs and, 86

symbolic debugger (see debugger)
symbolic links, 666, 1077
symbolic references, 339, 359–360, 1077
symbols, 1077

(see also metasymbols)
symlink function, 962
synchronous (term), 1077
syntactic sugar, 11, 1077
syntax

about, 5, 1077
complexities in, 12–14
here–document, 73–75
indirect object considerations, 421–423
pluralities in, 9–12
POSIX character–class notation, 210–214

simplicities in, 14–17
singularities in, 7–9
subroutines, 315–317

syntax tree, 1078
SYS$LOGIN environment variable, 601
syscall function

about, 963, 1078
efficiency practices, 696
manpages for, xxxv

sysopen function
about, 964–967
calling with reduced privileges, 657
external data cautions, 656
file locking and, 526
handling race conditions, 664

sysread function, 502, 693, 967
sysseek function, 968
system function

about, 968
calling with reduced privileges, 657
efficiency practices, 696
tainted data and, 660

System V IPC, 540–543
$SYSTEM_FD_MAX ($^F) variable

about, 789
filehandles and, 529
fileno function and, 863
socket function and, 945

syswrite function, 503, 969

T
T debugger command, 605, 609
t debugger command, 609
\t escape sequence, 68, 199
–T file test operator, 31, 109
–t file test operator, 109
\t metasymbol, 197
$^T ($BASETIME) variable, 771
–t command-line switch, 592, 660
–T command-line switch, 592, 660
taint checks

about, 649, 668, 1078
defeating, 660

taint mode, 647, 1078
${^TAINT} variable, 789
Taint::Util module

taint function, 652
tainted function, 652

tainted data

1124 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

about, 1078
detecting and laundering, 651–655

TAP (Test Anywhere Protocol) format, 643
TCP (Transmission Control Protocol), 543, 550,

1078
tell function, 502, 723, 970
TELL method (tied filehandles), 498, 502
telldir function, 971
temporary files, 665–668, 697
temporary values, 58
Term::ReadKey module, 615, 868, 886
Term::ReadLine module

debugging support, 615, 617, 618
unattended execution and, 620

Term::Rendezvous module, 619
terminators (term), 1078
terms

ambiguous characters and, 107
defined, 57, 1078
precedence rules, 97–99

ternary operators, 95, 1078
Test Anywhere Protocol (TAP) format, 643
Test::More module, 642
Test::Pod module, 741
Test::Pod::Coverage module, 741
testing CPAN, 635, 642–644
text, 1078

(see also strings)
defined, 1078
flowed, 737–740

Text::Autoformat module, 297
Text::CPP module, 590
Thread module, 1035
Thread::Queue module, 1036
threads (term), 1078
threads pragma

about, 1035–1036
async function, 1036

threads::shared pragma, 1036
three–part loops, 37, 140–142
tie function

about, 971–973
creative filehandles, 506–510
tied variables and, 510
tying scalars, 477–486

Tie::Array module
about, 486
SPLICE subroutine, 487, 491
tie function and, 973

Tie::Cache::LRU module, 512
Tie::Const module, 512
Tie::Counter module, 483, 512
Tie::CPHash module, 512
Tie::Cycle module, 483, 512
Tie::DBI module, 512
Tie::DevNull module, 509
Tie::DevRandom module, 509
Tie::Dict module, 512
Tie::DictFile module, 512
Tie::DNS module, 513
Tie::EncryptedHash module, 513
Tie::FileLRUCache module, 513
Tie::FlipFlop module, 513
Tie::Handle module, 973
Tie::Hash module, 492, 973
Tie::Hash::NamedCapture module, 228, 770,

780
Tie::HashDefaults module, 513
Tie::HashHistory module, 513
Tie::iCal module, 513
Tie::IxHash module, 513
Tie::LDAP module, 513
Tie::Open2 module, 507–510
Tie::Persistent module, 513
Tie::Pick module, 513
Tie::RDBM module, 513
Tie::RefHash module, 362
Tie::Scalar module, 478, 973
Tie::SecureHash module, 448
Tie::StdArray module, 486
Tie::STDERR module, 513
Tie::StdHash module, 492
Tie::StdScalar module, 478
Tie::SubstrHash module, 697
Tie::Syslog module, 513
Tie::Tee module, 509
Tie::TextDir module, 513
Tie::Toggle module, 513
Tie::TZ module, 513
Tie::VecArray module, 513
Tie::Watch module, 513
TIEARRAY method, 486, 487
tied arrays

about, 486
CLEAR method, 490
DELETE method, 486, 490
DESTROY method, 486, 489
EXISTS method, 486, 489

Index | 1125

www.it-ebooks.info

http://www.it-ebooks.info/

EXTEND method, 489
FETCH method, 486, 488
FETCHSIZE method, 486, 489
methods supported, 487–491
notational convenience, 491
POP method, 486, 491
PUSH method, 486, 490
SHIFT method, 486, 491
SPLICE method, 486, 491
STORE method, 486, 488
STORESIZE method, 486, 489
TIEARRAY method, 486, 487
UNSHIFT method, 486, 491
UNTIE method, 486, 489

tied filehandles
about, 498
BINMODE method, 498, 503
CLOSE method, 498, 502
creative, 506–510
DESTROY method, 498, 504
EOF method, 498, 503
FILENO method, 498, 503
GETC method, 498, 501
methods supported, 499–506
OPEN method, 498, 501
PRINT method, 498, 500
PRINTF method, 498, 502
READ method, 498, 502
READLINE method, 498, 501
SEEK method, 498, 502
TELL method, 498, 502
TIEHANDLE method, 498, 500
UNTIE method, 504
WRITE method, 498, 503

tied function, 510, 973
tied hashes

about, 492
CLEAR method, 492, 496
DELETE method, 492, 496
DESTROY method, 492, 498
EXISTS method, 492, 497
FETCH method, 492, 495
FIRSTKEY method, 492, 497
methods supported, 493
NEXTKEY method, 492, 497
STORE method, 492, 495
TIEHASH method, 492, 494
UNTIE method, 498

tied scalars

about, 477–478
cycling through values, 483
DESTROY method, 477, 482
FETCH method, 481
magical counter variables, 483
methods supported, 478–483
STORE method, 481
TIESCALAR method, 477, 480
UNTIE method, 477, 482

tied variables
about, 475–477, 475–477, 1078
arrays, 486–492
filehandles, 498–510
hashes, 492–498
methods and, 477
scalars, 477–486
subtle untying trap, 510–512

TIEHANDLE method, 498, 500
TIEHASH method, 492, 494
TIESCALAR method, 477, 480
time efficiency, 691–697
time function, 729, 973
Time::gmtime module, 881
Time::HiRes module

alarms and, 827
granularity of measurements, 974
sleep function, 938
system calls and, 964
usleep function, 944

Time::Local module
portability considerations, 729
timegm function, 880
timelocal function, 893

Time::localtime module, 893
times function, 974
timing glitches

about, 661
handling race conditions, 663–665
temporary files and, 665–668
timing out slow operations, 522
Unix kernel security bugs, 662

titlecase characters, 287, 1078
Tk module, 427, 617, 700
TMTOWTDI acronym, 20, 1078
tokeners

ambiguous characters and, 107
defined, 1079

tokenizing, 556, 1079
tokens

1126 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

defined, 54, 1079
literal, 76
whitespace characters and, 54

toolbox approach, 1079
topicalizers, 14–16, 133, 149
topics (term), 1079
tr/// (transliteration) operator

about, 974, 1079
binding to variables, 172–174
efficiency practices, 697
modifiers supported, 189–192

trace mode (debugger), 609
transliteration (tr///) operator

about, 974, 1079
binding to variables, 172–174
efficiency practices, 697
modifiers supported, 189–192

Transmission Control Protocol (TCP), 543, 550,
1078

Tregar, Sam, 640
triggers (term), 1079
trinary operators, 95, 123, 1079
troff language, 1079
true values, 1079
truncate function, 975, 1079
Try::Tiny module, 330
type (see classes; data types)
type casting, 1079
typed lexicals, 1079
typedef, 1079
typeglobs

defined, 86, 419, 1079
filehandles and, 86
references and, 346, 412
sigil for, 6

typemap, 1079

U
\u escape sequence, 69
\U escape sequence, 69
–u file test operator, 109
\u metasymbol, 197
\U metasymbol, 197
/u modifier, 176, 183, 186
–u command-line switch, 592, 660
–U command-line switch, 593
uc function, 975
UCA (Unicode Collation Algorithm), 298–305
ucfirst function, 289, 975

UDP (User Datagram Protocol), 543, 550, 1079
UID (user ID), 1080
umask function, 976, 1080
unary operators

about, 28, 95, 1080
handlers and, 458
ideographic, 101
list operators and, 107
precedence rules, 107
programming practices, 682
table listing, 106–108

unattended execution (debugger), 619–620
undef function

about, 977
efficiency practices, 695, 697
overload handlers and, 459
programming practices, 689
tying hashes, 492

underline (_) filehandle, 769
underscore module, 484–486
Unicode

about, 275–280, 1080
additional information, 313
casemapping and, 287–289
comparing text, 297–306
defining properties, 309–312
getting at data, 282–286
graphemes and normalization, 290–297
Perl shortcuts and, 306–309
portability and, 729
programming practices, 686
sorting text, 297–306
utf8 pragma and, 280–281

Unicode Collation Algorithm (UCA), 298–305
${^UNICODE} variable, 789
Unicode::CaseFold module

fc function and, 288, 861
lc function and, 889
uc function and, 975

Unicode::Collate module
about, 295
cmp method, 861
eq method, 861
locale sorting, 305
normalization and, 302
relational operators and, 111
sort function and, 945
sort method, 304
UCA support, 298

Index | 1127

www.it-ebooks.info

http://www.it-ebooks.info/

version considerations, 303
Unicode::Collate::Locale module

cmpmethod, 861
eq method, 861
locale sorting, 305
relational operators and, 111
sort function and, 946

Unicode::GCString module
about, 297
binary formats, 808
chopping strings, 836
grapheme support, 295, 890, 917
index method, 884, 932
picture formats, 812, 813
pos method, 884, 932
rindex method, 884, 932
string formats, 799
substr method, 961

Unicode::LineBreak module, 297, 813
Unicode::Normalize module

about, 292
NFC function, 331
NFD function, 331

Unicode::Regex::Set module, 311
Unicode::Tussle module

ucsort program, 299
unifmt program, 297

Unicode::UCD module, 307
unimport method, 404, 484
UNITCHECK blocks, 554, 570–574
UNIVERSAL class

can method, 436, 439, 440
class inheritance and, 435–438
DOES method, 436
isa method, 435
version checking and, 409
VERSION method, 437

Unix kernel security bugs, 662
Unix language, 1080
unless statement

about, 33, 133
modifiers and, 130

unlink function, 78, 978
unpack function

about, 809–810, 979
format characters, 800–808

unshift function, 979
UNSHIFT method (tied arrays), 486, 491
untie function

about, 476, 979
tied filehandles and, 504
tied scalars and, 477, 482

UNTIE method
tied arrays, 486, 489
tied filehandles, 504
tied hashes, 498
tied scalars, 477, 482

until statement
about, 35, 139
modifiers and, 130

upper character class, 212
uppercase characters, 287, 1080
use declaration

about, 980–982
implementing library modules, 992
pragmas and, 164
programming practices, 679
runtime overloading, 473

User Datagram Protocol (UDP), 543, 550, 1079
user efficiency, 700
user ID (UID), 1080
User::grent module, 869, 870
User::pwent module, 876
user–defined pragmas, 1042–1044
UTC (Coordinated Universal Time), 880
utf8 pragma, 124, 280–281, 283, 1037
${^UTF8CACHE} variable, 790
${^UTF8LOCALE} variable, 790
utime function, 982

V
V debugger command

about, 610
arrayDepth option, 618
compactDump option, 618
DumpDBFiles option, 618
DumpPackages option, 618
DumpReused option, 618
globPrint option, 618
hashDepth option, 618
HighBit option, 619
quote option, 619
underPrint option, 619
UsageOnly option, 619
veryCompact option, 618

\v metasymbol, 197, 205
\V metasymbol, 197, 205
–v command-line switch, 593, 996

1128 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

–V command-line switch, 593, 993
$^V ($PERL_VERSION) variable, 784
values

array, 73, 1047
Boolean, 8, 1048
decrementing, 1054
default, 1054
defined, 57, 1080
false, 1056
incrementing, 1060
list, 79–84, 1064
lvalue, 58, 1064
mortal, 1066
referencing, 341
return, 1072
rvalue, 58, 1073
scalar, 65–76, 1073, 1077
status, 1076
temporary, 58
tied scalars cycling through, 483
true, 1079

values function, 497, 983
variable interpolation, 7, 234–239, 1080
variables, 1080

(see also specific variables)
aliases for names, 763
backslash operator and, 342
capture, 1050
defined, 1080
environment, 1055, 1068
hard references and, 348
instance, 427, 442–450, 689, 1061
lexical, 159–164, 322, 1063, 1079
magical, 1065
picture format, 814–816
programming practices, 684, 685
scalar, 6, 8, 58, 1073
scoped declarations, 156–164
sigils and, 6, 58–60, 61
state, 322–324, 958
static, 1076
strict pragma and, 63, 165, 779, 1033

variadic (term), 317, 1080
vars pragma, 1033, 1037
vec function, 697, 983
vectors, 1080
verbs in natural languages, 17
version literals, 75
version module, 354, 410, 1038

$VERSION variable, 409, 790
vertical bar (|), 170
vi editor, 615
vim editor, 615
virtual (term), 1080
vmsish pragma

about, 1038
exit feature, 1038
hushed feature, 1038
status feature, 1039
time feature, 1039

void context, 79, 1080
v–strings, 1080

W
w debugger command, 605, 611
W debugger command, 609
–w file test operator, 31, 108
–W file test operator, 108
\w metasymbol, 197, 205
\W metasymbol, 197, 205
–w command-line switch, 593, 660
–W command-line switch, 594
$W ($WARNING) variable, 790
wait function, 521, 985
waitpid function, 521
Wall, Larry, 1046
wantarray function, 77, 986
warn function, 986
warning messages, 1080
$WARNING ($W) variable, 790
warnings pragma

about, 165, 987, 1039–1042
enabled function, 1042
enabling warnings, 594
ioctl function and, 886
programming practices, 679, 680, 686, 701,

714
register function, 1042
tied scalars and, 480
warn function, 1042
warnif function, 1042

${^WARNING_BITS} variable, 790
watch expression, 609, 1081
weak references, 363, 1081
West, Casey, 758
when statement

about, 34
smartmatching and, 134, 137–139

Index | 1129

www.it-ebooks.info

http://www.it-ebooks.info/

while statement
about, 35–37, 139
line input operator and, 89
list assignments, 83
modifiers and, 130
programming practices, 683

whitespace characters, 42, 54, 1081
whowasi function, 494
${^WIDE_SYSTEM_CALLS} variable, 790
wildcard metasymbols, 200–202
Win32::Pipe module, 538
Win32::Process module, 866
Win32::TieRegistry module, 513
${^WIN32_SLOPPY_STAT} variable, 791
word character class, 213
words (term), 1081
working directory, 1081
wrappers (term), 1081
write function, 498, 988
WRITE method (tied filehandles), 498, 503
Wx module, 700
WYSIWYG acronym, 1081

X
X cdebugger ommand

underPrint option, 619
x debugger command

about, 609
arrayDepth option, 618
compactDump option, 618
DumpDBFiles option, 618
DumpPackages option, 618
DumpReused option, 618
globPrint option, 618
hashDepth option, 618
HighBit option, 619
quote option, 619
underPrint option, 619
UsageOnly option, 619
veryCompact option, 618

X debugger command
about, 610
arrayDepth option, 618
compactDump option, 618
DumpDBFiles option, 618
DumpPackages option, 618
DumpReused option, 618
globPrint option, 618
hashDepth option, 618

HighBit option, 619
quote option, 619
UsageOnly option, 619
veryCompact option, 618

–x file test operator, 108
–X file test operator, 108
\x metasymbol, 197, 200
\X metasymbol, 197
/x modifier, 175, 182, 185
X pod sequence, 738
–x command-line switch, 577, 594
–X command-line switch, 594
$^X ($EXECUTABLE_NAME) variable, 774
\x escape sequence, 68
xdigit character class, 213
XML::Parser module, 384, 712
XOR (bitwise) operator, 118
XOR (logical) operator, 29, 119, 127
XS (eXternal Subroutine), 640, 728, 1081
XSUB (term), 1081

Y
y/// (transliteration) operator, 71, 172, 989
yacc acronym, 556, 1081
YAPC (Yet Another Perl Conference), 754, 757

Z
–z file test operator, 108
\z metasymbol, 197, 218
\Z metasymbol, 197, 218
Z pod sequence, 739
zero–width assertions, 169, 217, 1081
zombie processes, 521, 1081

1130 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

About the Authors
Tom Christiansen is a freelance consultant specializing in Perl training and
writing. After working for several years for TSR Hobbies (of Dungeons and
Dragons fame), he set off for college where he spent a year in Spain and five in
America, dabbling in music, linguistics, programming, and some half-dozen dif-
ferent spoken languages. Tom finally escaped UW-Madison with undergraduate
degrees in Spanish and computer science and a graduate degree in computer
science. He then spent five years at Convex as a jack-of-all-trades working on
everything from system administration to utility and kernel development, with
customer support and training thrown in for good measure. Tom also served two
terms on the USENIX Association Board of directors. With over thirty years' expe-
rience in Unix systems programming, Tom presents seminars internationally.
Living in the foothills above Boulder, Colorado, Tom takes summers off for hik-
ing, hacking, birding, music making, and gaming.

brian d foy is a prolific Perl trainer and writer, and runs The Perl Review to help
people use and understand Perl through educational, consulting, code review,
and more. He's a frequent speaker at Perl conferences. He's the coauthor of
Learning Perl, Intermediate Perl, and Effective Perl Programming, and the author
of Mastering Perl. He was an instructor and author for Stonehenge Consulting
Services from 1998 to 2009, a Perl user since he was a physics graduate student,
and a die-hard Mac user since he first owned a computer. He founded the first
Perl user group, the New York Perl Mongers, as well as the Perl advocacy non-
profit Perl Mongers, Inc., which helped form more than 200 Perl user groups
across the globe. He maintains the perlfaq portions of the core Perl documenta-
tion, several modules on CPAN, and some standalone scripts.

Larry Wall originally created Perl while a programmer at Unisys. He now works
full time guiding the future development of the language. Larry is known for his
idiosyncratic and thought-provoking approach to programming, as well as for
his groundbreaking contributions to the culture of free software programming.

Jon Orwant founded The Perl Journal and received the White Camel lifetime
achievement award for contributions to Perl in 2004. He's Engineering Manager
at Google, where he leads Patent Search, visualizations, and digital humanities
teams. For most of his tenure at Google, Jon worked on Book Search, and he
developed the widely used Google Books Ngram Viewer. Prior to Google, he was
CTO of O'Reilly, Director of Research at France Telecom, and a Lecturer at MIT.
Orwant received his doctorate from MIT's Electronic Publishing Group in 1999.

www.it-ebooks.info

http://www.it-ebooks.info/

Colophon
The animal on the cover of Programming Perl is a dromedary camel.

The dromedary camel (Camelus dromedarius), also known as the “Arabian camel,”
is a one-humped, even-toed ungulate, or hooved animal. Dromedaries are the
largest members of the camel family. They have been domesticated for 3,500
years, and thanks to the many adaptations that allow them to thrive in the desert,
they’re valued as beasts of burden.

The world’s dromedary camel population is mostly domesticated, with just one
known wild population, located in Australia. Domesticated dromedaries inhabit
the Middle East and North Africa, where they live in herds consisting of many
females among a dominant male. The dromedary’s hump can store up to 80
pounds of fat, which can be broken down into water and energy, allowing it to
travel in desert conditions for 100 miles without water. In addition to their ability
to travel long distances in arid conditions without sustenance, dromedaries have
double rows of eyelashes that keep sand out of their eyes, the ability to close their
nostrils during a sandstorm, and unlike horses, they kneel for the loading of cargo
and passengers. Their typical lifespan is 40 to 50 years.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka, the heading font is Myriad Pro, and
the code font is Ubuntu Mono, with the following fonts used as fallbacks to
display unsupported glyphs:

• Adobe Song Std

• Arno Pro

• Free Mono

• Free Serif

• ST Heiti SC

• Symbola

www.it-ebooks.info

http://www.it-ebooks.info/

	Table of Contents
	List of Tables
	Preface
	The Pursuit of Happiness
	What’s New in This Edition
	The Standard Distribution
	Online Documentation
	Navigating the Standard Manpages
	Non-Perl Manpages

	Offline Documentation
	Additional Resources
	Perl on the Web
	Bug Reports

	Conventions Used in This Book
	Acknowledgments
	Safari® Books Online
	We’d Like to Hear from You

	Part I. Overview
	Chapter 1. An Overview of Perl
	Getting Started
	Natural and Artificial Languages
	Variable Syntax
	Singularities
	Pluralities
	Arrays
	Hashes

	Complexities
	Simplicities

	Verbs

	An Average Example
	How to Do It

	Filehandles
	Operators
	Some Binary Arithmetic Operators
	String Operators
	Assignment Operators
	Unary Arithmetic Operators
	Logical Operators
	Some Numeric and String Comparison Operators
	Some File Test Operators

	Control Structures
	What Is Truth?
	The if and unless statements

	The given and when Statements
	Looping Constructs
	Conditional loops
	The three-part loop
	The foreach loop
	Breaking out: next and last

	Regular Expressions
	Quantifiers
	Minimal Matching
	Nailing Things Down
	Backreferences

	List Processing
	What You Don’t Know Won’t Hurt You (Much)

	Part II. The Gory Details
	Chapter 2. Bits and Pieces
	Atoms
	Molecules
	Built-in Data Types
	Variables
	Names
	Name Lookups

	Scalar Values
	Numeric Literals
	String Literals
	Pick Your Own Quotes
	Or Leave Out the Quotes Entirely
	Interpolating Array Values
	“Here” Documents
	Version Literals
	Other Literal Tokens

	Context
	Scalar and List Context
	Boolean Context
	Void Context
	Interpolative Context

	List Values and Arrays
	List Assignment
	Array Length

	Hashes
	Typeglobs and Filehandles
	Input Operators
	Command Input (Backtick) Operator
	Line Input (Angle) Operator
	Filename Globbing Operator

	Chapter 3. Unary and Binary Operators
	Terms and List Operators (Leftward)
	The Arrow Operator
	Autoincrement and Autodecrement
	Exponentiation
	Ideographic Unary Operators
	Binding Operators
	Multiplicative Operators
	Additive Operators
	Shift Operators
	Named Unary and File Test Operators
	Relational Operators
	Equality Operators
	Smartmatch Operator
	Smartmatching of Objects

	Bitwise Operators
	C-Style Logical (Short-Circuit) Operators
	Range Operators
	Conditional Operator
	Assignment Operators
	Comma Operators
	List Operators (Rightward)
	Logical and, or, not, and xor
	C Operators Missing from Perl

	Chapter 4. Statements and Declarations
	Simple Statements
	Compound Statements
	if and unless Statements
	The given Statement
	The when Statement and Modifier

	Loop Statements
	while and until Statements
	Three-Part Loops
	foreach Loops
	Loop Control
	Bare Blocks as Loops
	Loopy Topicalizers

	The goto Operator
	Paleolithic Perl Case Structures
	The Ellipsis Statement
	Global Declarations
	Scoped Declarations
	Scoped Variable Declarations
	Lexically Scoped Variables: my
	Persistent Lexically Scoped Variables: state
	Lexically Scoped Global Declarations: our
	Dynamically Scoped Variables: local

	Pragmas
	Controlling Warnings
	Controlling the Use of Globals

	Chapter 5. Pattern Matching
	The Regular Expression Bestiary
	Pattern-Matching Operators
	Pattern Modifiers
	The m// Operator (Matching)
	The s/// Operator (Substitution)
	Modifying strings en passant
	Modifying arrays en masse
	When a global substitution just isn’t global enough

	The tr/// Operator (Transliteration)

	Metacharacters and Metasymbols
	Metasymbol Tables
	Specific Characters
	Wildcard Metasymbols

	Character Classes
	Bracketed Character Classes
	Classic Perl Character Class Shortcuts
	Character Properties
	POSIX-Style Character Classes

	Quantifiers
	Positions
	Beginnings: The \A and ^ Assertions
	Endings: The \z, \Z, and $ Assertions
	Boundaries: The \b and \B Assertions
	Progressive Matching
	Where You Left Off: The \G Assertion

	Grouping and Capturing
	Capturing
	Named capture groups

	Grouping Without Capturing
	Scoped Pattern Modifiers

	Alternation
	Staying in Control
	Letting Perl Do the Work
	Variable Interpolation
	When backslashes happen
	The qr/PATTERN/modifiers quote regex operator

	The Regex Compiler
	The Little Engine That /Could(n’t)?/

	Fancy Patterns
	Lookaround Assertions
	Possessive Groups
	Programmatic Patterns
	Generated patterns
	Substitution evaluations
	Match-time code evaluation
	Match-time pattern interpolation
	Conditional interpolation

	Recursive Patterns
	Grammatical Patterns
	Grammars

	Defining Your Own Assertions
	Alternate Engines

	Chapter 6. Unicode
	Show, Don’t Tell
	Getting at Unicode Data
	The Encode Module

	A Case of Mistaken Identity
	Graphemes and Normalization
	Comparing and Sorting Unicode Text
	Using the uca with Perl’s sort
	Locale Sorting

	More Goodies
	Custom Regex Boundaries
	Building Character

	References

	Chapter 7. Subroutines
	Syntax
	Semantics
	Tricks with Parameter Lists
	Error Indications
	Scoping Issues

	Passing References
	Prototypes
	Inlining Constant Functions
	Care with Prototypes
	Prototypes of Built-in Functions

	Subroutine Attributes
	The method Attribute
	The lvalue Attribute

	Chapter 8. References
	What Is a Reference?
	Creating References
	The Backslash Operator
	Anonymous Data
	The anonymous array composer
	The anonymous hash composer
	The anonymous subroutine composer

	Object Constructors
	Handle References
	Symbol Table References
	Implicit Creation of References

	Using Hard References
	Using a Variable As a Variable Name
	Using a block As a Variable Name
	Using the Arrow Operator
	Using Object Methods
	Pseudohashes
	Other Tricks You Can Do with Hard References
	Closures
	Closures as function templates
	Nested subroutines

	Symbolic References
	Braces, Brackets, and Quoting
	References Don’t Work As Hash Keys
	Garbage Collection, Circular References, and Weak References

	Chapter 9. Data Structures
	Arrays of Arrays
	Creating and Accessing a Two-Dimensional Array
	Growing Your Own
	Access and Printing
	Slices
	Common Mistakes

	Hashes of Arrays
	Composition of a Hash of Arrays
	Generation of a Hash of Arrays
	Access and Printing of a Hash of Arrays

	Arrays of Hashes
	Composition of an Array of Hashes
	Generation of an Array of Hashes
	Access and Printing of an Array of Hashes

	Hashes of Hashes
	Composition of a Hash of Hashes
	Generation of a Hash of Hashes
	Access and Printing of a Hash of Hashes

	Hashes of Functions
	More Elaborate Records
	Composition, Access, and Printing of More Elaborate Records
	Composition, Access, and Printing of Even More Elaborate Records
	Generation of a Hash of Complex Records

	Saving Data Structures

	Chapter 10. Packages
	Symbol Tables
	Qualified Names
	The Default Package
	Changing the Package
	Autoloading

	Chapter 11. Modules
	Loading Modules
	Unloading Modules
	Creating Modules
	Naming Modules
	A Sample Module
	Module Privacy and the Exporter
	Exporting without using Exporter’s import method
	Version checking
	Managing unknown symbols
	Tag-handling utility functions

	Overriding Built-in Functions

	Chapter 12. Objects
	Brief Refresher on Object-Oriented Lingo
	Perl’s Object System
	Method Invocation
	Method Invocation Using the Arrow Operator
	Method Invocation Using Indirect Objects
	Syntactic Snafus with Indirect Objects
	Package-Quoted Classes

	Object Construction
	Inheritable Constructors
	Initializers

	Class Inheritance
	Inheritance Through @ISA
	Alternate Method Searching
	Accessing Overridden Methods
	UNIVERSAL: The Ultimate Ancestor Class
	Method Autoloading
	Private Methods

	Instance Destructors
	Garbage Collection with destroy Methods

	Managing Instance Data
	Generating Accessors with Autoloading
	Generating Accessors with Closures
	Using Closures for Private Objects
	New Tricks

	Managing Class Data
	The Moose in the Room
	Summary

	Chapter 13. Overloading
	The overload Pragma
	Overload Handlers
	Overloadable Operators
	The Copy Constructor (=)
	When an Overload Handler Is Missing (nomethod and fallback)
	Overloading Constants
	Public Overload Functions
	Inheritance and Overloading
	Runtime Overloading
	Overloading Diagnostics

	Chapter 14. Tied Variables
	Tying Scalars
	Scalar-Tying Methods
	Magical Counter Variables
	Cycling Through Values
	Magically Banishing $_

	Tying Arrays
	Array-Tying Methods
	Notational Convenience

	Tying Hashes
	Hash-Tying Methods

	Tying Filehandles
	Filehandle-Tying Methods
	Creative Filehandles

	A Subtle Untying Trap
	Tie Modules on CPAN

	Part III. Perl as Technology
	Chapter 15. Interprocess Communication
	Signals
	Signalling Process Groups
	Reaping Zombies
	Timing Out Slow Operations
	Blocking Signals
	Signal Safety

	Files
	File Locking
	Passing Filehandles

	Pipes
	Anonymous Pipes
	Talking to Yourself
	Bidirectional Communication
	Named Pipes

	System V IPC
	Sockets
	Networking Clients
	Networking Servers
	Message Passing

	Chapter 16. Compiling
	The Life Cycle of a Perl Program
	Compiling Your Code
	Executing Your Code
	Compiler Backends
	Code Generators
	The Bytecode Generator
	The C Code Generators

	Code Development Tools
	Avant-Garde Compiler, Retro Interpreter

	Chapter 17. The Command-Line Interface
	Command Processing
	#! and Quoting on Non-Unix Systems
	Location of Perl
	Switches

	Environment Variables

	Chapter 18. The Perl Debugger
	Using the Debugger
	Debugger Commands
	Stepping and Running
	Breakpoints
	Tracing
	Display
	Locating Code
	Actions and Command Execution
	Miscellaneous Commands

	Debugger Customization
	Editor Support for Debugging
	Customizing with Init Files
	Debugger Options

	Unattended Execution
	Debugger Support
	Writing Your Own Debugger

	Profiling Perl
	Devel::DProf
	Devel::NYTProf

	Chapter 19. CPAN
	History
	A Tour of the Repository
	Creating a MiniCPAN

	The CPAN Ecosystem
	PAUSE
	Searching CPAN
	Testing
	Bug Tracking
	rt.cpan.org
	Other bug tracking
	perlbug
	rt.perl.org

	Installing CPAN Modules
	By Hand
	CPAN Clients
	cpan
	cpanp
	cpanminus

	Creating CPAN Distributions
	Starting Your Distribution
	h2xs
	Distribution::Cooker
	Module::Starter
	Dist::Zilla

	Testing Your Modules
	Internal testing
	External testing

	Part IV. Perl as Culture
	Chapter 20. Security
	Handling Insecure Data
	Detecting and Laundering Tainted Data
	Cleaning Up Your Environment
	Accessing Commands and Files Under Reduced Privileges
	Defeating Taint Checking

	Handling Timing Glitches
	Unix Kernel Security Bugs
	Handling Race Conditions
	Temporary Files

	Handling Insecure Code
	Changing Root
	Safe Compartments
	Restricting namespace access
	Restricting operator access
	Safe examples

	Code Masquerading As Data

	Chapter 21. Common Practices
	Common Goofs for Novices
	Universal Blunders
	Frequently Ignored Advice
	C Traps
	Shell Traps
	Python Traps
	Ruby Traps
	Java Traps

	Efficiency
	Time Efficiency
	Space Efficiency
	Programmer Efficiency
	Maintainer Efficiency
	Porter Efficiency
	User Efficiency

	Programming with Style
	Fluent Perl
	Program Generation
	Generating Other Languages in Perl
	Generating Perl in Other Languages
	Source Filters

	Chapter 22. Portable Perl
	Newlines
	Endianness and Number Width
	Files and Filesystems
	System Interaction
	Interprocess Communication (IPC)
	External Subroutines (XS)
	Standard Modules
	Dates and Times
	Internationalization
	Style

	Chapter 23. Plain Old Documentation
	Pod in a Nutshell
	Verbatim Paragraphs
	Command Paragraphs
	Flowed Text

	Pod Translators and Modules
	Writing Your Own Pod Tools
	Pod Pitfalls
	Documenting Your Perl Programs

	Chapter 24. Perl Culture
	History Made Practical
	Perl Poetry
	Virtues of the Perl Programmer
	Events
	Getting Help

	Part V. Reference Material
	Chapter 25. Special Names
	Special Names Grouped by Type
	Regular Expression Special Variables
	Per-Filehandle Variables
	Per-Package Special Variables
	Program-Wide Special Variables
	Per-Package Special Filehandles
	Per-Package Special Functions

	Special Variables in Alphabetical Order

	Chapter 26. Formats
	String Formats
	Binary Formats
	pack
	Repetition
	Other modifiers
	More examples

	unpack

	Picture Formats
	Format Variables
	Footers
	Accessing Formatting Internals

	Chapter 27. Functions
	Perl Functions by Category
	Perl Functions in Alphabetical Order
	abs
	accept
	alarm
	atan2
	bind
	binmode
	bless
	break
	caller
	chdir
	chmod
	chomp
	chop
	chown
	chr
	chroot
	close
	closedir
	connect
	continue
	cos
	crypt
	dbmclose
	dbmopen
	defined
	delete
	die
	do (block)
	do (file)
	do (subroutine)
	dump
	each
	eof
	eval
	exec
	exists
	exit
	exp
	_ _FILE_ _
	fc
	fcntl
	fileno
	flock
	fork
	format
	formline
	getc
	getgrent
	getgrgid
	getgrnam
	gethostbyaddr
	gethostbyname
	gethostent
	getlogin
	getnetbyaddr
	getnetbyname
	getnetent
	getpeername
	getpgrp
	getppid
	getpriority
	getprotobyname
	getprotobynumber
	getprotoent
	getpwent
	getpwnam
	getpwuid
	getservbyname
	getservbyport
	getservent
	getsockname
	getsockopt
	glob
	gmtime
	goto
	grep
	hex
	import
	index
	int
	ioctl
	join
	keys
	kill
	last
	lc
	lcfirst
	length
	_ _LINE_ _
	link
	listen
	local
	localtime
	lock
	log
	lstat
	m//
	map
	mkdir
	msgctl
	msgget
	msgrcv
	msgsnd
	my
	new
	next
	no
	oct
	open
	opendir
	ord
	our
	pack
	package
	_ _PACKAGE_ _
	pipe
	pop
	pos
	print
	printf
	prototype
	push
	q/STRING/
	quotemeta
	rand
	read
	readdir
	readline
	readlink
	readpipe
	recv
	redo
	ref
	rename
	require
	reset
	return
	reverse
	rewinddir
	rindex
	rmdir
	s///
	say
	scalar
	seek
	seekdir
	select (output filehandle)
	select (ready file descriptors)
	semctl
	semget
	semop
	send
	setpgrp
	setpriority
	setsockopt
	shift
	shmctl
	shmget
	shmread
	shmwrite
	shutdown
	sin
	sleep
	socket
	socketpair
	sort
	splice
	split
	sprintf
	sqrt
	srand
	stat
	state
	study
	sub
	substr
	symlink
	syscall
	sysopen
	sysread
	sysseek
	system
	syswrite
	tell
	telldir
	tie
	tied
	time
	times
	tr///
	truncate
	uc
	ucfirst
	umask
	undef
	unlink
	unpack
	unshift
	untie
	use
	utime
	values
	vec
	wait
	waitpid
	wantarray
	warn
	write
	y//

	Chapter 28. The Standard Perl Library
	Library Science
	A Tour of the Perl Library
	Roll Call
	The Future of the Standard Perl Library
	Wandering the Stacks

	Chapter 29. Pragmatic Modules
	attributes
	autodie
	autouse
	base
	bigint
	bignum
	bigrat
	blib
	bytes
	charnames
	Custom Character Names
	Runtime Lookups

	constant
	Restrictions on constant

	deprecate
	diagnostics
	encoding
	feature
	fields
	filetest
	if
	inc::latest
	integer
	less
	lib
	locale
	mro
	open
	ops
	overload
	overloading
	parent
	re
	sigtrap
	Signal Handlers
	Predefined Signal Lists
	Other Arguments to sigtrap
	Examples of sigtrap

	sort
	strict
	strict "refs"
	strict "vars"
	strict "subs"

	subs
	threads
	utf8
	vars
	version
	vmsish
	exit
	hushed
	status
	time

	warnings
	User-Defined Pragmas

	Glossary
	Index of Perl Modules in This Book
	Index

